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Abstract

Purpose: Ensuring that tumor motion is within the radiation field for high-dose and

high-precision radiosurgery in areas greatly influenced by respiratory motion. There-

fore tracking the target or gating the radiation beam by using real-time imaging and

surrogate motion monitoring methods are employed. However, these methods cannot

be used to depict the effect of respiratory motion on tumor deviation. Therefore, an

investigation of parameters for method predicting the tumor motion induced by res-

piratory motion multiple steps ahead of real time is performed. Currently, algorithms

exist to make predictions about future real-time events, however these methods are

tedious or unable to predict far enough in advance.

Methods and Materials: The algorithm takes data collected from the Varian

RPMTM System, which is a one-dimensional (1D) surrogate signal of amplitude ver-

sus time. After the 1D surrogate signal is obtained, the algorithm determines on

average what an approximate respiratory cycle is over the entire signal using a rising

edge function. The signal is further dividing it into three components: (a) training

component is the core portion of the data set which is further divided into subcom-

ponents of length equal to the input component; (b) input component serves as the

parameter searched for throughout the training component, (c) analysis component

used as a validation against the prediction. The prediction algorithm consists of

three major steps: (1) extracting top-ranked subcomponents from training compo-

nent which best-match the input component; (2) calculating weighting factors from
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these best-matched subcomponents; (3) collecting the proceeding optimal subcom-

ponent and fusing them with assigned weighting factors to form prediction. The pre-

diction algorithm was examined for several patients, and its performance is assessed

based on the correlation and root mean square error (RMSE) between prediction

and known output.

Results: Respiratory motion data was simulated for 30 cases and 555 patients and

phantoms using the RPM system. Simulations were used to optimize prediction al-

gorithm parameters. The simulation cases were used to determine optimal filters for

smoothing and number of top-ranked subcomponents to determine optimal subcom-

ponents for prediction. Summed difference results in a value of 0.4770 for the 15

Point Savitzky-Golay filter.

After determining the proper filter for data preprocessing the number of required

top-ranked subcomponents for each method was determine. Equal Weighting has

a maximum average correlation, c “ 0.997 when using 1 Subcomponent, Relative

Weighting has a maximum average correlation, c “ 0.997 when using 2 Subcompo-

nents, Pattern Weighting has a maximum average correlation c “ 0.915 when using

1 subcomponent, Derivative Equal Weighting has a maximum average correlation

c “ 0.976 when using 2 Subcomponents, and Derivative Relative Weighting has a

maximum average correlation of c “ 0.976 when using 5 Subcomponents.

The correlation coefficient and RMSE of prediction versus analysis component dis-

tributions demonstrate an improvement during optimization for simulations. This is

true for both the full and half cycle prediction. However, when moving to the clini-

cal data the distribution of prediction data, both correlation coefficient and RMSE,

there is not an improvement as the optimization occurs. Therefore, a comparison

of the clinical data using the 5 Pt moving filter and arbitrarily chosen number of

subcomponents was performed. In the clinical data, average correlation coefficient

between prediction and analysis component 0.721˘0.390, 0.727˘0.383, 0.535˘0.454,
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0.725˘0.397, and 0.725˘0.398 for full respiratory cycle prediction and 0.789˘0.398,

0.800 ˘ 0.385, 0.426 ˘ 0.562, 0.784 ˘ 0.389, and 0.784 ˘ 0.389 for half respiratory

cycle prediction for equal weighting, relative weighting, pattern, derivative equal and

derivative relative weighting methods, respectively. Additionally, the clinical data av-

erage RMSE between prediction and analysis component 0.196˘0.174, 0.189˘0.161,

0.302 ˘ 0.162, 0.200 ˘ 0.169, and 0.202 ˘ 0.181 for full respiratory cycle prediction

and 0.155 ˘ 0.171, 0.149 ˘ 0.138, 0.528 ˘ 0.179, 0.174 ˘ 0.150, and 0.173 ˘ 0.149

for half respiratory cycle prediction for equal weighting, relative weighting, pattern,

derivative equal and derivative relative weighting methods, respectively. The half

cycle prediction displays higher accuracy over the full cycle prediction. Wilcoxon

signed-rank test reveals statistically highly significant values (p ă 0.1%) for 4 out of

5 algorithms favoring the half cycle prediction (Equal, Relative, Derivative Equal,

and Derivative Relative Weighting Methods). In this method, the relative weight-

ing method has the most correlations coefficients with values greater than 0.9 and

also yields the largest number of highest correlations over other prediction methods.

Conclusions: In conclusion, the number of subcomponents used for prediction may

be better deter- mined based on individual breathing pattern. The prediction accu-

racy using patient data is better using half cycle prediction over full cycle prediction

for all algorithms for the majority of methods tested. Finally, relative weighting

method performed better than other methods.
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1

Introduction

Radiation therapy utilizes ionizing radiation with the goal of curing or palliating

disease and minimizing damage to healthy tissue. Localization using Image Guided

Radiation Therapy (IGRT) is performed in order to ensure tumor location and mini-

mize toxicity of normal tissue due to inaccurate irradiation.r1s,r2s,r3s IGRT can consist

of both radiation sources or non-radiation sources to track the tumor position. For

instance, prior to treating lung tumor using SBRT, a CBCT will be taken to localized

the tumor. When examining tumors that are in areas affected heavily by motion,

such as lung and abdominal cancers, motion management techniquesr4s,r5s,r6s,r7s,r8s

are employed including:

• Respiratory gated radiotherapy r5s,r7s

• Tracking

Motion management uses real-time imaging and surrogate monitoring to assure that

tumor motion is within the radiation field during high-dose and high-precision ra-

diotherapy.

Real-time imaging methods include audio prompting or visual feedback to create

1



relatively reproducible breathing patterns.r6s Another technique utilizes internal or-

gan motion tracking, such as of the diaphragm, to reconstruct respiratory motion.r8s

Similarly, breath-hold methods require patients to fix their respiratory motion in

a specified phase while administering radiation, but this can be troublesome for

patients who cannot hold their breath.r7s Other methods include use 4DCT to deter-

mine a Sliced Body Volume (SBV) to create a signal similar to an amplitude motion

signal.r2s In regions where tumor motion is heavily affected by respiration, radiation

gating is used to precisely target the tumor during beam-on time.r9s Respiratory

gating radiotherapy requires the administration of radiation at particular points in

a patients respiratory phase.r7s Respiratory gating radiotherapy utilizes external sig-

nals obtained from systems such as the Real-time Position ManagementTM (RPM)

System, internal signals from systems such as the Calypso Tracking, or external ra-

diation such as fluoroscopy to determine when the radiation beam should be turned

on because the tumor is in the field.

These methods are useful in providing real-time tumor/surrogate motion but

no future information is available. Future information is necessary to account for

feedback delays from signal reception and beam gating, gantry and collimator ro-

tation, and MLC movement, a decision must be made when the beam can be ad-

ministered for tumor position with accurate beam parameters, thus requiring knowl-

edge about tumor position ahead of real time.r10s Minimizing deviations between

actual respiratory motion from the prediction are key in reducing incorrect radiation

administration.r4s,r11s

1.1 Current Prediction Models

Current models to predict respiratory motion ahead of time use methods such as

Fuzzy Analysisr12s, Neural Networksr13s,r14s, circular pattern augmentationr10s, and
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Multi-Step Linear Methodsr15s.

1.1.1 Fuzzy Analysis

In Toshabi’s Fuzzy Prediction Model, the algorithm requires a user dependent clus-

tering calculation to determine an initial model. The model is updated if it detects

an amplitude drift within a specified deviation. When the model must be updated,

it retrains the algorithm, therefore requiring longer treatment time. Additionally,

the method only performed prediction for 200ms in advance, which is not far enough

in advance.

1.1.2 Neural Networks

Other methods utilize Neural Networks (NN) to create a data base of patterns and

possible predictions. NN require a certain learning speed to create such a database.

In Yan’s technical study using a NN, surgical clips were required to determine if

internal motion can be predicted from external markers. The study uses multiple

markers and several data must be developed to produce a complex network for pre-

diction. Additionally, as samples for predictions were increased over «6 seconds

there was a noticeable negative effect on the correlation between predicted signal

and internal signal and the predicted error between the prediction and internal sig-

nal. Similarly, Seregni’s feasibility study uses a NN to track tumors but the final

outcome has some amplitude errors which reach up to 5mm, which is insufficient for

high-precision radiosurgeryr7s.

1.1.3 Circular Pattern Augmentation

Hong’s methods use angular velocity and circular motion to make predictions. The

circular nature of respiratory motion is exhibited by the CIRS phantom and repli-

cating this in respiratory prediction seems obvious. However, Hong only attempts to
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make predictions for 0.4 s, which would only account for RPM system latencies and

would be inefficient for radiosurgery.r10s

1.1.4 Multi-Step Linear Methods

The studies Ernst is of particular interest because it is relatively simple model to

make predictions. Uses linear modeling to predict RPM system delays. Ernst only

predicts external system delays of approximately 15 samples or 150 ms.r15s

1.1.5 Pattern Fusion

Pattern fusion prediction is novel because it has been considered for cloud storage

prediction and update forecasting and will now be applied for tracking and gating

prediction. Pattern fusion will take previously collected data from a patient surrogate

signal to fuse together creating a prediction. Surrogate motion position is adequate

information because demonstrated previously is strong correlation between internal

position and external surrogate markers.r16s

Figure 1.1: General Prediction Algorithm Workflow.

The prediction algorithm workflow has been designed based on Yang et. al. “A

Pattern Fusion Model for Multi-Step-Ahead CPU Load Prediction.”r17s The algo-

rithm workflow is depicted in Figure 1.1 as a flowchart. Each step in the algorithm
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will be described in detail in Chapters 2 through 6.

