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Abstract

This dissertation consists of two projects in mathematical biology. The first project

studies tumor heterogeneity through the site frequency spectrum, the expected num-

ber of mutations with frequency greater than f . Recent work of Sottoriva, Graham,

and collaborators have led to the controversial claim that exponentially growing tu-

mors have a site frequency spectrum that follows the 1{f law consistent with neutral

evolution. This conclusion has been criticized based on data quality issues, statis-

tical considerations, and simulation results. Here, we use rigorous mathematical

arguments to investigate the site frequency spectrum in the two-type model of clonal

evolution. If the fitnesses of the two types are �0   �1, then the site frequency

spectrum is c{f� where � � �0{�1. This deviation from the 1{f law is due to the

advantageous mutations that produce the founders of the type 1 population; mu-

tations within the growing type 0 and type 1 populations still follow the 1{f law.

Our results show that, in contrast to published criticisms, neutral evolution in an

exponentially growing tumor can be distinguished from the two-type model using

the site frequency spectrum.

The second project considers whether three species can coexist in a resource com-

petition model with two seasons. Investigating how temporal variation in environ-

ment affects species coexistence has been of longstanding interest. The competitive

exclusion principle states that n niches can support at most n species, but what con-

stitutes a niche is not always clear. For example, Hutchinson in 1961 drew attention

iv



to the diversity of phytoplankton coexisting despite the small number of resources in

ocean water. Hutchinson then suggested that this could be explained by a changing

environment; times when different species are favored would be considered different

niches. In this paper, we examine a model where three species interact with each

other solely through the consumption of one resource. The growth per resource rates,

death rates, resource rates, and methods of resource consumption vary periodically

through time. We give a necessary and sufficient condition for the coexistence of all

three species. In particular, this condition rules out coexistence for the mean field

limit of a three species two seasons model studied by Chan, Durrett, and Lanchier

in 2009.
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1

Introduction

In this dissertation, we examine the frequency of mutations in cancer tumors in

Chapter 2 and the preclusion of coexistence in a seasonal ecological setting in Chapter

3. Here, we give a brief summary of our results and relate them to previous work.

In Chapter 2, we take a theoretical perspective on the frequency of mutations

in a two-type branching process and compare it to the frequencies expected from

neutral evolution. Our work suggests that the mutation frequencies expected from

neutral evolution are not as easy to come by from other models as some may suggest.

This chapter is from Tung and Durrett (2021), which has been published in PLOS

Computational Biology.

In Chapter 3, we examine a conjecture from Chan, Durrett, and Lanchier (2009)

which claimed that it was possible for three species to coexist in a two season contact

process model on a lattice with long range interactions. To do so, we take a general-

ized ODE model and show that there cannot be coexistence if the growth rates are

(almost) linearly dependent. A corollary of this result is that three species cannot

coexist in the two season model. This chapter is from Tung and Durrett (2022),

which has been published in Theoretical Populations Biology.
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1.1 Tumor Evolution and Heterogeneity

Traditionally, cancers were thought to evolve through a series of selective sweeps.

Over enough time, a cell in the tumor acquires a mutations that makes it fitter than

the others. This allows the cell to outcompete the others in the tumor, and allows

the mutation to sweep through the population. This point of view was introduced

in Nowell (1976) using leukemia as an example. As noted in Noble et al. (2022),

leukemia is conducive to selective sweeps because of the lack of spatial effects in

leukemia. This is in contrast to spatially structured cancers like colorectal cancer,

where fitter cells have difficulty sweeping because of their glandular structure.

1.1.1 Big Bang

In contrast to selective sweeps, Sottoriva et al (2015) instead proposed the Big Bang

model, where tumors have all the mutations needed for growth present at the be-

ginning of the tumor’s growth. A consequence of this model is that mutations are

effectively neutral, otherwise we would see sweeps.

