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Abstract

Phylogenetic comparative methods (PCMs) use data on species traits and phylogenetic
relationships to shed light on evolutionary questions. Recently, Smaers and Vinicius sug-
gested a new PCM, Independent Evolution (IE), which purportedly employs a novel model
of evolution based on Felsenstein’s Adaptive Peak Model. The authors found that IE
improves upon previous PCMs by producing more accurate estimates of ancestral states,
as well as separate estimates of evolutionary rates for each branch of a phylogenetic tree.
Here, we document substantial theoretical and computational issues with IE. When data
are simulated under a simple Brownian motion model of evolution, IE produces severely
biased estimates of ancestral states and changes along individual branches. We show that
these branch-specific changes are essentially ancestor-descendant or “directional” con-
trasts, and draw parallels between IE and previous PCMs such as “minimum evolution”.
Additionally, while comparisons of branch-specific changes between variables have been
interpreted as reflecting the relative strength of selection on those traits, we demonstrate
through simulations that regressing IE estimated branch-specific changes against one
another gives a biased estimate of the scaling relationship between these variables, and
provides no advantages or insights beyond established PCMs such as phylogenetically
independent contrasts. In light of our findings, we discuss the results of previous papers
that employed IE. We conclude that Independent Evolution is not a viable PCM, and should
not be used in comparative analyses.

Introduction

Phylogenetic comparative methods (PCMs) provide a wide array of analytical tools for investi-
gating evolutionary questions given a phylogeny and trait values at the tips of the tree. Some of
the most common PCMs include methods for estimating ancestral states, investigating corre-
lated evolution among multiple traits, testing for different rates of evolution in different parts
of a phylogeny, and comparing evolutionary models (reviewed in [1-3]). As the set of available
methods continues to grow in number and sophistication, evolutionary biologists must decide
which among these PCMs is most appropriate for addressing their research questions. It is
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critical for researchers to ensure that the methods they employ are theoretically sound and vali-
dated by relevant simulation studies.

In 2009, Smaers and Vinicius [4] proposed a new PCM, Independent Evolution (IE),
which estimates ancestral states and separate rates of evolution along each branch of a phy-
logeny. The IE method purportedly incorporates the assumptions of an “adaptive peak”
model of evolution [5], in which a population attempts to reach a wandering adaptive peak.
Smaers and Vinicius [4] state that their method produces equivalent results to simpler mod-
els of evolution, such as Brownian Motion (BM) and Ornstein-Uhlenbeck (OU), when the
assumptions of those models are met. Additionally, when branch-specific rates of evolution
are estimated independently for a pair of traits (e.g., brain size and body size) and plotted
against one another, Smaers et al. [6] proposed that deviations from the line y = x indicate
deviations from the taxon-specific allometric relationship on specific branches of the tree,
since “the allometric slope of the brain-body relationship collapses into the isometric line
when plotting rates of change” ([6], p. 18008). These deviations are then interpreted as indi-
cating selection on one or both of the traits under investigation (see Fig 3 in [6]). Since its
introduction, the IE method has been used to study the correlated evolution of particular
brain structures in primates [7-9], brain and body size in several mammalian orders [6],
trabecular bone structure and wrist morphology in hominoids [10,11], levels of phenotypic
integration in the crania of carnivorans [12], and rates of cranial evolution within
Carnivora [13].

Despite its increasing popularity, the IE method has not been subject to a rigorous investiga-
tion of its statistical performance. Although Smaers and Vinicius [4] performed simulations to
compare IE to several existing methods, their simulations are inadequate for three reasons.
First, it appears that the simulated data were not treated appropriately for alternative PCMs.
Specifically, raw values were used rather than logarithmically transformed values. As the error
structures of many biological variables display geometric normality (in which deviations from
the mean differ by equal proportions) rather than arithmetic normality (in which deviations
differ by equal amounts) [14], data transformation is often required to reduce heteroscedasti-
city and remove the positive correlation between a trait’s mean value and its variance [15]. The
alternative PCMs compared by Smaers and Vinicius [4] all require trait means and their vari-
ance to be uncorrelated; this is most frequently achieved by logarithmic transformation [1,16-
19]. Since the IE algorithm incorporates a step that accounts for trait proportionality, the
authors do not transform their simulated (and geometrically normal) data prior to analysis.
However, the lack of log-transformation of the simulated data likely reduced the effectiveness
of alternative PCMs in their simulations. Second, Smaers and Vinicius’ [4] simulation study
only reports results for the performance of IE in ancestral state reconstruction for a few nodes
in the phylogeny, but the most frequent application of the IE method has been to estimate rates
of evolution for all branches in a phylogeny [6-11,13], and they did not assess the accuracy of
IE in this context. Finally, no simulations were done to assess the performance of the method
in the context of comparing rates of evolution between pairs of traits, but this has also been a
frequent application of the method [6-9].

At the onset of our study, our goals were twofold: to reassess IE’s ability to reconstruct
ancestral state accurately when geometrically normal datasets are log-transformed prior to
analysis with alternative PCMs that require it, and to test IE’s ability to recover accurate rates
of evolution on individual branches of the tree. However, in the course of our study, we discov-
ered substantial theoretical and computational issues with the IE method. As a result, this
report now has four major objectives: 1) to highlight the problems with the IE method; 2) to
use computer simulations to evaluate the accuracy of IE ancestral state reconstructions and
estimation of branch-specific rates of change; 3) to use computer simulations to assess the
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claim that regressing branch-specific changes for one trait against another yields information
beyond that gleaned from a traditional phylogenetic regression; and 4) to reinterpret results
from past studies that use IE.

The Independent Evolution method

The IE method [4] is an algorithm for traversing a phylogeny and reconstructing ancestral
states for each internal node. “Rates of change” are then calculated between ancestral and
descendant nodes for every branch in the phylogeny. Smaers and Vinicius [4] provide an
eight-step algorithm along with an example, illustrated in Fig 1. The algorithm is as follows:

1. Given a fully resolved phylogeny with known branch lengths and observed trait values for
all terminal taxa, an “adaptive peak” value (AP) is estimated for the ancestral node (A, ,) for
two sister taxa, x; and x, (Fig 1.1).

2. AP is calculated by summing the tip values of all terminal taxa weighted by their distances
along branches to A, ,; this sum is then divided by the sum of the inverse distances along
branches to A, , for all terminal taxa (Fig 1.2). This step extends Felsenstein’s equation for
computing the ancestral state of two sister nodes (Equation 3 in [20]) to the entire tree.
Note that the error structure of the data is not examined and the data are not transformed
prior to this step.

3. The branch connecting AP to A, , replaces all other branches in the phylogeny, creating a
star phylogeny linking AP, A, ,, x;, and x, (Fig 1.3).

4. AP, x;, and x; are then considered vertices of a triangle with A; , as the centroid (Fig 1.4).

5. Side lengths (S;) of the triangle are calculated with the IE distance metric: the absolute value
of the difference between two vertices divided by their average (Fig 1.5). The authors claim
that the IE distance metric has “equivalent properties to the log-scale” ([6], p. 18010).

