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Abstract During the last years, the electricity sector has
experienced great changes, especially within the economic
regulation. After receiving several criticisms, the rate of
return regulation has been replaced by incentive regulation.
The main objective of this regulation is to stimulate business
efficiency. This paper proposes an alternative application of
data envelopment analysis to the Brazilian case, character-
ized by a large territory: the use of Unit Networks in the
distribution segment to regionalize the concession area and
then to analyse the efficiencies separately. Many regulators
use the entire distribution company as a decision-making unit
for price regulation when benchmarking is applied. However,
in Brazil, quality performance is measured in detail using sets
of consuming units, i.e. quality is measured using small parts
of the company. Given that efficiency cannot be assessed
without considering various aspects of quality performance
and characteristics of the underlying environment in the
utility’s concession area, this paper tries to find the trade-
off between management, quality, environment and costs.
Therefore, the main contribution of this paper is twofold: the
solution for Brazilian distribution companies’ heterogeneity
and the choice of variables that are better measures for an effi-
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ciency analysis. Some examples with Brazilian utilities are
provided to show the advantages of the proposed approach.
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Abbreviations

DEA Data envelopment analysis
UN Unit Network
DMU Decision-making unit
RPI Retail Price Index
FRM Firm reference model
COLS Corrected ordinary least square
SAIDI System Average Interruption Duration Index
SAIFI System Average Interruption Frequency Index
CRS Constant Return to Scale
VRS Variable Return to Scale
TINT Total time lost due to interruptions
GIP Gross internal product
ANOVA Analysis of variance

List of symbols

Ui Annual outage time (h)
Ni Number of customers at load point i (person)
N Number of companies (unit)
θ Efficiency score (0–1)
λ Vector of weights
E Observed inputs
M Observed outputs
X Input matrix

123



J Control Autom Electr Syst

Y Output matrix
xi Input column vector for the i th company
yi Output column vector for the i th company
zi Vector of environmental variables
θ∗

i Latent variable related with the calculated efficiency
score

β Vector of parameters that represent the impact of
environment

1 Introduction

Various reforms have been proposed for the electricity sec-
tor around the world to make utilities more efficient through
competition, privatization and price mechanisms. In general,
during the restructuring process, the industry is divided into
four distinguished activities: generation, transmission, distri-
bution and retailing. In generation and retailing, competition
has become possible through the development of new gener-
ating technologies and by increasing the number of agents,
while transmission and distribution remain regulated because
of their natural monopoly characteristics. This paper focuses
only on the economic regulation of the distribution compa-
nies.

One of the major problems of rate of return regulation
is that companies are induced to over-capitalize to obtain
higher remuneration of capital. Consequently, the tariffs paid
by customers increase. The incentive regulation tries to force
the companies to be more efficient (Ergas and Small 2001)
and try to avoid the Averch–Johnson effect (Averch and John-
son 1962). However, quality of supply can be compromised
because utilities can reduce costs indiscriminately to pursue
this efficiency.

The incentive regulation uses benchmarking techniques
to define the efficient companies. In general terms, this tech-
nique can be characterized as a method that compares a group
of companies as they were subjected to a competitive envi-
ronment (Lowry and Getachew 2009).

Results from a survey conducted among energy regula-
tory agencies in 40 countries in 2008 showed that there is
a clear trend in the electricity industry towards the use of
Data Envelopment Analysis (DEA) in both transmission and
distribution (Haney and Pollitt 2009).

It is noteworthy that despite the popularity of the DEA
methodology, its application is restricted mainly to Euro-
pean countries characterized by small territorial distances
and homogeneous environmental conditions. In Brazil, con-
ditions are different:

“There is a large variation in sizes, scopes and envi-
ronmental characteristics of the Brazilian distribution
companies. It seems obvious that the diversity is
higher in Brazil than in most other countries where

benchmarking-based regulation has been traditionally
used” (Bogetoft 2014).

During the Public Hearing that proposed the DEA method-
ology for the Third Price Control Review (2011–2014), the
Brazilian regulatory agency received criticisms from distri-
bution companies such as: (1) the existence of very different
environments throughout the country and (2) not including
the quality of supply.

Cook et al. (2013) emphasize that DEA is a methodology
for evaluating the relative efficiency of a set of homogeneous
decision-making units (DMUs), i.e. the companies under
evaluation is comparable. In some situations, such as com-
panies that have a wide concession area with different social,
economic or environmental characteristics, the assumption
of homogeneity does not apply. The absence of homogene-
ity may lead to an unfair comparison.

This paper proposes a new approach to solve the het-
erogeneity constraint and to allow the inclusion of quality
and environmental aspects; the approach combines the DEA
methodology with the Unit Networks (UN) concept. The UN
is used for splitting a distribution company concession area
into more homogeneous subgroups that are further consid-
ered as DMUs.

This paper is composed of six sections. After the intro-
ductory section, an overview of the regulation of Brazilian
distribution companies is given in Sect. 2. Section 3 presents
the proposed methodology. Section 4 describes the data and
models used in the study. In Sect. 5, simulation results are
presented. Finally, Sect. 6 concludes the paper.

