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Abstract 

This dissertation shows that the architecture of steam generators, steam turbines and 

heat exchangers for power plants can be predicted on the basis of the constructal law. 

According to constructal theory, the flow architecture emerges such that it provides 

progressively greater access to its currents. Each chapter shows how constructal theory 

guides the generation of designs in pursuit of higher performance. Chapter two shows the 

tube diameters, the number of riser tubes, the water circulation rate and the rate of steam 

production are determined by maximizing the heat transfer rate from hot gases to riser 

tubes and minimizing the global flow resistance under the fixed volume constraint. 

Chapter three shows how the optimal spacing between adjacent tubes, the number of 

tubes for the downcomer and the riser and the location of the flow reversal for the 

continuous steam generator are determined by the intersection of asymptotes method, and 

by minimizing the flow resistance under the fixed volume constraints. Chapter four shows 

that the mass inventory for steam turbines can be distributed between high pressure and 

low pressure turbines such that the global performance of the power plant is maximal 

under the total mass constraint. Chapter five presents the more general configuration of a 

two-stream heat exchanger with forced convection of the hot side and natural circulation 

on the cold side. Chapter six demonstrates that segmenting a tube with condensation on 

the outer surface leads to a smaller thermal resistance, and generates design criteria for 

the performance of multi-tube designs. 
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1. Introduction 

In this thesis I use constructal theory in the conceptual design of large scale 

components for commercial power plants. Power plants represent a major area for 

engineering development, and a most fertile field for novel methods of design and for 

new design concepts. Constructal theory is ideally suited for this because it begins the 

conceptual design with a clean slate, and invites the designer to recognize and consider all 

the possible and competing configurations. The architecture of the complex flow system 

is the unknown. There is no bias, no pre-existing rule of thumb. 

Constructal theory focuses attention on the generation of flow configurations [1, 

2]. Natural and engineered flow systems have configurations. They are not amorphous. 

“Flow” represents the movement of one entity relative to another (the background). To 

describe a flow, we speak of what the flow carries (fluid, heat, mass), how much it carries 

(mass flow rate, heat current, species flow rate), and where the stream is located in the 

available space. The “where” is the drawing, i.e. the design.  

According to constructal theory, the generation of flow configuration can be 

reasoned based on an evolutionary principle of increase of flow access in time (the 

constructal law): “For a finite-size flow system to persist in time (to live) its configuration 

must change in time such that it provides greater and greater access to its currents” [3]. 

The evolution of flow configuration is like an animated movie, which runs in a particular 

direction in time such that each screen (i.e. each drawing) is replaced by a screen that 
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flows more easily as a whole.  

The flow configuration that emerges from this natural tendency is the result of the 

persistent struggle, contortion and mechanism by which the global flow system achieves 

global flow performance under global constraints. A growing literature is showing that the 

constructal law is being used for better engineering and for better organization of the 

movement and connecting of people, goods and information [1-18]. This direction is 

recognized as constructal design, and with it designers seek not only better configurations 

but also better (faster, cheaper, more direct, more reliable) strategies for generating the 

geometry that is missing.  

The traditional approaches contrast to constructal design: the configuration is 

assumed as known and then it has been searched over a long time by trail and error such 

as “cut and try method” or “design, build and test method” [19, 20]. For example, power 

plants have been developed over 100 years through these traditional methods. The old 

approaches have cost tremendous money and time in the development of engineered 

products. The more critical limitation of this old paradigm is that the optimal 

configuration can not be found.  

In this thesis each chapter shows constructal design, i.e., searching configuration, 

at several levels of power plant engineering such as steam generator, continuous steam 

generator, mass distribution of turbines, heat exchangers with natural and forced 

convection and crossflow heat exchangers. These searches are done by the constructal 
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law: minimizing global flow resistance under constraints. 

Chapter two shows that the architecture of a steam generator can be predicted. The 

circulation of water for the steam generator is driven by buoyancy in one unheated large 

tube (the downcomer) and many heated parallel smaller tubes (the riser). The steam 

generator has the freedom to select the diameter ratio of downcomer and riser tubes in the 

pursuit of maximizing water circulation rate while the flow volume is fixed. Two flow 

models are used: single phase liquid in the downcomer and riser, and liquid-vapor mixture 

in the riser tubes. Features that result from constructal design are: the tube diameters, the 

number of riser tubes, the water circulation rate, the rate of steam production, and how the 

flow architecture should change when the operating pressure and the size of the flow 

system change. 

Chapter three presents that the main features of a continuous steam generator can 

be determined. The steam generator is modeled as continuous when all tubes are heated: a 

large number of steam tubes in crossflow with a stream of hot gases. The continuous 

steam generator is designed when the operating pressure is low. The geometry is free to 

vary in the search for maximum heat transfer density. The total volume of the assembly 

and the volume of the steam tubes are fixed. The steam flow in the tubes is modeled in 

two ways: single-phase and two-phase fully developed turbulent flow. The location of the 

flow reversal (i.e. the demarcation between the tubes of the heated downcomer and those 

of the riser), the optimal spacing between adjacent tubes, and the number of tubes for the 
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downcomer and the riser will be searched. 

Chapter four demonstrates that the mass distribution for steam turbines of thermal 

power plants can be found. This is shown for two design classes: a high pressure turbine 

in series with a low-pressure turbine (two turbines) and a train consisting of many 

turbines expanding the steam at nearly constant temperature (multiple turbines). The mass 

inventory of steam turbines is distributed such that the power delivery of power plants is 

maximized with the fixed total mass. In addition, the optimal intermediate pressures 

between high pressure and low pressure are searched. 

Chapter five details the search for the best flow configuration of a heat exchanger 

with natural and forced convection in crossflow. The hot side is a single-phase fluid that 

flows perpendicularly to vertical round tubes, and heats them by forced convection. The 

cold side is driven by buoyancy (as a thermosyphon) in the vertical tubes. The flow is 

laminar on both sides. We vary the geometry of a heat exchanger freely, and show how 

the geometry controls global performance (or heat transfer rate density). 

Chapter six concerns the conceptual construction of crossflow heat exchangers that 

tends to achieve progressively higher heat transfer density. The first step is segmenting s 

single tube in crossflow with condensation on the outer surface of the tube into 

equidistant tubes in pursuit of higher heat transfer rate. We expand this segmenting idea to 

the search of the configuration of crossflow heat exchangers without condensation. 
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2. Constructal Steam Generator Architecture 

The global objective of a steam generator is to heat the stream of water in the most 

compact manner possible [21, 22]. Compactness translates ultimately into less volume, 

weight and cost of manufacturing, transportation, assembly and maintenance. It is also 

related to the improvement of thermodynamic performance subject to finite-size 

constraints, as we discuss further in Section 2.5. Here we account for this complex design 

mission by fixing the volume of the flow device, and by using this constraint consistently 

at every level of construction, i.e., at every length scale. 

The water flow through the steam generator is driven by the self-pumping 

principle illustrated in Fig. 2.1. The vertical tubes shown on the right are heated, bubbles 

form in them, and the liquid-steam mixture flows upward. Together, they constitute the 

“riser”, which is heated by external combustion gases. 

The circulation in the downcomer-riser-downcomer loop is driven by buoyancy 

effects, as the density of the liquid in the downcomer is greater than the density of the 

two-phase mixture in the riser. While the circulation continues because of the heating 

administered to the riser tubes, steam is collected from the upper plenum while make-up 

liquid is added to the same plenum. 

2.1 Tube diameters 

We begin with the pure fluid mechanics part of the problem, which is the 

maximization of steam generation rate per unit of flow volume. When the quality of the  
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steam (x) produced by the riser is specified, the maximization of steam generation rate is 

the same as maximizing the circulation rate ( m ) through the riser-downcomer loop. 

The self-pumping effect [23-26] is due to the difference between the hydrostatic pressure 

sustained by the downcomer (ρ1gH) and the hydrostatic pressure sustained by the riser 

(ρ2gH), where 1 2ρ ρ ,  and H is the height of both columns. The driving pressure 

difference (ρ1  ρ2)gH is balanced by the pressure losses encountered by the fluid during 

its circulation,  

H

1D

1ρ

1f
g

2D

2ρ

2f

m

N

Steam

Liquid
water

m

1 2 3

Downcomer

Riser

q

 

Figure 2.1: Steam generator with self-pumping effect, downcomer and riser tubes. 
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  1 2 1 2ρ   ρ gH = ΔP  + ΔP  (2.1) 

For orientation, we begin with a simple model in which the fluid in both columns 

is modeled as liquid with constant properties. The pressure drop due to flow friction along 

each column is  

 2

1,2 1,2 1,2 1,2

1,2

H 1
ΔP  = 4f ρ V

D 2
 (2.2) 

We model the flow as fully turbulent in the fully rough regime, i.e. with constant friction 

factor f in each column. Mass conservation requires that the mass flow rate m  is the 

same in both columns, 

 2 2

1 1 1 2 2 2

π π
m = ρ D V  = ρ N D V

4 4
 (2.3) 

By using Eq. (2.3) to eliminate
1V and 2V , we rewrite Eq. (2.1) as a global flow resistance 

that depends on 1D and 2D : 

 
 

 
1 2 1 1 2 2

5 2 52 2
1 2

ρ   ρ g f ρ f ρ
 =  + 

D N D32 π  m


 (2.4) 

The two sizes, 1D and 2D , vary subject to the total volume constraint 

 2 2

1 2

π π
D H + N D H = V, constant

4 4
 (2.5) 

which means that 
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 2 2

1 2D  + ND  = constant  (2.5) 

The method of undetermined coefficients (or Lagrange multipliers) delivers the optimal 

D1 and D2 for which the global flow resistance (2.4) is minimal. The method consists of 

constructing a linear combination of the right-hand sides of Eqs. (2.4) and (2.5),  

  2 21 1 2 2
1 25 2 5

1 2

f ρ f ρ
 =  +  + D  + ND

D N D
   (2.6) 

solving the two equations Ψ/D1 = 0 and Ψ/D2 = 0, and eliminating λ by dividing the 

two equations. The result is  

 
1 7

31 1 2

2 2 1opt

D f ρ
= N

D f ρ

   
   
   

 (2.7) 

The conclusion is that (D1/D2)opt varies as N
3/7

, because f1/f2 and ρ2/ρ1 are two constants. 

To obtain the actual values of D1 and D2, we combine Eq. (2.7) with the total flow 

volume constraint (2.5). 

The minimized global flow resistance that corresponds to this design is obtained 

by combining Eqs. (2.4), (2.5) and (2.7): 

  

 

7 2
2 75 2

1 2 1 71 2 2

2 2
1 1 1

min

ρ   ρ g f f ρπH
= 1 + N

4V ρ f ρ32 π  m

      
     

       

 (2.8) 

It is to be expected that f2/ρ2 will be greater than f1/ρ1, because the ρ2 liquid is lighter (it 

has bubbles), and because turbulent two-phase flow is more resistive than single phase, 

(f1 < f2). If f2/ρ2 is much greater than f1/ρ1, then Eq. (2.8) becomes  
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  

 

5 2

1 2 1 22

2 2
2

min

ρ   ρ g fπH
 N

4V ρ32 π  m

    
     

     

 (2.9) 

and, in addition to Eq. (2.7), the following results hold: 

 
1 2

1 7 1 14

1,opt

4V
D = b N

πH

  
 
   

(2.10) 

 
1 2

1 2

2,opt

4V
D = N

πH

 
 
   

(2.11) 

where 

 2 2

1 1

f ρ
b =  > 1

f ρ
 

(2.12) 

Note that both tube sizes decrease as N increases, but D2 decreases much faster than D1. 

The minimal flow resistance increases in proportion with the group (H/V)
5/2

(f2/ρ2)N
1/2

 and 

does not depend on (f1/ρ1). If V/H is the effective cross-sectional area (Ac) of all the tubes 

(downcomer and riser tubes), then the minimal flow resistance varies on 
5/ 2

cA .
 More 

attractive is to use a larger Ac and a smaller N, but in this limit the contact surface 

between the riser and the combustion gases that heat the ρ2 stream is small. There is a 

tradeoff that leads to the optimal number of riser tubes N, and it comes from maximizing 

the heat transfer performance of the assembly.  

2.2 Number of tubes 

Consider next the rate of heat transfer (q) from hot gases to the ρ2 liquid that flows 



 

 

 

 

 

 
10 

through the N riser tubes. In a simple model, the fluid is single phase, the heat transfer 

conductance is accounted for by the overall heat transfer coefficient h, and the total tube 

contact surface is 

 
W 2A  = πD HN  (2.13) 

The hot gases are considered isothermal at the temperature Tg. The temperature of the ρ2 

fluid at the inlets to the N tubes is Tin. The heat transfer rate q from Tg to the m  stream 

is (Ref. [27], p. 319), 

   W
P g in

P

hA
q = mc T   T 1  exp

mc

  
    

  

 (2.14) 

Here all the parameters are known constants except m  and AW, which both depend on N. 

According to Eq. (2.9), the  m N  function is 

 1 4

1m = c N

 
(2.15) 

where c1 is shorthand for the expression 

 
 

1 2 5 4

1 4 2
1 1 2

2

ρ V
c  = π g ρ   ρ

f H

    
   

  
 (2.16) 

Equations (2.13) and (2.11) show that 

 
1 2

W 2A  = c N  (2.17) 

where 
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  
1 2

2c  = 4πVH  (2.18) 

Together, Eqs. (2.14)-(2.18) deliver q as a function of N, which can be summarized as 

    
1 3

1 3 ξ2
1 P g in

1 P

c h
q = c c T   T ξ 1  e

c c

  
  

 
 (2.19) 

where 

 
3 42

1 P

c h
ξ = N

c c
 (2.20) 

The function  
1 3

ξξ 1  e


  reaches its maximum at ξopt = 1.904, which means that the 

optimal number of riser tubes is  

 

4 3

1 P
opt

2

c c
N  = 1.904

c h

 
 
 

 (2.21) 

Furthermore, because c1 is proportional to (V/H)
5/4

 and c2 is proportional to (VH)
1/2

, we 

conclude that Nopt is proportional to V/H
7/3

, as follows 

  
2 34 3

P 2
opt 1 2 7 3

2

c ρ V
N = 1.904 g ρ   ρ

2h f πH

  
  

   
 (2.22) 

Tall steam generators should have fewer riser tubes than short steam generators. The 

optimal number of riser tubes should be proportional to the total flow volume 

(downcomer and riser).  

As a numerical example, consider a steam generator for a current large-scale 

power plant. Its global parameters are: V = 47 m
3
, H = 36 m, ρ1 = 624 kg/m

3
, ρ2 = 518 



 

 

 

 

 

 
12 

kg/m
3
, f2 = 0.00475, cP = 7700 J/kg K, and h ~ 104 W/m

2
 K. The fluid is water at P = 13.8 

MPa. Substituting these parameters in Eq. (2.22) we obtain Nopt = 541. In current 100 

MW power plant designs the number of the designed riser tubes is approximately 400. 

