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The first part of this article gives error bounds for approximations of Markov ker-
nels under Foster-Lyapunov conditions. The basic idea is that when both the approx-
imating kernel and the original kernel satisfy a Foster-Lyapunov condition, the long-
time dynamics of the two chains – as well as the invariant measures, when they exist
– will be close in a weighted total variation norm, provided that the approximation is
sufficiently accurate. The required accuracy depends in part on the Lyapunov function,
with more stable chains being more tolerant of approximation error. This is similar to
the situation for uniformly ergodic chains, studied by the authors in [12], and others in
[19, 1].

Our development is inspired by [11], and certainly has commonalities with [23],
which addresses the same topic. Our proofs are rather different, and we give error
bounds for approximation of expectations using Poisson equation arguments similar
to [7, 15]. (Of course, such methods are intimately related to classical Martingale
and potential methods [21] as well as classical ideas from dynamical systems.) We
also show conditions under which the approximating chain will satisfy Harris’ theo-
rem. An ancillary implication of our results is that one need not explicitly construct a
Markov kernel that targets the posterior measure to obtain an algorithm that is useful
for Bayesian computation. While this point is certainly made elsewhere in the litera-
ture, the connection with approximating kernels has perhaps not been made in this way
before.

We are motivated by the recent growth in proposals for scaling Markov chain Monte
Carlo algorithms to large datasets by defining an approximating kernel that is faster to
sample from [14, 25, 5, 2, 3]. Many of these proposals use only a small subset of the
data points to construct the transition kernel, and we consider an application to this
class of approximating kernel. We also consider applications to distribution approxi-
mations in Gibbs sampling which are again made for computational efficiency. Unlike
the examples discussed in [12], here we will consider unbounded domains which ne-
cessitate the introduction of Lyapunov functions and weighted total variation norms
rather than the classical total variation norm used in [12].

Another application in which approximating kernels are commonly used is in Metropo-
lis algorithms for Gaussian process models common in spatial statistics and nonpara-
metric regression. In this setting, there are typically two sources of approximation
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error: discretization error and approximation of Metropolis acceptance ratios. Because
the approximating kernel is obtained by discretizing the state space, it is singular with
respect to the exact kernel. To analyze this application, we give additional results in
Wasserstein metrics in contrast to the proceeding examples which quantified the level
of approximation in a total variation norm. Informally, the results require a uniform
Wasserstein contraction condition for the exact kernel similar to [10] and a uniform
approximation error condition. These conditions are appropriate for our application,
which typically operates on a compact state space.

1 Bounds in weighted total variation
We begin by defining the weighted total variation metrics which will be used to quantify
convergence, largely following [11]. We then introduce a approximating change and
bound the shift in the invariant measure and time averages.

1.1 Basic mixing results
We assume conditions on the Markov kernel similar to those in [11, 16]. Let P(x, · )
be a Markov kernel on a Polish state space X, which in many applications is Rp, p-
dimensional Euclidean space. We use P for operators defined on the set of measurable
functions and the set of finite measures

(Pφ)(x) =

∫
X

φ(y)P(x, dy), (Pµ)(A) =

∫
X

P(x,A)µ(dx).

We assume that P satisfies a Foster-Lyapunov drift condition

Assumption 1.1. There exists a function V : X→ [0,∞) such that for some γ ∈ (0, 1)
and K > 0

PV (x) ≤ γV (x) +K (1)

for all x ∈ X.

We also assume that sublevel sets of V are “small” in that they satisfy a uniform
minorization condition.

Assumption 1.2. For every R > 0, there exists α ∈ (0, 1) (depending on R) such that

sup
x,y∈C(R)

‖P(x, · )− P(y, · )‖TV ≤ 2(1− α) (2)

for C(R) = {x : V (x) ≤ R}.

To quantify the rate of convergence to equilibrium, we procede in the spirit of [16]
and define a family of weighted supremum norms indexed by a scale parameter β > 0
by

‖φ‖β = sup
x

|φ(x)|
1 + βV (x)

2



and the dual metric ρβ on probability measures

ρβ(µ1, µ2) = sup
φ:‖φ‖β≤1

∫
X

φ(x)(µ1 − µ2)(dx) =

∫
X

(1 + βV (x))|µ1 − µ2|(dx),

a weighted total variation distance. Hairer and Mattingly [11] show that for β suffi-
ciently small the Markov semigroup P is a contraction in the metric ρβ under Assump-
tions 1.1 and 1.2. In [11], they also showed that these metrics are equivalent to the
metric dβ on measures induced by

dβ(x, y) =

{
0 x = y

2 + βV (x) + βV (y) x 6= y

To define dβ , one first defines a Lipschitz seminorm on measurable functions by

|||φ|||β = sup
x 6=y

|φ(x)− φ(y)|
dβ(x, y)

.

This in turn induces the metric dβ on probability measures through

dβ(µ1, µ2) = sup
φ:|||φ|||β≤1

∫
X

φ(x)(µ1 − µ2)(dx),

for which it turns out that |||φ|||β = infc∈R ‖φ + c‖β and therefore dβ = ρβ . In the
sequel we freely interchange these metrics. We now give the convergence theorem
from Hairer and Mattingly [11] which uses these metrics.

Theorem 1.3 (Theorem 1.3 of [11]). Under Assumptionss 1.1 and 1.2, there exist an
α ∈ (0, 1) and β > 0 so that

dβ(ν1P, ν2P) ≤ αdβ(ν1, ν2)

for all probability measure ν1 and ν2.

1.2 Basic approximation results
Now consider a second transition kernel Pε that is “nearby” P in the following sense.

Assumption 1.4. For some δ ≥ 0 and all x,

d1(P(x, · ),Pε(x, · )) ≤ ε(1 + δV (x))

m
(P − Pε)φ(x) ≤ ε(1 + δV (x)) for all |φ| ≤ 1 + V

The following basic pertubation bound is one of our main results.

Theorem 1.5. Suppose assumptions 1.1, 1.2, and 1.4 hold. Then there exists a β ∈
(0, 1] and α0 ∈ (0, 1) so that

Pεφ(x)− Pφ(y) ≤ ε(1 + δV (x)) + α0 dβ(x, y)

for all |φ| ≤ 1 + βV .
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Proof. We have

dβ(δyP, δxPε) ≤ dβ(δyP, δxP) + dβ(δxP, δxPε)
≤ α0dβ(x, y) + ε(1 + δV (x)),

where the first term followed from Assumptions 1.1 and 1.2 and [11, Theorem 3.1] and
the second term from Assumption 1.4.

This immediately gives a bound on the distance between the one-step transition
kernels for any pair of starting measures.

Corollary 1.6. Let µ and ν be two probability measures. Then

dβ(µPε, νP) ≤ ε(1 + δµV ) + α0dβ(µ, ν). (3)

We can use this result to bound the distance between the invariant measure(s). If m
and mε are invariant measures of P and Pε respectively then

dβ(mε,m) ≤ ε

1− α0
(1 + δ mεV ),

and iterating the estimate in (3) gives

dβ(µPnε , νPn) ≤ ε
n∑
k=1

αn−k0 (1 + δµPk−1
ε V ) + αn0dβ(µ, ν), (4)

a finite-time error bound. If we now assume

Assumption 1.7. For some γε ∈ (0, 1) and Kε > 0

PεV (x) ≤ γεV (x) +Kε (5)

for all x.

so that V is also a Lyapunov function of Pε, then

µPjεV ≤ γjεµV +
Kε

1− γε
,

and in place of (4) we can use the bound

dβ(µPnε , νP
n) ≤ ε

1− α0
(1 + δ

Kε

1− γε
) + εδ(µV )

n∑
k=1

αn−k0 γkε + αn0dβ(µ, ν)

≤ ε

1− α0
(1 + δ

Kε

1− γε
) + εδ(µV )(α0 ∨ γε)n−1n+ αn0dβ(µ, ν).

We note that Assumption 1.7 is implied by Assumption 1.4 when εδ < 1− γ; a simple
argument is given in the proof of Remark 1.9. Also under Assumption 1.7, if m and
mε are the invariant measures of P and Pε respectively then we have the bound

dβ(m,mε) ≤
ε

1− α0
(1 + δ

Kε

1− γε
).

We now show that under the following additional condition, one can prove Harris’
theorem for Pε.

4



Assumption 1.8. For every 0 < R < 2(K+ε)
1−(γ+εδ) there exists ζ < α (depending on R)

such that

sup
x∈C
‖Pε(x, · )− P(x, · )‖TV ≤ ζ

for C = {x : V (x) ≤ R}.

This result is included mainly for completeness. It is common in the MCMC lit-
erature to prove Harris’ theorem, and many practitioners mistakenly interpret it as a
guarantee of good finite-time performance. It is clear from Theorem 1.10 that this is
not necessary to obtain the kind of variation bounds that are desired in MCMC appli-
cations, but the following result may nonetheless be of interest.

Remark 1.9. Suppose Assumptions 1.2, 1.4, 1.1, and 1.8 hold and δε < 1 − γ. Then
there exists ᾱε < 1 and β > 0 such that

ρβ(Pεµ,Pεν) ≤ ᾱερβ(µ, ν)

for any probability measures µ, ν on X.

Proof. We have

PεV = (P + Pε − P)V

≤ γV +K + ε(1 + δV ),

and for any x, y ∈ C with C = {x : V (x) ≤ R}

‖Pε(x, · )− Pε(y, · )‖TV ≤ ‖Pε(x, · )− P(x, · )‖TV
+ ‖P(x, · )− P(y, · )‖TV + ‖P(y, · )− Pε(y, · )‖TV

≤ ζ + 2(1− α) + ζ = 2(1− (α− ζ)).

for every R ≤ 2(K+ε)
1−(γ+εδ) .

Our main error bound is given by the following result.

Theorem 1.10. Assume that Assumptions 1.1, 1.2, 1.4 and 1.7 hold. Then there exists
C <∞ so that

E

(
1

n

n−1∑
k=0

φ(Xε
k)− µφ

)2

≤ 6C2εδ

(
Kε

1− γε
+

1− δ
δ

)
+

6C2

n

(
Kε + 1

1− γε

)
(1 + V ) +O

(
1

n2

)
.

The proof is deferred to the Appendix. The bound consists of an error term that
goes to zero when ε→ 0, terms proportional to V that goes to zero at the rate n−1, and
terms going to zero like n−2.
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2 Applications
We begin this section with a result which is helpful in verifying the Assumption 1.4.
We then apply the previous sections to a simple pedagogical example, a basic Gibbs
sampling application, and Minibatching Metropolis-Hastings.