1.2 Hypothesis

The pattern fusion algorithm will make predictions at most one respiratory cycle

(approximately 3 to 6 seconds), with a user dependent decision on prediction length.

Predictions will be made quickly and require no retraining. There is no need to

update the metrics because the prediction is based on a fixed data input.

Figure 1.2, describes the pros and cons of each method and suggests what should

be accomplished using the novel pattern fusion algorithm.

Figure 1.2: General Prediction Algorithm Workflow.

1.3 Aim

To track the target location precisely by developing and investigating a pattern fusion

algorithm for multiple-step ahead prediction.
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2

Materials

From Figure 1.1, the first step of the prediction algorithm is to Input Data. Input

Data has a workflow that is depicted in Figure 2.1.

Figure 2.1: Input Data Workflow

2.1 Real-time Position ManagementTM System

Duke University Medical Center Department of Radiation Oncology uses the RPM

System to track respiratory motion and provide real time-imaging. The RPM System

6



uses an infrared tracking system via a respiratory block, pictured in Figure 2.2,

to acquire a 1D signal of respiratory amplitude over time. Data can be tracked

continuously at 30 Hz.r18s,r19s By using a continuously tracked amplitude signal,

tumor location and motion can be reproduced and multi-step ahead prediction can

be performed.r3s,r4s

Figure 2.2: RPM User Interface. Image courtesy of Varianr18s,r19s.

2.2 Input Data

The algorithm takes data collected from the Varian RPMTM System (See Figure 2.2),

which is a one-dimensional (1D) surrogate signal of amplitude versus time. After

the 1D surrogate signal is obtained, the algorithm determines on average what an

approximate respiratory cycle is over the entire signal using a rising edge function.

The signal is further dividing it into three components:

1. Training Component

2. Input Component

3. Analysis Component
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where the input and analysis components are approximately 1 respiratory cycle, as

determined in the second step of the Input Data. The training component is generally

the core portion of the data set which is further divided into subcomponents of

length equal to the input component. This process of using subcomponents will be

described in more complete detail in Chapter 4. The input component serves as the

parameter searched for throughout the training component. Finally, the analysis

component is used for comparison against the prediction. Within the algorithm, the

analysis component will be truncated from the data in order to offer no information

when making a prediction. These components are illustrated in a patient signal in

Figure 2.3.

Figure 2.3: Data Components as part of the Input Data step in the prediction
algorithm. In blue is the Training Component, green is the Input Component, and
in red is the Analysis Component.

In Chapters 3-5, we will further describe the Methods of Preprocessing, Subcom-

ponent Matching, and Prediction Methods used in the prediction algorithm.

8



3

Data Preprocessing

In Chapter 2, the raw signal was broken down into its 3 components through Data

Input. In Figure 1.1, the next step in the algorithm is Data Preprocessing. The goal

of data preprocessing is to manipulate the data into a more practical form. Figure 3.1

shows the general workflow of data preprocessing.

Figure 3.1: Data Preprocessing Workflow

First, the signal is normalized to its minimum and maximum values. Figure 3.2

shows a raw surrogate signal. The effect of normalization on this signal is demon-

strated in Figure 3.3.
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Figure 3.2: Raw Surrogate Signal
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Figure 3.3: Normalized Surrogate Signal. Signal normalized to minimum and
maximum values
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Figure 3.4: Smoothed and Normalized Surrogate Signal. Smoothing performed
using 15 Point Savitzky-Golay Filter.

After normalization is performed, and before a respiratory data set can be entered

into a prediction algorithm, the data should be smoothed to discriminate noise while

still maintaining the integrity of the original signal. The original algorithm, prior to

optimization, utilized a 5 point moving filter for smoothing. Figure 3.4 demonstrates
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the effect of smoothing on the same normalized signal using a 15 Point Savitzky-

Golay Filter. The following filters were examined to determine the optimal filter for

an automated prediction algorithm:

‚ Moving Filter

‚ Savitzky-Golay Filter

These filters will now be discussed in greater detail below.

3.1 Moving Filter

The moving filter uses a moving average over a number of points, or span. It takes

the average of the neighboring points in an input span. This is similar to a low pass

filter with an output given by

yspiq “
1

2N ` 1
pypi`Nq ` ypi`N ´ 1q ` ...` ypi´Nqq (3.1)

The span, N , is the number of points over which a filter will operate. For the moving

filter, an odd span must be used in order to have the smoothing occur at the center

point, i, of the span. The end points are not able to be smoothed because there is no

defined span. The moving filter tends to filter out high frequency content. A Moving

5 point span is the default smoothing filter in Matlab. However, because the data

input for the prediction is generally very long with 30Hz sampling, a 5 point span

may have a minimal effect of smoothing. r20s

3.2 Savitzky-Golay (S-G) Filter

S-G filters are similar to moving filters in that they weight the ratio in Equation 3.1

using coefficients that preserve higher frequency data. The S-G filter operates using:

yspiq “
nR
ÿ

n“´nL

cnyi`n (3.2)
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where nL is the number of points used to the left of the central point, i, and nR is

the number of points to the right of the central point. Then the span of the filter, N ,

at any given location in the data is composed of nL to nR and is the total number of

points that smoothing will occur over. Here cn is the filter coefficient preserving the

higher frequency data via higher order polynomials. Then at each point yi there is

a polynomial fit performed over the corresponding span. Then yspiq is the value of

the polynomial at position i and none of the other values are used. This is process

is iterated across the entire data set. r21s
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4

Subcomponent Matching

In Chapter 3, the data was manipulated to a more practical form through Data Pre-

processing. According to Figure 1.1, the next step in the algorithm is Subcomponent

Matching. The goal of subcomponent matching is to identify which parts of training

component best match to input component, so that the next subcomponent can be

used as the optimal subcomponent believed to best match the analysis component.

Figure 4.1 shows the general workflow of subcomponent matching.

The first step in subcomponent matching, is to divide the training component into

subcomponents that are in equal length to the input component. Iterating through

every subcomponent in the training component, the algorithm searches for subcom-

ponents that are similar to the input component. Searching is performed using three

parameters

• Correlation Coefficient (cc)

• Hamming Distance (h)

• Euclidean Distance (e)
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Figure 4.1: Workflow of Subcomponent Matching. Notice that the left uses linear
combinations to determine similarities (highlighted in orange) and on the right uses
non-linear combinations to determine similarities (highlighted in purple).

4.1 Correlation Coefficient

Correlation coefficient, cc, quantifies the similarity and dependence between the input

component and each subcomponent or how closely the mean values are related. The

correlation coefficient is mathematically defined as the ratio of the expectation value

between two components to the standard deviations of these two components, or:

cc “

ř

ipXi ´ X̄qpYi ´ Ȳ q

p
ř

ipXi ´ X̄q2q
1
2 p

ř

ipYi ´ Ȳ q
2q

1
2

(4.1)

where in our case Xi would be the subcomponent ,represented by A in Figure 4.2

over all points i in the subcomponent, or as averaged over the entire subcomponent

X̄, and Yi and Y is the input component represented by B in Figure 4.2 over all
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points i in the input component, or as averaged over the entire input component, Ȳ .

A cc value of 1 is perfectly correlating, while a value of 0 has no correlation, and a

value of -1 is oppositely correlating.r22s
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Figure 4.2: Subcomponent is represented in magenta by A for a patient signal.
Input component is represented in green by B.

4.2 Hamming Distance

The Hamming Distance, h represents the slope changes between the subcomponent

and the input component. The first step to calculate h is to find the fluctuation

pattern for each component. Any descending portions of the signal receive a value

of -1 and ascending portions of the signal receive a value of 1. Mathematically, the

signal fluctuation, sf is written as

sf “

#

1 i ă i` 1

´1 i ą i` 1
(4.2)

The fluctuation is calculated for the subcomponent and the input component. In

Figure 4.3, the subcomponent is A and its fluctuation is C and the input component

is B and its fluctuation is D. The next step is to take the absolute difference between

the fluctuation patterns. In Figure 4.3, this is mathematically represented by|C ´D|

and is depicted in E. Then the final hamming distance is calculated as:

h “ 1´

ř

E

N
(4.3)
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where E is the absolute difference in the fluctuation in signals and N is the length

of the input component.
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Figure 4.3: Signal Fluctuation Representation. From Figure 4.2, the subcom-
ponent calculations are on the left by figures A and C and the Input component
calculations are on the right by figures B and D. The absolute difference between the
fluctuations is represented in E.

4.3 Euclidean Distance

Euclidean distance, e, represents the amplitude changes between the subcomponent

and input component. It is the sum of the absolute difference between the subcom-
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ponent and input component, mathematically as:

e “
ÿ

i

|X ´ Y | (4.4)

where from Figure 4.2 X is the subcomponent and Y is the input component. Visu-

ally, the Euclidean distance is represented in Figure 4.4 by the blue lines.
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Figure 4.4: Illustration of the Euclidean Distance. From Figure 4.2, the subcom-
ponent is represented in magenta by A for a patient signal and the Input component
is represented in green by B.

4.4 Linear Combinations

Then based upon the model, either a linear or non-linear combination is used to

determine the top-ranked subcomponents and optimal subcomponents. Linear com-

binations take the form:

y “ c0 ` c1x` c2x
2
` . . . (4.5)

where the c terms are constants and x terms are parameters determined by the given

model. In this algorithm, the linear combination uses a single metric, correlation

coefficient, to begin identifying the top-ranked subcomponents.