The agreement is good in an order of magnitude sense. The discrepancy between 541 and 

400 tubes can be attributed to the overall heat transfer coefficient h, the single phase flow 

assumption in the analysis, or to the fact that in practice N is not optimized. With the 

exception of h, all the data assumed in Eq. (2.22) are fixed as properties and physical 

dimensions that are known with certainty. Therefore, to evaluate the validity of the 

optimal number of the riser tubes Eq. (2.22), the overall heat transfer coefficient must be 

investigated and this means that a more accurate heat transfer model is required for a 

definitive constructal design. 

2.3 Two-phase flow in the riser tubes 

In Sections 2.1 and 2.2 we relied on simple models in order to demonstrate the 

opportunity for discovering from principle the main features of the flow architecture: the 

tube diameters and the number of riser tubes. In the second part of two-phase flow we 

rely on more accurate models of two-phase flow in order to refine the calculation 

procedure and the features of the constructal architecture.  

Consider the more realistic model where the flow in the riser tubes is two-phase. 

To start with, in Eq. (2.1) the density ρ2 is replaced with by r4/ vf  
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 4
1 1 2

f

r
ρ   gH = ΔP  + ΔP

v

 
 

 
 (2.23) 

where r4 is the gravitational factor [28] for the two phase liquid-steam mixture column, 

and vf is the specific volume of saturated liquid. The gravitational factor r4 accounts for 

the void slip effect on the density of liquid-steam in the vertical column, Fig. 2.2, where x 

is the quality of the two-phase mixture. The frictional pressure loss along the downcomer 

is, cf. Eq. (2.2), 

 
2

1 1 1 1

1

H 1
ΔP  = 4f ρ V

D 2
 

(2.24) 

0.00 0.04 0.08 0.12 0.16
0.0

0.2
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0.6

0.8

1.0

1.2

         P[MPa]

   1.72

   4.14

   8.62

  14.48

  20.68

r 4

x
  

Figure 2.2: The r4 factor for two-phase mixture gravitational pressure drop. 
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where V1 is the mean water velocity in the downcomer, 

 
 1 2

1 1

m
V  = 

ρ π 4 D
 (2.25) 

and D1 is the inner diameter of the downcomer column. The friction factor f1 is a function 

of the downcomer Reynolds number 

 
 

1 1
1

1 1 1

V D m
Re  =  = 

ν π 4 D μ
 (2.26) 

and the roughness of the downcomer surface. This function is provided by the 

correlations displayed in the Moody chart [29]. In the present analysis we assume that the 

surface is smooth, and use a smooth-wall correlation proposed [30] for the range 

32 10  1Re
710 :  

  
 

1 1 2

10 1

1
f Re  = 

4 1.82log Re   1.64
 (2.27) 

The pressure loss along the riser tubes is due to two effects, friction (ΔPf) and 

acceleration (ΔPa) [28] 

 2 f aΔP  = ΔP  + ΔP  (2.28) 

The pressure drop due to friction in the two-phase flow is 

 

2

f
f 2 3

2 2

vH m
ΔP  = 4f r

D 2 A

 
 
 

 (2.29) 

where D2 is the inner diameter of one riser tube, r3 is the dimensionless friction factor for 
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two phase flow [28] (see Fig. 2.3), and A2 is the cross section area of all the riser tubes,  

 
2

2
2

πD
A = N

4
 (2.30) 

In accordance with the model used for the downcomer, we also define the riser flow 

velocity, friction factor and Reynolds number: 

 
 2 2

2 2

m/N
V  = 

ρ π 4 D
 (2.31) 

  
 

2 2 2

10 2

1
f Re  = 

4 1.82log Re   1.64
 (2.32) 

0.00 0.04 0.08 0.12 0.16
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  20.68

r 3

x
 
 

Figure 2.3: The r3 factor for two-phase mixture frictional pressure drop. 
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 

2 2
2

2 2 2

V D m/N
Re =  = 

ν π 4 D μ
 (2.33) 

The pressure drop due to acceleration in two phase flow is 

 

2

a f 2

2

m
ΔP = v r

A

 
 
 

 (2.34) 

where r2 is the dimensionless acceleration factor [28], shown here in Fig. 2.4. Substituting 

the pressure drop terms in Eq. (2.23), we obtain the global flow resistance equation for 

the self-pumping flow system: 

0.00 0.04 0.08 0.12 0.16
0

2

4

6

8

         P[MPa]

   1.72

   4.14

   8.62

  14.48

  20.68

r 2

x  

Figure 2.4: The r2 factor for two-phase mixture acceleration pressure drop. 
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  
2 2

3 21 2 1
42 2 4 5 2 5

2 1 2

r f Hgπ ρ H r f H
1  r  =  +  + 

32m 2N D D N D
  (2.35) 

The left side is a global flow resistance indicator, which in turbulent flow is essentially 

the driving pressure difference divided by
2 m . The constant volume constraint is shown 

in Eq. (2.5). The length scale of the flow structure is indicated by Eq. (2.5), where we set 

D1,2 ~ L: 

 

1 2
4V

L = 
πH

 
 
 

 (2.36) 

From this length scale follow the dimensionless tube sizes 

 1
1

D
D  = 

L
,     2

2

D
D  = 

L
 (2.37) 

and the dimensionless flow volume constraint: 

 2 2

1 2D  + ND  = 1 (2.38) 

The scale of the mass flow rate ( scalem ) follows from Eq. (2.35), where we write 

scalem ~ m  and D1,2 ~ L, 

 

2 2

1

2 5

scale

gπ ρ f
 = 

32m L
 (2.39) 

therefore,  

 

5 4

1 2

scale 1

4V
m  = ρ g

πH

 
 
 

 (2.40) 
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H

H = 
L

,     
scale

m
m = 

m
 (2.41) 

The dimensionless version of Eq. (2.35) becomes 

  
2

32 1 2
42 22 4 5 5

2 1 2

rr f H f Hπ H
1  r  =  +  + 

32 m N2N D D D
  (2.42) 

where 

 
1

1

1

B m
Re  = 

D
,     2

2

2

B m
Re  = 

ND
 (2.43) 

 

1 2
3 2

1

1

4 g
B  = L

π ν
,     

1 2
3 2

2

2

4 g
B  = L

π ν
 (2.44) 

Two dimensions,
1 D and

2D ,  vary but in view of the volume constraint (2.38) only one 

parameter is free to vary, for example the ratio
1D /

2D . According to the method of 

Lagrange multipliers (Section 2.1), we form the linear combination of the right hand sides 

of Eqs. (2.38) and (2.42), 

  2 232 1 2
1 222 4 5 5

2 1 2

rr f H f H
 =  +  +  + D  + ND

N2N D D D
   (2.45) 

and solve the system 1/ D  = 0   and 2/ D  = 0  . After eliminating λ, we obtain 

 

7

3 3 22 2 2

11 1

r fD 2r D
N  =  + 

fD 5f H

 
 
 

 (2.46) 

The second term dominates on the right-hand side of Eq. (2.46) when 
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32

2

2

5rD
 << f

2rH
 (2.47) 

and in this limit Eq. (2.46) delivers the optimal ratio of tube diameters  

 

1 7

31 1

2 32 opt

D f
= N

f rD

   
   

  
 (2.48) 

The assumption (2.47) is justified because the height is much greater than the diameter of 

the riser tubes (
4

2D / H ~ 10
), the factor r3 is significantly greater than the acceleration 

factor r2, and f2 is of order 
210
 [28]. Even though r2 approaches r3 when P < 5 MPa and 

the liquid-vapor mixture quality (x) is greater than 0.1, the ratio 5r3f2/2r2 is of order 
210
, 

i.e. much greater than the ratio 2D / H . 

Equation (2.48) resembles Eq. (2.7), which came from a much simpler model. The 

effect of two phase flow in the riser is conveyed by r3, which depends on pressure P and 

quality x [28]. In order to calculate the 
1D /

2D  of Eq. (2.48) we need to account for the 

flow regime [Eqs. (2.27) and (2.32)] and the mass flow rate. The latter comes from the 

minimized flow resistance, which is obtained by combining Eqs. (2.48) and (2.38) with 

Eq. (2.42), 

  
   

 
2 5/ 2

2 22
5/ 22 1 23

4 22 2 5 2

min

r K  + N f H K  + N rπ H
1 r = + + f H K  + N

32 m 2N K N

 
 

 
 (2.49) 

where K = (N
3
f1/f2r3)

1/7
. The results presented in the next section are based on assuming 

the same global parameters as in Section 2.2, for example V = 47 m
3 

and
 
H = 36 m. The 
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resulting range for the mass flow rate is such that the Reynolds numbers calculated with 

Eqs. (2.26) and (2.33) vary in the ranges 1.9  10
7
 < Re1 < 1.4  10

8
 and 3  10

5
 < Re2 < 

1.2  10
8
.  

2.4 The effect of operating pressure 

The results developed in the preceding sections are sensitive to the pressure in the 

loop and the quality of the two-phase mixture in the riser tubes. These effects are 

investigated systematically in Figs. 2.5–2.11, and can be anticipated based on the simple 

model of Section 2.1. 

We begin with Fig. 2.5a, where we set P = 13.8 MPa and recognized [based Eq. 

(2.48)] that  1 2
opt

D / D  should be proportional to N
3/7

. Even though we plotted 

  3/7

1 2
opt

D / D / N  on the ordinate, a weak N effect continues to be present. Stronger is 

the effect of the quality x, which was given values in the range 0.02 - 0.12. The x effect is 

captured by the factor 
0.043x ,

 which appears in the ordinate of Fig. 2.5b. The exponent 

0.043  was determined by minimizing the scatter that is still visible in Fig. 2.5b. The 

conclusion is that for P = 13.8 MPa the optimal allocation of flow volume is represented 

by 

   3 7 0.0431

2 opt

D
 = 0.77  0.02 N x

D


 

 
 

 (2.50) 

The corresponding maximized mass flow rate maxm is reported in Fig. 2.6a. The 
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sensitivity of maxm to N changes as N increases, namely from 1/8

maxm ~ N  to 

1/ 4

maxm ~ N .  Figure 2.6b shows the effect of x, which is a rough proportionality between 

maxm and x
0.35

. Together, these power-law trends lead to the dimensionless correlations 

reported in Fig. 2.7, namely  

 
   1/8 0.35

maxm  = 2.75  0.14 N x ,     N < 50  

   1/ 4 0.35

maxm  = 4.28  0.16 N x ,     N 50   
(2.51) 

The trends change somewhat when the pressure changes. Fig. 2.8 shows the P = 

0.5 MPa equivalent of Fig. 2.5b. This time, instead of Eq. (2.50) the optimal ratio of 

diameters is correlated by 

   0.45 0.151

2 opt

D
 = 0.33  0.01 N x

D


 

 
 

 (2.52) 

Here the N exponent 0.45 is consistent with the N exponent in Eq. (2.48), namely 3/7 = 

0.43. The maximized mass flow rate at P = 0.5 MPa is correlated in Fig. 2.9, as follows : 

 
   0.075 0.31

maxm  = 0.24  0.01 N x ,     N  50    

   0.26 0.31

maxm  = 0.48  0.01 N x ,      N  50    
(2.53) 

The effect of pressure is documented further in Fig. 2.10. As the pressure increases, the 

optimal diameter ratio  1 2
opt

D / D increases for every value of x. The maximum mass 

flow rate exhibits a more complicated behavior. At low pressures, the maximum mass 

flow rate decreases as the quality increases. At pressures above 2 MPa, the maximum 
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Figure 2.5: (a) The effect of N and x on the optimal diameter ratio.  

         (b) Optimal diameter ratio correlation when 13.8 MPa. 
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Figure 2.6: (a) The effect of N on the dimensionless maximum mass flow rate.  

(b) The effect of x on the dimensionless maximum mass flow rate  

   when 13.8 MPa.. 
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Figure 2.7: Correlation of the dimensionless maximum mass flow rate for 13.8 MPa. 
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Figure 2.8: Optimal diameter ratio correlation for 0.5 MPa. 

max

m 0.35

m

N x

 1 2
opt

0.45 0.15

D D

N x

Avg. value = 2.75 0.14

with m = 1/8





Avg. value = 4.28 0.16

with m = 1/4





Avg. value = 0.33 0.01
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Figure 2.9: Correlation of the dimensionless maximum mass flow rate for 0.5 MPa. 

mass flow rate increases with quality. 

This reversal in how maxm  depends on x is explained by the analytical solution 

developed in Section 2.1. If we take the mass flow rate maximized in Eq. (2.9) and 

nondimensionalize it in accordance with Eqs. (2.40) and (2.41) we obtain 

 
 

1/2

f fg5/2 1/2 1/4

max 2

f fg

xv v
m = 2 π f N

v  + xv

  
 (2.54) 

where we replaced 
1

1ρ
 with the specific volume of saturated liquid, vf(P). We also 

replaced 
1

2ρ
 with (vf + xvfg), where vfg = vg – vf and vg(P) is the specific volume of 

saturated vapor. In the limit x << 1, the denominator (vf + xvfg) depends on pressure in 

two ways. When the pressure is sufficiently low, vf is negligible relative to xvfg and 

max

m 0.31

m

N x

Avg. value = 0.48 0.01

with m = 0.26





Avg. value = 0.24 0.01

with m = 0.075




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Figure 2.10: The effect of pressure on the optimal diameter ratio and the dimensionless  

maximum mass flow rate. 

Eq. (2.54) approaches 

 

1/ 2

5/2 1/2 1/4 1/2f
max, low P 2

fg

v
m  2 πf N x

v

   
  
       

 (2.55) 

As P approaches the critical pressure, the difference between vg and vf disappears and xvfg 

is negligible relative to vf. In this limit Eq. (2.54) approaches 

 

1/ 2

fg5/2 1/2 1/4 1/2

max, high P 2

f

v
m  2 πf N x

v

  
  
   
   

 (2.56) 

 1 2
opt

D D

P (MPa)

maxm
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Equations (2.55) and (2.56) confirm qualitatively the dependence of maxm on N 

and x, which was correlated as Eqs. (2.53) and (2.51), respectively. See the correlations 

reported for N > 50.  Dividing Eqs. (2.55) and (2.56), we see that the transition from one 

behavior to the other occurs when the pressure P is such that  

 
 
 

f

fg

v P
  x

v P
  (2.57) 

This relationship between x and P has been plotted for water in Fig. 2.11, and it divides 

the x - P domain into the two subdomains in which Eqs. (2.51) and (2.53) apply. 
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Figure 2.11: The relationship x(P) that serves as boundary between the domain of 

applicability of Eqs. (2.55) and (2.56). 
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Figure 2.12: The effect of H on the optimal diameter ratio and the dimensionless  

maximum mass flow rate when 13.8 MPa. 