2.1 Achieving the error condition
For the bounds above to be practical, we need a way to construct approximations Pε
that achieve Assumption 1.4 that is broadly applicable. Often, it is easier to construct
approximations satisfying a condition like

‖P(x, · )− Pε(x, · )‖TV < ε

than to directly construct an approximating kernel with error depending on the Lya-
punov function. However, uniform total variation error control is not enough to show
Assumption 1.4, so we seek an adaptive total variation error condition that gives As-
sumption 1.4.

If V is a Lyapunov function of both P and Pε, observe that

sup
|φ|<V

∫
φ(y)P(x, dy) < γV (x) +K.

Because this family is integrable for each x, for every ε > 0 there exists Mε(x) < ∞
such that

sup
|φ|<V

∫
φ(y)1{|φ(y)| > Mε(x)}P(x, dy) <

∫
V (y)1{V (y) > Mε(x)}P(x, dy)

<
ε

4
. (6)

A similar condition holds forPε(x, dy) for each x; redefineMε(x) so that the condition
in (6) holds for both P and Pε. Now suppose

‖P(x, dy)− Pε(x, dy)‖TV <
εγV (x)

2Mε(x)
+

ε

4Mε(x)
. (7)

Then setting Aε = {|φ(y)| > Mε(x)}

sup
|φ|<V

∫
φ(y)(P(x, dy)− Pε(x, dy))

= sup
|φ|<V

(∫
φ(y)1Aε(P(x, dy)− Pε(x, dy))

+

∫
φ(y)1Acε (P(x, dy)− Pε(x, dy))

)
≤ ε+ γεV (x) = ε(1 + γV (x)).
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In other words, total variation control is good enough, assuming we tune the approxi-
mation error in total variation to the current state of the chain. This is consistent with
several of our other results. In some sense, this is obvious, since we have a weighted
total variation norm, so it should be enough to have a total variation approximation
error that adapts to the state. The main argument here is to use the integrability condi-
tion. Notice that if we can compute V (x)/Mε(x), then an algorithm that allows us to
choose the total variation approximation error at each step is good enough to achieve
our approximation error condition in the V -weighted norm. Note that this condition
only requires that there exist some Lyapunov function Vε of Pε, since we can then
always take V ∧ Vε as a Lyapunov function of both P and Pε.

2.2 A (simple) example
Consider the Gaussian autoregressive model of order 1 with unit variance

P(x, y) =
1√
2π
e−(ρx−y)2/2

for ρ ∈ (−1, 1). The function V (x) = x2 is a Lyapunov function since∫ ∞
−∞

y2P(x, dy) =

∫ ∞
−∞

y2 1√
2π
e−(ρx−y)2/2dy = x2ρ2 + 1

and ρ2 < |ρ| < 1. For any ξ > 0 we have∫ ρx−ξ

−∞
y2P(x, dy) +

∫ ∞
ρx+ξ

y2P(x, dy) =

√
2

π
ξe−

ξ2

2 + 2(1 + x2ρ2)Φ(−ξ),

where Φ(·) is the standard Gaussian distribution function. Using an inequality we later
use in the proof of Proposition 2.1√

2

π
ξe−

ξ2

2 + 2(1 + x2ρ2)(1− Φ(ξ)) =

√
2

π
ξe−

ξ2

2 +
2(1 + x2ρ2)√

2π

e−
ξ2

2

ξ +
√
ξ2 + h(ξ)

,

with 8
π < h(ξ) < 4. Taking ξε(x) =

√
8 log(

√
4
ε + ρx) we have the upper bound

√
2

π

√
8 log(

√
4/ε+ ρx)

(
√

4/ε+ ρx)4
+

√
2

π

(1 + x2ρ2)

(
√

4/ε+ ρx)4

1

2
√

8 log(
√

4/ε+ ρx)

≤ 1

(
√

4/ε+ ρx)2
<
ε

4
,

with the corresponding value

Mε(x) =
(
|ρ|x+

√
8 log(

√
4
ε + ρx)

)2

.
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Now consider the perturbation

Pε(x, dy) =
1√
2π
e−

((ρ+δ)x−y)2

2 dy

for −1 + ρ < δ < 1 − ρ. This is just another first order autoregressive model, with
ρε = ρ+ δ, so x2 is still a Lyapunov function and definining

Mε(x) =
(
|ρ+ (δ ∨ 0)|x+

√
8 log

{√
4
ε + (ρ+ (δ ∨ 0))x

})2

.

we have

sup
|φ|<V

∫
φ(y)1{|φ(y)| > Mε(x)}(Pε(x, dy)− P(x, dy)) ≤ ε

2

and if δ > 0 then

‖P(x, dy)− Pε(x, dy)‖TV ≤
εγx2 + ε/4(

ρx+

√
8 log

{√
4
ε + ρx

})2
. (8)

Figure 1 shows a particular example of the function on the right side of (8) for
ε = 0.1, γ = 0.9, δ = 0.05, and ρ = 0.8. Outside of the interval [−1, 1], the total
variation error can be strictly larger than 0.005 and still achieve the error condition
in Assumption 1.4. The error requirement becomes non-binding when x < −2, but
for positive values of x, total variation error of less than 0.05 is required over the
entire range of states that the chain is likely to visit. Certainly this will lead to some
computational improvement over an algorithm achieving uniform error of, say, 0.01
everywhere.

2.3 Application to Gibbs sampling
In this section we consider approximating a Gibbs sampler for Probit regression with
Gaussian priors. The model is

yi ∼ Binomial(ni,Φ(wiβ)), i = 1, . . . , N, β ∼ N(0, B)

where each wi is a 1 × p real vector. In general we will assume that the (yi, wi) are
independent.

A transition kernel P with invariant measure the posterior in this model is defined
by the update rule

ωi =

yi∑
j=1

Z+
ij +

ni−yi∑
j=1

Z−ij

pZ+
ij

(z) ∝ 1√
2π
e−(z−wiβ)/21{z > 0}, pZ−ij

(z) ∝ 1√
2π
e−(z−wiβ)/21{z ≤ 0}

β ∼ Normal((B−1 +W ′DW )−1W ′Ω, (B−1 +W ′DW )−1)

8



‖P(x, · )− Pε(x, · )‖TV , x ∈ [−1, 1] ‖P(x, · )− Pε(x, · )‖TV , x ∈ [−4, 8]

Simulated path

Figure 1: Top two panels: Plots of the state x on the horizontal axis vs the right side
of (8) for value of parameters as given in text. Bottom panel: simulated path of length
1000 for AR-1 process with autocorrelation 0.85 (the mean of ρ and ρ+ δ).

where D is a diagonal matrix with diagonal entries n1, . . . , nN , W is a N × p matrix
with rows consisting of the wi’s, and Ω = (ω1, . . . , ωN ) is a N × 1 vector of the ωi’s.
It is standard in the literature to analyze P in the special case of a flat prior on β, in
which case the update is simplified slightly so that the last step becomes

β ∼ Normal((W ′DW )−1W ′Ω, (W ′DW )−1). (9)

A perturbation Pε of P can be generated by replacing Z+ =
∑yi
j=1 Z

+
ij and Z− =∑ni−yi

j=1 Z−ij by Gaussian approximations U+ and U− given by

U+
i ∼ Normal(yE(Z+

ij ), yV(Z+
ij ))

U−i ∼ Normal((n− y)E(Z−ij ), (n− y)V(Z−ij )).

Suppose we use a flat prior on β, so that the second step of the update is given
by (9). We show a Lyapunov function of both P and Pε in this case when 0 <
mini yi/ni < 1.

Proposition 2.1. V : Rp → R+ given by V (β) = β′W ′DWβ is a Lyapunov function
of both P and Pε. In particular

PV ≤ γV +K, PεV ≤ γV +K

9



for some 0 < γ < 1 and K > 0.

The proof of Proposition 2.1 is given in the appendix.
Now we give a bound on ‖P − Pε‖TV . Denote by KL(µ‖ν) the Kullback-Leibler

divergence between probability measures µ, ν that are absolutely continuous with re-
spect to a dominating measure λ, which in this example we can take to be Lebesgue
measure. Denote by µ(β | Ω) and µε(β | Ω) the conditional measure of β given Ω
induced by the kernels P and Pε, respectively. Observe

KL(µ‖µε) =
1

2
((W ′DW )−1W ′(Ω− Ωε))

′W ′DW ((W ′DW )−1W ′(Ω− Ωε))

=
1

2
(Ω− Ωε)

′W (W ′DW )−1W ′(Ω− Ωε).

Putting Ψ = W (W ′DW )−1W ′, we have by Pinsker’s inequality

‖µ− µε‖TV ≤
√

1

4
(Ω− Ωε)′Ψ(Ω− Ωε)

≤ 1

2

√√√√ N∑
i=1

N∑
j=1

(ωi − ωεi )(ωj − ωεj)ψij

E[‖µ− µε‖TV | βk−1] ≤ 1

4

√√√√ N∑
i=1

N∑
j=1

E(ωi − ωεi )(ωj − ωεj)ψij

=
1

4

√√√√ N∑
i=1

E(ωi − ωεi )2ψii

=

√
2

4

√√√√ N∑
i=1

var(ωi)ψii.

This quantity will be roughly n−1/2 when all ni = n, so the error converges to zero in
the total variation norm at the expected rate.

2.4 Application to Minibatching Metropolis-Hastings
Consider a generic Metropolis-Hastings algorithm with target measure µ(dx), proposal
kernel Q(x, dy) = q(x, y)µ(dy) and transition kernel P . Suppose V is a Lyapunov
function of P satisfying

PV ≤ γV +K

for 0 < K <∞, γ ∈ (0, 1). Let

β(x, y) =
q(y, x)

q(x, y)

α(x, y) = 1 ∧ β(x, y)

10



Then we can write PV as

PV (x) =

∫
V (y)α(x, y)Q(x, dy) + V (x)

(
1−

∫
α(x, y)Q(x, dy)

)
(10)

≤ γV (x) +K

Let Pε be the transition kernel of another Metropolis algorithm with the same pro-
posal distribution, but which replaces α(x, y) with αε(x, y). Then

‖P(x, · )− Pε(x, · )‖TV = sup
|φ|<1

[ ∫
φ(y){α(x, y)− αε(x, y)}Q(x, dy)

+ φ(x)

∫
{αε(x, y)− α(x, y)}Q(x, dy)

]
= sup
|φ|<1

∫
(φ(y)− φ(x)){α(x, y)− αε(x, y)}Q(x, dy)

≤ 2

∫
|α(x, y)− αε(x, y)|Q(x, dy).

