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Abstract

This dissertation consists of two projects in mathematical biology. The first project

studies tumor heterogeneity through the site frequency spectrum, the expected num-

ber of mutations with frequency greater than f . Recent work of Sottoriva, Graham,

and collaborators have led to the controversial claim that exponentially growing tu-

mors have a site frequency spectrum that follows the 1{f law consistent with neutral

evolution. This conclusion has been criticized based on data quality issues, statis-

tical considerations, and simulation results. Here, we use rigorous mathematical

arguments to investigate the site frequency spectrum in the two-type model of clonal

evolution. If the fitnesses of the two types are λ0 ă λ1, then the site frequency

spectrum is c{fα where α “ λ0{λ1. This deviation from the 1{f law is due to the

advantageous mutations that produce the founders of the type 1 population; mu-

tations within the growing type 0 and type 1 populations still follow the 1{f law.

Our results show that, in contrast to published criticisms, neutral evolution in an

exponentially growing tumor can be distinguished from the two-type model using

the site frequency spectrum.

The second project considers whether three species can coexist in a resource com-

petition model with two seasons. Investigating how temporal variation in environ-

ment affects species coexistence has been of longstanding interest. The competitive

exclusion principle states that n niches can support at most n species, but what con-

stitutes a niche is not always clear. For example, Hutchinson in 1961 drew attention
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to the diversity of phytoplankton coexisting despite the small number of resources in

ocean water. Hutchinson then suggested that this could be explained by a changing

environment; times when different species are favored would be considered different

niches. In this paper, we examine a model where three species interact with each

other solely through the consumption of one resource. The growth per resource rates,

death rates, resource rates, and methods of resource consumption vary periodically

through time. We give a necessary and sufficient condition for the coexistence of all

three species. In particular, this condition rules out coexistence for the mean field

limit of a three species two seasons model studied by Chan, Durrett, and Lanchier

in 2009.
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1

Introduction

In this dissertation, we examine the frequency of mutations in cancer tumors in

Chapter 2 and the preclusion of coexistence in a seasonal ecological setting in Chapter

3. Here, we give a brief summary of our results and relate them to previous work.

In Chapter 2, we take a theoretical perspective on the frequency of mutations

in a two-type branching process and compare it to the frequencies expected from

neutral evolution. Our work suggests that the mutation frequencies expected from

neutral evolution are not as easy to come by from other models as some may suggest.

This chapter is from Tung and Durrett (2021), which has been published in PLOS

Computational Biology.

In Chapter 3, we examine a conjecture from Chan, Durrett, and Lanchier (2009)

which claimed that it was possible for three species to coexist in a two season contact

process model on a lattice with long range interactions. To do so, we take a general-

ized ODE model and show that there cannot be coexistence if the growth rates are

(almost) linearly dependent. A corollary of this result is that three species cannot

coexist in the two season model. This chapter is from Tung and Durrett (2022),

which has been published in Theoretical Populations Biology.
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1.1 Tumor Evolution and Heterogeneity

Traditionally, cancers were thought to evolve through a series of selective sweeps.

Over enough time, a cell in the tumor acquires a mutations that makes it fitter than

the others. This allows the cell to outcompete the others in the tumor, and allows

the mutation to sweep through the population. This point of view was introduced

in Nowell (1976) using leukemia as an example. As noted in Noble et al. (2022),

leukemia is conducive to selective sweeps because of the lack of spatial effects in

leukemia. This is in contrast to spatially structured cancers like colorectal cancer,

where fitter cells have difficulty sweeping because of their glandular structure.

1.1.1 Big Bang

In contrast to selective sweeps, Sottoriva et al (2015) instead proposed the Big Bang

model, where tumors have all the mutations needed for growth present at the be-

ginning of the tumor’s growth. A consequence of this model is that mutations are

effectively neutral, otherwise we would see sweeps.

Following up on the introduction of the Big Bang model, Sottoriva and Graham

(2015) looked at the site frequency spectrum (SFS), the number of mutations with

frequency ě f , of the big bang model and described what they called “a pan-cancer

signature of neutral tumor evolution:” the SFS is proportional to 1{f . The derivation

of this result is remarkably simple. They assumed that cells grow exponentially at

rate λ and use Nptq to be the number of cells at time t. If we assume that the

mutation rate is µ, then the expected number of new mutations before time t, Mptq,

satisfies

dM

dt
“ µλNptq.
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Solving gives

Mptq “ µλ

ż t

0

Npsq ds.

Since Npsq “ eλs, we observe that a mutation that occurs at time s will have fre-

quency e´λs in the population. Evaluating the integral in the previous formula, we

have

Mptq “ µpeλt ´ 1q.

Ignoring the ´1, if we set tf “ ´p1{λq log f to make Nptf q “ 1{f so that mutations

before time tf will have frequency ě f , then the number of mutations with frequency

ě f is

Mptf q “ µ{f

Note that in this derivation, mutations occur only at birth. If we instead let

mutations happen continuously throughout a cell’s lifetime and call the mutation

rate ν, then, as shown in Durrett (2013),

Mptf q “
ν

λf
. (1.1)

From the derivation given above, we see that the 1{f site frequency spectrum

comes from the fact that mutations occur at a rate proportional to the size of the

population and the fact that the population is growing exponentially fast.

1.1.2 Evidence and Controversy over Big Bang Prevalence

Williams et al. (2016) found that 323 of 904 samples from 14 cancer types showed

excellent straight line fits (R2 ě 0.98) when the cumulative number of mutations

of frequency ě f is plotted versus 1{f . This can be seen in Figure 2B in their

paper. This paper has been cited 200 times, but among these works, there are a
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number of papers criticizing the result. See Noorbakhsh and Chuang (2017), Wang

et al (2017), and Bozic, Paterson, and Waclaw (2019). The December 2018 issue of

Nature Genetics alone contains three letters (Balaparya and De 2018, Tarabichi et al

2018, McDonald, Chakrabarti, and Michor 2018) raising objections to the conclusion.

Four common criticisms are

i Inferring the allele frequency f requires accurate estimates of local copy number

and ploidy. In addition, Wang et al (2017) point out that local samples may not

be indicative of overall frequencies.

ii Failure to reject the null model is not the same as proving it is true. To quote

McDonald, Chakrabarti, and Michor (2018) “The fact that a model of neutral

evolution leads to a linear relationship between Mpfq (the number of mutations

with frequencyě f) and 1{f does not imply . . . the presence of neutral evolution.”

iii Tarabichi et al (2018) applied methods that look at the dN{dS ratio, which

compares the number of nonsynonymous and synonymous mutations, to look

for signs of selection. They claim to have found significant signs of selection in

tumors that were classified as neutral. However when the analysis was repeated

on publicly available pancreatic cancer data, Graham, Sottoriva et al found no

values significantly different from 1.

iv Tarabichi et al (2018) say “the deterministic models of tumor growth described

by Williams et al (2016) rely on strong biological assumptions. Using branching

processes to simulate neutral and nonneutral growth, they show that R2 ą 0.98

is neither necessary nor sufficient for neutral evolution.”

In this thesis we address the fourth point by examining the site frequency spectrum

of a two type branching process. More specifically, the model features two cell types,

type 0 and type 1. The process starts with type 0 cells reproducing at rate λ0.
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Over time, type 0 cells undergo type 1A mutations and generate type 1 cells, which

reproduce at rate λ1 ą λ0. Type 1 cells with the same type 1A mutation belong to the

same family. Both type 0 and type 1 cells undergo neutral mutations, which we call

type 0 and type 1 mutations. As time approaches infinity, the type 0 cells approach

0% of the population and the type 1A families partition the type 1 population. As

such, the SFS consists of three mutation types - type 1A mutations, type 1 neutral

mutations that occur in the type 1 population and are constrained to a 1A family,

and type 0 neutral mutations that occur in the type 0 population and survive by

piggy-backing off a type 1A mutation.

1.1.3 Durrett and Moseley (2010)

This is not the first work to look at the two-type branching process. Durrett and

Moseley (2010) look at the same process without neutral mutations.

There are two results from Durrett and Moseley (2010) that we will later use. The

first is that the first 1A mutation will happen around the same time. The second is

that the relative sizes of the families can be described as the points in a poisson point

process with mean measure ρpx,8q „ x´α, where α “ λ1{λ0. As will be discussed

in Chapter 2, this second fact implies that 1A families follow the Poisson-Dirichlet

distribution.

1.1.4 Poisson-Dirichlet Distribution

The Poisson-Dirichlet distribution, also written as PDpα, θq, generates random par-

titions with total length 1, and has size biased order

pW1,W1W2,W1W2W3, ...q

where Wi „ Betap1´ α, θ ` iαq are independent and Wi “ 1´Wi.

