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Abstract

Background: The nutrient-sensing Tor pathway governs cell growth and is conserved in nearly all eukaryotic
organisms from unicellular yeasts to multicellular organisms, including humans. Tor is the target of the
immunosuppressive drug rapamycin, which in complex with the prolyl isomerase FKBP12 inhibits Tor functions.
Rapamycin is a gold standard drug for organ transplant recipients that was approved by the FDA in 1999 and is
finding additional clinical indications as a chemotherapeutic and antiproliferative agent. Capitalizing on the
plethora of recently sequenced genomes we have conducted comparative genomic studies to annotate the Tor
pathway throughout the fungal kingdom and related unicellular opisthokonts, including Monosiga brevicollis,
Salpingoeca rosetta, and Capsaspora owczarzaki.

Results: Interestingly, the Tor signaling cascade is absent in three microsporidian species with available genome
sequences, the only known instance of a eukaryotic group lacking this conserved pathway. The microsporidia are
obligate intracellular pathogens with highly reduced genomes, and we hypothesize that they lost the Tor pathway
as they adapted and streamlined their genomes for intracellular growth in a nutrient-rich environment. Two TOR
paralogs are present in several fungal species as a result of either a whole genome duplication or independent
gene/segmental duplication events. One such event was identified in the amphibian pathogen Batrachochytrium
dendrobatidis, a chytrid responsible for worldwide global amphibian declines and extinctions.

Conclusions: The repeated independent duplications of the TOR gene in the fungal kingdom might reflect
selective pressure acting upon this kinase that populates two proteinaceous complexes with different cellular roles.
These comparative genomic analyses illustrate the evolutionary trajectory of a central nutrient-sensing cascade that
enables diverse eukaryotic organisms to respond to their natural environments.

Background
The nutrient-sensing target of rapamycin (Tor) pathway
is highly conserved among eukaryotes and governs sev-
eral essential cellular processes including protein synth-
esis, ribosome biogenesis, autophagy, and cytoskeletal
organization [1-3]. In the fungal kingdom, the Tor path-
way has been best studied in the budding yeast Sacchar-
omyces cerevisiae [2-4], the fission yeast
Schizosaccharomyces pombe [5,6], and the human patho-
gen Candida albicans [5-8]. However, little is known
about Tor in basal fungal lineages, including the Zygo-
mycota and Chytridiomycota.
In S. cerevisiae and S. pombe, two Tor paralogs form

distinct complexes known as Tor Complex 1 (TORC1)

and Tor Complex 2 (TORC2) [9-12], while in most
other species, including humans, a single Tor protein
can populate both complexes [11-14]. Interestingly, S.
cerevisiae Tor2 can complement the loss of Tor1, but
Tor1 cannot complement the loss of Tor2 [15,16]. Two
Tor paralogs have also been identified in a metazoan,
the silkworm Bombyx mori [17] and three Tor paralogs
were identified in the trypanosomatid parasites Leishma-
nia major [18] and the related species Trypanosoma
brucei [19], the first reported Tor triumvirates.
The ScTORC1 is sensitive to rapamycin and controls

protein synthesis, mRNA synthesis and degradation,
ribosome biogenesis, and autophagy. TORC2 is insensi-
tive to rapamycin and is involved in the control of actin
polarization and cell wall integrity [9,16]. TORC1 con-
sists of Tor1 or Tor2, Kog1 [20], Tco89, and Lst8 [21],
while TORC2 contains Tor2, Lst8, Avo1, Avo2, and
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Avo3 [22] (Figure 1A). Recently, the EGO-GTPase com-
plex and its orthologs were shown to convey amino acid
signals for TORC1 activation in yeast, insects, and mam-
mals [23-26]. In S. cerevisiae, immediate effectors of
TORC1 include the PP2A-like phosphatase Sit4 [27] and
the AGC kinase Sch9 [28]. In S. pombe, Tor participates
in other cellular functions including nutrient signaling
[29], cell growth and differentiation [30], mitotic commit-
ment [31], and sexual development [11] (Figure 1B).
The structure of the Tor proteins is remarkably con-

served (Figure 2) and features several domains for pro-
tein-protein interactions including N-terminal HEAT
(Huntingtin, Elongation factor 3, PP2A A subunit, Tor)
repeats [32], a FAT (FRAP, ATM, and TRRAP) domain
[33,34], and an FRB (FK506-Rapamycin Binding) [35]
domain. The kinase and the FATC (FAT domain at the

C-terminus) [32,36] domains are present in the C-term-
inal region.
The Tor inhibitor rapamycin blocks cell proliferation

and is currently used as an immunosuppressive drug for
organ and tissue transplant recipients and a chemother-
apy agent against a variety of solid cancers [37-40].
Rapamycin binds to the prolyl isomerase FKBP12 to
form a protein-drug complex that then interacts with
the Tor FRB domain in a ternary complex [41,42]. S.
cerevisiae cells treated with rapamycin display pheno-
types associated with nutrient depletion including G1
cell cycle arrest, cellular volume expansion, protein
synthesis inhibition, glycogen accumulation, and autop-
hagy [35,43].
Genetic analysis in S. cerevisiae characterizing rapamy-

cin-resistant mutants led to the identification of FKBP12

Figure 1 The Tor pathway in the model fungi Saccharomyces cerevisiae and Schizosaccharomyces pombe. The Tor pathway components
investigated in this study in S. cerevisiae (A) and S. pombe (B) are included in this figure. Functional homologs between the two species are
indicated in the same shape and color. Sch9, Ypk1, and Gad8 are AGC kinases that are Tor- and PDK-regulated.
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as the intracellular receptor for rapamycin and defined
Tor1 and Tor2 as the targets of the FKBP12-rapamycin
complex [4]. Subsequent studies resulted in the identifi-
cation and characterization of the TOR1 and TOR2 gene
products [15,44] as well as the elucidation of the Tor
signaling cascade [8,45-47]. These pioneering studies
aided in the identification of the mammalian Tor ortho-
log and characterization of this highly conserved signal-
ing cascade [8,48,49]. Remarkably, expression of the
human FKBP12 ortholog in yeast fpr1 (the gene that
encodes FKBP12) deletion mutants complements to
restore rapamycin sensitivity, and hybrid Tor proteins
consisting of the yeast N-terminal domain fused to the
mammalian Tor kinase domain are also functional in
yeast [50]. Thus, the Tor pathway has been functionally
and structurally conserved from yeasts to humans over
the billion years of evolution separating the two species
from their last common ancestor.
We now know that the fungal and metazoan king-

doms are both within the opisthokont lineage of eukar-
yotes and are thus more closely related to each other
than the vast majority of eukaryotic organisms [51,52].
Moreover, these two highly successful kingdoms shared
a last common ancestor as recently as one billion years
ago, much more recently than most eukaryotes. Recent
initiatives, particularly the UNICORN project, have

facilitated the sequencing of several opisthokonts related
to the last common ancestor of the metazoans and
fungi, providing an interesting window into the evolu-
tion of both fungi and animals [53-56]. Thus, studies on
the evolutionary trajectory of the fungal kingdom in
general, and of the Tor signaling cascade in particular,
promise to reveal insights about how orthologous path-
ways function in the more complex milieu of multicellu-
lar metazoan organisms.
In this study, we have capitalized upon the wealth of

available genomic information by annotating the Tor
pathway in several fungal organisms in which this path-
way has not been described. Our study included selected
species in the major groups of the fungal kingdom with
genome sequences available: the basidiomycete Pleurotus
ostreatus; the Mucorales zygomycetes Mucor circinel-
loides, Rhizopus oryzae, and Phycomyces blakesleeanus;
the chytridiomycetes Spizellomyces punctatus and Batra-
chochytrium dendrobatidis; the microsporidian species
Encephalitozoon cuniculi, Enterocytozoon bieneusi, and
Nosema ceranae; and the related non-fungal opistho-
konts Capsaspora owczarzaki, Salpingoeca rosetta, and
Monosiga brevicollis. Whereas the Tor pathway is con-
served throughout the eukaryotes, strikingly, microspori-
dian species with their highly reduced and compacted
genomes lack the entire Tor pathway. We have also

Figure 2 Tor protein architecture. Tor protein domain architecture is highly conserved throughout the fungal kingdom. The N-terminal HEAT
repeats (blue), the FAT (green) and the FATC (purple) domains participate in protein-protein scaffolding thereby facilitating complex interactions.
The FRB domain (yellow) is a highly conserved 100 amino acid sequence necessary for rapamycin interaction. The kinase domain (orange)
phosphorylates protein substrates.
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investigated gene and genome duplication events that
resulted in two Tor homologs in S. cerevisiae, S. pombe,
P. ostreatus, and B. dendrobatidis, and the loss of a sec-
ond Tor homolog following a whole genome duplication
event in R. oryzae.

Results and Discussion
Conservation of the Tor signaling pathway molecular
components
The Tor pathway is well conserved among nearly all
eukaryotic species examined to date. Tor is essential for
life and is the target of the potent drug rapamycin in
fungi, humans, and other eukaryotic organisms
[2,12,19,41]. Tor originated early during the eukaryotic
radiation, as it is present in the basal eukaryotes Giardia
lamblia [57], L. major [18] and T. brucei [19], and also
in plants [58]. Here we focused on the Tor pathway in
the fungal kingdom and other representative unicellular
opisthokont species outside of the fungi. Several genes
encoding Tor complex components, upstream regula-
tors, and downstream effectors were identified in all
major groups throughout the fungal kingdom (Figure 1,
Table 1). Because we used BLASTp reciprocal best hits
(RBH) to identify orthologs, in some cases the absence
of an ortholog in our results may represent only a

failure to detect it with this method. Further, functional
homologs that are not sufficiently similar enough in
sequence to be identified may be present. Overall, a
high degree of pathway conservation is observed in the
Tor signaling cascade throughout the fungal kingdom,
with the exception of microsporidia in which all Tor
pathway components are absent. In addition, several
pathway components are conserved in the related uni-
cellular opisthokonts M. brevicollis, S. rosetta, and C.
owczarzaki (Table 2).
In S. cerevisiae, Tor1 and Tor2 interact with several

proteins to form TORC1 and TORC2. TORC1 contains
Tor1 or Tor2, Kog1, Tco89, and Lst8. Kog1 functions as
a substrate-recruiting subunit in mammalian TORC1
(mTORC1) [13,59-61]. A gene encoding a putative Kog1
homolog was identified in all species included in this
study, with the exception of the microsporidia and S.
rosetta (Tables 1 and 2). Mutation of TCO89 results in
hypersensitivity to rapamycin and affects cellular integ-
rity in S. cerevisiae [21]. Tco89 is only found in S. cere-
visiae and could have resulted from a specialization of
the pathway exclusive to Saccharomyces species (Table
1). However, while a BLASTp search did not identify
Tco89 homologs in other species, S. pombe has been
reported to contain a functional homolog [GenBank:

Table 1 The presence or absence of Tor pathway components in non-pathogenic and pathogenic fungal lineages

Ascomycota Basidiomycota Zygomycota Chytridiomycota Microsporidia

Sc Sp Po Mc Ro Pb Bd Spu spp.

TORC1 Tor1 + + + + + + + + -

Kog1 + + + + + + + + -

Tco89 + - - - - - - - -

Lst8 + + + + + + + + -

TORC2 Tor2 + + + - - - + - -

Lst8 + + + + + + + + -

Avo1 + + + + + + + + -

Avo2 + - - + + + + + -

Avo3 + + + + + + + + -

Bit61 + - - - - - - - -

Upstream Tsc1 - + + + + + - + -

Tsc2 - + + + + + + + -

Rhb1 + + + + + + + + -

Ego1 + - - - - - - - -

Ego3 + - - - - - - - -

Gtr1 + + + + + + + + -

Gtr2 + + + + + + + + -

Vam6 + + + + + + + + -

Downstream Sit4 + + + + - + + + -

Tap42 + + + + + + + + -

Sch9 + + + - - - + + -

Ypk2 + + - - + - - - -

The presence or absence of Tor pathway components is indicated by + or -, respectively. Abbreviations: Sc = S. cerevisiae, Sp = S. pombe, Po = P. ostreatus, Mc =
M. circinelloides, Ro = R. oryzae, Pb = P. blakesleeanus, Bd = B. dendrobatidis, Spu = S. punctatus.
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NP_588232] [12], and this suggests that functional
homologs may exist in other fungal species as well.
However, no homologs were identified when using
S. pombe Tco89 as a query sequence. Lst8 binds to the
Tor kinase domain in S. cerevisiae to stimulate catalytic
activity [9] and a putative Lst8 homolog is conserved in
most species analyzed except microsporidia and
S. rosetta (Tables 1 and 2).
Additional BLASTp searches identified a single Tor

homolog in the following species: Lachancea thermoto-
lerans CBS6340 [GenBank:XP_002552336], Pichia pas-
toris GS115 [GenBank:XP_002491471], Pichia stipitis
CBS6054 [GenBank:XP_001385651], Debaryomyces han-
senii CBS767 [GenBank:XP_002770885], Yarrowia lipo-
lytica CLIB122 [GenBank:XP_505106], Podospora
anserina strain S mat+ [GenBank:XP_001903968], Chae-
tomium globosum CBS148.51 [GenBank:XP_001226647],
Magnaporthe oryzae 70-15 [GenBank:XP_001414541],
Gibberella zeae PH-1 [GenBank:XP_388309], Aspergillus
fumigatus Af293 [GenBank:XP_755360], Aspergillus fla-
vus NRRL3357 [GenBank:XP_002377897], Neosartorya
fischeri NRRL181 [GenBank:XP_001260509], Aspergillus
terreus NIH2624 [GenBank:XP_001213640], Aspergillus

nidulans FGSCA4 [GenBank:XP_663586], Aspergillus
clavatus NRRL1 [GenBank:XP_001275326], Aspergillus
oryzae RIB40 [GenBank: XP_001826216], and Aspergil-
lus niger CBS513.88 [GenBank:XP_001397781]. These
ascomycetes were not included in further studies.
In yeast and mammals, TORC2 controls spatial

aspects of growth. TORC2 includes Tor2, Avo1, Avo2,
Avo3, and Bit61 [9,22]. Avo1 plays an essential role in
actin cytoskeleton polarization [22] and is conserved
throughout the organisms that were the focus of this
study (Table 1) except in S. rosetta and C. owczarzaki
(Table 2). However, due to high divergence of the
AVO1 sequence amongst the known homologs, it is pos-
sible that the S. rosetta and C. owczarzaki homologs
cannot be identified using the BLASTp algorithm. Avo2
is a nonessential substrate adaptor for TORC2 [22] and
potential homologs were identified in most species stu-
died, with the exceptions of S. pombe, P. ostreatus, the
three microsporidian species (Table 1), and M. brevicol-
lis (Table 2). In S. cerevisiae, Avo3 (also know as Tsc11)
controls cytoskeletal dynamics [9,22], and homologs are
conserved throughout the species examined (Tables 1
and 2). Bit61, a nonessential protein that associates with
TORC2 [21], was only identified in S. cerevisiae (Tables
1 and 2).
Upstream regulators of Tor include Tsc1 and Tsc2

(Tuberous Sclerosis 1 and 2) and the GTPase Rheb (Ras
homolog enhanced in brain). In S. pombe and other
eukaryotes, Tsc1 and Tsc2 form a GTPase-activating
complex that negatively regulates the action of Rheb to
activate TORC1 [26,62,63]. Tsc1 and Tsc2 putative
homologs were identified in most species in the study,
with the exception of S. cerevisiae (Table 1); however,
Tsc1 homologs were not identified in B. dendrobatidis,
S. rosetta, or C. owczarzaki (Tables 1 and 2). In mam-
mals and insects, four Rag GTPases (RagA-D) bind rap-
tor (Kog1) to mediate TORC1 signaling in response to
amino acids [24,26]. RagA and RagB are orthologs of
S. cerevisiae Gtr1 whereas RagC and RagD are orthologs
of S. cerevisiae Gtr2 [23]. Gtr1 and Gtr2 form a complex
along with Ego1 and Ego3 known as EGOC/GSE [25],
which is regulated by the GTP exchange factor Vam6
[23]. Interestingly we found presumptive Gtr1 and Gtr2
orthologs in species in this study with the exception of
microsporidia (Table 1), and Gtr1 was not identified in
M. brevicollis (Table 2). However, Ego1 and Ego3, which
anchor Gtr1 and Gtr2 to endosomal and vacuolar mem-
branes, are unique to S. cerevisiae and were not identi-
fied in the other species (Table 1). This suggests that
the specific EGO complex architecture might be
restricted to Saccharomyces, though it is possible that
functional homologs may be present in other species.
In fungi, several downstream effectors are targets of

Tor signaling. The PP2A phosphatase Sit4 and its

Table 2 The presence or absence of Tor pathway
components in selected unicellular opisthokonts

Choanoflagellatea Filasterea

Mb Sr Co

TORC1 Tor1 + + +

Kog1 + - +

Tco89 - - -

Lst8 + - +

TORC2 Tor2 - - -

Lst8 + - +

Avo1 - - -

Avo2 - + +

Avo3 + + +

Bit61 - - -

Upstream Tsc1 - - -

Tsc2 + + +

Rhb1 - - -

Ego1 - - -

Ego3 - - -

Gtr1 - + +

Gtr2 + + +

Vam6 - + +

Downstream Sit4 + - +

Tap42 - + +

Sch9 - - +

Ypk2 - + +

The presence of absence of Tor pathway components is indicated by + or -,
respectively. Abbreviations: Mb = M. brevicollis, Sr = S. rosetta, Co = C.
owczarzaki.
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regulatory subunit Tap42 regulate the expression of sev-
eral TORC1-controlled genes and Gcn2-regulated trans-
lation [3,64,65]. A Sit4 homolog was identified in R.
oryzae (Table 1), though a homolog of the regulatory
subunit Tap42 was not (Table 1). In S. rosetta, a Sit4
homolog was not identified, though Tap42 was (Table
2). Both of these situations could indicate rewiring of
the pathway, or alternatively these findings could be a
result of insufficient similarity to detect with a RBH
search method. Sch9, a member of the AGC kinase
family and the functional homolog of the p70 S6 kinase,
is a direct substrate of S. cerevisiae TORC1 involved in
ribosome biogenesis [28,66]. Sch9 was not identified in
RBH BLASTp searches with S. cerevisiae Sch9 in M. cir-
cinelloides, P. blakesleeanus, the microsporidia (Table 1),
or S. rosetta (Table 2), but was identified in all other
species. Putative homologs of Ypk2 kinase, a regulator
of ceramide synthesis controlled by TORC2 signaling
[67], were only identified in S. cerevisiae, S. pombe,
(Table 1), M. brevicollis, S. rosetta, and C. owczarzaki
(Table 2). Notably, the failure to detect many homologs
in M. brevicollis, S. rosetta, and C. owczarzaki could be
due to their evolutionary distance from the other organ-
isms in the study and their gene divergence.

Evolutionary conservation of Tor kinase protein structure
The Tor kinases are phosphatidylinositol kinase-related
kinases (PIKKs) [68] and aside from their known protein
kinase function also serve as evolutionary constrained
scaffolds with several protein-protein interaction
domains that mediate multi-protein complex formation
[69]. Tor protein architecture was annotated using
SMART [70,71] and we found that it has been main-
tained throughout the species of this study (Figure 2).
N-terminal HEAT repeats are present in varying num-
bers and serve as scaffolding structures for protein-pro-
tein interactions [32,72,73]. Similarly, the FAT/toxic
domain and the accompanying C-terminal FATC
domain also participate in protein scaffolding and are
present and conserved in all species subject to analysis.
Over-expression of the FAT domain has a dominant
negative effect on cell growth in yeast and this effect
can be suppressed by over-expression of phospholipase
C [33]. The kinase domain has similarities to both lipid
and protein kinases, but it is a bona fide protein kinase.
The FRB (FKBP12-rapamycin binding) domain is a
highly conserved 100 amino acid region of Tor with sev-
eral residues that are known to be required for binding
the FKBP12-rapamycin drug complex [42].
In addition, the FRB domain contains several residues

necessary for both phosphatidic acid binding and rapa-
mycin interaction [74,75]. In mammals, phosphatidic
acid binding to the FRB region may promote the assem-
bly of mTOR complexes. It has been proposed that the

potent effect of the Tor inhibitor rapamycin may be due
to direct competition for overlapping phosphatidic acid
binding sites within the FRB domain [76]. Mutation of
the conserved amino acid residues S1975, W2041, or
F2048 in the FRB domain confers rapamycin resistance
in S. cerevisiae [4,42,77]. Strikingly, the corresponding
amino acid residues are conserved in all species exam-
ined (Figure 3). In mTOR, phosphatidic acid binding is
disrupted by mutations of L2031, F2309, and Y2105
[75], corresponding to S. cerevisiae Tor2 L1971, F1979,
and Y2045, respectively, all of which are conserved in
the studied fungal species (Figure 3).

Duplication of Tor in the fungal kingdom
Approximately 100 million years ago, the S. cerevisiae
ancestor underwent a whole genome duplication
(WGD) event, and species that descend from this evolu-
tionary event retained duplicated subsets of genes. S.
cerevisiae retained approximately 8% of duplicated genes
[78,79], while other fungi in this lineage have main-
tained varying numbers of gene duplicates, such as Can-
dida glabrata in which a smaller number (~2%) of these
pairs are maintained [80]. Interestingly, several of these
species, including S. cerevisiae, S. paradoxus, S. mikatae,
S. kudriavzevii, S. bayanus, S. castellii, and C. glabrata
have retained two TOR paralogs, whereas species out-
side of the WGD clade, including Kluyveromyces lactis
and Ashbya gossypii, have only a single TOR gene.
The fates of duplicated gene paralogs can be explained

through the duplication, degeneration, and complemen-
tation (DDC) model of gene duplication [81]. In species
with a single Tor, this protein populates both TORC1
and TORC2, each of which has distinct functions. Fol-
lowing duplication, each paralog likely sub-functiona-
lized to carry out some, but not all, of its previous
functions so that between the two paralogs, each process
is performed. In S. cerevisiae, for example, Tor1 exclu-
sively functions within TORC1, while Tor2 preferentially
populates TORC2 but can also function in TORC1. S.
pombe has two Tor paralogs as a result of an indepen-
dent segmental gene duplication event, and each paralog
has distinct roles not necessarily equivalent to those of
S. cerevisiae Tor1 and Tor2. SpTor1 is not essential,
whereas SpTor2 is essential for growth [11,29,82].
We hypothesize that similar models could apply in

species encoding two Tor homologs resulting from inde-
pendent gene duplication events such as P. ostreatus and
B. dendrobatidis. Based on their level of identity with
S. cerevisiae Tor homologs, the B. dendrobatidis genes
BDEG_08293 and BDEG_05727 have been designated
TOR1 and TOR2, respectively. However, these gene
names are not necessarily based on functional similarity
with ScTor1 and ScTor2 but rather indicate only that
there are two TOR homologs in B. dendrobatidis.
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A similar naming challenge is evident in S. pombe,
where the functions of SpTor1 and SpTor2 are not
equivalent with those of ScTor1 and ScTor2.
While several species, such as those in the Saccharo-

myces clade, have two Tor paralogs resulting from
ancient WGD events, other species have acquired a sec-
ond paralog through independent segmental gene dupli-
cation events, including B. dendrobatidis and several
fission yeast species closely related to S. pombe (Figure
4). Segmental gene duplications have played a major
role in the evolution of species and can result in the
duplication of single genes or large blocks of genes [83].
In S. cerevisiae, the duplication blocks with TOR include
three paralogous gene pairs that have been retained
from the ancestral WGD event: PTK1/PTK2, TOR1/
TOR2, and MNN4/YJR061W [78] (Figure 5A). Further,
C. glabrata, an ascomycete closely related to S. cerevi-
siae that diverged following the WGD, has also main-
tained a second TOR paralog and synteny is apparent in
the region flanking the TOR1 and TOR2 genes, though
one must extend the analysis to >40 kb from the TOR
genes to detect it (See additional file 1: Supplemental
figure 1). However, because C. glabrata and S. cerevisiae
have retained different subsets of genes from the ances-
tral WGD, the duplicated genes surrounding TOR in

these species are not homologs of one another. Further,
C. glabrata has maintained fewer of the synteny blocks
found in S. cerevisiae, and the block containing the TOR
genes (Block 42) is not conserved in C. glabrata [80].
In contrast, genomic regions surrounding the Tor para-
logs in S. pombe (Figure 5B) and B. dendrobatidis (Fig-
ure 5C) are not syntenically conserved. That is, the
duplicated genes are not flanked by other duplicated
gene pairs, and the two TOR paralogs likely resulted
from independent segmental gene duplication events.
Further, there are no indications of WGDs in these spe-
cies. In the Schizosaccharomycotina, the TOR gene
duplication occurred prior to speciation as evidenced by
the fact that S. pombe, S. octosporus, S. japonicus, and S.
cryophilus have each retained a second Tor paralog; the
Tor orthologs across these four species are more closely
related to each other than to those from other species
(Figure 4). No syntenic conservation between the geno-
mic regions containing TOR paralogs was detected in
any species of the Schizosaccharomyces group, support-
ing the occurrence of an independent segmental gene
duplication in their common ancestor (see additional
file 2: supplemental Figure 2).
The Taphrinomycotina is a monophyletic taxon of the

Ascomycota containing the Schizosaccharomycetes,

Figure 3 The highly conserved FRB domain of Tor. Residues L1971, F1979 and Y2045 are involved in phosphatidic acid binding in mTOR
(open arrows). Mutation of S1975 confers rapamycin resistance in mammalian cells, Candida albicans, Cryptococcus neoformans, and
Saccharomyces cerevisiae. Residues W2041 and F2048 are required for interaction with rapamycin. All of these amino acid residues are conserved
in the species examined in this study. Abbreviations: Sc = Saccharomyces cerevisiae, Sp = Schizosaccharomyces pombe, Po = Pleurotus ostreatus,
Mc = Mucor circinelloides, Ro = Rhizopus oryzae, Pb = Phycomyces blakesleeanus, Bd = Batrachochytrium dendrobatidis, Spu = Spizellomyces
punctatus.
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Taphrinomycetes, Neolectomycetes, and Pneumocysti-
domycetes. Genomes are only available for species
within the Schizosaccharomycetes (S. pombe, S. octos-
porus, S. japonicus, and S. cryophilus) and the Taphrino-
mycetes (Pneumocystis carinii). While the studied
Schizosaccharomyces spp. contain two Tor homologs, a
single homolog was identified in P. carinii with
tBLASTx using the highly conserved S. cerevisiae FRB
domain of Tor1 based on sequence data produced by
the Pneumocystis Genome Project (funded by the NIH
NIAID) that was obtained from http://pgp.cchmc.org at
the time of publication. Based on the phylogenetic pla-
cement of these two groups [84] and the available geno-
mic information, we hypothesize that the segmental
TOR duplication is unique to the Schizosaccharomyces
spp. and occurred following their divergence from the
common ancestor of the Taphrinomycota, as P. carinii,
the other species within this taxon with available gen-
ome data, appears to contain a single Tor homolog.
Interestingly, the zygomycete R. oryzae underwent a

whole genome duplication event and despite retaining

12% of the resulting duplicated genes [85] compared to
8% retained genes in a separate WGD event in S. cerevi-
siae [78,79], two Tor paralogs have not been retained;
only a single Tor homolog was identified. Currently, the
Zygomycota is the only group studied without an identi-
fied species containing two Tor homologs; however,
there are not enough available genomes to make a defi-
nitive conclusion in this group. Other species with inde-
pendent TOR duplications likely remain to be identified
in all of the major fungal lineages, and as more genome
sequences become available this will be addressed.
During this study, we identified three additional spe-

cies that possibly have two TOR paralogs: M. brevicollis,
Thecamonas trahens, and Allomyces macrogynus, species
that are included in the Origins of Multicellularity Pro-
ject [86]. While analysis is limited because of the state
of the M. brevicollis (choanoflagellate) genome, it
appears that an additional bonafide Tor protein is
encoded with the conserved Tor protein architecture.
Thecamonas trahens is a unicellular apusomonad that
also contains two TOR paralogs. Interestingly, A.

Figure 4 TOR gene duplication events. Several independent segmental gene duplications or whole genome duplication events have occurred
throughout the fungal kingdom resulting in multiple Tor homologs. A whole genome duplication occurred in the Saccharomyces budding yeast
lineage prior to the speciation of the sensu stricto, sensu lato, and related Saccharomycotina species. An independent gene duplication event
occurred in the Schizosaccharomyces lineage, resulting in 2 Tor homologs in four Schizosaccharomyces fission yeast species. Independent gene
duplication events also occurred in Batrachochytrium dendrobatidis and the edible mushroom Pleurotus ostreatus. Numbers at nodes are
bootstrap percentages representing 500 replicates.
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macrogynus is a fungus that may contain a second para-
log; however, it appears that the FRB domain overlaps
with the kinase domain. This may represent a case in
which TOR was duplicated but is in the process of los-
ing one of the copies. These cases are a springboard for
future studies involving the duplication of TOR within
and beyond the fungal kingdom.

Loss of the Tor signaling pathway in microsporidia
While components of the Tor signaling cascade are con-
served in eukaryotes from yeasts to humans, the micro-
sporidia, a group of highly specialized obligate
intracellular pathogens completely lack all of the path-
way components investigated in this study. E. cuniculi
has previously been noted to lack the Tor kinase [87],
and we found that all pathway components including
Tor were missing not only in E. cuniculi but also in its
microsporidian relatives E. bieneusi and N. ceranae
(Table 2). Microsporidian genomes are highly com-
pacted and show a marked reduced gene content. The
genome of the human pathogen E. cuniculi has 1997
genes distributed throughout 11 chromosomes in a 2.9
Mb genome [88], less than half the number of protein-

coding genes found in Escherichia coli. For comparison,
the genome of the human pathogen E. bieneusi genome
is ~6 Mb with 3,804 genes [89] and the honeybee patho-
gen N. ceranae genome is ~7.9 Mb with 2,614 predicted
genes [90]. Genome reduction has been well studied in
intracellular bacteria: during the specialization process
from a free-living to intracellular lifestyle, massive gene
loss can occur [91-95]. We hypothesize that as a conse-
quence of their specialization to an obligate intracellular
lifestyle, the need for nutrient sensing was relaxed and
these obligate intracellular microsporidia acquired nutri-
ents from within the host cytoplasm. Thus, they no
longer required the Tor pathway, which is dedicated to
sensing changes in the nutrient composite of the envir-
onmental milieu. However, E. cuniculi has retained
some of the genes encoding signaling pathways involved
in nutrient sensing in other species, including homologs
of S. cerevisiae Ras1 and Ras2 (data not shown).
Interestingly, P. carinii is an obligate pathogen with a

reduced genome estimated to be ~8 Mb [96], which
unlike microsporidia is not obligately intracellular.
A single Tor homolog was identified [Pneumocystis
Genome Project:cap3_it1_grp346_contig490] using the

Figure 5 Synteny analysis of TOR paralogs. Synteny analysis supports the hypothesis that the Tor paralogs in Saccharomyces cerevisiae (A)
resulted from a whole genome duplication event, while in Schizosaccharomyces pombe (B) and Batrachochytrium dendrobatidis (C) two Tor
paralogs result from independent segmental gene duplication events, and there is no syntenic conservation in the surrounding sequence. Red
lines indicate syntenic genes oriented in the same direction whereas blue lines indicate syntenic genes oriented in the opposite direction (i.e., +
strand and - strand).
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S. cerevisiae Tor1 FRB domain in tBLASTx, supporting
our hypothesis that the microsporidia have streamlined
their genomes as they adopted an obligate intracellular
life cycle. P. carinii likely requires Tor because it must
survive in a metabolically active form outside of host
cells, undergoing cell division in the extracellular milieu
of the infected host lung.
Many microsporidian genomes have undergone

extreme genome reduction and are among the eukar-
yotes with the smallest genomes. In addition to fewer
genes than other species (1997 in E. cuniculi compared
to 6607 in S. cerevisiae), E. cuniculi has shorter genes,
small intergenic distances, and very few introns [88,97].
This species (and to an even greater extent, E. bieneusi)
lacks several genes that are necessary for biosynthetic
pathways and the tricarboxylic acid cycle in free-living
organisms [88,89,98]. Remarkably, E. cuniculi must
acquire ATP from its host through a series of ATP
transporters anciently acquired from Rickettsia- or Chla-
mydia-like bacteria [99], and this is an example of how
E. cuniculi, and possibly other microsporidia, can hijack
mechanisms of other intracellular bacteria, fungi, or the
host to survive in and adapt to their highly specialized
intracellular lifestyle.