2 Distribution Regulation

Before 1995, the Brazilian electricity sector was totally in
the hands of federal and state companies (ANEEL). Reform
began in that year with the sale of the distribution compa-
nies to the private sector. Meanwhile, the main guidelines
of regulation were proposed, and the principal laws were
enacted from 1997 to 1999. The Brazilian regulatory agency,
ANEEL, was created at that time; in addition to other duties,
it assumed the responsibility for pricing the transmission and
distribution services along with the definition of their quality
performance.

2.1 Price Regulation

Since 2003, the distribution companies have been regulated
using a price cap model based on RPI1-X formula that is reset
every 4 years. Price cap model typically specifies an average
rate at which the prices that regulated companies charge for

1 Retail Price Index
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its services must decline, after adjusting for inflation. This
rate is called the X-Factor.

The distribution segment completed two price revision
periods (2003–2006 and 2007–2010) and at this writing is
undergoing a third (2011–2014).

The Firm Reference Model (FRM) (Sanhueza et al. 2004)
was used for accessing the efficient operational costs dur-
ing the first and second price revisions. This model tries to
mimic the operation of an optimal company with the same
characteristics as the real company. All processes and activ-
ities are represented and priced according to the realities of
the concession area.

However, during the third price revision, ANEEL changed
from the bottom-up approach of FRM to top-down methods
such as DEA and Corrected Ordinary Least Square (COLS).
Instead of analysing each activity, the efficiency is measured
comparing outputs and inputs among distribution companies.

The two-stage DEA model was used to take the environ-
mental aspects of the distribution service into account. The
model outputs were network length, energy delivered and
number of customers. The inputs were operational costs. As
environmental variables, it considered the local wage level,
the precipitation rates, the customer density and a complex-
ity index. The wage level measures the differences in labour
costs at the utilities determined by the local markets. The
complexity index measures the difficulty faced by each util-
ity in reducing non-technical losses.

From this comparison with actual data from the utilities,
the regulator sets different X-Factors for passing operational
costs to customers through tariffs according to the average
efficiency of the sector. The X-factor is applied on the value
of the Parcel B2 of distribution companies. Thus, for more
efficient companies, it is possible to have earnings above
actual costs, while for less efficient ones there are deficits
not allowed to pass through to consumers (ANEEL 2006;
Matos et al. 2012).

2.2 Quality of Supply Regulation

In Brazil, the quality performance analysis is carried out
based on divisions of the concession area called sets of con-
suming units. Thousands of sets are created; performance
comparisons, formerly done company by company, changed
to set by set (Tanure et al. 2006).

One set of consuming units is composed of the units fed by
the same distribution substations. The central idea is that the
sets are more comparable than the distribution companies
as a whole because the concession areas in Brazil usually
cover a wide range of social, economic and environmental
characteristics.

2 Controllable costs composed by operational costs, capital remuner-
ation and depreciation.

After defining the sets, a clustering process is carried out
based on the characteristics of the sets. This is necessary
because there are approximately 6000 sets to analyse and for
which to establish quality performance targets.

Quality of supply is assessed for each cluster using the
collective indicators System Average Interruption Duration
Index (SAIDI) and System Average Interruption Frequency
Index (SAIFI) (Billinton and Allan 1984). The first index
measures the mean time during the observation period for
which there was discontinuity in the electricity supply, as in
Eq. (1).

SAIDI =
∑

Ui ∗ Ni
∑

Ni
(1)

where:

Ui : Annual outage time;
Ni : Number of customers at load point i .

This indicator is used in this paper as a quality measure,
after multiplication by the number of customers at the load
point i .

2.3 Combined Price and Quality Regulation

Regarding price regulation, the Brazilian regulator bases its
analysis on the company as a whole, i.e. the DMUs are the
distribution companies. However, for quality regulation, the
regulator bases its analysis on the set of consuming units,
which are divisions of the concession area. These perspec-
tives are depicted in Fig. 1.

Given that price regulation cannot be disconnected from
the quality of the service, the company approach and the set
of consuming units approach must converge to the same base.

Consider the case of the Brazilian company CEMIG. Its
distribution network is over 460,000 km in length (CEMIG).
The company operates in the Minas Gerais state that has an
area of approximately 586,528 km2, larger than countries

Fig. 1 Regulatory perspective
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such as France, Spain and the UK (IBGE). For example, the
average lightning rate, which may affect the continuity of
supply, varies from 0.085 to 5.971 per km2 per year within
the concession area. All of these peculiarities shape the char-
acteristics of CEMIG’s distribution network, which requires
different treatment for each region.

The use of sets of consuming units as DMUs considerably
increases the number of DMUs. Moreover, the DMUs should
represent organizational units, whereas the sets of consuming
units represent portions of the electrical distribution network.

The UN concept introduced in this paper tries to minimize
the distance between the price regulation and the quality of
supply regulation. The boundaries of UNs have strong con-
nections to the regional organizations that are usually present
at the distribution companies. Therefore, the regulator can
consider the same unit of analysis both for the quality of
supply and for price regulation. Additionally, the regulator
may determine whether the cost reduction is being done to
the detriment of the quality of supply.

