Estimation of in vivo noise in clinical CT images: comparison and validation of three different methods against ensemble noise gold-standard

Ria, Francesco, Smith, Taylor, Abadi, Ehsan, Solomon, Justin, Samei, Ehsan
Estimation of in vivo noise in clinical CT images: comparison and validation of three different methods against ensemble noise gold-standard

Francesco Riaa,b, Taylor B. Smithb, Ehsan Abadia,c, Justin B. Solomona,b, Ehsan Sameia,b,c

a. Carl E. Ravin Advanced Imaging Labs, Duke University Health System, Durham (NC) USA
b. Clinical Imaging Physics Group, Duke University Health System, Durham (NC) USA
c. Medical Physics Graduate Program, Departments of Radiology, Physics, Biomedical Engineering, and Electrical and Computer Engineering, Duke University, Durham (NC) USA

Abstract

Image quality estimation is crucial in modern CT with noise magnitude playing a key role. Several methods have been proposed to estimate noise surrogates in vivo. This study aimed to ascertain the accuracy of three different noise-magnitude estimation methods. We used ensemble noise as the ground truth. The most accurate approach to assess ensemble noise is to scan a patient repeatedly and assess the noise for each pixel across the ensemble of images. This process is ethically undoable on actual patients. In this study, we surmounted this impasse using Virtual Imaging Trials (VITs) that simulate clinical scenarios using computer-based simulations. XCAT phantoms were imaged 47 times using a scanner-specific simulator (DukeSim) and reconstructed with filtered back projection (FBP) and iterative (IR) algorithms. Noise magnitudes were calculated in lung (ROIn), soft tissues (GNI), and air surrounding the patient (AIRn), applying different HU thresholds and techniques. The results were compared with the ensemble noise magnitudes within soft tissue (En). For the FBP-reconstructed images, median En was 30.6 HU; median ROIn was 46.6 HU (+52%), median GNI was 40.1 HU (+31%), and median AIRn 25.1 HU (-18%). For the IR images, median En was 19.5 HU; median ROIn was 31.2 HU (+60%), median GNI was 25.1 HU (+29%), and median AIRn 18.8 HU (-4%). Compared to ensemble noise, GNI and ROIn overestimate the tissue noise, while AIRn underestimates it. Air noise was least representative of variations in tissue noise due to imaging condition. These differences may be applied as adjustment or calibration factors to better represent clinical results.

1. Introduction

Modern optimization and justification in radiology rely on effective estimation of risks and benefits associated with a procedure (1,2). In CT, several metrics and methods have been developed to estimate the radiological risks associated with the radiation burden. Conversely, the procedure benefit, that is the effective diagnosis, can be only indirectly assessed. The likelihood of an accurate diagnosis is affected by the quality of the CT images which can be measured using surrogates such as image noise, resolution, and contrast (3,4). In particular, noise magnitude is one of the main indicator of image quality and it can be used as a surrogate for the quality assessment of the diagnostic image properties (4).
Several methods have been introduced over the years to measure noise both in phantoms and in patients (4–8). The most accurate approach is to assess ensemble noise by scanning a patient multiple times and sampling each pixel noise within the ensemble of images, an ethically undoable repeated imaging process (5). Other approaches rely on different strategies to segment the images, apply HU thresholds, and define regions of interest in which the noise magnitude is calculated. As a consequence, it is impossible to compare the results obtained from these methods. This scenario is further complicated by the dose reduction techniques introduced in modern CT, such as Automated Tube Current Modulation and Iterative Reconstruction algorithms (IR) that have changed the traditional statistical relationships between radiation dose and image quality (9). Inconsistency in noise magnitude estimations can negatively affect the overall evaluation of the radiological procedure, impacting the assessment of the technology, as well as justifications and optimizations. Therefore, it is crucial to compare each methods with the results obtained using a standard accurate approach.

This study measures noise magnitude values obtained in patients (in vivo) using three different methodologies and compares them with the measurements performed in an ensemble of virtually generated images, which is considered to be the best noise surrogate ethically obtainable. Such comparisons determine if a method can be used to represent tissue noise and can provide unique information paving the way towards the definition of adjustment or calibration factors that may be applied to different methodologies to closely represent clinical results.

2. Materials and Methods

This study included an XCAT-phantom (Figure 1 (10–13)) imaged virtually using a scanner-specific simulator (DukeSim (14)) modeling a commercial scanner geometry (Siemens Definition Flash). In particular, as described in other publications, XCAT phantoms are based on clinical CT images: major organs were segmented using a semi-automatic process and the remaining organs were added to the phantoms by deforming template models based on segmented organs from human body images. (10,11). DukeSim uses the computational phantom, together with scanner and protocol information, to estimate primary and scatter photons incident the virtual CT detector using ray-tracing and Monte Carlo techniques, respectively. Such projection data are finally processed and can be reconstructed using Filtered Back Projection (FBP) and Iterative Reconstruction (IR) algorithms (14).