Conclusions
The Tor pathway is highly conserved with some excep-
tions among fungi, including several pathogens. Simi-
larly, the molecular structural organization of the Tor
kinases has been remarkably conserved as well as the
presumed ability to bind the FKBP12-rapamycin com-
plex. This feature, combined with the essential nature of
the rapamycin-sensitive TORC1 pathway for cell growth,
should enable the development of rapamycin-based stra-
tegies for antifungal therapies. Duplications of the Tor
protein occurred in most fungal groups examined,
resulting from either independent segmental gene dupli-
cation events or a WGD event. The maintenance of two
Tor homologs can be explained through the DDC
model of gene duplication, in which the paralogs sub-
functionalize and together support all of the functions
of the pre-duplicated protein. In addition, species out-
side of the fungal kingdom with two or more TOR
homologs include the metazoan B. mori, the apusomo-
nad protozoan T. trahens, the trypanosome protozoans
L. major and T. brucei, and possibly the choanoflagellate
M. brevicollis. This suggests that the Tor gene has been
independently duplicated multiple times since the last
common ancestor of the Opisthokonta and Excavata
lineages. The Tor pathway, as well as the Tor protein
itself, is highly conserved in eukaryotes, so the observa-
tion that three microsporidian species are missing the
entire pathway is striking. It would appear that the spe-
cialized obligate intracellular life cycle of microsporidia

allows for the acquisition of nutrients from the host cell,
obviating a requirement for this central nutrient-sensing
pathway that is essential in all known cases of other
eukaryotes for axenic growth.

Methods
Identification of pathway component homologs
Tor homologs were identified using the highly conserved
100 amino acid FRB domain of S. cerevisiae Tor1 in
BLASTp reciprocal best-hit searches between the specific
species database and the Saccharomyces Genome Data-
base (SGD). All queries for other Tor pathway compo-
nents were retrieved from SGD and homologs were
identified by BLASTp reciprocal best-hit searches, with
the exception of Tsc1 and Tsc2. Tsc1 and Tsc2 protein
query sequences were retrieved from the S. pombe Gen-
eDB, and homologs were identified using BLASTp
searches between the S. pombe genome database and the
species database. Species identification numbers are listed
in Supplemental Table 1. Protein architecture of each
homolog was elucidated with Simple Modular Architec-
ture Research Tool (SMART) analysis [70,71].
Accession numbers are provided for putative Tor path-

way components (see Additional file 3, supplemental
Table 1 for the accession numbers of putative Tor path-
way components) from the following public genomic data-
bases that were used to carry out BLAST: S. cerevisiae,
SGD, http://www.yeastgenome.org; S. pombe, GeneDB,
http://www.genedb.org/genedb/pombe/index.jsp; P. ostrea-
tus, JGI, http://genome.jgi-psf.org/PleosPC15_1/
PleosPC15_1.home.html; M. circinelloides, JGI and the
Mucor Genome Project, http://genome.jgi-psf.org/
Mucci1/Mucci1.home.html; R. oryzae, Broad Institute,
http://www.broadinstitute.org/annotation/genome/rhizo-
pus_oryzae/MultiHome.html; P. blakesleeanus, JGI, http://
genome.jgi-psf.org/Phybl1/Phybl1.home.html; B. dendro-
batidis, Broad Institute, http://www.broadinstitute.org/
annotation/genome/batrachochytrium_dendrobatidis/
MultiHome.html; S. punctatus, Broad Institute and the
UNICORN initiative, http://www.broadinstitute.org/anno-
tation/genome/multicellularity_project/MultiHome.html;
M. brevicollis, JGI, http://genome.jgi-psf.org/Monbr1/
Monbr1.home.html; S. rosetta, Broad Institute and the
UNICORN initiative, http://www.broadinstitute.org/anno-
tation/genome/multicellularity_project/MultiHome.html;
C. owczarzaki, Broad Institute and the UNICORN initia-
tive, http://www.broadinstitute.org/annotation/genome/
multicellularity_project/MultiHome.html; E. cuniculi, E.
bieneusi, and N. ceranae, NCBI, http://www.ncbi.nlm.nih.
gov/sutils/genom_table.cgi?organism=fungi.

Phylogenetic analysis of Tor
The ProtTest program [100] was used to select an
appropriate model to construct the phylogenetic

Shertz et al. BMC Genomics 2010, 11:510
http://www.biomedcentral.com/1471-2164/11/510

Page 10 of 14

http://www.yeastgenome.org
http://www.genedb.org/genedb/pombe/index.jsp
http://genome.jgi-psf.org/PleosPC15_1/PleosPC15_1.home.html
http://genome.jgi-psf.org/PleosPC15_1/PleosPC15_1.home.html
http://genome.jgi-psf.org/Mucci1/Mucci1.home.html
http://genome.jgi-psf.org/Mucci1/Mucci1.home.html
http://www.broadinstitute.org/annotation/genome/rhizopus_oryzae/MultiHome.html
http://www.broadinstitute.org/annotation/genome/rhizopus_oryzae/MultiHome.html
http://genome.jgi-psf.org/Phybl1/Phybl1.home.html
http://genome.jgi-psf.org/Phybl1/Phybl1.home.html
http://www.broadinstitute.org/annotation/genome/batrachochytrium_dendrobatidis/MultiHome.html
http://www.broadinstitute.org/annotation/genome/batrachochytrium_dendrobatidis/MultiHome.html
http://www.broadinstitute.org/annotation/genome/batrachochytrium_dendrobatidis/MultiHome.html
http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html
http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html
http://genome.jgi-psf.org/Monbr1/Monbr1.home.html
http://genome.jgi-psf.org/Monbr1/Monbr1.home.html
http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html
http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html
http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html
http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html
http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi?organism=fungi
http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi?organism=fungi


relationship of the Tor proteins of the studied species.
For this study, the best model for phylogenetic construc-
tion of the Tor protein using maximum likelihood (ML)
was JTT+I+G+F [101]. The ML tree was generated
using PhyML with the JTT+I+G+F mode with 500 boot-
strap replicates [102,103]. The Tor amino acid
sequences from all species were aligned with CLUSTAL
W [104].

Synteny analysis of TOR paralogs
Tor homologs in fungal species were identified with
BLAST [105] using TOR1 and TOR2 of S. cerevisiae as
query sequences. The TOR sequence and flanking
regions (up to 100 kb) were extracted from correspond-
ing contigs or chromosomal sequences. To analyze the
synteny of TOR and flanking regions, we constructed a
database of one TOR and flanking region sequence and
used the other TOR homolog and flanking region
sequence to perform tBLASTx searches in the database
(BLOSUM62 matrix; E-value = 1e-3; gap cost: existence
11, extension 1; and low complexity regions filter). The
tBLASTx results were parsed and formatted using an in-
house Perl script (available upon request). The parsed
and formatted tBLASTx results were then imported into
Artemis software [106] for synteny analysis. We
employed a cutoff value of 100 bp to filter short non-
significant matches between query and database
sequences.

Additional material

Additional file 1: supplemental Figure 1 - Syntenic conservation of
genomic area surrounding TOR1 and TOR2 in Candida glabrata. The
top bar represents C. glabrata chromosome F and the bottom bar
represents C. glabrata chromosome K. On chromosome F, the first five
genes correspond to CAGL0F00110g, CAGL0F00121g, CAGL0F00143g,
CAGL0F00154g, and CAGL0F00165g. Red lines indicate syntenic genes
oriented in the same direction whereas blue lines indicate syntenic
genes oriented in the opposite direction (i.e., + strand and - strand).
Because S. cerevisiae retained 8% of its duplicated genes and C. glabrata
retained only 2%, we had to use a larger window to detect syntenic
gene pairs. C. glabrata has retained the other S. cerevisiae homologs
(PTK1/PTK2 and MNN4/YJR061W) in the Tor block in duplicate, but they
are located in separate blocks on C. glabrata chromosome 8, unlinked to
TOR1 (chromosome 6) or TOR2 (chromosome 11).

Additional file 2: supplemental figure 2 - There is no syntenic
conservation in Schizosaccharomyces species surrounding the TOR
genomic regions. Red lines indicate syntenic genes oriented in the
same direction whereas blue lines indicate syntenic genes oriented in
the opposite direction (i.e., + strand and - strand). No syntenic
conservation was observed in the separate species, further supporting
our hypothesis of an independent segmental gene duplication in the
Schizosaccharomyces common ancestor.

Additional file 3: supplemental Table 1 - Accession numbers of
putative Tor pathway components. Putative Tor pathway components
were assigned using reciprocal best hit BLAST matches with the
following public databases: S. cerevisiae, SGD, http://www.yeastgenome.
org; S. pombe, GeneDB, http://www.genedb.org/genedb/pombe/index.
jsp; P. ostreatus, JGI, http://genome.jgi-psf.org/PleosPC15_1/PleosPC15_1.
home.html; M. circinelloides, JGI and the Mucor Genome Project, http://

