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Emergence of limit-periodic order in tiling models
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A two-dimensional (2D) lattice model defined on a triangular lattice with nearest- and next-nearest-neighbor
interactions based on the Taylor-Socolar monotile is known to have a limit-periodic ground state. The system
reaches that state during a slow quench through an infinite sequence of phase transitions. We study the model as
a function of the strength of the next-nearest-neighbor interactions and introduce closely related 3D models with
only nearest-neighbor interactions that exhibit limit-periodic phases. For models with no next-nearest-neighbor
interactions of the Taylor-Socolar type, there is a large degenerate class of ground states, including crystalline
patterns and limit-periodic ones, but a slow quench still yields the limit-periodic state. For the Taylor-Socolar
lattic model, we present calculations of the diffraction pattern for a particular decoration of the tile that permits
exact expressions for the amplitudes and identify domain walls that slow the relaxation times in the ordered
phases. For one of the 3D models, we show that the phase transitions are first order, with equilibrium structures
that can be more complex than in the 2D case, and we include a proof of aperiodicity for a geometrically simple
tile with only nearest-neighbor matching rules.
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I. INTRODUCTION

The possibility of spontaneous formation of translationally
ordered, nonperiodic structures has garnered much attention
in both the physics and tiling theory communities since
the discovery of quasicrystals in the early 1980s [1,2].
Quasicrystals combine long-range translational order with
point group symmetries that are incompatible with periodic
structure. One conceptually fruitful approach to understanding
the stability of quasicrystalline alloys has been to describe
their atomic structure as a decoration of a small number of
unit cell types, or prototiles, that are then arranged to form
a quasiperiodic, space-filling tiling [3]. In such models, the
interactions between tiles are represented by matching rules
that determine which local configurations have low energy.
One can show that any tiling that satisfies the matching rules
everywhere must be quasiperiodic [4–9]. Matching rules are
also known to exist for all tilings in two or more dimensions
that are generated by substitution rules [10,11], which can
produce more exotic types of long-range order.

One type of nonperiodic tiling that can be forced by
local matching rules has been known since the discovery by
Berger of a nonperiodic set of Wang tiles [12], later refined
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substantially by Robinson [13] and reduced to a two-tile set
by Goodman-Strauss [14]. These prototiles endowed with
matching rules admit no periodic space-filling tilings but do
allow the plane to be covered in a pattern that consists of a
union of an infinite set of periodic structures of ever increasing
lattice constant. Such patterns are termed limit periodic and
have point group symmetries compatible with periodicity but
have no smallest reciprocal space lattice vector.

For limit-periodic tiling models, one can typically view the
structure as a periodic array of decorated tiles (squares, in the
case of Wang tiles), with the limit-periodic structure being
displayed in the pattern of orientations of the decorations.
Denoting each orientation of each tile type as a distinct
“spin,” one can express the matching rules that enforce the
limit-periodic structure as a Hamiltonian governing local spin
configurations. The resulting spin model on a lattice can
then be studied at finite temperature. For a version of the
Robinson tiles, Miekisz showed that one expects an infinite set
of distinct thermodynamic equilibrium phases as temperature
is lowered [15].

Socolar and Taylor recently introduced a hexagonal pro-
totile with a decoration that forces limit-periodic tilings [16].
Most remarkably, the tiling requires only a single prototile
(together with its mirror image), though the rules for the
two-dimensional (2D) version include constraints on relative
orientations of next-nearest-neighbor tiles. They also showed

1539-3755/2014/90(1)/012136(20) 012136-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.90.012136


MARCOUX, BYINGTON, QIAN, CHARBONNEAU, AND SOCOLAR PHYSICAL REVIEW E 90, 012136 (2014)

that a 3D version of the prototile could be designed such that
the matching rules are enforced purely by the shape of the
tile and the space-filling constraint; i.e., with no noncontact
interactions [17]. However, the shape of the 3D tile is highly
nontrivial and the spontaneous assembly of the structure
extremely hard to envision.

Key thermodynamic properties of a lattice model based
on the 2D Socolar-Taylor tile were reported by Byington
and Socolar, who presented strong evidence that the system
undergoes an infinite sequence of phase transitions if cooled
sufficiently slowly, identified a set of order parameters for
the transitions, and found approximate (but highly accurate)
scaling relations between the values of the order parameters in
equilibrium at rescaled temperatures [18]. In the present paper,
we review those results and extend them in several directions.
Our primary interest is in determining how the rules that
require a complex tile shape might be relaxed without losing
the thermodynamic stability and dynamical accessibility of the
limit-periodic ground state.

We present three primary new findings. First, a modification
of the Taylor-Socolar tile allows for a 3D face-centered cubic
(FCC) lattice model with only nearest-neighbor interactions
that still permit only limit-periodic ground states. Second, the
Hamiltonian for the 2D Taylor-Socolar model can be simplified
substantially while retaining the path to limit-periodicity
through an infinite sequence of phase transitions, even though
the simplified model admits periodic ground states as well
as limit-periodic ones. Third, a similar simplification of the
3D model shows similar behavior, but the transitions in this
case are first order. In addition, this paper presents results on
two aspects of the 2D tiling models that may be relevant for
interpreting experiments on systems that embody the inter-
actions necessary for producing the Taylor-Socolar structure:
(1) diffraction patterns and (2) domain wall dynamics. We
display the diffraction patterns for special decorations of the
2D models that allow particularly efficient calculations, and we
identify certain types of domain walls that are highly stable.

The path to limit-periodicity in the simplified model is a
surprising result, particularly if one allows for the possibility
that weak next-nearest-neighbor interactions might favor the
periodic phase at T = 0. It shows that a system with a periodic
ground state can self-assemble into a perfectly ordered,
nonperiodic state at T = 0 through a quasistatic process. The
key here is that at any finite temperature the entropy of the
partially ordered limit-periodic phase favors that phase over
any kinetically accessible periodic phase that might compete
with it. At each stage in the hierarchy of transitions, the
transition to the relevant periodic phase is preempted by a
transition to a partially ordered phase that is incompatible with
the periodic one. We note that this scenario is quite different
from the entropic stabilization of long-range order in random
tiling models for quasicrystals, which are expected to undergo
transitions to crystalline states at low temperatures [19,20].
In the present case, there is no extensive entropy in the
limit-periodic state reached at T = 0, though entropic effects
play a crucial role in guiding the system to this state in a slow
quench.

The paper is organized as follows. In Sec. II, we give
more precise definitions of our terms and of the four distinct
models that we study. In Sec. III, we review the results

of Ref. [18] and present results on the behavior of the
Taylor-Socolar model as a function of the strength of the
next-nearest-neighbor interactions, including the special case
where the next-nearest-neighbor interaction is completely
absent. The latter case represents a substantial simplification
of the hexagonal prototile, both because the matching rules can
easily be enforced by pairwise interactions between adjacent
tiles only and because the tile is no longer chiral, so a racemic
mixture is no longer needed. From a tiling theory perspective,
this prototile is not of great interest as it admits periodic tilings.
The physics, however, is surprising: Only the limit-periodic
phase forms upon slow quenching.

In Sec. IV, we consider a different approach to the
simplification of the tiling model. Here we present a rhom-
bohedral prototile that has the shape of the unit cell of a 3D
FCC lattice. The next-nearest-neighbor matching rule for the
Taylor-Socolar tile is now implemented as a nearest-neighbor
rule in a hexagonal layer normal to the 111 direction in the
FCC lattice. The nearest-neighbor rule for the Taylor-Socolar
tile must be weakened a bit, however, in a manner explained
below. We prove in the Appendix that this prototile does indeed
admit only limit-periodic structures. We also present a careful
study of the thermodynamics of this model for the case where
the in-plane rules (analogously to the next-nearest-neighbor
rules of the 2D model) are absent. This model is shown to
display a highly complex set of ground states, some of which
are periodic, and to reach one of the limit-periodic states
upon slow quenching via a sequence of first-order transitions.
Sections V and VI present our results on domain wall effects
in the kinetics of equilibration and on diffraction patterns,
respectively. We close with a brief summary and some remarks
on open questions.

II. DEFINITIONS

The lattice models treated in this paper are derived from
tiling models, which we define as follows.

(1) A tile is a closed, compact set of points in Rn with an
assigned integer i indicating its type.

(2) A tiling is a set of tiles that collectively cover the
entire space Rn with no two tiles sharing any interior points.
(Adjacent tiles share only points on their boundaries.)

(3) A set of matching rules for a tiling is a specification of
allowed configurations of pairs of tiles; i.e., a specification of
which tile types are allowed for two tiles that occupy given
positions in Rn. Matching rules are typically taken to be
locally specifiable. For present purposes, the matching rules
may constrain the pairs of tile types allowed for adjacent tiles
and for next-nearest-neighbor tiles.

(4) A tiling model is an assignment of energies to the
tilings that can be composed from a given set of tiles. We
construct tiling models in which the energies are determined
by the number and type of violations of matching rules in the
given tiling, with each violation independently contributing a
positive definite energy.

(5) A prototile P is a prototype of a tile. It is a geometric
unit that is shaped or decorated in a way that displays the
matching rules directly. Each tile in a tiling is a copy of a
prototile. Each different tile type can be realized as a rotations
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and/or reflection of one element of the set of the tiling’s
prototiles, {Pi}, i = 1, . . . K .

(6) A lattice model assigns a generalized spin variable,
qj , to each of the sites of a discrete lattice and an energy
to each spin based on its value and those of the spins in its
local environment. For a tiling model in which the geometric
arrangement of tiles is a lattice (though the tile types are not
determined by the lattice structure), a lattice model can be
constructed in which the spin index qj indicates the type of
tile at lattice site j . The Hamiltonian for such a lattice model
assigns an energy to each spin that corresponds directly to the
energy of the corresponding tile in the tiling model.