After calculating the cc of every subcomponent, the values are ordered in a de-

scending order to obtain the most similar subcomponents. These top-ranked sub-

components are selected with the only requirement of separation from all other top-

ranked subcomponents by a designated separation distance, which is the length of

the input and analysis components. If these patterns are separated by a value less

17



than this distance, they are removed and the next best candidate is selected. This

is done in order to prevent choosing successive subcomponents.
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Figure 4.5: Linear Combination Signal Matching.

Finally, the peak and trough magnitudes are identified on the input component

(Figure 4.5 Top) and the one of greatest magnitude is marked as the point where

the similar point in the top-ranked component will be shifted to match (Figure 4.5

Middle). Then the final motion point of the input component is found and the

top-ranked component is matched to this point (Figure 4.5 Bottom). The motion

matching is performed so that the first point of the prediction will match the motion
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of the analysis component. The shifts are recorded and applied to the optimal sub-

components before being sent to prediction. (See Section Optimal Subcomponents)

4.5 Non-linear Combinations

Non-linear combinations use correlation coefficient, Hamming Distance, and Eu-

clidean Distance of a given subcomponent to identify similarities between subcom-

ponents and the input component. While non-linear combinations can take on many

forms indicating that the criteria is not linear, in this case the non-linear combination

criteria for selection is the total coefficient of similarity, t, calculated as:

t “
cc ¨ h

e
(4.6)

While this is one way to calculate the total coefficient of similarity, in the future

other methods could be considered.

After calculating the t of every subcomponent, the values are ordered in a descend-

ing order to obtain the top ranked subcomponents. A separation metric is calculated

that the top-ranked subcomponents should remain a length equal to the input and

analysis component apart from one another in order to prevent successive selection

of top-ranked subcomponents. Any lower ranked subcomponents that are a distance

less than this distance are removed from the ranks and the next candidate is selected.

4.6 Optimal Subcomponents

After the top-ranked subcomponents are identified, the optimal subcomponents are

the subcomponents immediately proceeding those top-ranked subcomponents and

are chosen for fusion because they are believed to most closely represent the analysis
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component. In Figure 4.6, the top-ranked components for a patient signal can be

seen in magenta and the optimal subcomponents can be seen in black.
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Figure 4.6: Top-ranked subcomponents can be seen in magenta. The optimal
subcomponents are the subcomponents immediately following the top ranked sub-
components and can be seen in black. The optimal subcomponents are believed to
most closely represent the analysis component see in red.
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5

Prediction Method

In Chapter 4, the optimal subcomponents were determined and are believed to best

match the analysis component. Now from Figure 1.1, the next step in the algorithm

is Predict Future Motion. The purpose of this step is to combine the optimal sub-

components to make a motion prediction.

It is important to note that the linear and non-linear combinations differ in their

selection of optimal subcomponents, but often the fusion of to form prediction is the

same. While their names will be different this is for identification purposes only.

Linear combination predictions (orange) include Derivative Equal Weighting and

Derivative Relative Weighting methods. Non-linear combination predictions (pur-

ple) are Equal Weighting, Relative Weighting and Pattern Method. Each of these

methods are displayed with their respective combination methods in Figure 5.1

5.1 Linear Combinations

Derivative Equal Weighting and Derivative Relative Weighting both use linear com-

binations for selection of the optimal subcomponents. As seen in Chapter 4, optimal

subcomponents are identified and sent for prediction, completing the first step in Fig-
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ure 5.1. In these methods the top 6 subcomponents are used for prediction. These

two methods differ in their weighting of the subcomponents to make the prediction.

Figure 5.1: Prediction Method Workflow. Notice that the three methods on the
left are highlighted in purple indicating they are utilizing non-linear combinations
to determine similarities and the two methods on the right are highlighted in orange
indicating they are utilizing linear combinations to determine similarities.

5.1.1 Derivative Equal Weighting

Derivative Equal Weighting uses equal weighting, or the ratio of the summed optimal

subcomponents to the total number of subcomponents used. Mathematically,

p “

řN
i si
N

(5.1)

where p is the proposed prediction, si is the i-th optimal subcomponent, and N is

the number of subcomponents used, which in this case N “ 6.

5.1.2 Derivative Relative Weighting

Derivative Relative Weighting uses relative weighting, or the ratio of the top-ranked

subcomponent correlation to the sum of the top-ranked subcomponent correlations
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as the weight. Mathematically,

wi “
ci

řN
i ci

(5.2)

where ci is the i-th top ranked subcomponent correlation and N is the number of

subcomponents, which in this case N “ 6. Then the prediction is the summed weight

of the subcomponents,

p “
N
ÿ

i

wisi (5.3)

where p is the prediction, wi is the i-th weighting factor, and si is the i-th subcom-

ponent.

5.2 Non-linear Combinations

The non-linear combination selection of optimal subcomponents applies to Equal,

Relative and Pattern Weighting Predictions. As seen in Chapter 4, optimal subcom-

ponents are identified and sent for prediction, completing the first step in Figure 5.1.

Recall, that these methods differ from the linear combinations in the way optimal

subcomponents are selected.

5.2.1 Equal Weighting

The equal weighting strategy performs similarly to Derivative Equal Weighting. It

chooses its 6 optimal subcomponents using the total coefficient of similarity, t, and

then uses Equation 5.1 to calculate a prediction. For example, in Figure 5.2 in the top

the black optimal subcomponents highlighted in orange will be fused for prediction

using Equal weighting.
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Figure 5.2: Fusion of Optimal Subcomponents for Prediction using Equal Weight-
ing. Top from Chapter 4 the Optimal Subcomponents (black) will be fused (orange)
to make a prediction, here using equal weighting. Bottom the fused subcomponents
form the prediction (black) to be compare to the analysis component (red).

5.2.2 Relative Weighting

Relative Weighting performs similarly to Derivative Relative Weighting. It chooses

its 6 optimal subcomponents using the total coefficient of similarity, t. Then the

total coefficient of similarity is used to calculate the weighting factor, such that

wi “
ci

řN
i ti

(5.4)

where ti is the i-th top ranked subcomponent total coefficient of similarity and N

is the number of subcomponents, which in this case N “ 6. Then the prediction

is the summed weight of the subcomponents, and uses Equation 5.2 to calculate a

prediction.

5.2.3 Pattern Weighting

Pattern weighting uses 10 optimal subcomponents found via the total coefficient of

similarity, t. The algorithm calculates the baseline shift, amplitude change, and pe-

riod of the input signal and attempts to manipulate the values for each top-ranked

subcomponent to match the input component, applying any corrections to the cor-

responding optimal subcomponent.
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Phase shift is calculated by finding the cross covariance between the input com-

ponent and a top-ranked subcomponent correlating to its optimal subcomponent.

Then it calculates the maximum of this covariance and records the phase shift value

and moves the top-ranked subcomponent location (time-position) to this maximum

value. This phase shift will then be applied to the optimal subcomponent.

The period is calculated for the optimal phase shifted subcomponents by finding

the gradient and calculating its minimums and maximums, i.e. gradient=0, which

we will identify as the zero-crossing points. If there are less than 20 samples between

the next zero-crossing point, it removes that crossing point and considers that it was

some small fluctuation in the signal. Then the periodicity change, φi, is calculated

between each top-ranked subcomponent and input component to be applied to the

final optimal subcomponent.

To calculate the baseline shift and amplitude change, the mean, minimum, maxi-

mum, and standard deviation of a top-ranked phase shifted component is calculated.

The baseline correction, εi, is computed as the ratio of the standard deviation of the

input component to the standard deviation of the top-ranked phase shifted subcom-

ponent. The signal amplification, δi, is calculated as the difference in average of the

top-ranked phase shifted subcomponent from the input component.

These correction factors are applied to manipulate the optimal subcomponent for

use in prediction via

si “ si ` φi ¨ εi ` δi (5.5)

where si is the i-th subcomponent, φi is the periodicity correction for the i-th sub-

component, εi is the i-th subcomponent baseline correction, and δi is the i-th sub-

component signal amplification.

These corrected optimal subcomponents are fused using Equal weighting via Equa-

tion 5.1 to calculate a prediction for N “ 10 subcomponents.
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5.3 Surrogate Prediction

The final step in the prediction is the surrogate prediction. While our methods have

formed the prediction using the above methods, a final correction is applied to ac-

count for any amplitude changes that might occur due to fusion. This is done using a

point-slope calculation to determine what the first amplitude point of the prediction

should be and a simple y shift is for all points on the prediction.

Time (sec)
264 264.5 265 265.5 266 266.5 267 267.5 268Su

rro
ga

te
Si

gn
al

0

0.5

1
Uncorrected Motion Shift

Analysis Component
Equal Prediction

Time (sec)
264 264.5 265 265.5 266 266.5 267 267.5 268Su

rro
ga

te
Si

gn
al

0

0.5

1
Corrected Motion Shift

Analysis Component
Equal Prediction

Figure 5.3: y-shift correction for surrogate prediction using equal weighting. On
top is the uncorrected prediction, and on bottom is the corrected y-shift prediction.
The fused subcomponents form the prediction in black to be compare to the analysis
component in red.

In Figure 5.3, the top figure represents an equal weighting prediction before motion

corrections are made notice the gap between the prediction and analysis at 264

seconds and the bottom figure demonstrates the prediction after the correction is

applied notice there is no gap at 264 seconds.
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6

Evaluation

The final step in Figure 1.1 is to evaluate the prediction that is being made. This is

done using two metrics, cross correlation and root mean square error (RMSE). Cross

correlation was described by Equation 4.1. The calculation is the same except it is

now being performed between prediction and analysis component. Recall from Chap-

ter 4 that cc “ 1 represents a perfect correlation, cc “ 0 represents no correlation,

and cc “ ´1 represents a total opposite correlation between the two signals. For

example, from a study with 25 surrogate motion casesr23s, the correlation coefficient

was calculated using the Equal weighting strategy and displayed in Figure 6.1 are

the best case and in Figure 6.2 the worst case of prediction based on cross correlation

between prediction and analysis component.
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Figure 6.1: Best case prediction from [23] using Equal Weighting with a cross
correlation cc “ 0.9999. The analysis component is in red and the prediction is in
blue.
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Figure 6.2: Worst case prediction from [23] using Equal Weighting with a cross
correlation, cc “ 0.4749. The analysis component is in red and the prediction is in
blue.