One way to generate PDpα, θq is to use a generalized Chinese restaurant process.
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We start with one person at one table. If there are n seated individuals and k tables,

the next person to enter is seated at a new table with probability pθ`kαq{pn` θq or

seated at existing table i with probability pni ´ αq{pn ` θq, where ni is the number

of people at table i. PDpα, θq is formed by the proportion of people sitting at each

table as the number of people approaches infinity.

To show that the two definitions agree, note that if we focus on the proportion of

people at table 1 and group tables 2 through infinity under one table, we end up with

a process where table 1 attracts people proportional to n1 ´ α and table 2 attracts

people proportional to n2`α`θ. This is equivalent to the Polya Urn with initial state

1´α balls of one color and θ`α of the other color. Since the proportion of balls of one

color in the Polya Urn model is well known to have distribution Betap1´α, α`θq, the

proportion of people at table 1 is W1. Similarly, by conditioning on tables 1 through

i´ 1, combining tables i` 1 onward, and comparing table i with i` 1, we use Polya

Urn again to show that the proportion of people at table i is W1W2 ¨ ¨ ¨Wi´1Wi.

The PD distribution has also been constructed using branching processes. For

example, in the case that 0 ď α ď 1 and θ “ 0, consider two individual types, novel

and clone. Novel individuals produce novel offspring at rate α and clonal offspring

at rate 1´α. Clones produce clones at rate 1. In this model, a new novel offspring is

equivalent to a person being seated at a new table, and clone offspring are people who

sit at an existing table. Comparing the probabilities of whether the next offspring is

novel or belongs to the family tree of novel offspring i show that this is equivalent

to the generalized Chinese restaurant process.

For additional information, see Jim Pitman’s book Combinatorial Stochastic Pro-

cesses.
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1.2 The Competitive Exclusion Principle

The competitive exclusion principle (CEP), sometimes called Gause’s principle, states

that n niches can support at most n species. In the case of Gause (1932)’s ex-

periments with two species of Paramecium, the one niche present was clear; the

species that better utilized the food Gause gave them drove the others to extinction.

However, it is not always evident what can be considered a niche. George Evelyn

Hutchinson (1961) drew attention to this with the “Paradox of the Plankton” - al-

though there are at most 20 resources relevant to the growth of phytoplankton, there

are hundreds of plankton species coexisting in ocean water. Hutchinson’s observation

ignited interest in a mathematical approach to when CEP holds.

One of the earliest mathematical models used to justify the CEP was Volterra

(1928)’s model, which featured n species with populations xi interacting through

competition over a resource R.

1

xi

dxi
dt
“ γiR ´ σi

R “ Rmax ´ F px1, x2, ..., xnq

There is a maximum amount of resource Rmax. Each species grows at a rate lin-

early dependent on resource R and dies at rate σi. The amount of resource in

use F px1, x2, ..., xnq is a nondecreasing function of the species abundances. Volterra

showed that the species with the largest Rmax ´ σi{γi value wins.

1.2.1 Volterra’s Assumptions

In light of the “Paradox of the Plankton,” many have tried to understand what

assumptions in Volterra’s model eliminated coexistence. Armstrong and McGehee

(1980) considered many assumptions, listed below
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i The dynamics can be described from species densities.

ii Species interact only through the species

iii The system is spatially homogeneous

iv The resource is uniform in quality

v The growth rates depend linearly on the quantity of resources.

vi There is no time dependence in interactions.

When one of these assumptions is violated, the competitive exclusion principle may

no longer hold. (i) rules out age structure complications. (ii) rules out the possibility

of predation, where one species can count as a resource for another species, and sym-

biosis. (iii) prevents coexistence in a patch model where the patches favor different

species. (iv) prevents different resources being more useful to different species. (v)

is less straightforward. Suppose dn1{dt is a concave increasing function with respect

to R and is 0 when R “ R1. Also suppose dn2{dt is a linear increasing function with

respect to R and is 0 when R “ R2 ą R1. When species 2 is at equilibrium, since

R2 ą R1, species 1 has a positive growth rate and won’t go extinct. When species 1

is at equilibrium, the average amount of resources available has to be greater than R1

due to Jensen’s inequality. If this average is greater than or equal to R2, then species

2 will have enough resources to grow. (vi) rules out how seasons can create additional

niches. See Hening and Nguyen (2020) for the relevance of the assumptions under

related SDE and piecewise deterministic Markov process models.

1.2.2 Temporal Heterogeneity

The assumption that we focus on in this paper is the one Hutchinson proposed to

resolve the Paradox of the Plankton - temporal variation. By allowing the functions
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γi, σi and R to be functions of time, different species can be favored at different

times, which enables coexistence. Since many environments are periodic, we focus

on when the functions have period T .

To demonstrate how temporal heterogeneity could encourage coexistence, Arm-

strong and McGehee (1976) considered a simple n season system where n species

could survive on one resource. We define a season as an interval of time under which

the parameters do not exhibit explicit time dependence. The system is

1

ni

dni
dt
“ γiRgiptq ´ σi, R “ Rmax ´

k
ÿ

i“1

sini

where R represents available resource, k is the number of species, and giptq is a func-

tion of period T that is equal to 1 on the interval rai, bis and is equal to 0 on the

intervals r0, ais and rbi, T s. When giptq “ 1 and there is no temporal heterogeneity, we

recover Volterra (1928)’s model, one of the earliest models for justifying the compet-

itive exclusion principle; the species with the highest Rmax´σi{γi wins. When there

is temporal heterogeneity, coexistence becomes possible. Intuitively, giptq indicates

whether species i is in a growing season or declining season. By having disjoint grow-

ing seasons, one species would quickly grow while the others would quickly shrink,

preventing them from effectively competing with the currently growing species. Arm-

strong and McGehee then constructively proved that in their model, parameters

could be found that allowed n species to coexist given n seasons. Coexistence here

is an example of the storage effect proposed in Chesson (1994), which outlines how

species-specific responses to the environment, covariance between environment and

competition, and buffered population growth can contribute to coexistence. The

name of the storage effect comes from how “storing” more benefits of advantageous

times than is “spent” during disadvantageous times can enable coexistence.

9



1.2.3 Lotka-Volterra

The two-species system in CDL is a special case of the two-species periodic Lotka-

Volterra model whose population sizes n1 and n2 are described by

1

n1

dn1

dt
“ b1ptq ´ a11ptqn1 ´ a12ptqn2

1

n2

dn2

dt
“ b2ptq ´ a21ptqn1 ´ a22ptqn2

where biptq and aijptq are periodic functions with period T . In the case that a2i “ ka1i,

the Lotka-Volterra model can be written as a periodic version of Volterra (1928)’s

model. Cushing (1980) studied the stability of periodic solutions by generalizing the

bifurcation diagrams for the constant coefficient Lotka-Volterra model, and gave an

example of when there is coexistence in the periodic Lotka-Volterra model, but one of

the species goes extinct when temporal variation is removed by replacing the periodic

parameters with their average. Mottoni and Schiaffino (1981) study the same model

using a geometric approach and, in addition to recovering some of Cushing’s results,

also prove that any solution approaches a solution with period T .

1.2.4 Chan, Durrett, and Lanchier (2009)

Chan, Durrett, and Lanchier (2009) considered a two season two-type contact process

on a square lattice with long range interaction. In more detail, the model takes place

on the grid Z
2{L where L is large. There are two species, 1 and 2. If species i

occupies site x, then it dies at rate σi. If site x is empty, it is populated by species

i at rate γiptqfi where the growth rate for species i, γi, changes based on which of

the two seasons it is, and fi denotes the fraction of sites within distance 1 of x that

is occupied by species i. The seasons both have length D and alternate. The mean
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field model of their system is

1

ni

dni
dt
“ γiptqR ´ σi R “ 1´

k
ÿ

i“1

ni (1.2)

where R represents available space and k is the number of species.

There is one resource R so in the temporally homogeneous case one species will

competitively exclude the others. Chan, Durrett, and Lanchier showed that for an

open set of parameters, two species can coexist in a model with two seasons. The

ecological explanation is that the two seasons form two niches. Defining ni as the

equilibrium solution for species i when the other species is absent, the condition for

coexistence is

1

2D

ż 2D

0

γ1ptqp1´ n2qdt ą σ1,
1

2D

ż 2D

0

γ2ptqp1´ n1qdt ą σ2

which follows from the idea of invasion. Species 1 is able to invade species 2 if the

population of species 1 increases when species 1 has a near zero population and

species 2 is at equilibrium. If species 1 can invade species 2, then even if species

1 approached extinction, species 2 will approach its equilibrium and the population

of species 1 will rebound. The conditions can therefore be understood as whether

the species can invade each other; the first integral gives the average growth rate of

species 1 when species 2 is at equilibrium, and the condition checks if it is greater

than the death rate σ1.