Following up on the introduction of the Big Bang model, Sottoriva and Graham

(2015) looked at the site frequency spectrum (SFS), the number of mutations with

frequency ¥ f , of the big bang model and described what they called “a pan-cancer

signature of neutral tumor evolution:” the SFS is proportional to 1{f . The derivation

of this result is remarkably simple. They assumed that cells grow exponentially at

rate � and use Nptq to be the number of cells at time t. If we assume that the

mutation rate is �, then the expected number of new mutations before time t, Mptq,

satisfies

dM

dt
� ��Nptq:
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Solving gives

Mptq � ��

» t

0

Npsq ds:

Since Npsq � e�s, we observe that a mutation that occurs at time s will have fre-

quency e��s in the population. Evaluating the integral in the previous formula, we

have

Mptq � �pe�t � 1q:

Ignoring the �1, if we set tf � �p1{�q log f to make Nptf q � 1{f so that mutations

before time tf will have frequency ¥ f , then the number of mutations with frequency

¥ f is

Mptf q � �{f

Note that in this derivation, mutations occur only at birth. If we instead let

mutations happen continuously throughout a cell’s lifetime and call the mutation

rate �, then, as shown in Durrett (2013),

Mptf q �
�

�f
: (1.1)

From the derivation given above, we see that the 1{f site frequency spectrum

comes from the fact that mutations occur at a rate proportional to the size of the

population and the fact that the population is growing exponentially fast.

1.1.2 Evidence and Controversy over Big Bang Prevalence

Williams et al. (2016) found that 323 of 904 samples from 14 cancer types showed

excellent straight line fits (R2 ¥ 0:98) when the cumulative number of mutations

of frequency ¥ f is plotted versus 1{f . This can be seen in Figure 2B in their

paper. This paper has been cited 200 times, but among these works, there are a
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number of papers criticizing the result. See Noorbakhsh and Chuang (2017), Wang

et al (2017), and Bozic, Paterson, and Waclaw (2019). The December 2018 issue of

Nature Genetics alone contains three letters (Balaparya and De 2018, Tarabichi et al

2018, McDonald, Chakrabarti, and Michor 2018) raising objections to the conclusion.

Four common criticisms are

i Inferring the allele frequency f requires accurate estimates of local copy number

and ploidy. In addition, Wang et al (2017) point out that local samples may not

be indicative of overall frequencies.

ii Failure to reject the null model is not the same as proving it is true. To quote

McDonald, Chakrabarti, and Michor (2018) “The fact that a model of neutral

evolution leads to a linear relationship between Mpfq (the number of mutations

with frequency¥ f) and 1{f does not imply : : : the presence of neutral evolution.”

iii Tarabichi et al (2018) applied methods that look at the dN{dS ratio, which

compares the number of nonsynonymous and synonymous mutations, to look

for signs of selection. They claim to have found significant signs of selection in

tumors that were classified as neutral. However when the analysis was repeated

on publicly available pancreatic cancer data, Graham, Sottoriva et al found no

values significantly different from 1.

iv Tarabichi et al (2018) say “the deterministic models of tumor growth described

by Williams et al (2016) rely on strong biological assumptions. Using branching

processes to simulate neutral and nonneutral growth, they show that R2 ¡ 0:98

is neither necessary nor sufficient for neutral evolution.”

In this thesis we address the fourth point by examining the site frequency spectrum

of a two type branching process. More specifically, the model features two cell types,

type 0 and type 1. The process starts with type 0 cells reproducing at rate �0.
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Over time, type 0 cells undergo type 1A mutations and generate type 1 cells, which

reproduce at rate �1 ¡ �0. Type 1 cells with the same type 1A mutation belong to the

same family. Both type 0 and type 1 cells undergo neutral mutations, which we call

type 0 and type 1 mutations. As time approaches infinity, the type 0 cells approach

0% of the population and the type 1A families partition the type 1 population. As

such, the SFS consists of three mutation types - type 1A mutations, type 1 neutral

mutations that occur in the type 1 population and are constrained to a 1A family,

and type 0 neutral mutations that occur in the type 0 population and survive by

piggy-backing off a type 1A mutation.

1.1.3 Durrett and Moseley (2010)

This is not the first work to look at the two-type branching process. Durrett and

Moseley (2010) look at the same process without neutral mutations.

There are two results from Durrett and Moseley (2010) that we will later use. The

first is that the first 1A mutation will happen around the same time. The second is

that the relative sizes of the families can be described as the points in a poisson point

process with mean measure �px;8q � x��, where � � �1{�0. As will be discussed

in Chapter 2, this second fact implies that 1A families follow the Poisson-Dirichlet

distribution.

1.1.4 Poisson-Dirichlet Distribution

The Poisson-Dirichlet distribution, also written as PDp�; �q, generates random par-

titions with total length 1, and has size biased order

pW1;W1W2;W1W2W3; :::q

where Wi � Betap1� �; � � i�q are independent and Wi � 1�Wi.

One way to generate PDp�; �q is to use a generalized Chinese restaurant process.