RMSE is a calculation to determine the overall difference between the prediction

points from their average.

RMSE “

d

řN
i pppiq ´ apiqq

2

N
(6.1)

where p is the prediction from a particular algorithm, a is the analysis component

from the smoothed and normalized signal, and N is the length of the analysis com-

ponent. When the RMSE value is close to 0, then it represents a better prediction

and when it is close to 1 it represents a poorer prediction.

Using these two metrics the algorithm gets an estimate of how accurate a prediction

is compared to what will actually occur.

As the algorithms are developed and run for a multitude of patient cases, to de-
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termine if two sets of correlation coefficients and RMSE values have statistically

significant differences, a two-sided Wilcoxon signed rank test is performed.
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7

Simulations and Clinical Data

7.1 Clinical Data

Duke University Medical Center Department of Radiation Oncology provided a

database of 555 patient and phantom surrogate respiratory signals using the RPM

System. The resolution of the collected patient data is 0.0333 seconds which corre-

sponds to a frequency of 30 Hz.

7.2 Simulated Signals

In order to determine the optimal parameters to apply to raw surrogate motion

data, 30 simulated curves were generated to simulate tumor motion. These curves

incorporated some of the following features seen to occur in cancer patients:

• Regular Breathing

• Baseline Shift

• Periodicity Change
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• Amplitude Change

• Noisy Breathing

These simulated curves are shown in Figures 7.1-7.5 below. Simulated signals were

generated in order to make determinations of the best way to optimize the prediction

algorithm. The resolution of the simulated signals is 0.1 seconds which corresponds

to a frequency of 10 Hz. When adding noise to patient data, random numbers were

generated between 0 and 1 and were then added to the given simulation. The noise

metric was chosen such that its effect would be noticeable in the data set and would

be comparable to patient data.

It is important to note that due to the syntax of the pattern weighting strategy,

the condition of separation in phase by 20 points will not be met when using the

simulated signals. Therefore, the phase shift correction will be turned off when mak-

ing predictions for the simulated signals. However, the phase shift correction will be

turned on when making predictions for patient and phantom data.
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8

Results

8.1 Effect of Smoothing

It is clear that smoothing will affect the outcome of the prediction algorithm, but

up to this point, it is undetermined which type of smoothing is deemed best for

prediction. Therefore, the aim is to determine an optimal smoothing filter which

maintains data integrity but reduces the noise in a surrogate signal. In total, there

are 14 types of filters that are discussed in detail in the following sections. The span

of smoothing performance for each filter is listed in Table 8.1.

Table 8.1: Smoothing Filter with Respective Number of Points for Smoothing Span.
Smoothing Method: Moving Savitzky-Golay

Number of Points Smoothing Span 3, 5, 7, 9, 11, 13, 15 3, 5, 7, 9, 11, 13, 15

As a demonstration of how the smoothing effects the various simulations, the first

6 simulated signals are displayed in Figure 8.1 with a 5 point moving filter and a 15

point S-G filter.
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Figure 8.1: Smoothing Demonstration on Simulated Signals. Original Simulation
in blue. 5 point moving filter in red. 15 point S-G filter in green.

Additionally, the patient signal that has continuously been displayed in Chapters

2 through 6 has a small portion displayed in Figure 8.2 to show give a better picture

of how smoothing can filter out noise, but maintain data integrity.
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Figure 8.2: Smoothing Demonstration on Simulated Signals. Original Simulation
in blue. 5 point moving filter in red. 15 point S-G filter in green.

Each filter with the given span was applied to the 30 simulated signals and the

correlation coefficient was calculated between the original simulated signal and the

smoothed signal. From the distribution of 30 correlation coefficients, to determine an

optimal filter which can be used in the prediction algorithm, we can use the following

metric

S “ Σp1´ ciq (8.1)

where S is the summed difference, which is equal to a perfect correlation of 1 minus

ci, or the correlation coefficient between the i-th original simulated signal and the

i-th smoothed simulated signal performed for each type of smoothing. The results

are depicted in Figure 8.3. Here the moving filter is on the left and S-G is on the

right separated by a red bar. For each smoothing method, the span of the smoothing

in increasing order. The minimum summed difference metric occurs for S-G 15 Point
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Smoothing with a value of S “ 0.4770.
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Figure 8.3: Summed Difference between Perfect Correlation (1) and Predicted
Cross Correlation between 30 Simulated Signals and 14 Types of Smoothing. The
red line signifies the change from moving filter to S-G filter. The minimum is circled
in red and is located at position 14, or Savitzky-Golay 15 Point Smoothing, with
value of 0.4770.

Figure 8.4 further supports the claim that when predictions are performed using

the S-G filter, the correlation in the scatter plot are closer to 1 than when a moving

filter is used.
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Figure 8.4: 30 Simulated Signals Final Correlation Values Between Predictions of
Various Methods and (14 Type) Original Smoothed Signal. The red lines signify a
change in filter used for smoothing. The columns in each smoothing section are in
ascending Span order represented in Table 8.1. The various prediction methods are
represented in different colors and the length of the input and analysis component
as Full and Half Respiratory Cycle Predictions are represented as dots and circles,
respectively.

As seen from Figure 8.2 the S-G 15 point filter does do better than the 5 point

moving filter in maintaining data integrity. Therefore, while the original algorithm

parameters used a 5 point moving filter, the 15 Point S-G filter is used for Data

Preprocessing as algorithm optimization is being performed.
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8.2 Effect of Number of Subcomponents

Optimal subcomponents are used for pattern fusion is performed to make a pre-

diction. While the optimal number of subcomponents to make the best prediction

possible is unclear, it is clear that number of subcomponents used will affect the out-

come of the prediction algorithm, and using more subcomponents could potentially

cost computation speed. Therefore, the aim is to determine the optimal number of

subcomponents to use for each prediction method to make a prediction.

8.2.1 Equal Weighting Prediction

Figure 8.5 examines the effect of varying the number of optimal subcomponents used

for the Equal Weighting Prediction by displaying the final correlation coefficient be-

tween the prediction and analysis component (y-axis). The x-axis represents a givens

simulation and each number of subcomponent used for prediction is in a different

color. Few cases utilize too many subcomponents and the correlations drift from 1.

In Simulations 14 and 15, there is a noticeable drop in the final correlation. Recall,

Simulation Signal 15 was Regular Breathing followed by Baseline Shift followed by

Periodicity Change followed by an Amplitude Change. Notice that the larger number

of subcomponents used for this case, the worse the final correlation is. Table 8.2 is

a summary of all averages and standard deviations of final correlations and RMSE

values, as well as, information depicting where the correlations lie numerically, and

which methods have the highest correlation for the given number of subcomponents

versus other prediction methods. Notice in bold using 1 subcomponent demonstrate a

high final correlation and low RMSE with small variations. Similarly, all simulations

have cc ą 0.9 and 27 of the cases obtain the highest cc value using 1 subcomponent.
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Figure 8.5: Output Correlation Values for Equal Weighting Prediction Algorithm
for 1 to 10 Subcomponents used for Prediction of 30 Simulated Cases.

Table 8.2: Average and Standard Deviation of Prediction Final Correlations and
RMSE, Correlation Classification, and Highest Correlation for 30 Simulated Cases
for Approximate Full Respiratory Cycle using Various Number of Subcomponents
for Equal Weighting Strategy.

Subcomponents 1 2 3 4 5 6 7 8 9 10

Average Correlation 0.997 0.995 0.996 0.994 0.987 0.967 0.968 0.950 0.938 0.915
St. Dev. Correlation 0.004 0.012 0.006 0.016 0.042 0.101 0.098 0.143 0.180 0.274

Average RMSE 0.036 0.059 0.057 0.078 0.107 0.115 0.121 0.122 0.137 0.156
St. Dev. RMSE 0.031 0.109 0.080 0.114 0.129 0.140 0.145 0.146 0.149 0.153

cc ě0.9 30 30 30 30 29 28 27 27 27 27
0.5ď cc ă0.9 0 0 0 0 1 2 2 2 1 1
cc ă0.5 0 0 0 0 0 0 1 1 2 2

Highest Correlation 27 6 7 9 5 7 7 10 9 8

8.2.2 Relative Weighting Prediction

Figure 8.6 depicts the effect on final correlation coefficient by varying the number

of optimal subcomponents using Relative Weighting Prediction. There is very little

spreading of the correlations from 1. Simulations 26 has the most spread in correla-

tion. Recall, Simulation Signal 26 was Noisy Breathing followed by Noisy Baseline

Shift. Notice that the larger number of subcomponents used for this case, the worse
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the final correlation is. Table 8.3 is a summary of all averages and standard devia-

tions of final correlations and RMSE values, as well as, information depicting where

the correlations lie numerically, and which methods have the highest correlation for

the given number of subcomponents versus other prediction methods. Notice that

for relative weighting, a maximum average correlation is obtained with 1 to 8 sub-

components with small RMSE values for subcomponents 1 to 3 (in bold). For all the

subcomponents, the final correlation values are greater than 0.9 (in bold). Where

this method really stands out for the optimal number of subcomponents is that when

examining the highest correlation over all methods, using 2 subcomponents utilizes

most hits over other methods. Therefore, during optimization 2 subcomponents will

be used
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Figure 8.6: Output Correlation Values for Relative Weighting Prediction Algo-
rithm for 1 to 10 Subcomponents used for Prediction of 30 Simulated Cases.
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Table 8.3: Average and Standard Deviation of Prediction Final Correlations and
RMSE, Correlation Classification, and Highest Correlation for 30 Simulated Cases
for Approximate Full Respiratory Cycle using Various Number of Subcomponents
for Relative Weighting Strategy.