In closing, we relaxed the assumption that the height H is fixed, and investigated the 

effect of H on the main features of the design,  1 2
opt

D / D and maxm .  Figure 2.12 shows 

that these features are insensitive to H. This can be also shown analytically, because, 

when the assumption (2.47) is valid, H  drops out from Eq. (2.42), leaving only 

  
2

31 2
42 25 5

1 2

rf fπ
1  r  =  + 

32m ND D
  (2.58) 

2.5 Results and discussion 

A practical aspect that is consistent with the present results is that engineers have 

long classified steam generators according to pressure. In other words, the pressure is an 

 1 2
opt

D D

maxm

H (m)
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essential factor in the design of the steam generator. The constructal design developed in 

this chapter sheds light on the effect of pressures on the main geometric characteristics of 

steam generator architecture. The results obtained with the two phase flow model show 

that the optimal configuration of the steam generator is pressure dependent because the 

quality depends on the pressure and is a crucial factor in minimizing the global flow 

resistance. This observation is consistent with current designs of steam generators, which 

have evolved based on the “design, build and test method” over a long time. The designs 

show different configurations, one for each pressure. 

Equations for geometric dimensions can shorten time for the evolution of 

engineered products. The steam generator has evolved over 100 years based on the old 

paradigms such as “cut and try” and “design, build and test” methods. These old 

approaches stand on experience; so, they have a limited capability against the variation of 

the design and operation conditions. For example, the change of the working fluid from 

water to mercury might requires a long time to reach the optimal configuration because 

the geometric dimensions are a function of properties of the working fluid as shown in 

Eqs. (2.10), (2.11), (2.22), (2.50) and (2.52); so, the configuration of the mercury steam 

generator should be different from one of the steam generator. Constructal theory enables 

engineers not to rely on the old approaches in searching the best configuration. 

Constructal design can guide engineers to find the optimal drawing for the various design 

and operation conditions. 
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What we showed here for the design of the steam generator can and should be 

extended to the other components of the power plant. Each owes its thermodynamic 

imperfection to its finite size and flow configuration. The finite size can not be changed, 

at least at the component – concept stage. The flow configuration can be changed, and 

this is the path to discovering less and less imperfect components for a given size.  



 

 

 

 

 

 
31 

3. Continuous Steam Generator Architecture  

In the chapter 2, we showed that the configuration of a steam generator can be 

deduced based on constructal design. This was a simple demonstration of the design 

method, which was based on the simplifying assumption that the steam generator consists 

of just two parts, riser and unheated downcomer. Here we consider the more promising 

design direction where the steam generator is free to have a large number of tubes, so 

many that its material can be distributed through the available volume. Steam generators 

with many tubes are the preferred configuration in the power generation industries when 

the pressure becomes low [21, 22, 31]. In this chapter we consider large numbers of steam 

tubes, such that the steam generator architecture can be modeled as continuous (Fig. 3.1).  

1,upm

out,upx

z = 0 z = L

H

W
m

FT
outT

g

1,downm

out,downx

f

H

D

in,upx
 

Figure 3.1: Steam generator with a large number of vertical two-phase tubes in crossflow 

with a horizontal stream of hot gases. 
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Consider the flow of high-temperature gas across bundle of water tubes shown Fig. 

3.1. The steam generator fills a parallelepipedic volume HLW, which is traversed by N 

equidistant steam tubes of diameter D and height H. Two volume constraints are in place: 

the total volume occupied by hot gas, and the total volume of water tubes. 

Hot combustion gases of capacity rate Pmc  and inlet temperature TF flow from 

right to left.  Steam flows in crossflow, inside the tubes, being driven in a vertical loop 

by the thermosyphon effect due to the fact that the tubes close to z = L are heated more 

intensely than the tubes close to z = 0. The temperature of hot flue gas is not high enough 

to transform the water in the tubes into superheated steam at the outlet of each water tube; 

so, the temperature of water in the tubes remains constant at the boiling temperature TB 

corresponding to pressure of the upper and lower plenums, which receive and separate the 

steam generated in the tubes. 

The net mass flow rate of water through a horizontal plane across all the tubes is 

zero. The flow rate of the circulated water rate and the flow architecture, i.e. the location 

of the flow reversal, are unknown. In this chapter we seek to configure the continuous 

steam generating system such that it generates most steam. 

3.1 Longitudinal temperature distribution 

The geometric constraints of this counterflow heat exchanger are the total volume, 

 V = HLW  (3.1) 
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and the volume fraction occupied by water, 

 
2D N

 = 
4 LW


  (3.2) 

The stream of hot gases is modeled as single-phase with constant properties. Assuming 

that N is sufficiently large so that we may treat the gas temperature T as a continuous 

function of longitudinal portion z, we write that the hot stream loses enthalpy to match the 

transfer of heat to the tubular structure TB,  

  P B

hA
mc dT = T  T dz

L
  (3.3) 

We assume that the heat transfer coefficient h is a known constant, at best a function of 

the gas flow rate m , which is also specified. Integrating Eq. (3.3) from z = 0 where T = 

Tout, to z we obtain  

    B out B

P

hA
T z   T  = T   T exp z

mc L

 
   

 
 (3.4) 

or, because the overall temperature difference ΔT = TF – TB is specified, 

  
 
 

P

B

P

exp hAz / mc L
T z   T  = T

exp hA / mc
   (3.5) 

In sum, the temperature difference T – TB varies continuously in the longitudinal direction, 

and so does the heat transfer rate from the gas to the water in the tubes, regardless of the 

water direction and flow rate in the tubes. For example, the heat transfer rate into one tube 

located at position z is  
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    B 1 out inh DH T  T  = m h   h    (3.6) 

where 1m  is the water mass flow rate through the tube, and 

 in fh  = h  (3.7) 

 out f out fgh  = h  + x h  (3.8) 

In Eq. (3.7) we are assuming that the stream received by every tube from the plenum 

contains saturated liquid. The steam quality at the tube exit is related to the specific 

volume of the steam at the exit, 

 out f out fgv  = v  + x v  (3.9) 

or, in terms of densities, 

 
out

f out fg f

1
 = 

1 + x v



 
 (3.10) 

Eliminating xout between Eqs. (3.6) -(3.10) we find  

   1 fg f
B

f fg out

m h
h DH T  T  =   1

v

 
   

  
 (3.11) 

where (T – TB) is a known function of longitudinal position, Eq. (3.5).  

3.2 Flow reversal 

The mass flow rate 1m  is driven by the weight of its liquid column relative to the 

weight of the neighboring columns. If the hydrostatic pressure difference between the two 
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plenums is  

 ref refP  = gH   (3.12) 

where ref  is the reference density in a column of height H, then the net pressure 

difference that drives 1m  upward through its tube is  

  1 ref 1P  =   gH     (3.13) 

Here ρ1 is the average density of the two-phase mixture in the 1m  tube. Approximating 

the distribution of density of two-phase water as linear along the tube, we estimate the 

average density 

 f out
1

 + 
  

2

 
   (3.14) 

The water flow rate 1m is driven by ΔP1. We illustrate this qualitatively with the simplest 

model of flow fiction in a tube, namely fully developed turbulent (fully rough) and single 

phase fluid,   

 
2

1 1

5

P m
 = C

H D


 (3.15) 

where the factor is C = 32fν/π
2
, and f is the friction coefficient, which in the fully rough 

regime is practically constant. A more detailed two-phase flow model is presented in 

Section 3.5. Eliminating 1m and ρout/ρf between Eqs. (3.11) -(3.15) we obtain 
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  
1 2

1 2

ref 15

C
h DH T  =   

B gD

 
     

 
 (3.16) 

where (ρref – ρ1)
1/2

 is proportional to 1m ,  and 

 
 
 

P

P

exp hAz/mc L
 = 

exp hA/mc
  (3.17) 

 
fg f

f fg out

h
B =   1

v

 
 

  
 (3.18) 

Equations (3.13)-(3.17) show that 1m varies longitudinally in proportion with 

 Pexp hAz/mc L ,  regardless of whether the flow is up or down. The change in direction 

occurs at the longitudinal location (zc) obtained by requiring 

 
 L

1
 0

m dz = 0  (3.19) 

The result is 

 
tuN

c

tu

z 1 1 e
 = ln

L N 2


 (3.20) 

where  

 tu

P

hA
N  = 

mc
 (3.21) 

3.3 Geometry on the gas side 

Consider the hot-gas side of the counterflow heat exchanger, and ask how the 

geometry affects the global performance. The geometry is represented by the total volume 
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V = HLW, which is fixed, and by the dimensions H, L, W, D and S, where S is the spacing 

between adjacent tubes (Fig. 3.2).  

If we use V
1/3

 as the fixed length scale of the entire architecture, then there are 

five dimensionless geometrical features,  

     1/3H,  L, W, D, S  = H, L, W, D, S / V  (3.22) 

z = L

H

W

m

S
D

S
L

W

avgS S

The small-S limit

down up

z = 0 cz = z

 

Figure 3.2: Geometric details of the steam generator, viewed from the side and from 

above. 
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and one constant 

 H LW = 1 (3.23) 

In sum, the architecture design has four degrees of freedom. Equation (3.3) shows that the 

total heat transfer rate from the hot gas to all the tubes is 

 
 

 tu

P F out

N

P

q = mc T   T

   = mc T 1  e




 
 (3.24) 

where ΔT = TF – TB, fixed. 

Fixed is also the pressure difference (ΔPF) that drives the gas stream horizontally 

through the multi-tube structure. When the spacing between tubes (S) is large, the thermal 

contact between gas and tubes is poor (Ntu << 1), and q is small. When the spacing is 

vanishingly small, the mass flow rate ( m ) vanishes and so does q. Between these two S 

extremes there must be an optimal spacing for which q is maximum when the remaining 

three geometrical features are fixed (for example, D, H and  L ). This expectation is 

supported by several designs developed in constructal theory [2, 4], where optimal 

spacings were predicted and validated experimentally [32] for parallel and staggered 

plates and cylinders in cross-flow. Here we pursue the optimal spacings by focusing on 

Eq. (3.24) when only S varies. In order to calculate q with Eq. (3.24) we need m  and Ntu. 

The following analysis is based on the intersection of asymptotes method [2].  

(a) The large–S limit. First, we assume that S is sufficiently larger than D so that 
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the drag force on each tube is independent of the flow around neighboring tubes. The drag 

force on the tube is  

 
2

1 D

1
F  = C H D U

2
  (3.25) 

Because of the large spacings, the free stream velocity of the hot gas is 

 
F

m
U  

HW



 (3.26) 

where the gas density ρF is treated as a constant. The total drag force experienced by the 

assembly is  

 1

L W
F = F

S S
 (3.27) 

This force is balanced by ΔPFHW, and from this balance we deduce the mass flow rate in 

the (a) limit, 

 

1/ 2
2 2 2

a F F

D

2 H W S
m  P

C LD

 
   

 
 (3.28) 

Next, Eq. (3.21) requires estimates for Aa and ha. The total contact area is  

 a 2

L W DV
A = D H   

S S S


   (3.29) 

The heat transfer coefficient for a long cylinder is (e.g. Ref. [33]): 

 

4/5
5/81/3 1/ 2

a F D D

1/ 4
2/3

F
F

h D 0.62Pr Re Re
 = 0.3 + 1 + 

k 2820001 + (0.4/Pr )

  
  

      

 (3.30) 

where kF and PrF are properties of the hot gas. When 10 < ReD < 10
5
, Eq. (3.30) is 
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approximated adequately by  

 
1/ 2a

a D

F

h D
  C Re

k
  (3.31) 

where Ca is a dimensionless factor of order 1, 

 

4/5
5/81/3

F D
a 1/ 4

2/3

F

0.62Pr Re
C  = 1 + 

2820001 + (0.4/Pr )

  
  

      

 (3.32) 

and ReD = UD/νF, with U being provided by Eq. (3.26). In the end, Eq. (3.21) yields 

 

1/ 2

a F
tu,a 1/ 2 2 1/ 2 1/ 2 1/ 2

P F a

C k VD
N  = 

c S H W m




 (3.33) 

Finally, in the large-S limit the number Ntu,a approaches zero, and this means that 

the group  tu,aN
1 e


  approaches Ntu,a, and that Eq. (3.24) approaches the asymptote  

 

1/ 4
1/ 4 1/ 4

1/ 4F F
a a F1/ 2 3/ 2 1/ 4

D F

k2 VD
q  = C T P

C S L

  
   

 
 (3.34) 

This shows that the total heat transfer rate decreases monotonically as S increases. For 

this reason we turn our attention to the opposite limit, in which S decreases. 

(b) The small-S limit. When the cylinders barely touch, the flow is slow, the 

thermal contact between the hot gas and the tubes is excellent, Ntu is a large number, and 

Eq. (3.24) reduces to  

 b Pq  = mc T  (3.35) 

The mass flow rate can be estimated by visualizing the channel of average spacing Savg 
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inhabited by the stream lines that flow along L, through two adjacent rows of tubes. The 

smallest spacing (S) occurs where the stream channel is pinched by two tubes that almost 

touch. Because of the regular arrangement of tubes, we can write  

 avgS  = S  (3.36) 

where σ is a factor of order 1, but greater than 1, for example 2. For the elemental channel 

represented by the volume Savg  L  H, the mass flow rate in the Poissuille flow limit is 

 1,F 1 avgm  = U S H  (3.37) 

in which [33] 

 

2

avg F
1

F

S P
U  = 

12 L




 (3.38) 

The number of such channels is W/D. The total mass flow rate is 

 

3

avgF

2

F

S VP
m = 

12 DL




 (3.39) 

which in combination with Eqs. (3.35) and (3.39) yields 

 

3 3

F
b P 2

F

P S V
q  = c T

12 DL

 



 (3.40) 

This shows that in the small-S limit the total heat transfer rate decreases steeply as S 

decreases. 

(c) The intersection of asymptotes. The maximum of q with respect to S is 

located sufficiently accurately by intersecting the two asymptotes, Eqs. (3.34) and (3.40). 
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The result is 

             

2/9
1/ 4

1/6 5/18 7/18a
opt 1/ 4 3

D F

12 C2
S  = Be D L

C Pr


   
  

   

 (3.41) 

             
2/3

F

F F

P V
Be = 



 
 (3.42) 

where Eq.(3.42) shows the dimensionless pressure difference number introduced by 

Bhattacharjee and Grosshander [34] (see also Ref. [35]). The factor in square brackets in 

Eq. (3.41) is approximately 1, and can be replaced by 1. The mass flow rate that 

corresponds to optS  is  

 

33
1/3F

opt 2

P

k S
m  = V Be

12 c DL

 
 
 

 (3.43) 

and, if we regard the group [σ
3
/12] as a number of order 1 and use Eq. (3.41), we obtain 

 
1/3 1/ 2 1/ 6 5/ 6F

opt

P

k
m  ~ V Be D L

c

 
 (3.44) 

  
1/3 1/ 2 1/ 6 5/ 6

max Fq  ~  k TV Be D L   (3.45) 

The corresponding number of tubes in this optimal assembly is 

 2

1/3 5/9 7 /9 1

L W 1
n =  = 

S S S H

    Be D L H  

 (3.46) 

Seen from the gas side, the maximized total heat transfer rate depends on two of 

the remaining free dimensions of the assembly, D and  L.  The qmax value increases as 
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both D and  L decrease: thinner tubes and a shorter gas-flow path are better for increasing 

the global heat transfer rate.  