5



We start with one person at one table. If there are n seated individuals and k tables,

the next person to enter is seated at a new table with probability p��k�q{pn� �q or

seated at existing table i with probability pni � �q{pn � �q, where ni is the number

of people at table i. PDp�; �q is formed by the proportion of people sitting at each

table as the number of people approaches infinity.

To show that the two definitions agree, note that if we focus on the proportion of

people at table 1 and group tables 2 through infinity under one table, we end up with

a process where table 1 attracts people proportional to n1 � � and table 2 attracts

people proportional to n2����. This is equivalent to the Polya Urn with initial state

1�� balls of one color and ��� of the other color. Since the proportion of balls of one

color in the Polya Urn model is well known to have distribution Betap1��; ���q, the

proportion of people at table 1 is W1. Similarly, by conditioning on tables 1 through

i� 1, combining tables i� 1 onward, and comparing table i with i� 1, we use Polya

Urn again to show that the proportion of people at table i is W1W2 � � �Wi�1Wi.

The PD distribution has also been constructed using branching processes. For

example, in the case that 0 ⁄ � ⁄ 1 and � � 0, consider two individual types, novel

and clone. Novel individuals produce novel offspring at rate � and clonal offspring

at rate 1��. Clones produce clones at rate 1. In this model, a new novel offspring is

equivalent to a person being seated at a new table, and clone offspring are people who

sit at an existing table. Comparing the probabilities of whether the next offspring is

novel or belongs to the family tree of novel offspring i show that this is equivalent

to the generalized Chinese restaurant process.

For additional information, see Jim Pitman’s book Combinatorial Stochastic Pro-

cesses.
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1.2 The Competitive Exclusion Principle

The competitive exclusion principle (CEP), sometimes called Gause’s principle, states

that n niches can support at most n species. In the case of Gause (1932)’s ex-

periments with two species of Paramecium, the one niche present was clear; the

species that better utilized the food Gause gave them drove the others to extinction.

However, it is not always evident what can be considered a niche. George Evelyn

Hutchinson (1961) drew attention to this with the “Paradox of the Plankton” - al-

though there are at most 20 resources relevant to the growth of phytoplankton, there

are hundreds of plankton species coexisting in ocean water. Hutchinson’s observation

ignited interest in a mathematical approach to when CEP holds.

One of the earliest mathematical models used to justify the CEP was Volterra

(1928)’s model, which featured n species with populations xi interacting through

competition over a resource R.

1

xi

dxi
dt
� iR � �i

R � Rmax � F px1; x2; :::; xnq

There is a maximum amount of resource Rmax. Each species grows at a rate lin-

early dependent on resource R and dies at rate �i. The amount of resource in

use F px1; x2; :::; xnq is a nondecreasing function of the species abundances. Volterra

showed that the species with the largest Rmax � �i{i value wins.

1.2.1 Volterra’s Assumptions

In light of the “Paradox of the Plankton,” many have tried to understand what

assumptions in Volterra’s model eliminated coexistence. Armstrong and McGehee

(1980) considered many assumptions, listed below
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i The dynamics can be described from species densities.

ii Species interact only through the species

iii The system is spatially homogeneous

iv The resource is uniform in quality

v The growth rates depend linearly on the quantity of resources.

vi There is no time dependence in interactions.

When one of these assumptions is violated, the competitive exclusion principle may

no longer hold. (i) rules out age structure complications. (ii) rules out the possibility

of predation, where one species can count as a resource for another species, and sym-

biosis. (iii) prevents coexistence in a patch model where the patches favor different

species. (iv) prevents different resources being more useful to different species. (v)

is less straightforward. Suppose dn1{dt is a concave increasing function with respect

to R and is 0 when R � R1. Also suppose dn2{dt is a linear increasing function with

respect to R and is 0 when R � R2 ¡ R1. When species 2 is at equilibrium, since

R2 ¡ R1, species 1 has a positive growth rate and won’t go extinct. When species 1

is at equilibrium, the average amount of resources available has to be greater than R1

due to Jensen’s inequality. If this average is greater than or equal to R2, then species

2 will have enough resources to grow. (vi) rules out how seasons can create additional

niches. See Hening and Nguyen (2020) for the relevance of the assumptions under

related SDE and piecewise deterministic Markov process models.

1.2.2 Temporal Heterogeneity

The assumption that we focus on in this paper is the one Hutchinson proposed to

resolve the Paradox of the Plankton - temporal variation. By allowing the functions
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i; �i and R to be functions of time, different species can be favored at different

times, which enables coexistence. Since many environments are periodic, we focus

on when the functions have period T .

