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Abstract 

The increase in demand for tall and complex structures has increased the need for 

complex design-oriented analyses for such systems.    These analyses involve models 

with a large number of degrees of freedom and nonlinear (inelastic and geometric) 

behavior.  For seismic design, the Response History Analysis (RHA) is required for base-

isolated structures, structures with supplemental damping, and structures located in 

very high seismic zones RHA on large high-fidelity models is time consuming .Methods 

to simplify high-fidelity nonlinear models by reducing the number of coordinates 

involved while maintaining a high degree of modeling accuracy makes RHA less time-

consuming and therefore a better design tool.  Existing model condensation methods 

include the Static Condensation Method, Guyan Reduction, and the Dynamic Method. 

These methods are based on the theory of linearity and superposition, and hence can 

only be used for linear analysis. Since, all structures do not behave in a linear manner 

when subjected to severe earthquake loads, it is necessary to compute the seismic 

responses of structures with inelastic and geometric nonlinearity. There has also been a 

study in the field of modal superposition that consists of nonlinear time varying modes 

which is not as accurate as the detailed time-history analysis.  
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This thesis presents the verification of that meets the need for reduced order modeling of 

nonlinear structures subjected to earthquake loading.    The method uses the dynamic 

condensation method to reduce the model and then adds hysteretic parameters that can 

be used to obtain a nonlinear inelastic seismic response.  The condensed hysteretic 

model is then subjected to a set of ground motions and is compared with calculations 

from the associated high-fidelity model.   
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1. Introduction 

The objective of this master’s thesis is the verification of a new model reduction 

method for hysteretic structural systems. Estimation of seismic demands for structures 

has always been an integral part of structural analysis as it is used for the prediction of 

life safety and collapse prevention of structures at low performance levels at which the 

structure is expected to undergo significant inelastic deformations. There have been 

several procedures to compute seismic demands, amongst them the most widely used 

by civil engineers are the non-linear response history analysis (RHA), non-linear static 

procedure (NSP) or pushover analysis in FEMA-273 [1]. 

The Pushover analysis described in FEMA-273 has been widely used for its 

simple approach in estimating seismic demands. New methods which involve a lateral 

load distribution that includes the higher mode effects have been proposed but the 

result still does not seem to match the seismic demands obtained from a detailed non-

linear response analysis [2]. 

The non-linear response history analysis predicts the forces and deformations 

demands in every element of the structure by means of a dynamic inelastic analysis 

using a set of ground motion records, consisting of the one or more components, on the 

entire structure. The response is calculated taking the behavior of each element into 

consideration, and thus, is time consuming and rigorous.  
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The Pushover analysis or the non-linear static procedure (NSP) evaluates the 

expected performance of a structure by estimating its strength and deformation 

demands in design earthquakes by means of a static inelastic analysis [2]. The evaluation 

is based on parameters such as inter-story drift, displacements at nodes, inelastic 

element deformations as well as the deformations between elements. 

Both the above procedures involve the analysis of a detailed and high-fidelity 

model of the inelastic frame (called the complete model in this thesis), this means that the 

elements are assembled for the entire structure which, upon performing the analysis, 

results in the computation of nodal displacements at every  degrees of freedom. 

Transient response analysis of such detailed models is time consuming and not practical 

for early stages of design. Model Condensation is a class of methods by which the 

complete model can be accurately represented by to a reduced-order model. These 

reduced models rely on the principles of linearity and superposition, which will be 

further, discussed in the future chapters.   Although the reduction of inelastic frame 

models cannot invoke superposition, the use of reduced order models in the simulation 

of complex structural systems would have obvious benefits for the analysis and design 

of complex inelastic structures.    

This thesis first addresses the various model condensation methods that have 

been developed to date, along with their shortcomings, and will also describe a new 

model reduction method for hysteretic structural systems.  A verification of this new 
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method will be demonstrated to show that the proposed model reduction can be used to 

simulate inelastic responses. 

In these simulations, the condensed hysteretic model is subjected to a set of 

earthquake ground motions; its inelastic behavior is observed and compared to a 

responses computed from the detailed model. The error between the detailed and the 

condensed model for different seismic demands such as the peak inter-story drift ratio, 

peak floor accelerations and peak horizontal floor displacements was also checked to 

verify the use of this proposed model reduction method. 
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2. Types of Model Condensation 

2.1 Static Condensation and Guyan Condensation 

The static condensation method involves a coordinate transformation on the 

stiffness matrix of the detailed structure in order to compute a smaller stiffness matrix 

for a subset of coordinates, the primary coordinates.   Implicit in this transformation is 

the assumption the secondary coordinates (those eliminated through the coordinate 

transformation) carry no external forces, and that the displacements of those coordinates 

are of no interest.   The secondary coordinates can be considered as dependent upon the 

displacements of the primary coordinates, and are therefore expressed in terms of the 

remaining independent or primary degrees of freedom [3]. The word ‘static’ has been 

used as the static relation between the secondary and primary degrees of freedom is the 

key factor for the reduction of the stiffness matrix. It is also used in static problems to 

eliminate the internal degrees of freedom of an element used with the Finite Element 

Method.  

Let us assume that the secondary degrees of freedom are to be eliminated or 

reduced and are arranged as the first s coordinates, whereas the primary (remaining) 

degrees of freedom are the last p coordinates. Thus, the stiffness equation for the full 

model can be partitioned as 

 �[���] [���][���] [���]�		{��}{��} 	= 	 � {0}����	� 
(1) 
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Where {��} is the displacement vector corresponding to s degrees of freedom that 

will be condensed and {��} is the vector corresponding to the remaining p degrees of 

freedom. The reduced stiffness matrix can then be expressed as a transformation of the 

full model stiffness matrix as follows: 

 [��]=	−[���]��	[���] (2) 

 [��] = 	 ������[�] � (3) 

 [��] = [��]�	[�]	[��] (4) 

Where [��] is the reduced stiffness matrix,	[�] is the full model stiffness matrix, [��] is 

the transformation matrix and [�] is the identity matrix. 

In Guyan condensation [5] the mass matrix of the full system is reduced by 

applying the coordinate transformation of the static condensation formula to the mass 

matrix 

 [ �] = [��]�	[ ]	[��] (5) 

where [ �] is the reduced mass matrix and [ ] is the full model mass matrix 

For models reduced by Guyan Condensation, Kinetic Energy and Potential 

Energy of the reduced model and full model match whereas; the natural frequencies and 

mode shapes do not. This use of a static relation between the primary and the secondary 

degrees of freedom can produce large errors when applied to dynamic problems in 

which many modes contribute to the response. Thus, an improved method for model 

condensation of dynamic problems was investigated.   
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2.2 Dynamic Condensation 

An extension to the Guyan Condensation Method for dynamic problems was 

first introduced by Mario Paz [4] [5]. This method uses the eigenvalue problem of a 

structural system which consists of the desired reduced secondary degrees of freedom 

{��} and the retained primary degrees of freedom����.  The equation of motion can then 

be written as 

 �[ ��] [ ��][ ��] [ ��]�		�{��! }���! �� 	+ 	�[���] [���][���] [���]�	�{��}����� 	= 	 	{0}{0}	 (6) 

Substituting {�} = {#} sin'( ) in the above equation (6) results in the following 

 �[���] − '(*[ ��]	 ����� − '(*[ ��]����� − '(*[ ��] ����� − '(*[ ��]�		�{#�}�#��� 	= 	 	{0}{0} (7) 

 The reduced stiffness matrix can then be expressed as a transformation of the 

full model stiffness matrix as follows: 

 [�] = + [�]−[��� −'(* ��]��	[��� −'(* ��], (8) 

 [��] = [�]�	[�]	[�] (9) 

 [ �] = [�]�	[ ]	[�] (10) 

where [T] is the transformation matrix, '( is the natural frequency of the -./ mode, [��] 
and [ �] are the reduced stiffness and mass matrix respectively.  

The eigenvalue of the reduced stiffness and mass matrix exactly match the 

eigenvalue of the stiffness and mass matrix of the full model at frequency '( and thus 

can be used for dynamic analysis for responses dominated by modes around the ith 
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mode. The Static Condensation method, the Guyan Condensation Method, and the 

Dynamic Condensation method all represent full model coordinates as a linear 

combination of reduced model coordinates and therefore rely on the principles of 

linearity and Superposition. Linear behavior can be best described by the following 

relation:  

0 ∗ �� + 2 ∗ �* = 3(0 ∗ 5�	2 ∗ 5*) 
7ℎ9:9, �� = 3(5�)	0<=	�* = 3(5*) 

For systems in which responses extend into the inelastic range, superposition does not 

hold.   The model reduction of inelastic structures is therefore a challenging problem.   
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3. Challenges  

3.1 Inelastic response simulations are time consuming 

The present method of inelastic response widely used is the nonlinear response 

analysis. This non-linear response history analysis (RHA) predicts the forces and 

deformations demands in every element of the structure by means of a dynamic inelastic 

analysis using a set of ground motion records. The RHA is the most accurate method of 

calculating the inelastic response of the structure under seismic loads. The response is 

calculated taking the behavior of each element into consideration, and thus, is time 

consuming and rigorous. 