Another result of this analysis is that the scale of qmax is kFΔTV
1/3

, which means 

that qmax increases in proportion with the linear scale of the steam generator, V
1/3

. The 

volumetric heat transfer density qmax/V decreases in proportion with 
2 /3V .

 

In conclusion, if compactness is the goal, smaller steam generators have greater 

heat transfer density than larger steam generators. More specifically, if one large steam 

generator has the total heat transfer rate q = CqV
1/3

 when Be, D and  L  are fixed [cf. Eq. 

(3.45)], then two steam generators (each of half size V/2) will have the total heat transfer 

rate 2(q/2) = 2Cq(V/2)
1/3

, which exceeds by the factor 2
2/3

 = 1.59 the q value of the single 

large steam generator. Alternatively, if we fix D and L of the V-size design, and divide V 

into two V/2 parts in which the tube diameters are D and the length scale of each V/2 part 

is (1/2)
1/3

L so that each part has the volume V/2, then the corresponding analysis shows 

that the combined heat transfer rate of the two parts exceeds by 21 percent the original 

heat transfer rate, q = CqV
1/3

. 

3.4 Geometry on the steam side 

The modeling of the tube surfaces as isothermal allowed us to decouple the search 

for geometry on the gas side (Section 3.3) from the search for geometry on the steam side. 

The two sides are not uncoupled. The location of the flow reversal [Eq. (3.20)] depends 

on the group Ntu, Eq. (3.21), which according to the analysis that led to Eq. (3.39) is 
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7 /9
1/ 4

3
1/12 1/36 5/36a a

tu,opt 1/ 2 3 1/ 4

F D F

1/12 1/36 5/36

C C2
N Be D L

Pr 12 C Pr

          ~ Be D L



    
    

     
 (3.47) 

Equation (3.20) is plotted in Fig. 3.3.  

The numbers of tubes with downflow and upflow are 

 c
down

z
n  n

L
  (3.48) 

 
c

up

z
n  1  n

L

 
  

 
 (3.49) 

According to Eqs. (3.46) and (3.47), these numbers are functions of D,  L,  H and Be, 

however, the ratio ndown/nup is comparable with 1 because zc/L is order of 0.5, cf. Fig. 3.3.  

0
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0 1

Ntu
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Figure 3.3: The longitudinal location of the flow reversal, for which Ntu is given by Eq. 

(3.47). 
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Note that because of the small exponents of Be, D,  and  L  in Eq. (3.47), the expected 

order of magnitude of Ntu is 1. Furthermore, because the total downward mass flow rate 

must equal the total upward mass flow rate, the scaling ndown ~ nup means that the mass 

flow rate in one tube ( 1m ) has the same scale in both parts, downcomer and riser. 

At this stage, we conclude that the constructal design of the gas side (Section 3.3) 

determines the flow reversal position (Fig. 3.3) and several new relations between the 

geometric features of the design, namely Eqs. (3.41)-(3.49). 

3.5 Two-phase flow model 

The scaling relations developed so far are based on two assumptions that greatly 

simplified the analysis. First, the assumption that all the tube surfaces are isothermal at TB 

had the effect of decoupling the heat transfer analysis of the gas side from the analysis of 

the water side. The second assumption was the single-phase modeling of the friction in 

one vertical tube [Eq. (3.15)], which allowed us to develop analytically the variation of 

the one-tube flow rate with the longitudinal position z, cf. Section 3.2. In the following 

analysis we relax this second assumption and treat the flow as that of a liquid-vapor 

mixture [28].  

Figure 3.4 shows the temperature distribution in the hot gas and the main features 

of water circulation. The ndown tubes represent the downcomer, and the nup tubes represent 

the riser. The sum of ndown and nup is the number of tubes in the assembly, n, cf. Eq. (3.46), 

which is obtained by constructal design of the continuous steam generator for the gas side. 
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Figure 3.4: The natural circulation (self-pumping effect) in the continuous steam              

generator model. 
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The pressure drop in two-phase flow is function of pressure and quality. The 

pressure difference ΔP between two plenums is (cf. Fig. 3.4) 

  a f gP = P  + P P     (3.50) 

where ΔPa and ΔPf are the acceleration and friction pressure drops, and ΔPg is the 

hydrostatic pressure difference for the two-phase flow [28] 

 

2

w
a f 2

m
ΔP = v r

A

 
 
 

 (3.51) 

 

2

wf
f 3

mvH
ΔP  = 4f r

D 2 A

 
 
 

 (3.52) 

 g 4

f

gH
ΔP = r

v
 (3.53) 

The pressure difference along each tube is the same as ΔP because the pressure in the 

plenums is uniform, and each tube is installed between the two plenums. For simplicity, 

we divide the tubes into two groups, downcomer and riser, in order to find the ratio of 

numbers of downcomer and riser tubes. Considering first the downward flow in the 

downcomer,  

  

2 2

w wf
down f 2,1,out 1 3,1,out 4,1,out

1 1 f

m mvH 1
P  = v r  4f r  gH r

A D 2 A v

   
      

   
 (3.54) 

where subscript 1 represents the downcomer,  

  
2

1 down

D
A  = n

4


 (3.55) 

The quality values at the inlet and outlet of the riser are greater than zero due to the heat  
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transferred to the downcomer. The two-phase pressure drop is evaluated by subtracting 

the inlet pressure drop from the outlet pressure drop, which yields the pressure difference 

equation for the riser,  

  

   

 

2 2

w wf
up f 2,2,out 2,2,in 2 3,2,out 3,2,in

2 2

4,2,out 4,2,in

f

m mvH
P  = v r  r   4f r  r

A D 2 A

1
              gH r  r

v

   
       

   

 

 (3.56) 

Here the subscript 2 represents the riser,  

  
2

2 up

D
A  = n

4


 (3.57) 

Next, for the closed loop formed by the downcomer and the riser we write 

  down upP  P  0     (3.58) 

Substituting Eqs. (3.54) and (3.57) into Eq. (3.58), and using ndown= n – nup 

and 4,1,out 4,2,inr r , we obtain the global flow resistance equation for the two-phase flow 

system: 

 

 
   

   

2 2 4
2,1,out 1 3,1,outf

4,1,out 4,2,out 2 22

w up up

2,2,out 2,2,in 2 3,2,out 3,2,in

2 2

up up

r 2f r Hg ρ HD
R = 2r   r  =  +  

16m n  n n  n D

r  r 2f r r H
                                                  +  

n n D




 

 


 (3.59) 

If the friction factors (f1, f2) are assumed to be independent of nup, then the global 

flow resistance can be minimized analytically by solving R/ nup = 0, which yields  
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   

1 3

2,1,out 1 3,1,out

up 2,2,out 2,2,in 2 3,2,out 3,2,inopt

r  + 2f r H Dn
 = 1 + 

n r r  + 2f r r H D

    
            

 (3.60) 

Consider two limiting conditions: 2 3r  >> 2f r H D and 2 3r  << 2f r H D , which correspond 

to H ~ D and H >> D, respectively: 

 

1 3

up 2,2,out 2,1,outopt, H ~ D

n 1
 = 1 + 

n r / r  1

   
        

 (3.61) 

 

1 3

up 3,2,out 3,1,outopt, H >> D

n 1
 = 1 + 

n r / r  1

   
        

 (3.62) 

In Eqs. (3.61) and (3.62) we used (f1/f2)
1/3

 ~ 1, 2,2,in 2,1,outr r  and 3,2,in 3,1,outr r . 

Equations (3.61) and (3.62) show that in taller continuous steam generators the number of 

riser tubes is determined by the friction effect, and in shorter continuous generators the 

number of riser tubes is determined by the acceleration effect. According to Ref. [28], c.f., 

Figs. 2.3 and 2.4, r2 and r3 are expressed as linear functions, 

 2 ar a x  (3.63) 

 3 fr a x 1   (3.64) 

where slopes, aa and af, depend on pressure and their values become larger when the 

pressure decreases. 

Using Eq. (3.63) we determine r2,2,out and r2,1,out, because the quality x is 

proportional to the rate of heat absorption: 

 2,2,out a 2,outr a x  (3.65) 
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 2,1,out down a 2,outr k a x  (3.66) 

where kdown represents the heat absorption ratio of the downcomer and has the range 0 < 

kdown < 1:  

 
 up F cdown

down

max max F out

q T T z / Lq
k  = 1   = 1  

q q T T


  


 (3.67) 

Using Eqs. (3.5) we obtain kdown: 

 
tu c

tu

N (1 z / L)

down N

1 e
k  = 1  

1 e

 







 (3.68) 

which is shown in Fig. 3.5.  
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Figure 3.5: Heat absorption ratio of the downcomer. 
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Substituting Eqs. (3.65) and (3.66) into Eq. (3.61), which is the simpler form for 

shorter continuous steam generators (H ~ D), we obtain:  

 

1 3

up downopt, H ~ D

n 1
 = 1 + 

n 1/ k  1

   
       

 (3.69) 

Equation (3.69) confirms that the location of the flow reversal in tubes depends on the 

number of heat transfer units Ntu (Section 3.2). If Ntu > 1, kdown is less than 0.5 as shown 

in Fig. 3.5; it leads to n/nup < 2 and this means the number of the riser tubes is greater than 

the number of the downcomer tubes, i.e., nup > ndown. If Ntu << 1, kdown is greater than 0.5; 

so, the number of the downcomer tubes is greater than the number of the riser tubes, i.e., 

nup < ndown. 

Using Eq. (3.64) we obtain r3,2,out and r3,1,out 

 3,2,out f 2,outr a x 1   (3.70) 

 3,1,out down f 2,outr k a x 1   (3.71) 

Substituting Eqs. (3.70) and (3.71) into Eq. (3.62) yields the location of the flow reversal 

for taller continuous steam generators, H >> D case, in the function of af and kdown: 

 
   

1/3

up f 2,out down f 2,outopt, H >> D

n 1
 = 1 + 

n a x 1 / k a x 1  1

  
          

 (3.72) 

Equation (3.72) shows that the location of the flow reversal for tall continuous steam 

generators depends on pressure as well as the number of heat transfer units, because it is 

the function of af and kdown whereas it is only the function of the number of heat transfer 
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units for shorter continuous steam generators. 

We can investigate Eq. (3.72) in three different cases. If afx2,out << 1, and then 

n/nup  . This means that the number of the downcomer tubes is significantly greater 

than the number of the riser tubes when pressure is high, i.e., af is very small. If afx2,out >> 

1, and then Eq. (3.72) becomes Eq. (3.69). This means that when pressure is low the 

number of the riser tubes can be greater or less than the number of the downcomer tubes, 

depending on the number of heat transfer units. If afx2,out ~ 1, and then 2 < n/nup < , 

because 1 < (afx2,out + 1)/ (kdown afx2,out + 1) < 2. This implies that the number of the 

downcomer tubes is greater than the number of the riser tubes when the pressure is 

moderate. In sum, the location of the flow reversal can occur anywhere, depending on 

pressure and the number of heat transfer units for taller continuous steam generators. 

Using these results, the design data for the location of the flow reversal, zc/L = 0.3, 

can be reviewed; this value was determined by the measurement in the steam generator in 

operation and fixed for all design conditions [36]. The design data are: P ~ 3 MPa, H/D ~ 

150, h ~ 10 kcal/hr m
2
 ℃, A ~ 1000 m

2
, m  ~ 10

5
 kg/hr and cP ~ 0.1 kcal/kg ℃. We 

assume that the designed steam generator is tall and that the pressure is low. Substituting 

these data into Eq. (3.21) we obtain Ntu ~ 1. According to Fig. 3.5, kdown is less than 0.5; 

so, the number of the riser tubes should be greater than the number of the downcomer 

tubes, i.e., zc/L < 0.5. This confirms that the design practice, zc/L = 0.3, is reasonable. 

According to constructal theory, however, the fixed value of zc/L should be avoided 



 

 

 

 

 

 
53 

because its value is the variable which can be determined by minimizing the global flow 

resistance as described in this section. 

In conclusion, the minimization of the global flow resistance, cf., Eq. (3.59), 

yields the location of the flow reversal of continuous steam generators, which depends on 

pressure and the number of heat transfer units. We can infer that for high pressure the 

number of the downcomer tubes is greater than the number of the riser tubes, and that for 

low pressure the number of the riser tubes can be greater than the number of the 

downcomer tubes, depending on the number of heat transfer units. 

3.6 Results and discussion 

In this chapter we developed analytically the constructal design of continuous 

steam generators with large numbers of tubes so many that the temperature distribution in 

the horizontal direction may be modeled as continuous. This feature of the model and the 

approximation that the tubes are essentially isothermal at the boiling temperature, led to 

the analytical derivation of the location of flow reversal, i.e. the intermediate location that 

separates the down flowing steam tubes (the downcomer) from the upflowing tubes (the 

riser). The flow reversal location depends on pressure and the number of heat transfer 

units. 

On the gas side of the crossflow heat exchanger, we used the method of 

intersecting the asymptotes and found that the spacing between tubes can be selected such 

that the global heat transfer density is maximal. The optimal spacing depends on three 
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dimensionless groups accounting for the imposed pressure difference, the tube diameter, 

and the horizontal flow length, Eq. (3.41). Corresponding scaling relations were 

determined for the total number of steam tubes and the maximal heat transfer density of 

the heat exchanger. 

Constructal theory explains the design practice of continuous steam generator; 

most of continuous steam generators are designed for the low operation pressure. We see 

that the global flow resistance, Eq. (3.59), is the function of the gravitational friction 

factor difference (2r4,1,out  r4,2,out). According to Ref. [28], c.f., Fig. 2.2, r4 decreases 

linearly at the high pressure; furthermore, the slope of r4 at the high pressure becomes 

small. This implies that the global flow resistance becomes smaller at the high pressure. 

On contrary, at the low pressure (2r4,1,out  r4,2,out) has much larger value than the high 

pressure because r4 decreases exponentially. Therefore continuous steam generators at the 

low pressure might operate more stably against various operation conditions such as 

startups, shutdowns and sudden load changes. This is the reason why low pressure 

continuous steam generators have been preferred over 100 years [21, 22]. 

This analysis and its results are useful with regard to scaling up and scaling down 

the designs of continuous steam generators. For example, the analysis showed that the 

total heat transfer rate increases in proportion with the length scale of the entire heat 

exchanger, Eq. (3.45). A consequence of this is the fact that the heat transfer density 

decreases as the length scale increases. 
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4. Distribution of Size in Steam Turbine Power Plants 

Like all technologies, power plants are evolving. They are becoming more 

efficient and larger (Fig. 4.1). There is very clear relationship between thermodynamic 

performance and “size”, which in Fig. 4.1 is represented by the net output of the plant; 

larger plants operate closer to the Carnot limit than smaller plants, Fig 4.2. This size effect 

is present in the performance of other energy conversion systems [37, 38], for example in 

heat exchanger design [22], automotive design [39], and refrigeration and liquefaction 

plants [40, 41]. It is explained by the relationship between the resistance encountered by a 
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Figure 4.1: The evolution of power plant design in the 20th century. 
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flow (fluid, heat) and the size of the cross-section (duct, surface) pierced by the flow. 