Lastly, they conjectured that a fast dispersing species could exploit the early part

of a season before losing to a superior competitor, allowing for three or more species

to coexist. This is backed with simulation evidence in Figure 1 of their paper. Here,

we will prove that this is not possible in the ODE.
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Table 1.1: Parameters from Figure 1 in Chan, Durrett, Lanchier (2009). In
their simulation used to support their conjecture that three species can coexist with
two seasons, they looked at a system on a 400 ˆ 400 lattice with interaction range
L “ 200, season lengths D “ 10, and death rates σ “ 1. The growth rates γ in each
season are outlined below.

Species Season 1 γ Season 2 γ
1 3 1
2 1 3
3 2 2

12



2

A Two Type Branching Process Model of Tumor
Heterogeneity

This chapter is from Tung and Durrett (2021), which has been published in PLOS

Computational Biology. Following up on the introduction of the Big Bang model

by Sottoriva et al (2015), Sottoriva and Graham (2015) described what they called

“a pan-cancer signature of neutral tumor evolution:” the number of mutations with

frequency ě f will have the form c{f . The derivation of this result is remarkably

simple and is given in Section 2.4 in Methods. Williams et al. (2016) found that

323 of 904 samples from 14 cancer types showed excellent straight line fits when the

cumulative number of mutations of frequency ě f is plotted versus 1{f . See Figure

2B in their paper. This paper has been cited 200 times, but among these works,

there are a number of papers criticizing the result - see Section 1.1.2. The criticism

we focus on is the claim that other nonneutral models of evolution pass the test

proposed by Williams et al.

To try to shed some light on the controversy, we will do a mathematically rigorous

computation of the site frequency spectrum produced by the two-type model of clonal
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evolution. We will describe the model in Section 2.1. The two-type model and its

m-type generalization have been extensively studied. See Durrett (2015) for results

and references. This model is relevant to the discussion of Williams et al (2016)

because it appears in the criticisms of McDonald, Chakrabarti, and Michor (2018)

and Bozic, Patterson, and Waclaw (2019). Before we describe the mathematical

analysis, we want to make it clear that that this work only discusses the theoretical

aspects of cancer genomics and is not concerned with practical problems in making

inferences on cancer genomic data, which of course could hide some of the theoretical

effects due to errors, bias, sampling, and other issues discussed in the criticisms listed

above.

Results

2.1 A two-type model

McDonald, Chakrabarti, and Michor (2018) consider two alternative evolutionary

models in order to argue that other underlying models can produce a linear rela-

tionship between 1{f and the cumulative number of mutations with frequency ě f .

Their second model is an infinite alleles branching process model previously studied

by McDonald and Kimmel (2015). We will ignore this model, since in studying DNA

sequence data the appropriate mutation scheme is the infinite sites model.

In their first model, clonal expansion begins with a single cell of the original

tumor-initiating type (type 0). To make it easier to connect with previous mathe-

matical work, we will describe their model using the notation used in Durrett (2015)

and Durrett (2013). We suppose that type 0 individuals give birth at rate a0 and

die at rate b0, so the exponential growth rate is λ0 “ a0 ´ b0. For simplicity, we will

suppose that neutral mutations accumulate during the individual’s life time at rate

ν, instead of only at birth.
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Type 0 individuals mutate to type 1 at rate u1. Type 1 individuals give birth

at rate a1 and die at rate b1. Their exponential growth rate is λ1 “ a1 ´ b1 where

λ1 ą λ0. In McDonald, Chakrabarti, and Michor (2018), different type 1 families

have different increases in their growth rates that follow a normal distribution. In this

section, we will assume all type 1 mutations have the same growth rate. In Section

2.2, we will consider the implications of random fitness changes for the behavior of

the model.

The reader will see many complicated formulas in this paper, so it will be useful to

have a concrete set of parameters to plug into these formulas. Borrowing an example

from Durrett (2015), we will set

a0 “ a1 “ 1, λ0 “ 0.02, λ1 “ .04, u1 “ 10´6, ν “ 10´4. (2.1)

We do not pretend that these parameters apply to any specific cancer, but for mo-

tivation, the reader can imagine that type 0s are colon cancer cells in which both

copies of APC have been knocked out, while type 1 cells in addition have a KRAS

mutation.

2.1.1 Limit theorems

As in McDonald, Chakrabarti, and Michor (2018), we will, for simplicity, restrict

our attention to two types of cells. The type 0’s are a simple branching process, so

well-known results show that Z0ptq, the population of type 0 cells at time t, follows

e´λ0tZ0ptq Ñ W0, (2.2)

where W0 “ 0 with probability b0{a0 and has a rate λ0{a0 exponential distribution

with probability λ0{a0. For a derivation, see Athreya and Ney 1972.

The study of the second wave is simpler if we suppose that Z˚0 ptq “ V0e
λ0t for all

t P p´8,8q, where V0 has the same distribution as pW0|W0 ą 0q, that is exponential
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with rate λ0{a0. Mutations from type 0 to 1 occur at rate u1. Let σ1 be the time

of the first successful type 1 mutation, i.e., one whose branching process does not

die out. Durrett and Moseley (2010) showed, see (29) in Durrett (2015), that σ1 has

median

s11{2 “
1

λ0
log

ˆ

λ20a1
a0u1λ1

˙

. (2.3)

In the concrete example, s11{2 “ 460.51. In colon cancer where cells divide every four

days, s11{2 is 1842 days or a little more than 5 years.

Durrett and Moseley were the first to rigorously prove results about the asymp-

totic behavior of the size of the type 1 population Z˚1 ptq, see Section 9 of Durrett

(2015). Durrett (2013) noticed that the constants are simpler if we use a different

normalization. Here we are assuming a0 “ a1 “ 1 to simplify the constants.

Theorem 1 (Durrett and Moseley 2010). As t Ñ 8, e´λ1pt´s
1
1{2
qZ˚1 ptq Ñ V̄1 where

V̄1 “ eλ1s
1
1{2V1 is the sum of the points in a Poisson process with mean measure

ρ̄px,8q “ ρpe´λ1s
1
1{2x,8q.

Using Eq (2.3), and doing some algebra

ρ̄px,8q “ αλ0λ
´α
1 ΓpαqV0x

´α.

In our concrete example, ρ̄px,8q “ 0.1772V0x
´1{2. Note that due to shifting time by

s11{2, the measure ρ̄ does not depend on the mutation rate.

2.1.2 Site frequency spectrum

There are three classes of mutations in the two-phase model

• type 0: Neutral mutations that occur to type 0 individuals.

• type 1A: Advantageous mutations that turn type 0 individuals into type 1.
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• type 1: Neutral mutations that occur to type 1 individuals.

By the argument in Section 2.4 given by Sottoriva and Graham (2015), the type 0

mutations will have a 1{f site frequency. The argument can also be used to prove

the next result so the details are contained in Section 2.5 in Methods.

Theorem 2. The number of type 1 mutations with frequency ě f with in the type 1

population will be asymptotically ν{pλ1fq.

The points in the Poisson process in Theorem 1 indicate the contributions of

the various type one families to the limit V̄1, so if we let x1 ą x2 ą x3 . . . be the

points, then the jth largest family makes up a fraction xj{V̄1 of the population.

Intuitively, this implies that the number of type 1A mutations with frequency ě f

will be asymptotically Cf´α where α “ λ0{λ1. This matches with our result, whose

proof is in Section 2.6 in Methods.

Theorem 3. The site frequency spectrum of the 1A mutations is

SFS1Apfq “
sinpπαq

πα

ˆ

1

f
´ 1

˙α

. (2.4)

When α “ 1{2, the constant is 2{π “ 0.6366.

Including type 0 passenger mutations in type 1A families does not significantly

change the f´α shape in (2.4). This is because all important 1A mutations happen

soon after the first mutation, which implies that all important 1A mutations have

roughly the same number of passengers. See Section 2.7 in Methods.

To illustrate the results proved above, we turn to simulations seen in Figs 2.1 and

2.2.