3 Methodology

3.1 Data Envelopment Analysis

DEA is a nonparametric methodology that uses real data to
measure the relative efficiency of a DMU. It was proposed
by Charnes et al. (1978) to address the efficiencies of compa-
nies operating in constant returns to scale (CRS) and further
extended by Banker et al. (1984) to variable returns to scale
(VRS).

This efficiency analysis can be focused on input reduc-
tion or output expansion. The result from an input-oriented
model is the maximum reduction possible in the inputs level
for a given level of output. With an output-oriented focus,
the model seeks the maximum output quantities that can be
generated by the actual level of inputs used by the company.
The efficiency scores can vary from 0 to 1, where 1 denotes
the efficient company.

The majority of the DEA models consider either constant
(Charnes et al. 1978) or variable returns to scale (Banker
et al. 1984). For constant returns to scale (CRS), outputs and
inputs increase (or decrease) by the same proportion along the
frontier. Where the technology exhibits increasing, constant
or decreasing returns to scale along different segments of the
frontier, the variable returns to scale (VRS) model is indicated
(Subhash and Chen 2010).

The CRS model assesses the overall technical and scale
efficiency, while a VRS model measures only the technical
efficiency.

The efficiency score of the i th company of N compa-
nies in CRS models takes the form specified in Eq. (2)
where θ is a scalar (equal to the efficiency score) and λ is

Table 1 Equation parameters

Sample Unit
Networks

Distribution
companies

Number of DMU (N) 70 10

Observed inputs (E) 4 4

Observed outputs (M) 2 2

Input matrix (X) 4 × 70 4 × 10

Output matrix (Y ) 2 × 70 2 × 10

a N × 1 vector that represents the weight of each decision-
making unit in the construction of the reference company
(Giannakis et al. 2005). Assuming that the companies use E
inputs and M outputs, X and Y represent E × N input and
M × N output matrices, respectively. The input and output
column vectors for the i th company are represented by xi

and yi, respectively. In Eq. (2), company i is compared to
a linear combination of sample companies which produce
at least as much of each output with the minimum possi-
ble amount of inputs. The Eq. 2 is solved once for each
company.

For VRS models, a convexity constraint
∑

λ = 1 is added
that ensures that the company is compared against other com-
panies of a similar size.

minθ,λ θ

s.t.

yi ≤ Yλ

θxi ≥ Xλ

λ ≥ 0 (2)

In the context of this paper, we have two different samples:
(1) Unit Networks sample and (2) distribution companies
sample. Table 1 presents the parameters for each sample in
Eq. 2 and θ, λ they are the parameters to be calculated by
linear program.

We have four inputs and two outputs variables: network
length (x1), transformer capacity (x2), number of employees
(x3), quality measure (x4), energy delivered (y1) and number
of customers (y2).

If company i has the θ value equal to 1 means that the
company uses the minimum values for inputs, and it is con-
sidered efficient. Otherwise, if the value of θ is less than 1
means that the company is using more inputs resources than
the necessary, and it is considered inefficient.

Banker et al. (1984) state that one of the most important
advantages of this methodology is that the efficiency score
is obtained directly, without the need to specify the produc-
tion function in advance. The methodology deals directly
with multiple outputs and inputs, and the linear programming
model facilitates the implementation and the convergence
process to solve the problem.

123



J Control Autom Electr Syst

The traditional DEA models consider that inputs can be
reduced and outputs can be increased by DMU in a short time.
However, there are variables that are beyond DMU control,
which are known as environmental variables. There are many
ways to include these variables using the DEA methodology
(Subhash 1988; Simar and Wilson 2007), such as the two-
stage model used in this paper.

A Two-Stage DEA model Two-stage analysis is one of the
most popular techniques in the literature to take environ-
mental variables into account.

We employed this technique as follows: in the first stage,
we determined the technical efficiency performances of the
unit networks (UNs) or distribution companies using DEA. In
the second stage, treating these calculated efficiency scores
as dependent variables, we used a regression technique to
determine the environmental variables that may explain the
efficiency scores. This approach is advocated by Chilingerian
and Sherman (2004), Subhash (2004) and Ruggiero (2004).

Efficiency scores calculated from DEA take values
between 0 and 1, making the dependent variable in the sec-
ond stage limited. The Tobit model (Tobin 1958) is frequently
used to address such a limited dependent variable and is fol-
lowed in this study.

The calculated efficiency score in the first stage (θi ) will
be corrected by environmental variables (zi ) in this second
stage. Therefore, a latent (unobserved) variable (θ∗

i ) is cal-
culated as in Eq. 3:

θi =

⎧
⎪⎨

⎪⎩

θ∗
i ; 0 ≤ θ∗

i ≤ 1

0; θ∗
i < 0

1; θ∗
i > 1

θ∗
i = ziβ + εi (3)

Here, zi is an (r × 1) vector of environmental variables and
β is an (r ×1) vector of parameters to be estimated.

In the context of this paper, we have three environmental
variables: number of lightning (z1), customer density (z2)

and ownership (z3).