6. Distances from each vertex to the centroid (T;) are calculated using formulas developed by
Farris [21,22] as the sum of two sides minus the third, divided by two (Fig 1.6). Smaers and
Vinicius [4] justify this step by appealing to Ptolemy’s triangle inequality theorem, which
states that one side of a triangle will be always be less than or equal to the sum of the other
two sides [23].

7. Smaers and Vinicius [4] then claim that the distances from each vertex to the centroid (T;)
represent “the relative phenetic distances” (pg. 995) between ancestor and descendants
when the adaptive peak is considered (Fig 1.7).

8. An R-value representing the “relative branch-specific evolutionary change” (R;) for each
descendant branch is calculated by multiplying the T-distance by a scaled branch length
(e.g., branch length b, divided by the sum of branch lengths b, and b,, multiplied by two).
Finally, the ancestral node value is calculated as the average of the trait values for the sister
taxa x; and x,, weighted by the R-values (Fig 1.8). This step only returns positive R-values,
so a post hoc procedure may be applied in which the R-values of branches with a decrease in
the trait value are multiplied by -1.

When the IE algorithm is applied to find all ancestral states and R-values in the tree, adap-
tive peaks are first calculated for all internal nodes, and then the tree is traversed from the tips
to the root in order to compute ancestral states. During this tree traversal, descendant branches
are collapsed once the ancestral state is computed for their parent node, and the computed
ancestral state is incorporated into ancestral states of nodes deeper in the tree. In the illustrated

PLOS ONE | DOI:10.1371/journal.pone.0144147 December 18,2015 3/26



@‘PLOS | ONE

The IE Method Is Not a Viable PCM

1) Phylogeny with known
branch lengths and tip values

2) Computation of Adaptive Peak

X; - X;
B =g,
x3=300 _ -%3=300 AP = ] 3
E +ot H
X,=200 %,=200 %+ 25ﬂ + %
R
x;=50 x;=50 n-s s
AP =157.41
3) AP replaces all other branches 4) AP and species values as triangle
vertices, A1 7 as triangle centroid
6) Distances between vertices
and centroid
S, = Xy X, )/[(X,+X,)/2] = 1.20 T, = (5,455-5,)/2 = 1.00
S, = |X,-AP|/[(x,+AP)/2] = 0.24 T,=(5,45,-5,)/2 = 0.20
S, = [x,-AP|/[(x,+AP)/2] = 1.04 T,=(5,+55-5,)/2 = 0.04
7) Rescaled phenetic distances 8) Calculation of “rates of change”
between tips and ancestor and ancestral node value
X, 5
R1 R2
A1,2 - 1_ . 1_
R1 R2
50 , 200
1.00 " 0.20
X4 A1,2 = 1 1
Ry=T,*[ 2] = 1.00 100 70.20
Sz S T2+T3 1 1 (b];bZ) .
S,=T+T, R =T2*[(b1+2b2)*2]= 020 Az = 17484

Fig 1. The Independent Evolution method. Steps for the algorithm are detailed in the main text. Modified from Smaers and Vinicius [4].

doi:10.1371/journal.pone.0144147.g001
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example, x3 and A; , would represent triangle vertices and branch lengths of 8 and 3 would be
used to find the value of the root node.

Problems with the Independent Evolution method

We have identified multiple theoretical and computational problems with the IE method. We
describe each of these in detail below, and briefly list them here: 1) the IE distance metric is
intended to account for relative differences, but introduces bias and generates undefined val-
ues; 2) the IE distance metric makes the implicit assumption that observed trait values and
their variance are positively correlated and thus require transformation, but this positive corre-
lation does not hold for all data types; 3) the authors have misapplied Farris’ [21,22] equations
to calculate T-distances; 4) R-values are described as “rates of change” along individual
branches of the phylogeny, but they are not truly evolutionary rates; 5) geometrically normal
traits are not transformed prior to calculating adaptive peak values, such that large values have
an disproportionate impact on adaptive peaks and ancestral states throughout the tree; 6) the
IE algorithm estimates 2n — 2 “rates of change” from # observations, such that these estimates
necessarily contain redundant information; 7) the justification for extending Felsenstein’s [20]
equation to the entire tree in order to calculate adaptive peaks is suspect; and finally, 8) when
branch-specific changes for one trait are regressed against those of a second trait, the results do
not provide any additional information which could not be gleaned from a standard phyloge-
netic regression of those two traits.

1. The IE distance metric. In order to account for proportional rather than absolute differ-
ences in trait change, Smaers and Vinicius [4] utilize the following distance metric:

szzx(—|x_y|> (1)
x+y

where x and y represent trait values in arithmetic space, and S is the proportional distance
between x and y. The IE distance metric is identical to an asymmetry index frequently applied to
linear measures of the brain [24,25] or skeleton [26-28]. The IE distance metric is also identical
to Storer’s index, a measure of sexual size dimorphism used primarily in ornithology [29-32].

Smaers et al. [6] claim the IE distance metric has “equivalent properties to the log-scale”

(p. 18010), but this is decidedly not true. Smith [33] has emphasized that this formula is not lin-
ear: as the difference in values increases, the IE distance metric asymptotes at +2. Therefore,
Smith [33] recommended that the difference between logged values be used as an unbiased esti-
mator (In[x] — In[y], which is equivalent to In[x/y]). Though bias introduced by the IE distance
metric is less extreme when the difference between values is small (as in asymmetry studies),
strong bias can be generated when examining potentially large differences such as the differ-
ence in body mass between two species. The IE distance metric will always underestimate pro-
portional change, and the magnitude of this underestimation will be greater when the
difference between trait values is large (Fig 2).

In addition to distorting distances, the IE distance metric introduces several computational
problems (Fig 3). First, the distance metric will be undefined if the average of any two vertices
(either tip values or the adaptive peak), and thus the denominator of the equation, is equal to 0
(Fig 3a). This can occur if the traits being analyzed include negative values, as in the case of
using principal component scores (e.g., [13,15]). Second, the ancestral value will be undefined
if any two vertices have the same value (Fig 3b), as one triangle side will be equal to zero, and
therefore the T-distances from A, , to x; and x, will be equal to zero. If T, or T} is equal to
zero, then the corresponding R-value is equal to zero, and the ancestral node value will be
undefined since R-values are in the denominator of the ancestral node value.
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Fig 2. Comparison of distance metrics. The |E distance metric asymptotes at |2|, leading to severely
underestimated distances when the difference between values is large. In contrast, the difference between
logged values does not asymptote, and is an unbiased estimator of proportional distances.

doi:10.1371/journal.pone.0144147.g002

2. Embedding data transformation into the IE algorithm. The IE distance metric trans-
forms distances between ancestors and descendants in order to account for proportional rather
than absolute changes. As a data transformation step, the IE distance metric makes the
assumption that there is a positive correlation between trait means and their variance for all
data types (i.e., that all traits exhibit geometric normality). While this assumption is valid for
many morphological variables (e.g., lengths, areas, and volumes of structures), there are also
many data types that exhibit arithmetic normality (e.g., angular measures, principal compo-
nent scores). In these cases, transforming distances with the IE distance metric is likely to gen-
erate a negative correlation between means and variances, such that distances between large
values are inappropriately reduced. Since the IE method includes a data transformation step,
the algorithm should only be applied to data that exhibits geometric normality. However, the
authors do not highlight this assumption, and the IE algorithm has been applied to data that
violate it (e.g., principal component scores in [11] and [13]).