The term tiling model is chosen intentionally to suggest that
the model could be realized physically by a collection of units
whose shapes correspond to the tile shapes and whose internal
structure imposes energetic biases that enforce the matching
rules. In the physical system, the assembly of tiles into the
close-packed structures of interest is an important part of the
assembly process but one that we do not study in the present
work. Instead, we study the associated lattice models. That is,
we study the thermodynamic stability of the orientations of the
tiles, given that they are already packed into the correct lattice
structure but allowed to rotate in place and allowed to convert
from one enantiomorph to the other.

We consider four distinct tiling models, each based on a
tiling with a single prototile.

(1) Taylor-Socolar model: The prototile is a 2D hexagon
with markings that break all of its rotation and reflection
symmetries. There are 12 tile types, corresponding to the
6 rotations and 2 reflections of the prototile. The matching
rules govern nearest-neighbor and next-nearest-neighbor tile
pairs and can be conveniently expressed using the decoration
shown in Fig. 1(A). The rule is that all black and purple line
in the tiling must join to form continuous lines. For obvious
geometric reasons, the tilings are all close-packed hexagonal
structures. For each pair of adjacent tiles, a positive energy
ε1 is assigned if the black stripe is not continuous across the
shared boundary, and for each pair of next-nearest-neighbor

tiles, a positive energy ε2 is assigned if the relevant purple stripe
along the intervening tile edge is not continuous. Viewed as
a 2D model, the Taylor-Socolar prototile is chiral and both
enantiomorphs are needed. Viewed, however, as a 2D layer
of a 3D system, the prototile is not chiral, as a rotation by π

about an in-plane axis converts one 2D enantiomorph into
the other. The corresponding lattice model is a triangular
lattice with 12 possible values for qj and both nearest- and
next-nearest-neighbor interactions.

(2) Black stripe model: The prototile is the Taylor-Socolar
prototile with the next-nearest-neighbor matching conditions
removed. The model is equivalent to the Taylor-Socolar model
with ε2 = 0 [see Fig. 1(B)]. In this model, the prototile is not
chiral; the tiling consists of a single tile type and its rotations.
Thus we have only six tile types. The corresponding lattice
model is a triangular lattice with six possible values for qj and
only nearest-neighbor interactions.

(3) Zonohedral model: The prototile is a rhombic dodec-
ahedron with markings as shown in Fig. 1(C). The edges
of the prototile lie along the tetrahedral directions 111,
111, 111, and 111. The prototile is chiral, and the tiling
contains both enantiomorphs. This model is closely related
to the Taylor-Socolar model. The tiles sit at the sites of
a face-centered cubic lattice. The matching rules are that
darkest gray (purple) and gray patches around the equator
must match to like colors and black bars must be continuous
across faces, and the energetic costs for mismatches are ε1

and ε2, respectively. Orienting the lattice such that the 111
direction is vertical, each layer of tiles at the same height
forms a hexagonal packing in which the color matching rule
is equivalent to the purple stripe rule in the Taylor-Socolar
model. The black bars connect tiles in different layers. They
are almost equivalent to the Taylor-Socolar black stripes, but
there is a subtle difference. Because the bars connect tiles in
different layers, there cannot be a closed triangle. As shown
in panels (d) and (e) of Fig. 1(C), and explained in detail in
Sec. IV A, a triangle in the Taylor-Socolar tiling becomes an
infinite helix in the zonohedral tiling. The corresponding lattice

FIG. 1. (Color online) (A) The Taylor-Socolar model prototile and matching rules. Discontinuities in the black and thick gray (purple)
stripes have energetic penalties ε1 and ε2, respectively. (B) The black stripe model prototile and matching rules. Discontinuities in the black
stripes have energetic penalties ε1. The model is equivalent to the Taylor-Socolar model with ε2 = 0. (C) The zonohedral model. [(a), (b), and (c)]
Different views of the prototile. Each black bar reaches from one top face of the zonohedron to one of the bottom faces. Panel (c) shows the
view down the 111 axis. [(d) and (e)] Two views of three tiles in separate layers. The black bars connecting through the shared faces of the tiles
form a helix. Viewed along the 111 axis, the helix is seen to correspond to a small triangle in the Taylor-Socolar tiling. (D) The cubic model.
The views shown correspond to those in (C).
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model is a face-centered cubic lattice with 12 possible values
for qj and only nearest-neighbor interactions. Note, however,
that the prototiles can be compressed as desired along the 111
direction and the length of the six edges oriented along the 111
direction is arbitrary as well.

(4) Cubic model: The prototile is a rhombohedron with
markings as shown in Fig. 1(D). The length of the diagonal
in the 111 direction can be chosen arbitrarily; we take it to
correspond to a cubic tile shape for convenience. The prototile
is chiral, and the tiling contains both enantiomorphs. This
model is equivalent to the zonohedral tiling with the color
matching rules deleted; i.e., with ε2 = 0. It is thus related to the
black stripe model in the same way that the zonohedral model
is related to the Taylor-Socolar model; the black bars in the
tiling can form helices whose projections on the 111 direction
are the triangles in a black stripe tiling. The corresponding
lattice model is a simple cubic lattice with six possible values
for qj and only nearest-neighbor interactions.

III. 2D MODELS

The Hamiltonian for the Taylor-Socolar lattice model
assigns an energy ε1 > 0 to each nearest-neighbor pair of
tiles sharing an edge where the black stripe matching rule
is violated, and, similarly, an energy ε2 > 0 to pairs or next-
nearest-neighbor tiles for which the purple stripe matching rule
is violated. Pairs for which the matching rules are satisfied (the
stripe decorations are continuous) are assigned zero energy. In
the following, we set ε1 as the unit of energy and temperature;
that is, we take ε1 = 1 and the Boltzmann constant kB = 1.

A. Order parameters

1. Level 1

The Taylor-Socolar lattice model undergoes an unusual
second-order phase transition at temperature Tc;1 ≈ 1.51.
Below Tc;1, three quarters of the tiles lock into orientations
forming honeycomb lattices of small (truncated) triangles of
both the black stripes and purple stripes, as shown in Fig. 2(a).
Note that the purple stripes form three overlapping, scaled, and
rotated copies of the black stripe pattern [16]. The remaining
quarter of the tiles, which occupy the sites of sublattice A,
have no preferred orientation. We refer to the tiles that form
the level-1 order as the corner set and the tiles that have no
preferred orientation just below the transition temperature as
the rattlers.

An order parameter for the transition was defined in
Ref. [18]. Each tile j is assigned a “staggered tetrahedral
spin” vector σ 1,j = eX, where X indicates one of the four
vertices of a reference tetrahedron (see Fig. 3). The spin is
determined both by the orientation of the diameter joining its
two black triangle corners and by the sublattice to which it
belongs, according to the map shown in Fig. 3. For example,
a tile with corners aligned vertically and sitting on the B

sublattice is assigned σ1 = eA. Note that specifying σ 1,j does
not completely specify the orientation of tile j . There are four
consistent choices, corresponding to the two possible locations
of the long black stripe and two possible orientations of the
long purple stripe. Note also that for any given tile, σ 1 can take
only three of the four possible values.

FIG. 2. (Color online) (a) Level-1 ordering in the Taylor-Socolar
model. A subset comprising three quarters of the tiles is shown.
For each tile, the black and thick gray (purple) corner decorations are
included, but not the long stripes. Each tile shown may be in any of the
four orientations corresponding to the possible positions of the long
black and thick gray (purple) stripes. The tiles lying on sublattice A

do not contribute any of the decorations in the pattern shown here. (b)
Level-2 ordering in the Taylor-Socolar model. Three quarters of the
tiles on sublattice A of panel (a) participate in the formation of black
and purple triangles. The light-colored tiles and decorations display
the level-1 order. Double stripes indicate the possible locations of
black and thick gray (purple) stripes on tiles that contribute corners
to the level-1 triangles.

We define the average total spin σ 1,tot ≡ 1
N

∑
j σ 1,j , where

N is the number of tiles in the system. In the pattern shown in
Fig. 2(a), which only consists of the B, C, and D sublattices,
the total spin lies in the eA direction. Alternatively, the pattern

FIG. 3. The spins used to define the order parameter for the
level-1 transition. See text for explanation.
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TABLE I. Symmetry operations for the total staggered tetrahedral
spin. The left column specifies an operation on the 2D tiling pattern,
where X,Y ∈ {A,B,C,D} each represent a tile in the corresponding
sublattice of Fig. 3. The right column specifies 3D operations on the
order parameter in terms of the tetrahedral star of vectors eX , where
X is the label shown on Fig. 3.

Lattice operation Td operation on σ

Rotation by 2π/3 about Rotation by 2π/3
center of X about eX

Reflection through edge shared Reflection through
by X and Y (eX,eY ) plane

Translations taking X sublattice Rotations by π

to Y about eX + eY

Rotation by 2π/3 followed Rotary inversion
by reflection

could form around the sites of the B, C, or D sublattice,
yielding σ 1,tot in the corresponding direction.

The system exhibits tetrahedral symmetry in the following
sense: for each configuration with a given σ 1,tot, there is
another with identical energy having σ ′

1,tot related to σ 1,tot

by an operation in the 24-element tetrahedral group Td . The
mapping from operations on the lattice to elements of Td is
given in Table I.

The order parameter for the transition is

φ1 = max(σ 1,tot · eX), (1)

where X runs over the sublattice indices {A,B,C,D}. The
projection operation in the definition of φ1 serves to assign the
same value to all configurations with the same tile orientations
in the corner set but different rattler configurations.

2. Higher levels

When level 1 is fully ordered, the tiles on one of the four
sublattices remain free to rotate. For the example shown in
Fig. 2(a), these are the white tiles on sublattice A. One sees by
inspection, however, that those tiles form a lattice equivalent
to the original lattice and with an equivalent matching rule
enforced through the long stripes on the level-1 tiles that
connect the tiles of sublattice A, as illustrated in Fig. 2(b).
We therefore define a second-order parameter, φ2, analogous
to φ1 but obtained by summing only over the tiles in sublattice
A (which is now regarded as a union of four sparser lattices).
Given a full ordering of φ2, one can then identify the correct
sublattice for defining φ3, and so forth. Each order parameter
φn thus measures the degree to which a periodic lattice of black
triangles with edges consisting of 2n−1 − 1 tiles is formed.