Suppose V is a Lyapunov function of both P and Pε. Then to achieve (7) it is enough
to have

2

∫
|α(x, y)− αε(x, y)|Q(x, dy) ≤ εγV (x)

2Mε(x)
+

ε

4Mε(x)
. (11)

To apply this to an algorithm we need a Lyapunov function and an estimate of
Mε(x). Consider the simple case of intercept-only logistic regression with normal
prior

z ∼ Binomial

(
N,

ex

1 + ex

)
, x ∼ Normal(0, B)

and let

Q(x, dy) =
1

2c
1{x−c<y<x+c}dy, (12)

so the proposal is uniform on the current state plus or minus c. Let

p(θ) =

(
N

z

)(
eθ

1 + eθ

)z (
1

1 + eθ

)N−z
1√

2πB
e−

θ2

2B

be the posterior density, and define θ̂ = argmaxθ p(θ), the posterior mode. It is easy
to see that θ̂ satisfies

θ̂

B
+N

eθ̂

1 + eθ̂
= z.

We show a Foster-Lyapunov condition and multistep minorization on small sets for
this algorithm. The proofs are a generalization of the proof of [13, Theorem 3.1] and
use a similar argument, so we defer them to the appendix.
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Theorem 2.2. Assume N > e2 and 1 < z < N − 1, and put B = logN , c = 2 logN .
Then V (x) = e|x| satisfies (PV )(x) ≤ γV (x) +K where K = N3 and

γ =
1

2
+

5

8 logN
− 1

4 logN

(
2

N2
+

1

2N4

)
and

P5(x, {z : |z − θ̂| < 1}) > 1

128

(
1 +

1

e2

)
for any x ∈ C0, where θ̂ is the unique mode of the target and C0 =

{
x : V (x) ≤ 2K

1−γ

}
.

We now describe the minibatching approximation. Observe that the likelihood can
also be represented as

zi ∼ Bernoulli
(

ex

1 + ex

)
, i = 1, . . . , N

with z =
∑N
i=1 zi. A minibatching appoximation is constructed by taking a random

sample of size N0 of the zi. Let A be the set of sampled indices and z0 =
∑
i∈A zi.

The minibatching approximation replaces z with z0N/N0 to calculate αε(x, y). In the
intercept-only case, there is little motivation for such an approximation since the per-
iteration computational cost does not increase with N . In a general logistic regression,
calculation of α(x, y) grows linearly with N , and this minibatching strategy reduces
per iteration cost from O(pN) to O(pN0), where p is the number of covariates. We
study the intercept-only case because sharp and informative bounds are achievable,
with explicit constants. We then study the general case numerically.

Observe that because the bounds in Theorem 2.2 do not depend on z, they also
apply to the minibatch approximation so long as 0 < z0 < N0. Recall the definition∫

V (y)1{V (y) > Mε(x)}P(x, dy) <
ε

4
.

With the uniform random walk kernel in (12), y ∈ [x− c, x+ c] with probability one,
so the worst we could do is Mε(x) = e|x|+c = ecV (x), and with c = 2 logN as in the
proof of Theorem 2.2, we obtain

1

c
|α(x, y)− αε(x, y)| ≤ εγV (x)

2N2V (x)
+

ε

4N2

|α(x, y)− αε(x, y)| ≤ εγ logN

N2
+
ε logN

2N2
, (13)

which is stronger than the condition

∆(x, y, ε) ≡ |α(x, y)− αε(x, y)| ≤ ε. (14)

We now consider how difficult it is to achieve (14) using minibatching. Let N0 be the
minibatch size, and z0 the number of successes in the minibatch sample. We have that

α(x, y) =

(
ex

ey

)z (
1 + ey

1 + ex

)N
e−(x2−y2)/2B

12



αε(x, y) =

(
ex

ey

) z0N
N0
(

1 + ey

1 + ex

)N
e−(x2−y2)/2B

with z0 ∼ HyperGeometric(N, z,N0). We note that since Theorem 2.2 holds only for
1 < z < N − 1, the condition in (13) may not be enough to guarantee the error condi-
tion when z0 < 2. So the subsequent analysis is in some sense conservative, as z0 < 2
will occur with non-negligible probability in some of the cases under consideration.

We consider the probability of achieving (13) at various points on the interval
x ∈ [− logN, logN ] for the uniform proposal considered above. Specifically, we
estimate by simulation the probability that |α(x, y)−αε(x, y)| < ε for a grid of values
in the interval [− logN, logN ] for different values of z and N by simulating from the
hypergeometric distribution of z0. Figure 2 shows results. The probability of achiev-
ing the error condition is well-controlled throughout the region [− logN, logN ] when
z/N = 0.5, but when z/N is small, there is a significant portion of the region over which
the probability of achieving the error condition is less than 0.9. This problem is more
acute whenN is smaller. A heuristic for thinking about this problem is to consider how
much the random variable R0 = Z0/N0 differs from its expectation z/N . From [8] we
have the following Bernstein-like inequality for the hypergeometric distribution

P

[∣∣∣∣Z0

N0
− z

N

∣∣∣∣ > λ√
N0

]
≤ exp

(
− λ2

2σ2
N (1− fN0

) + 2λ
3
√
N0

)
(15)

where fN0
= N0−1

N−1 and σ2
N = z(N−z)

N2 . Clearly, the distribution becomes more con-
centrated around the “exact” value z/N as N0 increases. The effect of z is also evident
in (15), when z ≈ N/2, σ2

N ≈ 1/4, while when z � N , σ2
N ≈ N−1, thus making the

tail probabilities for fixed λ and N0 much larger.
We now give a more complicated but related numerical example for logistic regres-

sion. Consider the general model

P(zi = 1 | wi, x) =
ew
′
ix

1 + ew
′
ix
, x ∼ N(0, B)

for x ∈ Rp and a random-walk Metropolis algorithm with proposal kernel

Q(x, dy) = |2πΣ|−1/2e−(y−x)′Σ−1(y−x)/2dy.

We use the adaptive Metropolis algorithm of [9] with the scaling factor suggested in
[22] to construct Σ. We compare this to a minibatch algorithm defined by taking a
sample A of size N0 of the indices i = 1, . . . , N at each iteration and approximating
the acceptance ratio α(x, y) by αε(x, y) defined by

logαε(x, y) =
N

N0

(∑
i∈A

w′i(x− y)− log
1 + ew

′
ix

1 + ew
′
iy

)
+

1

2
(y − x)′B−1(y − x),

which saves computation by approximating the acceptance ratio using only a subset
of the data of size N0. We assess the accuracy of αε(x, y) as an approximation to

13



α by computing ∆(x, y, ε) as defined in (14) at different points in X × X. We use
p = 2, generatewi iid from a normal distribution with identity covariance, and consider
different values of N0 with N = 100, 000. Since it is not feasible to compute ∆
everywhere in X×X – and the value matters only in regions where either the exact or
approximating chain is likely to reside – we compute it by running the exact algorithm
and computing αε(x, y) in addition to α(x, y) at each step.

Figure 3 shows results. We plot ∆ as a function of the Mahalanobis distance

DΣ̂(x, x̂) ≡ (x− x̂)Σ̂−1(x− x̂)

where x̂ and Σ̂ are estimates of the posterior mean and covariance based on samples of
the exact algorithm after discarding a burn-in. We also estimate

P[∆(x, y, ε) < ε]

as a function of DΣ̂(x, x̂) using local regression (LOESS) for ε = 0.1. Results are
shown for the case of independent normal wi with identity covariance. When the cur-
rent state is near the “center” of the state space – that is, close to x̂ with respect to
the metric D – ∆ has larger mean and the distribution is almost symmetric around
0.5. Similarly, the probability of achieving ∆(x, y, ε) < ε decreases as the state moves
closer to the posterior mean. Naturally, the larger the value ofN0, the higher the proba-
bility of achieving ∆ < ε, though it is notable that more than half the data are necessary
to make this probability greater than 0.5 in a DΣ̂ neighborhood of the mean of radius
greater than one. This suggests the minibatching strategy will give small computational
advantage if the goal is to achieve a condition such as Assumption 1.4. These results
are generally consistent with those of Bardenet et al. [4].

3 An application where Pε and P are mutually singular
The applications considered in the previous section were amenable to bounds in the
weighted total variation norm that was the focus of Section 1 sinceP(x, · ) andPε(x, · )
were jointly absolutely continuous for every x ∈ X. In this section, we consider an
application to approximations commonly used in MCMC for Gaussian process models
in which P(x, · ) and Pε(x, · ) are mutually singular for every x ∈ X. This motivates
bounds in Wasserstein metrics.

Consider a Gaussian process model with squared exponential (or “radial basis”)
kernel

z(w) = x3f(w) + ε, ε ∼ N(0, x2
3)

cov(f(wi), f(wj)) = x2 exp(−x1‖wi − wj‖22).
(16)

The parameters of the model are x = (x1, x2, x3) ∈ R3
+ = X, the positive orthant

in R3. The points W = w1, . . . , wN at which the process is sampled are treated as
fixed and known, and the observations of the process at these points are denoted z =
(z(w1), . . . , z(wN )). Bayesian inference on x requires choice of a prior distribution.
A common choice is an inverse Gamma prior on x3, and independent uniform priors

14



on x1, x2 restricted to compact intervals I1, I2. In general, the left endpoints of I1 =
[a1, b1], I2 = [a2, b2] are bounded away from zero. The complete prior can be written

p(x3) =
ba

Γ(a)
(x2

3)−
a
2−1e

− b

2x2
3

p(x1) =
1

|I1|
1{x1 ∈ I1}, p(x2) =

1

|I2|
1{x2 ∈ I2},

with p(x1, x2, x3) = p(x1)p(x2)p(x3). Integration over x2
3 is available in closed form,

leading to the likelihood for z marginal of x3

L(z | x1, x2,W ) ∝ 1

|I + x2Σ(x1,W )| 12

(
b+ z′(I + x2Σ(x1,W ))−1z

)− a+N
2

(17)

where Σ(x1,W ) is anN×N symmetric, positive definite matrix with entries Σ(x1,W )ij =
exp(−x1‖wi − wj‖22).

We consider the case where x2 = 1 is known and we target the posterior for x1,
so the state space for our Markov chain is the interval I1. For simplicity, we drop
subscripts from now on since the state space is one dimensional. We define P by a
Metropolis algorithm with a wrapped Gaussian random walk on the interval I centered
at x with variance v. Without loss of generality, take |I| = 2π with midpoint m so that

Q(x, dy) :=
1√
2πv

∞∑
k=−∞

e−
(y−x+2πk)2

2v 1{m− π < y < m+ π} dy. (18)

This algorithm is computationally expensive because it requires that we compute
the determinant of I + Σ(x1,W ) and a quadratic form in its inverse at every step. We
consider an approximating kernel Pε that saves computation by discretizing the state
space for x1. Observe that

(I + Σ)−1 = (I + UΛU ′)−1 = U(I + Λ)−1U ′,

so that if we have the spectral decomposition of Σ available, we can easily compute the
inverse appearing in (17) and its determinant. Therefore, we discretize X1 to a ε-grid
of points. Denote these points as {θk}k∈N. In practice, one would pre-compute the
spectral decomposition at some small set of support points that are likely to be visited
frequently by the chain, and then expand this set as necessary while the algorithm runs.
When N is very large, computing the likelihood at even one point may be prohibitive;
we consider an algorithm designed for this setting in the next section.