To demonstrate how temporal heterogeneity could encourage coexistence, Arm-

strong and McGehee (1976) considered a simple n season system where n species

could survive on one resource. We define a season as an interval of time under which

the parameters do not exhibit explicit time dependence. The system is

1

ni

dni
dt
� iRgiptq � �i; R � Rmax �

k
‚

i�1

sini

where R represents available resource, k is the number of species, and giptq is a func-

tion of period T that is equal to 1 on the interval rai; bis and is equal to 0 on the

intervals r0; ais and rbi; T s. When giptq � 1 and there is no temporal heterogeneity, we

recover Volterra (1928)’s model, one of the earliest models for justifying the compet-

itive exclusion principle; the species with the highest Rmax��i{i wins. When there

is temporal heterogeneity, coexistence becomes possible. Intuitively, giptq indicates

whether species i is in a growing season or declining season. By having disjoint grow-

ing seasons, one species would quickly grow while the others would quickly shrink,

preventing them from effectively competing with the currently growing species. Arm-

strong and McGehee then constructively proved that in their model, parameters

could be found that allowed n species to coexist given n seasons. Coexistence here

is an example of the storage effect proposed in Chesson (1994), which outlines how

species-specific responses to the environment, covariance between environment and

competition, and buffered population growth can contribute to coexistence. The

name of the storage effect comes from how “storing” more benefits of advantageous

times than is “spent” during disadvantageous times can enable coexistence.
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1.2.3 Lotka-Volterra

The two-species system in CDL is a special case of the two-species periodic Lotka-

Volterra model whose population sizes n1 and n2 are described by

1

n1

dn1

dt
� b1ptq � a11ptqn1 � a12ptqn2

1

n2

dn2

dt
� b2ptq � a21ptqn1 � a22ptqn2

where biptq and aijptq are periodic functions with period T . In the case that a2i � ka1i,

the Lotka-Volterra model can be written as a periodic version of Volterra (1928)’s

model. Cushing (1980) studied the stability of periodic solutions by generalizing the

bifurcation diagrams for the constant coefficient Lotka-Volterra model, and gave an

example of when there is coexistence in the periodic Lotka-Volterra model, but one of

the species goes extinct when temporal variation is removed by replacing the periodic

parameters with their average. Mottoni and Schiaffino (1981) study the same model

using a geometric approach and, in addition to recovering some of Cushing’s results,

also prove that any solution approaches a solution with period T .

1.2.4 Chan, Durrett, and Lanchier (2009)

Chan, Durrett, and Lanchier (2009) considered a two season two-type contact process

on a square lattice with long range interaction. In more detail, the model takes place

on the grid Z
2{L where L is large. There are two species, 1 and 2. If species i

occupies site x, then it dies at rate �i. If site x is empty, it is populated by species

i at rate iptqfi where the growth rate for species i, i, changes based on which of

the two seasons it is, and fi denotes the fraction of sites within distance 1 of x that

is occupied by species i. The seasons both have length D and alternate. The mean
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field model of their system is

1

ni

dni
dt
� iptqR � �i R � 1�

k
‚

i�1

ni (1.2)

where R represents available space and k is the number of species.

There is one resource R so in the temporally homogeneous case one species will

competitively exclude the others. Chan, Durrett, and Lanchier showed that for an

open set of parameters, two species can coexist in a model with two seasons. The

ecological explanation is that the two seasons form two niches. Defining ni as the

equilibrium solution for species i when the other species is absent, the condition for

coexistence is

1

2D

» 2D

0

1ptqp1� n2qdt ¡ �1;
1

2D

» 2D

0

2ptqp1� n1qdt ¡ �2

which follows from the idea of invasion. Species 1 is able to invade species 2 if the

population of species 1 increases when species 1 has a near zero population and

species 2 is at equilibrium. If species 1 can invade species 2, then even if species

1 approached extinction, species 2 will approach its equilibrium and the population

of species 1 will rebound. The conditions can therefore be understood as whether

the species can invade each other; the first integral gives the average growth rate of

species 1 when species 2 is at equilibrium, and the condition checks if it is greater

than the death rate �1.