Larger cross-sections offer less resistance. This holds for the cross-sections of pipes with 

fluid flow, and for the heat transfer areas of heat exchangers. The thermodynamic 

imperfection of a flow system is intimately tied to the size of its hardware [42]. 

Power plants are also evolving internally. Their structure has been changing in 

time. The emergence of new organs (superheater, regenerator, feedwater heater) is aligned 

very clearly with time and the stepwise increase in thermodynamic performance. This 

aspect of the evolution of power plant technology is one of the examples of how 

constructal theory unites engineering with the other flow designs of nature [40].  
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Figure 4.2: The relationship between plant efficiency and power output (from Fig. 4.1). 
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We focus on another aspect of power plant evolution, which has not been 

addressed in a predictive sense before. In late 1800s, the design of steam power plants 

was based on a single turbine. Contemporary power plants have turbine “groups” or 

“trains”, consisting of a high pressure turbine (HP) followed by one or more intermediate 

pressure (IP) and low pressure (LP) turbines. Why are these changes happening? Why is 

not the single-turbine design surviving? What is the best way to divide one turbine into a 

train of smaller turbine? 

The answer comes from the relation between the imperfection of an organ and the 

size of the organ. We see that this holds for the entire power plant (Fig. 4.2) and for a 

single turbine (Fig. 4.3). But, if larger turbines are more efficient, why not use a single 

large turbine as opposed to a group of smaller turbines? 

In this chapter we answer these questions by adopting the constructal design 

proposal to view the whole installation is a distributed energy system [2]. The installation 

has a total size (e.g. total mass for all the turbines), and must mesh with the rest of the 

power plant, between clearly defined pressures (PH, PL), and at temperatures no greater 

than a specified level (TH), cf. Fig. 4.4. Usually, the inlet steam temperature (T2) of LP 

turbine can be higher than the inlet steam temperature (TH) of HP turbine because the 

reheater is installed in a lower gas temperature region in the boiler and the allowable 

temperature of the tube material is fixed. However, we assume that T2 is equal to TH to 

simplify the analysis. What the installation does not have is configuration. 
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Figure 4.3: The relationship between turbine isentropic efficiency and size. 
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We give ourselves the freedom to image that we can distribute the available mass 

over the pressure interval occupied by the installation. Our objective is to distribute the 

mass inventory in such a manner that the total power produced by the installation is 

greater and greater. In this direction of design evolution, the installation obtains its 

configuration – more mass in turbines at some pressures, as opposed to less mass in the 

remaining turbines. 

4.1 Two turbines in series 

Consider the train of two turbines shown in Fig. 4.4. The overall pressure ratio is 

fixed, PH/PL. The steam enters the two turbines at the highest allowable temperature level, 

T1 = T2 = TH. The power outputs from the two turbines are (cf. Ref. [40]): 

  
PR /c

i
1 P 1 1 P H 1

H

P
W  = mc T   T  = mc T 1  

P


  
     
   

 (4.1) 

HP turbine LP turbine

m

HP LPiP

1 21,revW 2,revW
W
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RQ
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1

2
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Figure 4.4: Train of two turbines, high pressure and low pressure. 
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  
PR /c

L
2 P 2 2 P H 2

i

P
W  = mc T   T  = mc T 1  

P


  
     
   

 (4.2) 

The heat transfer rate to the reheater is 

  R P 2 1 1Q  = mc T   T  = W  (4.3) 

The overall efficiency of the power plant is 

 
1 2 1 2

B R B R B

W  + W W  + W1
 =  = 

Q  + Q Q 1 + Q / Q
  (4.4) 

where QB is the heat transfer rate administrated to the m stream in the boiler, before state 

1. For simplicity, we recognize that in modern power plants the ratio QR/QB is of order 

1/10, and this allows us to approximate Eq. (4.4) as 

   1
B 1 2

B

W
Q   W  + W 1  

Q

 
   

 
 (4.5) 

where QB is fixed because state 1 is fixed (PH, TH). Equation (4.5) can be written further 

as  

 

P P

P

R / c R / c

B i L
1 2

P H H i

R / c

P H i
1

B H

Q P P
 = 1   + 1   

mc T P P

mc T P
                   1  1  

Q P

        
            
           

    
     
     

 (4.6) 

The expression shown above can be maximized with respect to Pi, by solving η/Pi = 0, 
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and in the limit P H Bmc T / Q << 1  (which is consistent with R BQ Q ) the optimal 

intermediate pressure is  

 

 
P

P

c / 2R

1/ 2 2
i H L

1

1/ 2 R / 2c

P H 2 2 L

B 1 1 H

P   P P

mc T P1
         1  1 +   

Q 2 P

 
  

 

         
        

          

 (4.7) 

Simpler forms in the limit represented by Eq. (4.7) are available for 2 1/   1    (note: 

η1,2 < 1),  

  
PR / 2c

1/ 2 P H L
i H L

B H

mc T P
P   P P 1  1  

Q P

    
     
     

 (4.8) 

which in the limit P H Bmc T / Q   0  reduces to  

  
1/ 2

i H LP   P P  (4.9) 

The analysis that follows is based on the simpler version, Eq. (4.9), in order to make the 

demonstration entirely analytically. In reality, the limit P H Bmc T / Q  = 0  is not reached. 

For example, the boiler of a 500 MW power plant receives m = 473 kg/s  and QB = 10
6
 

kW, while TH = 813 K [43]. In this case, the dimensionless group P H Bmc T / Q  is equal to 

1.26. However, its effect on Eq. (4.8) is weak because the quantity shown between { } is 

essentially constant and of order 1.  

The isentropic efficiencies increase monotonically with the sizes of two turbines 
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(M1, M2), cf. Fig. 4.3. The η(M) curves must be concave because they both approach η = 

1 in the limit M  . It is reasonable to assume that near η  1  the η(M) data for 

turbine designs are curve fitted by 

 1 1b M

1 1 = 1  a e   (4.10) 

 2 2b M

2 2 = 1  a e   (4.11) 

where (a, b)1,2 are four empirical constants that depend on the pressure level of the turbine. 

The total power produced by the two turbines is W = η1W1,rev + η2W2,rev, where the 

functions  1 1M  and  2 2M  are known. The total mass of the ensemble is fixed, 

 1 2M = M  M  (4.12) 

There is one degree of freedom in the making of Fig. 4.4, namely the dividing of 

M into M1 and M2. The optimal way to divide M is determined using the method of 

Lagrange multipliers. We form the aggregate function  

  = W + M   (4.13) 

for which W and M are the expressions (4.1, 4.2) and (4.12). We solve the system 

1/ M  0    and 2/ M  0   , eliminate the multiplier λ, and obtain  

 
1 1 1,rev

1 1 2 2

2 2 2,rev

a b W
b M  b M  = ln

a b W

 
   

 

 (4.14) 

Equations (4.14) and (4.12) pinpoint the mass allocation fractions M1/M and M2/M. The 

first and most important conclusion is that there must be a balance between M1 and M2.  
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For example, if we use the HP and IP data of Fig. 4.3 for η1 of Eq. (4.10), we 

obtain approximately 1a   0.2  and -5 1

1b   4.6 10  kg  . If we use the LP data of Fig. 

4.3 in conjunction with Eq. (4.11), we estimate that 2a   0.13  and 

-5 1

2b   2.1 10  kg  .  If, in addition, Eq. (4.9) holds, then W1,rev = W2,rev and this means 

that on the right hand side of Eq. (4.14) we have a1b1W1,rev/(a2b2W2,rev)   34, which 

considerably greater than 1. In conclusion, Eq. (4.14) states that b1M1 is greater than b2M2, 

namely b1M1  b2M2 + 3.5.  

Combining Eqs. (4.12) and (4.14) yields the optimal mass distribution equations 

for high pressure and low pressure turbines 

 
4

1M  = 0.044 M  7.3 10  kg   (4.15) 

 
4

2M  = 0.956 M  7.3 10  kg   (4.16) 

M1 equals M2 when M = 1.610
5 

kg. In conclusion, there is an optimal way to distribute 

mass along the train of turbines. According to Eqs. (4.15) and (4.16), the total mass is 

allocated in a balanced way; with more mass at the high pressure end when total mass M 

is small, and with more mass at the low pressure end when the total mass is large. What 

we showed here for a group of two turbines also holds for groups of three or more. 

The penalty associated with not using a train of turbines can be calculated with 

reference to Fig. 4.4. We form the ratio W(M2=0)/Wmax, where Wmax is the W maximum 

that corresponds to the constructal design, Eq. (4.9). The ratio is 
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  PR / 2c

2 L

max H

W M 0 P1
 = 1  1

W 2 P

   
   
   

 (4.17) 

This ratio is always smaller than 1. In conclusion, the penalty is more significant when 

the overall pressure ratio is greater. 

4.2 Multiple turbines  

Consider the limit where the number of turbines is extremely large (i = 1, 2, , 

N) and their individual sizes are small, Fig. 4.5. Each turbine and subsequent reheater can 

be modeled as an isothermal expander receiving the heat transfer rate iQ  and the steam 

 H i im T ,  P  + P , and delivering the power iW  and the steam  H im T ,  P .  

HP

iQ

i

i+1 H i+1m,  h , T ,  P
i H im,  h , T ,  P

iW

LP

BQ Q

W

i

i+1 i

      P

 P   P



 
 

Figure 4.5: Train of N turbines. 
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With reference to the elemental system (i) shown in Fig. 4.5, the first law requires  

  i i i+1 iW  = Q  + m h   h  (4.18) 

Because the steam is modeled as an ideal gas, the enthalpy of the inflow is the same as 

the enthalpy of the outflow, and the first law reduces to 

 i iW  = Q  (4.19) 

If the isothermal expander (i) operates reversibly, then  

   i
i,rev H out in Hi

i

P
Q  = mT s   s  = mT R

P


  (4.20) 

and i,rev i,revW  = Q . The actual system operates irreversibly with the efficiency 

 
i

i

i,rev

W
 =  < 1

W
  (4.21) 

and its power output is 

 
i

i H i

i

P
W  = mT R

P


  (4.22) 

where ΔPi = Pi+1 – Pi. Of interest is the total power delivery 

 

N
i 1 i

T H i

i 1 i

P  P
W  = mT R

P






  (4.23) 

which in combination with the boiler heat input ( BQ , fixed) and the total heat input to the 

isothermal train ( Q = W ), yields the efficiency ratio 

 
B

W
 = 

Q  + W
  (4.24) 
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In order to maximize η we must maximize total power WT given by Eq. (4.23). Attractive 

are larges value of (ΔP/P)i and ηi, in each stage of isothermal expansion. The data of Fig. 

4.3 suggest that, in general, ηi depends on both Mi and Pi , such that  

 
i i

i i

  0    and     0
M P

 
 

 
 (4.25) 

The masses of the N turbines are constrained by the total mass of the turbine train, which 

is fixed: 

 
N

T i

i 1

M  = M


  (4.26) 

Another constraint is the ΔPi’s must all up to the overall pressure difference, ΔPT = PH – 

PL: 

  
N

T i 1 i

i=1

P  = P  P     (4.27) 

In summary, we must maximize the sum (4.23) subject to the constraints (4.26) 

and (4.27). According to Lagrange’s method of undetermined coefficients, this problem is 

equivalent to seeking the extremum of the function 

  
N

i 1
i i i 1 i

i=1 i

P
F =   1  + M  + P  P  

P




  
      
  

  (4.28) 

where ηi = ηi(Mi, Pi), and λ and μ are two Lagrange multipliers. The function F is a linear 

combination of the sums (4.23), (4.26) and (4.27). It depends on 2N + 2 variables, namely 

λ, μ, M1, , MN and P1, , PN. Its extremum is found by solving the system of 2N 
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equations 

  i i 1

i i i

PF
 =   1  +  = 0,   i = 1, 2, , N  

M M P


 

  
   

 (4.29) 

  i i 1 i 1
i 2

i i i i

P PF
 =   1  +  = 0,   i = 1, 2, , N  

P P P P

 
 

   
   

 (4.30) 

This system establishes the N masses (Mi) and the N intermediate pressures (Pi) as 

functions of the undetermined coefficients λ and μ. In principle, these coefficients can be 

determined by substituting the solutions for Mi(λ, μ) and Pi(λ, μ)  into the constraints 

(4.26) and (4.27). 

Here we make analytical progress on a simpler path by linearizing the function 

ηi(Mi) in the vicinity of the design range in which all the turbines are expected to operate 

(namely, near ηt ~ 1 in Fig. 4.3). We write that for all N turbines the efficiency-mass 

relation is unique, 

 i i i  a + bM  + cP   (4.31) 

where (a, b, c) are constants. The first result of the linearization is that the N equations 

(4.29) reduce to 

 
i 1

i

P
 = constant

P

  (4.32) 

In view of Eq. (4.27), we conclude that the total pressure interval ΔPT is divided into N 

pressure intervals such that 

 

1/ N

i 1 H

i L

P P
 = 

P P


 
 
 

 (4.33) 
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or  

 

1/ N

i H

i L

P P
 =  1

P P

 
 

 
 (4.34) 

This is in agreement with what we found earlier in Eq. (4.9). 

The distribution of MT among the N turbines follows from Eqs. (4.30), in which 

we substitute Eqs. (4.31) and (4.32). The result is  

 

1/ N 1/N

i L H

i H L

P P
 =  + c   1  ,     constant

P P P

       
      
       

 (4.35) 

This shows that in the (Mi, Pi) range where Eq. (4.31) is valid, Eq. (4.35) becomes 

 i i ia + bM  + cP  = P   constant  (4.36) 

If the effect of Pi on ηi is negligible, as in the case of the HP and IP data of Fig. 4.3, then 

Eq. (4.36) reduces to 

 i ia + bM   P   constant   (4.37) 

The mass of the individual turbine should increase linearly with the pressure level of that 

turbine.  

In particular, if the linear approximation (4.31) reveals that a/b << Mi, as in the 

calculations shown under Eq. (4.14), then Eq. (4.37) states that the Mi’s must be 

distributed in proportion with the Pi’s, and, in view of Eq. (4.34), in proportion with the 
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ΔPi’s: 

 i i iM  ~ P  ~ P  (4.38) 

Equation (4.38) indicates that more mass should be placed in the expanders at higher 

pressures.  

4.3 Results and discussion 

These is a considerable volume of work on turbine design, where the size is 

selected from other considerations such as the distribution of maximal stresses due to 

centrifugal forces, and the flaring out of the flow passages to accommodate the expansion 

of the steam along the turbine train [44]. The work reported in the present chapter 

suggests that the design of future concepts of turbine train configuration must combine 

the traditional considerations [45, 46] with size allocation principle illustrated in this 

chapter. 

This chapter also highlights the need for more extensive and more exact 

information on how the size of each turbine affects its thermodynamic performance. The 

data that we used (Fig. 4.3) are few and provide a narrow view of the size effect that is 

needed for future design. These data also require an understanding of how the multiple 

turbines are arranged in the power plant.  

As the power generation capacity of the plant increases, the boiler and the turbine 

also increase in size. It is easer to increase the size of the boiler than the size of the 
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turbine. Today, in a 1000 MW power plant there is still a single boiler, while the number 

of turbines is five or six. Each pressure stage employs one or several (two or three) 

turbines in parallel. For example, in power plants with more than 500 MW capacity, the 

LP stage consistently employs two or more turbines. 