genome.jgi-psf.org/Mucci1/Mucci1.home.html; R. oryzae, Broad Institute,
http://www.broadinstitute.org/annotation/genome/rhizopus_oryzae/
MultiHome.html; P. blakesleeanus, JGI, http://genome.jgi-psf.org/Phybl1/
Phybl1.home.html; B. dendrobatidis, Broad Institute, http://www.
broadinstitute.org/annotation/genome/batrachochytrium_dendrobatidis/
MultiHome.html; S. punctatus, Broad Institute and the UNICORN initiative,
http://www.broadinstitute.org/annotation/genome/
multicellularity_project/MultiHome.html; M. brevicollis, JGI, http://genome.
jgi-psf.org/Monbr1/Monbr1.home.html; S. rosetta, Broad Institute and the
UNICORN initiative, http://www.broadinstitute.org/annotation/genome/
multicellularity_project/MultiHome.html; C. owczarzaki, Broad Institute
and the UNICORN initiative, http://www.broadinstitute.org/annotation/
genome/multicellularity_project/MultiHome.html; E. cuniculi, E. bieneusi,
and N. ceranae, NCBI, http://www.ncbi.nlm.nih.gov/sutils/genom_table.
cgi?organism=fungi.
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BackgroundThe nutrient-sensing target of rapamycin (Tor) pathway is highly conserved among eukaryotes and governs several essential cellular processes including protein synthesis, ribosome biogenesis, autophagy, and cytoskeletal organization 123. In the fungal kingdom, the Tor pathway has been best studied in the budding yeast Saccharomyces cerevisiae 234, the fission yeast Schizosaccharomyces pombe 56, and the human pathogen Candida albicans 5678. However, little is known about Tor in basal fungal lineages, including the Zygomycota and Chytridiomycota.In S. cerevisiae and S. pombe, two Tor paralogs form distinct complexes known as Tor Complex 1 (TORC1) and Tor Complex 2 (TORC2) 9101112, while in most other species, including humans, a single Tor protein can populate both complexes 11121314. Interestingly, S. cerevisiae Tor2 can complement the loss of Tor1, but Tor1 cannot complement the loss of Tor2 1516. Two Tor paralogs have also been identified in a metazoan, the silkworm Bombyx mori 17 and three Tor paralogs were identified in the trypanosomatid parasites Leishmania major 18 and the related species Trypanosoma brucei 19, the first reported Tor triumvirates.The ScTORC1 is sensitive to rapamycin and controls protein synthesis, mRNA synthesis and degradation, ribosome biogenesis, and autophagy. TORC2 is insensitive to rapamycin and is involved in the control of actin polarization and cell wall integrity 916. TORC1 consists of Tor1 or Tor2, Kog1 20, Tco89, and Lst8 21, while TORC2 contains Tor2, Lst8, Avo1, Avo2, and Avo3 22 (Figure 1A). Recently, the EGO-GTPase complex and its orthologs were shown to convey amino acid signals for TORC1 activation in yeast, insects, and mammals 23242526. In S. cerevisiae, immediate effectors of TORC1 include the PP2A-like phosphatase Sit4 27 and the AGC kinase Sch9 28. In S. pombe, Tor participates in other cellular functions including nutrient signaling 29, cell growth and differentiation 30, mitotic commitment 31, and sexual development 11 (Figure 1B).The structure of the Tor proteins is remarkably conserved (Figure 2) and features several domains for protein-protein interactions including N-terminal HEAT (Huntingtin, Elongation factor 3, PP2A A subunit, Tor) repeats 32, a FAT (FRAP, ATM, and TRRAP) domain 3334, and an FRB (FK506-Rapamycin Binding) 35 domain. The kinase and the FATC (FAT domain at the C-terminus) 3236 domains are present in the C-terminal region.The Tor inhibitor rapamycin blocks cell proliferation and is currently used as an immunosuppressive drug for organ and tissue transplant recipients and a chemotherapy agent against a variety of solid cancers 37383940. Rapamycin binds to the prolyl isomerase FKBP12 to form a protein-drug complex that then interacts with the Tor FRB domain in a ternary complex 4142. S. cerevisiae cells treated with rapamycin display phenotypes associated with nutrient depletion including G1 cell cycle arrest, cellular volume expansion, protein synthesis inhibition, glycogen accumulation, and autophagy 3543.Genetic analysis in S. cerevisiae characterizing rapamycin-resistant mutants led to the identification of FKBP12 as the intracellular receptor for rapamycin and defined Tor1 and Tor2 as the targets of the FKBP12-rapamycin complex 4. Subsequent studies resulted in the identification and characterization of the TOR1 and TOR2 gene products 1544 as well as the elucidation of the Tor signaling cascade 8454647. These pioneering studies aided in the identification of the mammalian Tor ortholog and characterization of this highly conserved signaling cascade 84849. Remarkably, expression of the human FKBP12 ortholog in yeast fpr1 (the gene that encodes FKBP12) deletion mutants complements to restore rapamycin sensitivity, and hybrid Tor proteins consisting of the yeast N-terminal domain fused to the mammalian Tor kinase domain are also functional in yeast 50. Thus, the Tor pathway has been functionally and structurally conserved from yeasts to humans over the billion years of evolution separating the two species from their last common ancestor.We now know that the fungal and metazoan kingdoms are both within the opisthokont lineage of eukaryotes and are thus more closely related to each other than the vast majority of eukaryotic organisms 5152. Moreover, these two highly successful kingdoms shared a last common ancestor as recently as one billion years ago, much more recently than most eukaryotes. Recent initiatives, particularly the UNICORN project, have facilitated the sequencing of several opisthokonts related to the last common ancestor of the metazoans and fungi, providing an interesting window into the evolution of both fungi and animals 53545556. Thus, studies on the evolutionary trajectory of the fungal kingdom in general, and of the Tor signaling cascade in particular, promise to reveal insights about how orthologous pathways function in the more complex milieu of multicellular metazoan organisms.In this study, we have capitalized upon the wealth of available genomic information by annotating the Tor pathway in several fungal organisms in which this pathway has not been described. Our study included selected species in the major groups of the fungal kingdom with genome sequences available: the basidiomycete Pleurotus ostreatus; the Mucorales zygomycetes Mucor circinelloides, Rhizopus oryzae, and Phycomyces blakesleeanus; the chytridiomycetes Spizellomyces punctatus and Batrachochytrium dendrobatidis; the microsporidian species Encephalitozoon cuniculi, Enterocytozoon bieneusi, and Nosema ceranae; and the related non-fungal opisthokonts Capsaspora owczarzaki, Salpingoeca rosetta, and Monosiga brevicollis. Whereas the Tor pathway is conserved throughout the eukaryotes, strikingly, microsporidian species with their highly reduced and compacted genomes lack the entire Tor pathway. We have also investigated gene and genome duplication events that resulted in two Tor homologs in S. cerevisiae, S. pombe, P. ostreatus, and B. dendrobatidis, and the loss of a second Tor homolog following a whole genome duplication event in R. oryzae.Results and DiscussionConservation of the Tor signaling pathway molecular componentsThe Tor pathway is well conserved among nearly all eukaryotic species examined to date. Tor is essential for life and is the target of the potent drug rapamycin in fungi, humans, and other eukaryotic organisms 2121941. Tor originated early during the eukaryotic radiation, as it is present in the basal eukaryotes Giardia lamblia 57, L. major 18 and T. brucei 19, and also in plants 58. Here we focused on the Tor pathway in the fungal kingdom and other representative unicellular opisthokont species outside of the fungi. Several genes encoding Tor complex components, upstream regulators, and downstream effectors were identified in all major groups throughout the fungal kingdom (Figure 1, Table 1). Because we used BLASTp reciprocal best hits (RBH) to identify orthologs, in some cases the absence of an ortholog in our results may represent only a failure to detect it with this method. Further, functional homologs that are not sufficiently similar enough in sequence to be identified may be present. Overall, a high degree of pathway conservation is observed in the Tor signaling cascade throughout the fungal kingdom, with the exception of microsporidia in which all Tor pathway components are absent. In addition, several pathway components are conserved in the related unicellular opisthokonts M. brevicollis, S. rosetta, and C. owczarzaki (Table 2).In S. cerevisiae, Tor1 and Tor2 interact with several proteins to form TORC1 and TORC2. TORC1 contains Tor1 or Tor2, Kog1, Tco89, and Lst8. Kog1 functions as a substrate-recruiting subunit in mammalian TORC1 (mTORC1) 13596061. A gene encoding a putative Kog1 homolog was identified in all species included in this study, with the exception of the microsporidia and S. rosetta (Tables 1 and 2). Mutation of TCO89 results in hypersensitivity to rapamycin and affects cellular integrity in S. cerevisiae 21. Tco89 is only found in S. cerevisiae and could have resulted from a specialization of the pathway exclusive to Saccharomyces species (Table 1). However, while a BLASTp search did not identify Tco89 homologs in other species, S. pombe has been reported to contain a functional homolog [GenBank:NP_588232] 12, and this suggests that functional homologs may exist in other fungal species as well. However, no homologs were identified when using S.�pombe Tco89 as a query sequence. Lst8 binds to the Tor kinase domain in S. cerevisiae to stimulate catalytic activity 9 and a putative Lst8 homolog is conserved in most species analyzed except microsporidia and S.�rosetta (Tables 1 and 2).Additional BLASTp searches identified a single Tor homolog in the following species: Lachancea thermotolerans CBS6340 [GenBank:XP_002552336], Pichia pastoris GS115 [GenBank:XP_002491471], Pichia stipitis CBS6054 [GenBank:XP_001385651], Debaryomyces hansenii CBS767 [GenBank:XP_002770885], Yarrowia lipolytica CLIB122 [GenBank:XP_505106], Podospora anserina strain S mat+ [GenBank:XP_001903968], Chaetomium globosum CBS148.51 [GenBank:XP_001226647], Magnaporthe oryzae 70-15 [GenBank:XP_001414541], Gibberella zeae PH-1 [GenBank:XP_388309], Aspergillus fumigatus Af293 [GenBank:XP_755360], Aspergillus flavus NRRL3357 [GenBank:XP_002377897], Neosartorya fischeri NRRL181 [GenBank:XP_001260509], Aspergillus terreus NIH2624 [GenBank:XP_001213640], Aspergillus nidulans FGSCA4 [GenBank:XP_663586], Aspergillus clavatus NRRL1 [GenBank:XP_001275326], Aspergillus oryzae RIB40 [GenBank: XP_001826216], and Aspergillus niger CBS513.88 [GenBank:XP_001397781]. These ascomycetes were not included in further studies.In yeast and mammals, TORC2 controls spatial aspects of growth. TORC2 includes Tor2, Avo1, Avo2, Avo3, and Bit61 922. Avo1 plays an essential role in actin cytoskeleton polarization 22 and is conserved throughout the organisms that were the focus of this study (Table 1) except in S. rosetta and C. owczarzaki (Table 2). However, due to high divergence of the AVO1 sequence amongst the known homologs, it is possible that the S. rosetta and C. owczarzaki homologs cannot be identified using the BLASTp algorithm. Avo2 is a nonessential substrate adaptor for TORC2 22 and potential homologs were identified in most species studied, with the exceptions of S. pombe, P. ostreatus, the three microsporidian species (Table 1), and M. brevicollis (Table 2). In S. cerevisiae, Avo3 (also know as Tsc11) controls cytoskeletal dynamics 922, and homologs are conserved throughout the species examined (Tables 1 and 2). Bit61, a nonessential protein that associates with TORC2 21, was only identified in S. cerevisiae (Tables 1 and 2).Upstream regulators of Tor include Tsc1 and Tsc2 (Tuberous Sclerosis 1 and 2) and the GTPase Rheb (Ras homolog enhanced in brain). In S. pombe and other eukaryotes, Tsc1 and Tsc2 form a GTPase-activating complex that negatively regulates the action of Rheb to activate TORC1 266263. Tsc1 and Tsc2 putative homologs were identified in most species in the study, with the exception of S. cerevisiae (Table 1); however, Tsc1 homologs were not identified in B. dendrobatidis, S. rosetta, or C. owczarzaki (Tables 1 and 2). In mammals and insects, four Rag GTPases (RagA-D) bind raptor (Kog1) to mediate TORC1 signaling in response to amino acids 2426. RagA and RagB are orthologs of S.�cerevisiae Gtr1 whereas RagC and RagD are orthologs of S. cerevisiae Gtr2 23. Gtr1 and Gtr2 form a complex along with Ego1 and Ego3 known as EGOC/GSE 25, which is regulated by the GTP exchange factor Vam6 23. Interestingly we found presumptive Gtr1 and Gtr2 orthologs in species in this study with the exception of microsporidia (Table 1), and Gtr1 was not identified in M. brevicollis (Table 2). However, Ego1 and Ego3, which anchor Gtr1 and Gtr2 to endosomal and vacuolar membranes, are unique to S. cerevisiae and were not identified in the other species (Table 1). This suggests that the specific EGO complex architecture might be restricted to Saccharomyces, though it is possible that functional homologs may be present in other species.In fungi, several downstream effectors are targets of Tor signaling. The PP2A phosphatase Sit4 and its regulatory subunit Tap42 regulate the expression of several TORC1-controlled genes and Gcn2-regulated translation 36465. A Sit4 homolog was identified in R. oryzae (Table 1), though a homolog of the regulatory subunit Tap42 was not (Table 1). In S. rosetta, a Sit4 homolog was not identified, though Tap42 was (Table 2). Both of these situations could indicate rewiring of the pathway, or alternatively these findings could be a result of insufficient similarity to detect with a RBH search method. Sch9, a member of the AGC kinase family and the functional homolog of the p70 S6 kinase, is a direct substrate of S. cerevisiae TORC1 involved in ribosome biogenesis 2866. Sch9 was not identified in RBH BLASTp searches with S. cerevisiae Sch9 in M. circinelloides, P. blakesleeanus, the microsporidia (Table 1), or S. rosetta (Table 2), but was identified in all other species. Putative homologs of Ypk2 kinase, a regulator of ceramide synthesis controlled by TORC2 signaling 67, were only identified in S. cerevisiae, S. pombe, (Table 1), M. brevicollis, S. rosetta, and C. owczarzaki (Table 2). Notably, the failure to detect many homologs in M. brevicollis, S. rosetta, and C. owczarzaki could be due to their evolutionary distance from the other organisms in the study and their gene divergence.Evolutionary conservation of Tor kinase protein structureThe Tor kinases are phosphatidylinositol kinase-related kinases (PIKKs) 68 and aside from their known protein kinase function also serve as evolutionary constrained scaffolds with several protein-protein interaction domains that mediate multi-protein complex formation 69. Tor protein architecture was annotated using SMART 7071 and we found that it has been maintained throughout the species of this study (Figure 2). N-terminal HEAT repeats are present in varying numbers and serve as scaffolding structures for protein-protein interactions 327273. Similarly, the FAT/toxic domain and the accompanying C-terminal FATC domain also participate in protein scaffolding and are present and conserved in all species subject to analysis. Over-expression of the FAT domain has a dominant negative effect on cell growth in yeast and this effect can be suppressed by over-expression of phospholipase C 33. The kinase domain has similarities to both lipid and protein kinases, but it is a bona fide protein kinase. The FRB (FKBP12-rapamycin binding) domain is a highly conserved 100 amino acid region of Tor with several residues that are known to be required for binding the FKBP12-rapamycin drug complex 42.In addition, the FRB domain contains several residues necessary for both phosphatidic acid binding and rapamycin interaction 7475. In mammals, phosphatidic acid binding to the FRB region may promote the assembly of mTOR complexes. It has been proposed that the potent effect of the Tor inhibitor rapamycin may be due to direct competition for overlapping phosphatidic acid binding sites within the FRB domain 76. Mutation of the conserved amino acid residues S1975, W2041, or F2048 in the FRB domain confers rapamycin resistance in S. cerevisiae 44277. Strikingly, the corresponding amino acid residues are conserved in all species examined (Figure 3). In mTOR, phosphatidic acid binding is disrupted by mutations of L2031, F2309, and Y2105 75, corresponding to S. cerevisiae Tor2 L1971, F1979, and Y2045, respectively, all of which are conserved in the studied fungal species (Figure 3).Duplication of Tor in the fungal kingdomApproximately 100 million years ago, the S. cerevisiae ancestor underwent a whole genome duplication (WGD) event, and species that descend from this evolutionary event retained duplicated subsets of genes. S. cerevisiae retained approximately 8% of duplicated genes 7879, while other fungi in this lineage have maintained varying numbers of gene duplicates, such as Candida glabrata in which a smaller number (~2%) of these pairs are maintained 80. Interestingly, several of these species, including S. cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, S. bayanus, S. castellii, and C. glabrata have retained two TOR paralogs, whereas species outside of the WGD clade, including Kluyveromyces lactis and Ashbya gossypii, have only a single TOR gene.The fates of duplicated gene paralogs can be explained through the duplication, degeneration, and complementation (DDC) model of gene duplication 81. In species with a single Tor, this protein populates both TORC1 and TORC2, each of which has distinct functions. Following duplication, each paralog likely sub-functionalized to carry out some, but not all, of its previous functions so that between the two paralogs, each process is performed. In S. cerevisiae, for example, Tor1 exclusively functions within TORC1, while Tor2 preferentially populates TORC2 but can also function in TORC1. S. pombe has two Tor paralogs as a result of an independent segmental gene duplication event, and each paralog has distinct roles not necessarily equivalent to those of S. cerevisiae Tor1 and Tor2. SpTor1 is not essential, whereas SpTor2 is essential for growth 112982.We hypothesize that similar models could apply in species encoding two Tor homologs resulting from independent gene duplication events such as P. ostreatus and B. dendrobatidis. Based on their level of identity with S.�cerevisiae Tor homologs, the B. dendrobatidis genes BDEG_08293 and BDEG_05727 have been designated TOR1 and TOR2, respectively. However, these gene names are not necessarily based on functional similarity with ScTor1 and ScTor2 but rather indicate only that there are two TOR homologs in B. dendrobatidis. A�similar naming challenge is evident in S. pombe, where the functions of SpTor1 and SpTor2 are not equivalent with those of ScTor1 and ScTor2.While several species, such as those in the Saccharomyces clade, have two Tor paralogs resulting from ancient WGD events, other species have acquired a second paralog through independent segmental gene duplication events, including B. dendrobatidis and several fission yeast species closely related to S. pombe (Figure 4). Segmental gene duplications have played a major role in the evolution of species and can result in the duplication of single genes or large blocks of genes 83. In S. cerevisiae, the duplication blocks with TOR include three paralogous gene pairs that have been retained from the ancestral WGD event: PTK1/PTK2, TOR1/TOR2, and MNN4/YJR061W 78 (Figure 5A). Further, C. glabrata, an ascomycete closely related to S. cerevisiae that diverged following the WGD, has also maintained a second TOR paralog and synteny is apparent in the region flanking the TOR1 and TOR2 genes, though one must extend the analysis to >40 kb from the TOR genes to detect it (See additional file 1: Supplemental figure 1). However, because C. glabrata and S. cerevisiae have retained different subsets of genes from the ancestral WGD, the duplicated genes surrounding TOR in these species are not homologs of one another. Further, C. glabrata has maintained fewer of the synteny blocks found in S. cerevisiae, and the block containing the TOR genes (Block 42) is not conserved in C. glabrata 80.In contrast, genomic regions surrounding the Tor paralogs in S. pombe (Figure 5B) and B. dendrobatidis (Figure 5C) are not syntenically conserved. That is, the duplicated genes are not flanked by other duplicated gene pairs, and the two TOR paralogs likely resulted from independent segmental gene duplication events. Further, there are no indications of WGDs in these species. In the Schizosaccharomycotina, the TOR gene duplication occurred prior to speciation as evidenced by the fact that S. pombe, S. octosporus, S. japonicus, and S. cryophilus have each retained a second Tor paralog; the Tor orthologs across these four species are more closely related to each other than to those from other species (Figure 4). No syntenic conservation between the genomic regions containing TOR paralogs was detected in any species of the Schizosaccharomyces group, supporting the occurrence of an independent segmental gene duplication in their common ancestor (see additional file 2: supplemental Figure 2).The Taphrinomycotina is a monophyletic taxon of the Ascomycota containing the Schizosaccharomycetes, Taphrinomycetes, Neolectomycetes, and Pneumocystidomycetes. Genomes are only available for species within the Schizosaccharomycetes (S. pombe, S. octosporus, S. japonicus, and S. cryophilus) and the Taphrinomycetes (Pneumocystis carinii). While the studied Schizosaccharomyces spp. contain two Tor homologs, a single homolog was identified in P. carinii with tBLASTx using the highly conserved S. cerevisiae FRB domain of Tor1 based on sequence data produced by the Pneumocystis Genome Project (funded by the NIH NIAID) that was obtained from http://pgp.cchmc.org at the time of publication. Based on the phylogenetic placement of these two groups 84 and the available genomic information, we hypothesize that the segmental TOR duplication is unique to the Schizosaccharomyces spp. and occurred following their divergence from the common ancestor of the Taphrinomycota, as P. carinii, the other species within this taxon with available genome data, appears to contain a single Tor homolog.Interestingly, the zygomycete R. oryzae underwent a whole genome duplication event and despite retaining 12% of the resulting duplicated genes 85 compared to 8% retained genes in a separate WGD event in S. cerevisiae 7879, two Tor paralogs have not been retained; only a single Tor homolog was identified. Currently, the Zygomycota is the only group studied without an identified species containing two Tor homologs; however, there are not enough available genomes to make a definitive conclusion in this group. Other species with independent TOR duplications likely remain to be identified in all of the major fungal lineages, and as more genome sequences become available this will be addressed.During this study, we identified three additional species that possibly have two TOR paralogs: M. brevicollis, Thecamonas trahens, and Allomyces macrogynus, species that are included in the Origins of Multicellularity Project 86. While analysis is limited because of the state of the M. brevicollis (choanoflagellate) genome, it appears that an additional bonafide Tor protein is encoded with the conserved Tor protein architecture. Thecamonas trahens is a unicellular apusomonad that also contains two TOR paralogs. Interestingly, A. macrogynus is a fungus that may contain a second paralog; however, it appears that the FRB domain overlaps with the kinase domain. This may represent a case in which TOR was duplicated but is in the process of losing one of the copies. These cases are a springboard for future studies involving the duplication of TOR within and beyond the fungal kingdom.Loss of the Tor signaling pathway in microsporidiaWhile components of the Tor signaling cascade are conserved in eukaryotes from yeasts to humans, the microsporidia, a group of highly specialized obligate intracellular pathogens completely lack all of the pathway components investigated in this study. E. cuniculi has previously been noted to lack the Tor kinase 87, and we found that all pathway components including Tor were missing not only in E. cuniculi but also in its microsporidian relatives E. bieneusi and N. ceranae (Table 2). Microsporidian genomes are highly compacted and show a marked reduced gene content. The genome of the human pathogen E. cuniculi has 1997 genes distributed throughout 11 chromosomes in a 2.9 Mb genome 88, less than half the number of protein-coding genes found in Escherichia coli. For comparison, the genome of the human pathogen E. bieneusi genome is ~6 Mb with 3,804 genes 89 and the honeybee pathogen N. ceranae genome is ~7.9 Mb with 2,614 predicted genes 90. Genome reduction has been well studied in intracellular bacteria: during the specialization process from a free-living to intracellular lifestyle, massive gene loss can occur 9192939495. We hypothesize that as a consequence of their specialization to an obligate intracellular lifestyle, the need for nutrient sensing was relaxed and these obligate intracellular microsporidia acquired nutrients from within the host cytoplasm. Thus, they no longer required the Tor pathway, which is dedicated to sensing changes in the nutrient composite of the environmental milieu. However, E. cuniculi has retained some of the genes encoding signaling pathways involved in nutrient sensing in other species, including homologs of S. cerevisiae Ras1 and Ras2 (data not shown).Interestingly, P. carinii is an obligate pathogen with a reduced genome estimated to be ~8 Mb 96, which unlike microsporidia is not obligately intracellular. A�single Tor homolog was identified [Pneumocystis Genome Project:cap3_it1_grp346_contig490] using the S. cerevisiae Tor1 FRB domain in tBLASTx, supporting our hypothesis that the microsporidia have streamlined their genomes as they adopted an obligate intracellular life cycle. P. carinii likely requires Tor because it must survive in a metabolically active form outside of host cells, undergoing cell division in the extracellular milieu of the infected host lung.Many microsporidian genomes have undergone extreme genome reduction and are among the eukaryotes with the smallest genomes. In addition to fewer genes than other species (1997 in E. cuniculi compared to 6607 in S. cerevisiae), E. cuniculi has shorter genes, small intergenic distances, and very few introns 8897. This species (and to an even greater extent, E. bieneusi) lacks several genes that are necessary for biosynthetic pathways and the tricarboxylic acid cycle in free-living organisms 888998. Remarkably, E. cuniculi must acquire ATP from its host through a series of ATP transporters anciently acquired from Rickettsia- or Chlamydia-like bacteria 99, and this is an example of how E. cuniculi, and possibly other microsporidia, can hijack mechanisms of other intracellular bacteria, fungi, or the host to survive in and adapt to their highly specialized intracellular lifestyle.ConclusionsThe Tor pathway is highly conserved with some exceptions among fungi, including several pathogens. Similarly, the molecular structural organization of the Tor kinases has been remarkably conserved as well as the presumed ability to bind the FKBP12-rapamycin complex. This feature, combined with the essential nature of the rapamycin-sensitive TORC1 pathway for cell growth, should enable the development of rapamycin-based strategies for antifungal therapies. Duplications of the Tor protein occurred in most fungal groups examined, resulting from either independent segmental gene duplication events or a WGD event. The maintenance of two Tor homologs can be explained through the DDC model of gene duplication, in which the paralogs subfunctionalize and together support all of the functions of the pre-duplicated protein. In addition, species outside of the fungal kingdom with two or more TOR homologs include the metazoan B. mori, the apusomonad protozoan T. trahens, the trypanosome protozoans L. major and T. brucei, and possibly the choanoflagellate M. brevicollis. This suggests that the Tor gene has been independently duplicated multiple times since the last common ancestor of the Opisthokonta and Excavata lineages. The Tor pathway, as well as the Tor protein itself, is highly conserved in eukaryotes, so the observation that three microsporidian species are missing the entire pathway is striking. It would appear that the specialized obligate intracellular life cycle of microsporidia allows for the acquisition of nutrients from the host cell, obviating a requirement for this central nutrient-sensing pathway that is essential in all known cases of other eukaryotes for axenic growth.MethodsIdentification of pathway component homologsTor homologs were identified using the highly conserved 100 amino acid FRB domain of S. cerevisiae Tor1 in BLASTp reciprocal best-hit searches between the specific species database and the Saccharomyces Genome Database (SGD). All queries for other Tor pathway components were retrieved from SGD and homologs were identified by BLASTp reciprocal best-hit searches, with the exception of Tsc1 and Tsc2. Tsc1 and Tsc2 protein query sequences were retrieved from the S. pombe GeneDB, and homologs were identified using BLASTp searches between the S. pombe genome database and the species database. Species identification numbers are listed in Supplemental Table 1. Protein architecture of each homolog was elucidated with Simple Modular Architecture Research Tool (SMART) analysis 7071.Accession numbers are provided for putative Tor pathway components (see Additional file 3, supplemental Table 1 for the accession numbers of putative Tor pathway components) from the following public genomic databases that were used to carry out BLAST: S. cerevisiae, SGD, http://www.yeastgenome.org; S. pombe, GeneDB, http://www.genedb.org/genedb/pombe/index.jsp; P. ostreatus, JGI, http://genome.jgi-psf.org/PleosPC15_1/PleosPC15_1.home.html; M. circinelloides, JGI and the Mucor Genome Project, http://genome.jgi-psf.org/Mucci1/Mucci1.home.html; R. oryzae, Broad Institute, http://www.broadinstitute.org/annotation/genome/rhizopus_oryzae/MultiHome.html; P. blakesleeanus, JGI, http://genome.jgi-psf.org/Phybl1/Phybl1.home.html; B. dendrobatidis, Broad Institute, http://www.broadinstitute.org/annotation/genome/batrachochytrium_dendrobatidis/MultiHome.html; S. punctatus, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; M. brevicollis, JGI, http://genome.jgi-psf.org/Monbr1/Monbr1.home.html; S. rosetta, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; C. owczarzaki, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; E. cuniculi, E. bieneusi, and N. ceranae, NCBI, http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi?organism=fungi.Phylogenetic analysis of TorThe ProtTest program 100 was used to select an appropriate model to construct the phylogenetic relationship of the Tor proteins of the studied species. For this study, the best model for phylogenetic construction of the Tor protein using maximum likelihood (ML) was JTT+I+G+F 101. The ML tree was generated using PhyML with the JTT+I+G+F mode with 500 bootstrap replicates 102103. The Tor amino acid sequences from all species were aligned with CLUSTAL W 104.Synteny analysis of TOR paralogsTor homologs in fungal species were identified with BLAST 105 using TOR1 and TOR2 of S. cerevisiae as query sequences. The TOR sequence and flanking regions (up to 100 kb) were extracted from corresponding contigs or chromosomal sequences. To analyze the synteny of TOR and flanking regions, we constructed a database of one TOR and flanking region sequence and used the other TOR homolog and flanking region sequence to perform tBLASTx searches in the database (BLOSUM62 matrix; E-value = 1e-3; gap cost: existence 11, extension 1; and low complexity regions filter). The tBLASTx results were parsed and formatted using an in-house Perl script (available upon request). The parsed and formatted tBLASTx results were then imported into Artemis software 106 for synteny analysis. We employed a cutoff value of 100 bp to filter short non-significant matches between query and database sequences.Authors� contributionsCAS carried out the homolog searches and phylogenetic analysis and drafted the manuscript. RJB performed homolog searches and participated in the design of the study. WL performed the synteny and phylogenetic analysis and helped draft the manuscript. JH and MEC conceived of the study, participated in its design and helped to draft the manuscript. All authors read and approved the final manuscript.