3. Misapplication of Wagner tree formulas and the Ptolemean triangle inequality theo-
rem. Smaers and Vinicius [4] apply formulas developed by Farris [21,22] to calculate the dis-
tances from triangle vertices (x;, x,, AP) to the centroid (A, ,) or barycentre of the triangle (Fig
1.6). Farris’ [21,22] formulas detail the process by which a Wagner tree (a minimum length
tree representing a parsimonious solution to connecting operational taxonomic units [OTUs])
can be generated using the distance matrix of those OTUs. Generating a minimum length tree
from a distance matrix is not the same problem as determining distances within a known phy-
logenetic tree. These formulas were not intended for use in a geometric context and cannot be
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A.Triangle vertices with average trait value of 0

X,=2

S1=%%,| /(X 4+x,)/2]
S.=2+2|/[(2-2)/2]

S,=4/0=NA

S, and S;can also = NA if AP=x, orx,

B. Triangle vertices with equal trait values
x,=200

5

X,=200

=%y -Xo /106 +,)/2]
$,=|200-200|/[(200+200)/2]
$,=0/200=0

If S,=S;, then T, and T, =0
If T,and T, =0, then R, and R,=0
If R, and R,=0, then A, ,=NA

Fig 3. Computational problems with the IE method. A) When the average of triangle vertices (some

combination of x4, X2, and/or AP) is zero, side lengths will be undefined. B) When triangle vertices have equal

values, the ancestral state value will be undefined.

doi:10.1371/journal.pone.0144147.g003

used to compute the distances from triangle vertices to the centroid. The correct distances

from triangle vertices to the centroid can be obtained by using Apollonius’ theorem to compute
the lengths of the triangle medians (i.e., line segments connecting each triangle vertex to the

midpoint of the opposite side), and then using the triangle property that the distance between a
vertex and the centroid is 2/3 the length of the median connected to that vertex. By Apollonius’

theorem, we have:

2b% 4+ 2¢% + a?
MmN T

(2)

where a, b, and c are the triangle sides, and m,, is the median of side a. If vertex A is the vertex
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opposite side g, then the distance from vertex A to the centroid is given by:

T, = 3)

Applying this approach to the triangle in Fig 1.6 with side lengths §; = 1.2, S, =0.24, and S;
= 1.04, we find that the true T-distances should be T} = 0.74, T, = 0.46, and T5 = 0.31. These
values are quite different from those computed in Fig 1.6, revealing that Smaers and Vinicius’
[4] application of Wagner tree formulas does not accurately measure the distances from trian-
gle vertices to the centroid.

Smaers and Vinicius [4] then cite the Ptolemean triangle inequality theorem as justification
for the formulas they utilize in Step 7 of the IE algorithm. The Ptolemean triangle inequality
theorem states that one side of a triangle will be always be less than or equal to the sum of the
other two sides. When one side is equal to the sum of the other two sides, the triangle has an
area of zero and can be represented by a line [23]. In Step 7 of the IE algorithm, the authors
claim that each S-distance will be equal to the sum of two T-distances (Fig 1.7). However, by
the very theorem they cite, if S;, T, and T are sides of a triangle and S; = T} + T, then the tri-
angle formed by S, T}, and T; has an area of zero. In fact, all triangles formed by two T-dis-
tances and an S-distance have areas of zero and can be represented solely by S-distances. Taken
together, the equations presented in Steps 6 and 7 of the IE algorithm are nonsensical.

4. R-values are not evolutionary rates. In Step 8 of the IE algorithm, T} and T) are
weighted by their respective branch lengths to produce “R-values”, which Smaers and Vinicius
[4] refer to as “branch-specific rates of evolutionary change”. However, if rates are defined as a
distance divided by time, these quantities should not be considered rates. As we have shown,
the S-distances and T-distances upon which the R-values are based are problematic due to the
biased IE distance metric used to compute S-distances and the inappropriate use of Wagner’s
formulas to compute T-distances. Given these foundational issues, it is difficult to say what the
R-values may represent in biological terms. But even if the T-distances represented “phenetic
distances” from the ancestral state to the descendant states as the authors claim, the equation
used to weight the T-distances by branch lengths would not result in a rate. Given phenetic dis-
tance T between an ancestor and descendant, and branch length b connecting them, the aver-
age rate of change along the branch could be computed as T/b. In comparison, Step 8 of the IE
algorithm multiplies T-distances by the quantity 2*b;/ (b; + b,), where b; and b, are branch
lengths leading from the ancestral node to sister descendants. It is unclear why this particular
equation is used to scale T-values, but we see no justification for interpreting the resulting R-
value as a rate of evolutionary change.

The IE method differs notably from other PCM approaches to conceptualizing and estimat-
ing evolutionary rates for comparative data. The most common approach for studying evolu-
tionary rates involves modeling evolution as a statistical process, most frequently a constant-
variance Brownian motion process, where changes along individual branches are drawn from a
normal distribution with a mean of 0 and the variance proportional to branch lengths. This
approach treats changes along individual branches as random variables and provides a frame-
work for assessing whether rates of evolution differ significantly across different branches or
parts of the tree. In contrast, the IE method treats changes along individual branches as oppor-
tunities to estimate the rate of evolution separately for each branch of the phylogeny, which
does not allow for the quantification of uncertainty and risks treating random noise as mean-
ingful variation in evolutionary rates.

5. The adaptive peak’s “pull” towards extreme values. The IE algorithm is applied to
untransformed geometrically normal data, but it does not account for the proportionality of

PLOS ONE | DOI:10.1371/journal.pone.0144147 December 18,2015 8/26



@’PLOS ‘ ONE

The IE Method Is Not a Viable PCM

traits when computing the adaptive peak. While the IE distance metric provides a partial
(though biased) correction for proportionality, this metric is not applied until after the adaptive
peak has been computed from raw trait data (Fig 1.2). Thus, extreme tip values have a strong
impact on adaptive peak values throughout the tree, and the IE algorithm mis-estimates the
weighted average of the tips. Since ancestral states are triangulated from these adaptive peaks,
the IE algorithm will systematically bias ancestral states. The IE algorithm has primarily been
applied to traits with positive values (such as body or brain mass); in these cases, the bias is
expressed by a systematic overestimation of ancestral states.

6. Statistical non-independence of ancestral states and branch-specific rates of change.
IE aims to estimate branch-specific rates of change for every ancestor-descendant pair in the
phylogeny, such that the algorithm generates 2n - 2 estimates from n observations. Unfortu-
nately, these estimates cannot be statistically independent of one another because some ances-
tors are also descendants, and are therefore components of multiple estimates. Non-
independence is also a major problem for estimated adaptive peaks and ancestral states, since
the same set of tip values are used to compute all n- 1 adaptive peaks, and the adaptive peaks
are then used to triangulate ancestral states throughout the tree. Thus, the IE algorithm fails to
address a central issue that PCMs seek to alleviate: the statistical non-independence of species
data.