3.2 Unit Network

Traditional efficiency analyses usually consider DMUs to
be the distribution companies. Because some distribution
companies have large concession areas with different char-
acteristics and different quality indices, this paper suggests
the use of Unit Networks as decision-making units. The UNs
aggregate the sets of consuming units forming regions within
the distribution concession area (Lima et al. 2011).

The definition of a UN is a twofold process. The first step is
to define the domain areas of each connection point between

Fig. 2 Transmission and distribution grids connection

the transmission and distribution networks. The domain area
of a connection point is defined as the set of buses that are
reached by the power flow that cross the border transformer.
The second step couples domain areas based on strong and
weak links through network equivalents. In the presence of
strong links, two or more UNs can be grouped to form a larger
UN. Connections are strong if they have a low equivalent
impedance value and are weak if the impedance is high.

3.3 Example of Unit Network Definition

Consider the system as depicted in Fig. 2. The red box rep-
resents the transmission grid and green box represents the
distribution grid. Usually, the flow direction in the border
transformers, which connects the grids, is from transmis-
sion to distribution. If a virtual generator is considered at the
primary bind of the border transformer, it is possible to deter-
mine the domain of this connection point using the concept
of a generator’s domain introduced by Kirschen et al. (1997).

The domain area of the connection point is the set of buses
that are reached by the power flow that crosses the border
transformer. The power flow reaches a specific bus if it is
possible to find a path on the network going from the con-
nection point to the bus where the flow direction remains
unchanged. An example of the domain area for four connec-
tion points is depicted in Fig. 3.

Some medium-voltage distribution networks have a mesh
topology, so it is possible to have overlap between domain
areas where the connection points to transmission grid are
close, as seen in Fig. 3. When this is the case, the second
step determines whether these two or more domain areas
should be coupled, using the concept of Thevenin equiv-
alent impedance. As represented in Fig. 4, the equivalent
impedance between the secondary bind of the border trans-
formers is computed on a two-by-two basis.
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Fig. 3 Connection point domain area

Fig. 4 Equivalent impedance between two connection points

The equivalent impedance represents the electrical prox-
imity of the two buses. If the equivalent impedance is small,
there is a strong link between the two connection points.
Therefore, they should be coupled to form a unique UN.
Otherwise, if the equivalent impedance is large, they should
remain separate. The concept of small or large impedance
depends on the system characteristics (Lima et al. 2011).

4 Data and Models Specification

4.1 Choice of Variables

Choosing the input–output variables is an important step in
DEA methodology. In the DEA context, problems related to
discrimination between efficient and inefficient DMUs often
arise, particularly if there are a large number of variables
(Dyson et al. 2001). Therefore, the researcher need to be
parsimonious in the number of variables and choose those
that best describe the scenario evaluated.

There is no firm consensus on which variables best
describe the operation of distribution companies

(Giannakis et al. 2005). Jamasb and Pollitt (2001) outline
the most widely used variables in 20 benchmarking studies
of electricity distribution companies. Number of employees,
transformer capacity and network length are among the most
commonly used inputs in the models. The most widely used
outputs include energy delivered and number of customers.

The distribution company requires labour and capital
inputs. The labour input was considered via number of
employees (proxy). Capital input was taken into account by
other two variables: network length and transformer capacity.
Regarding to the outputs, we considered number of cus-
tomers and energy delivered. We use physical measures of
these inputs and outputs applied in benchmarking studies
(Jamasb and Pollitt 2001; Estache et al. 2004; Pombo and
Taborda 2006; Çelen 2013) together with quality of supply
and environmental variables.

Many authors (Giannakis et al. 2005; Yu et al. 2009; Cam-
bini et al. 2012; Growitsch et al. 2009; Jamasb et al. 2012
have incorporated quality performance in the DEA analy-
sis using the Total Time Lost Due To Interruptions (TINT)
indicator as input instead of SAIDI directly. The TINT is cal-
culated by multiplying SAIDI values (Eq. 1) by the number
of customers.

The most relevant environmental variables for efficiency
analysis are customer density (to identify rural and urban
areas), frequency of lightning (to identify climate influence)
and ownership (represented by a binary variable that is zero
for state-owned company and 1 for a private company).

4.2 Brazilian Example

This paper compares the performance of 10 distribution util-
ities in the Brazil in the period from 2006 to 2007. The data
can be found on the ANEEL website3, where it was consid-
ered the latest consistent sample available for this period.

This sample comprises the states of São Paulo, Rio de
Janeiro, Minas Gerais and Rio Grande do Sul. These four
states are responsible for 61 % of the Brazilian Gross Internal
Product (GIP) (IBGE). The ten companies that operate in
these four states supplied approximately 56 % of the total
load of Brazil (ANEEL).

These distribution companies have 712 sets of consuming
units. They were grouped into 70 UNs using the method of
Sect. 3.2.

Each set of consuming units has the following attributes:
network length (x1), transformer capacity (x2), number of
employees (x3), TINT (x4), energy delivered (y1), number of
customers (y2), number of lightning, (z1), customer density
(z2) and ownership (z3). The attributes xE (for E = 1, 2, 3, 4)
are inputs, the yM (for M = 1, 2) are outputs and the zr (for
r = 1, 2, 3) are environmental variables.