BackgroundThe nutrient-sensing target of rapamycin (Tor) pathway is highly conserved among eukaryotes and governs several essential cellular processes including protein synthesis, ribosome biogenesis, autophagy, and cytoskeletal organization 123. In the fungal kingdom, the Tor pathway has been best studied in the budding yeast Saccharomyces cerevisiae 234, the fission yeast Schizosaccharomyces pombe 56, and the human pathogen Candida albicans 5678. However, little is known about Tor in basal fungal lineages, including the Zygomycota and Chytridiomycota.In S. cerevisiae and S. pombe, two Tor paralogs form distinct complexes known as Tor Complex 1 (TORC1) and Tor Complex 2 (TORC2) 9101112, while in most other species, including humans, a single Tor protein can populate both complexes 11121314. Interestingly, S. cerevisiae Tor2 can complement the loss of Tor1, but Tor1 cannot complement the loss of Tor2 1516. Two Tor paralogs have also been identified in a metazoan, the silkworm Bombyx mori 17 and three Tor paralogs were identified in the trypanosomatid parasites Leishmania major 18 and the related species Trypanosoma brucei 19, the first reported Tor triumvirates.The ScTORC1 is sensitive to rapamycin and controls protein synthesis, mRNA synthesis and degradation, ribosome biogenesis, and autophagy. TORC2 is insensitive to rapamycin and is involved in the control of actin polarization and cell wall integrity 916. TORC1 consists of Tor1 or Tor2, Kog1 20, Tco89, and Lst8 21, while TORC2 contains Tor2, Lst8, Avo1, Avo2, and Avo3 22 (Figure 1A). Recently, the EGO-GTPase complex and its orthologs were shown to convey amino acid signals for TORC1 activation in yeast, insects, and mammals 23242526. In S. cerevisiae, immediate effectors of TORC1 include the PP2A-like phosphatase Sit4 27 and the AGC kinase Sch9 28. In S. pombe, Tor participates in other cellular functions including nutrient signaling 29, cell growth and differentiation 30, mitotic commitment 31, and sexual development 11 (Figure 1B).The structure of the Tor proteins is remarkably conserved (Figure 2) and features several domains for protein-protein interactions including N-terminal HEAT (Huntingtin, Elongation factor 3, PP2A A subunit, Tor) repeats 32, a FAT (FRAP, ATM, and TRRAP) domain 3334, and an FRB (FK506-Rapamycin Binding) 35 domain. The kinase and the FATC (FAT domain at the C-terminus) 3236 domains are present in the C-terminal region.The Tor inhibitor rapamycin blocks cell proliferation and is currently used as an immunosuppressive drug for organ and tissue transplant recipients and a chemotherapy agent against a variety of solid cancers 37383940. Rapamycin binds to the prolyl isomerase FKBP12 to form a protein-drug complex that then interacts with the Tor FRB domain in a ternary complex 4142. S. cerevisiae cells treated with rapamycin display phenotypes associated with nutrient depletion including G1 cell cycle arrest, cellular volume expansion, protein synthesis inhibition, glycogen accumulation, and autophagy 3543.Genetic analysis in S. cerevisiae characterizing rapamycin-resistant mutants led to the identification of FKBP12 as the intracellular receptor for rapamycin and defined Tor1 and Tor2 as the targets of the FKBP12-rapamycin complex 4. Subsequent studies resulted in the identification and characterization of the TOR1 and TOR2 gene products 1544 as well as the elucidation of the Tor signaling cascade 8454647. These pioneering studies aided in the identification of the mammalian Tor ortholog and characterization of this highly conserved signaling cascade 84849. Remarkably, expression of the human FKBP12 ortholog in yeast fpr1 (the gene that encodes FKBP12) deletion mutants complements to restore rapamycin sensitivity, and hybrid Tor proteins consisting of the yeast N-terminal domain fused to the mammalian Tor kinase domain are also functional in yeast 50. Thus, the Tor pathway has been functionally and structurally conserved from yeasts to humans over the billion years of evolution separating the two species from their last common ancestor.We now know that the fungal and metazoan kingdoms are both within the opisthokont lineage of eukaryotes and are thus more closely related to each other than the vast majority of eukaryotic organisms 5152. Moreover, these two highly successful kingdoms shared a last common ancestor as recently as one billion years ago, much more recently than most eukaryotes. Recent initiatives, particularly the UNICORN project, have facilitated the sequencing of several opisthokonts related to the last common ancestor of the metazoans and fungi, providing an interesting window into the evolution of both fungi and animals 53545556. Thus, studies on the evolutionary trajectory of the fungal kingdom in general, and of the Tor signaling cascade in particular, promise to reveal insights about how orthologous pathways function in the more complex milieu of multicellular metazoan organisms.In this study, we have capitalized upon the wealth of available genomic information by annotating the Tor pathway in several fungal organisms in which this pathway has not been described. Our study included selected species in the major groups of the fungal kingdom with genome sequences available: the basidiomycete Pleurotus ostreatus; the Mucorales zygomycetes Mucor circinelloides, Rhizopus oryzae, and Phycomyces blakesleeanus; the chytridiomycetes Spizellomyces punctatus and Batrachochytrium dendrobatidis; the microsporidian species Encephalitozoon cuniculi, Enterocytozoon bieneusi, and Nosema ceranae; and the related non-fungal opisthokonts Capsaspora owczarzaki, Salpingoeca rosetta, and Monosiga brevicollis. Whereas the Tor pathway is conserved throughout the eukaryotes, strikingly, microsporidian species with their highly reduced and compacted genomes lack the entire Tor pathway. We have also investigated gene and genome duplication events that resulted in two Tor homologs in S. cerevisiae, S. pombe, P. ostreatus, and B. dendrobatidis, and the loss of a second Tor homolog following a whole genome duplication event in R. oryzae.Results and DiscussionConservation of the Tor signaling pathway molecular componentsThe Tor pathway is well conserved among nearly all eukaryotic species examined to date. Tor is essential for life and is the target of the potent drug rapamycin in fungi, humans, and other eukaryotic organisms 2121941. Tor originated early during the eukaryotic radiation, as it is present in the basal eukaryotes Giardia lamblia 57, L. major 18 and T. brucei 19, and also in plants 58. Here we focused on the Tor pathway in the fungal kingdom and other representative unicellular opisthokont species outside of the fungi. Several genes encoding Tor complex components, upstream regulators, and downstream effectors were identified in all major groups throughout the fungal kingdom (Figure 1, Table 1). Because we used BLASTp reciprocal best hits (RBH) to identify orthologs, in some cases the absence of an ortholog in our results may represent only a failure to detect it with this method. Further, functional homologs that are not sufficiently similar enough in sequence to be identified may be present. Overall, a high degree of pathway conservation is observed in the Tor signaling cascade throughout the fungal kingdom, with the exception of microsporidia in which all Tor pathway components are absent. In addition, several pathway components are conserved in the related unicellular opisthokonts M. brevicollis, S. rosetta, and C. owczarzaki (Table 2).In S. cerevisiae, Tor1 and Tor2 interact with several proteins to form TORC1 and TORC2. TORC1 contains Tor1 or Tor2, Kog1, Tco89, and Lst8. Kog1 functions as a substrate-recruiting subunit in mammalian TORC1 (mTORC1) 13596061. A gene encoding a putative Kog1 homolog was identified in all species included in this study, with the exception of the microsporidia and S. rosetta (Tables 1 and 2). Mutation of TCO89 results in hypersensitivity to rapamycin and affects cellular integrity in S. cerevisiae 21. Tco89 is only found in S. cerevisiae and could have resulted from a specialization of the pathway exclusive to Saccharomyces species (Table 1). However, while a BLASTp search did not identify Tco89 homologs in other species, S. pombe has been reported to contain a functional homolog [GenBank:NP_588232] 12, and this suggests that functional homologs may exist in other fungal species as well. However, no homologs were identified when using S.�pombe Tco89 as a query sequence. Lst8 binds to the Tor kinase domain in S. cerevisiae to stimulate catalytic activity 9 and a putative Lst8 homolog is conserved in most species analyzed except microsporidia and S.�rosetta (Tables 1 and 2).Additional BLASTp searches identified a single Tor homolog in the following species: Lachancea thermotolerans CBS6340 [GenBank:XP_002552336], Pichia pastoris GS115 [GenBank:XP_002491471], Pichia stipitis CBS6054 [GenBank:XP_001385651], Debaryomyces hansenii CBS767 [GenBank:XP_002770885], Yarrowia lipolytica CLIB122 [GenBank:XP_505106], Podospora anserina strain S mat+ [GenBank:XP_001903968], Chaetomium globosum CBS148.51 [GenBank:XP_001226647], Magnaporthe oryzae 70-15 [GenBank:XP_001414541], Gibberella zeae PH-1 [GenBank:XP_388309], Aspergillus fumigatus Af293 [GenBank:XP_755360], Aspergillus flavus NRRL3357 [GenBank:XP_002377897], Neosartorya fischeri NRRL181 [GenBank:XP_001260509], Aspergillus terreus NIH2624 [GenBank:XP_001213640], Aspergillus nidulans FGSCA4 [GenBank:XP_663586], Aspergillus clavatus NRRL1 [GenBank:XP_001275326], Aspergillus oryzae RIB40 [GenBank: XP_001826216], and Aspergillus niger CBS513.88 [GenBank:XP_001397781]. These ascomycetes were not included in further studies.In yeast and mammals, TORC2 controls spatial aspects of growth. TORC2 includes Tor2, Avo1, Avo2, Avo3, and Bit61 922. Avo1 plays an essential role in actin cytoskeleton polarization 22 and is conserved throughout the organisms that were the focus of this study (Table 1) except in S. rosetta and C. owczarzaki (Table 2). However, due to high divergence of the AVO1 sequence amongst the known homologs, it is possible that the S. rosetta and C. owczarzaki homologs cannot be identified using the BLASTp algorithm. Avo2 is a nonessential substrate adaptor for TORC2 22 and potential homologs were identified in most species studied, with the exceptions of S. pombe, P. ostreatus, the three microsporidian species (Table 1), and M. brevicollis (Table 2). In S. cerevisiae, Avo3 (also know as Tsc11) controls cytoskeletal dynamics 922, and homologs are conserved throughout the species examined (Tables 1 and 2). Bit61, a nonessential protein that associates with TORC2 21, was only identified in S. cerevisiae (Tables 1 and 2).Upstream regulators of Tor include Tsc1 and Tsc2 (Tuberous Sclerosis 1 and 2) and the GTPase Rheb (Ras homolog enhanced in brain). In S. pombe and other eukaryotes, Tsc1 and Tsc2 form a GTPase-activating complex that negatively regulates the action of Rheb to activate TORC1 266263. Tsc1 and Tsc2 putative homologs were identified in most species in the study, with the exception of S. cerevisiae (Table 1); however, Tsc1 homologs were not identified in B. dendrobatidis, S. rosetta, or C. owczarzaki (Tables 1 and 2). In mammals and insects, four Rag GTPases (RagA-D) bind raptor (Kog1) to mediate TORC1 signaling in response to amino acids 2426. RagA and RagB are orthologs of S.�cerevisiae Gtr1 whereas RagC and RagD are orthologs of S. cerevisiae Gtr2 23. Gtr1 and Gtr2 form a complex along with Ego1 and Ego3 known as EGOC/GSE 25, which is regulated by the GTP exchange factor Vam6 23. Interestingly we found presumptive Gtr1 and Gtr2 orthologs in species in this study with the exception of microsporidia (Table 1), and Gtr1 was not identified in M. brevicollis (Table 2). However, Ego1 and Ego3, which anchor Gtr1 and Gtr2 to endosomal and vacuolar membranes, are unique to S. cerevisiae and were not identified in the other species (Table 1). This suggests that the specific EGO complex architecture might be restricted to Saccharomyces, though it is possible that functional homologs may be present in other species.In fungi, several downstream effectors are targets of Tor signaling. The PP2A phosphatase Sit4 and its regulatory subunit Tap42 regulate the expression of several TORC1-controlled genes and Gcn2-regulated translation 36465. A Sit4 homolog was identified in R. oryzae (Table 1), though a homolog of the regulatory subunit Tap42 was not (Table 1). In S. rosetta, a Sit4 homolog was not identified, though Tap42 was (Table 2). Both of these situations could indicate rewiring of the pathway, or alternatively these findings could be a result of insufficient similarity to detect with a RBH search method. Sch9, a member of the AGC kinase family and the functional homolog of the p70 S6 kinase, is a direct substrate of S. cerevisiae TORC1 involved in ribosome biogenesis 2866. Sch9 was not identified in RBH BLASTp searches with S. cerevisiae Sch9 in M. circinelloides, P. blakesleeanus, the microsporidia (Table 1), or S. rosetta (Table 2), but was identified in all other species. Putative homologs of Ypk2 kinase, a regulator of ceramide synthesis controlled by TORC2 signaling 67, were only identified in S. cerevisiae, S. pombe, (Table 1), M. brevicollis, S. rosetta, and C. owczarzaki (Table 2). Notably, the failure to detect many homologs in M. brevicollis, S. rosetta, and C. owczarzaki could be due to their evolutionary distance from the other organisms in the study and their gene divergence.Evolutionary conservation of Tor kinase protein structureThe Tor kinases are phosphatidylinositol kinase-related kinases (PIKKs) 68 and aside from their known protein kinase function also serve as evolutionary constrained scaffolds with several protein-protein interaction domains that mediate multi-protein complex formation 69. Tor protein architecture was annotated using SMART 7071 and we found that it has been maintained throughout the species of this study (Figure 2). N-terminal HEAT repeats are present in varying numbers and serve as scaffolding structures for protein-protein interactions 327273. Similarly, the FAT/toxic domain and the accompanying C-terminal FATC domain also participate in protein scaffolding and are present and conserved in all species subject to analysis. Over-expression of the FAT domain has a dominant negative effect on cell growth in yeast and this effect can be suppressed by over-expression of phospholipase C 33. The kinase domain has similarities to both lipid and protein kinases, but it is a bona fide protein kinase. The FRB (FKBP12-rapamycin binding) domain is a highly conserved 100 amino acid region of Tor with several residues that are known to be required for binding the FKBP12-rapamycin drug complex 42.In addition, the FRB domain contains several residues necessary for both phosphatidic acid binding and rapamycin interaction 7475. In mammals, phosphatidic acid binding to the FRB region may promote the assembly of mTOR complexes. It has been proposed that the potent effect of the Tor inhibitor rapamycin may be due to direct competition for overlapping phosphatidic acid binding sites within the FRB domain 76. Mutation of the conserved amino acid residues S1975, W2041, or F2048 in the FRB domain confers rapamycin resistance in S. cerevisiae 44277. Strikingly, the corresponding amino acid residues are conserved in all species examined (Figure 3). In mTOR, phosphatidic acid binding is disrupted by mutations of L2031, F2309, and Y2105 75, corresponding to S. cerevisiae Tor2 L1971, F1979, and Y2045, respectively, all of which are conserved in the studied fungal species (Figure 3).Duplication of Tor in the fungal kingdomApproximately 100 million years ago, the S. cerevisiae ancestor underwent a whole genome duplication (WGD) event, and species that descend from this evolutionary event retained duplicated subsets of genes. S. cerevisiae retained approximately 8% of duplicated genes 7879, while other fungi in this lineage have maintained varying numbers of gene duplicates, such as Candida glabrata in which a smaller number (~2%) of these pairs are maintained 80. Interestingly, several of these species, including S. cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, S. bayanus, S. castellii, and C. glabrata have retained two TOR paralogs, whereas species outside of the WGD clade, including Kluyveromyces lactis and Ashbya gossypii, have only a single TOR gene.The fates of duplicated gene paralogs can be explained through the duplication, degeneration, and complementation (DDC) model of gene duplication 81. In species with a single Tor, this protein populates both TORC1 and TORC2, each of which has distinct functions. Following duplication, each paralog likely sub-functionalized to carry out some, but not all, of its previous functions so that between the two paralogs, each process is performed. In S. cerevisiae, for example, Tor1 exclusively functions within TORC1, while Tor2 preferentially populates TORC2 but can also function in TORC1. S. pombe has two Tor paralogs as a result of an independent segmental gene duplication event, and each paralog has distinct roles not necessarily equivalent to those of S. cerevisiae Tor1 and Tor2. SpTor1 is not essential, whereas SpTor2 is essential for growth 112982.We hypothesize that similar models could apply in species encoding two Tor homologs resulting from independent gene duplication events such as P. ostreatus and B. dendrobatidis. Based on their level of identity with S.�cerevisiae Tor homologs, the B. dendrobatidis genes BDEG_08293 and BDEG_05727 have been designated TOR1 and TOR2, respectively. However, these gene names are not necessarily based on functional similarity with ScTor1 and ScTor2 but rather indicate only that there are two TOR homologs in B. dendrobatidis. A�similar naming challenge is evident in S. pombe, where the functions of SpTor1 and SpTor2 are not equivalent with those of ScTor1 and ScTor2.While several species, such as those in the Saccharomyces clade, have two Tor paralogs resulting from ancient WGD events, other species have acquired a second paralog through independent segmental gene duplication events, including B. dendrobatidis and several fission yeast species closely related to S. pombe (Figure 4). Segmental gene duplications have played a major role in the evolution of species and can result in the duplication of single genes or large blocks of genes 83. In S. cerevisiae, the duplication blocks with TOR include three paralogous gene pairs that have been retained from the ancestral WGD event: PTK1/PTK2, TOR1/TOR2, and MNN4/YJR061W 78 (Figure 5A). Further, C. glabrata, an ascomycete closely related to S. cerevisiae that diverged following the WGD, has also maintained a second TOR paralog and synteny is apparent in the region flanking the TOR1 and TOR2 genes, though one must extend the analysis to >40 kb from the TOR genes to detect it (See additional file 1: Supplemental figure 1). However, because C. glabrata and S. cerevisiae have retained different subsets of genes from the ancestral WGD, the duplicated genes surrounding TOR in these species are not homologs of one another. Further, C. glabrata has maintained fewer of the synteny blocks found in S. cerevisiae, and the block containing the TOR genes (Block 42) is not conserved in C. glabrata 80.In contrast, genomic regions surrounding the Tor paralogs in S. pombe (Figure 5B) and B. dendrobatidis (Figure 5C) are not syntenically conserved. That is, the duplicated genes are not flanked by other duplicated gene pairs, and the two TOR paralogs likely resulted from independent segmental gene duplication events. Further, there are no indications of WGDs in these species. In the Schizosaccharomycotina, the TOR gene duplication occurred prior to speciation as evidenced by the fact that S. pombe, S. octosporus, S. japonicus, and S. cryophilus have each retained a second Tor paralog; the Tor orthologs across these four species are more closely related to each other than to those from other species (Figure 4). No syntenic conservation between the genomic regions containing TOR paralogs was detected in any species of the Schizosaccharomyces group, supporting the occurrence of an independent segmental gene duplication in their common ancestor (see additional file 2: supplemental Figure 2).The Taphrinomycotina is a monophyletic taxon of the Ascomycota containing the Schizosaccharomycetes, Taphrinomycetes, Neolectomycetes, and Pneumocystidomycetes. Genomes are only available for species within the Schizosaccharomycetes (S. pombe, S. octosporus, S. japonicus, and S. cryophilus) and the Taphrinomycetes (Pneumocystis carinii). While the studied Schizosaccharomyces spp. contain two Tor homologs, a single homolog was identified in P. carinii with tBLASTx using the highly conserved S. cerevisiae FRB domain of Tor1 based on sequence data produced by the Pneumocystis Genome Project (funded by the NIH NIAID) that was obtained from http://pgp.cchmc.org at the time of publication. Based on the phylogenetic placement of these two groups 84 and the available genomic information, we hypothesize that the segmental TOR duplication is unique to the Schizosaccharomyces spp. and occurred following their divergence from the common ancestor of the Taphrinomycota, as P. carinii, the other species within this taxon with available genome data, appears to contain a single Tor homolog.Interestingly, the zygomycete R. oryzae underwent a whole genome duplication event and despite retaining 12% of the resulting duplicated genes 85 compared to 8% retained genes in a separate WGD event in S. cerevisiae 7879, two Tor paralogs have not been retained; only a single Tor homolog was identified. Currently, the Zygomycota is the only group studied without an identified species containing two Tor homologs; however, there are not enough available genomes to make a definitive conclusion in this group. Other species with independent TOR duplications likely remain to be identified in all of the major fungal lineages, and as more genome sequences become available this will be addressed.During this study, we identified three additional species that possibly have two TOR paralogs: M. brevicollis, Thecamonas trahens, and Allomyces macrogynus, species that are included in the Origins of Multicellularity Project 86. While analysis is limited because of the state of the M. brevicollis (choanoflagellate) genome, it appears that an additional bonafide Tor protein is encoded with the conserved Tor protein architecture. Thecamonas trahens is a unicellular apusomonad that also contains two TOR paralogs. Interestingly, A. macrogynus is a fungus that may contain a second paralog; however, it appears that the FRB domain overlaps with the kinase domain. This may represent a case in which TOR was duplicated but is in the process of losing one of the copies. These cases are a springboard for future studies involving the duplication of TOR within and beyond the fungal kingdom.Loss of the Tor signaling pathway in microsporidiaWhile components of the Tor signaling cascade are conserved in eukaryotes from yeasts to humans, the microsporidia, a group of highly specialized obligate intracellular pathogens completely lack all of the pathway components investigated in this study. E. cuniculi has previously been noted to lack the Tor kinase 87, and we found that all pathway components including Tor were missing not only in E. cuniculi but also in its microsporidian relatives E. bieneusi and N. ceranae (Table 2). Microsporidian genomes are highly compacted and show a marked reduced gene content. The genome of the human pathogen E. cuniculi has 1997 genes distributed throughout 11 chromosomes in a 2.9 Mb genome 88, less than half the number of protein-coding genes found in Escherichia coli. For comparison, the genome of the human pathogen E. bieneusi genome is ~6 Mb with 3,804 genes 89 and the honeybee pathogen N. ceranae genome is ~7.9 Mb with 2,614 predicted genes 90. Genome reduction has been well studied in intracellular bacteria: during the specialization process from a free-living to intracellular lifestyle, massive gene loss can occur 9192939495. We hypothesize that as a consequence of their specialization to an obligate intracellular lifestyle, the need for nutrient sensing was relaxed and these obligate intracellular microsporidia acquired nutrients from within the host cytoplasm. Thus, they no longer required the Tor pathway, which is dedicated to sensing changes in the nutrient composite of the environmental milieu. However, E. cuniculi has retained some of the genes encoding signaling pathways involved in nutrient sensing in other species, including homologs of S. cerevisiae Ras1 and Ras2 (data not shown).Interestingly, P. carinii is an obligate pathogen with a reduced genome estimated to be ~8 Mb 96, which unlike microsporidia is not obligately intracellular. A�single Tor homolog was identified [Pneumocystis Genome Project:cap3_it1_grp346_contig490] using the S. cerevisiae Tor1 FRB domain in tBLASTx, supporting our hypothesis that the microsporidia have streamlined their genomes as they adopted an obligate intracellular life cycle. P. carinii likely requires Tor because it must survive in a metabolically active form outside of host cells, undergoing cell division in the extracellular milieu of the infected host lung.Many microsporidian genomes have undergone extreme genome reduction and are among the eukaryotes with the smallest genomes. In addition to fewer genes than other species (1997 in E. cuniculi compared to 6607 in S. cerevisiae), E. cuniculi has shorter genes, small intergenic distances, and very few introns 8897. This species (and to an even greater extent, E. bieneusi) lacks several genes that are necessary for biosynthetic pathways and the tricarboxylic acid cycle in free-living organisms 888998. Remarkably, E. cuniculi must acquire ATP from its host through a series of ATP transporters anciently acquired from Rickettsia- or Chlamydia-like bacteria 99, and this is an example of how E. cuniculi, and possibly other microsporidia, can hijack mechanisms of other intracellular bacteria, fungi, or the host to survive in and adapt to their highly specialized intracellular lifestyle.ConclusionsThe Tor pathway is highly conserved with some exceptions among fungi, including several pathogens. Similarly, the molecular structural organization of the Tor kinases has been remarkably conserved as well as the presumed ability to bind the FKBP12-rapamycin complex. This feature, combined with the essential nature of the rapamycin-sensitive TORC1 pathway for cell growth, should enable the development of rapamycin-based strategies for antifungal therapies. Duplications of the Tor protein occurred in most fungal groups examined, resulting from either independent segmental gene duplication events or a WGD event. The maintenance of two Tor homologs can be explained through the DDC model of gene duplication, in which the paralogs subfunctionalize and together support all of the functions of the pre-duplicated protein. In addition, species outside of the fungal kingdom with two or more TOR homologs include the metazoan B. mori, the apusomonad protozoan T. trahens, the trypanosome protozoans L. major and T. brucei, and possibly the choanoflagellate M. brevicollis. This suggests that the Tor gene has been independently duplicated multiple times since the last common ancestor of the Opisthokonta and Excavata lineages. The Tor pathway, as well as the Tor protein itself, is highly conserved in eukaryotes, so the observation that three microsporidian species are missing the entire pathway is striking. It would appear that the specialized obligate intracellular life cycle of microsporidia allows for the acquisition of nutrients from the host cell, obviating a requirement for this central nutrient-sensing pathway that is essential in all known cases of other eukaryotes for axenic growth.MethodsIdentification of pathway component homologsTor homologs were identified using the highly conserved 100 amino acid FRB domain of S. cerevisiae Tor1 in BLASTp reciprocal best-hit searches between the specific species database and the Saccharomyces Genome Database (SGD). All queries for other Tor pathway components were retrieved from SGD and homologs were identified by BLASTp reciprocal best-hit searches, with the exception of Tsc1 and Tsc2. Tsc1 and Tsc2 protein query sequences were retrieved from the S. pombe GeneDB, and homologs were identified using BLASTp searches between the S. pombe genome database and the species database. Species identification numbers are listed in Supplemental Table 1. Protein architecture of each homolog was elucidated with Simple Modular Architecture Research Tool (SMART) analysis 7071.Accession numbers are provided for putative Tor pathway components (see Additional file 3, supplemental Table 1 for the accession numbers of putative Tor pathway components) from the following public genomic databases that were used to carry out BLAST: S. cerevisiae, SGD, http://www.yeastgenome.org; S. pombe, GeneDB, http://www.genedb.org/genedb/pombe/index.jsp; P. ostreatus, JGI, http://genome.jgi-psf.org/PleosPC15_1/PleosPC15_1.home.html; M. circinelloides, JGI and the Mucor Genome Project, http://genome.jgi-psf.org/Mucci1/Mucci1.home.html; R. oryzae, Broad Institute, http://www.broadinstitute.org/annotation/genome/rhizopus_oryzae/MultiHome.html; P. blakesleeanus, JGI, http://genome.jgi-psf.org/Phybl1/Phybl1.home.html; B. dendrobatidis, Broad Institute, http://www.broadinstitute.org/annotation/genome/batrachochytrium_dendrobatidis/MultiHome.html; S. punctatus, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; M. brevicollis, JGI, http://genome.jgi-psf.org/Monbr1/Monbr1.home.html; S. rosetta, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; C. owczarzaki, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; E. cuniculi, E. bieneusi, and N. ceranae, NCBI, http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi?organism=fungi.Phylogenetic analysis of TorThe ProtTest program 100 was used to select an appropriate model to construct the phylogenetic relationship of the Tor proteins of the studied species. For this study, the best model for phylogenetic construction of the Tor protein using maximum likelihood (ML) was JTT+I+G+F 101. The ML tree was generated using PhyML with the JTT+I+G+F mode with 500 bootstrap replicates 102103. The Tor amino acid sequences from all species were aligned with CLUSTAL W 104.Synteny analysis of TOR paralogsTor homologs in fungal species were identified with BLAST 105 using TOR1 and TOR2 of S. cerevisiae as query sequences. The TOR sequence and flanking regions (up to 100 kb) were extracted from corresponding contigs or chromosomal sequences. To analyze the synteny of TOR and flanking regions, we constructed a database of one TOR and flanking region sequence and used the other TOR homolog and flanking region sequence to perform tBLASTx searches in the database (BLOSUM62 matrix; E-value = 1e-3; gap cost: existence 11, extension 1; and low complexity regions filter). The tBLASTx results were parsed and formatted using an in-house Perl script (available upon request). The parsed and formatted tBLASTx results were then imported into Artemis software 106 for synteny analysis. We employed a cutoff value of 100 bp to filter short non-significant matches between query and database sequences.Authors� contributionsCAS carried out the homolog searches and phylogenetic analysis and drafted the manuscript. RJB performed homolog searches and participated in the design of the study. WL performed the synteny and phylogenetic analysis and helped draft the manuscript. JH and MEC conceived of the study, participated in its design and helped to draft the manuscript. All authors read and approved the final manuscript.
BackgroundThe nutrient-sensing target of rapamycin (Tor) pathway is highly conserved among eukaryotes and governs several essential cellular processes including protein synthesis, ribosome biogenesis, autophagy, and cytoskeletal organization 123. In the fungal kingdom, the Tor pathway has been best studied in the budding yeast Saccharomyces cerevisiae 234, the fission yeast Schizosaccharomyces pombe 56, and the human pathogen Candida albicans 5678. However, little is known about Tor in basal fungal lineages, including the Zygomycota and Chytridiomycota.In S. cerevisiae and S. pombe, two Tor paralogs form distinct complexes known as Tor Complex 1 (TORC1) and Tor Complex 2 (TORC2) 9101112, while in most other species, including humans, a single Tor protein can populate both complexes 11121314. Interestingly, S. cerevisiae Tor2 can complement the loss of Tor1, but Tor1 cannot complement the loss of Tor2 1516. Two Tor paralogs have also been identified in a metazoan, the silkworm Bombyx mori 17 and three Tor paralogs were identified in the trypanosomatid parasites Leishmania major 18 and the related species Trypanosoma brucei 19, the first reported Tor triumvirates.The ScTORC1 is sensitive to rapamycin and controls protein synthesis, mRNA synthesis and degradation, ribosome biogenesis, and autophagy. TORC2 is insensitive to rapamycin and is involved in the control of actin polarization and cell wall integrity 916. TORC1 consists of Tor1 or Tor2, Kog1 20, Tco89, and Lst8 21, while TORC2 contains Tor2, Lst8, Avo1, Avo2, and Avo3 22 (Figure 1A). Recently, the EGO-GTPase complex and its orthologs were shown to convey amino acid signals for TORC1 activation in yeast, insects, and mammals 23242526. In S. cerevisiae, immediate effectors of TORC1 include the PP2A-like phosphatase Sit4 27 and the AGC kinase Sch9 28. In S. pombe, Tor participates in other cellular functions including nutrient signaling 29, cell growth and differentiation 30, mitotic commitment 31, and sexual development 11 (Figure 1B).The structure of the Tor proteins is remarkably conserved (Figure 2) and features several domains for protein-protein interactions including N-terminal HEAT (Huntingtin, Elongation factor 3, PP2A A subunit, Tor) repeats 32, a FAT (FRAP, ATM, and TRRAP) domain 3334, and an FRB (FK506-Rapamycin Binding) 35 domain. The kinase and the FATC (FAT domain at the C-terminus) 3236 domains are present in the C-terminal region.The Tor inhibitor rapamycin blocks cell proliferation and is currently used as an immunosuppressive drug for organ and tissue transplant recipients and a chemotherapy agent against a variety of solid cancers 37383940. Rapamycin binds to the prolyl isomerase FKBP12 to form a protein-drug complex that then interacts with the Tor FRB domain in a ternary complex 4142. S. cerevisiae cells treated with rapamycin display phenotypes associated with nutrient depletion including G1 cell cycle arrest, cellular volume expansion, protein synthesis inhibition, glycogen accumulation, and autophagy 3543.Genetic analysis in S. cerevisiae characterizing rapamycin-resistant mutants led to the identification of FKBP12 as the intracellular receptor for rapamycin and defined Tor1 and Tor2 as the targets of the FKBP12-rapamycin complex 4. Subsequent studies resulted in the identification and characterization of the TOR1 and TOR2 gene products 1544 as well as the elucidation of the Tor signaling cascade 8454647. These pioneering studies aided in the identification of the mammalian Tor ortholog and characterization of this highly conserved signaling cascade 84849. Remarkably, expression of the human FKBP12 ortholog in yeast fpr1 (the gene that encodes FKBP12) deletion mutants complements to restore rapamycin sensitivity, and hybrid Tor proteins consisting of the yeast N-terminal domain fused to the mammalian Tor kinase domain are also functional in yeast 50. Thus, the Tor pathway has been functionally and structurally conserved from yeasts to humans over the billion years of evolution separating the two species from their last common ancestor.We now know that the fungal and metazoan kingdoms are both within the opisthokont lineage of eukaryotes and are thus more closely related to each other than the vast majority of eukaryotic organisms 5152. Moreover, these two highly successful kingdoms shared a last common ancestor as recently as one billion years ago, much more recently than most eukaryotes. Recent initiatives, particularly the UNICORN project, have facilitated the sequencing of several opisthokonts related to the last common ancestor of the metazoans and fungi, providing an interesting window into the evolution of both fungi and animals 53545556. Thus, studies on the evolutionary trajectory of the fungal kingdom in general, and of the Tor signaling cascade in particular, promise to reveal insights about how orthologous pathways function in the more complex milieu of multicellular metazoan organisms.In this study, we have capitalized upon the wealth of available genomic information by annotating the Tor pathway in several fungal organisms in which this pathway has not been described. Our study included selected species in the major groups of the fungal kingdom with genome sequences available: the basidiomycete Pleurotus ostreatus; the Mucorales zygomycetes Mucor circinelloides, Rhizopus oryzae, and Phycomyces blakesleeanus; the chytridiomycetes Spizellomyces punctatus and Batrachochytrium dendrobatidis; the microsporidian species Encephalitozoon cuniculi, Enterocytozoon bieneusi, and Nosema ceranae; and the related non-fungal opisthokonts Capsaspora owczarzaki, Salpingoeca rosetta, and Monosiga brevicollis. Whereas the Tor pathway is conserved throughout the eukaryotes, strikingly, microsporidian species with their highly reduced and compacted genomes lack the entire Tor pathway. We have also investigated gene and genome duplication events that resulted in two Tor homologs in S. cerevisiae, S. pombe, P. ostreatus, and B. dendrobatidis, and the loss of a second Tor homolog following a whole genome duplication event in R. oryzae.Results and DiscussionConservation of the Tor signaling pathway molecular componentsThe Tor pathway is well conserved among nearly all eukaryotic species examined to date. Tor is essential for life and is the target of the potent drug rapamycin in fungi, humans, and other eukaryotic organisms 2121941. Tor originated early during the eukaryotic radiation, as it is present in the basal eukaryotes Giardia lamblia 57, L. major 18 and T. brucei 19, and also in plants 58. Here we focused on the Tor pathway in the fungal kingdom and other representative unicellular opisthokont species outside of the fungi. Several genes encoding Tor complex components, upstream regulators, and downstream effectors were identified in all major groups throughout the fungal kingdom (Figure 1, Table 1). Because we used BLASTp reciprocal best hits (RBH) to identify orthologs, in some cases the absence of an ortholog in our results may represent only a failure to detect it with this method. Further, functional homologs that are not sufficiently similar enough in sequence to be identified may be present. Overall, a high degree of pathway conservation is observed in the Tor signaling cascade throughout the fungal kingdom, with the exception of microsporidia in which all Tor pathway components are absent. In addition, several pathway components are conserved in the related unicellular opisthokonts M. brevicollis, S. rosetta, and C. owczarzaki (Table 2).In S. cerevisiae, Tor1 and Tor2 interact with several proteins to form TORC1 and TORC2. TORC1 contains Tor1 or Tor2, Kog1, Tco89, and Lst8. Kog1 functions as a substrate-recruiting subunit in mammalian TORC1 (mTORC1) 13596061. A gene encoding a putative Kog1 homolog was identified in all species included in this study, with the exception of the microsporidia and S. rosetta (Tables 1 and 2). Mutation of TCO89 results in hypersensitivity to rapamycin and affects cellular integrity in S. cerevisiae 21. Tco89 is only found in S. cerevisiae and could have resulted from a specialization of the pathway exclusive to Saccharomyces species (Table 1). However, while a BLASTp search did not identify Tco89 homologs in other species, S. pombe has been reported to contain a functional homolog [GenBank:NP_588232] 12, and this suggests that functional homologs may exist in other fungal species as well. However, no homologs were identified when using S.�pombe Tco89 as a query sequence. Lst8 binds to the Tor kinase domain in S. cerevisiae to stimulate catalytic activity 9 and a putative Lst8 homolog is conserved in most species analyzed except microsporidia and S.�rosetta (Tables 1 and 2).Additional BLASTp searches identified a single Tor homolog in the following species: Lachancea thermotolerans CBS6340 [GenBank:XP_002552336], Pichia pastoris GS115 [GenBank:XP_002491471], Pichia stipitis CBS6054 [GenBank:XP_001385651], Debaryomyces hansenii CBS767 [GenBank:XP_002770885], Yarrowia lipolytica CLIB122 [GenBank:XP_505106], Podospora anserina strain S mat+ [GenBank:XP_001903968], Chaetomium globosum CBS148.51 [GenBank:XP_001226647], Magnaporthe oryzae 70-15 [GenBank:XP_001414541], Gibberella zeae PH-1 [GenBank:XP_388309], Aspergillus fumigatus Af293 [GenBank:XP_755360], Aspergillus flavus NRRL3357 [GenBank:XP_002377897], Neosartorya fischeri NRRL181 [GenBank:XP_001260509], Aspergillus terreus NIH2624 [GenBank:XP_001213640], Aspergillus nidulans FGSCA4 [GenBank:XP_663586], Aspergillus clavatus NRRL1 [GenBank:XP_001275326], Aspergillus oryzae RIB40 [GenBank: XP_001826216], and Aspergillus niger CBS513.88 [GenBank:XP_001397781]. These ascomycetes were not included in further studies.In yeast and mammals, TORC2 controls spatial aspects of growth. TORC2 includes Tor2, Avo1, Avo2, Avo3, and Bit61 922. Avo1 plays an essential role in actin cytoskeleton polarization 22 and is conserved throughout the organisms that were the focus of this study (Table 1) except in S. rosetta and C. owczarzaki (Table 2). However, due to high divergence of the AVO1 sequence amongst the known homologs, it is possible that the S. rosetta and C. owczarzaki homologs cannot be identified using the BLASTp algorithm. Avo2 is a nonessential substrate adaptor for TORC2 22 and potential homologs were identified in most species studied, with the exceptions of S. pombe, P. ostreatus, the three microsporidian species (Table 1), and M. brevicollis (Table 2). In S. cerevisiae, Avo3 (also know as Tsc11) controls cytoskeletal dynamics 922, and homologs are conserved throughout the species examined (Tables 1 and 2). Bit61, a nonessential protein that associates with TORC2 21, was only identified in S. cerevisiae (Tables 1 and 2).Upstream regulators of Tor include Tsc1 and Tsc2 (Tuberous Sclerosis 1 and 2) and the GTPase Rheb (Ras homolog enhanced in brain). In S. pombe and other eukaryotes, Tsc1 and Tsc2 form a GTPase-activating complex that negatively regulates the action of Rheb to activate TORC1 266263. Tsc1 and Tsc2 putative homologs were identified in most species in the study, with the exception of S. cerevisiae (Table 1); however, Tsc1 homologs were not identified in B. dendrobatidis, S. rosetta, or C. owczarzaki (Tables 1 and 2). In mammals and insects, four Rag GTPases (RagA-D) bind raptor (Kog1) to mediate TORC1 signaling in response to amino acids 2426. RagA and RagB are orthologs of S.