2.2 Random fitness increases

McDonald, Chakrabarti, and Michor (2018) considered the case in which type 1

individuals have growth rates that are normal with mean m and standard deviation
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Figure 2.1: Site frequency spectrum in the type 1 population. The figure
shows the contribution of the different mutation types to the site frequency spec-
trum. The simulation was performed with parameters ν “ 0.02, u1 “ 2ˆ 10´4, λ0 “
0.02, λ1 “ 0.04 and a0 “ a1 “ 1 and is the average site frequency spectrum of
1000 runs. We simulated the 1A families and type 0 passenger mutations on their
founders. Then, we obtained type 1 mutations for each 1A family by applying (2.8)
in Methods. We only consider mutations present in the type 1 population because,
as t Ñ 8, the proportion of the population that is type 0 cells approaches 0. As
suggested from Theorem 2, the type 1 site frequency spectrum is linear when plotted
against 1{f . The 1A` 0 line looks similar to a power law, as suggested by (2.4).

d. Early work on models with random fitness increases in the two-type model led to

very unusual behavior in the limit t Ñ 8, see Durrett et al (2010). Results in that

paper show

• If the fitness distribution was bounded then, as t Ñ 8, individuals with fit-

nesses that were close to the upper limit dominated the population .

• If the distribution was unbounded, then the population could grow faster than
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Figure 2.2: Distribution of 1A family sizes in the type 1 population.
To better understand the distribution of 1A family sizes, we used the Poisson-
Dirichletpα, 0q distribution to generate the six largest families. The plot gives the
probability that the number of individuals in the top i families are greater than a
fraction x of the total type 1 population.

exponential.

In this section, we will modify our example from Figure 2.1 so that type 1 indi-

viduals have growth rates drawn from the normal distribution with mean m “ 0.04

and standard deviation d “ 0.005. We will see through simulations that in contrast

to the limiting results just mentioned, random fitnesses do not substantially change

the behavior.

To find the distribution of the growth rates of the mutations with the largest

family sizes, we note that a mutant that occurs at time si and has growth rate λ1,i

will grow to size W1 exppλ1,ip1000 ´ siqq at time 1000. The number of i that are
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successful and have λ1,ip1000 ´ siq ą x is Poisson with mean given by the following

integral

10´6
ż 1000

0

50e0.02s
ż 8

x{p1000´sq

λφpλq dλds

“ 10´6
ż 1000

0

50e0.02s
„

0.04

ˆ

1´ Φ

ˆ

x

1000´ s

˙˙

` 0.0052φ

ˆ

x

1000´ s

˙

ds. (2.5)

where φ and Φ are the density function and distribution function, of a normal distri-

bution with mean m “ 0.04 and standard deviation d “ 0.005. The first expression

can be understood through the following pieces: 10´6 is the type 1A mutation rate,

50e0.02s is the expected type 0 population at time s, the λ is the probability a type

1A mutation with fitness λ survives, and φpλq is the density function for the fitness.

The equality follows from substituting u “ pλ´ 0.04q2 for the inner integral. Figure

2.3 graphs (2.5).

The random fitnesses cause the relative sizes of the contributions of mutations

to the final population to change, but as Figure 2.4 shows, the site frequency still

has the form C{fβ, where β ď α and achieves equality in the case of non-random

changes, i.e. d “ 0.

McDonald, Chakrabarti, and Michor (2018) claim that the site frequency spec-

trum in the two-type model is 1{f . However, their simulation methods take the very

crude approach of considering the binary split process until 1,000 or 1,000,000 cells

are produced. This corresponds to 10 and 20 generations respectively. To make it

possible for something to happen in this short amount of time the mutation rate for

advantageous mutations is set to be 0.1 in the 1000 cell scenario, and to 0.03 when

there are 1,000,000 cells. At birth, each cell acquires a Poisson mean 100 number

of mutations. In contrast our simulations run for approximately 1000 generations,

leading to populations of order 109 cells, and neutral mutations occur slowly, leading
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Figure 2.3: Size of 1A families with random fitness. The graph indicates
the expected number of 1A families with λ1,ip1000 ´ siq ą x. The parameters are
almost the same as in (2.1); rather than a single λ1 for all type 1 families, we have
a different λ1,i for each type 1A family. Each λ1,i is normally distributed with mean
0.04 and standard deviation 0.005. 500 runs were done up until time t “ 1000. The
graph shows that on average there is one family with ex ą 1010. If the λ1,i of the
largest family is within 2 standard deviations, then multiplying ex by 1{λ1,i implies
a family of magnitude around 2ˆ 1011 or greater.

to genealogical relationships that are more like those found in growing cancer tumors.

2.3 Subclonal mutation frequencies

Bozic, Paterson, and Waclaw (2019) argue that “the fact that no subclonal driver is

present at intermediate frequencies cannot be taken as proof of neutral or effectively

neutral evolution. It can be a consequence of population dynamics which create only

a short window during which the driver mutation can be detected but not fixed in the

21



Figure 2.4: Site frequency spectrum with random fitnesses. (A) shows the
site frequency spectrum for multiple values of d. The other parameters are the same
as in Figure 2.3. As the contribution from neutral mutations is negligible, we will
only show the contribution from 1A families. The line for constant, i.e., d “ 0, is
plotted from theory; the others are plotted from simulations with 200 runs. As d
increases, the expected size of the frequency of the largest mutation increases. Also,
fewer mutations reach above the 0.05 frequency threshold. (B) displays the same
data on a log-log plot. The slopes β of the linear fits indicate that the site frequency
spectrum takes the form C{fβ, with β decreasing as d increases.

population.” In this section we will describe their results and give a simple analytic

derivation.

To argue for this viewpoint, they use the two-phase model introduced in the

Section 2.1 but with different notation

Table 2.1: Notation changes between here and Bozic, Paterson, and Waclaw
(2019)

here a0 b0 λ0 a1 b1 λ1 u1
Bozic, Paterson, and Waclaw (2019) b d r b1 d1 r1 u

In addition they define c “ r1{r ą 1, and g “ c´ 1. They assume that the mutation

to type 1 occurs at time 0 and run the process until the time t at which the total

population size is M . Let X0 be the population of type 0’s when the mutation occurs.

Since X0 is large, Xt « X0e
rt. The type 1 population at time t is Yt « W1e

rct, where

W1 is an exponentially distributed random variable with rate cr{b1. Note that as
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in Bozic et al (2010) the possibility of subsequent driver mutations is ignored. As

Figure 2.5 shows, that change does not lead to a substantial error.

Figure 2.5: Driver frequencies. This graph gives the probability of having a
driver with frequency greater than y once the tumor reaches size 109. The parameters
used are a0 “ a1 “ 1, λ0 “ 0.02, λ1 “ .035 and u1 “ 10´5 and the data was generated
from 1000 runs. Single 1A refers to approach taken by Bozic et al. where there is
only 1 selective mutation. Multiple 1A is our approach. The theory curve comes
using a Riemann sum with interval size 500 to evaluate the integral in Eq (2.6).

Writing fsub “ Yt{pXt ` Ytq they prove that when the total tumor size is M “

Xt ` Yt the subclonal mutation frequency has

P pfsub ď yq “

ż M

0

puc{b1q expp´ucx0{b1q

„

1´ exp

ˆ

´
cr

b1

y

p1´ yqc
xc0M

1´c

˙

dx0,

(2.6)

which is (1) in Bozic, Paterson, and Waclaw (2019). From this they can compute

the probability of a subclonal driver being detectable, that is, P p0.2 ď fsub ď 0.8q
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To see what this complicated formula implies, the authors turn to simulation.

The mutation rate to produce an additional driver is u “ 10´5. Their Figure 2A

shows a moderately growing tumor b “ 0.14, r “ 0.01, 2B a fast growing tumor

b “ 0.25, r “ 0.07, and 2C a slowly growing tumor b “ 0.33, r “ 0.0013. For

moderate values of selection, e.g. g “ 30%, the probability that a driver mutation is

in the detectable range r0.2, 0.8s is ă 15% for population sizes up to M “ 109 cells

and remain below 1/3 for M ď 1011. For other cases considered there (g “ 70% and

100%) the chance of detecting the subclonal driver is always ă 60% and for a broad

range of sizes is less than 30%. Panels d,e,f in their Figure 2 show the frequency of a

subclonal driver in the case of moderate growth when the size Md “ 107, Me “ 5¨1010

and Mf “ 2 ¨ 108. In the three cases the frequency is near 0, near 1, and almost

uniformly distributed on r0, 1s.

Rather than study the tumor when it reaches a fixed size, we will derive results

at a fixed time by using Theorem 1. Recall that we have set Z˚0 ptq “ V0e
λ0t and have

shown

e´λ1pt´s
1
1{2
qZ˚1 ptq Ñ V̄1.

Combining the last two results, we see that

rptq “
Z˚1 ptq

Z˚0 ptq
« e´λ0teλ1pt´s

1
1{2
qV̄1{V0.