3 Available at: www.aneel.gov.br.
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Table 2 Brazilian Unit
Networks (2006/2007)—
statistic summary

Descriptive statistics

Description Unit Minimum Maximum Mean SD

Network length (x1) km 284 53,456 9576 13,740

Transformer capacity (x2) kVA 14,866 12,577,411 1,160,368 2,057,648

Number of employees (x3) Person 9 9131 867 1545

TINT (x4) Hours 171,980 40,862,936 4,356,342 5,808,652

Energy delivered (y1) MWh 26,191 24,763,333 1,839,310 3,592,334

Number of customers (y2) Person 4988 4,850,254 391,979 706,657

Lightning (z1) Lightning/year 561 169,954 38,696 42,433

Customer density (z2) Person/km2 2 1631 147 313

Table 3 Correlation coefficient among inputs and outputs

Variables x1 x2 x3 x4 y1 y2

x1 1

x2 0.49 1

x3 0.44 0.88 1

x4 0.54 0.90 0.88 1

y1 0.35 0.98 0.85 0.89 1

y2 0.44 0.98 0.90 0.94 0.99 1

With respect to the numbers of employees, the UNs’ geo-
graphical limits are closely similar to the areas of activity
of each utility’s regional management offices. Therefore, it
was not difficult to allocate the number of employees to each
UN.

An overview of a summary of key statistics of the data for
the 70 UNs is presented in Table 2 in the form of minimum,
maximum, mean and standard deviation values.

To validate DEA model, Table 3 was constructed from
the correlation coefficients between the inputs and outputs.
Its goal is to verify whether an increase in some input does
not result in a reduction in some output (assumptions of
monotonicity).

Although there is a high correlation between energy deliv-
ered and number of costumers, both variables are kept in the
analysis. It is possible for two UNs to deliver same amount
of energy to distinctly different numbers of consumers (Neu-
berg 1977).

To support the choice of variables, a statistical analysis
was carried out. Four distinct linear regressions were per-

formed, one for each dependent variable (network length,
transformer capacity, number of employees and TINT). The
independent variables were energy delivered and number of
customers. It is important to emphasize that network length
and transformer capacity are proxies for capital inputs, and
the number of employees is a proxy for labour inputs.

Table 4 presents the statistical parameters evaluated to
ascertain the relevance of the choice of variables for accessing
the performance of UN.

R2 values in Table 4 indicate that 41 % of the variation in
network length, 97 % of the variation in transformer capacity,
86 % of the variation in number of employees and 11 % of
the variation in TINT were subjected to the two independent
variables: energy delivered and number of customers.

The ANOVA (Fisher 1918) results are also shown in
Table 4 with independent variables that indicate F ratios of
47.95, 2147.68, 412.82 and 8.50 for the dependent variables
network length, transformer capacity, number of employees
and TINT, respectively. In the proposed model, the variables
network length, transformer capacity and number of employ-
ees are well explained by the independent variables chosen
(p < 0.05).

4.3 Model Specifications

There are three different models as shown in Table 5 that are
all based on DEA considering input orientation and variable
returns to scale (VRS).

In Model 1, three inputs and two outputs were considered:
network length, transformer capacity and number of employ-
ees were treated as inputs and energy delivered and number

Table 4 R2 and Anova results Aspect Dependent variable R2 Adjusted R2 F value Significance

Capital input Network length 0.41 0.40 47.95 1.63338E-16

Capital input Transformer capacity 0.97 0.97 2147.68 3.7225E-104

Labour input Number of employees 0.86 0.86 412.82 9.95182E-59

Quality of supply TINT 0.11 0.10 8.50 0.000331945
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Table 5 Summary of evaluated models

Models

Variables Model 1 Model 2 Model 3

Network length I I I

Transformers capacity I I I

Number of employees I I I

TINT I I

Energy delivered O O O

Number of customer O O O

Lightning EV

Customer density EV

Ownership EV

I input, O output, EV environmental variable

of customers as outputs. It is noteworthy that in this model,
quality of supply can be compromised because utilities can
reduce labour and capital inputs indiscriminately to pursue
this efficiency.

In Model 2, the TINT indicator was added as input based
on the notion that DMUs should minimize the duration of
interruptions (undesirable output).

Model 3 used the same input and output variables as Model
2, but the environmental variables were included. This model
tries to capture the extent to which the results are influenced
by environmental variables.

5 Practical Results

The proposed methodology was applied to the three models
defined in Sect. 4.3 using data provided by ten Brazilian dis-
tribution companies (Aes Sul, Bandeirante, CEEE, CEMIG,
Elektro, Eletropaulo, Light, Paulista, Piratininga and RGE).

Two analyses were made: one treated the Unit Networks
as DMUs and the other treated the companies as DMUs.

5.1 Unit Network-Oriented Analysis

The technical efficiency scores were calculated for the 70
UNs over the period 2006 to 2007. Models 1 and 2 were
carried out based on a one-stage DEA, whereas Model 3 was
based on a two-stage DEA.