�cerevisiae Gtr1 whereas RagC and RagD are orthologs of S. cerevisiae Gtr2 23. Gtr1 and Gtr2 form a complex along with Ego1 and Ego3 known as EGOC/GSE 25, which is regulated by the GTP exchange factor Vam6 23. Interestingly we found presumptive Gtr1 and Gtr2 orthologs in species in this study with the exception of microsporidia (Table 1), and Gtr1 was not identified in M. brevicollis (Table 2). However, Ego1 and Ego3, which anchor Gtr1 and Gtr2 to endosomal and vacuolar membranes, are unique to S. cerevisiae and were not identified in the other species (Table 1). This suggests that the specific EGO complex architecture might be restricted to Saccharomyces, though it is possible that functional homologs may be present in other species.In fungi, several downstream effectors are targets of Tor signaling. The PP2A phosphatase Sit4 and its regulatory subunit Tap42 regulate the expression of several TORC1-controlled genes and Gcn2-regulated translation 36465. A Sit4 homolog was identified in R. oryzae (Table 1), though a homolog of the regulatory subunit Tap42 was not (Table 1). In S. rosetta, a Sit4 homolog was not identified, though Tap42 was (Table 2). Both of these situations could indicate rewiring of the pathway, or alternatively these findings could be a result of insufficient similarity to detect with a RBH search method. Sch9, a member of the AGC kinase family and the functional homolog of the p70 S6 kinase, is a direct substrate of S. cerevisiae TORC1 involved in ribosome biogenesis 2866. Sch9 was not identified in RBH BLASTp searches with S. cerevisiae Sch9 in M. circinelloides, P. blakesleeanus, the microsporidia (Table 1), or S. rosetta (Table 2), but was identified in all other species. Putative homologs of Ypk2 kinase, a regulator of ceramide synthesis controlled by TORC2 signaling 67, were only identified in S. cerevisiae, S. pombe, (Table 1), M. brevicollis, S. rosetta, and C. owczarzaki (Table 2). Notably, the failure to detect many homologs in M. brevicollis, S. rosetta, and C. owczarzaki could be due to their evolutionary distance from the other organisms in the study and their gene divergence.Evolutionary conservation of Tor kinase protein structureThe Tor kinases are phosphatidylinositol kinase-related kinases (PIKKs) 68 and aside from their known protein kinase function also serve as evolutionary constrained scaffolds with several protein-protein interaction domains that mediate multi-protein complex formation 69. Tor protein architecture was annotated using SMART 7071 and we found that it has been maintained throughout the species of this study (Figure 2). N-terminal HEAT repeats are present in varying numbers and serve as scaffolding structures for protein-protein interactions 327273. Similarly, the FAT/toxic domain and the accompanying C-terminal FATC domain also participate in protein scaffolding and are present and conserved in all species subject to analysis. Over-expression of the FAT domain has a dominant negative effect on cell growth in yeast and this effect can be suppressed by over-expression of phospholipase C 33. The kinase domain has similarities to both lipid and protein kinases, but it is a bona fide protein kinase. The FRB (FKBP12-rapamycin binding) domain is a highly conserved 100 amino acid region of Tor with several residues that are known to be required for binding the FKBP12-rapamycin drug complex 42.In addition, the FRB domain contains several residues necessary for both phosphatidic acid binding and rapamycin interaction 7475. In mammals, phosphatidic acid binding to the FRB region may promote the assembly of mTOR complexes. It has been proposed that the potent effect of the Tor inhibitor rapamycin may be due to direct competition for overlapping phosphatidic acid binding sites within the FRB domain 76. Mutation of the conserved amino acid residues S1975, W2041, or F2048 in the FRB domain confers rapamycin resistance in S. cerevisiae 44277. Strikingly, the corresponding amino acid residues are conserved in all species examined (Figure 3). In mTOR, phosphatidic acid binding is disrupted by mutations of L2031, F2309, and Y2105 75, corresponding to S. cerevisiae Tor2 L1971, F1979, and Y2045, respectively, all of which are conserved in the studied fungal species (Figure 3).Duplication of Tor in the fungal kingdomApproximately 100 million years ago, the S. cerevisiae ancestor underwent a whole genome duplication (WGD) event, and species that descend from this evolutionary event retained duplicated subsets of genes. S. cerevisiae retained approximately 8% of duplicated genes 7879, while other fungi in this lineage have maintained varying numbers of gene duplicates, such as Candida glabrata in which a smaller number (~2%) of these pairs are maintained 80. Interestingly, several of these species, including S. cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, S. bayanus, S. castellii, and C. glabrata have retained two TOR paralogs, whereas species outside of the WGD clade, including Kluyveromyces lactis and Ashbya gossypii, have only a single TOR gene.The fates of duplicated gene paralogs can be explained through the duplication, degeneration, and complementation (DDC) model of gene duplication 81. In species with a single Tor, this protein populates both TORC1 and TORC2, each of which has distinct functions. Following duplication, each paralog likely sub-functionalized to carry out some, but not all, of its previous functions so that between the two paralogs, each process is performed. In S. cerevisiae, for example, Tor1 exclusively functions within TORC1, while Tor2 preferentially populates TORC2 but can also function in TORC1. S. pombe has two Tor paralogs as a result of an independent segmental gene duplication event, and each paralog has distinct roles not necessarily equivalent to those of S. cerevisiae Tor1 and Tor2. SpTor1 is not essential, whereas SpTor2 is essential for growth 112982.We hypothesize that similar models could apply in species encoding two Tor homologs resulting from independent gene duplication events such as P. ostreatus and B. dendrobatidis. Based on their level of identity with S.�cerevisiae Tor homologs, the B. dendrobatidis genes BDEG_08293 and BDEG_05727 have been designated TOR1 and TOR2, respectively. However, these gene names are not necessarily based on functional similarity with ScTor1 and ScTor2 but rather indicate only that there are two TOR homologs in B. dendrobatidis. A�similar naming challenge is evident in S. pombe, where the functions of SpTor1 and SpTor2 are not equivalent with those of ScTor1 and ScTor2.While several species, such as those in the Saccharomyces clade, have two Tor paralogs resulting from ancient WGD events, other species have acquired a second paralog through independent segmental gene duplication events, including B. dendrobatidis and several fission yeast species closely related to S. pombe (Figure 4). Segmental gene duplications have played a major role in the evolution of species and can result in the duplication of single genes or large blocks of genes 83. In S. cerevisiae, the duplication blocks with TOR include three paralogous gene pairs that have been retained from the ancestral WGD event: PTK1/PTK2, TOR1/TOR2, and MNN4/YJR061W 78 (Figure 5A). Further, C. glabrata, an ascomycete closely related to S. cerevisiae that diverged following the WGD, has also maintained a second TOR paralog and synteny is apparent in the region flanking the TOR1 and TOR2 genes, though one must extend the analysis to >40 kb from the TOR genes to detect it (See additional file 1: Supplemental figure 1). However, because C. glabrata and S. cerevisiae have retained different subsets of genes from the ancestral WGD, the duplicated genes surrounding TOR in these species are not homologs of one another. Further, C. glabrata has maintained fewer of the synteny blocks found in S. cerevisiae, and the block containing the TOR genes (Block 42) is not conserved in C. glabrata 80.In contrast, genomic regions surrounding the Tor paralogs in S. pombe (Figure 5B) and B. dendrobatidis (Figure 5C) are not syntenically conserved. That is, the duplicated genes are not flanked by other duplicated gene pairs, and the two TOR paralogs likely resulted from independent segmental gene duplication events. Further, there are no indications of WGDs in these species. In the Schizosaccharomycotina, the TOR gene duplication occurred prior to speciation as evidenced by the fact that S. pombe, S. octosporus, S. japonicus, and S. cryophilus have each retained a second Tor paralog; the Tor orthologs across these four species are more closely related to each other than to those from other species (Figure 4). No syntenic conservation between the genomic regions containing TOR paralogs was detected in any species of the Schizosaccharomyces group, supporting the occurrence of an independent segmental gene duplication in their common ancestor (see additional file 2: supplemental Figure 2).The Taphrinomycotina is a monophyletic taxon of the Ascomycota containing the Schizosaccharomycetes, Taphrinomycetes, Neolectomycetes, and Pneumocystidomycetes. Genomes are only available for species within the Schizosaccharomycetes (S. pombe, S. octosporus, S. japonicus, and S. cryophilus) and the Taphrinomycetes (Pneumocystis carinii). While the studied Schizosaccharomyces spp. contain two Tor homologs, a single homolog was identified in P. carinii with tBLASTx using the highly conserved S. cerevisiae FRB domain of Tor1 based on sequence data produced by the Pneumocystis Genome Project (funded by the NIH NIAID) that was obtained from http://pgp.cchmc.org at the time of publication. Based on the phylogenetic placement of these two groups 84 and the available genomic information, we hypothesize that the segmental TOR duplication is unique to the Schizosaccharomyces spp. and occurred following their divergence from the common ancestor of the Taphrinomycota, as P. carinii, the other species within this taxon with available genome data, appears to contain a single Tor homolog.Interestingly, the zygomycete R. oryzae underwent a whole genome duplication event and despite retaining 12% of the resulting duplicated genes 85 compared to 8% retained genes in a separate WGD event in S. cerevisiae 7879, two Tor paralogs have not been retained; only a single Tor homolog was identified. Currently, the Zygomycota is the only group studied without an identified species containing two Tor homologs; however, there are not enough available genomes to make a definitive conclusion in this group. Other species with independent TOR duplications likely remain to be identified in all of the major fungal lineages, and as more genome sequences become available this will be addressed.During this study, we identified three additional species that possibly have two TOR paralogs: M. brevicollis, Thecamonas trahens, and Allomyces macrogynus, species that are included in the Origins of Multicellularity Project 86. While analysis is limited because of the state of the M. brevicollis (choanoflagellate) genome, it appears that an additional bonafide Tor protein is encoded with the conserved Tor protein architecture. Thecamonas trahens is a unicellular apusomonad that also contains two TOR paralogs. Interestingly, A. macrogynus is a fungus that may contain a second paralog; however, it appears that the FRB domain overlaps with the kinase domain. This may represent a case in which TOR was duplicated but is in the process of losing one of the copies. These cases are a springboard for future studies involving the duplication of TOR within and beyond the fungal kingdom.Loss of the Tor signaling pathway in microsporidiaWhile components of the Tor signaling cascade are conserved in eukaryotes from yeasts to humans, the microsporidia, a group of highly specialized obligate intracellular pathogens completely lack all of the pathway components investigated in this study. E. cuniculi has previously been noted to lack the Tor kinase 87, and we found that all pathway components including Tor were missing not only in E. cuniculi but also in its microsporidian relatives E. bieneusi and N. ceranae (Table 2). Microsporidian genomes are highly compacted and show a marked reduced gene content. The genome of the human pathogen E. cuniculi has 1997 genes distributed throughout 11 chromosomes in a 2.9 Mb genome 88, less than half the number of protein-coding genes found in Escherichia coli. For comparison, the genome of the human pathogen E. bieneusi genome is ~6 Mb with 3,804 genes 89 and the honeybee pathogen N. ceranae genome is ~7.9 Mb with 2,614 predicted genes 90. Genome reduction has been well studied in intracellular bacteria: during the specialization process from a free-living to intracellular lifestyle, massive gene loss can occur 9192939495. We hypothesize that as a consequence of their specialization to an obligate intracellular lifestyle, the need for nutrient sensing was relaxed and these obligate intracellular microsporidia acquired nutrients from within the host cytoplasm. Thus, they no longer required the Tor pathway, which is dedicated to sensing changes in the nutrient composite of the environmental milieu. However, E. cuniculi has retained some of the genes encoding signaling pathways involved in nutrient sensing in other species, including homologs of S. cerevisiae Ras1 and Ras2 (data not shown).Interestingly, P. carinii is an obligate pathogen with a reduced genome estimated to be ~8 Mb 96, which unlike microsporidia is not obligately intracellular. A�single Tor homolog was identified [Pneumocystis Genome Project:cap3_it1_grp346_contig490] using the S. cerevisiae Tor1 FRB domain in tBLASTx, supporting our hypothesis that the microsporidia have streamlined their genomes as they adopted an obligate intracellular life cycle. P. carinii likely requires Tor because it must survive in a metabolically active form outside of host cells, undergoing cell division in the extracellular milieu of the infected host lung.Many microsporidian genomes have undergone extreme genome reduction and are among the eukaryotes with the smallest genomes. In addition to fewer genes than other species (1997 in E. cuniculi compared to 6607 in S. cerevisiae), E. cuniculi has shorter genes, small intergenic distances, and very few introns 8897. This species (and to an even greater extent, E. bieneusi) lacks several genes that are necessary for biosynthetic pathways and the tricarboxylic acid cycle in free-living organisms 888998. Remarkably, E. cuniculi must acquire ATP from its host through a series of ATP transporters anciently acquired from Rickettsia- or Chlamydia-like bacteria 99, and this is an example of how E. cuniculi, and possibly other microsporidia, can hijack mechanisms of other intracellular bacteria, fungi, or the host to survive in and adapt to their highly specialized intracellular lifestyle.ConclusionsThe Tor pathway is highly conserved with some exceptions among fungi, including several pathogens. Similarly, the molecular structural organization of the Tor kinases has been remarkably conserved as well as the presumed ability to bind the FKBP12-rapamycin complex. This feature, combined with the essential nature of the rapamycin-sensitive TORC1 pathway for cell growth, should enable the development of rapamycin-based strategies for antifungal therapies. Duplications of the Tor protein occurred in most fungal groups examined, resulting from either independent segmental gene duplication events or a WGD event. The maintenance of two Tor homologs can be explained through the DDC model of gene duplication, in which the paralogs subfunctionalize and together support all of the functions of the pre-duplicated protein. In addition, species outside of the fungal kingdom with two or more TOR homologs include the metazoan B. mori, the apusomonad protozoan T. trahens, the trypanosome protozoans L. major and T. brucei, and possibly the choanoflagellate M. brevicollis. This suggests that the Tor gene has been independently duplicated multiple times since the last common ancestor of the Opisthokonta and Excavata lineages. The Tor pathway, as well as the Tor protein itself, is highly conserved in eukaryotes, so the observation that three microsporidian species are missing the entire pathway is striking. It would appear that the specialized obligate intracellular life cycle of microsporidia allows for the acquisition of nutrients from the host cell, obviating a requirement for this central nutrient-sensing pathway that is essential in all known cases of other eukaryotes for axenic growth.MethodsIdentification of pathway component homologsTor homologs were identified using the highly conserved 100 amino acid FRB domain of S. cerevisiae Tor1 in BLASTp reciprocal best-hit searches between the specific species database and the Saccharomyces Genome Database (SGD). All queries for other Tor pathway components were retrieved from SGD and homologs were identified by BLASTp reciprocal best-hit searches, with the exception of Tsc1 and Tsc2. Tsc1 and Tsc2 protein query sequences were retrieved from the S. pombe GeneDB, and homologs were identified using BLASTp searches between the S. pombe genome database and the species database. Species identification numbers are listed in Supplemental Table 1. Protein architecture of each homolog was elucidated with Simple Modular Architecture Research Tool (SMART) analysis 7071.Accession numbers are provided for putative Tor pathway components (see Additional file 3, supplemental Table 1 for the accession numbers of putative Tor pathway components) from the following public genomic databases that were used to carry out BLAST: S. cerevisiae, SGD, http://www.yeastgenome.org; S. pombe, GeneDB, http://www.genedb.org/genedb/pombe/index.jsp; P. ostreatus, JGI, http://genome.jgi-psf.org/PleosPC15_1/PleosPC15_1.home.html; M. circinelloides, JGI and the Mucor Genome Project, http://genome.jgi-psf.org/Mucci1/Mucci1.home.html; R. oryzae, Broad Institute, http://www.broadinstitute.org/annotation/genome/rhizopus_oryzae/MultiHome.html; P. blakesleeanus, JGI, http://genome.jgi-psf.org/Phybl1/Phybl1.home.html; B. dendrobatidis, Broad Institute, http://www.broadinstitute.org/annotation/genome/batrachochytrium_dendrobatidis/MultiHome.html; S. punctatus, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; M. brevicollis, JGI, http://genome.jgi-psf.org/Monbr1/Monbr1.home.html; S. rosetta, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; C. owczarzaki, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; E. cuniculi, E. bieneusi, and N. ceranae, NCBI, http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi?organism=fungi.Phylogenetic analysis of TorThe ProtTest program 100 was used to select an appropriate model to construct the phylogenetic relationship of the Tor proteins of the studied species. For this study, the best model for phylogenetic construction of the Tor protein using maximum likelihood (ML) was JTT+I+G+F 101. The ML tree was generated using PhyML with the JTT+I+G+F mode with 500 bootstrap replicates 102103. The Tor amino acid sequences from all species were aligned with CLUSTAL W 104.Synteny analysis of TOR paralogsTor homologs in fungal species were identified with BLAST 105 using TOR1 and TOR2 of S. cerevisiae as query sequences. The TOR sequence and flanking regions (up to 100 kb) were extracted from corresponding contigs or chromosomal sequences. To analyze the synteny of TOR and flanking regions, we constructed a database of one TOR and flanking region sequence and used the other TOR homolog and flanking region sequence to perform tBLASTx searches in the database (BLOSUM62 matrix; E-value = 1e-3; gap cost: existence 11, extension 1; and low complexity regions filter). The tBLASTx results were parsed and formatted using an in-house Perl script (available upon request). The parsed and formatted tBLASTx results were then imported into Artemis software 106 for synteny analysis. We employed a cutoff value of 100 bp to filter short non-significant matches between query and database sequences.Authors� contributionsCAS carried out the homolog searches and phylogenetic analysis and drafted the manuscript. RJB performed homolog searches and participated in the design of the study. WL performed the synteny and phylogenetic analysis and helped draft the manuscript. JH and MEC conceived of the study, participated in its design and helped to draft the manuscript. All authors read and approved the final manuscript.
BackgroundThe nutrient-sensing target of rapamycin (Tor) pathway is highly conserved among eukaryotes and governs several essential cellular processes including protein synthesis, ribosome biogenesis, autophagy, and cytoskeletal organization 123. In the fungal kingdom, the Tor pathway has been best studied in the budding yeast Saccharomyces cerevisiae 234, the fission yeast Schizosaccharomyces pombe 56, and the human pathogen Candida albicans 5678. However, little is known about Tor in basal fungal lineages, including the Zygomycota and Chytridiomycota.In S. cerevisiae and S. pombe, two Tor paralogs form distinct complexes known as Tor Complex 1 (TORC1) and Tor Complex 2 (TORC2) 9101112, while in most other species, including humans, a single Tor protein can populate both complexes 11121314. Interestingly, S. cerevisiae Tor2 can complement the loss of Tor1, but Tor1 cannot complement the loss of Tor2 1516. Two Tor paralogs have also been identified in a metazoan, the silkworm Bombyx mori 17 and three Tor paralogs were identified in the trypanosomatid parasites Leishmania major 18 and the related species Trypanosoma brucei 19, the first reported Tor triumvirates.The ScTORC1 is sensitive to rapamycin and controls protein synthesis, mRNA synthesis and degradation, ribosome biogenesis, and autophagy. TORC2 is insensitive to rapamycin and is involved in the control of actin polarization and cell wall integrity 916. TORC1 consists of Tor1 or Tor2, Kog1 20, Tco89, and Lst8 21, while TORC2 contains Tor2, Lst8, Avo1, Avo2, and Avo3 22 (Figure 1A). Recently, the EGO-GTPase complex and its orthologs were shown to convey amino acid signals for TORC1 activation in yeast, insects, and mammals 23242526. In S. cerevisiae, immediate effectors of TORC1 include the PP2A-like phosphatase Sit4 27 and the AGC kinase Sch9 28. In S. pombe, Tor participates in other cellular functions including nutrient signaling 29, cell growth and differentiation 30, mitotic commitment 31, and sexual development 11 (Figure 1B).The structure of the Tor proteins is remarkably conserved (Figure 2) and features several domains for protein-protein interactions including N-terminal HEAT (Huntingtin, Elongation factor 3, PP2A A subunit, Tor) repeats 32, a FAT (FRAP, ATM, and TRRAP) domain 3334, and an FRB (FK506-Rapamycin Binding) 35 domain. The kinase and the FATC (FAT domain at the C-terminus) 3236 domains are present in the C-terminal region.The Tor inhibitor rapamycin blocks cell proliferation and is currently used as an immunosuppressive drug for organ and tissue transplant recipients and a chemotherapy agent against a variety of solid cancers 37383940. Rapamycin binds to the prolyl isomerase FKBP12 to form a protein-drug complex that then interacts with the Tor FRB domain in a ternary complex 4142. S. cerevisiae cells treated with rapamycin display phenotypes associated with nutrient depletion including G1 cell cycle arrest, cellular volume expansion, protein synthesis inhibition, glycogen accumulation, and autophagy 3543.Genetic analysis in S. cerevisiae characterizing rapamycin-resistant mutants led to the identification of FKBP12 as the intracellular receptor for rapamycin and defined Tor1 and Tor2 as the targets of the FKBP12-rapamycin complex 4. Subsequent studies resulted in the identification and characterization of the TOR1 and TOR2 gene products 1544 as well as the elucidation of the Tor signaling cascade 8454647. These pioneering studies aided in the identification of the mammalian Tor ortholog and characterization of this highly conserved signaling cascade 84849. Remarkably, expression of the human FKBP12 ortholog in yeast fpr1 (the gene that encodes FKBP12) deletion mutants complements to restore rapamycin sensitivity, and hybrid Tor proteins consisting of the yeast N-terminal domain fused to the mammalian Tor kinase domain are also functional in yeast 50. Thus, the Tor pathway has been functionally and structurally conserved from yeasts to humans over the billion years of evolution separating the two species from their last common ancestor.We now know that the fungal and metazoan kingdoms are both within the opisthokont lineage of eukaryotes and are thus more closely related to each other than the vast majority of eukaryotic organisms 5152. Moreover, these two highly successful kingdoms shared a last common ancestor as recently as one billion years ago, much more recently than most eukaryotes. Recent initiatives, particularly the UNICORN project, have facilitated the sequencing of several opisthokonts related to the last common ancestor of the metazoans and fungi, providing an interesting window into the evolution of both fungi and animals 53545556. Thus, studies on the evolutionary trajectory of the fungal kingdom in general, and of the Tor signaling cascade in particular, promise to reveal insights about how orthologous pathways function in the more complex milieu of multicellular metazoan organisms.In this study, we have capitalized upon the wealth of available genomic information by annotating the Tor pathway in several fungal organisms in which this pathway has not been described. Our study included selected species in the major groups of the fungal kingdom with genome sequences available: the basidiomycete Pleurotus ostreatus; the Mucorales zygomycetes Mucor circinelloides, Rhizopus oryzae, and Phycomyces blakesleeanus; the chytridiomycetes Spizellomyces punctatus and Batrachochytrium dendrobatidis; the microsporidian species Encephalitozoon cuniculi, Enterocytozoon bieneusi, and Nosema ceranae; and the related non-fungal opisthokonts Capsaspora owczarzaki, Salpingoeca rosetta, and Monosiga brevicollis. Whereas the Tor pathway is conserved throughout the eukaryotes, strikingly, microsporidian species with their highly reduced and compacted genomes lack the entire Tor pathway. We have also investigated gene and genome duplication events that resulted in two Tor homologs in S. cerevisiae, S. pombe, P. ostreatus, and B. dendrobatidis, and the loss of a second Tor homolog following a whole genome duplication event in R. oryzae.Results and DiscussionConservation of the Tor signaling pathway molecular componentsThe Tor pathway is well conserved among nearly all eukaryotic species examined to date. Tor is essential for life and is the target of the potent drug rapamycin in fungi, humans, and other eukaryotic organisms 2121941. Tor originated early during the eukaryotic radiation, as it is present in the basal eukaryotes Giardia lamblia 57, L. major 18 and T. brucei 19, and also in plants 58. Here we focused on the Tor pathway in the fungal kingdom and other representative unicellular opisthokont species outside of the fungi. Several genes encoding Tor complex components, upstream regulators, and downstream effectors were identified in all major groups throughout the fungal kingdom (Figure 1, Table 1). Because we used BLASTp reciprocal best hits (RBH) to identify orthologs, in some cases the absence of an ortholog in our results may represent only a failure to detect it with this method. Further, functional homologs that are not sufficiently similar enough in sequence to be identified may be present. Overall, a high degree of pathway conservation is observed in the Tor signaling cascade throughout the fungal kingdom, with the exception of microsporidia in which all Tor pathway components are absent. In addition, several pathway components are conserved in the related unicellular opisthokonts M. brevicollis, S. rosetta, and C. owczarzaki (Table 2).In S. cerevisiae, Tor1 and Tor2 interact with several proteins to form TORC1 and TORC2. TORC1 contains Tor1 or Tor2, Kog1, Tco89, and Lst8. Kog1 functions as a substrate-recruiting subunit in mammalian TORC1 (mTORC1) 13596061. A gene encoding a putative Kog1 homolog was identified in all species included in this study, with the exception of the microsporidia and S. rosetta (Tables 1 and 2). Mutation of TCO89 results in hypersensitivity to rapamycin and affects cellular integrity in S. cerevisiae 21. Tco89 is only found in S. cerevisiae and could have resulted from a specialization of the pathway exclusive to Saccharomyces species (Table 1). However, while a BLASTp search did not identify Tco89 homologs in other species, S. pombe has been reported to contain a functional homolog [GenBank:NP_588232] 12, and this suggests that functional homologs may exist in other fungal species as well. However, no homologs were identified when using S.�pombe Tco89 as a query sequence. Lst8 binds to the Tor kinase domain in S. cerevisiae to stimulate catalytic activity 9 and a putative Lst8 homolog is conserved in most species analyzed except microsporidia and S.�rosetta (Tables 1 and 2).Additional BLASTp searches identified a single Tor homolog in the following species: Lachancea thermotolerans CBS6340 [GenBank:XP_002552336], Pichia pastoris GS115 [GenBank:XP_002491471], Pichia stipitis CBS6054 [GenBank:XP_001385651], Debaryomyces hansenii CBS767 [GenBank:XP_002770885], Yarrowia lipolytica CLIB122 [GenBank:XP_505106], Podospora anserina strain S mat+ [GenBank:XP_001903968], Chaetomium globosum CBS148.51 [GenBank:XP_001226647], Magnaporthe oryzae 70-15 [GenBank:XP_001414541], Gibberella zeae PH-1 [GenBank:XP_388309], Aspergillus fumigatus Af293 [GenBank:XP_755360], Aspergillus flavus NRRL3357 [GenBank:XP_002377897], Neosartorya fischeri NRRL181 [GenBank:XP_001260509], Aspergillus terreus NIH2624 [GenBank:XP_001213640], Aspergillus nidulans FGSCA4 [GenBank:XP_663586], Aspergillus clavatus NRRL1 [GenBank:XP_001275326], Aspergillus oryzae RIB40 [GenBank: XP_001826216], and Aspergillus niger CBS513.88 [GenBank:XP_001397781]. These ascomycetes were not included in further studies.In yeast and mammals, TORC2 controls spatial aspects of growth. TORC2 includes Tor2, Avo1, Avo2, Avo3, and Bit61 922. Avo1 plays an essential role in actin cytoskeleton polarization 22 and is conserved throughout the organisms that were the focus of this study (Table 1) except in S. rosetta and C. owczarzaki (Table 2). However, due to high divergence of the AVO1 sequence amongst the known homologs, it is possible that the S. rosetta and C. owczarzaki homologs cannot be identified using the BLASTp algorithm. Avo2 is a nonessential substrate adaptor for TORC2 22 and potential homologs were identified in most species studied, with the exceptions of S. pombe, P. ostreatus, the three microsporidian species (Table 1), and M. brevicollis (Table 2). In S. cerevisiae, Avo3 (also know as Tsc11) controls cytoskeletal dynamics 922, and homologs are conserved throughout the species examined (Tables 1 and 2). Bit61, a nonessential protein that associates with TORC2 21, was only identified in S. cerevisiae (Tables 1 and 2).Upstream regulators of Tor include Tsc1 and Tsc2 (Tuberous Sclerosis 1 and 2) and the GTPase Rheb (Ras homolog enhanced in brain). In S. pombe and other eukaryotes, Tsc1 and Tsc2 form a GTPase-activating complex that negatively regulates the action of Rheb to activate TORC1 266263. Tsc1 and Tsc2 putative homologs were identified in most species in the study, with the exception of S. cerevisiae (Table 1); however, Tsc1 homologs were not identified in B. dendrobatidis, S. rosetta, or C. owczarzaki (Tables 1 and 2). In mammals and insects, four Rag GTPases (RagA-D) bind raptor (Kog1) to mediate TORC1 signaling in response to amino acids 2426. RagA and RagB are orthologs of S.�cerevisiae Gtr1 whereas RagC and RagD are orthologs of S. cerevisiae Gtr2 23. Gtr1 and Gtr2 form a complex along with Ego1 and Ego3 known as EGOC/GSE 25, which is regulated by the GTP exchange factor Vam6 23. Interestingly we found presumptive Gtr1 and Gtr2 orthologs in species in this study with the exception of microsporidia (Table 1), and Gtr1 was not identified in M. brevicollis (Table 2). However, Ego1 and Ego3, which anchor Gtr1 and Gtr2 to endosomal and vacuolar membranes, are unique to S. cerevisiae and were not identified in the other species (Table 1). This suggests that the specific EGO complex architecture might be restricted to Saccharomyces, though it is possible that functional homologs may be present in other species.In fungi, several downstream effectors are targets of Tor signaling. The PP2A phosphatase Sit4 and its regulatory subunit Tap42 regulate the expression of several TORC1-controlled genes and Gcn2-regulated translation 36465. A Sit4 homolog was identified in R. oryzae (Table 1), though a homolog of the regulatory subunit Tap42 was not (Table 1). In S. rosetta, a Sit4 homolog was not identified, though Tap42 was (Table 2). Both of these situations could indicate rewiring of the pathway, or alternatively these findings could be a result of insufficient similarity to detect with a RBH search method. Sch9, a member of the AGC kinase family and the functional homolog of the p70 S6 kinase, is a direct substrate of S. cerevisiae TORC1 involved in ribosome biogenesis 2866. Sch9 was not identified in RBH BLASTp searches with S. cerevisiae Sch9 in M. circinelloides, P. blakesleeanus, the microsporidia (Table 1), or S. rosetta (Table 2), but was identified in all other species. Putative homologs of Ypk2 kinase, a regulator of ceramide synthesis controlled by TORC2 signaling 67, were only identified in S. cerevisiae, S. pombe, (Table 1), M. brevicollis, S. rosetta, and C. owczarzaki (Table 2). Notably, the failure to detect many homologs in M. brevicollis, S. rosetta, and C. owczarzaki could be due to their evolutionary distance from the other organisms in the study and their gene divergence.Evolutionary conservation of Tor kinase protein structureThe Tor kinases are phosphatidylinositol kinase-related kinases (PIKKs) 68 and aside from their known protein kinase function also serve as evolutionary constrained scaffolds with several protein-protein interaction domains that mediate multi-protein complex formation 69. Tor protein architecture was annotated using SMART 7071 and we found that it has been maintained throughout the species of this study (Figure 2). N-terminal HEAT repeats are present in varying numbers and serve as scaffolding structures for protein-protein interactions 327273. Similarly, the FAT/toxic domain and the accompanying C-terminal FATC domain also participate in protein scaffolding and are present and conserved in all species subject to analysis. Over-expression of the FAT domain has a dominant negative effect on cell growth in yeast and this effect can be suppressed by over-expression of phospholipase C 33. The kinase domain has similarities to both lipid and protein kinases, but it is a bona fide protein kinase. The FRB (FKBP12-rapamycin binding) domain is a highly conserved 100 amino acid region of Tor with several residues that are known to be required for binding the FKBP12-rapamycin drug complex 42.In addition, the FRB domain contains several residues necessary for both phosphatidic acid binding and rapamycin interaction 7475. In mammals, phosphatidic acid binding to the FRB region may promote the assembly of mTOR complexes. It has been proposed that the potent effect of the Tor inhibitor rapamycin may be due to direct competition for overlapping phosphatidic acid binding sites within the FRB domain 76. Mutation of the conserved amino acid residues S1975, W2041, or F2048 in the FRB domain confers rapamycin resistance in S. cerevisiae 44277. Strikingly, the corresponding amino acid residues are conserved in all species examined (Figure 3). In mTOR, phosphatidic acid binding is disrupted by mutations of L2031, F2309, and Y2105 75, corresponding to S. cerevisiae Tor2 L1971, F1979, and Y2045, respectively, all of which are conserved in the studied fungal species (Figure 3).Duplication of Tor in the fungal kingdomApproximately 100 million years ago, the S. cerevisiae ancestor underwent a whole genome duplication (WGD) event, and species that descend from this evolutionary event retained duplicated subsets of genes. S. cerevisiae retained approximately 8% of duplicated genes 7879, while other fungi in this lineage have maintained varying numbers of gene duplicates, such as Candida glabrata in which a smaller number (~2%) of these pairs are maintained 80. Interestingly, several of these species, including S. cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, S. bayanus, S. castellii, and C. glabrata have retained two TOR paralogs, whereas species outside of the WGD clade, including Kluyveromyces lactis and Ashbya gossypii, have only a single TOR gene.The fates of duplicated gene paralogs can be explained through the duplication, degeneration, and complementation (DDC) model of gene duplication 81. In species with a single Tor, this protein populates both TORC1 and TORC2, each of which has distinct functions. Following duplication, each paralog likely sub-functionalized to carry out some, but not all, of its previous functions so that between the two paralogs, each process is performed. In S. cerevisiae, for example, Tor1 exclusively functions within TORC1, while Tor2 preferentially populates TORC2 but can also function in TORC1. S. pombe has two Tor paralogs as a result of an independent segmental gene duplication event, and each paralog has distinct roles not necessarily equivalent to those of S. cerevisiae Tor1 and Tor2. SpTor1 is not essential, whereas SpTor2 is essential for growth 112982.We hypothesize that similar models could apply in species encoding two Tor homologs resulting from independent gene duplication events such as P. ostreatus and B. dendrobatidis. Based on their level of identity with S.