B. Monte Carlo results for slow quenches

We implement a Monte Carlo simulation of the Metropolis
algorithm, involving only moves that change the orientation of
a single tile, to study the phase transitions [21,22]. Throughout
this paper, we define one Monte Carlo step (MCS) to be N

attempted Metropolis moves, where N is the number of tiles
in the system. The system is taken to be a rhombus with �

tiles per edge and periodic boundary conditions. Each tile i is

assigned an energy

Ui(o) = ε1mb + ε2mp, (2)

where o indicates the orientation of the tile and mb and mp

are the numbers of mismatches in the black and purple stripes,
respectively, among the tile pairs that include tile i.

A tile i is selected at random. Let q denote its current
orientation. A proposed new orientation, q ′, is selected at
random from its 12 possible states. The transition is accepted
with probability

P (i,q,q ′) = min{1, exp(−(Ui(q
′) − Ui(q))/T )}. (3)

A slow quench from some T0 to some Tf is simulated by
reducing T in steps of �T , sitting for a time τ = 12×105

MCS at each step. The results do not change if we use longer
equilibration times at each step. For each T , we compute the
average values of the order parameter and of the energy density.
Figure 4(a) shows strong evidence of a second-order phase
transition. Consistent with this expectation, our Monte Carlo
simulations of slow quenching and reheating show no evidence
of hysteresis. Based on the tetrahedral symmetry of the system,
we expect the transition to be in the universality class of
the four-state Potts model. This universality class has a very
small order parameter exponent β = 1/12, which appears to
be consistent with the data, although it is exceedingly difficult
to obtain a clean numerical determination of such a small value
of β.

Figure 4(a) shows the values of the order parameters φn

at the sampled temperatures. The data shown here are from

FIG. 4. (a) The order parameters φn vs T from a quench for the
case ε2 = 1, with quench parameters � = 64, T0 = 2.0, Tf = 0.0,
�T = 0.01, and τ = 12×105 MCS. (b) The order parameters φn

vs T from a quench for the case ε2 = 0.5, with the same quench
parameters as in (a). (c) Data collapse obtained from the scaling
theory for the data from (a). Deviations of the level-4 points from
the others are finite-size effects due to the relatively small number of
level-4 triangles in the system. (d) Solid circles show the dependence
of Tc;1 on ε2, for ε2 � 1, obtained from simulations of slow quenches.
For each value of ε2, Tc;1 is approximated as the highest temperature
for which φ1 > 0.1. Open circles show the dependence of Tc;n on
ε2, for ε2 � ε1 = 1, obtained from Eq. (8). The lines in this figure
connect parameters for systems that exhibit equivalent behavior. As
one follows a line downward and to the right, the open circles indicate
transitions of levels n = 2 through n = 5.
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a simulation with ε2 = 1, � = 64, To = 2.0, Tf = 0.0, and
�T = −0.01. An important feature of the plot is the rapid
saturation of φ1 below Tc;1. Figure 4(b) shows the same plot
of φn from a simulation with ε2 = 0.5. As might be expected,
the phase transitions in the hierarchy occur at lower values of
Tc;n, and in general the transition temperatures are lower for
smaller values of ε2, as indicated by solid circles in Fig. 4(d).
Remarkably, however, the transition temperatures do not go
to zero for ε2 = 0, nor are these transitions preempted by
a transition to a different phase; the sequence of transitions
leading to the limit-periodic state still takes place despite the
existence of periodic ground states for this Hamiltonian.

C. Scaling relations for the transition hierarchy

To better understand these hierarchy of transitions, we
explore the partition function of the separate levels of the limit
periodic system. The partition function of the entire system
can be written as a configuration sum of the following form:

Z1(T ; ε1,ε2) =
∑

config.

∏
n.n.

e(ε1±ε1)/2T
∏

n.n.n.

e(ε2±ε2)/2T . (4)

Here the products are over nearest-neighbor and next-nearest-
neighbor bonds, respectively, and the sign in the exponent is
taken to be positive if that bond is mismatched in the current
configuration and negative if that bond is matched.

Now, let us assume for the moment that φ1 is fully saturated;
i.e., that the tiles forming the level-1 lattice are somehow
clamped into the configuration of triangle corners shown in
Fig. 2(a). The remaining triangle corners that are free to move
now lie on the tiles of sublattice A. These corners do not
connect directly but do become correlated due to an effective
interaction mediated by the long black stripes on the tiles of
the B, C, and D sublattices. In fact, the partition function
for the remaining degrees of freedom in the tiling at a given
temperature T1 is precisely equivalent to the original partition
function but with renormalized values of ε1, ε2, and T .

Under the saturation assumption, these bonds are indepen-
dent in a given configuration of the level-n tiles. Hence, the
partition function of the entire configuration can be written as
a product of the appropriate ζ±. Using the same configuration
sum as in the full level-1 case, the level-n partition function is
written in the form:

Zn(T ; ε1,ε2) =
∑

config.

∏
n.n.

ζ±
n (T ; ε1)

∏
n.n.n.

ζ±
n (T ; ε2). (5)

Again the value of each ± is determined by the state of
the bond, matched or mismatched, in the configuration being
summed.

Due to the identical configuration sums in the partition
functions, the level-n system behaves equivalently to the
system at level 1 when the level-n bond partition functions
ζ±
n (T ; ε) are equal to those for level 1: ζ±

1 (T ; ε) ≡ e−ε/T , up to
a constant scaling factor. We exploit this relation to determine
the scaling factors for ε and T . Explicitly, the partition function
for level n is identical to that of an effective level-1 system if

FIG. 5. Matched and mismatched corner configurations for
level-3 edges.

and only if the following system of equations holds:

ζ+
n (Tn; ε1) = α1ζ

+
1 (T1; ε1)

ζ−
n (Tn; ε1) = α1ζ

−
1 (T1; ε1)

ζ+
n (Tn; ε2;n) = α2ζ

+
1 (T1; ε2;1)

ζ−
n (Tn; ε2;n) = α2ζ

−
1 (T1; ε2;1). (6)

Here α1 and α2 are arbitrary constants and we assume that
ε1 is fixed for the scaling (it serves as our unit of energy).
To reduce Eq. (6) to a scaling relation for ε2 and T , we note
that each level-n bond is a 1D Ising chain with 2n−1 possible
mismatches, as illustrated in Fig. 5. Therefore the level-n bond
partition functions are simply

ζ−
n (T ; ε) = 1

2 [(1 + e−ε/T )kn − (1 − e−ε/T )kn],

ζ+
n (T ; ε) = 1

2 [(1 + e−ε/T )kn + (1 − e−ε/T )kn], (7)

where kn ≡ 2n−1. Equations (6) and (7) imply the following
scaling relations for Tn and ε2;n:

tanh

(
ε1

2T1

)
=

[
tanh

(
ε1

2Tn

)]kn

and tanh

(
ε2;1

2T1

)
=

[
tanh

(
ε2;n

2Tn

)]kn

. (8)

The scaling relations apply for all T . Consider now the
behavior of the system during a slow quench. When T drops
below Tc;1, the level-1 ordering rapidly sets in. For the case
ε2 = ε1, Eq. (8) immediately implies ε2,n = ε2;1. Thus in this
case, Eq. (8) gives a relation between the behaviors of the
same system at different temperatures. Recall that this relation
is derived under the assumption that the level-(n − 1) order is
perfectly locked in at all temperatures for which φn is nonzero.
For the renormalized temperature

Tc;2 = 2[tanh−1(
√

tanh(1/2Tc;1))]−1, (9)

at which the level-2 partition function maps onto the level-1
partition function at Tc;1, we find φ1(Tc;2) = 0.992, so the
deviations from the derived relation are expected to be small.
A more detailed study of these deviations is discussed (in the
context of a different model) in Sec. IV B 2.

Using the scaling relations in Eq. (8) for the case ε2 = ε1, we
obtain an excellent data collapse for several levels by plotting
φn(Tn) as a function of T1(Tn), as is seen in Fig. 4(c). These
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FIG. 6. Inset: φn vs T for the black stripe model, ε2 = 0. The data
are from simulated quenching on a rhombic domain of side length 64,
with parameters To = 0.6, Tf = 0.0, �T = 0.01, and τ = 12×105

MCS. Full panel: Data collapse from the scaling theory for the black
stripe model applied to the data from the inset.

scaling relations also yield predictions when ε2 �= ε1. In this
case, holding ε1 fixed, one can map the level-n system at a
given ε2 and Tn onto the level-1 system at a different ε2 and
T1 by solving the first equation for T1 and the second for ε2;1.
The structure of the scaling relations is shown in Fig. 4(d).
Each circle in the figure marks a critical temperature for some
transition. Points connected by a line are equivalent by the
scaling relations, with the level increasing as one moves down
and to the right. The curves all approach the point T = 0 and
ε2 = 1 as n → ∞.

D. The black stripe model: ε2 = 0

As illustrated in Fig. 4(d), the scaling relations of Eq. (8)
imply that for any ε2 < ε1, the effective value of ε2/ε1

approaches 0 in the limit of large n. It is thus important
to study the transition more carefully for the ε2 = 0 case.
Figure 6 strongly suggests that the level-1 transition does
occur. Furthermore, for ε2 = 0, the scaling relations for n > 1
reduce to the same simple form as for the ε2 = ε1 case,
consistent with the collapse shown in Fig. 6. At the critical
temperature for the level-2 transition (T ∗

c;2 ≈ 0.365), we have
φ1 ≈ 0.998.

In Sec. IV B, we study a 3D analog of the black stripe
(ε2 = 0) model in much greater detail.

IV. 3D MODELS

One motivation for considering 3D models is that the
next-nearest-neighbor interactions between the 2D tiles can be
realized in a natural way as nearest-neighbor interactions in 3D
tiles. There is, however, an important difference between the
zonohedral model and the Taylor-Socolar model, as mentioned
in Sec. II. A feature of the Taylor-Socolar model that
played a significant role in the proofs of aperiodicity of the
ground state [16] is that when two tiles sharing a vertex are
oriented such that two corners of a black triangle are formed
around that vertex, the third tile sharing that vertex is forced
to contribute a corner that completes the triangle. The same is
true for three next-nearest-neighbor tiles that combine to form
a thick gray (purple) triangle. In the 3D models, however, the
situation is not quite equivalent.