For the last Model, in which environmental variables
are included, the Tobit analysis described in Sect. 3.1 was
applied; Table 6 presents the estimation results.

The lightning rate was statistically significant and pro-
duced a negative coefficient in the model. A one-unit increase
in lightning leads to 0.04 decrease in the efficiency score. The
effect of lightning on efficiency of distribution companies
was also confirmed by Jamasb et al. (2012).

Customer density is statistically significant also and pro-
duces a positive coefficient. A one-unit increase in customer
density leads to 0.07 increase in the efficiency score. A
positive effect of customer density on the efficiency of dis-
tribution companies was also confirmed by Çelen (2013).
The ownership variable was statistically insignificant for this
example, and it was not considered.

Table 7 presents the variable returns to scale efficiency
scores (VRS), SAIDI index and environmental characteris-
tics.

By evaluating the environmental variables of Table 7, two
types of heterogeneity can be identified:

– External heterogeneity is related to the different charac-
teristics of distribution companies. For example, Light is
predominantly urban with a high customer density, and
CEMIG is predominantly rural with a low customer den-
sity;

– Internal heterogeneity is related to the different character-
istics within a single distribution company. For example,
Aes Sul has high, medium and low customer densities
and various levels of lightning incidence.

The results indicate that the UNs are, on average, technically
efficient by approximately 0.75 under Model 1, 0.79 under
Model 2 and 0.79 under Model 3; these numbers reflect that
there is room for improvement.

Table 6 Tobit analysis
results—Unit Network

Variable Parameter Coefficient t ratio p value

Constant β0 0.80 48.34 <0.00001***

Lightning β1 −0.04 −2.84 0.00455***

Customer density β2 0.07 3.19 0.00141***

Dummy for ownership β3 −0.03 −0.84 0.39885

Number of observations 140

Censored observations 0

Log-likelihood 61.33

*** Significance at the 1 % level using a two-tailed test
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The 15 UNs in Model 1 are efficient; note that nine UNs
belong to an area with a high customer density. The UNs
with low customer density that reached the frontier are Aes
Sul (UN 9, 12) and RGE (UN 8, 9), which implies that the
management is relatively good in terms of resource use.

The other UNs with low customer density had average
efficiencies of 0.57. The inefficiencies of all of the low-
customer-density areas may be mainly due to poor load
characteristics and scattered households, which cause these
areas to be expensive and challenging for a power supplier.

All of the UNs of Eletropaulo are efficient. It is noteworthy
that Eletropaulo operates in an area with the highest load
density in the country with low lightning incidence, in other
words, a favourable area. Thus, in this model that includes no
environmental variables, this distribution company appears
as the most efficient.

CEMIG (UN 9) has the worst score (0.38). The UN is com-
pared to a linear combination of Aes Sul (UN 12), Eletropaulo
(UN 3) and Light (UN 4). CEMIG (UN 9) has a strong rural
character, while its latter two peers have an urban character-
istic. Thus, it is expected that this Unit Network will increase
its efficiency in Model 3, which includes customer density.
From this comparison, the model results indicate that there
must be a 62 % reduction in the number of employees.

Under Model 2, to which quality of supply was added to
the analysis, 17 UNs are efficient, and 11 UNs are located in
low lightning incidence areas. The average efficiency shows
that some Unit Networks rank high in Model 2 while they
rank low in Model 1.

Elektro has better results. Elektro (UN 1) has an efficiency
of 0.45 in Model 1, where quality is not included. In Model 2,
the same UN has an efficiency of 0.84, an increase of 0.39 in
efficiency score. This indicates that the Model 1 can penalize
Unit Networks that are efficient in quality of supply.

Elektro (UN 1) peers are Aes Sul (UN 9), Eletropaulo (UN
3) and Piratininga (UN 1); the latter belongs to the distribu-
tion company with the lowest SAIDI in Brazil.

Thus, Elektro (UN 1) showed an efficiency increase due
to quality of supply because it has a SAIDI of 6.8 h, and its
peers in Model 2 have 16.7, 7.1 and 5.0 h, respectively.

Comparing UN 1 with other UNs of Elektro, it has the
second smallest SAIDI of the company, surpassed only by
UN 8, which operates in the most industrialized region of the
concession area.

Light (UN 5) had an efficiency of 0.72 in Model 1; in
Model 2, it achieved the efficient frontier, an increase of 0.28
in efficiency score. The UN has the smallest SAIDI of the
company with 6.4 h; the others have SAIDIs between 8.6
and 14.5 h.

Model 1 may distort companies’ incentive. For example,
in Model 1, RGE (UN 4) had an efficiency of 0.54 (which
would result in a high X-factor) while its efficiency score in
Model 2 is 0.65.

These findings suggest that there is trade-off between
labour and capital inputs and quality of supply. Thus, models
with quality are more suitable for efficiency analysis (Gian-
nakis et al. 2005). In this way, models like Model 1 have no
captured the quality of supply aspect of distribution compa-
nies.