3.2 Response History Analysis (RHA), Response Spectrum 
Analysis (RSA) and the Modal Pushover Analysis (MPA) 

The Response Spectrum Analysis (RSA) is another procedure which is 

implemented in a variety of commercial software, is also used to estimate the inelastic 

behavior of structures under seismic loads. The RSA uses an approximation method in 

calculating the modal combination of the peak modal responses to estimate the total 

response. The error in the RSA is similar to the error obtained from the Modal Pushover 

Analysis when seismic demands are calculated [7]. Due to the presence of this large 

error when compared with RHA, it is difficult to use the RSA method for important 

structures with high seismic demands. 

The Modal Pushover Analysis was introduced to improve the Pushover Analysis 

described in FEMA-273. The issue with regards to the calculation of the seismic 
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demands of the structure using a pushover analysis was thoroughly checked and the 

errors have been made public in the past [7]. The different lateral load distribution 

patterns were also checked in order to obtain a better response, but they all seem to have 

a large error when compare to the RHA. Modal Pushover Analysis is an improved 

pushover analysis procedure that uses the inertia force distribution for each mode to 

calculate the seismic demands. The seismic demands for the calculated modes are then 

combined to provide an estimate of the total seismic demand on inelastic systems. 

Unlike the standard pushover analysis where the force distribution and target 

displacement are based on the assumption that the response is controlled by the 

fundamental mode remains unchanged even after the structure yields; the MPA uses a 

combination of higher modes for the redistribution of inertia forces due to structural 

yielding. 

For the elastic multistory structure, the peak response due to its nth vibration 

mode is determined by subjecting the structure lateral forces distributed over the height 

of the building according to >?∗ = @A? , where @ is the mass matrix and A? is the nth-

mode, and the structure is pushed to the roof displacement determined from the peak 

deformation Dn  of the nth-mode elastic SDF system;  Dn  is available from the elastic 

response spectrum. Combining these peak modal responses by an appropriate modal 

combination rule gives the resultant seismic demand. 
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For inelastic systems, the seismic demands are calculated in two phases. First, a 

pushover analysis is used to determine the peak response :?B	of the inelastic MDF 

system to individual terms	CDEE,?()) = 	−>?5!F()), in the modal expansion of the effective 

earthquakes forces	CDEE,?()) = 	−@G5!F()). The base shear–roof displacement (HI? − 5J?) 

curve is developed from a pushover analysis for the force distribution	>?∗ . This 

pushover curve is idealized as a bilinear force – deformation relation for nth-mode 

inelastic SDF system and the peak deformation of this SDF system (determined by 

nonlinear response history analysis (RHA) or from the inelastic response or design 

spectrum) is used to determine the target value of roof displacement at which the 

seismic response :?B	is determined by the pushover analysis. Second, the total demand 

:B	 is determined by combining the :?B	 (n=1, 2 …) according to an appropriate modal 

combination rule (e.g. SRSS rule). 

During an elastic analysis, the relative error in the inter-story drift between the 

RHA and the Modal Pushover Analysis was observed to be the same as the difference 

seen when implementing the RSA method [7] [8].  It was observed that the RSA method 

underestimated the elastic response (in terms of inter-story drift) by 15% to 30%. The 

error in MPA was essentially the same as in RSA. 

The above errors discussed in case of MPA or RSA when compared to RHA seem 

to be extremely large for an elastic response. These methods result in greater errors 

when the structural response moves into the inelastic range. Another important point to 
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be noted is that the total response is estimated by combining the peak modal responses 

using the SRSS rule [9]. The number of modes to be selected is based on the accuracy 

required. In most cases, three modes are used, but the error is relatively large when 

compared with the seismic demands obtained from RHA. This means that in order to 

get a fairly accurate estimation, it is important to condense the model and use the 

recommended RHA to obtain seismic demands of a structure. 

Every structure will behave with nonlinearity if forced strongly enough.   The 

Principle of superposition is applicable only to purely linear systems and is by 

definition, not possible in a non-linear system.  

In linear systems, both the static and dynamic behaviors of a structure are described by 

models for which static and dynamic solutions are unique. Such models fail to work if 

the structure goes beyond the linear response range for any reason. A nonlinear model 

however, describes both the static and dynamical behaviors. This, of course causes a 

solution which is not unique because of the presence of possibility of several dynamic 

equilibria coexisting. The one being observed at any time depends on the static 

equilibria, system parameters, initial conditions, and the trajectory of the states over 

time. 
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3.3 Modal superposition technique and its inherent linear 

assumption 

The exact solution for an undamped free vibration problem is usually obtained 

by substituting the equation into the equation of motion [9] 

�()) = 	K (L( cos'() +	O( 	sin'())	P A(() 
Where   “A(()” is a modal vector.   For the solution, the coefficients A and B are 

determined from the initial conditions. This method though simple for smaller scale 

structures, tends to become complicated and impractical as the scale of the structure 

increases because two coefficients need to be introduced for every mode shape. 

In order to solve such a system, we use a technique called Modal Superposition 

which can be applied to both free and forced vibration systems. In this technique, 

We first use the free vibration mode shapes of the structure to uncouple the Equations of 

Motion. These uncoupled equations are now in terms of new variables called modal 

coordinates.  The solution for the modal coordinates can be obtained by solving each 

equation independently 

Finally, superposition of the modal coordinates results in the solution of the 

original equation. It is not, however necessary to use all possible mode shapes to solve a 

given problem. Using the first few fundamental modes usually leads to acceptable 

results. This is evident when we consider the basic formulation of the equations used for 
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modal superposition. The basic equation of motion of an undamped multi degree of 

freedom system is given by 

@	�!()) + Q	�()) = 3()); 			�(0) = 	5S	0<=	�T (0) = 	US	 
For formulating the Model Superposition, we use the equation: 

�()) = V�())A� +	V*())A* +⋯+	V?())A? 

where the displacement is written as a linear sum of the mode shape vectors. 

It is clear from the above solution that the assumption of linear dynamic 

behavior is inherent in the process of modal superposition. Therefore, a modal 

superposition cannot be used when we need to model a structure for nonlinear 

behavior. 

3.4 Bouc-Wen hysteretic equation 

Hysteresis can be defined as the dependence of any system on not just its current 

state but the history of its previous states as well.  Hysteresis in structures is a natural 

mechanism that supplies restoring forces against movements and dissipates energy. In 

other words, Hysteresis in structural components  is a reference to the memory nature of 

inelastic behavior where the restoring force depends not only on the instantaneous 

deformation but also on the history of deformation [9][10]. 

The Bouc-Wen hysteresis model is able to capture, in analytical form, a range of 

hysteretic cycle shapes matching the behavior of a wide class of hysteretic systems [10] 

[11].  
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Its basic equation is given as: 

�()) = XQ(5()) + (1 − X)Q(V()) 
Where F (t) is the restoring force and z (t) is a non-observable hysteretic parameter 

(usually called the hysteretic displacement) that obeys the following nonlinear 

differential equation with zero initial condition ( V(0) 	= 	0 ), and that has dimensions of 

length. 

VT()) = L	5T ()) − 	Z	|5T ())||V())|?��	V()) − 	\	5T ())|V())|? 
The restoring force �()) is decomposed into and elastic part �(D]) and a hysteresis 

part from which, the hysteresis part�(/)	, which can be integrated to give the dissipated 

hysteresis energy. This absorbed hysteresis energy represents the energy dissipated by 

the hysteretic system and is given as the power of the hysteretic force, integrated over 

time.   