7. The “Adaptive Peak” model. There is no convincing theoretical reason for extending
Felsenstein’s [20] equation for computing ancestral states to the entire phylogeny and calling it
an “adaptive peak”. The theoretical weakness of this approach can be highlighted with a
thought experiment. As discussed earlier, the IE algorithm is intended to be applied to untrans-
formed geometrically normal data, but the asymptotic IE distance metric does not adequately
correct for this (Fig 2). We can ask the question: what happens if we apply the IE algorithm to
log-transformed data and replace the IE distance metric with the difference between logged val-
ues as an appropriate measure of proportional distance [33]?

Fig 4 shows the outcome of this experiment when applied to the original example provided
by Smaers and Vinicius [4]. With the new (unbiased) distance metric, distances from extant
species to the adaptive peak (S, and S;) are equal to the distances from extant species to the
ancestral node (T, and T}), and the distance from the adaptive peak to the ancestral node (T5)
is 0 (Fig 4.6). This suggests that the ancestral node value will have the same value as the adap-
tive peak. Working through the example confirms that the ancestral state is now identical to
the adaptive peak (Fig 4.8). In Appendix 1, we provide an algebraic proof to demonstrate that
whenever the branch lengths leading to the sister taxa are equal and the adaptive peak value is
between x; and x,, the adaptive peak will be equal to the ancestral state (Fig 4.8). The corre-
spondence of the adaptive peak and ancestral state shows the recovery of an “adaptive peak” in
Fig 1 is a byproduct of the failure to transform geometrically normal data prior to computing
the adaptive peak value, and distortion introduced by the IE distance metric. When the correla-
tion between trait values and variance is removed at the beginning of the algorithm and an
appropriate metric is used to compute distances between trait values, the “adaptive peak” dis-
appears. Of course, branch lengths will not necessarily be equal for ancestral state reconstruc-
tions involving internal nodes, so the equivalence of the ancestral state and adaptive peak is
only expected for the ancestors of pairs of extant sister species. However, there is no theoretical
reason why the common ancestors of extant sister taxa have always reached adaptive peaks,
while the common ancestors of nodes deeper in the tree have not.

Smaers and Vinicius [4] provide only a vague justification for their approach. They state
that a primary benefit of their approach is that their equation for computing adaptive peaks
“takes into account all available (i.e., extant) biological information provided. . .to increase the
reliability of character optimization” (p. 997). However, as optimization involves selecting the
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Fig 4. Modified Independent Evolution algorithm. Asterisks indicate steps that have been modified. In Step 1, data are log-transformed prior to analysis so
that extreme values do not cause the overestimation of adaptive peaks. In Step 5, the difference between logged values replaces the IE distance metric, so

that proportional distances are not underestimated. All other steps of the algorithm remain the same. With these two modifications, the adaptive peak

computed in Step 2 is equivalent to the ancestral state value in Step 8.

doi:10.1371/journal.pone.0144147.9004
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best value from a set of options according to some criterion (e.g., likelihood), and as the IE
method lacks any optimization criterion, this claim misrepresents what the algorithm does.
Moreover, their claim implies that other PCMs fail to take into account all available biological
information, which is not true; most modern methods of ancestral state reconstruction are
based on likelihood and utilize all available biological information when estimating parameters
[34]. Finally, Smaers and Vinicius [4] suggest that the IE method provides a more general
model than common statistical models of evolution such as Brownian Motion (BM) or Orn-
stein-Uhlenbeck (OU), arguing that IE “allows the inclusion of specific models of evolution
such as BM and OU as special cases” (p. 997). Specifically, they claim the model “collapses into
a BM model of evolution when S, equals S;” (p. 997). Unfortunately, this statement is not true
under further scrutiny: the only way for S, to equal S; is for x; to equal x, (Fig 1.5), and as dem-
onstrated in Fig 3b, the ancestral state is undefined when x; = x,. More fundamentally, unlike
BM and OU, IE is not based on an explicit statistical model, making the assertion that the adap-
tive peak model can “collapse” into BM or OU quite perplexing since it implies that the adap-
tive peak model is an explicit statistical model in which BM and OU are nested.

8. Use of IE branch-specific “rates of change” in regression analysis. A common appli-
cation of the IE method has been to compare “rates of change” along individual branches for a
pair of coevolving traits [6-9]. We have already argued that IE does not actually estimate rates
of change along individual branches. We have also highlighted that IE estimates of branch-spe-
cific change are not statistically independent, which leads to a pseudoreplication problem
when they are treated as independent data points in subsequent statistical analyses. However,
even if we grant that IE can estimate 2n—2 statistically independent branch-specific rates of
change for a given trait, recent application of IE reveals a serious misinterpretation of the linear
regression slope estimated for two sets of IE branch-specific “rates of change” [6]. Smaers et al.
[6] argue that the null expectation for this regression slope should be 1, claiming that an allo-
metric scaling relationship will “collapse” into isometry (the line y = x in a volume ~ volume
relationship) when rates of change between data points are plotted rather than the data points
themselves (their Fig 3, modified in our Fig 5). They then interpret deviations from the line y =
x as providing novel insights to the evolutionary process leading to observed trait covariation
on each branch of the phylogeny.

This proposal represents a misunderstanding of either allometry or the appropriate treat-
ment of log-transformed data. Smaers et al. [6] do not state whether the data plotted in Fig 5
(their Fig 3) are raw values or if they have been log-transformed. However, the implications of
their proposal under either possible treatment are erroneous. Assuming the data are not log-
transformed and both axes have the same dimensionality (as in a brain/body mass relation-
ship), then the pictured scaling relationship (y = 0.6x") does not represent allometry in arith-
metic space. In arithmetic space, allometric relationships are curvilinear, and one variable
scales exponentially relative to the other (Fig 6a). When log-transformed, the equation
y = 0.6x" becomes In(y) = In(0.6) + 1*In(x) (Fig 6¢), which is an isometric relationship (i.e., the
scaling coefficient is 1). Thus, assuming the data points are not log-transformed in Fig 5, rather
than showing allometry “collapsing” into isometry, Smaers et al. [6] demonstrate that an iso-
metric relationship in arithmetic space “collapses” into an isometric relationship in geometric
space.

Alternatively, if the data have been log-transformed (Fig 7c and 7g), then proportional
changes cannot be calculated with a ratio, as Smaers et al. [6] apparently have done. In log-
space, proportional changes must be calculated by taking the difference between log-trans-
formed values as In(x,/x,) = In(x;) — In(x,) [20,35] (Fig 7d and 7h). For a pair of geometrically
normal traits that are perfectly correlated, the scaling coefficient for log-transformed values will
be equivalent to the slope of the best-fit line through the differences between log-transformed

PLOS ONE | DOI:10.1371/journal.pone.0144147 December 18,2015 11/26



@. PLOS ‘ ONE The |E Method Is Not a Viable PCM

Data points Rates between data points
- Sp.ecies C 5 |
" Species B
J pecies - .C/A
8 Species A 2 B/A
=
> T " 10 20 ;-\ 5 2 5
y=0.6x' ] -5
| (yily))=1*(xi/x;)

X Xi/ Xj

Fig 5. Reproduction of Fig 3 from Smaers et al. [6]. The authors claim that allometry “collapses” into isometry when rates of change between ancestor-
descendant species are plotted rather than trait values. In this figure, Species A is ancestral to both Species B and C. From the original figure, it is unclear if
trait values have been log-transformed or not.

doi:10.1371/journal.pone.0144147.9005

trait values (Fig 7c, 7d, 7g and 7h). Plotting differences between log-transformed trait values
will not change the slope of the best-fit line, but will set the intercept to zero (Fig 7d and 7h).