Under Model 3, there are only seven efficient UNs that
contrast with the results of Model 2. Some Units Net-
works have decreased their performance because they are
located in a more favourable area. Some Units Networks have
increased their performance because they are located in a less
favourable area. For example, all four UNs of Eletropaulo
have decreased performance. This is consistent with the real-
ity that this company is in a high-density area.

Additionally, CEMIG improves its performance, but is
still far from the efficient frontier. CEMIG (Unit Network 4)
has an efficiency of 0.72 in Model 1 and 0.73 in Model 2,
where environment is not considered. In Model 3, the same
Unit Network has an efficiency of 0.82, an increase in effi-
ciency score of 0.10 and 0.09, respectively. This change can
also be explained because of its lower-density area and the
lightning incidence in some of its regions. This result indi-
cates that the Model 1 and 2 can penalize Unit Networks that
are located in an adverse area.

Another interesting result from Table 7 is the differences
in performance of UNs that belong to the same company. The
manager can look more carefully for the worst UN and estab-
lish an improvement plan to take the UN to a better rank. For
example, Aes Sul (UN 1 and 2) had an average efficiency of
0.41 in the Model 2. Their environment can explain part of
this inefficiency: UN 2 has the third highest lightning inci-
dence in the company and a density of 3 customers per km2.
These environmental characteristics are reflected in the qual-
ity of supply: Aes Sul (UN 2) customers on average suffer
42 h per year without electric power. Aes Sul (UN 1) has a
less adverse environment than Aes Sul (UN 2), with lower
lightning incidence and 6 customers per km2.

5.2 Company-Oriented Analysis

The results of the three models are compared under the two
approaches: (1) UN as DMU and (2) distribution compa-
nies as DMU. For the first approach, the results of Sect. 5.1
were weighted by the number of customers of each UN that
belong to one company to produce a weighted average for
each company.

For Model 3, in which environmental variables are
included, the Tobit analysis described in Sect. 3.1 was
applied, and Table 8 presents the estimation results.

The p value is greater than 0.05, which means that the vari-
ables are not significant. This result was not observed for the
Unit Network- oriented approach (see Table 6 in Sect. 5.1).
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Table 8 Tobit analysis
results—utilities

Variable Parameter Coefficient t ratio p value

Constant β0 0.92 27.86 5.48E-15***

Lightning β1 4.43E-08 0.48 0.64

Customer density β2 7.31E-05 1.36 0.19

Dummy for ownership β3 −0.04 −0.70 0.50

Number of observations 20

Censored observations 0

Log-likelihood 25.24

*** Significance at the 1 % level using a two-tailed test

Table 9 Comparison of
aggregate approaches

Unit Network Utility

Utility Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Aes Sul 0,68 0.70 0.72 0.95 0.95 0.95

Bandeirante 0.91 0.95 0.85 1.00 1.00 1.00

CEEE 0.83 0.83 0.79 0.84 0.84 0.84

CEMIG 0.76 0.79 0.87 0.98 0.98 0.98

Elektro 0.60 0.79 0.81 0.66 0.78 0.78

Eletropaulo 1.00 1.00 0.69 1.00 1.00 1.00

Light 0.88 0.98 0.79 0.92 0.95 0.95

Paulista 0.97 0.97 1.09 1.00 1.00 1.00

Piratininga 0.93 0.93 0.86 1.00 1.00 1.00

RGE 0.69 0.73 0.76 0.92 0.92 0.92

Average 0.83 0.87 0.82 0.93 0.94 0.94

St. deviation 0.14 0.11 0.11 0.11 0.08 0.08

One possible reason is that the environment variables are
treated as averages for the entire concession area, failing to
represent the diversity among regions as observed, for exam-
ple, in the CEMIG concession area.

This fact is shown in Table 9. For the utility-oriented
approach, the efficient scores under Model 2 and Model 3 do
not differ (columns 3 and 4 in the right table), whereas this
is not true for the Unit Network-oriented approach (columns
3 and 4 in the left table).

Bogetoft (2014) states that the models that ignore impor-
tant environmental variables may have biased results. If
environmental factors have impact on operation, such as rain
and lightning, they must be part of the efficiency analysis.

This is a very important result because many regulators,
including that in Brazil, use the utility-oriented approach.

Based on the left table, CEMIG improves its position and
efficiency score under Model 3. In Model 1 and 2, CEMIG
occupies the seventh position, while in Model 3, the same
company occupies the second position. CEMIG increased its
efficiency by 0.11 compared to the Model 1 and 0.08 when
compared to the Model 2. Eletropaulo leaves the efficiency
frontier when compared to Models 1 and 2, with a decrease of
0.31 in its efficiency score. This is because CEMIG has a wide
concession area with different characteristics, particularly the

environmental aspects. This is not observed at Eletropaulo,
which has a small concession area characterized by a high-
density load.

Paulista also had its efficiency increased with the addi-
tion of environmental variables. The company increased its
efficiency by 0.12 compared to the Model 1 and 2. Despite
an environment with medium customer density, the distri-
bution company operates in an area with a high lightning
incidence.