^	()) = (1 − X)'*_ V(`)5T (`)=`.
S  

In the proposed model reduction method, hysteretic behavior is simulated using 

the following parameters: 

• Va(D]b – The yield displacement of the reduced model for each remaining 

node is used to determine the elastic-plastic behavior of the structure and 

ranges from 1.2 to 2.5 

• X –is used to describe the post yielding to pre yielding stiffness ratio and 

ranges from 0.02 to 20.0 

• c –is the exponent used to describe the hysteretic knee sharpness and 

ranges from 3 to 12 

• d –describes the hysteretic shape factor and ranges from 0 to 1 
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The number of hysteretic parameters used can vary a minimum of 4 for the entire 

structure to a maximum of one for each node bringing the total to 13. The values of Va(D]b 

has been used for each node as inelastic nonlinear response is going to be a check for the 

entire structure when compared to the detailed model. 

3.5 High Fidelity Model and Fiber Elements 

A high fidelity model is by definition a model that produces results that are very 

close or almost identical to those of the actual structure.  

The high fidelity models of hysteretic structures used in this research make use 

of fiber-element discretization of structural frame elements [27].    A fiber element is a 

structural element that is flexibility-based and is commonly used for nonlinear analysis 

of hysteretic structures. In OpenSees, the fiber elements are created on the form of a 

refined grid to numerically evaluate integrals over the cross-sections. The creation of 

fiber elements helps representing partial yielding and cracking of the cross-section in an 

accurate manner. [28] 

This approach is particularly advantageous when the commonly adopted 

assumption of uniaxial stress state at the material points of the cross-section is made. 

Strain-hardening laws with different loading and unloading patterns, and residual 

stresses are considered with this approach. Creating fiber elements helps distribute the 

plasticity along the element which uses “Plastic zone” methods that involve numerical 

integration over the element length. 
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Using the Gauss-Lobatto quadrature rule, the sections are subdivided into 

regions of regular shapes over which the numerical integration schemes are employed. 

This discretization can then be used to calculate the Axial forces and Bending moment 

over the fiber section. The basic strategy is to divide the element into longitudinal 

sections or fibers. The geometric properties of the fiber define it, i.e. its location and its 

cross sectional area. The element fibers follow a uniaxial stress strain relation depending 

on the material that is being used and this relationship is integrated to a relationship for 

the section. These elements have their limitations in that the displacements and 

deformations have to be relatively small and the assumption that plane sections always 

remain plane [27].   

When these elements are to be used, there are two main tasks to be 

accomplished: 

• To determine the state of the element i.e. determining the resisting forces for a 

given displacement 

• Determination of the section flexibility which is then used to determine the 

element flexibility 

The main assumption in a flexibility based model is the internal force 

distribution which is expressed using force interpolation functions. This process is 

followed by the computation of fiber stresses based on equilibrium. 
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The high-fidelity models used in this research make use of the OpenSees 

computational framework.   This framework facilitates nonlinear analyses of structures 

with inelastic and geometric nonlinearities subjected to earthquake loading. [12]   
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4. Model Reduction for Hysteretic Structural Behavior 

The steps involved in validating the proposed numerical method for model 

reduction are outlined in this section. 

4.1 Step 1: Build a high-fidelity model using fiber-elements and a 
linear-elastic reduced model of the structural frame. 

Brief Description of the High-Fidelity 2D frame model generated in 
OpenSees 

A 2D model for an inelastic frame was in OpenSees [12].  The frame modeled 

was the subject of previous investigations of pushover analyses [29]. The material 

properties assigned to each element were defined such that the yield stress of steel was 

assumed to be 60 ksi, the young’s modulus of steel was assumed as 29000 ksi and to 

define the uniaxial hardening material, the isometric hardening modulus of 0 and 

kinematic hardening of 10 were assumed. These hardening parameters help explain the 

plastic behavior of the beam column elements on yielding. Kinematic and isotropic 

hardening is used based on the characteristic material’s yield surface while loading and 

unloading. In kinematic hardening, initial yield surface translates from the original 

position, keeping the size of yield surface remains constant. In isotropic hardening, 

initial yield surface expands from the original position, and the size of the yield surface 

keeps expanding and growing, typically plastic or hyper-elastic materials come under 

this category. 

The structural layout of the building in figure 1 represents a three-bay five story 

moment resisting frame with each bay spaced at 20 feet. The first four stories are equally 
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spaced at 13 feet and the top story has a length of 14 feet. The column elements are the 

same for the entire frame, W14x145 for all the columns, while the beam sizes vary from 

floor to floor. The beams present in the second and third floor were modeled using 

W24x76 section, the beams present in the fourth floor were modeled using W24x68 

section and the top floor was modeled using W18x40. 

The beam-column elements that were chosen for this model  have a flexibility-

based formulation in which the distribution of internal forces satisfy equilibrium exactly, 

strains and curvatures are computed from the internal forces through the fiber-element 

discretization of the cross section, and these strains and curvatures are integrated to the 

nodal displacements of the element using numerical integration.    The integration points 

are based upon the Gauss-Lobatto quadrature rule which states that two integration 

points are present at the element ends [12]. 

Beam-column elements are discretized into fiber elements which discretize the 

section into sub regions of simpler, regular shapes (e.g. quadrilateral, circular and 

triangular regions) called patches.  For the selected model we have used the Quad patch, 

which is used to construct a Patch object with a quadrilateral shape. The geometry of the 

patch is defined by four vertices.  . The fiber elements are associated with models for 

uniaxial material behavior. Deformations of the fibers enforce the Bernoulli beam 

assumption which states that a plane section remains plane [12]. For stresses that exceed 

yield, the strain hardening material that has been defined is used.  Pushover responses 
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were compared for models with different numbers of fiber elements and different 

numbers of integration points.   Static pushover analyses were done on the frame for 

various integration points ranging from 2 to 10 per element. It was observed that the 

computed nodal displacements was sensitive to the the number of integration points 

used to model each element for elements with 2 to 6 integration points. The response 

was not sensitive to the number of integration points in the range of 7 to 10 integration 

points per element. To maintain high accuracy throughout the procedure, 10 integration 

points were selected across the element. 

 Furthermore, changes in the number of fiber elements used for each section did 

not have an effect on the computed displacements. Figure 2 and Figure 3 represent the 

changes observed with the variation of Gauss integration points and the number of fiber 

elements used. 
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Figure 1: The 2D Frame selected showing the various beam-column sections 

and the different spans 

The beam column elements were then assigned to the connection of nodes and 

recorders were defined to obtain the results after the completion of the analysis. The 

horizontal responses of nodes 21, 31, 41, and 51 are used as the basis of comparison of 

the various models investigated in this thesis.   
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Figure 2: Pushover curve obtained for different number of Gauss integration 

points. 

 

Figure 3: Pushover curve obtained for the different number of fiber elements 

used. 
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Linear Elastic Frame Model 

A linear elastic frame model was created using the same elastic modulus and 

element section specification used in the detailed model. Extended Rayleigh damping of 

2% in each mode was used during the dynamic analysis.  The beams and columns were 

modeled as 2D frame elements and structural stiffness and mass matrices were 

assembled from a linear elastic condensed model of the structural frame was obtained 

using the Dynamic Guyan Condensation.  The condensed model reduced the model 

from 60 coordinates to only 4: the horizontal displacements of nodes 21, 31, 41, and 51.   

In the dynamic condensation, the selected frequency was the structure’s fundamental 

frequency.    

4.2 Step 2: Replacing the linear-elastic restoring force with 
hysteretic restoring force and introducing the hysteretic 
displacement variable 

Here, we will only continue by using the condensed mass and stiffness matrix 

obtained by this method of dynamic condensation. 

 ef = gfg +ehh ehieih eii 	, 	gf 
(11) 

 jf = gfg +jhh jhijih jii, gf 
(12) 

 kl = gfg +ehh ehieih eii 	, 	+mhmi, (13) 

Where, ef  is the reduced mass matrix of the condensed system,  jf  is the reduced 

stiffness matrix of the condensed system, 	gf  is the condensation transformation matrix. 
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This reduction reduces the total number of degrees of freedom from the initial value of 

60 to 4.  The condensed equations of motion are then given as  

 efn! +	ofnT + 	jfn = 	−plqr!  (14) 

 

Since, we are using the ground motion only in the x direction. The equation of 

motion can be expressed as  

 efn! + 	ofnT + 	jfn = 	−plqrn!  (15) 

Hysteretic Parameters 

The reduced structural model is now coupled with a hysteresis model. The 

following steps are involved in the coupling of the hysteretic model to the condensed 

linear model. The lower triangular matrix ‘T’ relates the horizontal floor displacements 

with respect to the ground,  n , to the relative inter-story displacements, denoted by q = 

[qs, qt, … , qv]   
 g = ws x xs s xs s ss s s				

xxxsy 
(16) 

 n = gq	 ⟹ 	q = g�s (17) 