We have shown that the null expectation for the regression slope estimated for one set of IE
branch-specific changes against another is not 1, as argued by Smaers et al. [6]. What, then, is
our expectation for the regression slope? Under IE, each data point in the analysis represents
IE-inferred evolutionary change for a pair of traits along a single branch, based on comparing
the trait values for the ancestor and the descendant. This use of ancestor-descendant contrasts
strongly resembles a previous method for detecting correlated evolution known as “minimum
evolution” (ME) [35-38], which is part of a class of methods known as “directional contrasts”
[38,39]. In most implementations of ME, ancestral node values were estimated with squared-
changed parsimony [36-38], directional contrasts were taken between ancestral and descen-
dant nodes, and the contrasts of two traits were regressed against one another in order to exam-
ine the correlation of changes [36].

Initial evaluations of directional contrasts [38] suggested they provided different evolution-
ary insights than “cross-sectional” techniques such as phylogenetically independent contrasts
(PIC; [20]), which make use of contrasts between pairs of sister taxa rather than ancestors and
descendants. However, the viability of directional contrast methods was severely undermined
by Pagel [40,41], who demonstrated that despite differing ways of calculating contrasts, direc-
tional and cross-sectional phylogenetic comparative methods both estimate the same parame-
ter of interest, the “evolutionary regression coefficient”. Pagel [40,41] argued that cross-
sectional techniques, such as PICs, should be preferred over directional contrasts based on sta-
tistical properties: because directional contrasts compute more contrasts (2n—2) than the
available degrees of freedom (n- 1), much of the information contained in the contrasts is
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doi:10.1371/journal.pone.0144147.9006

redundant, resulting in elevated Type I errors [38]. Following these observations, directional
contrasts have fallen out of favor in comparative biology: Huey and Bennett reanalyzed their
data with PIC and an updated phylogeny [42], very few researchers have used directional con-
trasts over the past two decades [43,44], and the method has received little to no attention in
reviews of PCMs (e.g., [1-3,45-47]). Garland et al. [45] went so far as to call ME a “partially
phylogenetic” method (p. 3027).

With the recognition that the IE method shares many similarities with the ME approach for
estimating evolutionary regression coefficients, we reasoned that the regression slope for a pair
of IE branch-specific rates of change reflects the evolutionary regression coefficient, or the allo-
metric scaling coefficient, for that pair of traits. In the following section, we use simulations to
demonstrate that this is true.

Methods
Simulations: evolution of a single trait

All simulations and analyses were performed in R [48]. We simulated the evolution of 1000
geometrically normal traits under a constant-variance BM model of evolution. This was
achieved using the fastBM function in the phytools package [49] to simulate BM evolution
with mean 0 and variance 1, and then exponentiating the simulated trait values at internal
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doi:10.1371/journal.pone.0144147.9007

nodes and tips. Thus, in log-space, the expected value of the simulated ancestral states at every
node is 0, with gradually increasing variance from the root to the tips. As the backbone for our
simulations, we used the primate consensus tree (Fig 7, S1 File) from 10kTrees [50], which is
the same phylogeny used in recent applications of the IE method [6,10,11]. For each simulated
trait, we used the IE algorithm to compute ancestral states, R-values, and branch-specific
changes measured as standardized directional contrasts (i.e., the value of the descendant minus
the ancestor, divided by the square root of the branch length). Although Smaers and Vinicius
[4] use R-values to represent branch-specific “rates of change”, we have detailed above why we
do not consider R-values to be rates; thus, in addition to R-values, we computed standardized
directional contrasts to provide a more direct comparison to the alternative methods discussed
below.

The R package adephylo [51] provided functions for manipulating phylogenies that were
utilized in coding the IE algorithm. When this project began, no published code for the IE algo-
rithm was available, leading us to write our own script for implementing the method. R code
has since been made publically available by the original author [52]. Comparisons revealed our
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code produced identical results to the newly public code. Given that our code was integrated
with other functions written to carry out the present study, we chose to run all analyses with
our code and have provided our IE script as supporting information (S2 File). R code for repro-
ducing our entire simulation study and associated figures is available on GitHub [53].

For comparison to IE, we implemented a version of directional contrasts we term Partially
Independent Directional Contrasts (PIDC) with ancestral states computed using PIC. The PIC
algorithm computes n- 1 statistically independent ancestral state values at internal nodes,
where the value at each internal node represents the local maximum likelihood estimate of the
ancestral state under a BM model of evolution [54]. Once ancestral states were estimated, we
computed standardized directional contrasts as described above for IE. Because PIC assumes
there is no correlation between trait values and their variance, data were log-transformed prior
to analysis. We implemented PIC with the ace function in the ape package [55]. R code for
PIDC is also available as supporting information (S3 File).

We examined the means and distributions of estimated ancestral states and branch-specific
changes for IE and PIDC. In order to make estimates comparable between IE and PIDC, we
log-transformed IE ancestral state reconstructions so that all comparisons are made in log-
space. We expected PIDC ancestral states and branch-specific changes to be normally distrib-
uted around a mean of 0. For the IE algorithm, we expected that the failure to log-transform
values prior to computing the adaptive peak (the “upward pull” property described above)
would bias ancestral states deeper in the tree towards increasingly large positive values. Accord-
ingly, we expected IE-estimated branch-specific changes to have a negative bias since trait val-
ues tend to decrease from the root to the tips of the tree (i.e., ancestors generally have larger
trait values than descendants).

We also investigated the distribution of R-values across the tree and compared R-values on
individual branches to the known branch-specific rates of change from the simulated data. If
R-values are valid estimates of branch-specific rates of change, then there should be a close
relationship between estimated R-values and simulated changes along individual branches.
Given the multiple problematic steps involved in computing R-values, we did not expect to see
a strong relationship between R-values and the simulated data.

Simulations: correlated evolution of a pair of traits

We simulated the evolution of 500 pairs of traits on the primate phylogeny using the sim.corrs
function in the phytools package [49]. We incremented the evolutionary regression coefficient
from 0 to 1 across the 500 pairs of traits. We then computed IE branch-specific changes (using
both standardized directional contrasts and R-values) independently for each trait and esti-
mated the regression coefficient for pairs of IE contrasts. For comparison, we also analyzed
pairs of correlated traits with both traditional PIC and PIDC. For PIC, we computed n- 1 inde-
pendent contrasts for each trait and then estimated regression coefficients for each pair of inde-
pendent contrasts. For PIDC, we computed 2n—2 standardized directional contrasts as
described in our analysis of individual traits, and then performed regressions for pairs of direc-
tional contrasts. For all regression models, we used ordinary least squares fit through the
origin.