Define Pε by sampling y∗ from (18), then proposing

y = argminθk |y
∗ − θk|,

the closest support point to y∗. Since Pε and P are mutually singular, the weighted
total variation bounds we have used until now to study approximating kernels are not
useful for this application. We now derive some bounds in Wasserstein metrics to study
this algorithm.
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3.1 Uniform Wasserstein contraction
We construct a contraction in the Wasserstein metric that is natural for this application.
Let d be a lower semicontinuous metric on X. For f : X→ R define

|f |Lip(d) = sup
x6=y

|f(x)− f(y)|
d(x, y)

and for probability measures µ, ν define the dual metric on probability measures

d(µ, ν) = sup
|φ|Lip(d)<1

∫
φ(x)(µ− ν)(dx).

Henceforth we will consider the distance

d(x, y) = 1 ∧ |x− y|
δ

, (19)

which generates the same topology as the standard distance but is localized on a scale
δ and capped at one. Notice that because d is capped at one, if φ ∈ Lip(d) then φ is
necessarily bounded.

Our first condition on P stats that P is locally Lipschitz in the initial condition:

Assumption 3.1. There exists C <∞ such that for |x− y| < δ

d(δxP, δyP) < C|x− y|.

Letting C(δxP, δyP) be the space of all couplings of δxP and δyP , our second
condition is a form of uniform topological irreducibility.

Assumption 3.2. For all γ > 0 and (x, y) ∈ X×X there exists Γx,y ∈ C(δxP, δyP)
and αγ > 0 such that Γx,y((a, b) : |a− b| < γ) > αγ .

Under these assumptions, we have the following contractility result which implies
exponential convergence in the Wasserstein metric.

Theorem 3.3. Suppose Assumptions 3.1 and 3.2 hold. Then there exists ᾱ < 1 such
that

d(δxP, δyP) ≤ ᾱd(x, y).

Proof. This proof largely follows Section 2.1 from Hairer and Mattingly [10]. First
suppose |x− y| < δ and γ < δ < 1

C . Then

d(δxP, δyP) ≤ C|x− y| ≤ Cδ
(
1 ∧ |x−y|δ

)
≤ Cδd(x, y).

On the other hand if |x− y| > δ then defining ∆γ = {(a, b) ∈ X×X : |a− b| < γ}

d(δxP, δyP) ≤
∫

∆γ

d(a, b)Γx,y(da, db) +

∫
∆c
γ

d(a, b)Γx,y(da, db)

≤ γ

δ
αγ + (1− αγ) = 1−

(
1− γ

δ

)
αγ ≤ ᾱγ = ᾱγd(x, y).

Putting ᾱ = ᾱγ ∧ Cδ completes the proof.
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3.2 Wasserstein contraction for Metropolis-Hastings
We now give some sufficient conditions for establishing Assumptions 3.2 and 3.1, and
use these conditions to establish Theorem 3.3 for our application. In this section, we
will assume that the target µ and the proposal kernelQ(x, · ) are absolutely continuous
with respect to Lebesgue measure. The following condition implies Assumption 3.2
and is easy to show for our application since the state space is compact.

Remark 3.4. Write µ(dx) = m(x)dx and let Bδ(z) be a ball of diameter δ with center
z. Suppose that for some z∗ and δ > 0 one has

inf
x

inf
z∈Bδ(z∗)

q(z, x) = c0 > 0, sup
x

sup
z∈Bδ(z∗)

q(x, z) = c1 <∞ (20)

with Q(x, dz) = q(x, z)µ(dz) and if µ(dx) = m(x)dx the target density m satisfies

inf
z∈Bδ(z∗)

m(z) = C0 > 0 (21)

Then Assumption 3.2 holds for the independence coupling Γx,y(du, dv) = P(x, du)P(y, dv).

Proof. Clearly

c0
c1
< α(x, z) ≤ 1

uniformly over (x, z) ∈ X× Bδ(z∗). Let Iγ ⊂ Bδ(z∗) be ball of diameter γ. Then

inf
x
P(x, Iγ) ≥ |Iγ | inf

x
inf

z∈Bδ(z∗)
q(x, z)m(z)α(x, z) ≥ γC0

c20
c1

Consider the coupling Γx,y(du, dv) = P(x, du)P(y, dv). We have

inf
(x,y)∈X×X

Γx,y((a, b) : |a− b| < γ) ≥ inf
(x,y)∈X×X

P(x,B γ
2
(z∗))P(y,B γ

2
(z∗))

≥γ
2

4
C2

0

c40
c21

establishing the result.

We show these conditions for our application. Define

M(x,W ) ≡ I + Σ(x,W )

so the eigenvalues of M satisfy

λmin(M(x,W )) ≥ 1 (22)
λmax(M(x,W )) ≤ 1 +N

trace(M(x,W )) ≤ 2N,

and since M is positive definite

|M |1/N ≤ N−1 trace(M),

17



so |M | ≤ 2N . In the application to Gaussian process models, µ(dx) is given by (17),
so

µ(dx) ≥ 1

(1 +N)N/2
(b+ ‖z‖22)−(N+a)/2 = C0,

µ(dx) ≤
(
b+

‖z‖22
1 +N

)−(N+a)/2

= C1,

and

c0 =
1

C1

1√
2πv

e−
π2

2v ≤ q(x, y) ≤ 1

C0

1√
2πv

= c1,

which shows 3.4 for the Gaussian process application. An easily verifiable condition
for our example that implies Assumption 3.1 is the following

Remark 3.5. Consider a Metropolis-Hastings algorithm with proposal kernelQ(x, dy)
and acceptance probability α(x, y). Recalling the definition of the metric d from (19),
suppose that

α(x, y) ∈ Lip(d)

for every y ∈ X, and that

d(Q(x, · ), Q(y, · )) ≤ C0d(x, y) . (23)

Then Assumption 3.1 holds.

Proof. First observe that because φ ∈ Lip(d) implies that φ is bounded we have that

sup
x∈X

∫
φ(y)Q(x, dy) = C1 <∞ .

Next observe that we have∫
φ(z)(P(x, dz)− P(y, dz)) =

∫
φ(z)α(x, z)Q(x, dz) +

∫
φ(x)(1− α(x, z))Q(x, dz)

−
∫
φ(z)α(y, z)Q(y, dz)−

∫
φ(y)(1− α(y, z))Q(y, dz)

=

∫
φ(z)[α(x, z)Q(x, dz)− α(y, z)Q(y, dz)]

− φ(x)

∫
α(x, z)Q(x, dz) + φ(y)

∫
α(y, z)Q(y, dz)

Focusing now on the first term∫
φ(z)[α(x, z)Q(x, dz)− α(y, z)Q(y, dz)] =

∫
φ(z)(α(x, z)− α(y, z))Q(x, dz)

+

∫
φ(z)α(y, z)(Q(x, dz)−Q(y, dz))

18



≤
∫
φ(z)|α|Lip(d)d(x, y)Q(x, dz)

+

∫
φ(z)(Q(x, dz)−Q(y, dz))

≤ C1|α|Lip(d)d(x, y) + C0d(x, y)

Recognizing that if α(x, z) is Lipschitz in its first argument, then so is ϕ(x, z) =
φ(x)α(x, z), and applying a similar argument to the above gives a similar bound for
the term

φ(y)

∫
α(y, z)Q(y, dz)− φ(x)

∫
α(x, z)Q(x, dz).

We now show these conditions for the Gaussian process application. The next
remark implies that we can work with the ratio of the target densities to verify that α is
Lipschitz.

Remark 3.6. Define β(x, y) by

α(x, y) = β(x, y) ∧ 1,

so that

β(x, y) =
q(y, x)

q(x, y)

is the target times the Hastings ratio. Then β ∈ Lip(d) implies α ∈ Lip(d).

Proof. We have

α(x, y) = β(x, y) ∧ 1

so for d(x, y) 6= 0

|α(x, z)− α(y, z)|
d(x, y)

≤ |β(x, z)− β(y, z)|
d(x, y)

.

This implies that, for example, it is enough to check that β(x, y) has bounded
derivative. We show that supx

∂
∂yβ(x, y) <∞ in Section 3.3. The proof of supy

∂
∂xβ(x, y) <

∞ is similar and omitted. Finally, we show (23) for the Gaussian process application.
Without loss of generality, take x < y. Then we have

d(Q(x, · ), Q(y, · )) = sup
|φ|Lip(d)<1

∫
φ(z)(Q(x, dz)−Q(y, dz))

= sup
|φ|Lip(d)<1

∫ π

−π

1√
2πv

φ(z)

∞∑
k=−∞

(e−
(z−x−2πk)2

2v − e−
(z−y−2πk)2

2v )dz
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=
1

2π
sup

|φ|Lip(d)<1

∫ π−x

−π−x
φ(ξ + x)ϑ3(− ξ2 , e

−v/2)dξ −
∫ π−y

−π−y
φ(ξ + y)ϑ3(− ξ2 , e

−v/2)dξ

≤ |x− y|
δ

+

∫ π−x

π−y

1

2π
ϑ3(−ξ

2
, e−v/2)dξ −

∫ −π−x
−π−y

1

2π
ϑ3(−ξ

2
, e−v/2)dξ

≤ |x− y|
δ

+ 2C|x− y|,

where ϑ3 is the third Jacobi theta function, and the last step followed because ϑ3(− ξ2 , e
−v/2)

is clearly bounded since e−v/2 ∈ (0, 1).

3.3 Approximating Kernels for Gaussian Process Models
So far we have said nothing of approximations. Now we derive an approximation
error condition that gives bounds in Wasserstein metrics that can be verified for our
application. As in the proof of Theorem 1.10, we work initially with the generator and
Poisson equation. Define

L = P − I, U(x) =

∞∑
k=0

φ̃(x),

with φ̃ = φ − µφ and φ ∈ Lip1(d), so that LU = −φ̃. Then, with the same notation
as in (29),

1

n

n−1∑
k=0

φ̃(Xε
k) =

U(Xε
0)− U(Xε

n)

n
+

1

n
M ε
n +

1

n

n−1∑
k=0

(Pε − P)U(Xε
k).