This transforms Equation (5) to the relative coordinates, 

 eq{ q! +	ofqqT + 	jq|q =	−plqrn!  (18) 

 eq{ = gg[ef ]	g (19) 
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 oq{ = gg[of]	g (20) 

 jq{ = gg[jf]	g (21) 

 pq} = ggpl (22) 

The elastic inter-story restoring forces jqare now replaced by hysteretic inter-

story shear forces using the following substitution: 

 jq{q	 → 	�jq{q+ (s − �)jq{� (23) 

Here, X is the ratio of the post-yield stiffness to the pre-yield stiffness. The 

auxillary variable � = [	�s, �t, … , �v	]	g is the isotropic hysteretic displacement which is 

obtained from the generalized Park-Wen model [10] [11] 

 �T = 	qT − 	�	o	� (24) 

 � = 	 {�	ο	��i(qT 	ο	�) − 	�	ο	qT 	ο	�}	ο	(�	ο	�)��** 	 (25) 

Here, the operator ‘o’ is the element wise multiplication of two vectors and � 
accounts for the effects of biaxial interaction. The vectors � and � are parameters which 

govern the hysteretic behavior of the system and are given as � = [�s, … , �v]g 

and� = [�s, … , �v]g	. The parameter � which is defined as the sharpness of the 

hysteretic knee which governs the smoothness of the transition from the linear to the 

nonlinear range [11]; this helps in adjusting the knee of the hysteresis loop. The yield 

displacement is given by 

 �(,a(D]b = s��� + ��v  
(26) 
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The hysteretic shape parameter,  d	�	[0, 1], and 

 �� =	 ���,������ 	and	�� =	 s − ���,������  
(27) 

Substituting the above equations into the relative equations of motion we get 

 eq{ q! +	ofqqT +	�jq�q+ (s − �)jq{� =	−plqr!  (28) 

Premultiplying the above Equation by g�g and substituting the expression for 

q� from Equation (18), we transform the equations of motion back to absolute 

coordinates 

 efn! +	ofnT + 	�j�n + (s − �)jf� = 	−plqr!  (29) 

Where  

 �Tn =	g�snT − 	�	ο	� (30) 

 � = {�	�	��i	[(g�snT )�	�] − 	�	�	(g�snT )�	�}�	(�	�	�)��tt  
(31) 

The values of these hysteretic parameters are obtained by fitting pulse responses 

of the condensed model to pulse responses of the detailed model. Specifically, a short-

period pulse (with a period of about half the fundamental period of the structure) is 

applied to the high-fidelity model to generate inter-story drift ratio time histories.  The 

pulse amplitude is large enough to produce inter-story drift ratios up to three or four 

percent in the lower stories.   The same pulse is applied to the condensed model and 

inter-story drift ratios are computed from the reduced order model.   The condensed 
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model is then fit to the high fidelity model via nonlinear least squares. The Levenberg-

Marquardt method is used to solve the nonlinear least squares problem.   

4.3 Step 3: Hysteretic Parameters Approximation 

In order identify estimates of the hysteretic parameters for the condensed model 

that would result in good predictions of the high-fidelity model, hysteretic parameters 

were fit to high-fidelity response data computed for  a number of different loading 

types, including quasi-static push over loading and dynamic impulsive loading. The 

best set of parameters was obtained from fitting responses that involved higher modes. 

This was finally achieved using a high amplitude pulse response data. To be certain of 

which type of analysis would be appropriate a trial and error method was utilized. 

The first method of obtaining the hysteretic parameters involved a pushover 

analysis of the detailed and the condensed model. Using a uniform Static loading (the 

same lateral force at each floor level), the load-displacement curves obtained from the 

condensed model were fitted to respect to the high-fidelity model responses using the 

Levenberg-Marquardt method. The condensed model with the  fitted parameter values 

was then tested by comparing hysteretic earthquake ground motion responses predicted 

by the fitted condensed model to those computed with the high-fidelity model., The 

error in the peak horizontal displacements between the high-fidelity model  and the 

fitted condensed model when subjected to an earthquake ground motion  loading was 
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as large as 40%. This was due to the fact that higher modes and cyclic hysteretic 

behavior were not involved in the pushover analysis responses. 

The next method involved a quasi-static pushover analysis, which involved a 

slow acceleration in the base response. The fitted hysteretic parameters obtained were 

then tested; the elastic response of the High Fidelity OpenSees model seemed to match 

the condensed Matlab model. But the inelastic response still had an error which needed 

to be addressed. 

Finally, the detailed and the condensed model were subjected to a high 

amplitude pulse response. The high amplitude pulse had a ground motion pulse period 

of 0.5 sec, half of the fundamental period of the structure. The inter-story drift plots for 

the High Fidelity OpenSees model and the Condensed Hysteretic model were 

computed.  
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Figure 4: Inter-story Drift ratio for the High Amplitude Pulse Response of the 

High Fidelity OpenSees model. 

 

Figure 5: Inter-story Drift ratio for the High Amplitude Pulse Response of the 

Condensed Hysteretic model using initial guess for the hysteretic parameters. 
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4.4 Step 4: Fit the Reduced inelastic model response data from 
the high fidelity model using the Levenberg-Marquardt 
algorithm. 

The Levenberg-Marquardt is a technique used to solve nonlinear least square 

problems [13]. Least squares problems arise when fitting a parameterized function to a 

set of measured data points by minimizing the sum of the squares of the errors between 

the data points and the function. In such a case, the function is not linear in the 

parameters. The Parameters values are modified in an iterative procedure to reduce the 

sum of the squares of the errors between the measured data points and the function. The 

Levenberg-Marquardt method involves a combination of the gradient descent method 

and the Gauss-Newton method. 

      The gradient descent method updates the parameters in the direction of the 

greatest reduction of the least squares objective by reducing the sum of the squared 

errors. Whereas, In the Gauss-Newton method, the sum of the squared errors is reduced 

by assuming the least squares function is locally quadratic whose minimum is to be 

obtained. Using this combination of methods, the Levenberg-Marquardt method uses a 

mixture of these methods depending upon the difference between the parameters from 

their optimal value. If the difference between the parameters and the optimal value is 

large then the gradient descent method is used and as the difference between the 

parameters and the optimal value reduces, the Gauss-Newton method is used. This 
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combination is an efficient way to minimize the sum of the squares of the errors between 

the data points and the function. 

       In fitting a function ��	(); h) of an independent variable t and a vector of n 

parameters h to a set of m data points ()(, �(), the minimization sum of the weighted 

squares of the errors between the measured data �()() and the curve-fit function ��	()(; h) 
is performed. This scalar-valued goodness-of-fit measure is called the chi-squared error 

criterion. 

 �* =K��()() − ��()(; C)'( �*?
(��  

(1) 

 												= (� − ��(C))��(� − ��(C)) (2) 

 															= ���� − 2����� + �����′ (32) 

The error in data point �()() is weighted by the value of'(. The weighting matrix 

W is diagonal with �(( = 1/'(*. The minimization of �* with respect to the parameters is 

carried out iteratively. The goal of each iteration is to find a perturbation � to the 

parameters h that reduces�*. 
The Gradient Descent Method 

The gradient descent method updates the parameter values in the direction 

opposite to the gradient of the objective function. It is recognized as a highly convergent 

algorithm for finding the minimum of simple objective functions [17] [18] 

The gradient of the chi-squared objective function with respect to the parameters 

is  
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 ��h	�* = (� −	��(h))��	 ��h	(� −	��(h))	 (4) 

 =	−(� − ��)g m (5) 

Where the m x n Jacobian matrix [¡��	/¡h]represents the local sensitivity of the 

function �� to variation in the parametersh, and J represents [¡��	/¡h]. The perturbation � 

that moves the parameters in the direction of the steepest descent is given by  

 ℎFb = 	£	¤��(� − ��)	 (6) 

Where, £ determines the length of the step in the steepest-descent direction. 

The Gauss-Newton Method 

The Gauss-Newton method is used for minimizing the sum of squares objective 

function. It assumes the objective function is approximately quadratic in the parameters 

near the solution [18]. The Gauss-Newton method converges faster than the Gradient 

Descent method [19]. The perturbation � that minimizes �* is found from [¡�*	/¡�] = 0. 