Inserting the values of the λi

rpt` sq

rptq
“ epλ1´λ0qs “ e0.015s

so Z˚1 ptq{Z
˚
0 ptq goes from 0.2{0.8 “ 1{4 to 0.8{0.2 “ 4 in time lnp16q{0.015 “ 184,

confirming that the window in which competing subclones coexist is short.
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Discussion

Work of Sottoriva and Graham (2015) and their co-authors in Williams et al (2016)

has shown that in many cases an exponentially growing tumor has a 1{f site fre-

quency spectrum. This result has a simple derivation but the claim has drawn a

large amount of criticism. Many of these concern the quality of the data used. Here,

we have performed a mathematical analysis to show that given enough sequence

data the site frequency spectrum can be used to distinguish neutral evolution from

one specific type of selection. This analysis provides a useful complement to studies

based solely on simulation.

Here we have studied the two-type model of cancer evolution in which the expo-

nentially growing population of type 0 cells can mutate to a fitter type 1, and all cells

can experience neutral mutations. In this model there are three types of mutations

that we call 0, 1A, and 1. Type 0 mutations are neutral, occur to type 0 individuals,

and have a 1{f site frequency spectrum. Type 1 mutations are neutral, occur to type

1 individuals, and again have a 1{f site frequency spectrum. Type 1A mutations are

selective, occur to type 0 individuals, and result in type 1 individuals. When the two

types have growth rates λ0 ă λ1, where α “ λ0{λ1, then the site frequency spectrum

has the shape 1{fα due to 1A mutations and the type 0 neutral mutations present

in the founders of the type 1 population. These mutation types are more numerous

than the others.

McDonald, Chakrabarti, and Michor (2018) have used the two-type model to

suggest that models with selection can have a 1{f site frequency spectrum. Our

results in Section 3 show this is not true when type 1 mutations all have the same

fitness increase. Their model has random increases in fitness, but in Section 4 we

show that this feature does not significantly change the qualitative features of the

site frequency spectrum.
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Bozic, Paterson, and Waclaw (2019) study the two-type model and show that it

is difficult to capture a subclonal driver mutation at intermediate frequency. Their

model allows only one type 1A mutation. Using our simple analytical results and

computer simulations, we confirm that this prediction holds in the two type model

without that restriction.

Methods

2.4 Simple derivations of the 1{f spectrum

Sottoriva and Graham (2015) says that “the power law signature is common to

multiple tumor types and is a consequence of the effectively-neutral evolutionary

dynamics that underpin the evolution of a large proportion of cancers.” To explain

the source of the 1{f curve in an exponentially growing tumor, we give the derivation

of the 1{f frequency distribution from Williams et al (2016). They assumed that cells

divide at rate λ and use Nptq to be the number of cells at time t. If we assume that

the mutation rate is µ (which we assume takes into account their ploidy parameter

π), then the expected number of new mutations before time t, Mptq, satisfies

dM

dt
“ µλNptq.

Solving gives

Mptq “ µλ

ż t

0

Npsq ds.

Since Npsq “ eλs (we have set β in Williams et al (2016) to be 1 for simplicity),

we observe that a mutation that occurs at time s will have frequency e´λs in the

population. Evaluating the integral in the previous formula, we have

Mptq “ µpeλt ´ 1q.

26



Ignoring the ´1, if we set tf “ ´p1{λq log f to make Nptf q “ 1{f so that mutations

before time tf will have frequency ě f , then

Theorem 4 (Sottoriva and Graham 2015). The number of mutations with frequency

ě f is

Mptf q “ µ{f. (2.7)

Note that in this derivation, mutations occur only at birth. If we instead let

mutations happen continuously throughout a cell’s lifetime and call the mutation

rate ν, then Durrett (2013) has shown

Mptf q “
ν

λf
. (2.8)

From the derivation given above, we see that the 1{f site frequency spectrum

comes from the fact that mutations occur at a rate proportional to the size of the

population and the fact that the population is growing exponentially fast.

2.5 Proof of Theorem 2

Proof. We follow the derivation of Theorem 4. If we let Npsq “ Z˚1 psq, then the

number of type 1 mutations by time t satisfies

M1ptq “ ν

ż t

s1
1{2

Npsq ds « νV̄1

ż t

s1
1{2

exppλ1ps´ s
1
1{2qq ds

« νV̄1 exppλ1pt´ s
1
1{2qq{λ1

where we have again dropped the ´1 that comes from the lower limit. A mutation

that occurs at a time t ď tf “ s11{2 ´ p1{λ1q logpfV̄1q, when there are

ď Nptf q « V̄1 exppλ1ptf ´ s
1
1{2qq “ V̄1 expp´ logpfV̄1qq “ 1{f

individuals, will occur in a fraction of ě f of the population, so computing Mptf q

gives the desired result.
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2.6 Proof of Theorem 3

Recall from Durrett and Moseley (2010) that the points in the Poisson process in

Theorem 1 indicate the contributions of the various type one families to the limit V̄1

and that the poisson point process has mean measure ρ̄px,8q „ x´α. It then follows

from Pitman and Yor (1997) that the fraction of the population each 1A family con-

tains is distributed according to the Poisson-Dirichlet distribution PDpα, 0q. Letting

tAiui be sampled from PDpα, 0q, note that

SFS1Apfq “ E

«

ÿ

i

1rf,1spAiq

ff

Next, we use a trick from Pitman and Yor (1997). Dividing and multiplying by

Ai in the sum,

SFS1Apfq “ E

«

ÿ

i

1rf,1spAiq

Ai
Ai

ff

Viewing Ai as the size biased probability of picking family i and 1rf,1spAiq{Ai as the

value obtained from picking family i, we can simplify the expression in terms of the

size biased pick A˚.

E

«

ÿ

i

1rf,1spAiq

Ai
Ai

ff

“ E

„

1rf,1spA
˚q

A˚



Recalling that the size biased pick from PDpα, 0q has distribution Betap1 ´ α, αq

and noting that ΓpαqΓp1´ αq sinpπαq “ π, we conclude that
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SFS1Apfq “ E

„

1rf,1spA
˚q

A˚



“

ż 1

0

1

x
1rf,1spxq

x´αp1´ xqα´1

π{ sinpπαq
dx

“
sinpπαq

π

ż 1

f

x´α´1p1´ xqα´1dx

“
sinpπαq

π

„

´
1

a

ˆ

1

x
´ 1

˙αx“1

x“f

“
sinpπαq

πα

ˆ

1

f
´ 1

˙α

This concludes the proof. Note that it is possible to extend this method to determine

the site frequency spectrum of the type 1 mutations. If Ai ą f , then for a mutation

in family i to have frequency ą f , the mutation needs to have frequency ą f{Ai in

family i. Therefore, as per (2.8), on average there are νAi{pλ1fq type 1 mutations

in family i that reach frequency ą f and we get

SFS1pfq “ E

„

ν

λ1f
1rf,1spA

˚
q



“
ν

λ1f
p1´ If p1´ α, αqq

where If p1 ´ α, αq is the regularized incomplete beta function, also known as the

CDF of Betap1 ´ α, αq evaluated at f . For the values of f that concern us, the

regularized incomplete beta function is roughly linear and therefore yields a roughly

1{f shape for SFS1.

2.7 Passengers do not change the shape of the SFS

To show that the important 1A mutations happen soon after the first, and that

therefore all important 1A mutations have roughly the same number of passengers,
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consider two successful mutations at times s0 and s1 which have sizes W0e
λ1pt´s0q and

W1e
λ1pt´s1q. For the second mutation to be larger, we’d need W0{W1 ď eλ1ps0´s1q.

Since the cdf of the quotient of two exponentials with the same rate is P pW0{W1 ď

xq “ x{px` 1q, we find that

P
`

W0{W1 ď eλ1ps0´s1q
˘

“
1

eλ1ps1´s0q ` 1
.

If s1 “ s0 ` 4{λ1 “ s0 ` 200, then the probability that the second mutation is larger

is p1 ` e4q´1 “ 0.018. Thus, in our concrete example the most significant mutants

occur within 200 time units of the first successful mutation. The mean number of

mutations in 200 units of time is 200ν.
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3

Competitive Exclusion in a Seasonal Environment

This chapter is from Tung and Durrett (2022), which has been published in The-

oretical Populations Biology. Understanding the conditions that allow for multiple

species to coexist has been of longstanding interest. The competitive exclusion princi-

ple, sometimes called Gause’s principle, states that n resources can support at most n

species. For example, in Gause (1932)’s experiments with Paramecium, there was one

resource, food, and the species that better utilized the food Gause gave them drove

the others to extinction. However, in other situations, what constitutes a resource

is not always clear. Hutchinson (1961) drew attention to this through the ”Paradox

of the Plankton,” the enormous diversity of phytoplankton coexisting despite the

small number of resources in ocean water. Many explanations for the seeming failure

of the competitive exclusion principle have been explored in math models; see Arm-

strong and McGehee (1980) for ODE models and Hening and Nguyen (2020) for SDE

and piecewise deterministic Markov process models. Hutchinson’s explanation was a

changing environment; times when different species are favored would be considered

different niches.
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Chan, Durrett, and Lanchier (2009) considered a two-type contact process on

a square lattice with long range interaction and showed that for an open set of

parameters, two species can coexist in a model with two seasons. Their system is a

stochastic spatial analog of

1

ni

dni
dt
“ γiptqR ´ σi R “ 1´

k
ÿ

i“1

ni (3.1)

where the γi are periodic functions, R represents available space, and k is the number

of species. There is one resource R so in the temporally homogeneous case one

species will competitively exclude the others. In the case that the γiptq are constant

on r0, T1s, on rT1, T2s, and periodic, there are two seasons and therefore two niches;

so, it is not surprising that two species can coexist. They speculated that a fast

dispersing species could exploit the early part of a season before losing to a superior

competitor, allowing for three or more species to coexist. Here, we will prove that

this is not possible in the ODE model.