Several physical limitations require the use of multiple turbines in parallel at a 

single pressure stage. A major limitation posed by centrifugal stresses is the length of the 

last blade. The current maximum length is approximately 1.3 m. The data of Fig. 4.3 

come from a current design for a 1000 MW power plant with a low-pressure stage 

consisting of four turbines in parallel, each turbine with last blades 1.14 m long. The 

ordinate of Fig. 4.3 indicates the efficiency of the single LP turbine, while the abscissa 

represents the total mass employed for each pressure stage. If the mass of the LP turbines 

is divided by 4, then the LP data of Fig. 4.3 move closer to the HP and IP data.  

Note also that the efficiency of one turbine is affected by the operation of the 

turbine upstream of it. The irreversibility of a turbine is due to six losses: deviation from 

the ideal velocity ratio, rotational loss, diaphragm-packing leakage loss, nozzle end loss, 

moisture and supersaturating loss and exhaust loss [44]. The last two losses are present 

only in the LP turbines, not upstream, therefore the efficiency of the single LP turbine 

should be lower than the efficiency of HP and IP turbines, cf. Fig. 4.3. Furthermore, 

because the HP turbine is installed at the head of the train, its efficiency should be lower 

than the IP turbine efficiency because of entrance losses due to the configuration of the 
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steam passage. This too is confirmed by the data of Fig. 4.3. 

The optimal intermediate pressure Eqs. (4.7)-(4.9) may not be attainable in a 

design with two turbines model because of the properties of water. For example, the 

intermediate pressure in a 500 MW power plant is approximately 4 MPa, while the 

intermediate pressure based on Eq. (4.9) is 0.35 MPa. The discrepancy between the 

intermediate pressures is due to the ideal gas model used for steam. If we model as 

isentropic the expansion through the high pressure turbine, because of the saturated steam 

curve of water the attainable intermediate pressure is 3.15 MPa. The expansion cannot 

proceed beyond 3.15 MPa because of engineering limitations such as water droplet 

impingement on the blades. This limitation impacts on the mass distribution of turbines 

for two turbines model. When the number of pressure stages increase to three or more, the 

expansion limitation due to steam properties diminishes in importance. 

The total turbine mass must be divided in a certain way when two or more 

turbines are used in series. The allocating of mass is synonymous with the discovery of 

the configuration of the turbine train. Important is that in this article the distribution of 

“size” along the turbine train came from the pursuit of global thermodynamic 

performance. The allocation of mass is driven by the size effect on turbine efficiency: 

larger turbines operate closer to the reversible limit (e.g. Fig. 4.3). 

Future extensions of this work should take into account the physical limitations 

that make necessary the use of several turbines in parallel at a pressure stage. Such work 
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could address the distribution of turbine mass per pressure stage, instead of per turbine. 

This work would be assisted further by the availability of more extensive data of the type 

sampled in Fig. 4.3. To that end, it would be useful to construct models that account for 

the trend exhibited by the data. In other words, the analytical form of η(M, P), which was 

approximated here in Eqs. (4.10) and (4.31), should be derived from a model that 

accounts for irreversibility and finite size. 
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5. Constructal Configuration for Natural and Forced 

Convection in Cross-flow 

Convection plays a vital role in power and its pieces of equipment. Even though 

half of total heat transfer in the power plant is done by the convection, most of the heat 

transfer surface is occupied by the convective heat transfer because the intensity of the 

heat flux by radiation in the furnace is significantly greater than the convection [21, 22]. 

Therefore, the optimal sizing and shaping of components for convection is a major 

requirement in power plant design.  

According to traditional practice, most of the data and equations used in the 

design and engineering of components of the power plant refer to heat transfer 

configurations that are documented in handbooks and in a very active research literature 

[21, 22, 47-78]. Even though the objective in engineering design is to create the 

configuration of the system, the effect of the flow configuration on the performance of the 

convective heat transfer components is largely overlooked. In this chapter we show how 

the configuration dictates the global performance of a crossflow heat exchanger with 

forced convection on the outside and natural convection on the inside. We show that it is 

possible to “morph” the architecture of the device such that its global heat transfer rate, or 

volumetric heat transfer density is maximized. In this direction of design evolution, the 

flow architecture tends to become simpler.  
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5.1 Numerical model 

Figure 5.1 shows a cross-flow configuration with two vertical tubes and two 

plenums. A cold single-phase fluid fills the tubes and the plenums. A hot stream of the 

same fluid flows horizontally around and between the tubes. Heat flows from the hot 

stream to the cold stream inside the tubes. The leading tube is heated more intensively 

than the trailing tube, and the difference between the two heating rates causes a density 

difference between the fluid densities in the two tubes. Buoyancy drives a circulation loop,  

min

Cold in

T

Cold out

Hot out

max

Hot in

T

Planes of symmetry

Impermeable

H

x
z
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Figure 5.1: Cross-flow configuration. 
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with the flow upward through the leading tube and downward through the trailing tube. 

The circulation is completed by horizontal flows in the two plenums. The heat transfer to 

the two tubes is convected away by a slow stream of cold fluid, which enters the upper 

plenum from the left (with the average speed uc,in) and exits to the right (Fig. 5.1). 

The driving force for the natural circulation is proportional to the temperature 

difference between the two vertical fluid columns inside the tubes. We adopt the 

Boussinesq approximation that the fluid density decreases linearly with the temperature, 

  0 0 = 1  T  T        (5.1) 

and that  0T  T   1.    The subscript 0 indicates a reference condition. Equation 

(5.1) is used in the modeling of the flow inside the tubes and the plenums, and it couples 

the momentum and energy equations in that flow volume. The dimensionless governing 

equations for steady incompressible flow are written in terms of the dimensionless 

variables 

    x,  y, z  = x,  y, z / H  (5.2) 

     su,  v, w  = u,  v, w / U  (5.3) 

 2

sP = P / U  (5.4) 

  minT = T  T / T   (5.5) 

where 

 max minT = T  T   (5.6) 
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H is the height of the cross-flow configuration, Tmax and Tmin are maximum and minimum 

inlet temperatures, which are fixed, and Us represents the velocity scale, which is 

obtained by a scale analysis (e.g. Ref. [33]) 

 sU  
H


  (5.7) 

The resulting dimensionless equations for mass, momentum and energy conservation in 

the internal fluid space with laminar flow are  

 
u v w

 +  +  = 0
x y z

  

  
 (5.8) 

 
2u u u P

  u v w     u
x y z x

   
     

   
 (5.9) 

 
2v v v P

   u v w     v
x y z y

   
     

   
 (5.10) 

 
2w w w P

u v w     + w + Gr T 
x y z z

   
    

   
  (5.11) 

 

 
2T T T

Pr u  + v  + w  = T
x y z

   
 

   
  (5.12) 

where 
2 2 2 2 2 2 2 / x / y / z           and 

 
3

2

g TH
Gr = 




 (5.13) 

The corresponding equations for laminar flow in the space outside the tubes, 

under the assumption that the external fluid is the same as the internal fluid, are the same 

as the internal fluid space except the w-momentum equation, which is 



 

 

 

 

 

 
77 

 
2w w w P

         u   v   w     w
x y z z

   
     

   
 (5.14) 

The energy equation for the solid tube walls is 

 2T  =  0  (5.15) 

The thermal boundary conditions are T = 0  at the inlet to the internal flow plenum (T = 

Tmin, Fig. 5.1), and T = 1 at the inlet to the external flow space (T = Tmax, Fig. 5.1). The 

side walls are thermally and hydrodynamically planes of symmetry. The other walls of the 

plenums are impermeable and adiabatic. The Reynolds numbers at the inlet of the upper 

plenum and the external flow space are 

 
h

c,in h

D ,c c,in h

u D
Re   =  u D


 (5.16) 

 
h,in

D,h h,in

u D
Re   =  u D


 (5.17) 

where hD represents the hydraulic diameter of the cross section of the upper plenum.  

In summary, four dimensionless parameters (Gr, Pr, 
hD ,cRe ,  ReD,h) govern the 

flows in a heat exchanger with forced convection on the outside and natural convection 

on the inside. The dimensionless mass flow rate due to circulation by natural convection 

inside the tubes is 

 
up down

2 2

s s

m m
m   = 

H U H U

   
    

    
   (5.18) 

The subscripts up and down indicate the flow direction inside the tubes. The 
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dimensionless heat transfer rate from the hot (external) fluid to the cold (internal) fluid is  

    h,in h,out conv cond
top end

P s of  the tubes

q
q   = u 1  T  = q q

c U A T
  

 
  (5.19) 

The conductivity of the tube wall (kw) is assumed to be much higher than the 

conductivity of the fluid (k). The ratio k  = kw/k is assumed to have a value sufficiently 

greater than 1 so that it has a negligible effect on the thermal resistance in the direction 

perpendicular to the tube. Figure 5.2 shows that the dimensionless thermal conductivity 

should be larger than 1000, because the heat transfer rate is insensitive to k  when 

k  1000.   

0
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Figure 5.2: The effect of the upper plenum Reynolds number on the contribution made by 

conduction to the total heat transfer rate. 
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A finite element package was used for solving the governing equations (5.8)-

(5.15) simultaneously [79]. The residuals for mass, momentum and energy equations 

were assigned values smaller than 10
-7

, because the change in the dimensionless mass 

flow rate was less than 10
-6

 when the residuals limit was changed from 10
-7

 to 10
-8

. 

Because of numerical limitations, the Gr value for the flow inside of tubes is of order 10
4
. 

The 
hD ,cRe  value for the upper plenum is a degree of freedom, because it depends on the 

value chosen for the inlet velocity uc,in. The 
hD ,cRe  value must be less than 1000, as this 

is the order of magnitude of the Reynolds number for transition to turbulence in an 

enclosed space. Figure 5.3 shows that the heat transfer by vertical conduction in the  
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Figure 5.3: The effect of the thermal conductivity ratio on the heat transfer rate. 
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internal fluid (in the tubes) relative to the total heat transfer rate [Eq. (5.19)] becomes 

negligible as 
hD ,cRe  is greater than 500. The value 

hD ,cRe = 500 was selected for all the 

numerical results described in this chapter.  

Adiabatic conditions are imposed on the end cross-sections of tubes to rule out the 

conductive heat transfer from the tube walls to the plenums. In actual heat exchangers [21, 

22] the ratio of height to diameter of the tubes is greater than 100, and this rules out the 

effect of conduction from the tube ends. In the present heat exchanger model, however, 

the ratio of height to diameter is approximately 6 (Fig. 5.1), and adiabatic tube ends are 

necessary in order to prevent the conduction along the tube walls, and to isolate the 

convection effect due to by the circulation established inside the tubes. 

5.2 Two tubes 

We start with the simplest configuration, which has only two tubes (Fig. 5.1). Heat 

transfer by natural convection is confirmed in Fig. 5.4, which shows the streamlines and 

temperature profiles in the middle plane. The flow is upward in the leading tube and 

downward in the trailing tube, and it is due to the density difference between the two fluid 

columns. The average dimensionless temperatures in the middle planes of the leading and 

trailing tubes are 0.75 and 0.35. The volume occupied by the fluid inside the tubes is fixed, 

  2 2t
t 1 23

4V
V   = h D  + D  = constant

H



 (5.20) 

Subscripts 1 and 2 indicate the leading and trailing tubes. The dimensionless longitudinal 
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spacing between two tubes is 0.6. The 
tV  value is fixed at 0.0441. The volume V  

occupied by the hot gas flow (around the tubes) is also fixed, and its value is 0.497. These 

two constant volumes are global constraints and are used in all the calculations reported 

in this chapter. 

Figure 5.5 shows the trend of the dimensionless mass flow rate Eq. (5.18), which 

is bell-shaped. This behavior is reasonable because the mass flow rate must decay in both 

limits, 1 2D /D   0  and 1 2D /D   .   In addition, Fig. 5.5 shows that the maximum 

flow rate occurs when the tube diameters are approximately the same. 
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Figure 5.4: Pattern of streamlines in the configuration with two tubes. 
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Figure 5.5: The mass flow and heat transfer rates in the configuration with two tubes. 

The dimensionless heat transfer rate (Fig. 5.5) has the same trend as the 

dimensionless mass flow rate. This similarity confirms the dominant effect of convection, 

which was anticipated when 
hD ,cRe = 500 was selected for the flow rate of cold fluid into 

the upper plenum, cf. Section 5.1 and Fig. 5.3.  

5.3 Three tubes 

A step in the direction of more complex heat exchangers is to consider 

configurations with three tubes. Figure 5.6 shows that the flow direction in the trailing 

tube is downward and the direction in the other two tubes is upward. To search for the 

best 3-tube configuration, we fix the diameter of one tube and vary the ratio of the other 
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two. The total volume constraint is  

  2 2 2t
t 1 2 33

4V
V   = h D  + D  + D = constant

H



 (5.21) 

where 1, 2 and 3 represent the leading, middle and trailing tubes. The dimensionless 

longitudinal spacing between tubes is uniform and equal to 0.4. 

Figure 5.7 shows the dimensionless mass flow and heat transfer rates versus 

2 3D /D  when 1D 0.14.  The two curves have the same trend: the convection and mass 

flow rates increase as the middle tube shrinks. The largest heat transfer rate is obtained in  
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Figure 5.6: Pattern of streamlines in the configuration with three tubes and 1 2 3D  = D  = D . 
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the vicinity of 2 3D /D   0.7  when 1D  = 0.14,  but we will show next that higher q  

values are achievable in the limit 2 3D /D   0.  Figure 5.7 also shows that the flow 

direction in the middle tube changes when 2 3D /D   1.05.  

Figure 5.8 shows the dimensionless mass flow and convective heat transfer rates 

versus 1 3D /D  when 2D  is fixed. The m  and q  curves exhibit inflexions in the range 

1 30.7 D /D 1.0.   The highest values occur at   1 3 max
D /D  0.7  for m,  and at 

 1 3 max
D /D  1  for q.  The flow direction in the middle tube changes when 

1 3D /D   1.05.  

Figure 5.9 shows the third direction of this search. We fixed 3D and varied 

2 1D /D .  The mass flow and convective heat flow rates increase when the middle tube 

shrinks. The peaks of the two curves occur in the vicinity of 2 1D /D   0.43  when 

3D  = 0.14.  The flow reversal in the 2D  tube occurs when 2 1D /D  is approximately 

0.95. 

In summary, if one tube diameter is held fixed, the flow performance is limited by the 

diameter of the middle tube. For example, if 2D  is fixed at the average value of the three 

tubes (Fig. 5.8), the peak mass and heat flow rates are reduced by 20% relative to the 

other cases (Figs. 5.7 and 5.9). This means that if the constraint of having fixed one 

diameter is removed, the performance will improve. 