�cerevisiae Tor homologs, the B. dendrobatidis genes BDEG_08293 and BDEG_05727 have been designated TOR1 and TOR2, respectively. However, these gene names are not necessarily based on functional similarity with ScTor1 and ScTor2 but rather indicate only that there are two TOR homologs in B. dendrobatidis. A�similar naming challenge is evident in S. pombe, where the functions of SpTor1 and SpTor2 are not equivalent with those of ScTor1 and ScTor2.While several species, such as those in the Saccharomyces clade, have two Tor paralogs resulting from ancient WGD events, other species have acquired a second paralog through independent segmental gene duplication events, including B. dendrobatidis and several fission yeast species closely related to S. pombe (Figure 4). Segmental gene duplications have played a major role in the evolution of species and can result in the duplication of single genes or large blocks of genes 83. In S. cerevisiae, the duplication blocks with TOR include three paralogous gene pairs that have been retained from the ancestral WGD event: PTK1/PTK2, TOR1/TOR2, and MNN4/YJR061W 78 (Figure 5A). Further, C. glabrata, an ascomycete closely related to S. cerevisiae that diverged following the WGD, has also maintained a second TOR paralog and synteny is apparent in the region flanking the TOR1 and TOR2 genes, though one must extend the analysis to >40 kb from the TOR genes to detect it (See additional file 1: Supplemental figure 1). However, because C. glabrata and S. cerevisiae have retained different subsets of genes from the ancestral WGD, the duplicated genes surrounding TOR in these species are not homologs of one another. Further, C. glabrata has maintained fewer of the synteny blocks found in S. cerevisiae, and the block containing the TOR genes (Block 42) is not conserved in C. glabrata 80.In contrast, genomic regions surrounding the Tor paralogs in S. pombe (Figure 5B) and B. dendrobatidis (Figure 5C) are not syntenically conserved. That is, the duplicated genes are not flanked by other duplicated gene pairs, and the two TOR paralogs likely resulted from independent segmental gene duplication events. Further, there are no indications of WGDs in these species. In the Schizosaccharomycotina, the TOR gene duplication occurred prior to speciation as evidenced by the fact that S. pombe, S. octosporus, S. japonicus, and S. cryophilus have each retained a second Tor paralog; the Tor orthologs across these four species are more closely related to each other than to those from other species (Figure 4). No syntenic conservation between the genomic regions containing TOR paralogs was detected in any species of the Schizosaccharomyces group, supporting the occurrence of an independent segmental gene duplication in their common ancestor (see additional file 2: supplemental Figure 2).The Taphrinomycotina is a monophyletic taxon of the Ascomycota containing the Schizosaccharomycetes, Taphrinomycetes, Neolectomycetes, and Pneumocystidomycetes. Genomes are only available for species within the Schizosaccharomycetes (S. pombe, S. octosporus, S. japonicus, and S. cryophilus) and the Taphrinomycetes (Pneumocystis carinii). While the studied Schizosaccharomyces spp. contain two Tor homologs, a single homolog was identified in P. carinii with tBLASTx using the highly conserved S. cerevisiae FRB domain of Tor1 based on sequence data produced by the Pneumocystis Genome Project (funded by the NIH NIAID) that was obtained from http://pgp.cchmc.org at the time of publication. Based on the phylogenetic placement of these two groups 84 and the available genomic information, we hypothesize that the segmental TOR duplication is unique to the Schizosaccharomyces spp. and occurred following their divergence from the common ancestor of the Taphrinomycota, as P. carinii, the other species within this taxon with available genome data, appears to contain a single Tor homolog.Interestingly, the zygomycete R. oryzae underwent a whole genome duplication event and despite retaining 12% of the resulting duplicated genes 85 compared to 8% retained genes in a separate WGD event in S. cerevisiae 7879, two Tor paralogs have not been retained; only a single Tor homolog was identified. Currently, the Zygomycota is the only group studied without an identified species containing two Tor homologs; however, there are not enough available genomes to make a definitive conclusion in this group. Other species with independent TOR duplications likely remain to be identified in all of the major fungal lineages, and as more genome sequences become available this will be addressed.During this study, we identified three additional species that possibly have two TOR paralogs: M. brevicollis, Thecamonas trahens, and Allomyces macrogynus, species that are included in the Origins of Multicellularity Project 86. While analysis is limited because of the state of the M. brevicollis (choanoflagellate) genome, it appears that an additional bonafide Tor protein is encoded with the conserved Tor protein architecture. Thecamonas trahens is a unicellular apusomonad that also contains two TOR paralogs. Interestingly, A. macrogynus is a fungus that may contain a second paralog; however, it appears that the FRB domain overlaps with the kinase domain. This may represent a case in which TOR was duplicated but is in the process of losing one of the copies. These cases are a springboard for future studies involving the duplication of TOR within and beyond the fungal kingdom.Loss of the Tor signaling pathway in microsporidiaWhile components of the Tor signaling cascade are conserved in eukaryotes from yeasts to humans, the microsporidia, a group of highly specialized obligate intracellular pathogens completely lack all of the pathway components investigated in this study. E. cuniculi has previously been noted to lack the Tor kinase 87, and we found that all pathway components including Tor were missing not only in E. cuniculi but also in its microsporidian relatives E. bieneusi and N. ceranae (Table 2). Microsporidian genomes are highly compacted and show a marked reduced gene content. The genome of the human pathogen E. cuniculi has 1997 genes distributed throughout 11 chromosomes in a 2.9 Mb genome 88, less than half the number of protein-coding genes found in Escherichia coli. For comparison, the genome of the human pathogen E. bieneusi genome is ~6 Mb with 3,804 genes 89 and the honeybee pathogen N. ceranae genome is ~7.9 Mb with 2,614 predicted genes 90. Genome reduction has been well studied in intracellular bacteria: during the specialization process from a free-living to intracellular lifestyle, massive gene loss can occur 9192939495. We hypothesize that as a consequence of their specialization to an obligate intracellular lifestyle, the need for nutrient sensing was relaxed and these obligate intracellular microsporidia acquired nutrients from within the host cytoplasm. Thus, they no longer required the Tor pathway, which is dedicated to sensing changes in the nutrient composite of the environmental milieu. However, E. cuniculi has retained some of the genes encoding signaling pathways involved in nutrient sensing in other species, including homologs of S. cerevisiae Ras1 and Ras2 (data not shown).Interestingly, P. carinii is an obligate pathogen with a reduced genome estimated to be ~8 Mb 96, which unlike microsporidia is not obligately intracellular. A�single Tor homolog was identified [Pneumocystis Genome Project:cap3_it1_grp346_contig490] using the S. cerevisiae Tor1 FRB domain in tBLASTx, supporting our hypothesis that the microsporidia have streamlined their genomes as they adopted an obligate intracellular life cycle. P. carinii likely requires Tor because it must survive in a metabolically active form outside of host cells, undergoing cell division in the extracellular milieu of the infected host lung.Many microsporidian genomes have undergone extreme genome reduction and are among the eukaryotes with the smallest genomes. In addition to fewer genes than other species (1997 in E. cuniculi compared to 6607 in S. cerevisiae), E. cuniculi has shorter genes, small intergenic distances, and very few introns 8897. This species (and to an even greater extent, E. bieneusi) lacks several genes that are necessary for biosynthetic pathways and the tricarboxylic acid cycle in free-living organisms 888998. Remarkably, E. cuniculi must acquire ATP from its host through a series of ATP transporters anciently acquired from Rickettsia- or Chlamydia-like bacteria 99, and this is an example of how E. cuniculi, and possibly other microsporidia, can hijack mechanisms of other intracellular bacteria, fungi, or the host to survive in and adapt to their highly specialized intracellular lifestyle.ConclusionsThe Tor pathway is highly conserved with some exceptions among fungi, including several pathogens. Similarly, the molecular structural organization of the Tor kinases has been remarkably conserved as well as the presumed ability to bind the FKBP12-rapamycin complex. This feature, combined with the essential nature of the rapamycin-sensitive TORC1 pathway for cell growth, should enable the development of rapamycin-based strategies for antifungal therapies. Duplications of the Tor protein occurred in most fungal groups examined, resulting from either independent segmental gene duplication events or a WGD event. The maintenance of two Tor homologs can be explained through the DDC model of gene duplication, in which the paralogs subfunctionalize and together support all of the functions of the pre-duplicated protein. In addition, species outside of the fungal kingdom with two or more TOR homologs include the metazoan B. mori, the apusomonad protozoan T. trahens, the trypanosome protozoans L. major and T. brucei, and possibly the choanoflagellate M. brevicollis. This suggests that the Tor gene has been independently duplicated multiple times since the last common ancestor of the Opisthokonta and Excavata lineages. The Tor pathway, as well as the Tor protein itself, is highly conserved in eukaryotes, so the observation that three microsporidian species are missing the entire pathway is striking. It would appear that the specialized obligate intracellular life cycle of microsporidia allows for the acquisition of nutrients from the host cell, obviating a requirement for this central nutrient-sensing pathway that is essential in all known cases of other eukaryotes for axenic growth.MethodsIdentification of pathway component homologsTor homologs were identified using the highly conserved 100 amino acid FRB domain of S. cerevisiae Tor1 in BLASTp reciprocal best-hit searches between the specific species database and the Saccharomyces Genome Database (SGD). All queries for other Tor pathway components were retrieved from SGD and homologs were identified by BLASTp reciprocal best-hit searches, with the exception of Tsc1 and Tsc2. Tsc1 and Tsc2 protein query sequences were retrieved from the S. pombe GeneDB, and homologs were identified using BLASTp searches between the S. pombe genome database and the species database. Species identification numbers are listed in Supplemental Table 1. Protein architecture of each homolog was elucidated with Simple Modular Architecture Research Tool (SMART) analysis 7071.Accession numbers are provided for putative Tor pathway components (see Additional file 3, supplemental Table 1 for the accession numbers of putative Tor pathway components) from the following public genomic databases that were used to carry out BLAST: S. cerevisiae, SGD, http://www.yeastgenome.org; S. pombe, GeneDB, http://www.genedb.org/genedb/pombe/index.jsp; P. ostreatus, JGI, http://genome.jgi-psf.org/PleosPC15_1/PleosPC15_1.home.html; M. circinelloides, JGI and the Mucor Genome Project, http://genome.jgi-psf.org/Mucci1/Mucci1.home.html; R. oryzae, Broad Institute, http://www.broadinstitute.org/annotation/genome/rhizopus_oryzae/MultiHome.html; P. blakesleeanus, JGI, http://genome.jgi-psf.org/Phybl1/Phybl1.home.html; B. dendrobatidis, Broad Institute, http://www.broadinstitute.org/annotation/genome/batrachochytrium_dendrobatidis/MultiHome.html; S. punctatus, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; M. brevicollis, JGI, http://genome.jgi-psf.org/Monbr1/Monbr1.home.html; S. rosetta, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; C. owczarzaki, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; E. cuniculi, E. bieneusi, and N. ceranae, NCBI, http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi?organism=fungi.Phylogenetic analysis of TorThe ProtTest program 100 was used to select an appropriate model to construct the phylogenetic relationship of the Tor proteins of the studied species. For this study, the best model for phylogenetic construction of the Tor protein using maximum likelihood (ML) was JTT+I+G+F 101. The ML tree was generated using PhyML with the JTT+I+G+F mode with 500 bootstrap replicates 102103. The Tor amino acid sequences from all species were aligned with CLUSTAL W 104.Synteny analysis of TOR paralogsTor homologs in fungal species were identified with BLAST 105 using TOR1 and TOR2 of S. cerevisiae as query sequences. The TOR sequence and flanking regions (up to 100 kb) were extracted from corresponding contigs or chromosomal sequences. To analyze the synteny of TOR and flanking regions, we constructed a database of one TOR and flanking region sequence and used the other TOR homolog and flanking region sequence to perform tBLASTx searches in the database (BLOSUM62 matrix; E-value = 1e-3; gap cost: existence 11, extension 1; and low complexity regions filter). The tBLASTx results were parsed and formatted using an in-house Perl script (available upon request). The parsed and formatted tBLASTx results were then imported into Artemis software 106 for synteny analysis. We employed a cutoff value of 100 bp to filter short non-significant matches between query and database sequences.Authors� contributionsCAS carried out the homolog searches and phylogenetic analysis and drafted the manuscript. RJB performed homolog searches and participated in the design of the study. WL performed the synteny and phylogenetic analysis and helped draft the manuscript. JH and MEC conceived of the study, participated in its design and helped to draft the manuscript. All authors read and approved the final manuscript.
BackgroundThe nutrient-sensing target of rapamycin (Tor) pathway is highly conserved among eukaryotes and governs several essential cellular processes including protein synthesis, ribosome biogenesis, autophagy, and cytoskeletal organization 123. In the fungal kingdom, the Tor pathway has been best studied in the budding yeast Saccharomyces cerevisiae 234, the fission yeast Schizosaccharomyces pombe 56, and the human pathogen Candida albicans 5678. However, little is known about Tor in basal fungal lineages, including the Zygomycota and Chytridiomycota.In S. cerevisiae and S. pombe, two Tor paralogs form distinct complexes known as Tor Complex 1 (TORC1) and Tor Complex 2 (TORC2) 9101112, while in most other species, including humans, a single Tor protein can populate both complexes 11121314. Interestingly, S. cerevisiae Tor2 can complement the loss of Tor1, but Tor1 cannot complement the loss of Tor2 1516. Two Tor paralogs have also been identified in a metazoan, the silkworm Bombyx mori 17 and three Tor paralogs were identified in the trypanosomatid parasites Leishmania major 18 and the related species Trypanosoma brucei 19, the first reported Tor triumvirates.The ScTORC1 is sensitive to rapamycin and controls protein synthesis, mRNA synthesis and degradation, ribosome biogenesis, and autophagy. TORC2 is insensitive to rapamycin and is involved in the control of actin polarization and cell wall integrity 916. TORC1 consists of Tor1 or Tor2, Kog1 20, Tco89, and Lst8 21, while TORC2 contains Tor2, Lst8, Avo1, Avo2, and Avo3 22 (Figure 1A). Recently, the EGO-GTPase complex and its orthologs were shown to convey amino acid signals for TORC1 activation in yeast, insects, and mammals 23242526. In S. cerevisiae, immediate effectors of TORC1 include the PP2A-like phosphatase Sit4 27 and the AGC kinase Sch9 28. In S. pombe, Tor participates in other cellular functions including nutrient signaling 29, cell growth and differentiation 30, mitotic commitment 31, and sexual development 11 (Figure 1B).The structure of the Tor proteins is remarkably conserved (Figure 2) and features several domains for protein-protein interactions including N-terminal HEAT (Huntingtin, Elongation factor 3, PP2A A subunit, Tor) repeats 32, a FAT (FRAP, ATM, and TRRAP) domain 3334, and an FRB (FK506-Rapamycin Binding) 35 domain. The kinase and the FATC (FAT domain at the C-terminus) 3236 domains are present in the C-terminal region.The Tor inhibitor rapamycin blocks cell proliferation and is currently used as an immunosuppressive drug for organ and tissue transplant recipients and a chemotherapy agent against a variety of solid cancers 37383940. Rapamycin binds to the prolyl isomerase FKBP12 to form a protein-drug complex that then interacts with the Tor FRB domain in a ternary complex 4142. S. cerevisiae cells treated with rapamycin display phenotypes associated with nutrient depletion including G1 cell cycle arrest, cellular volume expansion, protein synthesis inhibition, glycogen accumulation, and autophagy 3543.Genetic analysis in S. cerevisiae characterizing rapamycin-resistant mutants led to the identification of FKBP12 as the intracellular receptor for rapamycin and defined Tor1 and Tor2 as the targets of the FKBP12-rapamycin complex 4. Subsequent studies resulted in the identification and characterization of the TOR1 and TOR2 gene products 1544 as well as the elucidation of the Tor signaling cascade 8454647. These pioneering studies aided in the identification of the mammalian Tor ortholog and characterization of this highly conserved signaling cascade 84849. Remarkably, expression of the human FKBP12 ortholog in yeast fpr1 (the gene that encodes FKBP12) deletion mutants complements to restore rapamycin sensitivity, and hybrid Tor proteins consisting of the yeast N-terminal domain fused to the mammalian Tor kinase domain are also functional in yeast 50. Thus, the Tor pathway has been functionally and structurally conserved from yeasts to humans over the billion years of evolution separating the two species from their last common ancestor.We now know that the fungal and metazoan kingdoms are both within the opisthokont lineage of eukaryotes and are thus more closely related to each other than the vast majority of eukaryotic organisms 5152. Moreover, these two highly successful kingdoms shared a last common ancestor as recently as one billion years ago, much more recently than most eukaryotes. Recent initiatives, particularly the UNICORN project, have facilitated the sequencing of several opisthokonts related to the last common ancestor of the metazoans and fungi, providing an interesting window into the evolution of both fungi and animals 53545556. Thus, studies on the evolutionary trajectory of the fungal kingdom in general, and of the Tor signaling cascade in particular, promise to reveal insights about how orthologous pathways function in the more complex milieu of multicellular metazoan organisms.In this study, we have capitalized upon the wealth of available genomic information by annotating the Tor pathway in several fungal organisms in which this pathway has not been described. Our study included selected species in the major groups of the fungal kingdom with genome sequences available: the basidiomycete Pleurotus ostreatus; the Mucorales zygomycetes Mucor circinelloides, Rhizopus oryzae, and Phycomyces blakesleeanus; the chytridiomycetes Spizellomyces punctatus and Batrachochytrium dendrobatidis; the microsporidian species Encephalitozoon cuniculi, Enterocytozoon bieneusi, and Nosema ceranae; and the related non-fungal opisthokonts Capsaspora owczarzaki, Salpingoeca rosetta, and Monosiga brevicollis. Whereas the Tor pathway is conserved throughout the eukaryotes, strikingly, microsporidian species with their highly reduced and compacted genomes lack the entire Tor pathway. We have also investigated gene and genome duplication events that resulted in two Tor homologs in S. cerevisiae, S. pombe, P. ostreatus, and B. dendrobatidis, and the loss of a second Tor homolog following a whole genome duplication event in R. oryzae.Results and DiscussionConservation of the Tor signaling pathway molecular componentsThe Tor pathway is well conserved among nearly all eukaryotic species examined to date. Tor is essential for life and is the target of the potent drug rapamycin in fungi, humans, and other eukaryotic organisms 2121941. Tor originated early during the eukaryotic radiation, as it is present in the basal eukaryotes Giardia lamblia 57, L. major 18 and T. brucei 19, and also in plants 58. Here we focused on the Tor pathway in the fungal kingdom and other representative unicellular opisthokont species outside of the fungi. Several genes encoding Tor complex components, upstream regulators, and downstream effectors were identified in all major groups throughout the fungal kingdom (Figure 1, Table 1). Because we used BLASTp reciprocal best hits (RBH) to identify orthologs, in some cases the absence of an ortholog in our results may represent only a failure to detect it with this method. Further, functional homologs that are not sufficiently similar enough in sequence to be identified may be present. Overall, a high degree of pathway conservation is observed in the Tor signaling cascade throughout the fungal kingdom, with the exception of microsporidia in which all Tor pathway components are absent. In addition, several pathway components are conserved in the related unicellular opisthokonts M. brevicollis, S. rosetta, and C. owczarzaki (Table 2).In S. cerevisiae, Tor1 and Tor2 interact with several proteins to form TORC1 and TORC2. TORC1 contains Tor1 or Tor2, Kog1, Tco89, and Lst8. Kog1 functions as a substrate-recruiting subunit in mammalian TORC1 (mTORC1) 13596061. A gene encoding a putative Kog1 homolog was identified in all species included in this study, with the exception of the microsporidia and S. rosetta (Tables 1 and 2). Mutation of TCO89 results in hypersensitivity to rapamycin and affects cellular integrity in S. cerevisiae 21. Tco89 is only found in S. cerevisiae and could have resulted from a specialization of the pathway exclusive to Saccharomyces species (Table 1). However, while a BLASTp search did not identify Tco89 homologs in other species, S. pombe has been reported to contain a functional homolog [GenBank:NP_588232] 12, and this suggests that functional homologs may exist in other fungal species as well. However, no homologs were identified when using S.�pombe Tco89 as a query sequence. Lst8 binds to the Tor kinase domain in S. cerevisiae to stimulate catalytic activity 9 and a putative Lst8 homolog is conserved in most species analyzed except microsporidia and S.�rosetta (Tables 1 and 2).Additional BLASTp searches identified a single Tor homolog in the following species: Lachancea thermotolerans CBS6340 [GenBank:XP_002552336], Pichia pastoris GS115 [GenBank:XP_002491471], Pichia stipitis CBS6054 [GenBank:XP_001385651], Debaryomyces hansenii CBS767 [GenBank:XP_002770885], Yarrowia lipolytica CLIB122 [GenBank:XP_505106], Podospora anserina strain S mat+ [GenBank:XP_001903968], Chaetomium globosum CBS148.51 [GenBank:XP_001226647], Magnaporthe oryzae 70-15 [GenBank:XP_001414541], Gibberella zeae PH-1 [GenBank:XP_388309], Aspergillus fumigatus Af293 [GenBank:XP_755360], Aspergillus flavus NRRL3357 [GenBank:XP_002377897], Neosartorya fischeri NRRL181 [GenBank:XP_001260509], Aspergillus terreus NIH2624 [GenBank:XP_001213640], Aspergillus nidulans FGSCA4 [GenBank:XP_663586], Aspergillus clavatus NRRL1 [GenBank:XP_001275326], Aspergillus oryzae RIB40 [GenBank: XP_001826216], and Aspergillus niger CBS513.88 [GenBank:XP_001397781]. These ascomycetes were not included in further studies.In yeast and mammals, TORC2 controls spatial aspects of growth. TORC2 includes Tor2, Avo1, Avo2, Avo3, and Bit61 922. Avo1 plays an essential role in actin cytoskeleton polarization 22 and is conserved throughout the organisms that were the focus of this study (Table 1) except in S. rosetta and C. owczarzaki (Table 2). However, due to high divergence of the AVO1 sequence amongst the known homologs, it is possible that the S. rosetta and C. owczarzaki homologs cannot be identified using the BLASTp algorithm. Avo2 is a nonessential substrate adaptor for TORC2 22 and potential homologs were identified in most species studied, with the exceptions of S. pombe, P. ostreatus, the three microsporidian species (Table 1), and M. brevicollis (Table 2). In S. cerevisiae, Avo3 (also know as Tsc11) controls cytoskeletal dynamics 922, and homologs are conserved throughout the species examined (Tables 1 and 2). Bit61, a nonessential protein that associates with TORC2 21, was only identified in S. cerevisiae (Tables 1 and 2).Upstream regulators of Tor include Tsc1 and Tsc2 (Tuberous Sclerosis 1 and 2) and the GTPase Rheb (Ras homolog enhanced in brain). In S. pombe and other eukaryotes, Tsc1 and Tsc2 form a GTPase-activating complex that negatively regulates the action of Rheb to activate TORC1 266263. Tsc1 and Tsc2 putative homologs were identified in most species in the study, with the exception of S. cerevisiae (Table 1); however, Tsc1 homologs were not identified in B. dendrobatidis, S. rosetta, or C. owczarzaki (Tables 1 and 2). In mammals and insects, four Rag GTPases (RagA-D) bind raptor (Kog1) to mediate TORC1 signaling in response to amino acids 2426. RagA and RagB are orthologs of S.�cerevisiae Gtr1 whereas RagC and RagD are orthologs of S. cerevisiae Gtr2 23. Gtr1 and Gtr2 form a complex along with Ego1 and Ego3 known as EGOC/GSE 25, which is regulated by the GTP exchange factor Vam6 23. Interestingly we found presumptive Gtr1 and Gtr2 orthologs in species in this study with the exception of microsporidia (Table 1), and Gtr1 was not identified in M. brevicollis (Table 2). However, Ego1 and Ego3, which anchor Gtr1 and Gtr2 to endosomal and vacuolar membranes, are unique to S. cerevisiae and were not identified in the other species (Table 1). This suggests that the specific EGO complex architecture might be restricted to Saccharomyces, though it is possible that functional homologs may be present in other species.In fungi, several downstream effectors are targets of Tor signaling. The PP2A phosphatase Sit4 and its regulatory subunit Tap42 regulate the expression of several TORC1-controlled genes and Gcn2-regulated translation 36465. A Sit4 homolog was identified in R. oryzae (Table 1), though a homolog of the regulatory subunit Tap42 was not (Table 1). In S. rosetta, a Sit4 homolog was not identified, though Tap42 was (Table 2). Both of these situations could indicate rewiring of the pathway, or alternatively these findings could be a result of insufficient similarity to detect with a RBH search method. Sch9, a member of the AGC kinase family and the functional homolog of the p70 S6 kinase, is a direct substrate of S. cerevisiae TORC1 involved in ribosome biogenesis 2866. Sch9 was not identified in RBH BLASTp searches with S. cerevisiae Sch9 in M. circinelloides, P. blakesleeanus, the microsporidia (Table 1), or S. rosetta (Table 2), but was identified in all other species. Putative homologs of Ypk2 kinase, a regulator of ceramide synthesis controlled by TORC2 signaling 67, were only identified in S. cerevisiae, S. pombe, (Table 1), M. brevicollis, S. rosetta, and C. owczarzaki (Table 2). Notably, the failure to detect many homologs in M. brevicollis, S. rosetta, and C. owczarzaki could be due to their evolutionary distance from the other organisms in the study and their gene divergence.Evolutionary conservation of Tor kinase protein structureThe Tor kinases are phosphatidylinositol kinase-related kinases (PIKKs) 68 and aside from their known protein kinase function also serve as evolutionary constrained scaffolds with several protein-protein interaction domains that mediate multi-protein complex formation 69. Tor protein architecture was annotated using SMART 7071 and we found that it has been maintained throughout the species of this study (Figure 2). N-terminal HEAT repeats are present in varying numbers and serve as scaffolding structures for protein-protein interactions 327273. Similarly, the FAT/toxic domain and the accompanying C-terminal FATC domain also participate in protein scaffolding and are present and conserved in all species subject to analysis. Over-expression of the FAT domain has a dominant negative effect on cell growth in yeast and this effect can be suppressed by over-expression of phospholipase C 33. The kinase domain has similarities to both lipid and protein kinases, but it is a bona fide protein kinase. The FRB (FKBP12-rapamycin binding) domain is a highly conserved 100 amino acid region of Tor with several residues that are known to be required for binding the FKBP12-rapamycin drug complex 42.In addition, the FRB domain contains several residues necessary for both phosphatidic acid binding and rapamycin interaction 7475. In mammals, phosphatidic acid binding to the FRB region may promote the assembly of mTOR complexes. It has been proposed that the potent effect of the Tor inhibitor rapamycin may be due to direct competition for overlapping phosphatidic acid binding sites within the FRB domain 76. Mutation of the conserved amino acid residues S1975, W2041, or F2048 in the FRB domain confers rapamycin resistance in S. cerevisiae 44277. Strikingly, the corresponding amino acid residues are conserved in all species examined (Figure 3). In mTOR, phosphatidic acid binding is disrupted by mutations of L2031, F2309, and Y2105 75, corresponding to S. cerevisiae Tor2 L1971, F1979, and Y2045, respectively, all of which are conserved in the studied fungal species (Figure 3).Duplication of Tor in the fungal kingdomApproximately 100 million years ago, the S. cerevisiae ancestor underwent a whole genome duplication (WGD) event, and species that descend from this evolutionary event retained duplicated subsets of genes. S. cerevisiae retained approximately 8% of duplicated genes 7879, while other fungi in this lineage have maintained varying numbers of gene duplicates, such as Candida glabrata in which a smaller number (~2%) of these pairs are maintained 80. Interestingly, several of these species, including S. cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, S. bayanus, S. castellii, and C. glabrata have retained two TOR paralogs, whereas species outside of the WGD clade, including Kluyveromyces lactis and Ashbya gossypii, have only a single TOR gene.The fates of duplicated gene paralogs can be explained through the duplication, degeneration, and complementation (DDC) model of gene duplication 81. In species with a single Tor, this protein populates both TORC1 and TORC2, each of which has distinct functions. Following duplication, each paralog likely sub-functionalized to carry out some, but not all, of its previous functions so that between the two paralogs, each process is performed. In S. cerevisiae, for example, Tor1 exclusively functions within TORC1, while Tor2 preferentially populates TORC2 but can also function in TORC1. S. pombe has two Tor paralogs as a result of an independent segmental gene duplication event, and each paralog has distinct roles not necessarily equivalent to those of S. cerevisiae Tor1 and Tor2. SpTor1 is not essential, whereas SpTor2 is essential for growth 112982.We hypothesize that similar models could apply in species encoding two Tor homologs resulting from independent gene duplication events such as P. ostreatus and B. dendrobatidis. Based on their level of identity with S.�cerevisiae Tor homologs, the B. dendrobatidis genes BDEG_08293 and BDEG_05727 have been designated TOR1 and TOR2, respectively. However, these gene names are not necessarily based on functional similarity with ScTor1 and ScTor2 but rather indicate only that there are two TOR homologs in B. dendrobatidis. A�similar naming challenge is evident in S. pombe, where the functions of SpTor1 and SpTor2 are not equivalent with those of ScTor1 and ScTor2.While several species, such as those in the Saccharomyces clade, have two Tor paralogs resulting from ancient WGD events, other species have acquired a second paralog through independent segmental gene duplication events, including B. dendrobatidis and several fission yeast species closely related to S. pombe (Figure 4). Segmental gene duplications have played a major role in the evolution of species and can result in the duplication of single genes or large blocks of genes 83. In S. cerevisiae, the duplication blocks with TOR include three paralogous gene pairs that have been retained from the ancestral WGD event: PTK1/PTK2, TOR1/TOR2, and MNN4/YJR061W 78 (Figure 5A). Further, C. glabrata, an ascomycete closely related to S. cerevisiae that diverged following the WGD, has also maintained a second TOR paralog and synteny is apparent in the region flanking the TOR1 and TOR2 genes, though one must extend the analysis to >40 kb from the TOR genes to detect it (See additional file 1: Supplemental figure 1). However, because C. glabrata and S. cerevisiae have retained different subsets of genes from the ancestral WGD, the duplicated genes surrounding TOR in these species are not homologs of one another. Further, C. glabrata has maintained fewer of the synteny blocks found in S. cerevisiae, and the block containing the TOR genes (Block 42) is not conserved in C. glabrata 80.In contrast, genomic regions surrounding the Tor paralogs in S. pombe (Figure 5B) and B. dendrobatidis (Figure 5C) are not syntenically conserved. That is, the duplicated genes are not flanked by other duplicated gene pairs, and the two TOR paralogs likely resulted from independent segmental gene duplication events. Further, there are no indications of WGDs in these species. In the Schizosaccharomycotina, the TOR gene duplication occurred prior to speciation as evidenced by the fact that S. pombe, S. octosporus, S. japonicus, and S. cryophilus have each retained a second Tor paralog; the Tor orthologs across these four species are more closely related to each other than to those from other species (Figure 4). No syntenic conservation between the genomic regions containing TOR paralogs was detected in any species of the Schizosaccharomyces group, supporting the occurrence of an independent segmental gene duplication in their common ancestor (see additional file 2: supplemental Figure 2).The Taphrinomycotina is a monophyletic taxon of the Ascomycota containing the Schizosaccharomycetes, Taphrinomycetes, Neolectomycetes, and Pneumocystidomycetes. Genomes are only available for species within the Schizosaccharomycetes (S. pombe, S. octosporus, S. japonicus, and S. cryophilus) and the Taphrinomycetes (Pneumocystis carinii). While the studied Schizosaccharomyces spp. contain two Tor homologs, a single homolog was identified in P. carinii with tBLASTx using the highly conserved S. cerevisiae FRB domain of Tor1 based on sequence data produced by the Pneumocystis Genome Project (funded by the NIH NIAID) that was obtained from http://pgp.cchmc.org at the time of publication. Based on the phylogenetic placement of these two groups 84 and the available genomic information, we hypothesize that the segmental TOR duplication is unique to the Schizosaccharomyces spp. and occurred following their divergence from the common ancestor of the Taphrinomycota, as P. carinii, the other species within this taxon with available genome data, appears to contain a single Tor homolog.Interestingly, the zygomycete R. oryzae underwent a whole genome duplication event and despite retaining 12% of the resulting duplicated genes 85 compared to 8% retained genes in a separate WGD event in S. cerevisiae 7879, two Tor paralogs have not been retained; only a single Tor homolog was identified. Currently, the Zygomycota is the only group studied without an identified species containing two Tor homologs; however, there are not enough available genomes to make a definitive conclusion in this group. Other species with independent TOR duplications likely remain to be identified in all of the major fungal lineages, and as more genome sequences become available this will be addressed.During this study, we identified three additional species that possibly have two TOR paralogs: M. brevicollis, Thecamonas trahens, and Allomyces macrogynus, species that are included in the Origins of Multicellularity Project 86. While analysis is limited because of the state of the M. brevicollis (choanoflagellate) genome, it appears that an additional bonafide Tor protein is encoded with the conserved Tor protein architecture. Thecamonas trahens is a unicellular apusomonad that also contains two TOR paralogs. Interestingly, A. macrogynus is a fungus that may contain a second paralog; however, it appears that the FRB domain overlaps with the kinase domain. This may represent a case in which TOR was duplicated but is in the process of losing one of the copies. These cases are a springboard for future studies involving the duplication of TOR within and beyond the fungal kingdom.Loss of the Tor signaling pathway in microsporidiaWhile components of the Tor signaling cascade are conserved in eukaryotes from yeasts to humans, the microsporidia, a group of highly specialized obligate intracellular pathogens completely lack all of the pathway components investigated in this study. E. cuniculi has previously been noted to lack the Tor kinase 87, and we found that all pathway components including Tor were missing not only in E. cuniculi but also in its microsporidian relatives E. bieneusi and N. ceranae (Table 2). Microsporidian genomes are highly compacted and show a marked reduced gene content. The genome of the human pathogen E. cuniculi has 1997 genes distributed throughout 11 chromosomes in a 2.9 Mb genome 88, less than half the number of protein-coding genes found in Escherichia coli. For comparison, the genome of the human pathogen E. bieneusi genome is ~6 Mb with 3,804 genes 89 and the honeybee pathogen N. ceranae genome is ~7.9 Mb with 2,614 predicted genes 90. Genome reduction has been well studied in intracellular bacteria: during the specialization process from a free-living to intracellular lifestyle, massive gene loss can occur 9192939495. We hypothesize that as a consequence of their specialization to an obligate intracellular lifestyle, the need for nutrient sensing was relaxed and these obligate intracellular microsporidia acquired nutrients from within the host cytoplasm. Thus, they no longer required the Tor pathway, which is dedicated to sensing changes in the nutrient composite of the environmental milieu. However, E. cuniculi has retained some of the genes encoding signaling pathways involved in nutrient sensing in other species, including homologs