Observe that

U(x)− U(y) =

∞∑
k=0

Pkφ(x)− Pkφ(y) ≤
∞∑
k=0

ᾱkd(x, y) =
1

1− ᾱ
d(x, y),

so that if φ ∈ Lip1(d), then U ∈ Lip 1
1−ᾱ

(d). So since

E
1

n

n−1∑
k=0

φ̃(Xε
k) =

E[U(Xε
0)− U(Xε

n)]

n
+

1

n

n−1∑
k=0

E(Pε − P)U(Xε
k),

we need only bound Pε − P in the Wasserstein metric. This motivates

Assumption 3.7. Suppose P satisfies Assumptions 3.2 and 3.1, and ᾱ is defined as in
Theorem 3.3. Then

sup
x∈X

d(P (x, · ),Pε(x, · )) < ε(1− ᾱ).

Consider the Gaussian process example from above. Define

Ij = {y : argmink |y − θk| = j}
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and observe that

Qε =

∞∑
k=1

δθkQ(x, Ik)

For any φ we have

(Pφ− Pεφ)(x) =

∫
φ(y)α(x, y)Q(x, dy) +

∫
φ(x)(1− α(x, y))Q(x, dy)

−
∫
φ(y)α(x, y)Qε(x, dy)−

∫
φ(x)(1− α(x, y))Qε(x, dy)

=

∫
φ(y)α(x, y)[Q−Qε](x, dy) +

∫
φ(x)(1− α(x, y))[Q−Qε](x, dy)

So we would like to bound on Q − Qε in the Wasserstein-d metric. We have for
any f ∈ Lip1(dβ)∫

f(y)[Q−Qε](x, dy) =
∑
k

∫
Ik

f(y)[Q−Qε](x, dy)

≤

∣∣∣∣∣∑
k

f(θk)Q(x, Ik)−
∫
Ik

[f(θk) + ε]Q(x, dy)

∣∣∣∣∣
≤
∫
εQ(x, dy) = ε.

It is worth pointing out that so far this argument holds for any Qε obtained by an ε-
discretization of the support of Q.

Now we need only show that α(x, y) ∈ Lip(d). By Remark 3.6, it is enough to
show that β(x, y) has uniformly bounded first derivative. The identity

∂

∂y
Σ(y)−1 = −Σ−1 ∂Σ

∂y
Σ−1

where (
∂Σ

∂y

)
ij

=
∂

∂y
Σ(y)ij

will be used. We now compute the derivative

∂

∂y
β(x, y) =

∂

∂y

|I + Σ(y,W )|−1/2{b+ z′(I + Σ(y,W ))−1z}− a+N
2

L(z | x,W )

=
1

L(z | x,W )

∂

∂y
|M(y,W )|−1/2{b+ z′M(y,W )−1z}−

a+N
2 .

Defining D(y) as the N ×N matrix with entries

{D(y)}ij = −‖wi − wj‖2e−y‖wi−wj‖
2

= −‖wi − wj‖2{Σ(y)}ij
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we have

∂

∂y1
|M |−1/2 =

1

2
|M |1/2 trace{MD}

∂

∂y1
{b+ z′M−1z}−

a+N
2 =

a+N

2
{b+ z′M−1z}−

a+N+2
2 z′{M−1DM−1}z.

Observe that∣∣∣∣ ∂∂yβ(x, y)

∣∣∣∣ ≤ |M(x,W )|1/2{b+ z′M(x,W )−1z}
a+N

2

×
(
|M(y,W )|−1/2 a+N

2
{b+z′M(y,W )−1z}−

a+N+2
2 |z′{M(y,W )−1D(y)M(y,W )−1}z|

+ {b+ z′M(y,W )−1z}−
a+N

2
1

2
|M(y,W )|1/2| trace{M(y,W )D(y)}|

)
.

We would like to bound this uniformly away from∞. In addition to the bounds in
(22), we will also need a bound on the norm of D. Observe that

‖D(y1)‖2F =

N∑
i=1

N∑
j=1

‖wi − wj‖2e−y1‖wi−wj‖2 ≤
N∑
i=1

N∑
j=1

‖wi − wj‖2 ≡ D̄2.

It follows that

λmax(D(y1)) ≤ D̄

and therefore applying standard inequalities for products of Hermitian matrices and
quadratic forms we have∣∣∣∣ ∂∂yβ(x, y)

∣∣∣∣ ≤ 2
N
2 (b+ ‖z‖22)

a+N
2 b−

a+N+2
2

(
a+N

2
D̄‖z‖22 + 2

N
2 ND̄

)
≡ C1.

so the derivative is uniformly bounded. It follows that if Qε is obtained from an ε(1−
ᾱ)C−1

1 -discretization of the support of Q, then Assumption 3.7 holds. Note that none
of this required that y reside on a compact set; the compactness of the prior support
will be used in the next example.

3.4 Use of low-rank approximations
In the previous example, the only source of approximation error was the use of an ap-
proximate proposal Qε, and it was enough to uniformly bound the derivative of α to
control the approximation error. In this section, we consider a variation on the previ-
ous algorithm where both an approximate proposal Qε and an approximate acceptance
probability αε are used.

When the number of points N at which the process is sampled is large, it is com-
putationally and numerically difficult to compute a spectral decomposition of Σ(x,W )
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at even a single point. Therefore in addition to discretizing the state space for x, it is
common to approximate Σ(x,W ) by its partial spectral decomposition

Σ = UΛU ′ ≈ UΛεU
′

where Λε is a diagonal matrix that is equal to Λ in its first r diagonal entries and is
zero in its remaining diagonal entries. The resulting algorithm therefore has both an
approximate proposal Qε, where the approximation error arises from discretization,
and an approximated acceptance probability αε, where the approximation error arises
from using a partial spectral decomposition.

The approximate acceptance ratio αε can be expressed as

αε(x, y) = 1 ∧ |U(I + Λε(x,W ))U ′|− 1
2 {b+ z′U(I + Λε(x,W ))−1U ′z}− a+N

2

|U(I + x2Λε(y,W ))U ′|− 1
2 {b+ z′U(I + Λε(y,W ))−1U ′z}− a+N

2

= 1 ∧
(b+

∑r
i=1

1
1+λi(y,W ) +N − r) a+N

2

∏r
i=1(1 + λi(y,W ))1/2

(b+
∑r
i=1

1
1+λi(x,W ) +N − r) a+N

2

∏r
i=1(1 + λi(x,W ))1/2

,

for λi(x,W ) the ith largest eigenvalue of Σ(x,W ).
Now for any φ we have

(Pφ− Pεφ)(x) =

∫
φ(y)α(x, y)Q(x, dy) +

∫
φ(x)(1− α(x, y))Q(x, dy)

−
∫
φ(y)αε(x, y)Qε(x, dy)−

∫
φ(x)(1− αε(x, y))Qε(x, dy),

and adding and subtracting, we get

α(x, y)Q(x, dy)− αε(x, y)Qε(x, dy) = α(x, y)(Q−Qε)(x, dy) + (α− αε)(x, y)Qε(x, dy).

We already know how to deal with the first term, so it remains to handle the second
term. For f ∈ Lip1(dβ), we need∫

f(y)(α− αε)(x, y)Qε(x, dy) ≤ ε,

which depends on how well α approximates αε, rather than how well Q approximates
Qε. Observe that if f ∈ Lip1(dβ), then |f |∞ < 1, so∫

f(y)(α− αε)(x, y)Qε(x, dy) ≤ |f |∞
∫

(α− αε)(x, y)Qε(x, dy),

≤
∫

(α− αε)(x, y)Qε(x, dy),

so we need only make the integral on the right side small. We have∫
(α− αε)(x, y)Qε(x, dy) =

1

|{k : θk ∈ I(x)}|
∑

θk∈I(x)

(α− αε)(x, θk),
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with I(x) = {y : Q(x, y) > 0}, so the desired bound will follow if∑
θk∈I(x)

(α− αε)(x, θk) < |{k : θk ∈ I(x)}|ε,

and a sufficient condition is

sup
k:θk∈I(x)

(α− αε)(x, θk) < ε. (24)

It is always possible to make ε = 0 by putting r = N , though naturally this would
eliminate any computational advantage. Regardless, it is clear that for every ε and
every x, y there exists r(ε, x, y) ≤ N such that

(α− αε)(x, y) < ε,

so by choosing the rank of the partial spectral decomposition in an adaptive way de-
pending on the state, the proposal, and the desired approximation error, we can achieve
(24). Numerical experiments showing that this approximation can be very accurate in
some cases using r � N can be found in [12].

4 Discussion
There has been considerable interest in utilizing approximations of transition kernels
to reduce the computational complexity of MCMC. The results we give in §1 indicate
that when the approximating kernel is sufficiently accurate in a weighted total varia-
tion norm, pathwise quantities generated from the approximating kernel will provide
useful approximations of posterior expectations for large classes of test functions. The
applications we considered suggest that it is possible to verify the assumptions under
which the generic bounds are given for real algorithms, albeit with some effort. We
also outline a way to achieve our main error condition in Assumption 1.4 using state-
adaptive control of total variation, which is likely to be easier to achieve in algorithm
development.