We examined the relationship between the simulated evolutionary regression coefficients
and the estimated regression coefficients for PIC, PIDC, and IE. We predicted that the regres-
sion slopes for pairs of IE branch-specific changes would be strongly correlated with the under-
lying evolutionary regression coefficients for those traits. If this expectation is borne out, it
would contradict the claim that the slope of the regression line for a pair of IE branch-specific
changes reflects something different than the underlying scaling relationship between the two
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traits [6]. We expected the PIC and PIDC regression slopes to provide unbiased estimates of
the actual evolutionary regression coefficient, and included these results for comparison with
IE.

Results
Simulations: evolution of a single trait

As expected, the simulated ancestral states are distributed evenly around 0, with increasing var-
iance from the root to the tips of the tree (Fig 8a). PIDC ancestral state reconstructions show
the same pattern (Fig 8b), which is consistent with our expectation that PIDC generates unbi-
ased estimates of ancestral states. In contrast, IE ancestral state reconstructions are strongly
biased towards positive values near the root of the tree, and this bias gradually disappears
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doi:10.1371/journal.pone.0144147.9008
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towards the tips of the tree (Fig 8c). The IE estimates at the root of the tree are so strongly
biased that the full range of estimates across 1000 simulated data sets barely includes the actual
ancestral state of 0.

The bias in IE ancestral state reconstructions is also readily apparent in the estimated
branch-specific changes across the tree. While simulated and PIDC estimated branch-specific
changes are evenly distributed around 0 (Fig 9a and 9b), IE estimates based on standardized
directional contrasts are strongly skewed towards negative values, particularly near the root of
the tree (Fig 9¢). This bias is so severe that IE estimates near the root are sometimes mis-esti-
mated by orders of magnitude. We also observe uneven distributions of IE estimated branch-
specific changes, with many negative outliers and very few positive outliers (Fig 9¢). This
reflects the fact that distributions are skewed in the negative direction, because large positive
estimates are extremely unlikely relative to large negative estimates. On average, inferred
changes near the root of the tree tend to be much larger than changes near the tips, so that the
rate of evolution appears to decrease through time.

Our comparison of R-values to actual branch-specific changes reveals that R-values behave
erratically and provide very poor estimates of branch-specific change. The variance of R-values
decreases towards the tips of the tree and shows a slight negative bias (Fig 9d). Although a gen-
eral positive trend appears to exist between R-values and simulated branch-specific changes,
there is an enormous amount of scatter in the data, and we observed highly irregular distribu-
tions of R-values (Fig 10).

Simulations: correlated evolution of a pair of traits

We found a close linear relationship between the simulated regression coefficients and the esti-
mated regression coefficients for all three of the methods: PIC, PIDC, and IE. Thus, our simula-
tions provide strong support for our prediction that regressing IE branch-specific changes for
two traits captures the evolutionary regression coefficient or allometric scaling relationship for
those traits, but does not provide novel information about relative historical rates of evolution
for the two traits (contrary to interpretations of [6]). The results for PIC and PIDC confirm
Pagel’s [40] findings that whether cross-sectional contrasts (i.e., comparisons between sister
taxa, as in PIC) or directional contrasts (i.e., comparisons between ancestors and descendants,
as in PIDC and IE) are used in regression analyses, the same parameter is estimated. Regressing
estimated slopes against simulated slopes reveals that both PIC (f = 0.98; Fig 11a) and PIDC (8
= 1.03; Fig 11b) provide unbiased estimates, while IE provides the least accurate estimates
whether standardized direction contrasts (8 = 0.78; Fig 11c) or R-values were used (8 = 0.81;
Fig 11d).

Discussion

We used computer simulations to demonstrate that the IE method produces severely biased
estimates of ancestral states and branch-specific changes when data are simulated under a
BM model. Specifically, the IE method systematically overestimates ancestral states and
underestimates branch-specific changes, while inferring excessively large changes near the
root of the tree. These trends are less extreme for R-values, however comparison of R-values
to simulated changes along individual branches reveals they have a tenuous relationship to
the simulated branch-specific changes, and are mostly random noise. Thus, our findings
reject the proposal that the IE method produces equivalent results to a BM model when the
assumptions of BM are met [4]. The implicit model realized by the IE algorithm can be
described as “evolution with a decrease in both the mean and variance of the trait over time.”
While this model might be appropriate in some cases, it is certainly not a general expectation

PLOS ONE | DOI:10.1371/journal.pone.0144147 December 18,2015 17/26



@. PLOS ‘ ONE The |E Method Is Not a Viable PCM

Estimated standardized Simulated standardized

Estimated standardized

contrasts contrasts contrasts

Estimated R-values

A

Simulations

iﬁiiﬁiniiiiiiihlliﬂlﬁﬁﬂil{ﬁmilﬁilﬁiIﬁiﬁ’%ﬁﬁliﬂ'hﬁiiﬁnﬁlﬁinﬁnhnrli!ﬁﬁ'rrlrnﬂhﬂlmnﬁ'niﬁmimmlnhlmm"h nin|}ﬁiiiiliiiIIﬁiii?iliiiiriii}“iiifhﬁii'w'iiiniEiiiﬁiiiﬁiiﬁliﬁilmhﬂ.n,mm:hhmmnﬂﬂmmﬁmm i
”“”"”‘l”””"””l‘Hl‘“'\‘“”'l”“”“”l”‘“\‘II\\II\HH\II\HH\l[HllHlmlHHlHlHHHHHHHHH\I[HIHHHH\HHHH\\H\\HHHHIHJIHHHMH\IH\H\H\\H\HHHHMIH\HHHHH\\H\]HHIHIIH]IHHHHHHHH\HI\HH\\HHIHIIHIIMlIH]IHlHHHmH

lﬂ!lﬂzlpllglgﬁp{lﬂﬂlimgulu}!!u, ulﬂgnugg%!!lLulggl1{111ulﬂn.l;!lllillIllwlll,lIlllIluuu;mllﬂlml.uuul!hlw'lLlu.nl;;;lmmlﬂululllll'uu“!ul"HIJ"ulll‘!'pINhu'ln4;lll"lllmlllg‘wlluullwlﬂll"'lu'lllllﬂll‘}u?!;l};l!!l!l!!u}

PIDC estimates

,20 —

IE estimates

0
-10
-20
-30

-40

[Laal ailuas], ' o — — ——
\||HIH 'le'(‘ ! ;'U"\ ;|“I I \|11'| II\ O 0 Ly “‘”" I \‘m" n ﬂ "||" l Sl -"“"! 5 g i ’m!n"”””””‘ i
] I .|. IHII 0 IILlHH L. AL MERAH k. _
~ i
1
IE R-values