Let the tile centers in the 3D model be at the positions
j1a1 + j2a2 + j3a3, where ji is an integer. For the zonohedral
model, which forms a FCC lattice, we take

a1 = (1,1,0), a2 = (0,1,1), a3 = (1,0,1). (10)

For the cubic model, which forms a simple cubic lattice, we
take

a1 = (1,0,0), a2 = (0,1,0), a3 = (0,0,1). (11)

Let L� denote the set of tiles in the layer defined by j1 + j2 +
j3 = �. The black bar matching rules connect tiles in layer �

to tiles in layers � + 1 and � − 1, and never connect two tiles
in the same layer, which immediately implies that the black
bars cannot form triangles. For a given black bar corner on a
tile in layer �, the two tiles that contribute black bar corners
connecting to it are not neighbors of each other, as one is in
layer � + 1 and the other is in layer � − 1 and therefore do not
constrain each others’ orientations.

We show in the Appendix that this weakening of the
matching rules still does not allow the set of ground states
of the zonohedral model to include periodic tilings. It is also
straightforward to see that ground-state configurations can be
constructed that project directly onto the Taylor-Socolar model
ground states, with the triangles in the 2D model becoming
helices with axes along the 111 direction in the 3D models,
although the proof does not yield a complete characterization
of all of the degenerate ground states. The Monte Carlo studies
below indicate, however, that the ground state reached through
slow quenching is in fact closely related to the Taylor-Socolar
ground states.

For purposes of explication and visualization, we use an
alternate version of the zonohedral tile in the discussion below.
We use both enantiomorphs of the chiral cubic prototile shown
in Fig. 7, which sit on the sites of the simple cubic lattice
of Eq. (11). In this representation, the colored faces of the
zonohedral tile have been shrunk to zero height, so the color
matching rules now appear as rules governing tiles that share
an edge. The rule is that the gray (purple) bars must continue
across each edge. As in the 2D model, matches are assigned an
energy 0, black bar mismatches an energy ε1 > 0, and purple
bar mismatches an energy ε2 > 0.

FIG. 7. (Color online) Image of one enantiomorph of the cubic
prototile, which is an alternate representation of the zonohedral tile.
The axis arrows turn from dark to light where they intersect the faces
of the cube. (a) The arrow indicates the 111 axis of the cube, defined to
be the c axis. (b) A projection of the tile onto the plane perpendicular
to the c axis.
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FIG. 8. (Color online) (a) A projection of a section of one of the limit-periodic states onto the plane perpendicular to the c axis of the cubic
lattice. The gray (red, green, and blue) triangles are formed from purple bars that were recolored according to their layer for ease of viewing.
Level-1 helices correspond to the smallest black triangles, level-2 helices to the next largest, and so on. Similarly, level-1 triangles are the
smallest colored triangles, level 2 the next largest and so on. (b) Image of nine layers of the 3D structure that gives the projection of the black
bars in (a). The gray (colored) bars were left out for clarity.

A. The zonohedral model: ε2 = ε1

1. Ground-state structures

In the zonohedral model, the ground states consist of
parallel layers of tiles containing 2D patterns of purple bars
identical to one of the three subsets of purple stripes in the
Taylor-Socolar model. These layers are coupled by black bars,
which form arrays of helices aligned along the 111 axis [the c

axis of Fig. 7(a)] whose projections onto the plane are triangles.
In one of the ground states, the projection of all of the the black
bars onto a plane normal to the c axis is identical to the ground
state of the Taylor-Socolar 2D model. Images of this state are
shown in Fig. 8. As in the 2D model, the triangles formed by
the thick gray (purple) bars are labeled by an index n, such
that a triangle of level n is formed by 3×2n−1 cubes. Similarly,
we can group the black helices into levels such that a level-n
helix consists of 3×2n−1 cubes per turn. Table II contains a
complete description of a level-n helix, and Fig. 9 illustrates
the level-2 case.

An ordered level-n state is defined as a state in which helices
at all levels with indices less than n have ordered. We define a

TABLE II. Description of one turn of a single-stranded level-n
helix, where kn ≡ 2n−1 and k′

n ≡ 2n−1 − 1. Letters (a)–(f) label the
parts of the helix, with (a), (c), and (e) being corners and (b), (d),
and (f) being edges. The coordinates listed locate the centers of the
tiles that form these elements. The label R (or L) indicates the set of
coordinates for a right- (or left-) handed helix. Figure 9 shows one
full turn of a single strand of a level-2 helix for both the right- and
left-handed cases.

Coordinates of tiles

(a) (n1,n2,n3) n1,n2,n3 ∈ Z
(b) {(n1 + x,n2,n3)} 1 � x � k′

n, x ∈ Z
(c) (n1 + kn,n2,n3)
(d) R:{(n1 + kn,n2 + y,n3)} 1 � y � k′

n, y ∈ Z
L:{(n1 + kn,n2,n3 + z)} 1 � z � k′

n, z ∈ Z
(e) R:{(n1 + kn,n2 + kn,n3)}

L:{(n1 + kn,n2,n3 + kn)}
(f) R:{(n1 + kn,n2 + kn,n3 + z)} 1 � z � k′

n

L:{(n1 + kn,n2 + y,n3 + kn)} 1 � y � k′
n

column of tiles to be the set of tiles at positions

{(n1 + �,n2 + �,n3 + �)} for � ∈ Z. (12)

Three columns forming a level-1 helix are depicted in
Figs. 10(a) and 10(b), with each column shown in a different
color.

We define a subset of layer indices

p(i)
n = {p: modkn

p = i}, (13)

where kn = 2n−1. The subset of layers with indices p(i)
n is

denoted by �i
n. Each level-n helix has corners in layers � ∈ �i

n

for some i. The full set of level-n helices is a union of 2n−1

lattices of helices, each corresponding to a different value of i.
Figures 10(c) and 10(d) show a possible arrangement of two
level-2 helices corresponding to the two different i’s.

Consider now the level-n helices corresponding to a given
value of i. The axes of these helices pass through the vertices
of a honeycomb lattice. This is a bipartite lattice, and the
helices with axes on nearest-neighbor vertices have opposite
handedness. For the level-1 lattice, there are two possible
chirality patterns. Level 1 can form such that the light gray
(red) helices in Fig. 11(a) are either right handed or left handed.

FIG. 9. Illustration of the structure of level-2 helices. Letters
(a)–(f) label the parts of the helix, with (a), (c), and (e) being corners
and (b), (d), and (f) being edges. The symbols R and L labels right-
and left-handed helices, respectively.

012136-8



EMERGENCE OF LIMIT-PERIODIC ORDER IN TILING . . . PHYSICAL REVIEW E 90, 012136 (2014)

FIG. 10. (Color online) [(a) and (b)] Representations of a level-1
helix. Cubes of the same color belong to separate columns. [(c) and
(d)] Representation of a level-2 helix with level-1 designs left out for
clarity. Bars belonging to a given cube are shown in the same color.
Cubes containing bars of different colors do not interact with each
other.

The dark (blue) helices and light (red) helices have opposite
chiralities. The chirality pattern of level 1 fixes that of the
higher levels: the chirality of a level-n helix is opposite that
of the level-(n − 1) helix which it surrounds, for n > 1, as is
depicted in Fig. 11(b).

The level-1 lattice of helices can form such that the centers
of the honeycomb cells fall on any one of the sublattices A, B,
C, or D of Fig. 2(a). We let S1,0 denote this choice, where the
index 1 denotes the level and the index 0 specifies the value of
i corresponding to this set of helices.

Given the value of S1,0, the level-2 honeycomb cell centers
can again lie on any of four sublattices, which we denote by
S2 ∈ {A2,B2,C2,D2} (see Figs. 12 and 13). Moreover, each
of the two sets of helices corresponding to different values
of the index i defined above can have a different value of
S2, which we label S2,0 and S2,1. Iterating this process for
choosing sublattices at each scale, we see that the location of
the honeycomb lattice of helices with corners in �(i)

n is uniquely
specified by the sequence {S1,0,S2,s2 ,S3,s3 , . . . ,Sn,sn

}, where
sn = i and sn′ = mod2n′−1sn′+1 for 1 � n′ < n. Recalling that
i can take any of 2n−1 values, we find that specifying a fully
ordered level-n structure requires specifying 2n − 1 values
Sn,i , yielding a degeneracy

gn = 2 × 4(2n−1), (14)

where the factor of 2 accounts for the two possible chirality
patterns of level 1.

We prove in the Appendix that this system has no periodic
ground states. We further conjecture that the limit-periodic

FIG. 11. (Color online) Helices of one chirality are colored gray
(red), while the others are colored black (blue). (a) Level-1 lattice.
(b) A section of a fully ordered structure.

FIG. 12. A 2D projection of a region of an ordered level-1
structure. The different sublattices shown in different shades of gray
contain only the cubes with layer indices in �0

2. Bars not contributing
to the level-1 structure are omitted for clarity.

states exhaust the degenerate class of ground states, but we
cannot rule out the possibility of other nonperiodic states.

2. Thermodynamically favored states and definition
of the order parameter

Monte Carlo simulations indicate that a slow cooling of
the zonohedral model produces one of the limit-periodic states
described in the previous section. These states emerge through
a series of transitions corresponding to the sequential ordering
of helices of the different levels. To quantify the order arising
as the system cools, a set of order parameters describing each
level and each value of i is required.