Much of the existing literature focuses on minibatching algorithms, and we con-
sider a simple example of such an algorithm in §2.4. The bounds we give are quite
sharp, and the numerical experiments verify that even in simple examples, a large por-
tion of the data is necessary to achieve reasonable bounds on the approximation error. A
similar conclusion was reached by [4], which also considered minibatching Metropolis-
Hastings. It may at this point be reasonable to conclude that approximating likelihood
ratios based on subsamples of the full data is not a very efficient path to generating ap-
proximating kernels. There have been some recent proposals of algorithms that avoid
the Metropolis-Hastings step entirely [5], though approximation error guarantees are
not given. It seems likely that minibatching will be most valuable in combination with
other strategies, such as divide-and-conquer algorithms [17, 18, 24]. Alternative strate-
gies, such as the use of Gaussian approximations like the one we consider in §2.3, may
hold more promise as standalone algorithms.
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The spatial statistics and nonparametrics literature is replete with approximate al-
gorithms because of the high computational cost of exact computation. Our analysis of
Gaussian process models in §3 suggests that the common practice of discretization and
low-rank approximation of the covariance will give useful approximation to the exact
kernel when the number of eigenvectors used in the approximation is chosen adap-
tively. The relative computational advantage of the approximate algorithm will depend
on the rate of decay of the eigenvalues of the covariance matrix. It would perhaps be
more natural to study this problem in the infinite-dimensional limit, where the notion
of decay rate can be made precise.
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Figure 2: Probability of achieving (13) as a function of x for different values of
N,N0, ε and z.
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Figure 3: Samples of ∆(x, y, ε) as a function of DΣ̂(x, x̂) (left column) and estimated
P[∆(x, y, ε) < ε] as a function of DΣ̂(x, x̂) (right column) for different values of N0;
the function estimation uses LOESS local linear smoothing.
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A Additional proofs

A.1 Proof of Theorem 1.10
For any φ with φ ≤ V 1

2 define φ̃ = φ− µφ

U(x) =

∞∑
k=0

Pkφ̃ (25)

Now for p ∈ (0, 1] we have γp ∈ (0, 1) and Kp > 0 so that

PV p(x) ≤ γpV p(x) +Kp (26)

and

|Pφ̃|(p) ≤ αp|φ̃|(p)

is the weighted TV norm built on V p with an appropriate βp. Now observe that

|U |(p) ≤
∞∑
k=0

αkp |φ̃|(p) =
|φ̃|(p)

1− αp

with p = 1
2 . Observe that since φ < V

1
2 , we have µφ < µV

1
2 < ∞, so |φ̃| <

µV
1
2 + V

1
2 , and

|U(x)|1/2 ≤ (µV
1
2 + V

1
2 (x))

1

1− α(1/2)

≤ C(1 + V
1
2 (x))

for

C =
1

1− α(1/2)
∨ 1

1− α(1/2)
∨ µV 1

2

This implies that

|U(x)| ≤ C(1 + V
1
2 (x)). (27)

Note that

(P − I)U(x) = −φ̃(x) (28)

so

U(Xε
n)− U(Xε

0) =

n−1∑
k=0

U(Xε
k+1)− U(Xε

k) =

n−1∑
k=0

[U(Xε
k+1)− PεU(Xε

k)] +

n−1∑
k=0

(Pε − I)U(Xε
k)

=

n−1∑
k=0

[U(Xε
k+1)− PεU(Xε

k)] +

n−1∑
k=0

(P − I)U(Xε
k) +

n−1∑
k=0

(Pε − P)U(Xε
k)
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Using (28) and defining mε
k+1 = U(Xε

k+1) − PεU(Xε
k) and M ε

n =
∑n
k=1m

ε
k, we

have

1

n

n−1∑
k=0

φ(Xε
k)− µφ =

U(Xε
0)− U(Xε

n)

n
+

1

n
M ε
n +

1

n

n−1∑
k=0

(Pε − P)U(Xε
k) (29)

Now

E[(mε
k+1)2|Fk] ≤ Pε(U2)(Xε

k)− [Pε(U)(Xε
k)]2

and

E(
1

n
M ε
n)2 ≤ 1

n2

n∑
k=1

E(mε
k)2

It follows from (27) that

U2(x) ≤ 2C2(1 + V (x)).

So then with Xε
0 = x0

E[Pε(U2)(Xε
k)] ≤ Pε2C(1 + Pkε V (x0))

≤ 2C + 2CPk+1
ε V (x0).

We proceed by bounding the square of each term on the right side of (29). We have

Pk+1
ε (1 + V ) ≤

(
γk+1
ε +

1− γk+1
ε

1− γε
Kε

)
(1 + V )

≤
(
γk+1
ε +

Kε

1− γε

)
(1 + V )

so

n−1∑
k=0

n−1∑
k=0

E[(mε
k+1)2] ≤ 2C2

(
nKε

1− γε
+

1− γnε
1− γε

)
(1 + V )

1

n2

n−1∑
k=0

n−1∑
k=0

E[(mε
k+1)2] ≤ 2C2

(
Kε

n{1− γε}
− 1− γnε
n2{1− γε}

)
(1 + V ).

Now for the term

1

n

n−1∑
k=0

(Pε − P)U(Xε
k).

Since C−1|U | < 1 + V
1
2 and for |φ| < 1 + V

(Pε − P)(φ) ≤ ε(1 + δV )
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by Jensen’s inequality

(Pε − P)(φ
1
2 ) ≤

√
ε(1 + δV ) ≤

√
ε+
√
εδV ≤

√
ε(1 + δ

1
2V

1
2 )

so we have

C−1|(Pε − P)U(x)| ≤ ε 1
2 (1 + δ

1
2V

1
2 (x)).

Using these inequalities, and taking k ≥ j without loss of generality, we get

(Pε − P)U(Xε
k)(Pε − P)U(Xε

j ) ≤ C2ε(1 + δ
1
2V

1
2 (Xε

k))(1 + δ
1
2V

1
2 (Xε

j ))

E
[
(Pε − P)U(Xε

k)(Pε − P)U(Xε
j )
]
≤ C2εE

[
E
[
(1 + δ

1
2V

1
2 (Xε

k)) | Fj
]

(1 + δ
1
2V

1
2 (Xε

j ))
]

≤ C2εE
[
Pk−jε (1 + δ

1
2V

1
2 (Xε

j ))(1 + δ
1
2V

1
2 (Xε

j ))
]

≤ 2C2εPkε (1 + δV ) (30)

Now since (30) is bounded by

2C2εPkε (1 + δV ) ≤ 2C2εδ

(
γkε V +

Kε

1− γε
+

1− δ
δ

)
we get

n−1∑
k=0

n−1∑
j=0

E
[
(Pε − P)U(Xε

k)(Pε − P)U(Xε
j )
]
≤ n2C2εδ

(
1− γnε
1− γε

V +
nKε

1− γε
+
n(1− δ)

δ

)
1

n2

n−1∑
k=0

n−1∑
j=0

E
[
(Pε − P)U(Xε

k)(Pε − P)U(Xε
j )
]
≤ 2C2εδ

(
1

n

V

1− γε
+

Kε

1− γε
+

1− δ
δ

)
.

Finally we have

(U(Xε
0)− U(Xε

n))2

n2
≤ 2U2(Xε

0) + 2U2(Xε
n)

n2

E
(U(Xε

0)− U(Xε
n))2

n2
≤ 4C2

n2
(E[1 + V (Xε

0)] + E[1 + V (Xε
n)])

≤ 4C2

n2

(
1 + V (x0) + γnε V (x0) +

1− γnε
1− γε

Kε

)
≤ 4C2

n2

(
1 + (1 + γnε )V +

Kε

1− γε

)
Giving us

E

(
1

n

n−1∑
k=0

φ(Xε
k)− µφ

)2

≤ 6C2

(
Kε

n{1− γε}
− 1− γnε
n2{1− γε}

)
(1 + V )

+ 6C2εδ

(
1

n

V

1− γε
+

Kε

1− γε
+

1− δ
δ

)
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+
12C2

n2

(
1 + (1 + γn)V (x0) +

Kε

1− γε

)
≤ 6C2εδ

(
Kε

1− γε
+

1− δ
δ

)
+

6C2

n

(
Kε + 1

1− γε

)
(1 + V ) +O

(
1

n2

)
concluding the proof of Theorem 1.10.

A.2 Proof of Proposition 2.1
Proof of proposition. We have

E[V (β) | (β∗,Ω∗)] = E[E[V (β) | Ω] | β∗]
E[V (β) | Ω] = trace(W ′DW (W ′DW )−1) + E[β | Ω]′(W ′DW )E[β | Ω]

= p+ ((W ′DW )−1W ′Ω)′(W ′DW )((W ′DW )−1W ′Ω)

= p+ Ω′W (W ′DW )−1W ′Ω

so then

E[E[V (β) | Ω] | β∗] = E[p+ Ω′W (W ′DW )−1W ′Ω | β∗]
= p+ trace(W (W ′DW )−1W ′) + E[Ω | β∗]′W (W ′DW )−1W ′E[Ω | β∗]
= K + E[Ω | β∗]′W (W ′DW )−1W ′E[Ω | β∗].

Now we need to compute

E[ωi | β∗] = (ni − yi)
(
wiβ

∗ − φ(−wiβ∗)
Φ(−wiβ∗)

)
+ yi

(
wiβ

∗ +
φ(−wiβ∗)

1− Φ(−wiβ∗)

)
= niwiβ

∗ + yi
φ(−wiβ∗)

1− Φ(−wiβ∗)
− (ni − yi)

φ(wiβ
∗)

1− Φ(wiβ∗)

≤ γniwi

whenever 0 < yi < ni, where Φ(·) and φ(·) are the standard Gaussian distribution
function and density function, respectively.

From [20, Equations 7.8.1, 7.8.2], if x ≥ 0,

2

x+ (x2 + 4)1/2
<

1− Φ(x)

φ(x)
≤ 2

x+ (x2 + 8/π)1/2

so

φ(x)

1− Φ(x)
=

1

2
(x+

√
x2 + h(x))

for some function h(x) satisfying 8/π < h(x) < 4 for x ≥ 0. It follows that for x ≤ 0
we have

φ(−x)

1− Φ(−x)
=

1

2
(−x+

√
(−x)2 + h(−x)).
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On the other hand, for x < 0,

φ(x) <
φ(x)

1− Φ(x)
< 2φ(x)

and for x > 0

φ(x) <
φ(−x)

1− Φ(−x)
< 2φ(x).

Let ξi = wiβ
∗. When ξi < 0, we have

niξi + yi
φ(−ξi)

1− Φ(−ξi)
− (ni − yi)

φ(ξi)

1− Φ(ξi)
≤ niξi + yi

1

2
(−ξi +

√
ξ2
i + h(−ξi))− (ni − yi)φ(ξi)

≤ (ni − yi)ξi

while if ξi > 0

niξi + yi
φ(−ξi)

1− Φ(−ξi)
− (ni − yi)

φ(ξi)

1− Φ(ξi)
≤ niξi + 2yiφ(ξi)− (ni − yi)

1

2
(ξi +

√
ξ2
i + h(ξi))

≤ (ni − (ni − yi))ξi + 2yiφ(ξi).

For ξi sufficiently large, this is strictly less than niξi; in particular, we just need

2yiφ(ξi) < (ni − yi)ξi

for which it is enough that

ξi > 2

√√√√log

(√
2

π

yi
ni − yi

)
.

Define the set

B =

β : wiβ < 2

√√√√log

(√
2

π

yi
ni − yi

)
for some i

 .

This set is compact, and on this set,

E[Ω | β]′W (W ′DW )−1W ′E[Ω | β] < C

for C < ∞. Outside this set, we have just showed that we have E[ωi | β] < γniwiβ
with 0 < γ < 1. Then

E[Ω | β]′W (W ′DW )−1W ′E[Ω | β] < β′W ′γDW (W ′DW )−1W ′γDWβ + C

< γ2β′(W ′DW )β + C

so

V (β) ≤ γ2V (β) +K + C,
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proving the result for P . To get the result for Pε, just observe that E[Ω | β∗] is the
same for Pε and P , and the conditional update for β is unchanged in Pε compared to
P . Thus the constants γ,K,C are identical.