Lastly, they conjectured that a fast dispersing species could exploit the early part

of a season before losing to a superior competitor, allowing for three or more species

to coexist. This is backed with simulation evidence in Figure 1 of their paper. Here,

we will prove that this is not possible in the ODE.
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Table 1.1: Parameters from Figure 1 in Chan, Durrett, Lanchier (2009). In
their simulation used to support their conjecture that three species can coexist with
two seasons, they looked at a system on a 400 � 400 lattice with interaction range
L � 200, season lengths D � 10, and death rates � � 1. The growth rates  in each
season are outlined below.

Species Season 1  Season 2 
1 3 1
2 1 3
3 2 2

12



2

A Two Type Branching Process Model of Tumor
Heterogeneity

This chapter is from Tung and Durrett (2021), which has been published in PLOS

Computational Biology. Following up on the introduction of the Big Bang model

by Sottoriva et al (2015), Sottoriva and Graham (2015) described what they called

“a pan-cancer signature of neutral tumor evolution:” the number of mutations with

frequency ¥ f will have the form c{f . The derivation of this result is remarkably

simple and is given in Section 2.4 in Methods. Williams et al. (2016) found that

323 of 904 samples from 14 cancer types showed excellent straight line fits when the

cumulative number of mutations of frequency ¥ f is plotted versus 1{f . See Figure

2B in their paper. This paper has been cited 200 times, but among these works,

there are a number of papers criticizing the result - see Section 1.1.2. The criticism

we focus on is the claim that other nonneutral models of evolution pass the test

proposed by Williams et al.

To try to shed some light on the controversy, we will do a mathematically rigorous

computation of the site frequency spectrum produced by the two-type model of clonal
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evolution. We will describe the model in Section 2.1. The two-type model and its

m-type generalization have been extensively studied. See Durrett (2015) for results

and references. This model is relevant to the discussion of Williams et al (2016)

because it appears in the criticisms of McDonald, Chakrabarti, and Michor (2018)

and Bozic, Patterson, and Waclaw (2019). Before we describe the mathematical

analysis, we want to make it clear that that this work only discusses the theoretical

aspects of cancer genomics and is not concerned with practical problems in making

inferences on cancer genomic data, which of course could hide some of the theoretical

effects due to errors, bias, sampling, and other issues discussed in the criticisms listed

above.

Results

2.1 A two-type model

McDonald, Chakrabarti, and Michor (2018) consider two alternative evolutionary

models in order to argue that other underlying models can produce a linear rela-

tionship between 1{f and the cumulative number of mutations with frequency ¥ f .

Their second model is an infinite alleles branching process model previously studied

by McDonald and Kimmel (2015). We will ignore this model, since in studying DNA

sequence data the appropriate mutation scheme is the infinite sites model.

In their first model, clonal expansion begins with a single cell of the original

tumor-initiating type (type 0). To make it easier to connect with previous mathe-

matical work, we will describe their model using the notation used in Durrett (2015)

and Durrett (2013). We suppose that type 0 individuals give birth at rate a0 and

die at rate b0, so the exponential growth rate is �0 � a0 � b0. For simplicity, we will

suppose that neutral mutations accumulate during the individual’s life time at rate

�, instead of only at birth.
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Type 0 individuals mutate to type 1 at rate u1. Type 1 individuals give birth

at rate a1 and die at rate b1. Their exponential growth rate is �1 � a1 � b1 where

�1 ¡ �0. In McDonald, Chakrabarti, and Michor (2018), different type 1 families

have different increases in their growth rates that follow a normal distribution. In this

section, we will assume all type 1 mutations have the same growth rate. In Section

2.2, we will consider the implications of random fitness changes for the behavior of

the model.

The reader will see many complicated formulas in this paper, so it will be useful to

have a concrete set of parameters to plug into these formulas. Borrowing an example

from Durrett (2015), we will set

a0 � a1 � 1; �0 � 0:02; �1 � :04; u1 � 10�6; � � 10�4: (2.1)

We do not pretend that these parameters apply to any specific cancer, but for mo-

tivation, the reader can imagine that type 0s are colon cancer cells in which both

copies of APC have been knocked out, while type 1 cells in addition have a KRAS

mutation.

2.1.1 Limit theorems

As in McDonald, Chakrabarti, and Michor (2018), we will, for simplicity, restrict

our attention to two types of cells. The type 0’s are a simple branching process, so

well-known results show that Z0ptq, the population of type 0 cells at time t, follows

e��0tZ0ptq Ñ W0; (2.2)

where W0 � 0 with probability b0{a0 and has a rate �0{a0 exponential distribution

with probability �0{a0. For a derivation, see Athreya and Ney 1972.