 ��ℎ	�*	(C + ℎ) ≊ 	−2	(� −	��)��¤ + 2ℎ�¤��¤ (7) 

And the resulting normal equations for the Gauss-Newton perturbation are 

 [	¤�	�	¤	]ℎF? = ¤��(� − ��) (8) 

The Levenberg-Marquardt Method 

The Levenberg-Marquardt algorithm varies the parameter changes between the 

gradient descent update and the Gauss-Newton update. Marquardt’s suggested update 

relationship is as follows [20] 
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 [¤�	�	¤ + 	¦	=-0§(¤�	�	¤)]ℎ]P =	 ¤�	�	(� − ��)	 (9) 

This algorithm was used in finding the values of the hysteretic parameters used 

in the model reduction technique for nonlinear inelastic analysis. 

The curve fitting was initially done using a quasi-static pushover analysis of the 

high-fidelty  OpenSees model with the condensed hysteretic model. Since the hysteretic 

parameters obtained from fitting the quasi-static pushover response data did not lead to 

a condensed model that could predict the high-fidelity model responses to earthquake 

ground motion , the curve fitting was then carried out using  high amplitude pulse 

response data.  

 

Quasi-static Analysis 

Quasi-static loading is a type of a linear time-varying loading that increases 

slowly with time. The high-fidelity (OpenSees) frame model and the condensed model 

were subjected quasi-static loading. The responses of both models exhibited clear plastic 

deformation. The inter-story drift ratios versus time were plotted in both cases.  Curves 

that were obtained from the condensed model were fitted to data from the full model in 

order to estimate values of the hysteretic parameters. The figures below show the plots 

between the inter-story drift ratio and time for the high-fidelity model  and the 

condensed model. 
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Figure 6: Inter-story Drift ratio plot for the Quasi-Static Pushover Analysis of 

the High Fidelity OpenSees model. 

Figure 7: Inter-story Drift ratio plot for the Quasi-Static Pushover Analysis of 

the Condensed model. 
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Figure 8: Inter-Story Drift ratio plot showing the difference between the two 

models.  

 

Figure 9: Curve-Fitting of the High Fidelity model response with the 

Condensed model response in order to obtain fitted hysteretic parameters. 
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Figure 10: Variation in the Hysteretic Parameters during the curve fitting 

process. 

 

Figure 11: Histogram of the residuals after the completion of the curve fitting. 
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The verification of these hysteretic parameters is given in the next chapter. The 

condensed model with hysteretic parameters obtained by the fitting of the quasi-static 

pushover curves was successful in predicting an identical dynamic elastic response as 

the high-fidelity model but failed to show the same accuracy when subjected to loadings 

that produced inelastic behavior. 

The reason of the failure of the hysteretic parameters obtained by curve fitting the quasi-

static pushover curve can be due to the following aspects missing in the pushover 

analysis: 

• Dynamic Behaviour 

• Multi-Mode Behaviour 

• Cyclic  Hysteretic Behaviour 

• Residual Displacement 

Thus, a high amplitude pulse response analysis was carried out on the two models. The 

inter-story drift ratio curve of the condensed hysteretic model using some initial 

parameters was fitting with the curve obtained from the high-fidelity OpenSees model. 

The fitted hysteretic parameters are as follows: 

 κ= 0.02   

Va(D]b= [1.6780, 2.1897, 1.8404, 1.7491]  in. 

c= 12.000   

d= 0.5  

These hysteretic parameters were used for the condensed hysteretic model and 

an inelastic response was obtained. The condensed hysteretic model was verified for a 
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set of earthquake records and its accuracy with respect to the detailed model was 

checked, as described in the next chapter. 
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5. Model Verification: 

Several stages of model verification were carried out.   First the high-fidelity 

model was verified in terms of its low-amplitude dynamic elastic behavior, by 

comparing its modal frequencies and low-amplitude earthquake dynamic response 

histories to those computed from a linear 2D elastic frame analysis.   Second, the high-

fidelity model was verified in terms of its high-amplitude static inelastic behavior  by 

comparing its pushover analysis to those computed from an independent pushover 

analysis in which inelastic behavior is concentrated at plastic hinges at the nodes and 

elastic-plastic moment-curvature relationships are assumed at these nodes.    

5.1 Verification of elastic dynamic response: 2D Elastic Frame 
Model and the High Fidelity OpenSees Model 

First, the low-amplitude dynamic elastic behavior of the high-fidelity model 

generated in OpenSees was verified in comparison to an elastic 2D frame model. 

Table 1: Natural Frequencies of the High Fidelity OpenSees model, Elastic 

Frame model and Condensed Hysteretic model 

Natural Frequency High Fidelity 

OpenSees model 

(Hz) 

Elastic Frame 

Model (Hz) 

Condensed 

Hysteretic Model 

(Hz) 3?� 1.1035 1.1093 1.1093 3?* 3.1208 3.1430 3.2769 3?© 5.7544 5.7959 6.5261 3?ª 8.5398 8.6181 10.4412 
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Natural Periods of the High Fidelity OpenSees model, Elastic Frame model and 

Condensed Hysteretic Matlab model: 

Table 2: Natural Periods of the High Fidelity OpenSees model, Elastic Frame 

model and Condensed Hysteretic model 

Natural Period High Fidelity 

OpenSees model 

(sec) 

Elastic Frame 

Model (sec) 

Condensed 

Hysteretic Model 

(sec) �?� 0.9062 0.9014 0.9014 �?* 0.3204 0.3182 0.3051 �?© 0.1738 0.1725 0.1532 �?ª 0.1171 0.1161 0.0958 

 

Next a comparison was made in terms of low-amplitude dynamic responses.  

The ground motion record for this analysis was obtained from the PEER Ground Motion 

Database [24].   

Table 3: Peak Ground Acceleration of the different NGA ground motion used: 

Ground Motion Scaled Peak Ground Acceleration (PGA) 

(g) 

NGA 0181 1.108 

NGA 0182 0.648 

NGA 0292 0.862 

NGA 0723 0.709 

NGA 0802 1.253 

NGA 0821 0.593 

NGA 0879 1.679 

NGA 1063 0.569 

NGA 1086 0.604 

NGA 1165 0.486 

NGA 1503 1.058 

NGA 1529 0.595 

NGA 1605 0.871 
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One of the ATC-63 near Fault Ground Motion Records [25] with a pulse was 

used on both the models; record NGA0181 was selected with a scaling factor of 0.9. 

Figure 10 shows the ground motion acceleration against time. Figure 11 shows the 

seismic response of the high-fidelity OpenSees model in the form of a horizontal 

displacement time histories. The horizontal displacements for nodes 21, 31, 41 and 51 are 

shown for further comparison with the elastic 2D frame model. Figure 14 shows the 

seismic response of the elastic 2D frame model in the form of a lateral horizontal 

displacement versus time plot as well.

Figure 12: Ground Motion Record used for the dynamic analysis. 
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Figure 13: Horizontal Floor Displacement for the OpenSees model – elastic 

response 

Figure 14: Horizontal Floor Displacement for the Elastic Frame model – elastic 

response 
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The peak response for the Opensees Model occurs at node 51 and is equal to -

3.8825. The peak response for the 2D elastic frame model occurs at node 51 and is equal 

to -3.8829. Thus, on the basis of these two factors, the elastic dynamic response of the 

OpenSees and the Matlab model is very similar. The next step in verifying these two 

models will be by using the Guyan Dynamic Reduction (Paz Reduction) that has been 

discussed in the earlier chapters. 

5.2 Linear elastic model reduction: comparing the OpenSees Full 
model with the 2D elastic frame and elastic reduced-order model 
models. 

The 2D elastic frame model is then reduced from sixty coordinates to four 

horizontal coordinates using the Dynamic Condensation method. As discussed earlier, 

the mass and the stiffness matrices are condensed using the transformation matrix. This 

reduction of the number of degrees of freedom results in an accurate and efficient 

seismic response for a linear elastic dynamic analysis. Figure 15 shows the seismic 

response of the condensed elastic model in the form of lateral horizontal displacement 

time histories for the four coordinates that are retained. 
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Figure 15: Horizontal Floor Displacement for the Matlab Condensed Elastic  

model – elastic response 

The peak response for the condensed  elastic model is the same as the peak 

response for the high fidelity  model. The natural frequencies in the lower  modes also 

match, but on evaluating the higher modes, the difference in natural frequency of the 

high fidelity model and the condensed  elastic model seem to increase. Since the linear 

elastic dynamic analysis is within the elastic region, the higher mode shapes can be 

ignored for now. 
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5.3Verification of the inelastic pushover response of the full 
model – EPFrame and OpenSees pushover analysis: 

The inelastic behavior of the high fidelity model was verified using static 

pushover analysis. The structure is subjected to lateral forces which are distributed over 

height. The distribution can be done in several ways according to the FEMA-273 [1] load 

distribution. FEMA-273 specifies three distributions for lateral forces: 

• Mass-proportional lateral load distribution : >?∗ = 	@?, the mass at the <./ 

floor level  (where the floor number n = 1,2, …, N)  

• Equivalent Lateral Force for Distribution (ELF): >?∗ = 	@?ℎ?« where ℎ? is 

the height of the <./ floor level above the base, and the exponent k = 1 for 

fundamental period �� ≤ 0.5 sec, k = 2 for �� ≥ 2.5 sec; and varies linearly 

between the presented range 

• SRSS distribution: >∗ is defined by the lateral forces calculated from the 

story shears determined by the response spectrum analysis of the 

structure, which is assumed to be linearly elastic. 