Subcomponents 1 2 3 4 5 6 7 8 9 10

Average Correlation 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.996 0.996
St. Dev. Correlation 0.004 0.012 0.006 0.016 0.042 0.101 0.098 0.143 0.180 0.274

Average RMSE 0.036 0.037 0.035 0.038 0.043 0.045 0.047 0.047 0.047 0.048
St. Dev. RMSE 0.031 0.031 0.030 0.029 0.032 0.034 0.037 0.037 0.037 0.037

cc ě0.9 30 30 30 30 30 30 30 30 30 30
0.5ď cc ă0.9 0 0 0 0 0 0 0 0 0 0
cc ă0.5 0 0 0 0 0 0 0 0 0 0

Highest Correlation 0 17 15 13 17 16 18 18 19 20

8.2.3 Pattern Prediction

Figure 8.7 depicts the effect on final correlation coefficient by varying the number

of optimal subcomponents using Pattern Prediction. This method demonstrates the

most variation of final correlations. Simulations 23 was Baseline Shift followed by

Noise and has the most spread in final correlation. Notice that the larger number

of subcomponents used for this case, the worse the final correlation is. Table 8.4 is

a summary of all averages and standard deviations of final correlations and RMSE

values, as well as, information depicting where the correlations lie numerically, and

which methods have the highest correlation for the given number of subcomponents

versus other prediction methods. Notice that for pattern method, a maximum aver-

age correlation is obtained with 1 subcomponent with a small RMSE. Also, using 1

subcomponent 19 final correlation coefficients were greater than 0.9.
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Figure 8.7: Output Correlation Values for Pattern Weighting Prediction Algorithm
for 1 to 10 Subcomponents used for Prediction of 30 Simulated Cases.

Table 8.4: Average and Standard Deviation of Prediction Final Correlations and
RMSE, Correlation Classification, and Highest Correlation for 30 Simulated Cases
for Approximate Full Respiratory Cycle using Various Number of Subcomponents
for Pattern Method.

Subcomponents 1 2 3 4 5 6 7 8 9 10

Average Correlation 0.915 0.902 0.895 0.890 0.887 0.875 0.855 0.816 0.823 0.823
St. Dev. Correlation 0.104 0.111 0.116 0.117 0.116 0.116 0.125 0.225 0.211 0.211

Average RMSE 0.166 0.221 0.262 0.288 0.327 0.347 0.359 0.374 0.384 0.395
St. Dev. RMSE 0.115 0.139 0.157 0.162 0.151 0.139 0.148 0.148 0.147 0.146

cc ě0.9 19 18 18 16 17 16 13 14 14 14
0.5ď cc ă0.9 11 12 12 14 13 14 17 13 14 14
cc ă0.5 0 0 0 0 0 0 0 3 2 2

Highest Correlation 3 2 2 1 1 1 0 0 0 0

8.2.4 Derivative Equal Weighting Prediction

Figure 8.8 depicts the effect on final correlation coefficient by varying the number

of optimal subcomponents using Derivative Equal Weighting Prediction. Five cases

have a noticeable drift in final correlation from 1. Simulation 14 has the most spread

in correlation. Recall, from Equal Weighting Prediction that Signal 14 also had

spreading in final correlation. Simulation Signal 14 was Regular Breathing followed
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by Baseline Shift followed by a Periodicity Change. Notice that the larger number

of subcomponents used for this case, the worse the final correlation is. Table 8.5 is

a summary of all averages and standard deviations of final correlations and RMSE

values, as well as, information depicting where the correlations lie numerically, and

which methods have the highest correlation for the given number of subcomponents

versus other prediction methods. Notice that for derivative equal weighting, a maxi-

mum average correlation with low average RMSE is obtained with 2 subcomponents

(in bold), and when using 2 subcomponents, 28 of the simulations have predictions

with the final correlation values are greater than 0.9.
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Figure 8.8: Output Correlation Values for Derivative Equal Weighting Prediction
Algorithm for 2 to 10 Subcomponents used for Prediction of 30 Simulated Cases.
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Table 8.5: Average and Standard Deviation of Prediction Final Correlations and
RMSE, Correlation Classification, and Highest Correlation for 30 Simulated Cases
for Approximate Full Respiratory Cycle using Various Number of Subcomponents
for Derivative Equal Weighting Strategy.

Subcomponents 1 2 3 4 5 6 7 8 9 10

Average Correlation N/A 0.976 0.969 0.972 0.969 0.964 0.959 0.956 0.954 0.952
St. Dev. Correlation N/A 0.068 0.082 0.072 0.079 0.097 0.124 0.139 0.149 0.158

Average RMSE N/A 0.109 0.112 0.107 0.113 0.123 0.131 0.133 0.141 0.152
St. Dev. RMSE N/A 0.137 0.157 0.150 0.148 0.149 0.154 0.154 0.153 0.155

cc ě0.9 N/A 28 27 27 28 28 28 28 28 28
0.5ď cc ă0.9 N/A 2 3 3 2 2 1 1 1 1
cc ă0.5 N/A 0 0 0 0 0 1 1 1 1

Highest Correlation N/A 0 2 4 1 3 3 2 1 1

8.2.5 Derivative Relative Weighting Prediction

Figure 8.9 depicts the effect on final correlation coefficient by varying the number of

optimal subcomponents using Derivative Equal Weighting Prediction. While from

this figure there is a noticeable drift in final correlation from 1 in many cases, notice

that the y-axis ranges from 0.6 to 1.05. The most notable pattern is that both use

of high ( 10) and low ( 1) number of subcomponents yield lower cross correlation.

Table 8.6 is a summary of all averages and standard deviations of final correlations

and RMSE values, as well as, information depicting where the correlations lie nu-

merically, and which methods have the highest correlation for the given number of

subcomponents versus other prediction methods. Notice that for derivative relative

weighting, a maximum average correlation and low RMSE with small deviation is

obtained with 5 subcomponents (in bold). Using 5 subcomponents, all of the final

correlation values are greater than 0.9.
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Figure 8.9: Output Correlation Values for Derivative Relative Weighting Predic-
tion Algorithm for 2 to 10 Subcomponents used for Prediction of 30 Simulated Cases.

Table 8.6: Average and Standard Deviation of Prediction Final Correlations and
RMSE, Correlation Classification, and Highest Correlation for 30 Simulated Cases
for Approximate Full Respiratory Cycle using Various Number of Subcomponents
for Derivative Relative Weighting Strategy.

Subcomponents 1 2 3 4 5 6 7 8 9 10

Average Correlation N/A 0.976 0.980 0.984 0.986 0.982 0.985 0.984 0.982 0.980
St. Dev. Correlation N/A 0.068 0.047 0.031 0.024 0.021 0.025 0.031 0.039 0.048

Average RMSE N/A 0.109 0.105 0.098 0.103 0.111 0.113 0.114 0.121 0.129
St. Dev. RMSE N/A 0.137 0.129 0.121 0.117 0.117 0.116 0.116 0.113 0.113

cc ě0.9 N/A 28 28 28 30 30 29 29 29 29
0.5ď cc ă0.9 N/A 2 2 2 0 0 1 1 1 1
cc ă0.5 N/A 0 0 0 0 0 0 0 0 0

Highest Correlation N/A 5 4 3 6 3 2 0 1 1

Figure 8.10 demonstrates the summary of Figures 8.5 to 8.9. As highlighted by

the boxes note that Equal Weighting has a maximum average correlation, c “ 0.997

when using 1 Subcomponent (blue), Relative Weighting has a maximum average

correlation, c “ 0.997 when using 2 Subcomponents (red), Pattern Weighting has

a maximum average correlation c “ 0.915 when using 1 subcomponent (brown),

Derivative Equal Weighting has a maximum average correlation c “ 0.976 when
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using 2 Subcomponents (black), and Derivative Relative Weighting has a maximum

average correlation of c “ 0.976 when using 5 Subcomponents (green). These number

of subcomponents are considered in the optimization process.
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Figure 8.10: Optimal Number of Subcomponents used for Prediction for Each
Prediction Method. The boxes represent the number of subcomponents with the
highest average correlation coefficient with low deviations for the 30 simulations.

8.3 Effect of Full versus Half Respiratory Cycle

For the given algorithm the question arises of how far can we precisely predict accu-

rately. These following results are performed to determine if a full or half respiratory

cycle can be accurately predicted.
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8.3.1 Simulated Signal Analysis for 5 Pt Moving Smoothing and Arbitrary Subcom-
ponents

The simulated signals are sent into each of the five prediction algorithms described

in Chapter 5 using a 5 point moving filter for smoothing and the number of subcom-

ponents for a given prediction algorithm described in Chapter 4. The predictions

were performed for an input and analysis component equal to approximately a full

respiratory cycle and an approximate half respiratory cycle. Figure 8.11 illustrates

the final predicted cross correlations between the prediction and analysis component.