It is worth noting that if we make B “large enough” so that 2yiφ(ξi)� (ni−yi)ξi,
then the constant γ is approximately(

1− yi
ni

)
∨ yi
ni

;

this is broadly consistent with the results in [13], which used conductance bounds. Of
course, this Lyapunov function will only give us control over functions that grow like
the Euclidean norm of β at infinity, whereas the conductance result gives a bound for
L2(µ) functions.

A.3 Proof of Theorem 2.2
This proof is overall quite similar to the proof of [13, Theorem 3.1], except that here
we do not assume that z = 1. As such, certain details are omitted.

We show that p(θ) has only one local maximum

Lemma A.1. We have p′(θ) > 0 for θ < θ̂ and p′(θ) < 0, for θ > θ̂.

Proof. Define f(θ) = ∂
∂θ log p(θ). By direct calculation

p′(θ) = p(θ)
∂

∂θ
log p(θ)

p′(θ) = p(θ)

(
z −N eθ

1 + eθ
− θ

B

)
= p(θ)f(θ) (31)

Observe that

f ′(θ) = − 1

B
−N eθ

1 + eθ
1

1 + eθ
≤ − 1

B
< 0. (32)

Since f ′(θ) < 0 for all θ ∈ R, it follows that {θ : f(θ) = 0} has at most one point.
Since p(θ) > 0 for all θ ∈ R, we have by (31) that {θ : p′(θ) = 0} = {θ : f(θ) = 0},
so {θ : p′(θ) = 0} has at most one point. Since p′(θ̂) = 0, the lemma follows.

We estimate the mode for certain choices of B under weak conditions on the data.

Lemma A.2. Suppose 1 < z < N − 1 and put B = logN . Then

log
z − 1

N − (z − 1)
< θ̂ < log

z + 1

N − (z + 1)

Proof. The mode is the zero of the function

g(θ) =
θ

B
+N

eθ

1 + eθ
− z
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We have

g

(
log

z − 1

N − (z − 1)

)
=

1

B
log

z − 1

N + 1− z
+N

z − 1

N
− z

=
1

logN
log

z − 1

N + 1− z
− 1

so

1

logN
log

1

N − 1
− 1 < g

(
log

z − 1

N − (z − 1)

)
<

1

logN
log

N − 3

3
− 1

−2 < g

(
log

z − 1

N − (z − 1)

)
< 0

while

g

(
log

z + 1

N − (z + 1)

)
=

1

B
log

z + 1

N − z − 1
+N

z + 1

N
− z

=
1

logN
log

z + 1

N − z − 1
+ 1

so

1

logN
log

3

N − 4
+ 1 < g

(
log

z + 1

N − (z + 1)

)
<

1

logN
log

N − 1

1
+ 1

0 < g

(
log

z + 1

N − (z + 1)

)
< 2,

giving the result.

We now bound α(x, y) far from θ̂.

Lemma A.3. For θ̂ ≤ x ≤ y

α(x, y) ≤ e−
(y−x)(x+y−2θ̂)

2B ≤ e−
(x−θ̂)(y−x)

B (33)

while for y ≤ x ≤ θ̂

α(x, y) ≤ e−
(y−x)(x+y−2θ̂)

2B ≤ e−
(x−θ̂)(y−x)

B . (34)

Proof. It follows from (32), the fact that f(θ̂) = 0, and the mean value theorem, that
f(w + θ̂) ≤ −wB for all w ≥ 0. Combining with (31)

p′(w + θ̂) ≤ −w
B
p(w + θ̂)

for all w ≥ 0. So we can replace w = ζ + x− θ̂ for any ζ ≥ 0 to obtain

p′(ζ + x− θ̂ + θ̂) ≤ − (ζ + x− θ̂)
B

p(ζ + x− θ̂ + θ̂)
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p′(ζ + x) ≤ − (ζ + x− θ̂)
B

p(ζ + x).

Now we apply Grönwall’s inequality and change variables inside the integral to s =
ζ + x with Jacobian equal to one to obtain

p(ζ + x) ≤ p(x) exp

(
−
∫ ζ+x

x

s− θ̂
B

ds

)

= p(x) exp

(
− (s2 − 2θ̂s)

2B

∣∣∣∣ζ+x
x

)
= p(x) exp

(
−{(ζ + x)2 − x2 − 2θ̂ζ}

2B

)

= p(x) exp

(
−ζ(ζ + 2x− 2θ̂)

2B

)
.

Since y ≥ x, we can write y = ζ + x for ζ > 0, so that ζ = y − x, and

p(y) ≤ p(x) exp

(
− (y − x)(y + x− 2θ̂)

2B

)
,

which completes the proof of inequality (33). The proof of (34) is similar.

We now construct a Lyapunov function for P . This will show that Xn tends to drift
toward the origin. Actually, it drifts toward θ̂, but this is “close” to the origin by Lemma
A.2. Because we will later want to considerPε, which is generated by subsampling and
therefore has a target with a different mode, it will be helpful to have a drift function
that does not depend on the mode.

Lemma A.4. Assume N > 13 and 1 < z < N − 1. Put B = logN and c = 2 logN .
Then

V (θ) = e|θ|

is a Lyapunov function of P .

Proof. We proceed in three cases.
Case 1 : x > |θ̂|+ c. We have

2cEV (X) =

∫ x

x−c
V (y)α(x, y)dy +

∫ x+c

x

V (y)α(x, y)dy + V (x)

∫ x+c

x−c
(1− α(x, y))dy

=

∫ x

x−c
(V (y)− V (x))dy + cV (x) +

∫ x+c

x

V (y)α(x, y)dy + V (x)

∫ x+c

x

(1− α(x, y))dy

=

∫ x

x−c
V (y)dy +

∫ x+c

x

V (y)α(x, y)dy + V (x)

∫ x+c

x

(1− α(x, y))dy

We bound the three terms on the right separately∫ x

x−c
V (y)dy =

∫ x

x−c
e|y|dy =

∫ x

x−c
eydy = ex

(
1− e−c

)
= V (x)

(
1− e−c

)
.
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Now since x− θ̂ ≥ x− |θ̂| > c∫ x+c

x

V (y)α(x, y)dy ≤
∫ x+c

x

eye−
(x−θ̂)(y−x)

B dy ≤
∫ x+c

x

eye−
c(y−x)
B dy

= e
cx
B

∫ x+c

x

ey(1− c
B )dy = e

cx
B

B

B − c

[
e(x+c)B−cB − ex

B−c
B

]
=

B

B − c
e
cx
B ex

B−c
B

[
ec

B−c
B − 1

]
=

B

B − c
V (x)

[
ec

B−c
B − 1

]
.

Finally

V (x)

∫ x+c

x

(1− α(x, y))dy ≤ V (x)

∫ x+c

x

(1− e− c
B (y−x))dy

= V (x)

(
c− e cxB

∫ x+c

x

e−
cy
B dy

)
= V (x)

(
c+

B

c

[
1− e− c

2

B

])
.

We just need to show that for c = 2 logN we have

1− e−c +
B

B − c

[
ec

B−c
B − 1

]
+ c+

B

c

[
1− e− c

2

B

]
< 2c;

we leave this to the end.
Case 2: x < −|θ̂| − c

2cEV (X) =

∫ x

x−c
V (y)α(x, y)dy +

∫ x+c

x

V (y)α(x, y)dy + V (x)

∫ x+c

x−c
(1− α(x, y))dy

=

∫ x+c

x

(V (y)− V (x))dy + cV (x) +

∫ x

x−c
V (y)α(x, y)dy + V (x)

∫ x

x−c
(1− α(x, y))dy

=

∫ x+c

x

V (y)dy +

∫ x

x−c
V (y)α(x, y)dy + V (x)

∫ x

x−c
(1− α(x, y))dy

so since x+ c < −|θ̂|∫ x+c

x

V (y)dy =

∫ x+c

x

e−ydy = e−x − e−(x+c) = V (x)(1− e−c).

Now since −x+ θ̂ ≥ −x− |θ̂| > c∫ x

x−c
V (y)α(x, y)dy ≤

∫ x

x−c
e−ye−

(x−θ̂)(y−x)
B dy ≤

∫ x

x−c
e−ye

c(y−x)
B dy

= e
−cx
B

∫ x

x−c
e−y

B−c
B dy =

B

B − c
e
−cx
B e

cx
B e−x

(
ec

B−c
B − 1

)
=

B

B − c
V (x)

(
ec

B−c
B − 1

)
,
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and finally

V (x)

∫ x

x−c
(1− α(x, y))dy ≤ V (x)

∫ x

x−c
(1− e cB (y−x))dy

= V (x)

(
c− e

−cx
B

∫ x

x−c
e
cy
B dy

)
= V (x)

(
c+ e

−cx
B
B

c

[
e
cx
B − e

c(x−c)
B

])
= V (x)

(
c+

B

c

[
1− e− c

2

B

])
.

Notice this gives exactly the same result as Case 1, so there are no additional conditions
to check on c.

Case 3: −|θ̂| − c < x < |θ̂|+ c. In this case we have by Lemma A.2

V (x) ≤ e|θ̂|+c ≤ e|θ̂|elogN

It follows that if we put B = logN and c = 2 logN then

PV ≤ γV +K

and we can take

4γ logN = 1− e−2 logN +
logN

− logN

[
e2 logN − logN

logN − 1
]

+ 2 logN +
logN

2 logN

[
1− e−

(2 logN)2

logN

]
= 1− 1

N2
+

[
1− 1

N2

]
+ 2 logN +

1

2

[
1− 1

N4

]
=

5

2
− 2

N2
− 1

2N4
+ 2 logN

and so

γ =
1

2
+

5

8 logN
− 1

4 logN

(
2

N2
+

1

2N4

)
,

which is< 1 whenN > e2. From case 3 we haveK ≤ e2 logNelogN = N3. Therefore

2K

1− γ
=

2N3

1
2 −

5
8 logN + 1

4 logN

(
2
N2 + 1

2N4

)
and so V (x) = 2K

1−γ when

|x| = log 2 + 3 logN − log

(
1

2
− 5

8 logN
+

1

4 logN

(
2

N2
+

1

2N4

))
(35)

< 3 logN + log 12

when N ≥ e2.
Now we show five step minorization on this set. We begin by lower bounding the

measure assigned to an interval around the mode.
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Lemma A.5. For δ = 1 and c = 2 logN if |θ̂ − x| < c− δ, then∫ θ̂+δ

θ̂−δ
P(x, dy) >

1

2
+

1

2e2
.