A uniform distribution of loads of assumed in this verification process. The static 

pushover analysis of the model computed by the high-fidelity OpenSees model was 

verified by performing the same analysis on a FORTRAN program named EPFrame [26]. 

The structure was subjected to equal horizontal loads at nodes 21, 31, 41 and 51. The 

load deflection plots that were generated were compared to determine the inelastic 

behavior of the structure under static loading. 

EPFrame returns the load-deflection relationships of elastic-plastic analysis 

Figure 16 to 19 show the load-deflection plots of nodes 21, 31, 41 and 51 for both the 

OpenSees values as well as the EPFrame values. It can be concluded from these plots 
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that the elastic-plastic behavior for the frame under static loading is the same in both the 

cases, and the high-fidelity model is thus verified for static pushover loading, well into 

the inelastic range.

 

Figure 16:  Load – Deflection plot for node 21 showing the comparison 

between the inelastic pushover response in OpenSees and EPFrame. 

 

Figure 17 : Load – Deflection plot for node 31 showing the comparison 

between the inelastic pushover response in OpenSees and EPFrame. 
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Figure 18: Load – Deflection plot for node 41 showing the comparison between 

the inelastic pushover response in OpenSees and EPFrame 

 

Figure 19: Load – Deflection plot for node 51 showing the comparison between 

the inelastic pushover response in OpenSees and EPFrame 
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5.4 Verification of the Condensed Hysteretic Model 

The inelastic dynamic response was first verified for the hysteretic parameters 

obtained from the quasi-static pushover analysis. Since the error in the inelastic region 

was large, the new hysteretic parameters were obtained using the high amplitude pulse 

response. In this section, the dynamic elastic analysis of the different hysteretic 

parameters obtained will be discussed 

Using the Levenberg-Marquardt method the hysteretic parameters from the 

static pushover curve fitting are given in the table below:  

Table 4: Hysteretic Parameters obtained from the static pushover curve fitting 

 Initial Fit °� % Change 

Va(D]b,� 1.7 1.6754 0.0003 0.0161 

Va(D]b,* 2.1 2.0347 0.0002 0.0085 

Va(D]b,© 1.7 1.5555 0.0004 0.0250 

Va(D]b,ª 1.4 1.3325 0.0023 0.1758 

X 0.05 0.0335 0.0001 0.4172 

c 7 7.3660 0.0278 0.3770 

 

These fitted hysteretic parameters are used and all three models are subjected to 

dynamic analysis. The figure 20 show the lateral displacement versus time plots for the 

selected nodes of the High Fidelity Model, The Elastic Frame Model and the Condensed 
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Hysteretic Model. Moment Rotation curves have also been plotted to further understand 

the hysteretic behavior of the structure under high intensity ground acceleration. 

 

Figure 20: Elastic Earthquake Response of the Hysteretic Condensed model 

obtained using Quasi-Static Pushover response 

Table 5: Hysteretic Parameters obtained by the Quasi-Static Pushover curve 

fitting: 

 Initial Fit °� % Change Va(D]b,� 1.6320 1.6780 0.0003 2.818 Va(D]b,* 1.9994 2.1897 0.0002 9.51 Va(D]b,© 1.5778 1.8404 0.0004 16.64 Va(D]b,ª 1.3586 1.7491 0.0023 28.74 X 0.0688 0.0200 0.0001 70.93 c 7.2843 12.000 0.0278 64.73 
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These Fitted Hysteretic Parameters are used instead of the initial assumptions 

and all the three models are subjected to dynamic analysis. The Figure 21 below show 

the Lateral Displacement versus time plots for the selected nodes of the OpenSees 

Model, The Elastic Frame Model and the Condensed Hysteretic Matlab model. Moment 

Rotation curves have also been plotted to further understand the hysteretic behavior of 

the structure under high intensity ground acceleration.

Figure 21: Horizontal Floor Displacement from the 2D elastic frame model 
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Figure 22: Horizontal Floor Displacement from the Condensed Hysteretic 

model with parameters fit to the High Amplitude Pulse Response  

Figure 23: Moment Curvature Hysteresis Node 21 
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Figure 24: Moment Curvature Hysteresis Node 31 

Figure 25: Moment Curvature Hysteresis Node 41 
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From the nonlinear inelastic analysis of the Elastic Frame model and the 

Condensed Hysteretic Model, it can clearly be verified that the Peak Displacements of 

the two models are the same. On checking the natural frequency of the first three modes, 

the values of the two models were identical. Hence, this is new method of Model 

Condensation using Hysteretic Parameters can be used to reduce the full model when 

performing any kind of seismic analysis. 

5.5 Verification of condensed hysteretic model for inelastic 
dynamic response 

The inelastic dynamic response of the condensed hysteretic model (with 

hysteretic parameters fit to a pulse response) was then verified with the high-fidelity 

model.  The set of thirteen ATC – 63 near fault ground motion records containing a pulse 

were used to obtain a set of inelastic dynamic responses for both the condensed 

hysteretic model and the High Fidelity model. Table 6 represents the set of ground 

motions used with their respective magnify normalization factors to obtain inelastic 

behavior. 
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Table 6: The list of ground motions used, according to the NGA number with 

the high-pass frequency and low-pass frequency cut-off values, time step, and 

number of points. 

Ground 

Motion 

Record 

Inelastic 

Norm. 

factor 

NPTS HP LP DT 

NGA 0181 2.7 7810 0.1 40 0.005 

NGA 0182 1.92 7364 0.1 40 0.005 

NGA 0292 3.44 16392 0.13 30 0.0024 

NGA 0723 1.56 2235 0.06 20 0.01 

NGA 0802 2.445 7991 0.1 38 0.005 

NGA 0821 1.15 4262 0.1 40 0.005 

NGA 0879 2.31 9625 0.08 60 0.005 

NGA 1063 0.69 1991 0.06 30 0.01 

NGA 1086 1.00 2000 0.12 23 0.02 

NGA 1165 3.2 6000 0.1 30 0.005 

NGA 1503 1.3 18000 0.03 50 0.005 

NGA 1529 2.0 18000 0.04 50 0.005 

NGA 1605 2.5 5177 0.06 50 0.005 

 

The condensed hysteretic model was checked for the inelastic dynamic response 

(Horizontal floor displacements), the inter-story drift ratio and the relative floor 

acceleration for each of the given earthquake ground motions. 
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Table 7: Verification of the Hysteretic Model Condensation Method for 

Inelastic Structural behavior via comparison with a high fidelity model    

Ground 

Motion 

used 

Maximum Relative 

Floor Acceleration (g) 

Maximum Inter-story 

Drift Ratio 

Maximum Horizontal 

Displacement (in) 

Full 

Model 

Condensed 

Model 

Full 

Model 

Condensed 

Model 

Full Model Condensed 

Model 

NGA 0181 1.5477 1.8735 0.0316 0.0323 16.3898 16.0708 

NGA 0182 1.3300 1.2634 0.0295 0.0357 14.6876 15.9923 

NGA 0292 2.0005 1.8777 0.0232 0.0229 11.8211 12.6104 

NGA 0723 1.4854 1.4427 0.0281 0.0310 13.8503 14.6670 

NGA 0802 1.8473 1.7650 0.0255 0.0303 14.2069 13.8720 

NGA 0821 1.0341 0.9108 0.0211 0.0191 10.6621 10.8463 

NGA 1063 1.5789 1.3366 0.0315 0.0341 15.7652 16.2719 

NGA 1086 1.3945 1.3781 0.0232 0.0240 11.1283 11.3958 

NGA 1165 1.2778 1.3063 0.0209 0.0194 10.7782 11.4332 

NGA 1503 1.2617 1.2227 0.0298 0.0313 11.7887 11.3610 

NGA 1529 1.2042 1.1205 0.0232 0.0247 11.6421 12.5038 

NGA 1605 2.1801 2.2728 0.0287 0.0349 12.7172 11.6812 

 