On each subset of level-n sublattices defined in Sec. IV A 1,
we define a staggered tetrahedral order parameter as in
Sec. III A. Throughout the simulations, a distinct order
parameter was calculated for each subset of helices. The order
parameters as a function of temperature for the seven subsets
of helices of levels 1, 2, and 3 are shown in Fig. 14. The
figure shows both heating and cooling sweeps. The fact that the
curves coincide quite closely suggests that the phase transition
is second order, but it is difficult to rule out the possibility of
a weakly first-order transition. In fact, the following section
presents strong evidence for a first-order transition in the case
ε2 = 0. We conjecture that the transition becomes first order
for any ε2 < 1, but a full investigation of this point is beyond
the scope of this work.

We have also measured the two-point correlations of φ1

to see whether there is any significant anisotropy in the
development of the ordered phase. At temperatures just above
Tc;1, we find that the decay lengths for correlations in the plane
and correlations along the c axis are roughly equal when the
geometry of the model is taken to correspond to the zonohedral
unit cell of the FCC lattice [as in Fig. 1(C)], which is the choice
for which all nearest-neighbor interactions have the same bond
length. The formation of helices that project onto 2D triangles
proceeds in tandem with the formation of the lattice of triangles
in any given in-plane layer.

B. The cubic model: ε2 = 0

The possible structures of the cubic model with ε2 = 0
include all of the limit-periodic states described in the previous
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FIG. 13. (Color online) (a) 2D projection of the two level-2 subsets ordered on the same sites. (b) 2D projection of the two level-2 subsets
ordered with the centers of their honeycomb lattice on different sites, one depicted in black and the other in gray (orange). In both (a) and (b),
designs not contributing to the level-1 or level-2 structures have been left out for clarity.

section, a large class of periodic states, and possibly others. In
the following, we set ε = ε1, yet here again we find through
Monte Carlo simulations that the thermodynamically favored
states are the limit-periodic states described in the previous
section. When the system is slowly quenched, the ground state
is reached in a similar manner; i.e., through a series of phase
transitions corresponding to the ordering of the level-n helices.

The phase transitions, however, are now clearly first order.
The energy curves as a function of temperature exhibit
hysteresis, as can be seen in Fig. 15(a). Though the scaling
argument used for the 2D case still holds, the scaling collapse
is difficult to observe because the size of the hysteresis loop
observed in numerical simulations depends on the rate of
cooling or heating, and we do not know how to scale those
rates to achieve a clean collapse. We therefore carefully study
the nature of the transition and the scaling by computing the
relevant free energies. The free energies of the different phases
as a function of temperature (computed using a technique
described below) show clear discontinuities in slope within the
hysteresis loop, further verifying the order of the transition.

FIG. 14. Order parameters of each subset of helices for the
first three levels of the zonohedral model with ε2 = ε1 = 1. There
is one order parameter for level 1, two for level 2, and four for
level 3. The system is cooled from T = 2 to T = 0, in increments
of �T = 0.02 with τ = 1×105 MCS, and then heated in the same
manner. Simulations are performed on a rhombic lattice of size
16×16×24. During the cooling process, the order parameter of
a level-n subset is found only after level (n − 1) is ordered. The
order parameters do not go to zero at high temperatures because of
finite-size effects.

1. Free-energy calculations

Free energies of the cubic model can be computed as
follows. Let N be the number of lattice sites in the system,
u be the internal energy per site, and f be the Helmholtz free
energy per site. The fundamental thermodynamic identity and
the definition of Helmholtz free energy imply the following
relationship between u and f :

f (β1) = 1

β1

[
β0f (β0) +

∫ β1

β0

u dβ

]
, (15)

where β ≡ 1/T and β0 and β1 are fixed inverse temperatures.

FIG. 15. (a) Energy per site during a slow quench and subsequent
heating. The phase transitions correspond to those of levels 1, 2, and
3, in order of decreasing T . See the end of Sec. IV B for the details
of the simulation. (b) Free energy of the disordered, level-1 ordered,
level-2 ordered, and level-3 ordered phases. The dot indicates the free
energy of the simplest periodic competing phase.
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Evaluating the right-hand side of Eq. (15) requires inde-
pendent knowledge of the value of β0f (β0) for a temperature
range at which the phase under consideration is stable. We
study four phases: the disordered state; the state in which level
1 is ordered; one in which levels 1 and 2 are ordered; and one
in which levels 1, 2, and 3 are ordered. We refer to a state in
which all levels up to and including level n are ordered as the
level-n ordered state.

The calculation of β0f (β0) for the disordered state is
easily done for β0 = 0. Let the internal energy at β0 = 0 be
u0. Because there are six possible orientations per site, the
entropy is

s0 ≡ S0

N
= ln 6. (16)

Because β0u0 = 0 and the free energy f = u − s/β, we have

lim
β0→0

β0f (β0) = − ln 6. (17)

To determine β0f (β0) for a level-n ordered state at an ap-
propriate value of β0, we use thermodynamic integration [23].
This method consists of finding some reference system for
which the free enery can be determined analytically and from
which there is a smooth path in parameter space to the system
of interest (not passing through any phase transitions). The
system is then monitored during a simulation in which a
parameter is slowly varied, which switches the Hamiltonian
from that of the reference system H0 to that of the system of
interest H1. Let the Hamiltonian Hλ be

Hλ ≡ (1 − λ)H0 − λH1, (18)

where λ ranges from 0 to 1. The free energy f (β0) of the
system of interest is computed using the relation

f (β0) − f0(β0) = 1

N

∫ 1

0

〈
∂Hλ(β0)

∂λ

〉
dλ, (19)

where f0(β0) is the free energy for the λ = 0 Hamiltonian H0.
In the cubic model, H1 is the sum of the interaction energies

of all the sites in the lattice with their nearest neighbors. The
reference Hamiltonian, H0, is a sum of two conjugate fields
interacting with subsets of the lattice sites. One of the fields
interacts with the cubes that form the corners of the desired
levels, while the other interacts with the edges. The cubes do
not interact with each other.

The free energy of the reference system of ordered levels
with index less than n is calculated as follows. Define on each
lattice site an integer-valued pseudospin, q, with 1 � q � 6,
corresponding to one of the six configurations of the tile, and
split the system into three noninteracting systems:

(1) a system of noninteracting, free spins;
(2) a paramagnetic system consisting of all tiles contribut-

ing edges to the ordered levels with index less than n; and
(3) a paramagnetic system consisting of all tiles contribut-

ing corners to the ordered levels with index less than n, but not
contributing edges to any of those levels.

The calculation of the free energy of system 1 is straight-
forward. A structure with ordered levels of index less than
or equal to n leaves N/4n cubes unrestricted. Each of these
cubes has six equally probable spins. Because the spins do not
interact with any part of the system, their internal energy is 0.

The free energy per site is then

f0 = − S

Nβ
= − 1

4nβ
ln 6. (20)

The free energy of system 2 is calculated in the presence of a
conjugate field hi(qi) that takes the value 0 for all qi consistent
with an ordered state and h0 > 0 for all qi inconsistent with
the ordered state. An edge is defined by the location and
orientation of the black bar on a cube. The specification of an
edge uniquely defines the configuration of a tile. Thus, there
is one value of q for which h(q) is 0, and five for which h(q)
is h0. The total Hamiltonian of the edge system is

HE =
NE∑
i=1

hi(qi), (21)

where NE is the total number of edges of levels with index
less than n. The total number of edges in level n is the length
of an edge (2n−1 − 1) times the number of edges (3) times the
total number of level-n triangles in the system (2N/4n):

NE = N

n∑
i=1

3(2i−1 − 1)
2

4i
≡ NnE, (22)

where nE is the fraction of spins in system 2. The partition
function is

ZE =
∑

all configs.

e−β
∑

i hi (qi ), (23)

=
NE∏
i=1

∑
qi

e−βhi (qi ), (24)

= (1 + 5e−βh0 )NE, (25)

which yields the free energy

fE = −nE

β
ln(1 + 5e−βh0 ). (26)

System 3 can be treated in a similar manner, except that the
degeneracies of the individual cube energy states now differ.
The definition of the orientation and location of the corners of
a cube does not uniquely specify the configuration but does
restrict it to two possibilities. Therefore hi(qi) gives 0 for two
spin values and h0 for four spin values. The total number of
corner cubes in the structure of level n is

NC = N − NE − N

4n
≡ NnC . (27)

The partition function is

ZC = (2 + 4e−βh0 )NC, (28)

and the free energy is

fC = −nC

β
ln(2 + 4e−βh0 ). (29)

The total free energy of the complete reference system of
ordered levels with index less than or equal to n is

fn,ref = − 1

β
[4−n ln 6 + nC ln(2 + 4e−βh0 )

+ nE ln(1 + 5e−βh0 )]. (30)
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TABLE III. Monte Carlo parameters used for obtaining the
internal energy for levels 1, 2, and 3 of the limit-periodic sequence
and for a system prepared in the 3-periodic state of Fig. 16. τβ is the
number of Monte Carlo steps performed at each temperature.

Level 1 Level 2 Level 3 Periodic

Size 8×8×12 16×16×24 32×32×48 32×32×48
βi 0 2.2 2.9 3.5
βf 2.2 2.9 3.5 N/A
�β 0.02 0.02 0.02 N/A
τβ 105 105 105 105

The simulation parameters used for the thermodynamic
integrations are listed in Table III. Integration of 〈∂Hλ/∂λ〉 as
a function of λ is performed using Gauss-Lobatto quadrature
with 20 abscissas. The results are plotted in Fig. 15(b). The
discontinuities in slope of the free-energy curves indicate that
the phase transitions are first order. The critical temperatures
of the first three transitions can be determined by locating the
crossings of the curves obtained for the different phases and
are presented in Table IV.