Notice that the scale for the full respiratory cycle prediction is from 0.3 to 1, whereas

for the half it is much larger. There is less scattering for all algorithms aside from

Pattern Prediction in the Half Respiratory Cycle Prediction. Notice that in general

the spreading for each prediction algorithm is small for all algorithms aside from

Pattern Prediction. Table 8.7 first describes the averages and standard deviations

of the final correlation and RMSE for each prediction algorithm for full and half

respiratory cycles. The table then classifies where each of the correlations lie for the

simulations. Finally, Table 8.7 indicates which method yields the highest correlation

for a given simulation. Notice that for both full and half respiratory cycles, Relative

weighting yields 19 top correlations.
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Figure 8.11: Scatter Plot of Corre-
lation Values for full and half respira-
tory cycle prediction for 30 Simulated
Cases. Using 5 Pt moving filter and
arbitrary number of subcomponents.
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Figure 8.12: Average output corre-
lation values and RMSE for full and
half respiratory cycle prediction for 30
Simulated Signals using 5 Pt moving
filter and arbitrary number of subcom-
ponents.

Table 8.7: Summary of the averages and standard deviations for final correlation
and RMSE, correlation classification and highest correlation values of 5 different
prediction methods for approximate full and half respiratory cycle for 30 simulated
cases. Using 5 Point Moving Filter and Arbitrary Number of Subcomponents

Method: Equal Relative Pattern Derivative Derivative
Equal Relative

Cycle Length Full Half Full Half Full Half Full Half Full Half
Average Correlation 0.973 0.990 0.998 0.996 0.858 0.540 0.967 0.978 0.988 0.980
St. Dev. Correlation 0.085 0.027 0.003 0.008 0.168 0.404 0.096 0.046 0.020 0.045

Average RMSE 0.114 0.087 0.045 0.044 0.384 0.439 0.117 0.139 0.105 0.130
St. Dev. RMSE 0.135 0.125 0.038 0.050 0.151 0.209 0.149 0.151 0.116 0.139

cc ě0.9 28 29 30 30 17 8 28 27 30 27
0.5ď cc ă0.9 2 1 0 0 11 10 2 3 0 3
cc ă0.5 0 0 0 0 2 12 0 0 0 0

Highest Correlation 4 2 19 19 0 0 3 4 4 5
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In Figure 8.12 the top plot represents the correlation average and standard de-

viation for a full respiratory cycle. Notice how close to 1 the value for Relative

weighting is, with a value of 0.998˘ 0.003. For the half respiratory cycle prediction,

the correlation coefficient values are all relatively close to 1, aside from the Pattern

method. The bottom plot represents the RMSE for the full respiratory cycle. Notice

that the value for the Relative weighting is close to 0, with a value of 0.045˘ 0.038.

The RMSE values are similar for full and half respiratory cycle, aside from Pattern

Method which has larger deviations for half respiratory cycle prediction.

8.3.2 Simulated Signal Analysis for 15 Pt S-G Smoothing and Arbitrary Subcompo-
nents

The simulated signals are sent into each of the five prediction algorithms described

in Chapter 5 using 15 point S-G filter for smoothing based on the results from Fig-

ure 8.3 and the number of subcomponents for a given prediction algorithm described

in Chapter 4. The predictions were performed for an input and analysis component

equal to approximately a full respiratory cycle and an approximate half respiratory

cycle. Figure 8.13 illustrates the final predicted cross correlations between the pre-

diction and analysis component. Notice that the scale for the full respiratory cycle

prediction is from 0 to 1, whereas for the half it is much larger. There is less scat-

tering for all algorithms aside from Pattern Prediction in the Half Respiratory Cycle

Prediction. Notice that in general the spreading for each prediction algorithm is

small for all algorithms aside from Pattern Prediction. Table 8.8 first describes the

averages and standard deviations of the final correlation and RMSE for each predic-

tion algorithm for full and half respiratory cycles. The table classifies where each

of the correlations lies. Finally, Table 8.8 indicates which method yields the highest

correlation for a given simulation. Notice that for full and half respiratory cycles,

Relative weighting yields 17 and 18 top correlations, respectively.
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Figure 8.13: Scatter Plot of Corre-
lation Values for full and half respira-
tory cycle prediction for 30 Simulated
Cases. Using 15 Pt S-G Filter and ar-
bitrary number of subcomponents.
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Figure 8.14: Average output corre-
lation values and RMSE for full and
half respiratory cycle prediction for 30
simulated signals using 15 Pt S-G fil-
ter and arbitrary number of subcom-
ponents.

Table 8.8: Summary of the averages and standard deviations for final correlation
and RMSE values of 5 different prediction methods for approximate full and half
respiratory cycle for 30 simulated cases. 15 Point Savitzky-Golay Filter and arbitrary
number of subcomponents were used.

Method: Equal Relative Pattern Derivative Derivative
Equal Relative

Cycle Length Full Half Full Half Full Half Full Half Full Half
Average Correlation 0.967 0.989 0.997 0.994 0.823 0.568 0.964 0.974 0.985 0.976
St. Dev. Correlation 0.101 0.026 0.004 0.009 0.211 0.416 0.096 0.055 0.021 0.055

Average RMSE 0.115 0.095 0.045 0.052 0.395 0.440 0.123 0.149 0.111 0.139
St. Dev. RMSE 0.140 0.124 0.034 0.052 0.146 0.212 0.149 0.155 0.117 0.144

cc ě0.9 28 29 30 30 14 9 28 27 30 27
0.5ď cc ă0.9 2 1 0 0 14 9 2 3 0 3
cc ă0.5 0 0 0 0 2 12 0 0 0 0

Highest Correlation 7 2 17 18 0 1 3 2 3 7
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In Figure 8.14 the top plot represents the correlation average and standard devia-

tion for a full respiratory cycle. Notice how close to 1 the value for Relative weighting

is with very small standard deviation, or 0.997 ˘ 0.004. Similarly, half respiratory

cycle predictions have comparable correlation coefficient values to the full respiratory

cycle, aside from Pattern Method. The bottom plot represents the RMSE for the full

respiratory cycle. Notice that the value for the Relative weighting is close to 0, or

0.045˘ 0.034. The half cycle predictions are comparable to the full cycle predictions

aside from the Pattern Method.

8.3.3 Simulated Signal Analysis for 15 Pt S-G Smoothing and Chosen Subcompo-
nents

The simulated signals are sent into each of the five prediction algorithms described

in Chapter 5 using 15 point S-G filter for smoothing based on the results from

Figure 8.3 and the number of subcomponents for a given prediction algorithm based

on the results from 8.10. The predictions were performed for an input and analysis

component equal to approximately a full respiratory cycle and an approximate half

respiratory cycle. Figure 8.15 illustrates the final predicted cross correlations between

the prediction and analysis component. Notice that the scale for the full respiratory

cycle prediction is from 0.5 to 1, whereas for the half it is much larger. There is less

scattering for all algorithms aside from Pattern Prediction in the Half Respiratory

Cycle Prediction. Table 8.9 first describes the averages and standard deviations of the

final correlation and RMSE for each prediction algorithm for full and half respiratory

cycles. The table then classifies where each of the correlations lie for the simulations.

Finally, Table 8.9 indicates which method yields the highest correlation for a given

simulation. Notice that for full and half respiratory cycles, Equal weighting yields 17

and 12 top correlations, respectively, which is the top method for these corrections.
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Figure 8.15: Scatter Plot of Corre-
lation Values for each Prediction Al-
gorithm for Full and Half Respiratory
Cycle for 30 Simulated Cases. Using
15 Pt S-G Filter and respective opti-
mal number of subcomponents.
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Figure 8.16: Average output corre-
lation values and RMSE for full and
half respiratory cycle prediction for 30
Simulated Signals using 15 Pt S-G fil-
ter and respective optimal number of
subcomponents.

Table 8.9: Summary of the averages and standard deviations for final correlation
and RMSE values of 5 different prediction methods for approximate full and half
respiratory cycle for 30 simulated cases. 15 Point Savitzky-Golay Filter was used for
smoothing for each prediction algorithm. The respective number of subcomponents
were used as listed in the second row.

Method: Equal Relative Pattern Derivative Derivative
Equal Relative

Subcomponents 1 2 1 2 5
Cycle Length Full Half Full Half Full Half Full Half Full Half

Average Correlation 0.997 0.995 0.997 0.995 0.914 0.565 0.976 0.978 0.986 0.977
St. Dev. Correlation 0.004 0.006 0.003 0.007 0.104 0.555 0.067 0.052 0.024 0.052

Average RMSE 0.036 0.043 0.037 0.045 0.166 0.312 0.109 0.144 0.103 0.136
St. Dev. RMSE 0.031 0.037 0.031 0.041 0.115 0.276 0.137 0.134 0.117 0.134

cc ě0.9 30 30 30 30 19 12 28 28 30 28
0.5ď cc ă0.9 0 0 0 0 11 9 2 2 0 2
cc ă0.5 0 0 0 0 0 9 0 0 0 0

Highest Correlation 17 12 6 6 1 4 3 3 3 5
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In Figure 8.16 the top plot represents the correlation and standard deviation

for a full respiratory cycle. Both Equal and Relative Methods are close to 1 with

very small deviations, 0.997 ˘ 0.004 and 0.995 ˘ 0.006, respectively. For half cycle

prediction, aside from Pattern Method, all methods have values around 1 with small

deviation. The bottom plot represents the RMSE values and deviations for each

method for a full respiratory cycle. Again the Equal and Relative methods are close

to 0 with small deviations, 0.036 ˘ 0.031 and 0.043 ˘ 0.037, respectively. For half

cycle predictions, the Equal and Relative weighting methods perform better than

the other methods in calculating RMSE values with small deviations close to 0, or

0.037˘ 0.031 and 0.045˘ 0.041, respectively.