From table 7, it is evident that the condensed hysteretic model gives a very close 

approximation of the different seismic demands. The error is well within the acceptable 

range as in the field of earthquake engineering, earlier methods of such as the Modal 

Pushover Analysis and the Response Spectra Analysis both predict the seismic demands 

having errors much greater than the ones obtained from this new proposed model 

reduction method. Importantly, the condensed inelastic model is better at predicting 

inter-story drift ratios than peak floor displacements and peak floor accelerations.  The 
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figures below show the Inelastic Earthquake Response (Horizontal floor displacements), 

Inter-story drift ratio and the relative floor acceleration of the High Fidelity OpenSees 

model and the condensed hysteretic model for two different earthquake ground motion 

(i.e. NGA 0181 and NGA 0292) 

Figure 26: Inelastic Earthquake Response for the High Fidelity OpenSees 

model (NGA 0181) 

Figure 27: Inelastic Earthquake Response for the Condensed Hysteretic model 

(NGA 0181) 
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Figure 28: Inter-story Drift Ratio of the Condensed Hysteretic model (NGA 

0181) 

 

Figure 29: Inter-story Drift Ratio of the High-Fidelity OpenSees model (NGA 

0181) 
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Figure 30: Relative Floor Acceleration High Fidelity model (NGA 0181) 

 

 

Figure 31: Relative Floor Acceleration Condensed Hysteretic Model (NGA 

0181) 
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Figure 32: Inelastic Earthquake Response of the High Fidelity OpenSees 

Model (NGA 0292) 

Figure 33: Inelastic Earthquake Response Condensed Hysteretic Model (NGA 

0292) 
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Figure 34: Inter-story Drift Ratio of the High Fidelity OpenSees model (NGA 

0292) 

 

Figure 35: Inter-story Drift ratio of the Condensed Hysteretic model (NGA 

0292) 
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Figure 36: Relative Floor Acceleration of the High Fidelity OpenSees model 

(NGA 0292) 

 

Figure 37: Relative Floor Acceleration of the Condensed Hysteretic Model 

(NGA 0292) 
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Table 8: Relative Error between the condensed inelastic model and the high 

fidelity inelastic model for each of the earthquakes used in the model verification 

Ground Motion 

Record 

Error in Max. 

Horizontal 

Displacement 

Error in Max. Inter-

story Drift ratio 

Error in Max. 

Relative Floor 

Acceleration 

NGA 0181 1.94 % 2.21 % 21.05 % 

NGA 0182 8.88 % 21.01 % 4.93 % 

NGA 0292 6.67 % 1.29 % 6.13 % 

NGA 0723 5.89 % 10.32 % 2.87 % 

NGA 0802 2.35 % 18.82 % 4.45 % 

NGA 0821 1.72 % 9.47 % 11.92 % 

NGA 1063 3.21 % 8.25 % 15.34 % 

NGA 1086 2.40 % 3.44 % 1.17 % 

NGA 1165 6.07 % 7.17 % 2.23 % 

NGA 1503 3.62 % 5.03 % 3.09 % 

NGA 1529 7.40 % 6.46 % 6.95 % 

NGA 1605 8.14 % 21.60 % 4.25 % 

 

In an effort to improve the accuracy of the reduced hysteretic model,  

the response from the condensed model was fitted to a 5 second pulse response of the 

high fidelity model subjected to a high amplitude pulse of a period of 0.5 seconds. The 

new hysteretic parameters obtained were as follows: 

X = 0.0330 

Va(D]b = [	1.6503; 2.1749; 1.8167; 1.7117	]	 
c = 6.2390 

d = 0.5 

These parameters were obtained by using  d = 0.5 as a constant and by setting 

the maximum and minimum values as follows: 
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Table 9: Maximum and Minimum values used for the curve fitting process 

Hysteretic Parameters Maximum Value Minimum Value X 0.2 0.02 Va(D]b  2.5 1.2 c 12.0 3.0 

 

These hysteretic parameters obtained by curve fitting a 5 second high  

amplitude pulse response were then used to calculate the seismic demands with the 

reduced hysteretic model in order to check its accuracy. The following are the seismic 

demands calculated using the above parameters: 

Table 10: Verification of the Hysteretic Model Condensation Method for 

Inelastic Structural behavior via comparison with a high fidelity model using the 

hysteretic parameters obtained by curve fitting for 5 seconds 

Ground 

Motion 

Used 

Maximum Horizontal 

Displacement 

Maximum Inter-story 

Drift Ratio 

Maximum Floor 

Acceleration 

OpenSees Matlab OpenSees Matlab OpenSees Matlab 

NGA 0181 16.3898 15.4577 0.0316 0.0317 1.5477 1.8051 

NGA 0182 14.6876 15.6971 0.0295 0.0321 1.3300 1.2306 

NGA 0292 11.8211 12.2528 0.0232 0.0229 2.0005 1.8362 

NGA 0723 13.8503 14.0209 0.0281 0.0282 1.4854 1.3890 

NGA 0802 14.2069 13.9767 0.0255 0.0302 1.8473 1.6938 

NGA 0821 10.6621 11.0354 0.0211 0.0200 1.0341 0.8517 

NGA 0879 8.9792 10.0147 0.0175 0.0246 2.3454 2.8124 

NGA 1063 15.7652 16.2346 0.0315 0.0328 1.5789 1.3204 

NGA 1086 11.1283 10.9918 0.0232 0.0226 1.3945 1.3778 

NGA 1165 10.7782 11.2476 0.0209 0.0204 1.2778 1.2994 

NGA 1503 11.7887 11.4751 0.0298 0.0284 1.2617 1.1238 

NGA 1529 11.6421 11.2742 0.0232 0.0229 1.2042 0.9892 

NGA 1605 12.7172 11.6154 0.0287 0.0338 2.1801 2.2380 
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Table 11: The error between the High Fidelity OpenSees model and the 

Condensed hysteretic Matlab model using the hysteretic parameters obtained by 

curve fitting the 5 second response 

Ground Motion Error in Max. 

Horizontal 

Displacement (%) 

Error in Max. Inter-

story Drift Ratio 

(%) 

Error in Max. Floor 

Acceleration (%) 

NGA 0181 5.687 0.316 16.631 

NGA 0182 6.873 8.813 7.473 

NGA 0292 3.652 1.293 8.213 

NGA 0723 1.232 0.355 6.489 

NGA 0802 1.620 18.431 8.309 

NGA 0821 3.501 5.213 17.638 

NGA 0879 11.532 28.861 19.911 

NGA 1063 2.977 4.127 16.372 

NGA 1086 1.226 2.586 1.197 

NGA 1165 4.355 2.392 1.690 

NGA 1503 2.660 4.678 10.929 

NGA 1529 3.160 1.293 17.854 

NGA 1605 8.664 17.770 2.655 

Average Error 4.396 7.394 10.412 

 

To further improve the response, the response from the condensed model was 

fitted to a 2 second pulse response of the High Fidelity OpenSees model subjected to a 

high Amplitude Pulse of a period of 0.5 seconds. The new hysteretic parameters 

obtained were as follows: 

X = 0.1167 

Va(D]b = [	1.5388; 2.0619; 1.7145; 1.6115	]	 
c = 8.1826 

d = 0.5 
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These parameters were obtained by using  d = 0.5 as a constant and by setting 

the maximum and minimum values as follows: 

Table 12: Maximum and Minimum values used for the curve fitting for a 2 

second response 

Hysteretic Parameters Maximum Value Minimum Value X 0.2 0.02 Va(D]b 2.5 1.2 c 12.0 3.0 

 

The following are the seismic demands calculated using the hysteretic 

parameters obtained by curve fitting the 2 second high amplitude pulse response. 