To evaluate the economic impact of different models pre-
sented in the left side of Table 9, a simulation was done
with data from the Elektro distribution company. If we con-
sider the Model 1, the reduction in Parcel B value is US$
13,257,836. When evaluating the Model 2, Elektro has to
reduce US$ 8,020,991 of the Parcel B value in the first year
of the Third Price Revision, it means US $5,236,845 less than
in Model 1. Model 3 imposes a reduction of $6,032,331 in
the Parcel B value. This reduction is $7,225,505 lower than
in Model 1 and $1,988,660 lower than in Model 2.

For a better view of the UN influence on the company
performance, Fig. 5 is generated from Table 7: each UN in
CEMIG is mapped according to its effect (positive or nega-
tive) and its intensity (high and low) on the efficiency score
of Model 3.
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Fig. 5 Unit Networks map

For the impact intensity, the number of consumers was
used as a weight to address the relative importance of one
UN to the company. For the positive and negative effects, the
scores were divided into quartiles; the first quartile means the
best performance and the fourth the worst. In this way, the
UNs in the first quadrant have high positive impact, those in
the third quadrant have low negative impact, etc.

From Table 7 and Fig. 5, one can see that UNs 8 and 9
play an important role in lowering the position of CEMIG
because they have an average efficiency of approximately
0.52 in Model 3.

UNs 8 and 9 are located in Southwest and Northwest of
Minas Gerais state, respectively. These regions are character-
ized by low customer density (5 customers per km2) and high
lightning incidence. This adverse environment is reflected in
the quality of supply: UN 9 customers on average are without
electricity 33 h per year (highest SAIDI of CEMIG).

Thus, the focus of the administration should be on UNs 8
and 9; every effort should be made to understand the problems
and make the necessary adjustments to reduce the negative
influence of the environment.

UNs 1 and 6 contribute positively to the company rank
because they have an average efficiency of 0.96. UN 1 is
located in north-eastern Minas Gerais state, which has a low
customer density (6 customers per km2). UN 6 is in the cen-
tral region of the state, characterized by a greater customer
density than UNs 1, 8 and 9 (42 customers per km2) and
high lightning incidence. It is noteworthy that UN 6 has the
second best SAIDI of CEMIG.

It is important that with the UNs approach, the CEMIG
administration can compare performance among their regi-
ons, extract lessons from UNs 1 and 6 and apply them UNs
8 and 9.

Some companies such as CEMIG, Elektro and Light
already split the administration into regions. Each region has

its own management and the board of the company views
each as independent, i.e. each can allocate resources (capi-
tal and operational costs) to accomplish the objectives of the
company. Although the UN was originally formed using elec-
trical characteristics, they try to delimit regional units by their
physical aspects, which resembles the approach described in
Sect. 3.2.

6 Conclusion

Efficiency analysis is receiving considerable attention from
the regulators of the electricity power sector, more specif-
ically in the electricity distribution segment. Because of
the natural monopoly characteristics of the distribution seg-
ment, utilities are not subjected to market forces. This paper
simulated a virtual competitive scenario among utilities.
Data Envelopment Analysis assists in this purpose by cal-
culating the relative efficiency of distribution companies.
It constructs an efficient frontier from the input and out-
put data of a decision-making unit. This analysis provides
a framework to analyse the effect of environment on distrib-
ution performance, especially in case of countries with large
territories.

The novel approach of this paper is in the use of Unit Net-
work for split a distribution company concession area into
more homogeneous subgroups that are further considered as
decision-making units, being different from the traditional
approach in which companies are seen as natural DMUs.
Brazilian distribution companies are subject to external and
internal heterogeneity due to its large concession area. This
proposal solves the external and internal heterogeneity prob-
lem of Brazilian distribution companies.

Although it may seem strange to view UNs as being
administratively independent, many companies with a large
concession area have already created their regional units.
Companies may differ in the degree of freedom of decision-
making in terms given to each regional unit. This issue may
also arise even for the traditional approach, because there
are many distribution companies in Brazil that belong to the
same holding company and would have the same guidelines
in terms of administration.

Another important improvement of the proposed method
is that quality and environmental characteristics can be bet-
ter represented when the company is divided into UNs. We
studied three different models (Models 1, 2 and 3), and
two analysis were made: one treated the Unit Networks as
decision-making units and the other treated the companies
as decision-making units.

Considering Unit Network-oriented analysis, we found
that some UN that had a poor performance in Model 1 did
score high in Model 2. These findings show that it is neces-
sary to integrate quality of supply in benchmarking models.
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We find evidence of statistical significance in the relation-
ship between environment variables and efficiency scores
in Model 3. Thus, lightning and customer density in our
case have an impact on the performance of UNs. The size
of adjustment of efficiency scores in some UNs is remark-
able.

Considering company-oriented analysis, we also found
that efficiency scores are affected by the inclusion of quality.
With regard to environmental variables, the effect on effi-
ciency scores is insignificant. One possible reason is that the
environment variables are treated as averages for the entire
concession area, failing to represent the diversity among
regions as observed.

The definition of the product “electricity” and its price
cannot be disassociated from quality of supply and envi-
ronment characteristics. The distribution charge must take
into account location, voltage level, quality of supply and
the environment. Given that DEA is used for determining
the allowed revenue, the regulator cannot override these
factors.
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