We have also computed the free energy of the simplest
low energy periodic phase at a temperature where it might
be expected to compete with a state in the limit-periodic
hierarchy—just below T ∗

c;3. The zero-energy periodic state
with the smallest unit cell is shown in Fig. 16. Based on
the size of the largest triangles in this state, we refer to it
as the “3-periodic” structure. The reference Hamiltonian used
here is a single conjugate field interacting with all the tiles
in the system. As in system 2, at each site, i, one value of
the pseudospin, qi , yields hi(qi) = 0 while five values yield
hi(qi) = h0. Thus, the free energy per tile in the reference
system is

f = − 1

β
ln(1 + 5e−βh0 ). (31)

We find that the 3-periodic state is metastable; its free
energy per tile at β = 3.5 is −4.69×10−4, which is clearly
higher than that of the competing level-3 ordered state in
the limit-periodic hierarchy. The internal energy of the 3-
periodic state is lower than that of the level-3 ordered state
by approximately 0.011 per tile, but the level-3 state has the
higher entropy due to the fluctuations of the level-4 corners and
edges. In particular, the lack of edges longer than three tiles
significantly suppresses the entropy of the 3-periodic state.
The difference in the free energies of these two phases is
approximately 0.002 per tile, corresponding to an energy cost
of one mismatch per 500 tiles, or roughly one mismatch per
10 unit cells of the 3-periodic structure.

TABLE IV. Critical temperatures of the transitions for the first
three levels in the cubic model.

T ∗
c;1 0.5359 ± 1.3×10−3

T ∗
c;2 0.3898 ± 6×10−4

T ∗
c;3 0.3065 ± 3×10−4

FIG. 16. Section of one of the periodic ground states. The largest
helices belong to level 3.

2. Scaling relations

A scaling argument similar to the one discussed in Sec. III C
applies to the limit-periodic structures formed by the cubic
model as well. A configuration of this system is specified by
giving the location of the ends of the black bars on each of
the faces. A configuration is allowed if the specification of
the positions of these objects for every tile corresponds to a
possible orientation of either of the two enantiomorphs shown
in Fig. 1(d). Suppose that level (n − 1) is completely ordered
and all decorations of cubes forming the helices of all levels
with index less than n are fixed. The level-n system is defined
to include all of the remaining degrees of freedom: (1) the set
of tiles left unused when level (n − 1) is ordered and (2) the
long bars that form bonds of length 2n−1 − 1 between these
tiles. The long bars in (2) are on tiles that form the corners
of the levels with index less than n. These bonds could in
principle form the edges of the helices.

Within the level-n system, there are 2n−1 noninteracting
subsystems. An individual subsystem will be referred to as
level ni , where i specifies the layers, �(i)

n , on which the centers
of the unused tiles are located. This subset of unused tiles is
defined as Un,i .

For a given configuration of tiles in Un,i , the partition
function of the level-ni subsystem is the product of the
individual level-n bond partition functions, ζ±

n (Tn). Thus, the
partition function of the level-ni subsystem is

Zn(Tn) =
∑

config.

∏
n.n

ζ±
n (Tn), (32)

where the partition function of an individual level-n bond with
matching (mismatching) corners is ζ+

n (ζ−
n ). ζ±

n is found by
treating the level-n bonds as 1D Ising chains with kn ≡ 2n−1

spins, and the same scaling relations of Eq. (7) are obtained.
Drawings of matched and mismatched corners for this case are
shown in Fig. 17.

The configuration sum of the subsystem of tiles in Un,i is
identical to that of the system of tiles in U1,0, which is the
set of all tiles. Both describe cubic lattices with bonds joining
neighbors along the principal axes directions. In exact analogy
with the 2D models, there is a temperature Tn at which the
level-n0 system behaves identically to the level-10 system at
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FIG. 17. (Color online) Matched and mismatched corner config-
urations for the black bonds of level 3.

T1, which implies

Zn(Tn) = AnZ1(T1) (33)

for some constant An. The relation of Tn to T1 is determined
by equating the partition functions for individual bonds:

ζ+
n (Tn) = αnζ

+
1 (T1),

ζ−
n (Tn) = αnζ

−
1 (T1), (34)

where αn = A
1/Nb
n , with Nb being the number of bonds. As for

the 2D case, we get

tanh

(
ε

2T1

)
=

[
tanh

(
ε

2Tn

)]kn

(35)

or, equivalently,

tanh

(
ε

2Tn

)
=

[
tanh

(
ε

2Tn+1

)]2

. (36)

The complete level-n system includes kn-independent level-
ni subsystems. Therefore, the partition function of the full
level-n system is

Qn(Tn) = [Zn(Tn)]kn , (37)

where Zn is defined in Eq. (32). The free energy of the level-n
system is

Fn(Tn) = −Tn ln Qn(Tn)

= kn [F1(T1) − Tn ln An] , (38)

where An = (ζ±
n (Tn)/ζ±

1 (T1))Nb .
Because the transition temperatures are finite, the assump-

tion that all levels with indices less than n are completely
fixed is not strictly satisfied, as in the 2D case. At the level-n
transition, tiles in levels with index less than n may fluctuate. A
straightforward correction to the free energy derived above can
be made by considering the edges of levels with indices less

than n for n > 2. Fluctuations of these edges have no effect
on the bonds between level-n corners and thus have no effect
on the scaling argument for Tn. To calculate this correction
to the free energy of the level-n system, consider the edge of
a level-m triangle, where m < n. In each edge consisting of
2m−1 − 1 long bars, there are km = 2m−1 bonds. Each bond
can either be in a matched state with energy 0 or a mismatched
state with energy ε. In a single edge, there must be both an
even number of mismatches and an even number of matches.
The number of level-m edges in a system with N tiles, Nm,E is

Nm,E = 6N

4m
. (39)

Thus, the partition function of the system of level-m edges at
a temperature Tn is

zm(Tn) =
[

km/2∑
i=0

(
km

2i

)
e−2iε/Tn

]6N/4m

. (40)

The partition function of the level-n system including the
fluctuations on edges of levels with index less than n is

Q′
n(Tn) = Qn(Tn)

n−1∏
m=2

zm(Tn) . (41)

Equations (38) and (41) yield the free energy

F ′
n(Tn) = knF1(T1) − Tn

[
kn ln An +

n−1∑
m=2

ln zm(Tn)

]
, (42)

where Tn is related to T1 through Eq. (35). Note, however,
that this expression does not account for fluctuations in the
corners of the (ordered) lower levels. Thus, as in the 2D case,
the prediction of Eq. (42) is not exact.

The validity of the scaling relations was tested by applying
them to the free-energy curves and critical temperatures
obtained from simulations. Using Eq. (35), the predicted
transition temperatures of level 2 and level 3 from the value of
T ∗

c;1 in Table IV are 0.3910 ± 7×10−4 and 0.3082 ± 4×10−4,
respectively, corresponding to 0.5% relative error. The scaling
theory, however, assumes that all bonds in levels with indices
less than n are fixed. This would imply that φn−1 is strictly
equal to unity in the vicinity of Tc;n, but the actual value of φ1

at Tc;2 is measured to be 0.999. To check the scaling theory and
our numerical determinations of the free energy, we perform
simulations in which levels with indices less than n were fixed
by hand. The excellent agreement between scaling predictions
and simulations is shown in Fig. 18(a).

The perfect scaling collapse of the free-energy curves of the
level-3 and level-2 systems onto that of level 1 when the rele-
vant lower levels are fixed externally indicates that the source
of any deviations from the scaling relation is the fluctuations of
the corner tiles in lower levels. Figure 18(a) gives an indication
of the size of those deviations, and the inset of Fig. 18(b) shows
the results for scaled transition temperatures computed from
simulations. These results strongly suggest that the accuracy
of the scaling argument improves as n increases, implying
that the infinite sequence of transitions is not disrupted by the
cumulative effect of residual fluctuations in each layer.
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FIG. 18. (a) Free energy of levels 2 and 3 scaled onto that of
level 1 according to Eq. (38) in the full system (fluctuations are not
artificially suppressed). Level-2 and level-3 curves have been scaled
according to Eq. (38). The scaled transition temperatures for the
different levels, marked by the heavy +s, are shown in the inset of
panel (b). (b) Free energy of levels 2 and 3 scaled onto that of level
1 according to Eq. (38) when levels with indices less than n are
held fixed, showing perfect agreement with the scaling theory. The
vertical dashed line through the intersection of the curves obtained
by integrating down from high T and integrating up from low T

marks the transition temperature. Inset: Critical temperatures of the
levels-2 and -3 transitions scaled onto that of level 1. The diamonds
are determined from simulations in which levels with indices less
than n are fixed by a conjugate field as in (b). The disks correspond
to the systems with all equilibrium fluctuations present.

V. TEMPORAL SCALING AND KINETIC BARRIERS

As noted in Ref. [18], the hierarchy of phase transitions can
lead the system to fall out of equilibrium when quenched too
rapidly. Roughly speaking, simultaneous attempts to establish
order at two or more levels creates a competition resulting in
defects that require extremely long times to heal due to their
complex geometric and topological structures. This raises two
questions. (1) How slow does a quench have to be in order
for the limit-periodic state to be accessed? And (2) what is
the nature of the defects that prevent equilibration when the
quench is too rapid? We consider these questions here in the
context of the 2D Taylor-Socolar lattice model with ε2 = ε1.

A. Relaxation times for ordered phases

As the temperature is lowered, full ordering requires that
the level-n order be firmly established before the critical
temperature for level (n + 1) is reached. Consider a cooling

protocol in which the temperature is varied in a sequence of
steps, being fixed at temperatures Tq;n for a time tn, where Tq;n

lies between Tc;n and Tc;n+1. We take the Tq;ns to be related by
the scaling relation of Eq. (8). Our goal is to find the minimal
values of tn such that φn reaches its equilibrium value before
the temperature is lowered, which requires understanding how
the times for relaxation to equilibrium scale with n for large n.

Because the ordering at higher levels requires the equili-
bration of longer bonds between triangle corners, we expect tn
to increase with n. A first estimate of the scaling of tn with n

for large n can be made based on the fact that, given complete
ordering of all levels less than n, the level-n system is identical
to the level-(n − 1) system except that the length of the bonds
between triangle corners is twice as large. Each such bond
behaves as an Ising chain that mediates the interaction between
corners. Thus the time required for equilibration should scale
like the time required to establish correlations on the order
of the bond length. The correlation length for an Ising chain
grows like the square root of time [24], so we expect the time,
τn, required for corners to become correlated to scale like
the square of the distance between them: τn ∼ 22n at large n.
Corrections to this asymptotic form for small n can be found by
numerical simulation of short Ising chains. We find, however,
that the scaling argument gives a poor account of the relaxation
times observed in Monte Carlo simulations of the full system.
Here we content ourselves with reporting the results of those
simulations.