of S. cerevisiae Ras1 and Ras2 (data not shown).Interestingly, P. carinii is an obligate pathogen with a reduced genome estimated to be ~8 Mb 96, which unlike microsporidia is not obligately intracellular. A�single Tor homolog was identified [Pneumocystis Genome Project:cap3_it1_grp346_contig490] using the S. cerevisiae Tor1 FRB domain in tBLASTx, supporting our hypothesis that the microsporidia have streamlined their genomes as they adopted an obligate intracellular life cycle. P. carinii likely requires Tor because it must survive in a metabolically active form outside of host cells, undergoing cell division in the extracellular milieu of the infected host lung.Many microsporidian genomes have undergone extreme genome reduction and are among the eukaryotes with the smallest genomes. In addition to fewer genes than other species (1997 in E. cuniculi compared to 6607 in S. cerevisiae), E. cuniculi has shorter genes, small intergenic distances, and very few introns 8897. This species (and to an even greater extent, E. bieneusi) lacks several genes that are necessary for biosynthetic pathways and the tricarboxylic acid cycle in free-living organisms 888998. Remarkably, E. cuniculi must acquire ATP from its host through a series of ATP transporters anciently acquired from Rickettsia- or Chlamydia-like bacteria 99, and this is an example of how E. cuniculi, and possibly other microsporidia, can hijack mechanisms of other intracellular bacteria, fungi, or the host to survive in and adapt to their highly specialized intracellular lifestyle.ConclusionsThe Tor pathway is highly conserved with some exceptions among fungi, including several pathogens. Similarly, the molecular structural organization of the Tor kinases has been remarkably conserved as well as the presumed ability to bind the FKBP12-rapamycin complex. This feature, combined with the essential nature of the rapamycin-sensitive TORC1 pathway for cell growth, should enable the development of rapamycin-based strategies for antifungal therapies. Duplications of the Tor protein occurred in most fungal groups examined, resulting from either independent segmental gene duplication events or a WGD event. The maintenance of two Tor homologs can be explained through the DDC model of gene duplication, in which the paralogs subfunctionalize and together support all of the functions of the pre-duplicated protein. In addition, species outside of the fungal kingdom with two or more TOR homologs include the metazoan B. mori, the apusomonad protozoan T. trahens, the trypanosome protozoans L. major and T. brucei, and possibly the choanoflagellate M. brevicollis. This suggests that the Tor gene has been independently duplicated multiple times since the last common ancestor of the Opisthokonta and Excavata lineages. The Tor pathway, as well as the Tor protein itself, is highly conserved in eukaryotes, so the observation that three microsporidian species are missing the entire pathway is striking. It would appear that the specialized obligate intracellular life cycle of microsporidia allows for the acquisition of nutrients from the host cell, obviating a requirement for this central nutrient-sensing pathway that is essential in all known cases of other eukaryotes for axenic growth.MethodsIdentification of pathway component homologsTor homologs were identified using the highly conserved 100 amino acid FRB domain of S. cerevisiae Tor1 in BLASTp reciprocal best-hit searches between the specific species database and the Saccharomyces Genome Database (SGD). All queries for other Tor pathway components were retrieved from SGD and homologs were identified by BLASTp reciprocal best-hit searches, with the exception of Tsc1 and Tsc2. Tsc1 and Tsc2 protein query sequences were retrieved from the S. pombe GeneDB, and homologs were identified using BLASTp searches between the S. pombe genome database and the species database. Species identification numbers are listed in Supplemental Table 1. Protein architecture of each homolog was elucidated with Simple Modular Architecture Research Tool (SMART) analysis 7071.Accession numbers are provided for putative Tor pathway components (see Additional file 3, supplemental Table 1 for the accession numbers of putative Tor pathway components) from the following public genomic databases that were used to carry out BLAST: S. cerevisiae, SGD, http://www.yeastgenome.org; S. pombe, GeneDB, http://www.genedb.org/genedb/pombe/index.jsp; P. ostreatus, JGI, http://genome.jgi-psf.org/PleosPC15_1/PleosPC15_1.home.html; M. circinelloides, JGI and the Mucor Genome Project, http://genome.jgi-psf.org/Mucci1/Mucci1.home.html; R. oryzae, Broad Institute, http://www.broadinstitute.org/annotation/genome/rhizopus_oryzae/MultiHome.html; P. blakesleeanus, JGI, http://genome.jgi-psf.org/Phybl1/Phybl1.home.html; B. dendrobatidis, Broad Institute, http://www.broadinstitute.org/annotation/genome/batrachochytrium_dendrobatidis/MultiHome.html; S. punctatus, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; M. brevicollis, JGI, http://genome.jgi-psf.org/Monbr1/Monbr1.home.html; S. rosetta, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; C. owczarzaki, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; E. cuniculi, E. bieneusi, and N. ceranae, NCBI, http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi?organism=fungi.Phylogenetic analysis of TorThe ProtTest program 100 was used to select an appropriate model to construct the phylogenetic relationship of the Tor proteins of the studied species. For this study, the best model for phylogenetic construction of the Tor protein using maximum likelihood (ML) was JTT+I+G+F 101. The ML tree was generated using PhyML with the JTT+I+G+F mode with 500 bootstrap replicates 102103. The Tor amino acid sequences from all species were aligned with CLUSTAL W 104.Synteny analysis of TOR paralogsTor homologs in fungal species were identified with BLAST 105 using TOR1 and TOR2 of S. cerevisiae as query sequences. The TOR sequence and flanking regions (up to 100 kb) were extracted from corresponding contigs or chromosomal sequences. To analyze the synteny of TOR and flanking regions, we constructed a database of one TOR and flanking region sequence and used the other TOR homolog and flanking region sequence to perform tBLASTx searches in the database (BLOSUM62 matrix; E-value = 1e-3; gap cost: existence 11, extension 1; and low complexity regions filter). The tBLASTx results were parsed and formatted using an in-house Perl script (available upon request). The parsed and formatted tBLASTx results were then imported into Artemis software 106 for synteny analysis. We employed a cutoff value of 100 bp to filter short non-significant matches between query and database sequences.Authors� contributionsCAS carried out the homolog searches and phylogenetic analysis and drafted the manuscript. RJB performed homolog searches and participated in the design of the study. WL performed the synteny and phylogenetic analysis and helped draft the manuscript. JH and MEC conceived of the study, participated in its design and helped to draft the manuscript. All authors read and approved the final manuscript.
BackgroundThe nutrient-sensing target of rapamycin (Tor) pathway is highly conserved among eukaryotes and governs several essential cellular processes including protein synthesis, ribosome biogenesis, autophagy, and cytoskeletal organization 123. In the fungal kingdom, the Tor pathway has been best studied in the budding yeast Saccharomyces cerevisiae 234, the fission yeast Schizosaccharomyces pombe 56, and the human pathogen Candida albicans 5678. However, little is known about Tor in basal fungal lineages, including the Zygomycota and Chytridiomycota.In S. cerevisiae and S. pombe, two Tor paralogs form distinct complexes known as Tor Complex 1 (TORC1) and Tor Complex 2 (TORC2) 9101112, while in most other species, including humans, a single Tor protein can populate both complexes 11121314. Interestingly, S. cerevisiae Tor2 can complement the loss of Tor1, but Tor1 cannot complement the loss of Tor2 1516. Two Tor paralogs have also been identified in a metazoan, the silkworm Bombyx mori 17 and three Tor paralogs were identified in the trypanosomatid parasites Leishmania major 18 and the related species Trypanosoma brucei 19, the first reported Tor triumvirates.The ScTORC1 is sensitive to rapamycin and controls protein synthesis, mRNA synthesis and degradation, ribosome biogenesis, and autophagy. TORC2 is insensitive to rapamycin and is involved in the control of actin polarization and cell wall integrity 916. TORC1 consists of Tor1 or Tor2, Kog1 20, Tco89, and Lst8 21, while TORC2 contains Tor2, Lst8, Avo1, Avo2, and Avo3 22 (Figure 1A). Recently, the EGO-GTPase complex and its orthologs were shown to convey amino acid signals for TORC1 activation in yeast, insects, and mammals 23242526. In S. cerevisiae, immediate effectors of TORC1 include the PP2A-like phosphatase Sit4 27 and the AGC kinase Sch9 28. In S. pombe, Tor participates in other cellular functions including nutrient signaling 29, cell growth and differentiation 30, mitotic commitment 31, and sexual development 11 (Figure 1B).The structure of the Tor proteins is remarkably conserved (Figure 2) and features several domains for protein-protein interactions including N-terminal HEAT (Huntingtin, Elongation factor 3, PP2A A subunit, Tor) repeats 32, a FAT (FRAP, ATM, and TRRAP) domain 3334, and an FRB (FK506-Rapamycin Binding) 35 domain. The kinase and the FATC (FAT domain at the C-terminus) 3236 domains are present in the C-terminal region.The Tor inhibitor rapamycin blocks cell proliferation and is currently used as an immunosuppressive drug for organ and tissue transplant recipients and a chemotherapy agent against a variety of solid cancers 37383940. Rapamycin binds to the prolyl isomerase FKBP12 to form a protein-drug complex that then interacts with the Tor FRB domain in a ternary complex 4142. S. cerevisiae cells treated with rapamycin display phenotypes associated with nutrient depletion including G1 cell cycle arrest, cellular volume expansion, protein synthesis inhibition, glycogen accumulation, and autophagy 3543.Genetic analysis in S. cerevisiae characterizing rapamycin-resistant mutants led to the identification of FKBP12 as the intracellular receptor for rapamycin and defined Tor1 and Tor2 as the targets of the FKBP12-rapamycin complex 4. Subsequent studies resulted in the identification and characterization of the TOR1 and TOR2 gene products 1544 as well as the elucidation of the Tor signaling cascade 8454647. These pioneering studies aided in the identification of the mammalian Tor ortholog and characterization of this highly conserved signaling cascade 84849. Remarkably, expression of the human FKBP12 ortholog in yeast fpr1 (the gene that encodes FKBP12) deletion mutants complements to restore rapamycin sensitivity, and hybrid Tor proteins consisting of the yeast N-terminal domain fused to the mammalian Tor kinase domain are also functional in yeast 50. Thus, the Tor pathway has been functionally and structurally conserved from yeasts to humans over the billion years of evolution separating the two species from their last common ancestor.We now know that the fungal and metazoan kingdoms are both within the opisthokont lineage of eukaryotes and are thus more closely related to each other than the vast majority of eukaryotic organisms 5152. Moreover, these two highly successful kingdoms shared a last common ancestor as recently as one billion years ago, much more recently than most eukaryotes. Recent initiatives, particularly the UNICORN project, have facilitated the sequencing of several opisthokonts related to the last common ancestor of the metazoans and fungi, providing an interesting window into the evolution of both fungi and animals 53545556. Thus, studies on the evolutionary trajectory of the fungal kingdom in general, and of the Tor signaling cascade in particular, promise to reveal insights about how orthologous pathways function in the more complex milieu of multicellular metazoan organisms.In this study, we have capitalized upon the wealth of available genomic information by annotating the Tor pathway in several fungal organisms in which this pathway has not been described. Our study included selected species in the major groups of the fungal kingdom with genome sequences available: the basidiomycete Pleurotus ostreatus; the Mucorales zygomycetes Mucor circinelloides, Rhizopus oryzae, and Phycomyces blakesleeanus; the chytridiomycetes Spizellomyces punctatus and Batrachochytrium dendrobatidis; the microsporidian species Encephalitozoon cuniculi, Enterocytozoon bieneusi, and Nosema ceranae; and the related non-fungal opisthokonts Capsaspora owczarzaki, Salpingoeca rosetta, and Monosiga brevicollis. Whereas the Tor pathway is conserved throughout the eukaryotes, strikingly, microsporidian species with their highly reduced and compacted genomes lack the entire Tor pathway. We have also investigated gene and genome duplication events that resulted in two Tor homologs in S. cerevisiae, S. pombe, P. ostreatus, and B. dendrobatidis, and the loss of a second Tor homolog following a whole genome duplication event in R. oryzae.Results and DiscussionConservation of the Tor signaling pathway molecular componentsThe Tor pathway is well conserved among nearly all eukaryotic species examined to date. Tor is essential for life and is the target of the potent drug rapamycin in fungi, humans, and other eukaryotic organisms 2121941. Tor originated early during the eukaryotic radiation, as it is present in the basal eukaryotes Giardia lamblia 57, L. major 18 and T. brucei 19, and also in plants 58. Here we focused on the Tor pathway in the fungal kingdom and other representative unicellular opisthokont species outside of the fungi. Several genes encoding Tor complex components, upstream regulators, and downstream effectors were identified in all major groups throughout the fungal kingdom (Figure 1, Table 1). Because we used BLASTp reciprocal best hits (RBH) to identify orthologs, in some cases the absence of an ortholog in our results may represent only a failure to detect it with this method. Further, functional homologs that are not sufficiently similar enough in sequence to be identified may be present. Overall, a high degree of pathway conservation is observed in the Tor signaling cascade throughout the fungal kingdom, with the exception of microsporidia in which all Tor pathway components are absent. In addition, several pathway components are conserved in the related unicellular opisthokonts M. brevicollis, S. rosetta, and C. owczarzaki (Table 2).In S. cerevisiae, Tor1 and Tor2 interact with several proteins to form TORC1 and TORC2. TORC1 contains Tor1 or Tor2, Kog1, Tco89, and Lst8. Kog1 functions as a substrate-recruiting subunit in mammalian TORC1 (mTORC1) 13596061. A gene encoding a putative Kog1 homolog was identified in all species included in this study, with the exception of the microsporidia and S. rosetta (Tables 1 and 2). Mutation of TCO89 results in hypersensitivity to rapamycin and affects cellular integrity in S. cerevisiae 21. Tco89 is only found in S. cerevisiae and could have resulted from a specialization of the pathway exclusive to Saccharomyces species (Table 1). However, while a BLASTp search did not identify Tco89 homologs in other species, S. pombe has been reported to contain a functional homolog [GenBank:NP_588232] 12, and this suggests that functional homologs may exist in other fungal species as well. However, no homologs were identified when using S.�pombe Tco89 as a query sequence. Lst8 binds to the Tor kinase domain in S. cerevisiae to stimulate catalytic activity 9 and a putative Lst8 homolog is conserved in most species analyzed except microsporidia and S.�rosetta (Tables 1 and 2).Additional BLASTp searches identified a single Tor homolog in the following species: Lachancea thermotolerans CBS6340 [GenBank:XP_002552336], Pichia pastoris GS115 [GenBank:XP_002491471], Pichia stipitis CBS6054 [GenBank:XP_001385651], Debaryomyces hansenii CBS767 [GenBank:XP_002770885], Yarrowia lipolytica CLIB122 [GenBank:XP_505106], Podospora anserina strain S mat+ [GenBank:XP_001903968], Chaetomium globosum CBS148.51 [GenBank:XP_001226647], Magnaporthe oryzae 70-15 [GenBank:XP_001414541], Gibberella zeae PH-1 [GenBank:XP_388309], Aspergillus fumigatus Af293 [GenBank:XP_755360], Aspergillus flavus NRRL3357 [GenBank:XP_002377897], Neosartorya fischeri NRRL181 [GenBank:XP_001260509], Aspergillus terreus NIH2624 [GenBank:XP_001213640], Aspergillus nidulans FGSCA4 [GenBank:XP_663586], Aspergillus clavatus NRRL1 [GenBank:XP_001275326], Aspergillus oryzae RIB40 [GenBank: XP_001826216], and Aspergillus niger CBS513.88 [GenBank:XP_001397781]. These ascomycetes were not included in further studies.In yeast and mammals, TORC2 controls spatial aspects of growth. TORC2 includes Tor2, Avo1, Avo2, Avo3, and Bit61 922. Avo1 plays an essential role in actin cytoskeleton polarization 22 and is conserved throughout the organisms that were the focus of this study (Table 1) except in S. rosetta and C. owczarzaki (Table 2). However, due to high divergence of the AVO1 sequence amongst the known homologs, it is possible that the S. rosetta and C. owczarzaki homologs cannot be identified using the BLASTp algorithm. Avo2 is a nonessential substrate adaptor for TORC2 22 and potential homologs were identified in most species studied, with the exceptions of S. pombe, P. ostreatus, the three microsporidian species (Table 1), and M. brevicollis (Table 2). In S. cerevisiae, Avo3 (also know as Tsc11) controls cytoskeletal dynamics 922, and homologs are conserved throughout the species examined (Tables 1 and 2). Bit61, a nonessential protein that associates with TORC2 21, was only identified in S. cerevisiae (Tables 1 and 2).Upstream regulators of Tor include Tsc1 and Tsc2 (Tuberous Sclerosis 1 and 2) and the GTPase Rheb (Ras homolog enhanced in brain). In S. pombe and other eukaryotes, Tsc1 and Tsc2 form a GTPase-activating complex that negatively regulates the action of Rheb to activate TORC1 266263. Tsc1 and Tsc2 putative homologs were identified in most species in the study, with the exception of S. cerevisiae (Table 1); however, Tsc1 homologs were not identified in B. dendrobatidis, S. rosetta, or C. owczarzaki (Tables 1 and 2). In mammals and insects, four Rag GTPases (RagA-D) bind raptor (Kog1) to mediate TORC1 signaling in response to amino acids 2426. RagA and RagB are orthologs of S.�cerevisiae Gtr1 whereas RagC and RagD are orthologs of S. cerevisiae Gtr2 23. Gtr1 and Gtr2 form a complex along with Ego1 and Ego3 known as EGOC/GSE 25, which is regulated by the GTP exchange factor Vam6 23. Interestingly we found presumptive Gtr1 and Gtr2 orthologs in species in this study with the exception of microsporidia (Table 1), and Gtr1 was not identified in M. brevicollis (Table 2). However, Ego1 and Ego3, which anchor Gtr1 and Gtr2 to endosomal and vacuolar membranes, are unique to S. cerevisiae and were not identified in the other species (Table 1). This suggests that the specific EGO complex architecture might be restricted to Saccharomyces, though it is possible that functional homologs may be present in other species.In fungi, several downstream effectors are targets of Tor signaling. The PP2A phosphatase Sit4 and its regulatory subunit Tap42 regulate the expression of several TORC1-controlled genes and Gcn2-regulated translation 36465. A Sit4 homolog was identified in R. oryzae (Table 1), though a homolog of the regulatory subunit Tap42 was not (Table 1). In S. rosetta, a Sit4 homolog was not identified, though Tap42 was (Table 2). Both of these situations could indicate rewiring of the pathway, or alternatively these findings could be a result of insufficient similarity to detect with a RBH search method. Sch9, a member of the AGC kinase family and the functional homolog of the p70 S6 kinase, is a direct substrate of S. cerevisiae TORC1 involved in ribosome biogenesis 2866. Sch9 was not identified in RBH BLASTp searches with S. cerevisiae Sch9 in M. circinelloides, P. blakesleeanus, the microsporidia (Table 1), or S. rosetta (Table 2), but was identified in all other species. Putative homologs of Ypk2 kinase, a regulator of ceramide synthesis controlled by TORC2 signaling 67, were only identified in S. cerevisiae, S. pombe, (Table 1), M. brevicollis, S. rosetta, and C. owczarzaki (Table 2). Notably, the failure to detect many homologs in M. brevicollis, S. rosetta, and C. owczarzaki could be due to their evolutionary distance from the other organisms in the study and their gene divergence.Evolutionary conservation of Tor kinase protein structureThe Tor kinases are phosphatidylinositol kinase-related kinases (PIKKs) 68 and aside from their known protein kinase function also serve as evolutionary constrained scaffolds with several protein-protein interaction domains that mediate multi-protein complex formation 69. Tor protein architecture was annotated using SMART 7071 and we found that it has been maintained throughout the species of this study (Figure 2). N-terminal HEAT repeats are present in varying numbers and serve as scaffolding structures for protein-protein interactions 327273. Similarly, the FAT/toxic domain and the accompanying C-terminal FATC domain also participate in protein scaffolding and are present and conserved in all species subject to analysis. Over-expression of the FAT domain has a dominant negative effect on cell growth in yeast and this effect can be suppressed by over-expression of phospholipase C 33. The kinase domain has similarities to both lipid and protein kinases, but it is a bona fide protein kinase. The FRB (FKBP12-rapamycin binding) domain is a highly conserved 100 amino acid region of Tor with several residues that are known to be required for binding the FKBP12-rapamycin drug complex 42.In addition, the FRB domain contains several residues necessary for both phosphatidic acid binding and rapamycin interaction 7475. In mammals, phosphatidic acid binding to the FRB region may promote the assembly of mTOR complexes. It has been proposed that the potent effect of the Tor inhibitor rapamycin may be due to direct competition for overlapping phosphatidic acid binding sites within the FRB domain 76. Mutation of the conserved amino acid residues S1975, W2041, or F2048 in the FRB domain confers rapamycin resistance in S. cerevisiae 44277. Strikingly, the corresponding amino acid residues are conserved in all species examined (Figure 3). In mTOR, phosphatidic acid binding is disrupted by mutations of L2031, F2309, and Y2105 75, corresponding to S. cerevisiae Tor2 L1971, F1979, and Y2045, respectively, all of which are conserved in the studied fungal species (Figure 3).Duplication of Tor in the fungal kingdomApproximately 100 million years ago, the S. cerevisiae ancestor underwent a whole genome duplication (WGD) event, and species that descend from this evolutionary event retained duplicated subsets of genes. S. cerevisiae retained approximately 8% of duplicated genes 7879, while other fungi in this lineage have maintained varying numbers of gene duplicates, such as Candida glabrata in which a smaller number (~2%) of these pairs are maintained 80. Interestingly, several of these species, including S. cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, S. bayanus, S. castellii, and C. glabrata have retained two TOR paralogs, whereas species outside of the WGD clade, including Kluyveromyces lactis and Ashbya gossypii, have only a single TOR gene.The fates of duplicated gene paralogs can be explained through the duplication, degeneration, and complementation (DDC) model of gene duplication 81. In species with a single Tor, this protein populates both TORC1 and TORC2, each of which has distinct functions. Following duplication, each paralog likely sub-functionalized to carry out some, but not all, of its previous functions so that between the two paralogs, each process is performed. In S. cerevisiae, for example, Tor1 exclusively functions within TORC1, while Tor2 preferentially populates TORC2 but can also function in TORC1. S. pombe has two Tor paralogs as a result of an independent segmental gene duplication event, and each paralog has distinct roles not necessarily equivalent to those of S. cerevisiae Tor1 and Tor2. SpTor1 is not essential, whereas SpTor2 is essential for growth 112982.We hypothesize that similar models could apply in species encoding two Tor homologs resulting from independent gene duplication events such as P. ostreatus and B. dendrobatidis. Based on their level of identity with S.�cerevisiae Tor homologs, the B. dendrobatidis genes BDEG_08293 and BDEG_05727 have been designated TOR1 and TOR2, respectively. However, these gene names are not necessarily based on functional similarity with ScTor1 and ScTor2 but rather indicate only that there are two TOR homologs in B. dendrobatidis. A�similar naming challenge is evident in S. pombe, where the functions of SpTor1 and SpTor2 are not equivalent with those of ScTor1 and ScTor2.While several species, such as those in the Saccharomyces clade, have two Tor paralogs resulting from ancient WGD events, other species have acquired a second paralog through independent segmental gene duplication events, including B. dendrobatidis and several fission yeast species closely related to S. pombe (Figure 4). Segmental gene duplications have played a major role in the evolution of species and can result in the duplication of single genes or large blocks of genes 83. In S. cerevisiae, the duplication blocks with TOR include three paralogous gene pairs that have been retained from the ancestral WGD event: PTK1/PTK2, TOR1/TOR2, and MNN4/YJR061W 78 (Figure 5A). Further, C. glabrata, an ascomycete closely related to S. cerevisiae that diverged following the WGD, has also maintained a second TOR paralog and synteny is apparent in the region flanking the TOR1 and TOR2 genes, though one must extend the analysis to >40 kb from the TOR genes to detect it (See additional file 1: Supplemental figure 1). However, because C. glabrata and S. cerevisiae have retained different subsets of genes from the ancestral WGD, the duplicated genes surrounding TOR in these species are not homologs of one another. Further, C. glabrata has maintained fewer of the synteny blocks found in S. cerevisiae, and the block containing the TOR genes (Block 42) is not conserved in C. glabrata 80.In contrast, genomic regions surrounding the Tor paralogs in S. pombe (Figure 5B) and B. dendrobatidis (Figure 5C) are not syntenically conserved. That is, the duplicated genes are not flanked by other duplicated gene pairs, and the two TOR paralogs likely resulted from independent segmental gene duplication events. Further, there are no indications of WGDs in these species. In the Schizosaccharomycotina, the TOR gene duplication occurred prior to speciation as evidenced by the fact that S. pombe, S. octosporus, S. japonicus, and S. cryophilus have each retained a second Tor paralog; the Tor orthologs across these four species are more closely related to each other than to those from other species (Figure 4). No syntenic conservation between the genomic regions containing TOR paralogs was detected in any species of the Schizosaccharomyces group, supporting the occurrence of an independent segmental gene duplication in their common ancestor (see additional file 2: supplemental Figure 2).The Taphrinomycotina is a monophyletic taxon of the Ascomycota containing the Schizosaccharomycetes, Taphrinomycetes, Neolectomycetes, and Pneumocystidomycetes. Genomes are only available for species within the Schizosaccharomycetes (S. pombe, S. octosporus, S. japonicus, and S. cryophilus) and the Taphrinomycetes (Pneumocystis carinii). While the studied Schizosaccharomyces spp. contain two Tor homologs, a single homolog was identified in P. carinii with tBLASTx using the highly conserved S. cerevisiae FRB domain of Tor1 based on sequence data produced by the Pneumocystis Genome Project (funded by the NIH NIAID) that was obtained from http://pgp.cchmc.org at the time of publication. Based on the phylogenetic placement of these two groups 84 and the available genomic information, we hypothesize that the segmental TOR duplication is unique to the Schizosaccharomyces spp. and occurred following their divergence from the common ancestor of the Taphrinomycota, as P. carinii, the other species within this taxon with available genome data, appears to contain a single Tor homolog.Interestingly, the zygomycete R. oryzae underwent a whole genome duplication event and despite retaining 12% of the resulting duplicated genes 85 compared to 8% retained genes in a separate WGD event in S. cerevisiae 7879, two Tor paralogs have not been retained; only a single Tor homolog was identified. Currently, the Zygomycota is the only group studied without an identified species containing two Tor homologs; however, there are not enough available genomes to make a definitive conclusion in this group. Other species with independent TOR duplications likely remain to be identified in all of the major fungal lineages, and as more genome sequences become available this will be addressed.During this study, we identified three additional species that possibly have two TOR paralogs: M. brevicollis, Thecamonas trahens, and Allomyces macrogynus, species that are included in the Origins of Multicellularity Project 86. While analysis is limited because of the state of the M. brevicollis (choanoflagellate) genome, it appears that an additional bonafide Tor protein is encoded with the conserved Tor protein architecture. Thecamonas trahens is a unicellular apusomonad that also contains two TOR paralogs. Interestingly, A. macrogynus is a fungus that may contain a second paralog; however, it appears that the FRB domain overlaps with the kinase domain. This may represent a case in which TOR was duplicated but is in the process of losing one of the copies. These cases are a springboard for future studies involving the duplication of TOR within and beyond the fungal kingdom.Loss of the Tor signaling pathway in microsporidiaWhile components of the Tor signaling cascade are conserved in eukaryotes from yeasts to humans, the microsporidia, a group of highly specialized obligate intracellular pathogens completely lack all of the pathway components investigated in this study. E. cuniculi has previously been noted to lack the Tor kinase 87, and we found that all pathway components including Tor were missing not only in E. cuniculi but also in its microsporidian relatives E. bieneusi and N. ceranae (Table 2). Microsporidian genomes are highly compacted and show a marked reduced gene content. The genome of the human pathogen E. cuniculi has 1997 genes distributed throughout 11 chromosomes in a 2.9 Mb genome 88, less than half the number of protein-coding genes found in Escherichia coli. For comparison, the genome of the human pathogen E. bieneusi genome is ~6 Mb with 3,804 genes 89 and the honeybee pathogen N. ceranae genome is ~7.9 Mb with 2,614 predicted genes 90. Genome reduction has been well studied in intracellular bacteria: during the specialization process from a free-living to intracellular lifestyle, massive gene loss can occur 9192939495. We hypothesize that as a consequence of their specialization to an obligate intracellular lifestyle, the need for nutrient sensing was relaxed and these obligate intracellular microsporidia acquired nutrients from within the host cytoplasm. Thus, they no longer required the Tor pathway, which is dedicated to sensing changes in the nutrient composite of the environmental milieu. However, E. cuniculi has retained some of the genes encoding signaling pathways involved in nutrient sensing in other species, including homologs of S. cerevisiae Ras1 and Ras2 (data not shown).Interestingly, P. carinii is an obligate pathogen with a reduced genome estimated to be ~8 Mb 96, which unlike microsporidia is not obligately intracellular. A�single Tor homolog was identified [Pneumocystis Genome Project:cap3_it1_grp346_contig490] using the S. cerevisiae Tor1 FRB domain in tBLASTx, supporting our hypothesis that the microsporidia have streamlined their genomes as they adopted an obligate intracellular life cycle. P. carinii likely requires Tor because it must survive in a metabolically active form outside of host cells, undergoing cell division in the extracellular milieu of the infected host lung.Many microsporidian genomes have undergone extreme genome reduction and are among the eukaryotes with the smallest genomes. In addition to fewer genes than other species (1997 in E. cuniculi compared to 6607 in S. cerevisiae), E. cuniculi has shorter genes, small intergenic distances, and very few introns 8897. This species (and to an even greater extent, E. bieneusi) lacks several genes that are necessary for biosynthetic pathways and the tricarboxylic acid cycle in free-living organisms 888998. Remarkably, E. cuniculi must acquire ATP from its host through a series of ATP transporters anciently acquired from Rickettsia- or Chlamydia-like bacteria 99, and this is an example of how E. cuniculi, and possibly other microsporidia, can hijack mechanisms of other intracellular bacteria, fungi, or the host to survive in and adapt to their highly specialized intracellular lifestyle.ConclusionsThe Tor pathway is highly conserved with some exceptions among fungi, including several pathogens. Similarly, the molecular structural organization of the Tor kinases has been remarkably conserved as well as the presumed ability to bind the FKBP12-rapamycin complex. This feature, combined with the essential nature of the rapamycin-sensitive TORC1 pathway for cell growth, should enable the development of rapamycin-based strategies for antifungal therapies. Duplications of the Tor protein occurred in most fungal groups examined, resulting from either independent segmental gene duplication events or a WGD event. The maintenance of two Tor homologs can be explained through the DDC model of gene duplication, in which the paralogs subfunctionalize and together support all of the functions of the pre-duplicated protein. In addition, species outside of the fungal kingdom with two or more TOR homologs include the metazoan B. mori, the apusomonad protozoan T. trahens, the trypanosome protozoans L. major and T. brucei, and possibly the choanoflagellate M. brevicollis. This suggests that the Tor gene has been independently duplicated multiple times since the last common ancestor of the Opisthokonta and Excavata lineages. The Tor pathway, as well as the Tor protein itself, is highly conserved in eukaryotes, so the observation that three microsporidian species are missing the entire pathway is striking. It would appear that the specialized obligate intracellular life cycle of microsporidia allows for the acquisition of nutrients from the host cell, obviating a requirement for this central nutrient-sensing pathway that is essential in all known cases of other eukaryotes for axenic growth.MethodsIdentification of pathway component homologsTor homologs were identified using the highly conserved 100 amino acid FRB domain of S. cerevisiae Tor1 in BLASTp reciprocal best-hit searches between the specific species database and the Saccharomyces Genome Database (SGD). All queries for other Tor pathway components were retrieved from SGD and homologs were identified by BLASTp reciprocal best-hit searches, with the exception of Tsc1 and Tsc2. Tsc1 and Tsc2 protein query sequences were retrieved from the S. pombe GeneDB, and homologs were identified using BLASTp searches between the S. pombe genome database and the species database. Species identification numbers are listed in Supplemental Table 1. Protein architecture of each homolog was elucidated with Simple Modular Architecture Research Tool (SMART) analysis 7071.Accession numbers are provided for putative Tor pathway components (see Additional file 3, supplemental Table 1 for the accession numbers of putative Tor pathway components) from the following public genomic databases that were used to carry out BLAST: S. cerevisiae, SGD, http://www.yeastgenome.org; S. pombe, GeneDB, http://www.genedb.org/genedb/pombe/index.jsp; P. ostreatus, JGI, http://genome.jgi-psf.org/PleosPC15_1/PleosPC15_1.home.html; M. circinelloides, JGI and the Mucor Genome Project, http://genome.jgi-psf.org/Mucci1/Mucci1.home.html; R. oryzae, Broad Institute, http://www.broadinstitute.org/annotation/genome/rhizopus_oryzae/MultiHome.html; P. blakesleeanus, JGI, http://genome.jgi-psf.org/Phybl1/Phybl1.home.html; B. dendrobatidis, Broad Institute, http://www.broadinstitute.org/annotation/genome/batrachochytrium_dendrobatidis/MultiHome.html; S. punctatus, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; M. brevicollis, JGI, http://genome.jgi-psf.org/Monbr1/Monbr1.home.html; S. rosetta, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; C. owczarzaki, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; E. cuniculi, E. bieneusi, and N. ceranae, NCBI, http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi?organism=fungi.Phylogenetic analysis of TorThe ProtTest program 100 was used to select an appropriate model to construct the phylogenetic relationship of the Tor proteins of the studied species. For this study, the best model for phylogenetic construction of the Tor protein using maximum likelihood (ML) was JTT+I+G+F 101. The ML tree was generated using PhyML with the JTT+I+G+F mode with 500 bootstrap replicates 102103. The Tor amino acid sequences from all species were aligned with CLUSTAL W 104.Synteny analysis of TOR paralogsTor homologs in fungal species were identified with BLAST 105 using TOR1 and TOR2 of S. cerevisiae as query sequences. The TOR sequence and flanking regions (up to 100 kb) were extracted from corresponding contigs or chromosomal sequences. To analyze the synteny of TOR and flanking regions, we constructed a database of one TOR and flanking region sequence and used the other TOR homolog and flanking region sequence to perform tBLASTx searches in the database (BLOSUM62 matrix; E-value = 1e-3; gap cost: existence 11, extension 1; and low complexity regions filter). The tBLASTx results were parsed and formatted using an in-house Perl script (available upon request). The parsed and formatted tBLASTx results were then imported into Artemis software 106 for synteny analysis. We employed a cutoff value of 100 bp to filter short non-significant matches between query and database sequences.Authors� contributionsCAS carried out the homolog searches and phylogenetic analysis and drafted the manuscript. RJB performed homolog searches and participated in the design of the study. WL performed the synteny and phylogenetic analysis and helped draft the manuscript. JH and MEC conceived of the study, participated in its design and helped to draft the manuscript. All authors read and approved the final manuscript.