8.3.4 Statistical Analysis of Simulated Signals

In order to determine differences as the algorithms are optimized and for full and half

respiratory cycle predictions, a statistical analysis is performed. In Figure 8.17, the

changes in cross correlation are displayed as changes are made to each algorithm for

a full respiratory cycle. For instance, in each column is a particular algorithm and

within the column the first box plot is using 5 Pt moving filter and arbitrary number

of subcomponents for smoothing, the second column is 15 Pt S-G filter smoothing

and arbitrary number of subcomponents, and the third column is 15 Pt S-G filter

smoothing and optimal number of subcomponents applied. Figure 8.18 is similar for

RMSE values for a full respiratory cycle for each algorithm. Figures 8.19 and 8.20

are plotted similarly for a half respiratory cycle.
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Figure 8.17: Changes in Cross Cor-
relation for Algorithm Optimization
for a Full Respiratory Cycle.

Figure 8.18: Changes in RMSE
for Algorithm Optimization for a Full
Respiratory Cycle.

Figure 8.19: Changes in Cross Cor-
relation for Algorithm Optimization
for a Half Respiratory Cycle Predic-
tion.

Figure 8.20: Changes in RMSE for
Algorithm Optimization for a Half
Respiratory Cycle.
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In Figure 8.17, the spread of the final correlations for a full respiratory cycle pre-

diction appears to decrease as they are optimized, have less outliers (red + signs),

and generally move closer to 1, in all cases, except for Derivative Relative Method.

Similarly, in Figure 8.18 the RMSE spreads for a full respiratory cycle prediction

appears to decrease as the optimization is performed.

In Figure 8.19, the spread of the final correlations for a half respiratory cycle

predictions appear to decrease for Equal and Relative Weighting Methods, with a

decrease in outliers. Pattern Method appears to get worse as optimization is per-

formed. The correlation values for Derivate Equal and Derivate Relative Weighting

Methods appear to remain stable. In Figure 8.20, the spread of the RMSE values

for a half respiratory cycle prediction for Equal and Relative Weighting appears to

decrease, with a decrease in outliers. For Derivative Equal and Derivative Relative

Weighting the spread is larger than those for Equal and Relative weighting, but not

as large as that of Pattern Method.

8.3.5 Clinical Data for 5 Pt Moving Smoothing and Arbitrary Subcomponents

After optimization was performed, the prediction algorithms were applied to 555 pa-

tient and phantom data. The following is a representation of the prediction results

for the 5 Pt moving filter and arbitrary chosen number of subcomponents for full

and half cycle prediction. Table 8.10 first discusses the average and standard devi-

ation of correlation coefficient and RMSE values. The table then categorizes where

the correlation coefficient between the final prediction and analysis component lie.

Finally, Table 8.10 determines which method has the highest correlation coefficient

among the methods for a specified case.
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Table 8.10: Summary of the averages and standard deviations for final correlation
and RMSE values for full and half respiratory cycle predictions of clinical data using
5 Pt moving Filter and arbitrary number of subcomponents.

Method: Equal Relative Pattern Derivative Derivative
Equal Relative

Cycle Length Full Half Full Half Full Half Full Half Full Half
Average Correlation 0.721 0.789 0.727 0.800 0.535 0.426 0.725 0.784 0.725 0.784
St. Dev. Correlation 0.390 0.398 0.383 0.385 0.454 0.562 0.397 0.389 0.398 0.389

Average RMSE 0.196 0.155 0.189 0.149 0.302 0.528 0.200 0.174 0.202 0.173
St. Dev. RMSE 0.174 0.171 0.161 0.138 0.162 0.179 0.169 0.150 0.181 0.149

cc ě0.9 260 359 259 363 121 22 281 350 281 349
0.5ď cc ă0.9 190 122 192 121 0 0 169 128 168 130
cc ă0.5 105 74 104 70 166 35 105 77 106 76

Highest Correlation 112 135 180 209 50 15 93 89 120 107
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Figure 8.21: Average output correlation values and RMSE for full and half res-
piratory cycle of clinical data using 5 Pt moving filter and arbitrary number of
subcomponents.

Figure 8.21 represents the averages and standard deviations of the correlation coeffi-

cient and RMSE values between the prediction and analysis component. Notice that

for Equal, Relative, Derivative Equal and Derivative Relative the half cycle predic-

tion correlation is higher than that of the full cycle. The half cycle values of these

methods are 0.789˘0.398, 0.800˘0.385, 0.784˘0.389 and 0.784˘0.389, respectively.

Similarly, for a half cycle prediction these methods yield a lower RMSE, with values

of 0.189˘0.161, 0.149˘0.138, 0.174˘0.150, and 0.173˘0.149, respectively. Each of
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these methods utilize average correlations and RMSE that are close to one another

as demonstrated in Table 8.10. For Pattern method, the full cycle prediction does

better than the half cycle, but the values are not close to the other methods. Notice

that the half cycle prediction for Relative Weighting method yields the highest aver-

age correlation, with 363 cc values greater than 0.9, and 209 of the best correlations

using this method which is the highest of any methods.

8.3.6 Clinical Data for 15 Pt S-G Smoothing and Arbitrary Subcomponents

The following is a representation of the prediction results for the 15 Pt S-G filter

and arbitrary chosen number of subcomponents for full and half cycle prediction.

Table 8.11 first discusses the average and standard deviation of correlation coefficient

and RMSE values. The table categorizes where the correlation coefficient between

the prediction and analysis component lie. Finally, Table 8.11 determines which

method has the highest correlation coefficient among the methods for a specified

case.

Table 8.11: Summary of the averages and standard deviations for final correlation
and RMSE values for full and half respiratory cycle prediction of clinical data using
15 point S-G Filter and arbitrary number of subcomponents.

Method: Equal Relative Pattern Derivative Derivative
Equal Relative

Cycle Length Full Half Full Half Full Half Full Half Full Half
Average Correlation 0.719 0.794 0.724 0.802 0.540 0.427 0.717 0.797 0.717 0.787
St. Dev. Correlation 0.393 0.390 0.389 0.384 0.444 0.557 0.407 0.382 0.407 0.382

Average RMSE 0.198 0.154 0.192 0.147 0.300 0.408 0.202 0.174 0.204 0.174
St. Dev. RMSE 0.174 0.142 0.164 0.139 0.165 0.199 0.173 0.151 0.185 0.150

cc ě0.9 264 360 260 366 121 20 277 347 277 347
0.5ď cc ă0.9 184 123 187 121 0 0 169 132 167 133
cc ă0.5 107 72 108 68 159 36 109 76 111 75

Highest Correlation 120 156 178 198 57 13 98 89 104 99
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Figure 8.22: Average output correlation values and RMSE for full and half respira-
tory cycle prediction in clinical data using 15 Point S-G Filter and arbitrary number
of subcomponents.

Notice that the averages and standard deviations for correlation coefficient and

RMSE values appear similar to the 5 Pt moving filter with arbitrary number of

subcomponents. The half cycle values of the Equal, Relative, Derivative Equal and

Derivative Relative are highest for the half cycle and are 0.794˘0.390, 0.802˘0.384,

0.797 ˘ 0.382 and 0.787 ˘ 0.382, respectively. There are small changes that can be

seen as improvements in Table 8.11. For instance, the average correlation increases

very slightly for half cycle relative weighting prediction and the number of correla-

tions greater than 0.9 increase, but there are fewer highest correlations than there

were for the 5 Pt moving filter. In fact it is important to notice that all half cycle

prediction average correlation coefficients increase slightly and the RMSE average

values decrease slightly.

8.3.7 Clinical Data Analysis for 15 Pt S-G Smoothing and Chosen Subcomponents

The following is a representation of the prediction results for the 15 Pt S-G filter

and chosen number of subcomponents based on Figure 8.10 for full and half cycle

prediction. Table 8.12 first discusses the average and standard deviation of cor-
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relation coefficient and RMSE values. The table categorizes where the correlation

coefficient between the prediction and analysis component lie. Finally, Table 8.12

determines which method has the highest correlation coefficient among the methods

for a specified case.

Table 8.12: Summary of the averages and standard deviations for final correlation
and RMSE values for full and half respiratory cycle prediction of clinical data. 15
Point S-G Filter and the respective number of subcomponents were used as listed in
the second row.

Method: Equal Relative Pattern Derivative Derivative
Equal Relative

Subcomponents 1 2 1 2 5
Cycle Length Full Half Full Half Full Half Full Half Full Half

Average Correlation 0.633 0.753 0.688 0.791 0.485 0.363 0.690 0.763 0.716 0.794
St. Dev. Correlation 0.455 0.422 0.415 0.390 0.491 0.609 0.428 0.406 0.408 0.372

Average RMSE 0.231 0.178 0.208 0.156 0.320 0.354 0.210 0.287 0.204 0.174
St. Dev. RMSE 0.204 0.177 0.180 0.152 0.208 0.214 0.180 0.166 0.185 0.150

cc ě0.9 244 323 257 352 113 15 265 116 274 345
0.5ď cc ă0.9 151 149 174 125 115 11 160 124 178 142
cc ă0.5 160 83 124 78 171 25 129 90 102 68

Highest Correlation 116 135 130 178 50 8 130 116 128 118
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Figure 8.23: Average output correlation values and RMSE for full and half respi-
ratory cycle prediction using clinical data. 15 Point S-G Filter and the respective
number of subcomponents were used as listed in the second row.

In Figure 8.23 the left plot represents the correlation and standard deviation for a full

and half respiratory cycle. Equal, Relative, Derivative Equal, and Derivative Relative
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Methods are yield values close to 0.8 for the half cycle prediction, 0.753˘ 0.422 and

0.791˘0.390, 0.763˘0.406, and 0.794˘0.372 respectively. The right plot represents

the RMSE values and deviations for each method for full and half respiratory cycle.