To do so, we consider a system that we call the three-species periodic Volterra

model

1

ni

dni
dt
“ γiptqRpn1, n2, n3, tq ´ σiptq, i “ 1, 2, 3 (3.2)

where ni is the population size of species i, γi is the growth rate gained per available

resource amount for species i, R is the amount of available resource, and σi is the

death rate of species i. R, γi, and σi are all periodic in t with period T . To prove

results about this system, we suppose that

A1 R is strictly decreasing with respect to population sizes n1, n2, and n3.

A2 R ď 0 when the population size of any one species is sufficiently large.
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A3 γiptq and σiptq are positive and upper bounded.

A4 R is continuous with respect to n1, n2, and n3.

A5 We have existence and uniqueness of solutions.

A1 ´ 3 are reasonable biologically. A1 states that a larger population means more

resource consumption, and therefore less available resource. A2 implies that there is

a limited amount of resources that cannot support infinitely large populations. A3

ensures that our birth and death functions have the proper sign and do not blow up.

A4´A5 are reasonable mathematically. The system (3.1) with three species satisfies

these conditions.

We also will not consider the case that there is a nontrivial triple ci such that

c1γ1 ` c2γ2 ` c3γ3 “

ż T

0

c1σ1 ` c2σ2 ` c3σ3dt “ 0

This case is also ignored when examining the competitive exclusion principle for the

Volterra model with multiple resources - see page 47 of Hofbauer and Sigmund 1998.

The reason is that this case represents a degenerate case where one of the species

populations can be written as a function that is increasing with respect to the other

two and is periodic in t with period T . This means the system can be reduced to a

two-species model. While coexistence is possible with two seasons under this case, its

equilibrium lacks stability and it loses its coexistence with the slightest perturbations

in γi or σi.

There are many different definitions of coexistence. For this paper, we say that

the system exhibits coexistence if none of the species go extinct for any positive

initial condition. A species goes extinct if limtÑ8 niptq “ 0.

We show the following theorems.
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Theorem 5. If the growth per resource rates γi are linearly dependent, then the

three-species periodic Volterra model does not exhibit coexistence.

The linear dependence assumption holds in the piecewise constant three-species

model of Chan, Durrett, and Lanchier and implies that the system does not ex-

hibit coexistence. Miller and Klausmeier (2017) also come to the same conclusion,

although their arguments are not rigorous.

Exact linear dependence is a strong condition, but our result is robust to slight

deviations; we extend Theorem 5 to the situation in which the γi are nearly linearly

dependent

Theorem 6. Given ci not all 0, σi, and R for the three-species periodic Volterra

model, there exists an ε ą 0 such that if

ż T

0

|c1γ1 ` c2γ2 ` c3γ3|dt ă ε

Then the model does not exhibit coexistence.

Section 3.1 gives an important lemma used to prove the two theorems. Section 3.2

proves the theorems and gives an example application.

3.1 Condition for Coexistence and Extinction

To determine if a species goes extinct, i.e., limtÑ8 niptq “ 0, we first focus on

nc11 n
c2
2 n

c3
3 . This function has been used to prove results on coexistence in other

models (Volterra 1928, Hofbauer 1981, Hofbauer and Sigmund 1998, Schreiber et al.

2011) and acts as an “average Lyapunov” function whose decrease implies average

movement towards faces with ci ą 0 and away from faces with ci ă 0. One context

this function has been used is to show competitive exclusion in the multi-resource

Volterra model, where γiR is replaced with
ř

j γijRj. To our knowledge, this is the

first time this function has been used to deal with time-periodic coefficients.
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Multiplying through (3.2) by ci, summing, and setting c ¨ γc ¨ γc ¨ γ “ c1γ1 ` c2γ2 ` c3γ3

and c ¨ σc ¨ σc ¨ σ “ c1σ1 ` c2σ2 ` c3σ3, we get

1

nc11 n
c2
2 n

c3
3

dnc11 n
c2
2 n

c3
3

dt
“ pc ¨ γc ¨ γc ¨ γqRpn1, n2, n3, tq ´ pc ¨ σc ¨ σc ¨ σq (3.3)

For some systems, an appropriate choice of c1, c2, and c3 will let us ignore R and

show that nc11 n
c2
2 n

c3
3 Ñ 0. Once this is established, we can use the following lemma

to preclude coexistence.

Lemma 7. The three-species periodic Volterra model (3.2) does not exhibit coexis-

tence iff there exist constants c1, c2, and c3 that are not all positive and

lim
tÑ8

nc11 n
c2
2 n

c3
3 “ 0.

The remainder of this section describes the ideas behind the proof of Lemma

7. We start with the easier direction. If the three-species periodic Volterra model

does not exhibit coexistence, then there exists a species, which we label as species

1, whose population approaches 0. Setting c1 “ 1 and c2 “ c3 “ 0 completes this

direction.

We now proceed with the other direction by considering the possible cases of the

signs of ci. Recalling that niptq is upper bounded by A2, if ci is nonpositive then ncii

is bounded from below. This implies that for case 1, where all ci are nonpositive,

then nc11 n
c2
2 n

c3
3 cannot approach 0 and we can ignore this case. This also implies that

for case 2, where only one of the ci is positive, which we label as species 1, then

nc11 n
c2
2 n

c3
3 Ñ 0 implies nc11 Ñ 0 as tÑ 8 and therefore that species 1 goes extinct.

Case 3, where two of the ci are positive and one is nonpositive, is more involved.

Let c1, c2 ą 0 and c3 ă 0. Using that ni is upper bounded once more,
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n1ptq
c1n2ptq

c2 Ñ 0 (3.4)

In order to show that species 1 or 2 goes extinct, we need to rule out the possi-

bility that species 1 and 2 take turns approaching 0, keeping lim supn1 “ n˚1 and

lim supn2 “ n˚2 positive. To do so, we note that by (3.4), paths from pn˚1 , 0q to p0, n˚2q

must travel near the origin after some time. Then, we show that if the trajectory of

pn1, n2q nears the origin and eventually leaves, then pn1, n2q will consistently leave

the origin in the same direction, without loss of generality towards pn˚1 , 0q. This

implies that n˚2 “ 0 and therefore species 2 goes extinct. The details of the proof of

case 3, as well as a visual overview of the proof, can be found in Section 3.3.

3.2 Applications

In this section, we use Lemma 7 to prove Theorems 5 and 6 and give examples of

systems where we can rule out coexistence.

Proof of Theorem 5. Since the γi are linearly dependent, we can find ci such that

c ¨ γc ¨ γc ¨ γ “ 0. Then by (3.3),

d

dt
rln pnc11 n

c2
2 n

c3
3 qs “ ´c ¨ σc ¨ σc ¨ σ

Flipping the signs of ci if necessary, we can assume without loss of generality that

c ¨ σc ¨ σc ¨ σ ą 0. This implies nc11 n
c2
2 n

c3
3 Ñ 0, so applying Lemma 7 completes the proof.

Application of Theorem 5: Contact process with seasons. One notable

example of a model where the γi are linearly dependent is the mean field limit of the

three-species two-seasons model that appears in Chan, Durrett, and Lanchier (2009)

- see (3.1). They showed that, in the absence of species 3, coexistence occurs when
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1

T

ż T

0

γ1p1´ n2q ´ σ1dt ą 0 and
1

T

ż T

0

γ2p1´ n1q ´ σ2dt ą 0

where ni is the nontrivial periodic solution to 1
ni

dni

dt
“ γiptqp1 ´ niq ´ σi. The first

integral represents the net growth rate of species 1 when n1 has been small for a long

time, giving n2 time to converge to n2. If the growth rate is positive, then species

1 won’t go extinct. Similarly, the second condition represents that species 2 has a

positive growth rate when n2 is small and n1 is near n1. Using the ODE result, they

showed that the same conditions guaranteed coexistence for the two-type contact

process on the square lattice with long range interactions.