 

 

 

 

 

 
85 

 

 

 

1

1.5

2

2 3D /D

0.5
0 0.5 1 1.5 2

2.5

h

t

1

D ,c

D,h

4

V  = 0.0441

D  = 0.14

Re  500

Re  10

Gr = 10





m

q

m

q

3 2 1 3 2 1

 

Figure 5.7: The mass flow and heat transfer rates for three tubes and constant 1D . 
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Figure 5.8: The mass flow and heat transfer rates for three tubes and constant 2D .  
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Figure 5.9: The mass flow and heat transfer rates for three tubes and constant 3D .  
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To vary all the tube sizes subject to the tube volume constraint (5.21) means to 

vary independently two ratios, 1 3D /D  and 2 3D /D .  Figure 5.10 shows the behavior of 

the mass flow rate. The steepest ascent on the m  surface is along 1 3D /D  1, in the 

direction of decreasing 2 3D /D .  The search for the configuration with the highest flow 

rate was performed systematically by using 
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Figure 5.10: The effect of all three tubes on the mass flow rate. 

 



 

 

 

 

 

 
89 

 

 

1 1 3

2 2 3

1/ 2

t
3 2 2

1 2

D  = C D

D  = C D

V
D  = 

1  C   C

 
 

   

 

(5.22) 

where C1 and C2 represent the two degrees of freedom. The steepest gradient is found by 

manipulating C1 and C2. We started with C1 = 1 and C2 = 0.7, which represent the design 

with the highest mass flow rate based on the previous three searches (Figs. 5.7-5.9).   

Figure 5.11 shows that greater design freedom leads to the better performance: 

both m  and q  increase as the middle tube vanishes. The values of the peak mass flow  
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Figure 5.11: The mass flow and heat transfer rates in the configuration with three tubes. 
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and heat transfer rates increase by 30 % and 20 % respectively relative to the maximum 

values of the previous searches (Figs. 5.7-5.9) which were based on one fixed tube 

diameter. 

5.4 The effect of the position of the middle tube 

In the configurations developed so far, the tubes were equidistant during the 

search. Now we vary the position of the middle tube ( 2D ), by varying the distance L = L 

/ ( 2D / 2 ) defined in Fig. 5.12. The results for m  and q  show the effect of L  when 

1 3D = D and 2 3D /D   0.5 and 0.7. The mass flow and heat transfer rates oscillate as the 

middle tube moves from touching the leading tube ( L  = 1) to touching the trailing tube 

(the largest L  value depends on  2 3D /D : see the dashed lines in Fig. 5.12). Each curve 

exhibits a peak value. For example, the highest mass and heat flow rates for 2 3D /D 0.5  

occur when the position of the middle tube is optL 1.5 , i.e. close to the leading tube. 

In spite of the new degree of freedom ( L ), the peak values do not exceed the 

peaks shown in Fig. 5.11 ( 3,maxm 2.7  and 3,maxq 1.9 ). For example, even though the 

peak mass flow rate for 2 3D /D 0.7  exceeds by 13 % the value when the middle tube is 

in the center, this peak mass flow rate is significantly less than its highest possible value 

(Fig. 5.11). As the diameter of the middle tube becomes smaller the effect of changing its 

position decreases. In summary, the change of the middle tube position confirms the 
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maxima obtained in Fig. 5.11. The best performance is obtained when the middle tube is 

removed for 3-tube model. 
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Figure 5.12: The effect of the position of the middle tube on the mass flow and heat  

transfer rates of the configuration with three tubes. 
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5.5 Four tubes 

The next step toward more complex configurations is the 4-tube assembly shown 

in Fig. 5.13. We used two sizes, the larger size for the two outer tubes ( 1 4D D ), and the 

smaller size for the two inner tubes ( 2 3D D ), and then we varied the size ratio, 3 4D /D ,  

or 2 1D /D .  The dimensionless longitudinal spacing between tubes is uniform and equal to 

0.28.  

Figure 5.13 shows that the maximum values of m  and q  are reached when the 

two middle tubes vanish. The highest values are 4,maxm 3.28  and 4,maxq 2.09.  Even 

though local peaks appear in the vicinity of 3 4D /D 0.3,  these peaks are considerably 

lower than ( m,  q )4, max.  

Another look at the effect of configuration on global performance is presented in Fig. 

5.14, where there are three tube sizes: 2D ,  3D  and 1 4D D .  The ratio of the inner 

sizes 2 3D /D  varies, and the results for m  and q  oscillate. The peak mass flow rate 

appears in the vicinity of 2 3D /D 1.1,  and it is 4% higher than the value when sizes of 

the two middle tubes are the same. The peak m  value does not exceed the highest value, 

4,maxm ,  because when the middle tubes have finite size the mass flow rate is less than 

half of 4,maxm ,  as shown in Fig. 5.13. 
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Figure 5.13: The mass flow and heat transfer rates for the configuration with four tubes 

and two sizes, 1 4D D  and 2 3D D .  
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Figure 5.14: The mass flow and heat transfer rates for the configuration with four tubes 

when 1 4D D constant   and 2 3D D varies. 
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5.6 Results and discussion 

In this chapter we showed numerically how the geometric configuration of the 

tubular flow structure controls the global performance of a crossflow heat exchanger. The 

cold side is driven by natural convection and consists of a thermosyphon flowing in 

vertical tubes attached to two plenums. The hot side consists of hot gases that flow 

perpendicularly to the tubes, and heat the tubes by crossflow forced convection. The fluid 

is the same on both sides of the heat transfer surface. 

The objective was to determine the number of tubes in crossflow such that the 

global heat transfer rate from the hot side to the warm side is maximum. Related to this 

objective was the maximization of the circulation rate in the vertical tubes of the 

thermosyphon. We found that the configuration for maximum convection ( q ) is nearly 

the same as the configuration for maximum circulation rate ( m ). In other words, in the 

search of optimal flow configuration it is sufficient to focus on the one global criterion, 

for example, the highest convection rate. 

The main conclusion is that it is possible to determine the flow configuration by 

morphing the entire flow structure in pursuit of progressively higher global heat transfer 

rates between the hot side and cold side. This is in line with the method of design with 

constructal theory [2], and it is a clear departure from modern practice where the multi-

tube flow configuration has a single tube size and tube spacing [47, 49].  

The search for the flow configuration was pursued systematically, from the 

simplest configuration (two tubes) to more complex (three and four tubes). In each case 
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we found that there is a particular configuration that offers maximum global performance. 

When the cold fluid circulates in two vertical tubes, the best configuration has tubes with 

nearly the same diameter (Fig. 5.5). When the configuration has three tubes, the best 

designs emerge when the second tube (D2) vanishes (Fig. 5.10). If the spacing between 

tubes is allowed to vary, then it is possible to optimize the spacing as well (Fig. 5.12), 

although the conclusion drawn based on Fig. 5.10 still holds.  

When the cold fluid circulates in four vertical tubes (Fig. 5.13), the better 

configurations are again the ones in which the inner tubes (D2, D3) disappear. By varying 

the diameter rates D2/D3, we found that an optimal relative size exists (Fig. 5.14), 

however, the main trend is toward higher m  and q  values as the two inner tubes 

varnish (Fig. 5.13). 

Why are these findings important? First, they represent a “free” approach to the 

discovery of flow configurations for heat exchangers with natural and forced convection. 

The prevailing method today calls for traditional, one-scale configuration, such as 

numerous vertical tubes with the same diameter and spacing. Second, these results show 

that even when we allow for three or four tubes to exist, the morphing of the flow 

architecture takes us back to the configuration with just two vertical tubes. Third, design 

difficulties such as determining the flow reversal location and finding maximal circulation 

rate might be resolved by applying these results to the design procedure of the heat 

exchangers.  
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6.  Constructal Structure for Crossflow Heat Exchangers 

Crossflow heat exchangers are a classical configuration that has generated a 

considerable literature of research and development, which is found in most textbooks 

and handbooks (e.g. Refs [80-91]). This type of heat exchangers such as heaters, 

condensers and evaporators has been designed and manufactured for power plants and 

desalination plants. The classical approach in this domain of design is to consider the 

configuration as given, and to evaluate its performance. In this chapter we propose to start 

from the thinking standpoint where the configuration does not exist and must be 

determined. We know only that an external fluid must flow perpendicularly to another 

stream of fluid that flows inside a tube of known diameter.  

We begin with the single tube in which condensation is assumed on the outer 

surface, and step by step we discover the appropriate tube length, the number of tubes, the 

spacings between tubes, and the global effectiveness and heat transfer density of the 

structure. Using constructal theory we search for the configuration of crossflow heat 

exchangers which gives higher heat transfer rate. 

6.1 Crossflow heat exchangers with condensation 

In this section, we consider crossflow heat exchangers with condensation on the 

outer surface of tubes. The fluid inside tubes is warmed by a heat transfer due to 

condensation. The diameter of tube and the heat transfer coefficient are assumed to be 

constant. The two inlet temperatures, T0 and T are also fixed. The optimal configuration 
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of crossflow heat exchangers is searched by segmenting a tube. 

6.1.1 Single tube design 

Figure 6.1 shows the crossflow heat exchange which consists of one tube. The 

cold fluid inside the tube is warmed from T0 to TL by heat released due to condensation. 

The temperature of the external fluid remains at T. The heat transfer rate is [33] 

   PhA / mc

1 P 0q mc T T 1 e

    (6.1) 

or in dimensionless form 

  L

1q 1 e   (6.2) 

where  
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q
q

mc T



 (6.3) 
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Figure 6.1: Crossflow heat exchanger with condensation. 
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Using Eq. (6.1) the volumetric heat transfer rate can be written as 

  L

1

h D T
q 1 e

HWL

 
   (6.6) 

where subscript 1 represents the single tube design. The dimensionless volumetric heat 

transfer rate is 

  L

1

1
q 1 e

L

   (6.7) 

where  

 1
1

q HW
q  = 

Dh T




 
 (6.8) 

The change rate of 1q  with L  is obtained 

 
L L

1

2

q e 1 e

L L L

  
 


 (6.9) 

Figure 6.2 shows the volumetric heat transfer rate and its change rate with the 

length. We see that the volumetric heat transfer rate has the maximum value at L 0,  

and it decreases to zero when the length increases. This means that the increase of the 

length is not effective in augmenting the heat transfer rate when the length increases 

beyond a certain value. An alternative to increases the heat transfer rate is to segment the 

fixed length as shown in Fig. 6.3. The fixed length is divided equally into N segments. 

The original flow volume is also segmented into N equal pieces of size HWL/N and these 
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pieces are now stacked as a column of height NH. They are all bathed by an external 

stream of temperature T. 

In Fig. 6.3 1m  represents the mass flow rate for the each tube. In the following 

two sections we search for the configuration for two types of this flow rate: fixed mass 

flow rate for each segment, and fixed total mass flow rate. In the first case every tube has 

the same mass flow rate m  as the single tube design shown in Fig. 6.1. In the second 

case the fixed total mass flow rate is divided equally into m/ N among the tubes. 
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Figure 6.2: The volumetric heat transfer rate and its derivative verse the tube length. 
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6.1.2 Multi-tube design with the fixed mass flow rate in every tube  

We assume that every tube segment has the same mass flow rate, 1m m . 

According to Eq. (6.7) the dimensionless volumetric heat transfer rate for the one 

segment is 

  L/ N

2, m, seg

N
q 1 e

L

    (6.10) 

where subscript 2 and m  represent the multi-tube design and the fixed mass flow rate in 

every tube. The dimensionless total heat transfer rate for the multi-tube design is obtained 

by multiplying Eq. (6.10) by the volume of the one segment and the number of tubes 

  L/ N

2,mq N 1 e   (6.11) 

1m

W

NH

U

L

N

0T
LT

T  

Figure 6.3: Stack of parallel tubes in crossflow. 
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Figure 6.4 shows how 2,mq  varies with L  and N. When N increases the heat 

transfer rate increases and it approaches L  when N  . Each length has the different 

critical number of segments above which the heat transfer rate is insensitive to N.  

The maximum dimensionless heat transfer rate is found by solving 

 
2,m L/ N

q L
1 e 1 0

N N


  

    
  

 (6.12) 

This equation is satisfied when N  ; corresponding maximum dimensionless heat 

transfer rate is obtained 
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 
 (6.13) 
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Figure 6.4: The heat transfer rate when the mass flow rate is the same in every tube. 
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According to Eqs. (6.3) and (6.4) the maximum heat transfer rate is written as 

  2,m,maxq DL h T    (6.14) 

This equation shows that the maximum heat transfer rate equals the theoretical heat 

transfer rate which can be defined as multiplying area, heat transfer coefficient and the 

maximum temperature difference in the heat exchanger. We also see that the theoretical 

heat transfer rate can be achieved by segmenting a tube into many tubes.  

The effectiveness of the multi-tube design is defined 

  2,m L/ N

2,m

2,m,max

q N
1 e

q L

     (6.15) 

Figure 6.5 shows the effectiveness of the multi-tube design with the fixed mass flow rate 
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Figure 6.5: The effectiveness of the multi-tube design with the same mass flow rate in 

every tube. 
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of each tube; they decrease for all Ns when L  increases. We see that the effectiveness 

becomes less sensitive to L  and approaches to 1.0 when N increases. 

According to Eqs. (6.2) and (6.11) the goodness of the multi-tube design relative 

to the single-tube design is indicated by the ratio, 

 
 L/ N

2,m

L
1

N 1 eq

q 1 e









 (6.16) 

Figure 6.6 shows that the multi-tube design with the fixed mass flow rate of each 

tube is superior to the single tube design for any L  and N and the multi-tube design  
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Figure 6.6: The relative goodness of the multi-tube design with the same mass flow rate 

in every tube. 
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gives a better heat transfer rate for longer tube and more segmenting when the outer 

surface of tubes is isothermal. 

6.1.3 Multi-tube design with the fixed total mass flow rate 

When the total mass flow rate is fixed, the mass flow rate of each tube is 

1m m / N.  Using Eq. (6.7), the dimensionless volumetric heat transfer rate for one 

segment can be written as 

  L

2,m / N,seg

1
q 1 e

L

    (6.17) 

where subscript m/ N  represents the fixed total mass flow rate. Multiplying Eq. (6.17) 

by volume of one segment and the number of tubes yields the dimensionless total heat 

transfer as 

 
L

2,m/Nq 1 e   (6.18) 

We see that the dimensionless heat transfer rate for the multi-tube design is 

identical to that of the single tube structure, cf. Eq. (6.2), if the total mass flow rate is 

fixed during segmenting a tube 

 
2,m/N

1

q
1

q
  (6.19) 

In other words, the segmenting of the tube does not affect the total heat transfer rate when 

the total mass flow rate is fixed.  
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6.2 Crossflow heat exchangers 

For the analysis of crossflow heat exchangers without condensation we also use 

Figs. 6.1 and 6.3. With reference to Fig. 6.1, we assume that the fluid inside the tube is 

warmed in crossflow by the external fluid of temperature T, velocity U and specific 

heat cP,  where T is a constant. The assumption of the constant T may seem 

unreasonable because there is no condensation on the outer surface of the tubes. However, 

this assumption is a good approximation when the external surface is finned and the 

effective heat transfer coefficient is considerably greater than the internal heat transfer 

coefficient. On the other hand, in the stack of tubes as shown in Fig. 6.3 the fluid 

temperature inside tubes is assumed to be constant. This assumption is acceptable when 

the tubes are sufficiently short, i.e. when N is very large. Temperature of the external flow 

decreases as it flows over tubes in crossflow. The external mass flow rate, m ,  depends 

on N as  

 
L

m W U
N

  

 
   

 
 (6.20) 

6.2.1 Which is the better configuration? 

For the single tube design as shown in Fig. 6.1, we can use the same formula, cf. 