Here the Equal, Relative and Derivative Relative methods for half cycle prediction

are closest to 0, 0.178˘ 0.177, 0.156˘ 0.152, and 0.174˘ 0.150, respectively. Notice

that for both the correlation and RMSE averages they begin to drift further from 1

and 0, respectively giving an indication that the number of subcomponents was not

optimal for clinical data.

8.3.8 Statistical Analysis of Clinical Data

In order to determine if the optimization improved the predictions, box plots display-

ing correlation coefficient and RMSE were made to depict the data as optimizations

were made. In Figure 8.24, correlation coefficient for full cycle prediction is depicted.

For a given algorithm, the first box plot is the evaluation for 5 Pt moving filter and

arbitrary number of subcomponents for prediction; the second box plot is the 15

Pt S-G filter and arbitrary number of subcomponents for prediction; and the third

box plot is the 15 Pt S-G filter and chosen number of subcomponents for prediction.

Similarly, in Figure 8.25, are the RMSE values for full cycle prediction. Figures 8.26

and 8.27 depict the correlation coefficient for half cycle prediction.

While there is a large amount of information depicted in these four plots, the

key piece of data obtained from the plots is that the distributions of the correlation

coefficient seem to move away from 1 as the optimization continues. There is a sim-

ilar behavior in the RMSE values which have distributions moving away from 0 as

optimization occurs. Therefore, in order to make a comparison, an examination of

the 5 Pt moving filter and arbitrary chosen number of subcomponents will be used

for evaluation of full and half cycle prediction.
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Figure 8.24: Changes in Clinical
Data Correlation Coefficient for Al-
gorithm Optimization for Full Cycle
Prediction

Figure 8.25: Changes in Clinical
Data RMSE for Algorithm Optimiza-
tion for Full Cycle Prediction

Figure 8.26: Changes in Clinical
Data Correlation Coefficient for Al-
gorithm Optimization for Half Cycle
Prediction

Figure 8.27: Changes in Clinical
Data RMSE for Algorithm Optimiza-
tion for Half Cycle Prediction
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Figure 8.28 compares the distribution of correlation coefficient values from the full

cycle (first column within a given algorithm) and half cycle (second column within

a given algorithm) prediction for the 5 Pt moving filter and arbitrary number of

subcomponents. Similarly, Figure 8.29 displays a comparison of the RMSE values

from full and half cycle predictions. Notice that the distribution of half cycle pre-

dictions for most methods for both correlation coefficient and RMSE appear closer

to 1 and 0, respectively, indicating better predictions when performing the half cycle

prediction. Pattern method has a better distribution for full cycle predictions, but

its correlation coefficient and RMSE values are not as optimal as the other methods.

Table 8.13 describes the results of a Wilcoxon signed-rank test on the full and half

cycle prediction data. The test demonstrates that the correlation coefficient results

are statistically significant in 4 out of the 5 algorithms (all but Pattern Method) in

favor of the half cycle prediction. Similarly, these same 4 algorithms have a statisti-

cally significant RMSE in favor of the half cycle prediction.
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Figure 8.28: Changes in correlation
coefficient values for 5 Pt moving fil-
ter and arbitrary number of subcom-
ponents for full and half cycle predic-
tions for clinical data.
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Figure 8.29: Changes in RMSE val-
ues for 5 Pt moving filter and arbitrary
number of subcomponents for full and
half cycle predictions for clinical data.

Table 8.13: Wilcoxon Signed-Rank test between full and half respiratory cycle cor-
relation coefficient and RMSE for 5 Pt moving filter and arbitrary number of sub-
components for clinical data.

Method: cc p-test RMSE p-test

Equal 9ˆ 10´10 2ˆ 10´13

Relative 3ˆ 10´10 1ˆ 10´12

Pattern 0.330 0
Derivative Equal 9ˆ 10´7 2ˆ 10´4

Derivative Relative 4ˆ 10´7 2ˆ 10´4
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9

Conclusions and Discussion

9.1 Conclusions

In conclusion, the number of subcomponents used for prediction may be better deter-

mined based on individual breathing pattern. The prediction accuracy using patient

data is better using half cycle prediction over full cycle prediction for all algorithms

for the majority of methods tested. Finally, relative weighting method performed

better than other methods.

9.2 Discussion

In general, it is difficult to make evaluations of how patient data behaves. While

we can simulate many different types of predictions, patients are unpredictable on

a day to day basis making prediction difficult. Another important note is that in

the future, simulation data should be generated with the same resolution in order

to be able to apply all prediction corrections accurately. For instance, because the

resolution was too low in the simulation data, the phase shift correction could not

be applied. Based strictly on the 30 simulation cases, it is hard to determine if there
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is a real improvement based on changing the length of prediction. Therefore, in the

future a specific examination of a clinical database should be performed. Alterna-

tively, a move towards individualized patient prediction will be necessary.

9.2.1 Data Preprocessing

Recall that the original algorithms, prior to any optimization, all utilized a 5 point

moving filter. Upon reviewing the results using the various filters, Savitzky-Golay

reduces noisy signals, but can maintain the integrity of simulated signals best. Fig-

ure 8.3 demonstrates that using the summed difference parameter using a Savitzky-

Golay 15 Point Smoothing Filter gave the lowest change in correlation between the 30

Simulated Signals and their corresponding smoothed signals. Therefore, a 15 Point

Savitzky-Golay Filter was used for algorithm optimization throughout the prediction

algorithm.

While these were only some of the filters that can be used to smooth the data, fu-

ture work might investigate 10% of the a respiratory cycle as the number point spans

for a given filter, such that if the signal sampling rate were to change the smoothing

would not be affected as it would then be a dynamic smoothing performance.

9.2.2 Coefficient of Similarity

Equation 4.6 demonstrates a non-linear combination of metrics used to determine

optimal subcomponents which demonstrate similarities between themselves and the

input component. Additionally, linear combination searching for similarities between

the input component and subcomponents used only cross correlation. While these

methods appeared to be effective in making prediction, these are only two ways to

determine the optimal subcomponents. However, in the future other methods could
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be considered.

9.2.3 Effect of Number of Subcomponents Used

In general, for each of the methods, as the number of subcomponents was increased,

the final correlation between analysis component and prediction decreased, while the

RMSE increased. One other important effect to note is that when we change the

number of subcomponents we can significantly change the composition of the algo-

rithm. For instance for Equal and Pattern weighting, when using 1 subcomponent,

the algorithm no longer uses an average as the final step. This means that the ef-

fects of a potentially suboptimal signal cannot be overcome by the algorithm, leaving

one with a suboptimal prediction. Additionally, examination of clinical data using

weighting with heavier emphasis on more recent cycles should be considered in the

future.

Another factor which could effect the outcome of the prediction is how the res-

piratory cycle length is determined. Currently, the algorithm averages determines

a respiratory cycle over the entire data set, but considering the most recent data

may be preferential. For instance, when a patient has a periodicity change, then

the most recent breathing pattern will have a respiratory cycle of different length

than the entire data. Therefore, considering a smaller portion when calculating the

respiratory cycle should be considered.

If a patient has a sudden breathing change such as a cough or sneeze, then the

algorithm should be robust to overcome this behavior, because of its identification

process determining similarities between the input component and subcomponents.

This is true when there is sufficient data for subcomponent matching, i.e. the data

is several respiratory cycles long. Clinically, it is questioned whether using the to-

tal data set or the most recent data set should be used for improved prediction.
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Performing a quick examination of the prediction algorithms showed that using the

total data set was optimal in several cases, again because the algorithm identifies only

similar components. However, this could be easily effected by changing the number

of subcomponents used for prediction and altering the separation size requirement

between top-ranked subcomponents. As demonstrated by clinical data, using less

subcomponents for prediction did not improve the prediction. There likely is an

ideal number to use but this would need to be determined using a clinical database

or moving toward individualized patient determination.

9.3 Effect of Full versus Half Respiratory Cycle Prediction

The half respiratory cycle prediction clearly performed better in 4 out of 5 algorithms

(Equal, Relative, Derivative Equal, and Derivative Relative Weighting) for clinical

data. Both the distributions and the statistical significance rules in favor of a half

cycle prediction over a full cycle prediction. This seems reasonable, because the

longer the desired prediction is, the harder it is to find data that is similar to the

input. In the event that another prediction length is to be determined, such as a

quarter, one and a quarter or one and a half respiratory cycles, it appears that as the

data is lengthened the prediction accuracy will decrease. In other words, the quarter

respiratory cycle will likely perform better than a half respiratory cycle prediction,

and one and a quarter or one and a half respiratory cycles will be less accurate than

a full respiratory cycle prediction.

9.3.1 Future Work

A few steps would need to be taken in order to implement the prediction algorithm

clinically. First, the algorithm would have to be altered to predict dynamically. The

computational time to make prediction would need to be accounted for and added to

required prediction length. At the current state, the algorithm takes on average less
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than 2 seconds to form a prediction. Additionally, to keep the predictions in check

some sort of feedback should be added to the algorithm. The feedback could be an

imaging based method or a certain threshold around the respiratory trace signal or

some combination of the two. Imaging verification to ensure that the tumor is ac-

tually following surrogate signals. For instance CBCT or fluoroscopy methods could

be used to verify the motion. Another method of verification is using a threshold of

the prediction from the surrogate motion. Vendors such as Varian add a deviation

around the respiratory trace that forces their learning algorithm to recalculate when

the threshold is exceeded. A similar metric that is used in this algorithm is the

RMSE value, which could have a threshold placed on it. However, when placing this

threshold mechanism on the data, the algorithm moves more towards a NN in that

it would need some sort of optimization performed when it exceeds the threshold or

alternatively would need the patient to be coached more.
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