The study of the second wave is simpler if we suppose that Z�0 ptq � V0e
�0t for all

t P p�8;8q, where V0 has the same distribution as pW0|W0 ¡ 0q, that is exponential
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with rate �0{a0. Mutations from type 0 to 1 occur at rate u1. Let �1 be the time

of the first successful type 1 mutation, i.e., one whose branching process does not

die out. Durrett and Moseley (2010) showed, see (29) in Durrett (2015), that �1 has

median

s1
1{2 �

1

�0

log

�

�2
0a1

a0u1�1




: (2.3)

In the concrete example, s1
1{2 � 460:51. In colon cancer where cells divide every four

days, s1
1{2 is 1842 days or a little more than 5 years.

Durrett and Moseley were the first to rigorously prove results about the asymp-

totic behavior of the size of the type 1 population Z�1 ptq, see Section 9 of Durrett

(2015). Durrett (2013) noticed that the constants are simpler if we use a different

normalization. Here we are assuming a0 � a1 � 1 to simplify the constants.

Theorem 1 (Durrett and Moseley 2010). As t Ñ 8, e��1pt�s1
1{2
qZ�1 ptq Ñ V̄1 where

V̄1 � e�1s1
1{2V1 is the sum of the points in a Poisson process with mean measure

�̄px;8q � �pe��1s1
1{2x;8q:

Using Eq (2.3), and doing some algebra

�̄px;8q � ��0�
��
1 Γp�qV0x

��:

In our concrete example, �̄px;8q � 0:1772V0x
�1{2: Note that due to shifting time by

s1
1{2, the measure �̄ does not depend on the mutation rate.

2.1.2 Site frequency spectrum

There are three classes of mutations in the two-phase model

• type 0: Neutral mutations that occur to type 0 individuals.

• type 1A: Advantageous mutations that turn type 0 individuals into type 1.
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• type 1: Neutral mutations that occur to type 1 individuals.

By the argument in Section 2.4 given by Sottoriva and Graham (2015), the type 0

mutations will have a 1{f site frequency. The argument can also be used to prove

the next result so the details are contained in Section 2.5 in Methods.

Theorem 2. The number of type 1 mutations with frequency ¥ f with in the type 1

population will be asymptotically �{p�1fq.

The points in the Poisson process in Theorem 1 indicate the contributions of

the various type one families to the limit V̄1, so if we let x1 ¡ x2 ¡ x3 : : : be the

points, then the jth largest family makes up a fraction xj{V̄1 of the population.

Intuitively, this implies that the number of type 1A mutations with frequency ¥ f

will be asymptotically Cf�� where � � �0{�1. This matches with our result, whose

proof is in Section 2.6 in Methods.

Theorem 3. The site frequency spectrum of the 1A mutations is

SFS1Apfq �
sinp��q

��

�

1

f
� 1


�

: (2.4)

When � � 1{2, the constant is 2{� � 0:6366.

Including type 0 passenger mutations in type 1A families does not significantly

change the f�� shape in (2.4). This is because all important 1A mutations happen

soon after the first mutation, which implies that all important 1A mutations have

roughly the same number of passengers. See Section 2.7 in Methods.

To illustrate the results proved above, we turn to simulations seen in Figs 2.1 and

2.2.

2.2 Random fitness increases

McDonald, Chakrabarti, and Michor (2018) considered the case in which type 1

individuals have growth rates that are normal with mean m and standard deviation
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Figure 2.1: Site frequency spectrum in the type 1 population. The figure
shows the contribution of the different mutation types to the site frequency spec-
trum. The simulation was performed with parameters � � 0:02; u1 � 2� 10�4; �0 �

0:02; �1 � 0:04 and a0 � a1 � 1 and is the average site frequency spectrum of
1000 runs. We simulated the 1A families and type 0 passenger mutations on their
founders. Then, we obtained type 1 mutations for each 1A family by applying (2.8)
in Methods. We only consider mutations present in the type 1 population because,
as t Ñ 8, the proportion of the population that is type 0 cells approaches 0. As
suggested from Theorem 2, the type 1 site frequency spectrum is linear when plotted
against 1{f . The 1A� 0 line looks similar to a power law, as suggested by (2.4).

d. Early work on models with random fitness increases in the two-type model led to

very unusual behavior in the limit t Ñ 8, see Durrett et al (2010). Results in that

paper show

• If the fitness distribution was bounded then, as t Ñ 8, individuals with fit-

nesses that were close to the upper limit dominated the population .

• If the distribution was unbounded, then the population could grow faster than
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