Ay 1 1 [ 11 1 1 I
Tl I Ll 1o moin |
H' I” I 'Il I THISERNY | n
n,I.'.'I', il 1 || I ullr AR Vi EEd it it b g Ty u I ||, m,,""nln g,
HH|;\‘.|\ A 'H“‘.HIMMIIH.I\;!} E‘H‘\ : \thll:\i{\;llw HiHui”"“IH;I‘[“”;'M \II\H:HH\:\HH;H“ 1IHIlHIHH\:UI1\|\IHI\|\H:\HIMI\HW|Hummu.uw“.'“ Il
M \ I‘\" ] Iy (U T e \IHHH (LT T 1 “\‘"J IR I -
il | I | [ I iy
L luulu“ i | ‘ | “ iy l mu.'u 1 I llul Nt | | uu.uuullu.l'u' 1! S
| I
, iy, l1 1 uu ! |

]l
|
H
h

llllml| I lllI
1 " 1

1 ' it

Fig 9. Simulated and estimated branch-specific changes. Box and whisker plots for (A) simulated changes on individual branches, (B) PIDC
standardized contrasts on individual branches, (C) |E standardized contrasts on individual branches, and (D) IE R-values on individual branches. Branches
are shown in increasing order based on their distance from the root of the tree. Branch numbers correspond to the branch labels in Fig 7. Both simulated
changes (A) and PIDC estimates (B) are centered on 0, while |IE standardized contrasts (C) are biased toward large negative values near the root of the tree.
IE R-values (D) also have a negative bias, though not as pronounced as for |E standardized contrasts. Larger variances of PIDC estimates are found on
shorter branches (B), e.g., the two largest variances occur on branches 68 and 215, which both have branch lengths of 0.01. Variance of both IE
standardized contrasts and R-values decreases from the root to the tips of the tree (C, D).

doi:10.1371/journal.pone.0144147.9009

of the evolutionary process; importantly, the IE method has no way of assessing whether its
implicit model fits a given data set better than alternatives. Additionally, we have shown that
the slope of the regression of IE branch-specific rates of change for a pair of traits is a linear
function of the evolutionary regression coefficient between those traits, indicating that the IE
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doi:10.1371/journal.pone.0144147.9g010

regression slope estimates the same parameter as the phylogenetic regressions used in studies
of allometry.

It appears that the development and subsequent applications of IE are characterized by mis-
understandings of log-transformation, allometry, and existing PCMs. Despite the well-known
and broadly accepted approach of log-transforming geometrically normal data [1,14,16-19],
the IE method uses a distance metric that fails to measure proportional change accurately over
biologically reasonable ranges (Fig 2). Smaers and Vinicius’ [4] claim that “gradual models of
evolution” do not account for proportional change, but this is not true: BM models assume
that there is no correlation between trait means and their variance, thus if the raw data exhibit
geometric normality, log-transformation is a standard procedure to remove the correlation.
The failure to log-transform geometrically normal data likely accounts for the poor perfor-
mance of alternative PCMs in Smaers and Vinicius’ [4] simulations. We have shown that the
combination of inadequate treatment of geometrically normal data and a biased distance met-
ric generates the discrepancy between the “ancestral state” and “adaptive peak” in the IE algo-
rithm (Fig 4; Appendix 1), and when the data are log-transformed and distances are computed
as the difference between logged values, the “adaptive peak” disappears. While the general con-
cept of incorporating selection towards adaptive peaks into models of evolution is valid and
interesting, the IE method fails to provide a theoretically grounded approach that achieves this
goal.
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coefficient (A and B). In contrast, while IE estimates are correlated with the underlying evolutionary
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moderate, and underestimates when the evolutionary regression coefficient is high (C, D).

doi:10.1371/journal.pone.0144147.g011

Reinterpretation of past studies that use the IE method

The IE method has been been applied in three ways: to examine variation in the rates of change
for a single trait across the branches of a phylogeny [6-11], to compare the coevolution of two
traits by examining the relationship between the branch-specific rates of change for a pair of
traits [6-9], and to test macroevolutionary hypotheses of evolutionary rates [12,13]. The argu-
ments advanced in these papers should be reevaluated to the extent that they depend on results
of the IE method.

The majority of studies that have utilized the IE algorithm have only depicted the results
with graphic representations [6-13], though there is a truncated example table in the supple-
mentary material of Smaers et al. ([6], their Table S2). This makes it difficult to directly assess
the systematic positive bias of ancestral trait values and negative bias of R-values that we recov-
ered in our simulations. However, the distributions of points in Fig 3 of Smaers et al. [6], as
well as Figs 4 and 5 of Smaers et al. [7], likely reflect the patterns we have described: the
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presence of many large negative “rates” and few positive “rates” is consistent with the bias
toward negative R-values in our simulations, and the clustering of small “rates” near the center
of each plot is consistent with our observation that R-values tend to be small on the numerous
branches near the tips of the tree (Figs 9d and 10). The highly positively skewed distribution of
evolutionary “rates” reported by Goswami et al. [12] is also consistent with our results.

For studies which have utilized the IE method to investigate the evolution a single trait [6-
11], the results have been underwhelming despite the purported power of the method. For
example, Smaers and Soligo [9] conclude, “Different neocortical and cerebellar areas contribute
differently to explaining different mosaic patterns in different lineages” (p. 6). This conclusion
is undoubtedly true, but it provides no insights that could not be gleaned from the observed
variation in the tips of the phylogeny. These studies primarily focus on R-values, which are
interpreted as evolutionary rates of change. However, as we have shown, R-values are poor esti-
mators of change over time (Figs 9 and 10), so that the evolutionary scenarios described in
these studies are likely to be spurious.

Studies that have utilized the IE method to examine the correlated evolution of two traits
have approximated the allometric scaling relationship of those two traits [6-9]. For instance,
Smaers et al. [6] demonstrate that bats, carnivores, and primates exhibit different interspecific
allometric relationships between brain mass and body mass, which is already revealed by the
PGLS slopes in their Fig 1. The IE method provides no information that is not apparent in the
variation observed across the tips of the phylogeny: it is clear that body mass varies more than
brain mass among extant bats, carnivorans, and primates. Assuming that each of these orders
diversified from common ancestors, we should expect body mass rates of change to be greater
than brain mass rates of change. The important biological questions to ask are how, why, and
when different allometric relationships emerged among mammalian orders. As we have seen,
the IE method cannot meaningfully address these questions. Indeed, relative to existing PCMs,
the IE method does a poor job of estimating the allometric relationship between two variables
(Fig 11).

Two recent studies have used IE to test broad macroevolutionary hypotheses regarding evo-
lutionary rates. Goswami et al. [12] use IE-inferred rates of change to test the hypothesis that
strong integration in cranial modules is associated with slower rates of evolution, and conclude,
“Perhaps surprisingly, our analyses did not support a significant correlation” (p. 10). Most
recently, Jones et al. [13] use R-values to test the hypothesis of an adaptive radiation during the
terrestrial-aquatic transition within Carnivora, and because R-values were not large at the base
of Pinnipedia, the authors conclude there is no evidence for an adaptive radiation. Given the
tenuous relationship between R-values and actual rates of change (Fig 10), IE-based analyses
are poor tests of these macroevolutionary hypotheses.