Following the standard definition (4), the noise magnitude for the virtually generated chest exams was calculated as the pixel value standard deviation in a circular ROI (area: 3 cm²) manually placed in the lung in the central slice of each exam (ROIₙ). Noise magnitudes were also calculated in soft tissues (Global Noise Index – GNI), and air surrounding the patient (AIRₙ), applying [-300, 100] HU and HU < -900 thresholds, respectively (7) across all the 47 image datasets. Furthermore, for each pixel in the GNI threshold, the ensemble noise magnitudes in soft tissues (En) were calculated across images. Noise magnitude median values from different methods were compared in terms of percentage difference with correspondent En median values. The analysis was performed separately for the images reconstructed with Filtered Back Projection (FBP) and Iterative Reconstruction (IR) algorithms.
3. Results

Table 1 summarizes median ROIn, GNI, and AIRn and the related percentage differences with En. The IR images showed lower noise magnitude than the FBP images by 36% for En, 33% for ROIn, 37% for GNI, and 25% for AIRn. The noise calculated in the lung and in the soft tissues overestimate the ensemble noise with FBP and IR techniques. However, the difference between GNI and En in both FBP and IR is quite consistent. The noise calculated in the air surrounding the patient underestimates En and the underestimation in FBP reconstructed images is 4.5 times more than the underestimation in images reconstructed with IR.

<table>
<thead>
<tr>
<th></th>
<th>median En</th>
<th>median ROIn (% difference with En)</th>
<th>median GNI (% difference with En)</th>
<th>median AIRn (% difference with En)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBP</td>
<td>30.6 HU</td>
<td>46.6 HU (+52%)</td>
<td>40.1 HU (+31%)</td>
<td>25.1 HU (-18%)</td>
</tr>
<tr>
<td>IR</td>
<td>19.5 HU</td>
<td>31.2 HU (+60%)</td>
<td>25.1 HU (+29%)</td>
<td>18.8 HU (-4%)</td>
</tr>
</tbody>
</table>
4. Discussion

In vivo noise magnitude values obtained in patients using three different methodologies were compared with noise magnitude measured in an ensemble of virtually generated images, which is considered to be the best noise surrogate ethically obtainable. As expected, the noise magnitude in images reconstructed with Iterative Reconstruction algorithm is lower than the noise in Filtered Back Projection images. $ROIn$, and GNI overestimate the ensemble noise whereas $AIRn$ underestimates it. Both $ROIn$, and GNI can represent spatial noise in tissues, however, when different reconstruction methods are considered, the overestimation is relatively constant only applying the Global Noise Index method. Such consistency enables the definition of adjustment or calibration factors that can be applied to better estimate tissue noise.
noise. Conversely, correction factors cannot be univocally defined when calculating noise magnitude in the air surrounding the patients because such method underestimate the ensemble noise in a reconstruction-dependent fashion.

Noise magnitude estimation inconsistencies can negatively affect the overall evaluation of the radiological procedure, impacting the assessment of the technology, the radiologists preference, as well as justification and optimization (3,4). Therefore, it is crucial to compare each method with the results obtained using a standard accurate approach as proposed in this study. In particular, when comparing the quality of the images obtained with different scanners, reconstruction methods, or protocols, becomes essential to provide also the method applied in the calculation of the noise magnitude. If such information is not available, it is not possible to draw any conclusion about the performance of a scanner or the actual impact of an implemented optimization action.

In radiology, the standard practical tool to promote and achieve optimization is Diagnostic Reference Level (DRL) (15). DRL quantities in CT are radiation dose related: volume Computed Tomography Dose Index (CTDVol), Dose Length Product (DLP), Size-Specific Dose Estimate (SSDE), etc. (16,17). However, the International Commission of Radiological Protection (ICRP) and the International Atomic Energy Agency (IAEA) recognized that radiation dose is only one of the steps in the overall process of optimization and that DRL should be expanded to include diagnostic image quality (15,18). Recently, few attempts were made to extend the concept of DRL to simultaneously include radiation dose and image quality information, particularly noise magnitude (19,20). It follows that effective optimization can only be attained by targeting accuracy in noise estimation and that inconsistencies from the ensemble noise method must be corrected applying validated correction or calibration factors.

The estimation of noise magnitude is also essential for the calculation of the so called detectability index (d’) that can be correlated with radiologist detection accuracy in a specific task (21). Smith et al. calculated d’ in patients applying the Noise Power Spectrum calculated in a phantom and correcting it using noise magnitude as a scaling factor (21). In the same study, Smith et al. also showed that the d’ is predictive of human-observer detection outcomes for cancer lesions in images also reconstructed with both FBP and IR. In this scenario, achieving consistent and accurate noise magnitude evaluation is the only way to inform detectability index and the effective assessment of the benefit connected with a radiological procedure, namely the likelihood of an accurate diagnosis.

This study was limited to only one anatomical district, one acquisition protocol, and one dose level. The presented methodology can be easily extended to include more anatomical regions, protocols, and dose levels. Such approach can provide unique information towards more consistent image quality evaluation and definition of effective calibration factors that can be applied to correct spatial noise (namely GNI) into the tissue noise represented by ensemble noise.

5. Conclusion

The gold standard in noise magnitude estimation is the ensemble noise obtained by scanning a patient multiple times and sampling each pixel noise within the ensemble of images, a repeated imaging process that can be pursue only with Virtual Imaging Trials (VITs) allowing to simulate clinical scenarios using computer-based simulations. The comparison of different noise magnitude calculation methods in vivo showed in this work, enables effective optimization and the improvement of consistency performance
evaluation in CT imaging. To what extent spatial noise versus ensemble noise need to be the primary metric informing protocol optimization requires additional research.

References