Proof. We again have several cases. Put ζ = θ̂ − x so that |ζ| < c − δ, and set
A = [x− c, θ̂ − δ] ∪ [θ̂ + δ, x+ c].

Case 1: x > θ̂ + δ so that ζ < −δ∫ θ̂−δ

x−c
α(x, y)dy +

∫ x+c

θ̂+δ

α(x, y)dy ≤
∫ θ̂−δ

x−c
e−

1
B (x−θ̂)(y−x)dy +

∫ x+c

θ̂+δ

e−
1
B (x−θ̂)(y−x)dy

≤
∫ θ̂−δ

x−c
e
δ
B (y−x)dy +

∫ x

θ̂+δ

e
δ
B (y−x)dy +

∫ x+c

x

e−
δ
B (y−x)dy

=
B

δ

[
2− 2e−

cδ
B + e

δ
B (ζ−δ) − e δB (δ+ζ)

]
=
B

δ

[
2− 2e−

cδ
B + e

δζ
B (e−

δ2

B − e δ
2

B )
]

≤ logN

δ

[
2− 2e−

cδ
B + e−

δ2

B (e−
δ2

B − e δ
2

B )
]

=
logN

δ

[
1− 2e−2δ + e−

2δ2

logN

]
It follows that with δ = 1, c = 2 logN

P(x,A) ≤ 1

4 logN

logN

δ

[
1− 2e−2δ + e−

2δ2

logN

]
≤ 1

4

[
2− 2

e2

]
=

1

2
− 1

2e2
< 1

P(x,Ac) ≥ 1

2
+

1

2e2

Case 2: x < θ̂ − δ so that ζ > δ∫ θ̂−δ

x−c
α(x, y)dy +

∫ x+c

θ̂+δ

α(x, y)dy ≤
∫ θ̂−δ

x−c
e−(x−θ̂)(y−x)dy +

∫ x+c

θ̂+δ

e−(x−θ̂)(y−x)dy

≤
∫ x

x−c
eδ(y−x)dy +

∫ θ̂−δ

x

e−δ(y−x)dy +

∫ x+c

θ̂+δ

e−δ(y−x)dy

=
B

δ

[
2− 2e−

cδ
B + e

δ
B (−δ−ζ) − e δB (δ−ζ)

]
=
B

δ

[
2− 2e−

cδ
B + e−

δζ
B (e−

δ2

B − e δ
2

B )
]

≤ logN

δ

[
2− 2e−2δ + e−

δ2

B (e−
δ2

B − e δ
2

B )
]

=
logN

δ

[
1− 2

e2δ
+ e−

2δ2

logN

]
,
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the same as in case 1.
Case 3: θ̂ − δ < x < θ̂ + δ, so −δ < θ̂ − x < δ.∫ θ̂−δ

x−c
α(x, y)dy +

∫ x+c

θ̂+δ

α(x, y)dy ≤
∫ θ̂−δ

x−c
e−

1
B (x−θ̂)(y−x)dy +

∫ x+c

θ̂+δ

e−
1
B (x−θ̂)(y−x)dy

≤
∫ θ̂−δ

x−c
e
δ
B (y−x)dy +

∫ x+c

θ̂+δ

e−
δ
B (y−x)dy

=
B

δ

[
e
δ
B (−δ−ζ) + e

δ
B (−δ+ζ) − 2e−

cδ
B

]
=
B

δ

[
e−

δ2

B (e
δζ
B + e−

δζ
B )− 2e−

cδ
B

]
≤ B

δ

[
e−

δ2

B (e
δ2

B + e−
δ2

B )− 2e−2δ
]

≤ logN

δ

[
1− 2e−2δ + e−

2δ2

logN

]
again the same expression as before, giving the result.

This showed minorization on the set

C0 = {x : |θ̂ − x| < c− 1}, (36)

an interval of width 4 logN − 2 centered at the mode. This is not quite the entire
sublevel set C = {x : V (x) ≤ 2K

1−γ }, which is given by

C =

{
x : |x| ≤ log 2 + 3 logN − log

(
1

2
− 5

8 logN
+

1

4 logN

(
2

N2
+

1

2N4

))}
,(37)

a consequence of (35). When N ≥ e2 and 1 < z < N − 1,

C ⊆ {x : |x| ≤ 3 logN + log 12}. (38)

By Lemma A.2, we have − logN < θ̂ < logN . The next Lemma lower bounds the
probability of transitioning into C0 from any point in the set on the right side of (38) in
four steps, which, combined with the previous result, shows five step minorization on
C.

Lemma A.6. Let x ∈ C \ C0 were C0 and C are defined in (36) and (37) respectively.
Then

P4(x, C0) >
1

64
.

Proof. Take any point x ∈ C\C0. Without loss of generality, assume that θ̂ < x. Since
x /∈ C0, θ̂ + c− 1 < x < θ̂ + 2c+ log 12. Define d(x) = x− θ̂ with

c− 1 < d < 2c+ log 12 < 3c.
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Suppose d(x) < 3c
2 . Then [

x− c, x− c

2

]
⊂ C0.

Observe that when d(x) < 3c
2

P(x, C0) > P
(
x,
[
x− c, x− c

2

])
>

1

4
.

Alternatively, suppose 3c
2 < d(x) < 2c. Then

P(x, {y : c < d(y) <
3c

2
}) > 1

4

so that

P2(x, C0) >
1

16
.

Using similar arguments for the case where 2c < d(x) < 5c
2 and the case 5c

2 < d(x) <
3c gives the result.
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[4] Rémi Bardenet, Arnaud Doucet, and Chris Holmes. On Markov chain Monte
Carlo methods for tall data. arXiv preprint arXiv:1505.02827, 2015.

[5] Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic gradient hamiltonian
monte carlo. In International Conference on Machine Learning, pages 1683–
1691, 2014.

[6] DLMF. NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/,
Release 1.0.16 of 2017-09-18. URL http://dlmf.nist.gov/. F. W. J.
Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W.
Clark, B. R. Miller and B. V. Saunders, eds.

40

http://dlmf.nist.gov/


[7] Peter W. Glynn and Sean P. Meyn. A Liapounov bound for solutions of the Pois-
son equation. The Annals of Probability, 24(2):916–931, 1996.

[8] Evan Greene, Jon A Wellner, et al. Exponential bounds for the hypergeometric
distribution. Bernoulli, 23(3):1911–1950, 2017.

[9] Heikki Haario, Eero Saksman, Johanna Tamminen, et al. An adaptive metropolis
algorithm. Bernoulli, 7(2):223–242, 2001.

[10] Martin Hairer and Jonathan C. Mattingly. Ergodicity of the 2D Navier-Stokes
equations with degenerate stochastic forcing. Ann. of Math. (2), 164(3):993–
1032, 2006. ISSN 0003-486X. doi: 10.4007/annals.2006.164.993. URL http:
//dx.doi.org/10.4007/annals.2006.164.993.

[11] Martin Hairer and Jonathan C Mattingly. Yet another look at harris’ ergodic
theorem for markov chains. In Seminar on Stochastic Analysis, Random Fields
and Applications VI, pages 109–117. Springer, 2011.

[12] James E Johndrow and Jonathan C Mattingly. Coupling and decoupling to bound
an approximating markov chain. arXiv preprint arXiv:1706.02040, 2017.

[13] James E Johndrow, Aaron Smith, Natesh Pillai, and David B Dunson. Ineffi-
ciency of data augmentation for large sample imbalanced data. arXiv preprint
arXiv:1605.05798, 2016.

[14] Anoop Korattikara, Yutian Chen, and Max Welling. Austerity in MCMC land:
Cutting the Metropolis-Hastings budget. arXiv preprint arXiv:1304.5299, 2013.

[15] Jonathan C. Mattingly, Andrew M. Stuart, and M. V. Tretyakov. Convergence of
numerical time-averaging and stationary measures via Poisson equations. SIAM
J. Numer. Anal., 48(2):552–577, 2010.

[16] Sean P Meyn and Richard L Tweedie. Markov chains and stochastic stability.
Springer Science & Business Media, 2012.

[17] Stanislav Minsker, Sanvesh Srivastava, Lizhen Lin, and David Dunson. Scalable
and robust Bayesian inference via the median posterior. In Proceedings of the 31st
International Conference on Machine Learning (ICML-14), pages 1656–1664,
2014.

[18] Stanislav Minsker, Sanvesh Srivastava, Lizhen Lin, and David B Dunson. Robust
and scalable Bayes via a median of subset posterior measures. arXiv preprint
arXiv:1403.2660, 2014.

[19] Alexander Y. Mitrophanov. Sensitivity and convergence of uniformly ergodic
Markov chains. Journal of Applied Probability, pages 1003–1014, 2005.

[20] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, editors. NIST
Handbook of Mathematical Functions. Cambridge University Press, New York,
NY, 2010. Print companion to [6].

41

http://dx.doi.org/10.4007/annals.2006.164.993
http://dx.doi.org/10.4007/annals.2006.164.993


[21] D. Revuz. Markov chains. North-Holland Publishing Co., Amsterdam-Oxford;
American Elsevier Publishing Co., Inc., New York, 1975. North-Holland Mathe-
matical Library, Vol. 11.

[22] Gareth O Roberts, Jeffrey S Rosenthal, et al. Optimal scaling for various
metropolis-hastings algorithms. Statistical science, 16(4):351–367, 2001.

[23] Daniel Rudolf and Nikolaus Schweizer. Perturbation theory for Markov chains
via Wasserstein distance. arXiv preprint arXiv:1503.04123, 2015.

[24] Sanvesh Srivastava, Volkan Cevher, Quoc Dinh, and David Dunson. Wasp: Scal-
able bayes via barycenters of subset posteriors. In Artificial Intelligence and
Statistics, pages 912–920, 2015.

[25] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient Langevin
dynamics. In Proceedings of the 28th International Conference on Machine
Learning (ICML-11), pages 681–688, 2011.

42


	1 Bounds in weighted total variation
	1.1 Basic mixing results
	1.2 Basic approximation results

	2 Applications
	2.1 Achieving the error condition
	2.2 A (simple) example
	2.3 Application to Gibbs sampling
	2.4 Application to Minibatching Metropolis-Hastings

	3 An application where ¶ and ¶ are mutually singular
	3.1 Uniform Wasserstein contraction
	3.2 Wasserstein contraction for Metropolis-Hastings
	3.3 Approximating Kernels for Gaussian Process Models
	3.4 Use of low-rank approximations

	4 Discussion
	A Additional proofs
	A.1 Proof of Theorem ??
	A.2 Proof of Proposition ??
	A.3 Proof of Theorem ??