Chan, Durrett, and Lanchier also conjectured that three species could coexist

with two seasons. This could be true in their stochastic model, but it does not hold

in the mean field limit. To prove this, since there are only two seasons and γi is a

function of the season, the space of possible γi has dimension 2. There are three

species, so the γi are linearly dependent. Therefore, by Theorem 5 the three species

cannot coexist.

Readers of Chan, Durrett, and Lanchier will note that their conjecture is sup-

ported by a numerical simulation, which seems to showcase coexistence. However,

this simulation should not be taken as evidence, since the parameters are not ar-

bitrary. In more detail, in their simulation, species 1 has growth rates of p3, 1q,

species 2 has growth rates p1, 3q, and species 3 has growth rates p2, 2q for seasons

1, 2 respectively. All species have death rate 1. If we choose ccc “ p1, 1,´2q, then

we not only get c ¨ γc ¨ γc ¨ γ “ 0 but also c ¨ σc ¨ σc ¨ σ “ 0. This would make n1ptq
c1n2ptq

c2n3ptq
c3

an invariant, allowing for coexistence. In fact, it behaves in a periodic orbit; sub-

stituting n3 “ C
?
n1n2 back into the differential equations reduce the system to a

two-species system, which Mottoni and Schiaffino (1981) showed to always approach

a periodic orbit. However, as noted earlier in the dissertation, this is not considered
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for coexistence by ecologists due to its lack of robustness and stability.

Proof of Theorem 6. In the case where ci are not all the same sign, note that

|Rpn1, n2, n3, tq| is bounded since R has monotonicity and ni is bounded. Integrating

(3.3), we get

ln

„

n1pt` T q
c1n2pt` T q

c2n3pt` T q
c3

n1ptqc1n2ptqc2n3ptqc3



“

ż t`T

t

pc ¨ γc ¨ γc ¨ γqR ´ pc ¨ σc ¨ σc ¨ σqds

ď

ż T

0

|c ¨ γc ¨ γc ¨ γ|max |R| ´ pc ¨ σc ¨ σc ¨ σqds

(3.5)

Then, flipping the signs of ci if necessary, setting

ε ă
1

max |Rpn1, n2, n3, tq|

ż T

0

c ¨ σc ¨ σc ¨ σds

will force n1pt ` T qc1n2pt ` T qc2n3pt ` T qc3 ă n1ptq
c1n2ptq

c2n3ptq
c3 , and therefore

nc11 n
c2
2 n

c3
3 Ñ 0. Applying Lemma 7 completes the proof.

In the case where ci all have the same sign, we assume without loss of generality

that ci are all positive. Then,

ln

„

n1pt` T q
c1

n1ptqc1



“

ż t`T

t

c1γ1R ´ c1σ1ds

ď

ż T

0

pc ¨ γc ¨ γc ¨ γqmax |R| ´ c1σ1ds

(3.6)

Setting

ε ă
1

max |Rpn1, n2, n3, tq|

ż T

0

c1σ1ds

forces n1ptq Ñ 0 as tÑ 8, which implies extinction of species 1 and no coexistence.
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Application of Theorem 6: Numerical example. To conclude this section,

we use a concrete example. Consider the system

1

n1

dn1

dt
“ γp3, 5, tqRpn1, n2, n3q ´ 1

1

n2

dn2

dt
“ γp4.5, 3.4, tqRpn1, n2, n3q ´ 1

1

n3

dn3

dt
“ γp4.1, 3.78, tqRpn1, n2, n3q ´ 1

R “ 1´ n1 ´ n2 ´ n3

γpa, b, tq “

$

’

’

’

&

’

’

’

%

a 0 ă t ď 0.6

apb{aqpt´0.6q{0.4 0.6 ă t ď 1

b 1 ă t ď 1.6

bpa{bqpt´1.6q{0.4 1.6 ă t ď 2

The system can be viewed as an extension of the two-season model - see Fig 3.1A;

instead of making γi piecewise constant, γi now has a transition period between the

two seasons, making the γi linearly independent. However, the γi are close enough

to being linearly dependent that we can preclude coexistence.

To show that they cannot coexist, we mimic the proof of Theorem 6. We first

bound R from above. Note that γi ě 3. This implies that when R ą 1{3, then

dni{dt ą 0 and therefore dR{dt ă 0. Thus, after some time, R ď 1{3. Next, we

set c1 “ ´1, c2 “ ´916{307, and c3 “ 1230{307; these were chosen to make the γi

linearly dependent during times r0, 0.6s Y r1, 1.6s. Now, we integrate.

ż T

0

c ¨ σc ¨ σc ¨ σdt “
14

307
« 0.046

max |Rpn1, n2, n3, tq|

ż T

0

|c ¨ γc ¨ γc ¨ γ|dt ď 0.041
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Figure 3.1: Example system given in Section 3.2. A) One period of growth
functions γi. Instead of the two-season model considered in Theorem 5, we add
transition seasons to make the γi continuous. B) Measure of linear dependence
c ¨ γc ¨ γc ¨ γ for our choice of c1, c2, and c3. Since c ¨ γc ¨ γc ¨ γ is sufficiently close to 0, we can
preclude coexistence. C) Population dynamics. Species 3 goes extinct. D) Population
dynamics zoomed. The populations oscillate over time due to changes in γi.

Since 0.041 ă 0.046, by (3.5), nc11 n
c2
2 n

c3
3 Ñ 0. Applying Lemma 7 implies that one of

the species goes extinct. This can be seen in Figure 3.1.

3.3 Proof of Lemma 7

Here, we give the details for case 3 in the proof of Lemma 7. For a visual overview

of the proof, see Figure 3.2. We start by proving the following two lemmas.

Lemma 8. Let n1ptq
c1n2ptq

c2 ă C. The time needed for n1ptq
c1 to pass through the

interval D1 “ rC{ε, εs approaches infinity as C Ñ 0.

Lemma 9. If pn1, n2q passes through the region D “ tpn1, n2q|0 ď n1ptq
c1 , n2ptq

c2 ď
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Figure 3.2: Visual for the proof of case three of Lemma 7. From (3.4), after
sufficiently large time, the solution must remain below the curve nc11 n

c2
2 “ C. To

disprove coexistence, we need to show that pnc11 , n
c2
2 q cannot move between pn˚1 , 0q

and p0, n˚2q. This is equivalent to proving that the solution cannot move from the blue
line to the green line, or vice versa. Lemma 11 shows that spending sufficient time
between the green and blue lines causes n1pt`T q{n1ptq to converge to being positive
or negative. Lemma 8 shows that sufficient time for convergence is eventually always
achieved. We now have two cases. If the sign is positive, then the solution will not be
able to move from blue to green; n1pt`T q{n1ptq will become positive before reaching
the red line, preventing the solution from reaching green. Similarly, if the sign is
negative, then the solution will not be able to move from green to blue
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εu starting at some sufficiently large time τ , then n3pτq is bounded from below.

We define passing through D1 as moving from n1ptq
c1 “ ε to n1ptq

c1 “ C{ε or

vice versa without leaving D1 and passing through D as moving from n1ptq
c1 “ ε to

n2ptq
c2 “ ε or vice versa without leaving D. To prove Lemma 8, note that

c1 max
t
rγ1Rp0, 0, 0, tq ´ σ1s ą

d

dt
rln pnc11 qs ą c1 min

t
rγ1RpM,M,M, tq ´ σ1s

Letting the RHS be pmin and LHS be pmax, the amount of time spent traveling from

ε to C{ε and the other direction is lower bounded by

1

pmin
ln pC{ε2q and

1

pmax
ln pε2{Cq

respectively. As C approaches 0, both expressions, and therefore the time for pass

through D1, approach infinity.

Now, we prove Lemma 9. By Lemma 8 and (3.4), if τ is sufficiently large,

pn1pτq, n2pτqq cannot pass through D by time τ ` T . We now aim to show that

if we start on D where n1pτq
c1 “ ε, then if n3pτq is small, n1pτ ` T q

c1 ą ε and there

is no passing through; the other side, where n2pτq
c2 “ ε can be proven similarly.

Note that

ln

„

n1pτ ` T q
c1

n1pτqc1



“ c1

ż τ`T

τ

γ1Rpn1, n2, n3, tq ´ σ1dt

ě c1

ż τ`T

τ

γ1Rpε
1{c1 , ε1{c2 , n3, tq ´ σ1dt

When ε is sufficiently close to 0 and n3 “ 0, the RHS must be positive, else it would

imply that species 1 would go extinct even without competition. By continuity of R

(A5), there exists some constant a ą 0 where the RHS is still positive when n3pτq ď a,

and therefore n1pτ ` T q ą n1pτq. This would make n1 leave D without passing
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through. As such, to pass through D, there is a lower bound on the population of

species 3.