Eq. (6.7), for the dimensionless volumetric heat transfer rate. For the multi-tube design as 

shown in Fig. 6.3, however, we need to derive a new formula because the mass flow rate 

depends on segmenting as shown in Eq. (6.20); the dimensionless volumetric heat transfer 
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rate is written as 

  P, N/ u

2

m c
q T 1 e

HWL

       (6.21) 

where  

 
P,WU c

u
h D

  



 (6.22) 

According to Eqs. (6.7), (6.8) and (6.21), the ratio of heat transfer rates for both 

designs is 

 
 

 

N/ u

2 2

L
1 1

1 eq q Lu

q q N1 e






 

 
 (6.23) 

Figure 6.7 shows this ratio in which the multi-tube design has superiority over the single 

tube design when 

 
u

1 L
N

  (6.24) 

According to Eqs. (6.4) and (6.22) this criterion can be written 

 
ext

int

C
1

C
  (6.25) 

where  

 PC mc  (6.26) 

 

We can see that the multi-tube design has the better heat transfer rate than the 

single tube design when the capacity rate of the external fluid is greater than the internal 
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fluid. Here we have to be cautious about dependence of m  on the number of segment, 

N; it means that Cext/Cint is not constant but variable. For example, this capacity ratio 

becomes less than one according to Eq. (6.20) if N increases. From Eq. (6.25) we obtain 

the critical number of segments  

 
P,

critical

P

WU c L
N

mc

  
  (6.27) 

This equation implies that the multi-tube design is superior to the single tube design when 

the number of tube is less than Ncritical. In other words, if N is greater than Ncritical the 

capacity rate of the external fluid is less than that of the internal fluid. 
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Figure 6.7: The relative heat transfer rate with Lu / N.  
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The design criteria is found based on the u and L  by setting q2/q1 = 1 in Eq. 

(6.23)  

 
   Ly 1 e1 e

y L

 
  (6.28) 

where 

 
N

y
u

  (6.29) 

In Eq. (6.28) the left hand side term is exactly the same as the right hand side when 

 
N

L
u

  (6.30) 
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Figure 6.8: The design space for the crossflow heat exchanger. 
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Equation (6.30) indicates the superiority of the multi-tube design over the single tube 

design as shown in Fig. 6.8 in which lines represent q1 = q2 for each N. The space above 

each line represents that the multi-tube design is superior to the single tube design. The 

multi-tube design is preferred for a longer tube and higher velocity of the external flow. 

6.2.2 Flow spacings 

To summarize the analysis of sections 6.1 and 6.2.1, we have found that when the 

external flow ( U , or u) is fixed and the total tube length increases, the flow 

configuration must evolve from Fig. 6.1 to Fig. 6.3. The total volume of the crossflow 

heat exchanger increases in proportional with L, or, as indicated at the start, 

 V = HWL  (6.31) 

The width of the cross-section perpendicular to the external flow is 

 W = D + S  (6.32) 

where S is the spacing between adjacent columns of tubes. Earlier, constructal design has 

shown that if the flow is laminar ( U D/ν < 10) then the spacing for maximal heat transfer 

density must be of order [2] 

 
 

1/ 4
2

P NHS
 ~  

NH





 

 
 

   

 (6.33) 

In this expression, NH is the length of flow through the stack,   and   are the 

thermal diffusivity and the viscosity of the external fluid, and P  is the pressure 
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difference scale maintained by the external flow, 

 
21

P  ~  U
2

    (6.34) 

If the tubes are arranged in a square pattern (or in another regular-polygon pattern), the 

vertical length H is of order 

 H ~  D + S  (6.35) 

Together, Eqs. (6.30)-(6.32) determine the total volume when the tube diameter and the 

external flow are specified. In particular, Eqs. (6.33)-(6.35) show that S is smaller than D 

when 

 
1/2

DRe  > Pr N
 (6.36) 

where ReD = U D/ν and 
1/2Pr  ~  1.

 

6.2.3 Effectiveness of multi-tube design 

Now, we can consider how many tubes are optimal for the multi-tube design. 

According to Eq. (6.21) the heat transfer rate for the multi-tube design is written 

  N / u

2 1

1
q K 1 e

N

   (6.37) 

where K1 is a constant 

 1 P,K WLU c T      (6.38) 

The maximum heat transfer rate is obtained by solving  
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  N / u N / u2q 1 1
e 1 e 0

N u N

 
   


 (6.39) 

Equation (6.39) is satisfied when N=0; so, the maximum heat transfer rate is 

    N / u

2,max 1
N 0

1
q K lim 1 e DL h T

N





 
     

 
 (6.40) 

The maximum heat transfer rate for the multi-tube design equals the theoretical 

maximum heat transfer rate as explained previously in Eq. (6.14). We see that q2,max is 

imaginary because N can not be zero for the multi-tube design. Furthermore, Eq. (6.40) 

implies that every heat transfer rate with N > 2 for the multi-tube design is less than the 

theoretical maximum heat transfer rate.  
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Figure 6.9: The effectiveness of the multi-tube design. 
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According to Eqs. (6.37) and (6.40) the effectiveness of the multi-tube design is 

defined as 

  tuN2
2

2,max tu

q 1
= 1 e

q N


    (6.41) 

where 

 
 tu

P,

DhL
N

W L / N U c  





 (6.42) 

Figure 6.9 shows the effectiveness of the multi-tube design, which decreases when Ntu 

increases. 

6.3 Comparison with classical tuε N  relation 

When Cmax is unmixed for the crossflow heat exchanger, the effectiveness of the 

classical tuN  relation is [85] 

  *

tu*

max

q 1
1 exp 1 exp N C

q C

           
 (6.43) 

where  

 tu

min

UA
N  = 

C
 (6.44) 

 min h cC min(C ,  C )  (6.45) 

 
*

min maxC C / C  (6.46) 

The effectiveness is simplified when condensation appears, that is, C
*
= 0 or Cmax  
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 tuN
1 e


    (6.47) 

Figure 6.10 shows the effectiveness of crossflow heat exchangers for each ratio of 

capacity rates. 

We see that the effectivenesses of the single tube design and the multi-tube design 

with the fixed total mass flow rate with condensation, cf., Eqs. (6.2) and (6.18), equal the 

classical tuN relation, cf. Eq. (6.47), because Ntu equals L,  cf. Eq. (6.4). This 

coincidence happens because capacity rates of both streams are fixed. In the classical 

effectiveness, Eq. (6.43), the denominator, qmax, is just a function of the minimum  
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Figure 6.10: The effectiveness of crossflow heat exchangers. 
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capacity rate, minC . The increase of the length does not effect qmax but causes to increase 

q; therefore, the effectiveness does not decrease with Ntu as shown in Fig. 6.10. 

The effectivenesses of other two cases shown in Figs. 6.5 and 6.9, however, are 

different from the classical one. This discrepancy is caused by the variable capacity rates 

as described in the sections 6.1 and 6.2. For both cases, capacity rates of the internal fluid 

and the external fluid depend on the segmentation of the fixed length of the tube; it leads 

to that if the length L becomes longer the maximum heat transfer rate increases faster than 

the heat transfer rate. This results in the descending effectiveness as shown in Figs. 6.5 

and 6.9.  

In conclusion, we need to define a new effectiveness like Eqs. (6.15) and (6.41) 

which describe the morphology of cross heat exchangers in pursuit of a higher heat 

transfer rate when configuration is searched by segmenting a tube with the fixed stream 

velocities. 

6.4 Results and discussion 

A global measure of performance is the heat transfer density, which is the heat 

transfer rate per unit volume, q , cf. Eq. (6.21).  If L and D are specified, then q  can 

be nondimensionlized as 

  

tuN2

2

P 0

q LD 1  e
 = 

mc T   T S
1  

D





 

  
 

 

 (6.48) 
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Smaller spacings (S < D) mean higher heat transfer densities. If the external Reynolds 

number is high enough [cf. Eq. (6.36)], then S/D << 1 and Eq. (6.48) reduces to 

 
 

tu

2
N

P 0

q LD
 = 1  e

mc T   T









 (6.49) 

which is the same Ntu function as Eq. (6.47). In this limit (S/D << 1), effectiveness and 

heat transfer density are achievable as Ntu increases. In the construction proposed in this 

chapter, the global effectiveness is almost the same as the global heat transfer density of 

the volume inhabited by crossflow.  

According to the present analysis, the configuration of condensers and heaters in 

power plants can be explained; condensers consist of numerous tubes and heaters have 

relatively few tubes. Each component operates at the saturated temperature of the external 

steam flow, and the temperature of water inside tubes increases due to condensation on 

the outer surface of tubes. 

Condensers can be considered to have the same mass flow rate of every tube 

described in the section 6.1.2 because the pump keeps the velocity of the sea water inside 

tubes constant [92]. According to Fig. 6.4, a longer tube leads to more heat transfer; in 

addition, more segments lead to more heat transfer for the fixed length. It means that the 

number of tube segments for condensers should be large for the better performance. This 

geometric feature is confirmed by the design data, which shows a very large number of 

tubes [93]. 
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On the other hand, the heater has the fixed total mass flow rate because the fixed 

total internal flow rate based on the required electricity of power plants is divided equally 

among the tubes [94]. As shown in section 6.1.3, the segmenting of the tubes does not 

affect the heat transfer rate; so, fewer segments are preferred from a manufacturing point 

of view. The design practice shows that heaters have considerably fewer tubes than the 

condenser [93].  

In summary, it is possible to conceptualize the entire architecture of the crossflow 

heat exchanger by starting from the single-tube design (Fig. 6.1) and searching for more 

and more heat transfer. This led to segmenting the tubes to a characteristic length, which 

were then stacked in the direction of the external stream. More heat transfer was achieved 

by sizing the spacings between tubes such that the flow in the spacings is penetrated fully 

by heat transfer from the tubes. 
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7.  Conclusions 

The main conclusion of this thesis is that it is possible to rationalize and derive the 

principle features of an engineering flow component from the free search for flow 

configuration when the global size is constrained. In every chapter we showed that the 

major geometric parameters for the optimal drawing for three components of power 

plants can be predicted with the constructal law. The configuration emerges such that its 

performance is maximized by distributing the flow resistances better and better though 

the available volume.  

In chapter two we illustrated the constructal design method by focusing on the 

steam generator, for which we derived the dimensions of the tubes, the number of riser 

tubes, and the circulation flow rate (and the related steam production rate). The heat 

transfer rate from hot gases to riser tubes was maximized to find the number of riser tubes. 

For the tube diameter ratio the global flow resistance of the self-pumping system of the 

steam generator was obtained and it was minimized under the flow volume constraint. 

The formulae for these dimensions were deduced as a function of design conditions and 

properties of fluid. The number of predicted riser tubes was confirmed with the real 

design data of 100 MW steam generator; 541 for the constructal design and 400 for the 

real design. It was found that the pressure is the essential parameter to classify the 

configuration of steam generators. 

In chapter three we predicted the optimal spacing between adjacent tubes and the 
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number of tubes of downcomer for the continuous steam generator which consisted of all 

heated tubes. The intersection of asymptotes method was applied under the volume 

constraint; the heat transfer rates for the large and small tube spacings were deduced and 

then the optimal tube spacing was found by equating two heat transfer rates. The 

corresponding maximum heat and mass flow rates were obtained. All these data were 

formulated as a function of Bejan number (Eq. (3.42)). The flow reversal position, which 

is a chronic problem in the design of the continuous steam generator, was investigated by 

minimizing the global flow resistance; it led to the formula for the number of the riser 

tubes (Eqs. (3.69) and (3.72)) 

In chapter four we showed that the total turbine mass was distributed in a balanced 

way based on the total mass of turbines for two turbines (Eqs. (4.15) and (4.16)), and that  

more mass should be distributed at high pressure for the multiple turbines. The total 

power delivery of a thermal power plant was maximized under the total mass constraint; 

it led to the mass distribution, i.e. resistance distribution, among turbines. The reversible 

isothermal expander model was assumed for the turbine modeling of multiple turbines. 

For a high pressure turbine in series with a low-pressure turbine (two turbines), the 

optimal intermediate pressure is the geometric average of high-pressure and low pressure. 

For a train consisting of many turbines expanding the steam at nearly constant 

temperature, the pressure ratio between consecutive intermediate pressures should be 

constant. 
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In chapter five we illustrated how the configuration of a heat exchanger with 

natural and forced convection with fixed size controlls the global performance. This effect 

was used to select the configuration of the flow system. The search for the flow 

configuration was pursued systematically, from the simplest configuration (two tubes) to 

the more complex (three and four tubes). In each case, there was a particular 

configuration that offered maximum global performance (heat transfer density). When the 

cold fluid circulated in two vertical tubes, the best configuration had tubes with nearly the 

same diameter. When the configuration had three tubes, and if the tube spacing varied, 

then it was possible to optimize the spacing as well. This geometric method and results 

represent a departure from the traditional approach, which focuses on a one-scale 

configuration with many tubes with the same diameter and spacing. 

In chapter six we showed that the crossflow heat exchanger had the particular 

configuration corresponding to the maximum heat transfer rate. For the case of 

condensation on the outer surface of a tube, the heat transfer density decreased as the tube 

length increased; this led to the proposal to segment the tube into several tubes. The tube 

segments must have a certain length in pursuit of higher heat transfer rate for the fixed 

internal fluid velocity of each tube (Fig. 6.4), whereas the number of tubes was 

insensitive to the thermal performance for the fixed total mass flow rate (Eq. (6.19)). 

Without condensation, the multi-tube design was superior to the single tube design for a 

specified space (Fig. 6.8). Finally, the spacings between tubes were selected optimally 
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such that the global heat transfer density was maximized. These findings explained 

several geometric features of condensers and heaters of power plants: significantly large 

number of tubes for condensers and relatively fewer tubes for heaters.  

The added benefit of these results is the size effect, i.e. the scaling. This means 

that the designer can predict how the drawing morphs when the allotted size changes. 

Scaling up and scaling down are now possible because the principle of generation of flow 

configuration is in hand.  

At the power plant level, the many components conceptualized in this manner 

might be assembled into one “construct” that relies on the fixed sizes of the many. It is at 

this level that scaling yields benefit, by allowing tradeoffs between the size of one 

component against the size of another. All such tradeoffs lead to the distribution of “sizes” 

over the entire installation, with the global objective of improving the global efficiency of 

the power plant. The distributing of sizes is leading the design in the same direction as the 

more established methods of distributing (balancing) the destruction of exergy, or 

generation of entropy [3, 95-97]. Furthermore, the constructal design procedure described 

in this thesis might be applied to the design and engineering of every engineered product. 
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