Alternative approaches to modeling adaptive peaks and variable rates of
evolution

Smaers and Vinicius [4] are not the first researchers to consider selection toward adaptive
optima or heterogeneity in evolutionary rates in PCMs. A large body of research has focused
on formally modeling evolution towards adaptive optima by drawing upon the Ornstein-
Uhlenbeck (OU) model of evolution [56]. In an OU model, traits evolve under a BM model
with variance % but are also pulled toward an adaptive optimum 6 with strength of selection
o, such that evolutionary change in trait Y over time ¢ is described by

dY, = —a(Y, — 0)dt + odB, (4)

where dB, represents a Brownian process (i.e., random change drawn from a normal
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distribution with mean 0 and variance 1) and o'is a multiplier for the variance of the Brownian
process. When o = 0, this corresponds to a model with no selection strength, thus the first term
drops out of the equation to leave a simple Brownian motion model. When « is large, this
yields a model in which trait evolution is strongly biased toward the adaptive optima 6. The
parameter & is sometimes referred to as a “rubber band” parameter, because the further a trait
wanders from the adaptive optima, the more strongly it is pulled back. Together, the parame-
ters o, a, and 0 define the selection regime for the trait.

The OU model has been used to model heterogeneity across phylogenies in the adaptive
optima [57] and in the strength of selection [58]. The adaptive optima itself can also be mod-
eled with a Brownian motion process [59]. Many of these methods depend on specifying a
priori positions for shifts in the selection regime on the phylogeny and then comparing the
more complex model to a simpler model to determine whether there is statistical support for
multiple selection regimes across the phylogeny. More recent methods have focused on iden-
tifying shifts in the selection regime without a priori specification. For instance, Thomas and
Freckleton [60] and Ingram and Mahler [61] have proposed stepwise model selection proce-
dures for identifying shifts in the selection regime anywhere in the phylogeny, while Eastman
et al. [62], Rabosky [63], and Uyeda and Harmon [64] have developed Bayesian approaches
to identifying selection regime shifts without a priori hypotheses. All of these methods involve
explicit statistical models with careful attention to bias and error in parameter estimation,
and they all incorporate mechanisms to limit the number of parameters in order to find the
optimal trade-off between model complexity and goodness-of-fit. Their development and
evaluation continues to be an active and fruitful area of research, and challenges associated
with fitting these models and using them for statistical inference are increasingly being appre-
ciated [65,66].

Conclusions

Over the past several decades, PCMs have increasingly become an integral part of evolutionary
biology. Unfortunately, methodological papers are often riddled with jargon and mathematics
that render them opaque to evolutionary biologists who are interested in using PCMs. More-
over, method developers are often not involved in the publication or peer review of biological
research that utilizes PCMs. The disconnect between developers and users creates a wide space
for the misuse of PCMs in evolutionary biology. Researchers should be wary of unfamiliar
methods that are not widely used, are not implemented in published software packages, and
have not been tested with extensive simulation studies. In the case of the IE method, code was
not published simultaneously with the method’s original description, the method has not been
used outside of collaborations with the primary developer, and the method has not been thor-
oughly evaluated by independent parties. Studies using the method have been vague on how
the method works, frequently present only graphic representation (but not quantitative data)
of the method’s results, and refer readers only to the original paper and its limited set of
simulations.

To our knowledge, this is the first study to independently evaluate the properties of the IE
method developed by Smaers and Vinicius [4]. We have identified eight problems with the
IE method and its application. First, the IE distance metric is biased and generates undefined
values. When we used an unbiased distance metric, the adaptive peak and ancestral state val-
ues are identical (Fig 4); this equivalence will always be true when branch lengths are equal
and the value of the “peak” is between the two tip values (Appendix 1). Second, by imbed-
ding a data transformation step into the method, the IE method assumes all data have similar
error structures, which is not true. Third, the IE method utilizes Wagner tree formulas in a
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geometric context, but these formulas are not appropriate for calculating distances from a
triangle vertex to the centroid. Fourth, while R-values have been described and analyzed as
“rates of change” [4,6-13], these values are not true evolutionary rates. The simulations of
this study reveal that R-values are erratic and do not have a meaningful relationship with
actual rates of change between ancestors and descendants. Fifth, since geometrically normal
data are transformed after the adaptive peak is calculated, large values cause the adaptive
peak and ancestral state values to be overestimated. Simulations show this is particularly
problematic at the base of the phylogeny, where values can be overestimated by an order of
magnitude or more. Sixth, similar to another directional contrast method (Minimum Evolu-
tion), the IE method estimates 2n — 2 parameters from n observations. This extensive pseu-
doreplication is antithetical to a central goal of phylogenetic comparative methods: to
control for the statistical non-independence of species data. Seventh, there is no compelling
theoretical reason for extending Felsenstein’s [20] independent contrast formula to the
entire phylogeny to calculate “adaptive peaks”. Finally, analyses that examine the relation-
ship between branch-specific rates of change for two traits do not reveal the selective pres-
sures on one trait over the other; rather, they provide a biased estimate of the “evolutionary
regression coefficient”, or the scaling relationship between the two variables. Traditional
PCMs such as phylogenetically independent contrasts [20] provide unbiased estimates of
this coefficient.

Given these problems, we believe we have shown that the Independent Evolution method is
not a viable phylogenetic comparative method. However, we have tried to highlight alternative
PCMs with similar goals that have strong theoretical foundations and validation from simula-
tion studies (although these methods are not without limitation). Due to the profound theoreti-
cal weaknesses of the IE method, we see no way for the method to be salvaged with subsequent
revisions.

Appendix 1 —=Algebraic proof of equivalence of adaptive peak and
ancestral state values

The adaptive peak and ancestral state values are equivalent (A, , = AP) when the difference
between logged values is used as the distance metric, branch lengths are equal (b, = b,), and AP
lies between x; and x,. Here we consider only the condition x; < AP < x; by symmetry the
proof is also true when x; > AP > x;.

Given:

By Fig 5.5, when AP < x,:

sy, =%, — AP = x, = AP + 5, (5)

By Fig 5.5, when AP > x;:
s, =AP —x, = x, = AP — s, (6)

By rearranging Eq 5 and Eq 6, and substituting:

AP =x 45, =%, — S = S, + S, = X, — X, (7)

By Fig 5.8, where R; = s; and R, = s, when b, = b:

* X2 X1 X2
A =R Rz_33+$2_53x2+52x1 8)
ULl Lyl s
Ry Ry s3 S9 3 2
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By substituting Eq 7 into the denominator of Eq 8, and substituting Eqs 5 and 6 into the
numerator of Eq 8, we can prove algebraically that A; , = AP:

CSsXy 5y S% + 8% S3(APA+s)) + 5,(AP —s5)  S;AP A+ 558, + 5,AP — 555,

A = =
b2 S3+ s, Xy — X, Xy — X, Xy — X,
_ s;AP+5,AP  AP(s;+s,)  AP(x, —x,) AP 9)
o —x, XX X —x

Supporting Information

S1 File. Nexus file of primate phylogeny used for simulations.
(NEX)

S2 File. R code for IE algorithm.
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$3 File. R code for PIDC algorithm.
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