We choose T1 = 1.0 to be the temperature for equilibrating
the level-1 ordered phase of the Taylor-Socolar tiling model
after a sudden quench from infinite temperature. We study the
equilibration of level n by fixing levels 1 through n − 1 in their
perfectly ordered states and quenching the remaining degrees
of freedom from infinite temperature to the temperature Tn

related to T1 by Eq. (8).
The inset in Fig. 19 shows φn as a function of the number of

Monte Carlo steps for n = 1, 2, and 3. The lattice sizes used are
32×32, 64×64, and 128×128 respectively, chosen such that
the number of corner tiles to be ordered for each level is the
same in all cases. Level 1 is equilibrated at T1 = 1.0; levels
2 and 3 are equilibrated at the corresponding temperatures

FIG. 19. Inset: φn vs time for levels 1, 2, and 3. The level-1
structure is relaxed on a 32×32 lattice at T1 = 1.0; level 2 is relaxed on
a 64×64 lattice at T2 = 0.603; level 3 is relaxed on a 128×128 lattice
at T3 = 0.427. Full panel: Data at long times from the runs shown in
the inset with times scaled using τ2/τ1 = 13.8 and τ3/τ2 = 10.7.
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TABLE V. The ratios between the relaxation constants for levels
1, 2, and 3 obtained from Monte Carlo simulation of the 2D tiling
model.

Ratio of relaxation constants

τ2/τ1 13.8
τ3/τ2 10.7

T2 = 0.603 and T3 = 0.427, respectively. From the long-time
behaviors, where φn > 0.8, we fit the relaxation to φ ≈ 1
with an exponential and extract the time constant τn listed
in Table V. The full panel in Fig. 19 shows the curves from
Fig. 19 with the times scaled by τn

τ1
.

B. Failure to order in rapid quenches

In order to identify the defects that prevent equilibration
in a rapid quench, we perform Monte Carlo simulations in
which a random initial configuration evolves at a temperature
T = 0.6, which is below Tc;2 and above Tc;3. Figure 20 shows
a configuration of a 64×64 lattice after 5.4×105 Monte Carlo
steps. Different colors indicate different choices of sublattice
for the level-1 order. In any given region, the level-2 structure
is also well ordered.

Figure 21 shows details of two types of domain walls that
appear during the quench. These are magnified images of the
lower right and bottom boundaries of the central light gray
(yellow) region in Fig. 20. The boundary in Fig. 21(a) contains
multiple mismatches in the level-1 and level-2 black and thick
gray (purple) structures (shown in three different colors for
visual clarity), and the domain wall tends to roughen and move
relatively easily. The boundary in Fig. 21(b), however, does
not contain any black stripe mismatches in either the level-1
or level-2 structure. In this case, motion or roughening of the
domain wall requires introducing multiple new mismatches in
the level-1 black triangles, but because the level-2 structure is
also ordered, rotations of the tiles containing level-1 corners
are strongly suppressed. These domain walls effectively block

FIG. 20. (Color online) Distinct ordered regions in a configura-
tion of a 64×64 lattice equilibrated for 5.4×105 Monte Carlo steps
per tile after a rapid quench to T = 0.6. Tiles are colored according
to the sublattice (A, B, C, or D) that specifies the level-1 structure.
[See Fig. 2(a).] The gray in the upper left (green) and dark gray
(blue) regions are each single domains connected through the periodic
boundary conditions.

FIG. 21. (Color online) Close views of two of the domain walls
formed during a sudden quench of a 64×64 lattice to the temperature
T = 0.6. The top panel shows a domain wall that roughens relatively
easily due to the existence of multiple mismatches along the boundary.
The lower panel shows a domain wall that becomes frozen due to the
lack of black stripe mismatches in the level-1 and level-2 triangles on
both sides of the boundary.

the equilibration of the level-1 and level-2 order parameters to
their equilibrium values. The barrier to equilibration thus arises
not due to small-scale competition between the level-1 and
level-2 triangles for corner tiles but rather due to the existence
of special positions and orientations of domain walls that allow
the system to find deep energy minima in which different large
regions of the sample break the sublattice symmetry of the
level-1 structure in different ways.

VI. DIFFRACTION PATTERNS

The detection of a naturally occurring limit-periodic
structure or verification of a synthetically produced one
often relies on the interpretation of diffraction data. The
general features of limit-periodic diffraction have been studied
by physicists and mathematicians interested in long-range
aperiodic order [25,26], and Akiyama and Lee have proven in
particular that a density pattern formed by a tiling consisting
of decorated Taylor-Socolar tiles would exhibit pure point
diffraction [27]. We present here an exact calculation of the
diffraction corresponding to a particular decoration of the
Taylor-Socolar prototile with a density specifically designed
to make the computation tractable.
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Because the full limit-periodic pattern is by definition
the union of a countable hierarchy of periodic patterns with
increasingly larger lattice constants, we expect the diffraction
pattern of any mass density associated with it to be decompos-
able as a sum of the form

I (k) =
∣∣∣∣∣
∑

n

∑
b∈Bn

Nnf̂n(k) exp (iun · k) δ (b − k)

∣∣∣∣∣
2

. (43)

Here Bn is the set of dual lattice vectors for the level-n periodic
pattern; f̂n is the form factor of the level-n unit cell; the term
exp iun · k accounts for a potential offset of the level-n patterns
from one another; and Nn is a normalizing factor to account
for the decrease in densities of the contributions with larger
n. Note that in general Bn ⊂ Bn+1 because the direct lattice
of the level-(n + 1) pattern contains the basis vectors of the
direct lattice of the level-n pattern.

For a Taylor-Socolar tiling, the level-n periodic pattern
forms a periodic triangular lattice with lattice constant
an = 2na0, where a0 is the distance between the centers of
neighboring tiles. The Bn vectors therefore form the dual
triangular lattice with lattice constant bn = 2−nb0, and we have
Nn = 2−n.

The offsets uv specify which one of the uncountably
many Socolar-Taylor tilings is under consideration. They are
expected to depend on the details of the annealing process and
cannot be determined a priori; they correspond to the choice
of which sublattice (A, B, C, or D) is chosen for ordering at
each level, as explained in Sec. II.

All that remains undetermined is the form factor of the unit
cell, which depends on the particular decoration (i.e., choice
of mass density) on the prototile. To compute the form factor
for the simpler ε2 = 0 2D tiling, we associate the prototile of
Sec. II with a collection of four point masses arranged in the
pattern shown in Fig. 22. A specification of the location of these
four point masses for a given tile unambiguously determines
its position and orientation. Further, this decoration allows a
simple calculation of the form factors for a full ground-state
tiling.

The calculation of the form factors and corresponding
diffraction image proceeds as follows. First, note that the
inversion symmetry of the unit cell of the level-n periodic
pattern as shown Fig. 23 allows us to consider only the

FIG. 22. (Color online) Mass decorations used for computation
of the diffraction patterns. The tile on the right is the decoration
associated with the tile orientation shown on the left. Each disk is
taken to be a point mass, all of equal weight. The black disks indicate
the positions of the point masses used for the ε2 = 0 case. The central
tile shows the vectors used in Eq. (44).

FIG. 23. (Color online) (a) The mass density for computation of
the diffraction pattern for the ε2 = 0 case (the black stripe model).
Black dots represent point masses of equal mass. Gray lines are
guides to the eye. The point masses touching the dashed (blue) lines
form the level-2 unit cell. (b) The total computed diffraction pattern
for levels 1 through 6 of the ε2 = 0 mass decoration. The largest
wavevectors shown correspond to the basis vectors of the reciprocal
lattice associated with the undecorated hexagonal tiling.

upper triangle of the mass decoration in our calculation.
The density of this decoration is given by equal amplitude
δ functions located at each of the points shown in Fig. 23.
Note that the masses shown in Fig. 23 are not all of the masses
associated with the tiles in that figure. Other masses on those
tiles contribute to periodic structures at different levels. The
patterns formed at different levels differ only in the number of
tiles inserted into the edge of each triangle, with each of those
tiles contributing two masses. The locations of the masses on
the prototile have been chosen such that the spacing of masses
along each triangle edge is uniform.

We define a, b, c, and r as the constant vectors shown
relative to a sample hexagon in Fig. 22, with the length of r
being half of the side length of the hexagon. For a general
level n, taking the origin to be at the center of the central
triangle in Fig. 22 and defining κn ≡ 2n − 1, the density
associated with the upper triangle is

fn+(x) =
κn−1∑
m=0

[δ(r + ma − x) + δ(r − mc − x)

+ δ(r + κna + mb − x)]. (44)
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FIG. 24. (Color online) (a) A region of the mass density for
computation of the diffraction pattern for the ε2 �= 0 mass decoration.
Black and light gray (light purple) disks represent point particles of
equal mass m. Darker gray (darker purple) disks represent particles
of mass 2m. (b) The total computed diffraction pattern for levels 1
through 6 of the ε2 �= 0 mass decoration. The largest wave vectors
shown correspond to the basis vectors of the reciprocal lattice
associated with the undecorated hexagonal tiling.

The Fourier transform of Eq. (44) can be written in terms
of geometric sums as

f̂n+ = e−ir·x
κn−1∑
m=0

[e−ima·x + e+imc·x + e−i(κna+mb)·x]. (45)

Exploiting the inversion symmetry of the unit cells, the desired
form factors for the periodic subpatterns are related to Eq. (45)
by

f̂n = 2Re[f̂n+]. (46)

With the form factors from Eq. (46) in hand, we directly
compute the diffraction patterns from this sample mass
decoration. Figure 23 shows the diffraction image for the
pattern obtained from levels 1 through 6 from Eq. (43).
Figure 24 shows the diffraction image for the pattern obtained
from levels 1 through 6 for the decoration associated with
nonzero ε2. In each of the figures, the area of each black dot
is proportional to the intensity at that point on the reciprocal
lattice.