Table 13: Verification of the Hysteretic Model Condensation Method for 

Inelastic Structural behavior via comparison with a high fidelity model using the 

hysteretic parameters obtained by curve fitting for 2 seconds 

Ground 

Motion 

Used 

Maximum Horizontal 

Displacement 

Maximum Inter-story 

Drift Ratio 

Maximum Floor 

Acceleration 

OpenSees Matlab OpenSees Matlab OpenSees Matlab 

NGA 0181 16.3898 14.7276 0.0316 0.0288 1.5477 1.7904 

NGA 0182 14.6876 14.3817 0.0295 0.0280 1.3300 1.2445 

NGA 0292 11.8211 12.4680 0.0232 0.0225 2.0005 1.8261 

NGA 0723 13.8503 13.7278 0.0281 0.0286 1.4854 1.4083 

NGA 0802 14.2069 14.1546 0.0255 0.0279 1.8473 1.8523 

NGA 0821 10.6621 11.0535 0.0211 0.0201 1.0341 0.8365 

NGA 0879 8.9792 10.2520 0.0175 0.0236 2.3454 2.8049 

NGA 1063 15.7652 16.2732 0.0315 0.0336 1.5789 1.3212 

NGA 1086 11.1283 11.0019 0.0232 0.0224 1.3945 1.3305 

NGA 1165 10.7782 11.2117 0.0209 0.0194 1.2778 1.3453 

NGA 1503 11.7887 10.9567 0.0298 0.0253 1.2617 1.0494 

NGA 1529 11.6421 10.7151 0.0232 0.0217 1.2042 0.9825 

NGA 1605 12.7172 11.6544 0.0287 0.0292 2.1801 2.5159 
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The error between the High Fidelity OpenSees model and the Condensed 

hysteretic Matlab model were then calculated:  

Table 14: The error between the High Fidelity OpenSees model and the 

Condensed hysteretic Matlab model using the hysteretic parameters obtained by 

curve fitting the 2 second response 

Ground Motion Error in Max. 

Horizontal 

Displacement (%) 

Error in Max. Inter-

story Drift Ratio 

(%) 

Error in Max. Floor 

Acceleration (%) 

NGA 0181 10.141 8.861 15.681 

NGA 0182 2.082 5.084 6.428 

NGA 0292 5.472 3.017 8.942 

NGA 0723 0.884 1.779 5.190 

NGA 0802 0.368 9.411 0.271 

NGA 0821 3.671 4.739 19.108 

NGA 0879 14.175 34.857 19.591 

NGA 1063 3.222 6.667 16.321 

NGA 1086 1.135 3.448 4.589 

NGA 1165 4.022 7.177 5.282 

NGA 1503 7.057 15.100 16.826 

NGA 1529 7.962 6.465 18.410 

NGA 1605 8.537 1.742 15.403 

Average Error 5.286 8.336 11.695 

 

Since the average error has increased, the hysteretic parameters were again 

calculated by fitting the response from the condensed model to a 5 second pulse 

response of the High Fidelity OpenSees model subjected to a high Amplitude Pulse of a 

period of 0.5 seconds. But this time the number of hysteretic parameters was increased. 

Instead of using a constant value for the hysteretic shape factor (d), the value of obtained 

by curve fitting. The new hysteretic parameters obtained were as follows: 

X = 0.1206 
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Va(D]b = [	1.562; 2.054; 1.672; 1.532	]	 
c = 12.000 

d = [	1.000; 0.711; 0.1; 0.1	] 
Table 15: Maximum and Minimum values used for the curve fitting for a 5 

second response with varying hysteretic shape factor 

Hysteretic Parameters Maximum Value Minimum Value X 0.2 0.02 Va(D]b 2.5 1.2 c 12.0 3.0 d 1.0 0.1 

 

Table 16: Verification of the Hysteretic Model Condensation Method for 

Inelastic Structural behavior via comparison with a high fidelity model using the 

hysteretic parameters obtained by curve fitting for 5 seconds with varying hysteretic 

shape factor   

Ground 

Motion 

Used 

Maximum Horizontal 

Displacement 

Maximum Inter-story 

Drift Ratio 

Maximum Floor 

Acceleration 

OpenSees Matlab OpenSees Matlab OpenSees Matlab 

NGA 0181 16.3898 15.2651 0.0316 0.0311 1.5477 1.9793 

NGA 0182 14.6876 14.4300 0.0295 0.0285 1.3300 1.3638 

NGA 0292 11.8211 12.6583 0.0232 0.0256 2.0005 1.8056 

NGA 0723 13.8503 14.1169 0.0281 0.0277 1.4854 1.5515 

NGA 0802 14.2069 14.5338 0.0255 0.0286 1.8473 2.2986 

NGA 0821 10.6621 11.2427 0.0211 0.0199 1.0341 0.9493 

NGA 0879 8.9792 9.5076 0.0175 0.0214 2.3454 2.8354 

NGA 1063 15.7652 16.7259 0.0315 0.0329 1.5789 1.3512 

NGA 1086 11.1283 11.7101 0.0232 0.0223 1.3945 1.3437 

NGA 1165 10.7782 11.1807 0.0209 0.0192 1.2778 1.4081 

NGA 1503 11.7887 10.8506 0.0298 0.0280 1.2617 1.1576 

NGA 1529 11.6421 11.4687 0.0232 0.0230 1.2042 1.1299 

NGA 1605 12.7172 11.6229 0.0287 0.0322 2.1801 2.4240 

 



 

68 

The error between the High Fidelity OpenSees model and the Condensed 

hysteretic Matlab model were then calculated:  

Table 17: The error between the High Fidelity OpenSees model and the 

Condensed hysteretic Matlab model using the hysteretic parameters obtained by 

curve fitting the 5 second response with varying hysteretic shape factor 

Ground Motion Error in Max. 

Horizontal 

Displacement (%) 

Error in Max. Inter-

story Drift Ratio 

(%) 

Error in Max. Floor 

Acceleration (%) 

NGA 0181 6.862 1.582 27.886 

NGA 0182 1.754 3.389 2.54 

NGA 0292 7.082 10.344 9.742 

NGA 0723 1.925 1.423 4.449 

NGA 0802 2.301 12.156 24.412 

NGA 0821 5.445 5.687 8.200 

NGA 0879 5.884 22.285 20.853 

NGA 1063 6.094 4.444 14.421 

NGA 1086 5.228 3.879 3.642 

NGA 1165 3.734 8.134 10.197 

NGA 1503 7.957 6.040 8.250 

NGA 1529 1.489 0.862 6.17 

NGA 1605 8.604 12.195 11.187 

Average Error 4.950 7.109 11.688 

 

The Average Errors in seismic demands for different parameters were then 

examined in order to find the most appropriate way to calculate the hysteretic 

parameters. The table below represents the average error between the High Fidelity 

OpenSees model and Condensed hysteretic model for the different hysteretic parameters 

used by curve fitting the high amplitude pulse for different response periods and 

number of parameters: 
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Table 18: Average Error for different seismic demands for the different 

hysteretic parameters used 

 Maximum 

Horizontal 

Displacement (%) 

Maximum Inter-

Story Drift Ratio 

(%) 

Maximum Floor 

Acceleration (%) 

Hysteretic 

Parameters 

obtained by fitting 

17.5 second 

response 

4.960 11.761 7.390 

Hysteretic 

Parameters 

obtained by fitting 5 

second response 

4.396 7.394 10.412 

Hysteretic 

Parameters 

obtained by fitting 2 

second response 

5.286 8.336 11.685 

Hysteretic 

Parameters 

obtained by fitting 5 

second response 

with varying d 

4.950 7.109 11.688 

 

From the table, it can be observed that the hysteretic parameters obtained by 

fitting the 5 second response with varying hysteretic shape factor gives the most 

accurate result in terms of the Maximum Inter-story Drift ratio. Whereas, by using a 

constant hysteretic shape factor of 0.5, the hysteretic parameters obtained by fitting the 5 

second pulse response give the most accurate Maximum Horizontal Displacement and 

Maximum Floor Acceleration. In both the cases, it is clear that the hysteretic parameters 

obtained by fitting the 5 second high amplitude pulse response which shows the first 2 
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cycles give the most accurate seismic demands when compared with the High Fidelity 

OpenSees model. 
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6. Conclusions 

From the above observations, it is clear that the proposed model reduction 

method has an error rate that is acceptable by the profession. The reason for this error 

lies in the approximation in the hysteretic parameters. Since, the curve fitting did not 

completely converge at a high tolerance, approximate values were used throughout the 

inelastic dynamic analysis. 

Further study in the approximation of the hysteretic parameters can reduce this 

error. The number of hysteretic parameters used in this case was 7, which can be 

increased to 13. This can have an effect on the reduction of the error in the seismic 

demands between the detailed model and the condensed hysteretic model. 

Since, the hysteretic parameters were obtained as an approximation by curve 

fitting the high amplitude pulse response of the detailed model and the condensed 

model, there can be other ways of obtaining these hysteretic parameters. This too can 

bring down the error in the seismic demands of the condensed hysteretic model and the 

detailed model. 

Finally, by applying this method of model reduction, the total number of degrees 

of freedom was reduced from 60 to 4. A 3D analysis using the proposed method should 

be carried out as the reduction in the total number of degrees of freedom will be 

extremely high, thus, reducing computational cost. 
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