In order to prove Lemma 11, we first need an understanding the dynamics of the

system when only one species is present.

Lemma 10. When n1 “ n2 “ 0, there exists at most 1 nontrivial periodic orbit n˚3

for species 3. If n˚3 exists and we have a nontrivial solution n˚˚3 , then n˚˚3 Ñ n˚3 .

Proof. For simplicity of notation, we write Rp0, 0, n3, tq as Rpn3, tq. Suppose there

are two nontrivial solutions n˚3 and n˚˚3 , with n˚3 being a periodic orbit. Then

d lnpn˚3q

dt
“ γ3Rpn

˚
3 , tq ´ σ3

d lnpn˚˚3 q

dt
“ γ3Rpn

˚˚
3 , tq ´ σ3

Subtracting, we get

d lnpn˚3{n
˚˚
3 q

dt
“ γ3rRpn

˚
3 , tq ´Rpn

˚˚
3 , tqs

WLOG n˚3p0q ě n˚˚3 p0q. By the uniqueness condition, n˚3ptq “ n˚˚3 ptq for any t iff

n˚3p0q “ n˚˚3 p0q. As such, n˚3ptq ě n˚˚3 ptq, which implies Rpn˚3 , tq´Rpn
˚˚
3 , tq ď 0, with

equality only when n˚3 “ n˚˚3 .

We first establish that n˚3 is a unique periodic orbit. If n˚˚3 is also a periodic orbit,

then

0 “

ż T

0

d lnpn˚3{n
˚˚
3 q

dt
dt “

ż T

0

γ3rRpn
˚
3 , tq ´Rpn

˚˚
3 , tqsdt

Since γ3ptq ą 0, this implies n˚3 “ n˚˚3 .

To address the second claim, if n˚˚3 is not a periodic orbit, then note that
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0 ą

ż T

0

γrRpn˚3 , tq ´Rpn
˚˚
3 , tqsdt “

ż T

0

d lnpn˚3{n
˚˚
3 q

dt
dt “ ´ lnpn˚˚3 pT qq ` lnpn˚˚3 p0qq

As such, n˚˚3 is increasing every cycle and approaches n˚.

Having established the existence and uniqueness of an equilibrium when only one

species is present, we are now ready to prove Lemma 11.

Lemma 11. For sufficiently small ε, when pn1, n2q is passing through D, then after

finite time s,

n1pτ ` T q

n1pτq
“

ż T`τ

τ

γ1Rpn1, n2, n3, tq ´ σ1dt and

ż T

0

γ1Rp0, 0, n
˚, tq ´ σ1dt

have the same sign, where n˚ is the nontrivial equilibrium solution for n3 in the

absence of the other two species.

To prove, we first note that by monotonicity,

Rpε1{c1 , ε1{c2 , n3, tq ă Rpn1, n2, n3, tq ď Rp0, 0, n3, tq

Let Rp0, 0, n3, tq ´ Rpε1{c1 , ε1{c2 , n3, tq ă m. Then by the ODE comparison theorem,

we know that n3 is bounded between the solutions for

1

n3

dn3

dt
“ γ3pRp0, 0, n3, tq ´mq ´ σ3,

1

n3

dn3

dt
“ γ3Rp0, 0, n3, tq ´ σ3

Let n˚ be the equilibrium solution for the upper bound and nm the solution for

the lower bound. By continuity of R we can find an ε that lets m be arbitrarily

small. Applying Lemma 10, nm must approach its equilibrium. Then,
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0 “ lim
τÑ8

ż τ`T

τ

γ3Rp0, 0, nm, tq ´ pσ3 ` γ3mqdt “

ż T

0

γ3Rp0, 0, n
˚, tq ´ σ3

Rearranging the above,

lim
τÑ8

ż τ`T

τ

γ3pRp0, 0, nm, tq ´Rp0, 0, n
˚, tqqdt “ m

ż T

0

γ3dt

which approaches 0 as ε approaches 0. Noting that γ3 ą 0 and Rp0, 0, n˚, tq ă

Rp0, 0, nm, tq implies

lim
εÑ0

lim
τÑ8

ż τ`T

τ

Rp0, 0, nm, tq ´Rp0, 0, n
˚, tqdt “ 0

and subsequently

lim
εÑ0

lim
τÑ8

ż τ`T

τ

γiRp0, 0, nm, tq “

ż T

0

γiRp0, 0, n
˚, tq

To show that the integrals have the same sign happens after time s regardless

of n3p0q at time of entering D, recall from Lemma 9 that n3p0q has a nonzero lower

bound m and the upper bound M . By monotonicity, nm will take longest to reach the

same sign when nmp0q “ M or m. Take s to be the longer time. As nm ď n3 ď n˚,

we have our desired result.

We are now ready to prove extinction in case 3. By Lemma 11, n1pt ` T q{n1ptq

will always be positive or negative after time s in D, which we know will happen

from Lemma 8. If the sign is negative, then nc11 would shrink before reaching ε,

and therefore the solution cannot move from p0, n˚2q to pn˚1 , 0q. If the sign is positive,

then nc11 would grow before reaching C{ε, which implies that nc22 ă ε and the solution

cannot move from pn˚1 , 0q to p0, n˚2q. As such, we have a contradiction, and the lim sup

of n1 or n2 is 0. This concludes case 3.
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4

Conclusion

In this dissertation we studied two problems in mathematical biology. In chapter

2, we studied the two-type model of cancer evolution in which the exponentially

growing population of type 0 cells can mutate to a fitter type 1, and all cells can

experience neutral mutations. In this model there are three types of mutations that

we call 0, 1A, and 1. Type 0 mutations are neutral, occur to type 0 individuals, and

have a 1{f site frequency spectrum. Type 1 mutations are neutral, occur to type 1

individuals, and again have a 1{f site frequency spectrum. Type 1A mutations are

selective, occur to type 0 individuals, and result in type 1 individuals. When the two

types have growth rates λ0 ă λ1, where α “ λ0{λ1, then the site frequency spectrum

has the shape 1{fα due to 1A mutations and the type 0 neutral mutations present

in the founders of the type 1 population. These mutation types are more numerous

than the others.

As our approach focused on theory, there are many potential applications that can

be explored. One is to see whether the 1{fα shape can be seen in data, and whether

a log-log plot would serve as a better test for neutrality than the test introduced

by Williams et al (2016), which involved doing linear fits of the SFS against 1{f
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and checking the resulting R2 value. If so, then it would also be interesting to find

which cancers exhibit such patterns, and what about their growth or structure makes

this apparent. That being said, many factors could prevent observation of the site

frequency spectrum. For example, α may be much closer to 1 than in our examples,

making it hard to observe. Another example is that since our results are for when

tÑ 8, we can expect a 1{f component from type 0 mutations to the site frequency

spectra; the site frequency spectra of type 1 and type 1A are unlikely to differ much

since the impactful 1A mutations happen at largely the same time.

In chapter 3, we studied a three species resource competition ODE model with

periodic environment. We found that when the growth per resource rates are (almost)

linearly dependent, then there is no coexistence. A corollary of this theorem is that

three species cannot coexist when there are only two seasons. Our work also suggests

that the numerical simulation used to back the conjecture in Chan, Durrett, and

Lanchier (2009) should be taken with caution.

Future directions for this project include extending beyond three species, giving

conditions for which species will go extinct, and adding stochasticity to the model.

Unfortunately, the idea used in the proof of case 3 for Lemma 7 does not generalize

beyond three species. For example, consider when c1, c2, c3 are positive and c4 is

negative. We could crack this case when there were only 3 species since coexistence

meant species 1 and 2 would have to exit the box of length ε around the origin in

two different ways. In the 4 species case though, coexistence does not imply leaving

a region in two different directions; one can imagine trajectory pn1, n2, n3q making

clockwise loops. For determining which species goes extinct, note that case 3 does not

imply which species goes extinct. Work on this problem is in progress. For adding

stochasticity, this can be done in a few ways. One is to revert to a spatial model

as described in Chan, Durrett, and Lanchier, especially one with smaller interaction

range. Another is to keep working with the ODE model but adding stochasticity for
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the length of the seasons. I conjecture that when the seasons are determined by a

piecewise deterministic markov chain, our results still hold; case 1 and 2 still hold,

and for case 3, the increase in difficultly for exiting the ε box over time should allow

a proof using Borel-Cantelli.
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