The diffraction patterns illustrate the complexity of the
real space structures. The definitive feature is the lack of

a smallest wave vector for an infinite sample. We do not
claim to understand which features of the global variations
in intensity, such as the depleted ring at wave vectors with
approximately half the magnitude of the largest wave vectors
shown in these images, are generic. The figures are presented
only as illustrations of the qualitative features that might be
expected if structures of this type were found in nature.

VII. CONCLUSION AND REMARKS

The variants of the Taylor-Socolar lattice model studied
here display an intriguing array of behaviors. In all cases,
rapid quenches lead to disordered states with high barriers
to equilibration. Slow quenches, however, lead to a series
of phase transitions whose limit (as T → 0) is a perfect
limit-periodic structure. This is true even in cases where
there exist many degenerate periodic and limit-periodic ground
states.

In the 2D Taylor-Socolar model, which requires next-
nearest-neighbor interactions, the limit-periodic structure is
the unique ground state in the sense that any finite sample is
a configuration that can be found within a single canonical
instance of the Taylor-Socolar tiling. For this model, we have
studied both slow and rapid quenches. The phase transitions
are second order, and for the case ε2 = ε1 a scaling theory
can be used to map all of the transitions onto a single
form. We have also seen that the barriers to equilibration
in rapid quenches involve particular types of domain walls
that cannot move without significant increases in the energy
penalty. Finally, we have exhibited an exact diffraction pattern
for two different mass decorations of the hexagonal “unit
cell.”

In the 2D black stripe model, there are degenerate perfect
limit-periodic structures and perfect periodic ones. Neverthe-
less, upon slow cooling, the second-order transitions leading
to the limit-periodic structure do occur. Roughly speaking,
the highest temperature at which a periodic structure might
be stable is lower than the temperature at which some level-n
transition occurs that creates a structure incompatible with the
periodic state.

In the case of the 3D zonohedral model, we have proven
that nearest-neighbor interactions are sufficient to rule out all
periodic states as ground states. With these nearest-neighbor
interactions alone, there exist many degenerate limit-periodic
states, having lattices of helices at any given level arranged
differently relative to each other.

In the 3D cubic model, the set of degenerate ground states
includes the limit-periodic states of the zonohedral model
and also periodic states closely related to the periodic states
of the black stripe model, and we have not ruled out the
possibility of additional ground states. Just as for the black
stripe model, the limit-periodic structure does emerge during
slow cooling through the same hierarchy of transitions. In this
case, however, the transitions are first order. We have shown
that the same approximate scaling relations hold here as for
the Taylor-Socolar model and confirmed that they hold to high
accuracy by computing free energies of the system in several
phases with increasing levels of order.

The fact that the transitions appear to be second order in
the zonohedral model but first order in the cubic model begs
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the question of how the nature of the transition changes as
a function of ε2. We conjecture that the transition becomes
first order for all ε2 < 1, with the size of the discontinuity
approaching zero as ε2 approaches 1, but careful investigation
of this point is beyond the scope of the present work.

One intriguing case that we have not yet studied carefully is
the 3D zonohedral model with ε2 > ε1. In the case of ε1 = 0,
each layer of the system forms a limit-periodic structure, but
the layers are decoupled, so the structures in different layers
are not likely to be in registry with each other. For small ε1, we
conjecture that the level-1 transitions within each layer occur
at a temperature high enough to prevent the interlayer coupling
from bringing the different layers into registry, thus leading to
a frustrated state at low temperature in which the black bar
structures always have defects and the ground state cannot be
accessed. The resulting material would be a new type of glass
whose thermodynamics and kinetics might be accessible to
analysis.

Finally, the fact that the 2D black stripe model and the
3D cubic model, whose Hamiltonians involve only relatively
simple nearest-neighbor interactions, do yield limit-periodic
structures upon slow cooling suggests that plausible physical
interactions may indeed induce spontaneous formation of a
limit-periodic structure. The construction of a physical unit
embodying these interactions could lead to a material with a
thermodynamically stable structure of a type never identified
previously in a spontaneously formed physical system. The
finite gap between the free energy of the relevant competing
periodic phase and the partially ordered limit-periodic struc-
ture at each transition temperature implies that the path to
limit-periodicity through quasistatic cooling can be followed
even if next-nearest-neighbor interactions favor the periodic
phase at T = 0. Thus the design space for physical units that
might form limit-periodic phases is much larger than the strict
matching rules that force the tilings may suggest.
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APPENDIX: PROOF OF APERIODICITY
OF THE ZONOHEDRAL TILE

We prove here that the zonohedral model, as represented
by the tiel of Fig. 7, has no periodic ground states. The logic
of the proof is as follows. First, we consider the pattern of
purple stripes formed in a single layer and show that in any
periodic pattern satisfying the matching rules, there must be a
triangle of the type shown in Fig. 25. We then show that the
black stripes on this layer force the formation of a pyramid of
tiles culminating in the middle with a tile that cannot match
the three black stripes supporting it, shown in Fig. 25. Thus
the purple chiral triangle is not consistent with the matching
rules and no periodic tiling is possible.

In the following, we refer to a level-n triangle as having
side length 2n−1. Each side has 2n−1 − 1 tiles with straight
gray (purple) stripes across them and 2 corner tiles. Note that

FIG. 25. (Color online) The thick gray (purple) chiral triangle, or
a smaller or larger version of it, must occur in a layer of a periodic
pattern. Note that each long edge ends at a corner that turns away
from another long edge. The black stripes shown are then forced as a
pyramid of layers is formed. The tile at the top of the pyramid cannot
match all of its black stripes to its neighbors.

each tile that contributes a straight portion of the edge of a
large triangle also contributes two corners of other triangles.

Lemma 1. Any closed purple triangle must be equilateral.
Proof. All corners form angles of π/3. Q.E.D.

Lemma 2. Let S be one side of a triangle, as shown in black
in Fig. 26. At least one of the edges emanating from the corners
along the exterior of the edge in question must be at least half
as long as S.

Proof. Suppose the red triangle (labeled R) shown in Fig. 26
is the largest one emanating from a corner along S. The smaller
triangles shown in gray are forced, as can easily be seen by
inspection. If the red side length is shorter the half of S, it
is clear by simple geometry that one of the blue edges must
extend to meet another corner on the exterior edge of S. But this
blue edge will be longer than the red one, which contradicts
the claim that the red one was the largest. Q.E.D.

Lemma 3. There can be no infinite line in a periodic tiling
that satisfies the purple stripe rules everywhere.

Proof. If there is an infinite line, then by Lemma 2, there
would have to be infinite half-lines in each of the three
triangular directions. Given that lines cannot intersect, this
rules out any periodic structure. Q.E.D.

Corrollary. There must be a largest triangle in the periodic
structure. (The proof is obvious.)

FIG. 26. (Color online) Proof of Lemma 2. If each edge in the
red triangle (R) is shorter than one half the length of the black edge
(S), then a blue edge (B) that is longer than each red one must exist.
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FIG. 27. (Color online) Proof of Lemma 4. All possible choices
of red lines (R) and corresponding black lines lead to the formation
of a chiral triangle of the type shown in Fig. 25.

Lemma 4. In any periodic structure satisfying the purple
stripe matching rules, there must exist an equilateral triangle
bounded by the edges of three separate triangles. Furthermore,
the orientations of the tiles at the corners of this triangle form
a chiral structure as depicted in Fig. 27.

Proof. In Fig. 27, let the blue line (labeled “Largest
triangle”) be a portion of one of the largest triangles in the
structure. At the blue corner, there must be an edge directed
as shown in red. Because the red edge (labeled “R”) cannot
be longer than the blue one, the red corner shown must turn
away from the blue edge, as shown, otherwise it would be
impossible to complete the red triangle. Working from the
top tile where the red line meets the blue corner, the gray
triangles are forced and the red corner must occur at one of the
places indicated by the red dashed segments. Where the red
corner occurs, there must be a horizontal stripe as shown in
black, and the black edge must terminate in a corner that turns
downward as shown. By inspection, every possible choice
for the black edge results in the formation of an equilateral
triangular region consisting of the edges of three separate
triangles: one red, one black, and the other either gray or
blue. Q.E.D.

We have thus shown that any given layer of any periodic
tiling obeying the purple stripe rules everywhere must contain
a triangular region of the type shown in purple in Fig. 25.
We now consider the layer above this “chiral triangle,” which
is coupled to it through the matching of black bars. We
wish to show that the pattern of black bars in Fig. 25 is
forced.

Lemma 5. The black bars passing through the corners of a
chiral triangle must extend all the way to a single tile directly
above (or below) the center of the triangle.

Proof. The proof is illustrated in Fig. 28. Figure 28(a) shows
one corner of a large chiral triangle in thick gray (purple). The
black bars associated with the tiles in the layer of thick gray
(purple) stripes are shown in thin gray. Only the portions of
the black bars whose locations are forced are shown. The thick
gray (purple) layer forces the placement of some of the tiles
one layer above it, and these tiles are shown in outlined white,
with the forced portions of their black bar decorations shown
in black. The key feature is that the long black stripe on the
tile at the lower left corner is forced. Similarly, Fig. 28(b)

(a)

(b)

(c)

FIG. 28. (Color online) Proof of Lemma 5. (a) Base layer [thick
gray, (purple)] required by Lemma 5 and forced layer (outlined white)
above it. (b) Outlined white layer of (a) and forced layer [outlined
gray (red)] above it. (c) Outlined gray (red) layer of (b) and forced
layer (outlined white) above it.

shows the forced tile decorations on the next layer up, shown
in outlined gray (red), and Fig. 28(c) shows one layer above
that, again in outlined white. Note that the two outlined white
layers have the same structure, implying that the pattern must
repeat and the black bars must extend upwards as shown in
Fig. 25. Q.E.D.

The proof of aperiodicity is now complete, for Lemma
5 guarantees the existence of a tile location in any periodic
pattern (the tile at the central site of Fig. 25) for which there is
no way to place a tile that satisfies the black bar matching rule.
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