BackgroundThe nutrient-sensing target of rapamycin (Tor) pathway is highly conserved among eukaryotes and governs several essential cellular processes including protein synthesis, ribosome biogenesis, autophagy, and cytoskeletal organization 123. In the fungal kingdom, the Tor pathway has been best studied in the budding yeast Saccharomyces cerevisiae 234, the fission yeast Schizosaccharomyces pombe 56, and the human pathogen Candida albicans 5678. However, little is known about Tor in basal fungal lineages, including the Zygomycota and Chytridiomycota.In S. cerevisiae and S. pombe, two Tor paralogs form distinct complexes known as Tor Complex 1 (TORC1) and Tor Complex 2 (TORC2) 9101112, while in most other species, including humans, a single Tor protein can populate both complexes 11121314. Interestingly, S. cerevisiae Tor2 can complement the loss of Tor1, but Tor1 cannot complement the loss of Tor2 1516. Two Tor paralogs have also been identified in a metazoan, the silkworm Bombyx mori 17 and three Tor paralogs were identified in the trypanosomatid parasites Leishmania major 18 and the related species Trypanosoma brucei 19, the first reported Tor triumvirates.The ScTORC1 is sensitive to rapamycin and controls protein synthesis, mRNA synthesis and degradation, ribosome biogenesis, and autophagy. TORC2 is insensitive to rapamycin and is involved in the control of actin polarization and cell wall integrity 916. TORC1 consists of Tor1 or Tor2, Kog1 20, Tco89, and Lst8 21, while TORC2 contains Tor2, Lst8, Avo1, Avo2, and Avo3 22 (Figure 1A). Recently, the EGO-GTPase complex and its orthologs were shown to convey amino acid signals for TORC1 activation in yeast, insects, and mammals 23242526. In S. cerevisiae, immediate effectors of TORC1 include the PP2A-like phosphatase Sit4 27 and the AGC kinase Sch9 28. In S. pombe, Tor participates in other cellular functions including nutrient signaling 29, cell growth and differentiation 30, mitotic commitment 31, and sexual development 11 (Figure 1B).The structure of the Tor proteins is remarkably conserved (Figure 2) and features several domains for protein-protein interactions including N-terminal HEAT (Huntingtin, Elongation factor 3, PP2A A subunit, Tor) repeats 32, a FAT (FRAP, ATM, and TRRAP) domain 3334, and an FRB (FK506-Rapamycin Binding) 35 domain. The kinase and the FATC (FAT domain at the C-terminus) 3236 domains are present in the C-terminal region.The Tor inhibitor rapamycin blocks cell proliferation and is currently used as an immunosuppressive drug for organ and tissue transplant recipients and a chemotherapy agent against a variety of solid cancers 37383940. Rapamycin binds to the prolyl isomerase FKBP12 to form a protein-drug complex that then interacts with the Tor FRB domain in a ternary complex 4142. S. cerevisiae cells treated with rapamycin display phenotypes associated with nutrient depletion including G1 cell cycle arrest, cellular volume expansion, protein synthesis inhibition, glycogen accumulation, and autophagy 3543.Genetic analysis in S. cerevisiae characterizing rapamycin-resistant mutants led to the identification of FKBP12 as the intracellular receptor for rapamycin and defined Tor1 and Tor2 as the targets of the FKBP12-rapamycin complex 4. Subsequent studies resulted in the identification and characterization of the TOR1 and TOR2 gene products 1544 as well as the elucidation of the Tor signaling cascade 8454647. These pioneering studies aided in the identification of the mammalian Tor ortholog and characterization of this highly conserved signaling cascade 84849. Remarkably, expression of the human FKBP12 ortholog in yeast fpr1 (the gene that encodes FKBP12) deletion mutants complements to restore rapamycin sensitivity, and hybrid Tor proteins consisting of the yeast N-terminal domain fused to the mammalian Tor kinase domain are also functional in yeast 50. Thus, the Tor pathway has been functionally and structurally conserved from yeasts to humans over the billion years of evolution separating the two species from their last common ancestor.We now know that the fungal and metazoan kingdoms are both within the opisthokont lineage of eukaryotes and are thus more closely related to each other than the vast majority of eukaryotic organisms 5152. Moreover, these two highly successful kingdoms shared a last common ancestor as recently as one billion years ago, much more recently than most eukaryotes. Recent initiatives, particularly the UNICORN project, have facilitated the sequencing of several opisthokonts related to the last common ancestor of the metazoans and fungi, providing an interesting window into the evolution of both fungi and animals 53545556. Thus, studies on the evolutionary trajectory of the fungal kingdom in general, and of the Tor signaling cascade in particular, promise to reveal insights about how orthologous pathways function in the more complex milieu of multicellular metazoan organisms.In this study, we have capitalized upon the wealth of available genomic information by annotating the Tor pathway in several fungal organisms in which this pathway has not been described. Our study included selected species in the major groups of the fungal kingdom with genome sequences available: the basidiomycete Pleurotus ostreatus; the Mucorales zygomycetes Mucor circinelloides, Rhizopus oryzae, and Phycomyces blakesleeanus; the chytridiomycetes Spizellomyces punctatus and Batrachochytrium dendrobatidis; the microsporidian species Encephalitozoon cuniculi, Enterocytozoon bieneusi, and Nosema ceranae; and the related non-fungal opisthokonts Capsaspora owczarzaki, Salpingoeca rosetta, and Monosiga brevicollis. Whereas the Tor pathway is conserved throughout the eukaryotes, strikingly, microsporidian species with their highly reduced and compacted genomes lack the entire Tor pathway. We have also investigated gene and genome duplication events that resulted in two Tor homologs in S. cerevisiae, S. pombe, P. ostreatus, and B. dendrobatidis, and the loss of a second Tor homolog following a whole genome duplication event in R. oryzae.Results and DiscussionConservation of the Tor signaling pathway molecular componentsThe Tor pathway is well conserved among nearly all eukaryotic species examined to date. Tor is essential for life and is the target of the potent drug rapamycin in fungi, humans, and other eukaryotic organisms 2121941. Tor originated early during the eukaryotic radiation, as it is present in the basal eukaryotes Giardia lamblia 57, L. major 18 and T. brucei 19, and also in plants 58. Here we focused on the Tor pathway in the fungal kingdom and other representative unicellular opisthokont species outside of the fungi. Several genes encoding Tor complex components, upstream regulators, and downstream effectors were identified in all major groups throughout the fungal kingdom (Figure 1, Table 1). Because we used BLASTp reciprocal best hits (RBH) to identify orthologs, in some cases the absence of an ortholog in our results may represent only a failure to detect it with this method. Further, functional homologs that are not sufficiently similar enough in sequence to be identified may be present. Overall, a high degree of pathway conservation is observed in the Tor signaling cascade throughout the fungal kingdom, with the exception of microsporidia in which all Tor pathway components are absent. In addition, several pathway components are conserved in the related unicellular opisthokonts M. brevicollis, S. rosetta, and C. owczarzaki (Table 2).In S. cerevisiae, Tor1 and Tor2 interact with several proteins to form TORC1 and TORC2. TORC1 contains Tor1 or Tor2, Kog1, Tco89, and Lst8. Kog1 functions as a substrate-recruiting subunit in mammalian TORC1 (mTORC1) 13596061. A gene encoding a putative Kog1 homolog was identified in all species included in this study, with the exception of the microsporidia and S. rosetta (Tables 1 and 2). Mutation of TCO89 results in hypersensitivity to rapamycin and affects cellular integrity in S. cerevisiae 21. Tco89 is only found in S. cerevisiae and could have resulted from a specialization of the pathway exclusive to Saccharomyces species (Table 1). However, while a BLASTp search did not identify Tco89 homologs in other species, S. pombe has been reported to contain a functional homolog [GenBank:NP_588232] 12, and this suggests that functional homologs may exist in other fungal species as well. However, no homologs were identified when using S.�pombe Tco89 as a query sequence. Lst8 binds to the Tor kinase domain in S. cerevisiae to stimulate catalytic activity 9 and a putative Lst8 homolog is conserved in most species analyzed except microsporidia and S.�rosetta (Tables 1 and 2).Additional BLASTp searches identified a single Tor homolog in the following species: Lachancea thermotolerans CBS6340 [GenBank:XP_002552336], Pichia pastoris GS115 [GenBank:XP_002491471], Pichia stipitis CBS6054 [GenBank:XP_001385651], Debaryomyces hansenii CBS767 [GenBank:XP_002770885], Yarrowia lipolytica CLIB122 [GenBank:XP_505106], Podospora anserina strain S mat+ [GenBank:XP_001903968], Chaetomium globosum CBS148.51 [GenBank:XP_001226647], Magnaporthe oryzae 70-15 [GenBank:XP_001414541], Gibberella zeae PH-1 [GenBank:XP_388309], Aspergillus fumigatus Af293 [GenBank:XP_755360], Aspergillus flavus NRRL3357 [GenBank:XP_002377897], Neosartorya fischeri NRRL181 [GenBank:XP_001260509], Aspergillus terreus NIH2624 [GenBank:XP_001213640], Aspergillus nidulans FGSCA4 [GenBank:XP_663586], Aspergillus clavatus NRRL1 [GenBank:XP_001275326], Aspergillus oryzae RIB40 [GenBank: XP_001826216], and Aspergillus niger CBS513.88 [GenBank:XP_001397781]. These ascomycetes were not included in further studies.In yeast and mammals, TORC2 controls spatial aspects of growth. TORC2 includes Tor2, Avo1, Avo2, Avo3, and Bit61 922. Avo1 plays an essential role in actin cytoskeleton polarization 22 and is conserved throughout the organisms that were the focus of this study (Table 1) except in S. rosetta and C. owczarzaki (Table 2). However, due to high divergence of the AVO1 sequence amongst the known homologs, it is possible that the S. rosetta and C. owczarzaki homologs cannot be identified using the BLASTp algorithm. Avo2 is a nonessential substrate adaptor for TORC2 22 and potential homologs were identified in most species studied, with the exceptions of S. pombe, P. ostreatus, the three microsporidian species (Table 1), and M. brevicollis (Table 2). In S. cerevisiae, Avo3 (also know as Tsc11) controls cytoskeletal dynamics 922, and homologs are conserved throughout the species examined (Tables 1 and 2). Bit61, a nonessential protein that associates with TORC2 21, was only identified in S. cerevisiae (Tables 1 and 2).Upstream regulators of Tor include Tsc1 and Tsc2 (Tuberous Sclerosis 1 and 2) and the GTPase Rheb (Ras homolog enhanced in brain). In S. pombe and other eukaryotes, Tsc1 and Tsc2 form a GTPase-activating complex that negatively regulates the action of Rheb to activate TORC1 266263. Tsc1 and Tsc2 putative homologs were identified in most species in the study, with the exception of S. cerevisiae (Table 1); however, Tsc1 homologs were not identified in B. dendrobatidis, S. rosetta, or C. owczarzaki (Tables 1 and 2). In mammals and insects, four Rag GTPases (RagA-D) bind raptor (Kog1) to mediate TORC1 signaling in response to amino acids 2426. RagA and RagB are orthologs of S.�cerevisiae Gtr1 whereas RagC and RagD are orthologs of S. cerevisiae Gtr2 23. Gtr1 and Gtr2 form a complex along with Ego1 and Ego3 known as EGOC/GSE 25, which is regulated by the GTP exchange factor Vam6 23. Interestingly we found presumptive Gtr1 and Gtr2 orthologs in species in this study with the exception of microsporidia (Table 1), and Gtr1 was not identified in M. brevicollis (Table 2). However, Ego1 and Ego3, which anchor Gtr1 and Gtr2 to endosomal and vacuolar membranes, are unique to S. cerevisiae and were not identified in the other species (Table 1). This suggests that the specific EGO complex architecture might be restricted to Saccharomyces, though it is possible that functional homologs may be present in other species.In fungi, several downstream effectors are targets of Tor signaling. The PP2A phosphatase Sit4 and its regulatory subunit Tap42 regulate the expression of several TORC1-controlled genes and Gcn2-regulated translation 36465. A Sit4 homolog was identified in R. oryzae (Table 1), though a homolog of the regulatory subunit Tap42 was not (Table 1). In S. rosetta, a Sit4 homolog was not identified, though Tap42 was (Table 2). Both of these situations could indicate rewiring of the pathway, or alternatively these findings could be a result of insufficient similarity to detect with a RBH search method. Sch9, a member of the AGC kinase family and the functional homolog of the p70 S6 kinase, is a direct substrate of S. cerevisiae TORC1 involved in ribosome biogenesis 2866. Sch9 was not identified in RBH BLASTp searches with S. cerevisiae Sch9 in M. circinelloides, P. blakesleeanus, the microsporidia (Table 1), or S. rosetta (Table 2), but was identified in all other species. Putative homologs of Ypk2 kinase, a regulator of ceramide synthesis controlled by TORC2 signaling 67, were only identified in S. cerevisiae, S. pombe, (Table 1), M. brevicollis, S. rosetta, and C. owczarzaki (Table 2). Notably, the failure to detect many homologs in M. brevicollis, S. rosetta, and C. owczarzaki could be due to their evolutionary distance from the other organisms in the study and their gene divergence.Evolutionary conservation of Tor kinase protein structureThe Tor kinases are phosphatidylinositol kinase-related kinases (PIKKs) 68 and aside from their known protein kinase function also serve as evolutionary constrained scaffolds with several protein-protein interaction domains that mediate multi-protein complex formation 69. Tor protein architecture was annotated using SMART 7071 and we found that it has been maintained throughout the species of this study (Figure 2). N-terminal HEAT repeats are present in varying numbers and serve as scaffolding structures for protein-protein interactions 327273. Similarly, the FAT/toxic domain and the accompanying C-terminal FATC domain also participate in protein scaffolding and are present and conserved in all species subject to analysis. Over-expression of the FAT domain has a dominant negative effect on cell growth in yeast and this effect can be suppressed by over-expression of phospholipase C 33. The kinase domain has similarities to both lipid and protein kinases, but it is a bona fide protein kinase. The FRB (FKBP12-rapamycin binding) domain is a highly conserved 100 amino acid region of Tor with several residues that are known to be required for binding the FKBP12-rapamycin drug complex 42.In addition, the FRB domain contains several residues necessary for both phosphatidic acid binding and rapamycin interaction 7475. In mammals, phosphatidic acid binding to the FRB region may promote the assembly of mTOR complexes. It has been proposed that the potent effect of the Tor inhibitor rapamycin may be due to direct competition for overlapping phosphatidic acid binding sites within the FRB domain 76. Mutation of the conserved amino acid residues S1975, W2041, or F2048 in the FRB domain confers rapamycin resistance in S. cerevisiae 44277. Strikingly, the corresponding amino acid residues are conserved in all species examined (Figure 3). In mTOR, phosphatidic acid binding is disrupted by mutations of L2031, F2309, and Y2105 75, corresponding to S. cerevisiae Tor2 L1971, F1979, and Y2045, respectively, all of which are conserved in the studied fungal species (Figure 3).Duplication of Tor in the fungal kingdomApproximately 100 million years ago, the S. cerevisiae ancestor underwent a whole genome duplication (WGD) event, and species that descend from this evolutionary event retained duplicated subsets of genes. S. cerevisiae retained approximately 8% of duplicated genes 7879, while other fungi in this lineage have maintained varying numbers of gene duplicates, such as Candida glabrata in which a smaller number (~2%) of these pairs are maintained 80. Interestingly, several of these species, including S. cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, S. bayanus, S. castellii, and C. glabrata have retained two TOR paralogs, whereas species outside of the WGD clade, including Kluyveromyces lactis and Ashbya gossypii, have only a single TOR gene.The fates of duplicated gene paralogs can be explained through the duplication, degeneration, and complementation (DDC) model of gene duplication 81. In species with a single Tor, this protein populates both TORC1 and TORC2, each of which has distinct functions. Following duplication, each paralog likely sub-functionalized to carry out some, but not all, of its previous functions so that between the two paralogs, each process is performed. In S. cerevisiae, for example, Tor1 exclusively functions within TORC1, while Tor2 preferentially populates TORC2 but can also function in TORC1. S. pombe has two Tor paralogs as a result of an independent segmental gene duplication event, and each paralog has distinct roles not necessarily equivalent to those of S. cerevisiae Tor1 and Tor2. SpTor1 is not essential, whereas SpTor2 is essential for growth 112982.We hypothesize that similar models could apply in species encoding two Tor homologs resulting from independent gene duplication events such as P. ostreatus and B. dendrobatidis. Based on their level of identity with S.�cerevisiae Tor homologs, the B. dendrobatidis genes BDEG_08293 and BDEG_05727 have been designated TOR1 and TOR2, respectively. However, these gene names are not necessarily based on functional similarity with ScTor1 and ScTor2 but rather indicate only that there are two TOR homologs in B. dendrobatidis. A�similar naming challenge is evident in S. pombe, where the functions of SpTor1 and SpTor2 are not equivalent with those of ScTor1 and ScTor2.While several species, such as those in the Saccharomyces clade, have two Tor paralogs resulting from ancient WGD events, other species have acquired a second paralog through independent segmental gene duplication events, including B. dendrobatidis and several fission yeast species closely related to S. pombe (Figure 4). Segmental gene duplications have played a major role in the evolution of species and can result in the duplication of single genes or large blocks of genes 83. In S. cerevisiae, the duplication blocks with TOR include three paralogous gene pairs that have been retained from the ancestral WGD event: PTK1/PTK2, TOR1/TOR2, and MNN4/YJR061W 78 (Figure 5A). Further, C. glabrata, an ascomycete closely related to S. cerevisiae that diverged following the WGD, has also maintained a second TOR paralog and synteny is apparent in the region flanking the TOR1 and TOR2 genes, though one must extend the analysis to >40 kb from the TOR genes to detect it (See additional file 1: Supplemental figure 1). However, because C. glabrata and S. cerevisiae have retained different subsets of genes from the ancestral WGD, the duplicated genes surrounding TOR in these species are not homologs of one another. Further, C. glabrata has maintained fewer of the synteny blocks found in S. cerevisiae, and the block containing the TOR genes (Block 42) is not conserved in C. glabrata 80.In contrast, genomic regions surrounding the Tor paralogs in S. pombe (Figure 5B) and B. dendrobatidis (Figure 5C) are not syntenically conserved. That is, the duplicated genes are not flanked by other duplicated gene pairs, and the two TOR paralogs likely resulted from independent segmental gene duplication events. Further, there are no indications of WGDs in these species. In the Schizosaccharomycotina, the TOR gene duplication occurred prior to speciation as evidenced by the fact that S. pombe, S. octosporus, S. japonicus, and S. cryophilus have each retained a second Tor paralog; the Tor orthologs across these four species are more closely related to each other than to those from other species (Figure 4). No syntenic conservation between the genomic regions containing TOR paralogs was detected in any species of the Schizosaccharomyces group, supporting the occurrence of an independent segmental gene duplication in their common ancestor (see additional file 2: supplemental Figure 2).The Taphrinomycotina is a monophyletic taxon of the Ascomycota containing the Schizosaccharomycetes, Taphrinomycetes, Neolectomycetes, and Pneumocystidomycetes. Genomes are only available for species within the Schizosaccharomycetes (S. pombe, S. octosporus, S. japonicus, and S. cryophilus) and the Taphrinomycetes (Pneumocystis carinii). While the studied Schizosaccharomyces spp. contain two Tor homologs, a single homolog was identified in P. carinii with tBLASTx using the highly conserved S. cerevisiae FRB domain of Tor1 based on sequence data produced by the Pneumocystis Genome Project (funded by the NIH NIAID) that was obtained from http://pgp.cchmc.org at the time of publication. Based on the phylogenetic placement of these two groups 84 and the available genomic information, we hypothesize that the segmental TOR duplication is unique to the Schizosaccharomyces spp. and occurred following their divergence from the common ancestor of the Taphrinomycota, as P. carinii, the other species within this taxon with available genome data, appears to contain a single Tor homolog.Interestingly, the zygomycete R. oryzae underwent a whole genome duplication event and despite retaining 12% of the resulting duplicated genes 85 compared to 8% retained genes in a separate WGD event in S. cerevisiae 7879, two Tor paralogs have not been retained; only a single Tor homolog was identified. Currently, the Zygomycota is the only group studied without an identified species containing two Tor homologs; however, there are not enough available genomes to make a definitive conclusion in this group. Other species with independent TOR duplications likely remain to be identified in all of the major fungal lineages, and as more genome sequences become available this will be addressed.During this study, we identified three additional species that possibly have two TOR paralogs: M. brevicollis, Thecamonas trahens, and Allomyces macrogynus, species that are included in the Origins of Multicellularity Project 86. While analysis is limited because of the state of the M. brevicollis (choanoflagellate) genome, it appears that an additional bonafide Tor protein is encoded with the conserved Tor protein architecture. Thecamonas trahens is a unicellular apusomonad that also contains two TOR paralogs. Interestingly, A. macrogynus is a fungus that may contain a second paralog; however, it appears that the FRB domain overlaps with the kinase domain. This may represent a case in which TOR was duplicated but is in the process of losing one of the copies. These cases are a springboard for future studies involving the duplication of TOR within and beyond the fungal kingdom.Loss of the Tor signaling pathway in microsporidiaWhile components of the Tor signaling cascade are conserved in eukaryotes from yeasts to humans, the microsporidia, a group of highly specialized obligate intracellular pathogens completely lack all of the pathway components investigated in this study. E. cuniculi has previously been noted to lack the Tor kinase 87, and we found that all pathway components including Tor were missing not only in E. cuniculi but also in its microsporidian relatives E. bieneusi and N. ceranae (Table 2). Microsporidian genomes are highly compacted and show a marked reduced gene content. The genome of the human pathogen E. cuniculi has 1997 genes distributed throughout 11 chromosomes in a 2.9 Mb genome 88, less than half the number of protein-coding genes found in Escherichia coli. For comparison, the genome of the human pathogen E. bieneusi genome is ~6 Mb with 3,804 genes 89 and the honeybee pathogen N. ceranae genome is ~7.9 Mb with 2,614 predicted genes 90. Genome reduction has been well studied in intracellular bacteria: during the specialization process from a free-living to intracellular lifestyle, massive gene loss can occur 9192939495. We hypothesize that as a consequence of their specialization to an obligate intracellular lifestyle, the need for nutrient sensing was relaxed and these obligate intracellular microsporidia acquired nutrients from within the host cytoplasm. Thus, they no longer required the Tor pathway, which is dedicated to sensing changes in the nutrient composite of the environmental milieu. However, E. cuniculi has retained some of the genes encoding signaling pathways involved in nutrient sensing in other species, including homologs of S. cerevisiae Ras1 and Ras2 (data not shown).Interestingly, P. carinii is an obligate pathogen with a reduced genome estimated to be ~8 Mb 96, which unlike microsporidia is not obligately intracellular. A�single Tor homolog was identified [Pneumocystis Genome Project:cap3_it1_grp346_contig490] using the S. cerevisiae Tor1 FRB domain in tBLASTx, supporting our hypothesis that the microsporidia have streamlined their genomes as they adopted an obligate intracellular life cycle. P. carinii likely requires Tor because it must survive in a metabolically active form outside of host cells, undergoing cell division in the extracellular milieu of the infected host lung.Many microsporidian genomes have undergone extreme genome reduction and are among the eukaryotes with the smallest genomes. In addition to fewer genes than other species (1997 in E. cuniculi compared to 6607 in S. cerevisiae), E. cuniculi has shorter genes, small intergenic distances, and very few introns 8897. This species (and to an even greater extent, E. bieneusi) lacks several genes that are necessary for biosynthetic pathways and the tricarboxylic acid cycle in free-living organisms 888998. Remarkably, E. cuniculi must acquire ATP from its host through a series of ATP transporters anciently acquired from Rickettsia- or Chlamydia-like bacteria 99, and this is an example of how E. cuniculi, and possibly other microsporidia, can hijack mechanisms of other intracellular bacteria, fungi, or the host to survive in and adapt to their highly specialized intracellular lifestyle.ConclusionsThe Tor pathway is highly conserved with some exceptions among fungi, including several pathogens. Similarly, the molecular structural organization of the Tor kinases has been remarkably conserved as well as the presumed ability to bind the FKBP12-rapamycin complex. This feature, combined with the essential nature of the rapamycin-sensitive TORC1 pathway for cell growth, should enable the development of rapamycin-based strategies for antifungal therapies. Duplications of the Tor protein occurred in most fungal groups examined, resulting from either independent segmental gene duplication events or a WGD event. The maintenance of two Tor homologs can be explained through the DDC model of gene duplication, in which the paralogs subfunctionalize and together support all of the functions of the pre-duplicated protein. In addition, species outside of the fungal kingdom with two or more TOR homologs include the metazoan B. mori, the apusomonad protozoan T. trahens, the trypanosome protozoans L. major and T. brucei, and possibly the choanoflagellate M. brevicollis. This suggests that the Tor gene has been independently duplicated multiple times since the last common ancestor of the Opisthokonta and Excavata lineages. The Tor pathway, as well as the Tor protein itself, is highly conserved in eukaryotes, so the observation that three microsporidian species are missing the entire pathway is striking. It would appear that the specialized obligate intracellular life cycle of microsporidia allows for the acquisition of nutrients from the host cell, obviating a requirement for this central nutrient-sensing pathway that is essential in all known cases of other eukaryotes for axenic growth.MethodsIdentification of pathway component homologsTor homologs were identified using the highly conserved 100 amino acid FRB domain of S. cerevisiae Tor1 in BLASTp reciprocal best-hit searches between the specific species database and the Saccharomyces Genome Database (SGD). All queries for other Tor pathway components were retrieved from SGD and homologs were identified by BLASTp reciprocal best-hit searches, with the exception of Tsc1 and Tsc2. Tsc1 and Tsc2 protein query sequences were retrieved from the S. pombe GeneDB, and homologs were identified using BLASTp searches between the S. pombe genome database and the species database. Species identification numbers are listed in Supplemental Table 1. Protein architecture of each homolog was elucidated with Simple Modular Architecture Research Tool (SMART) analysis 7071.Accession numbers are provided for putative Tor pathway components (see Additional file 3, supplemental Table 1 for the accession numbers of putative Tor pathway components) from the following public genomic databases that were used to carry out BLAST: S. cerevisiae, SGD, http://www.yeastgenome.org; S. pombe, GeneDB, http://www.genedb.org/genedb/pombe/index.jsp; P. ostreatus, JGI, http://genome.jgi-psf.org/PleosPC15_1/PleosPC15_1.home.html; M. circinelloides, JGI and the Mucor Genome Project, http://genome.jgi-psf.org/Mucci1/Mucci1.home.html; R. oryzae, Broad Institute, http://www.broadinstitute.org/annotation/genome/rhizopus_oryzae/MultiHome.html; P. blakesleeanus, JGI, http://genome.jgi-psf.org/Phybl1/Phybl1.home.html; B. dendrobatidis, Broad Institute, http://www.broadinstitute.org/annotation/genome/batrachochytrium_dendrobatidis/MultiHome.html; S. punctatus, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; M. brevicollis, JGI, http://genome.jgi-psf.org/Monbr1/Monbr1.home.html; S. rosetta, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; C. owczarzaki, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; E. cuniculi, E. bieneusi, and N. ceranae, NCBI, http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi?organism=fungi.Phylogenetic analysis of TorThe ProtTest program 100 was used to select an appropriate model to construct the phylogenetic relationship of the Tor proteins of the studied species. For this study, the best model for phylogenetic construction of the Tor protein using maximum likelihood (ML) was JTT+I+G+F 101. The ML tree was generated using PhyML with the JTT+I+G+F mode with 500 bootstrap replicates 102103. The Tor amino acid sequences from all species were aligned with CLUSTAL W 104.Synteny analysis of TOR paralogsTor homologs in fungal species were identified with BLAST 105 using TOR1 and TOR2 of S. cerevisiae as query sequences. The TOR sequence and flanking regions (up to 100 kb) were extracted from corresponding contigs or chromosomal sequences. To analyze the synteny of TOR and flanking regions, we constructed a database of one TOR and flanking region sequence and used the other TOR homolog and flanking region sequence to perform tBLASTx searches in the database (BLOSUM62 matrix; E-value = 1e-3; gap cost: existence 11, extension 1; and low complexity regions filter). The tBLASTx results were parsed and formatted using an in-house Perl script (available upon request). The parsed and formatted tBLASTx results were then imported into Artemis software 106 for synteny analysis. We employed a cutoff value of 100 bp to filter short non-significant matches between query and database sequences.Authors� contributionsCAS carried out the homolog searches and phylogenetic analysis and drafted the manuscript. RJB performed homolog searches and participated in the design of the study. WL performed the synteny and phylogenetic analysis and helped draft the manuscript. JH and MEC conceived of the study, participated in its design and helped to draft the manuscript. All authors read and approved the final manuscript.
BackgroundThe nutrient-sensing target of rapamycin (Tor) pathway is highly conserved among eukaryotes and governs several essential cellular processes including protein synthesis, ribosome biogenesis, autophagy, and cytoskeletal organization 123. In the fungal kingdom, the Tor pathway has been best studied in the budding yeast Saccharomyces cerevisiae 234, the fission yeast Schizosaccharomyces pombe 56, and the human pathogen Candida albicans 5678. However, little is known about Tor in basal fungal lineages, including the Zygomycota and Chytridiomycota.In S. cerevisiae and S. pombe, two Tor paralogs form distinct complexes known as Tor Complex 1 (TORC1) and Tor Complex 2 (TORC2) 9101112, while in most other species, including humans, a single Tor protein can populate both complexes 11121314. Interestingly, S. cerevisiae Tor2 can complement the loss of Tor1, but Tor1 cannot complement the loss of Tor2 1516. Two Tor paralogs have also been identified in a metazoan, the silkworm Bombyx mori 17 and three Tor paralogs were identified in the trypanosomatid parasites Leishmania major 18 and the related species Trypanosoma brucei 19, the first reported Tor triumvirates.The ScTORC1 is sensitive to rapamycin and controls protein synthesis, mRNA synthesis and degradation, ribosome biogenesis, and autophagy. TORC2 is insensitive to rapamycin and is involved in the control of actin polarization and cell wall integrity 916. TORC1 consists of Tor1 or Tor2, Kog1 20, Tco89, and Lst8 21, while TORC2 contains Tor2, Lst8, Avo1, Avo2, and Avo3 22 (Figure 1A). Recently, the EGO-GTPase complex and its orthologs were shown to convey amino acid signals for TORC1 activation in yeast, insects, and mammals 23242526. In S. cerevisiae, immediate effectors of TORC1 include the PP2A-like phosphatase Sit4 27 and the AGC kinase Sch9 28. In S. pombe, Tor participates in other cellular functions including nutrient signaling 29, cell growth and differentiation 30, mitotic commitment 31, and sexual development 11 (Figure 1B).The structure of the Tor proteins is remarkably conserved (Figure 2) and features several domains for protein-protein interactions including N-terminal HEAT (Huntingtin, Elongation factor 3, PP2A A subunit, Tor) repeats 32, a FAT (FRAP, ATM, and TRRAP) domain 3334, and an FRB (FK506-Rapamycin Binding) 35 domain. The kinase and the FATC (FAT domain at the C-terminus) 3236 domains are present in the C-terminal region.The Tor inhibitor rapamycin blocks cell proliferation and is currently used as an immunosuppressive drug for organ and tissue transplant recipients and a chemotherapy agent against a variety of solid cancers 37383940. Rapamycin binds to the prolyl isomerase FKBP12 to form a protein-drug complex that then interacts with the Tor FRB domain in a ternary complex 4142. S. cerevisiae cells treated with rapamycin display phenotypes associated with nutrient depletion including G1 cell cycle arrest, cellular volume expansion, protein synthesis inhibition, glycogen accumulation, and autophagy 3543.Genetic analysis in S. cerevisiae characterizing rapamycin-resistant mutants led to the identification of FKBP12 as the intracellular receptor for rapamycin and defined Tor1 and Tor2 as the targets of the FKBP12-rapamycin complex 4. Subsequent studies resulted in the identification and characterization of the TOR1 and TOR2 gene products 1544 as well as the elucidation of the Tor signaling cascade 8454647. These pioneering studies aided in the identification of the mammalian Tor ortholog and characterization of this highly conserved signaling cascade 84849. Remarkably, expression of the human FKBP12 ortholog in yeast fpr1 (the gene that encodes FKBP12) deletion mutants complements to restore rapamycin sensitivity, and hybrid Tor proteins consisting of the yeast N-terminal domain fused to the mammalian Tor kinase domain are also functional in yeast 50. Thus, the Tor pathway has been functionally and structurally conserved from yeasts to humans over the billion years of evolution separating the two species from their last common ancestor.We now know that the fungal and metazoan kingdoms are both within the opisthokont lineage of eukaryotes and are thus more closely related to each other than the vast majority of eukaryotic organisms 5152. Moreover, these two highly successful kingdoms shared a last common ancestor as recently as one billion years ago, much more recently than most eukaryotes. Recent initiatives, particularly the UNICORN project, have facilitated the sequencing of several opisthokonts related to the last common ancestor of the metazoans and fungi, providing an interesting window into the evolution of both fungi and animals 53545556. Thus, studies on the evolutionary trajectory of the fungal kingdom in general, and of the Tor signaling cascade in particular, promise to reveal insights about how orthologous pathways function in the more complex milieu of multicellular metazoan organisms.In this study, we have capitalized upon the wealth of available genomic information by annotating the Tor pathway in several fungal organisms in which this pathway has not been described. Our study included selected species in the major groups of the fungal kingdom with genome sequences available: the basidiomycete Pleurotus ostreatus; the Mucorales zygomycetes Mucor circinelloides, Rhizopus oryzae, and Phycomyces blakesleeanus; the chytridiomycetes Spizellomyces punctatus and Batrachochytrium dendrobatidis; the microsporidian species Encephalitozoon cuniculi, Enterocytozoon bieneusi, and Nosema ceranae; and the related non-fungal opisthokonts Capsaspora owczarzaki, Salpingoeca rosetta, and Monosiga brevicollis. Whereas the Tor pathway is conserved throughout the eukaryotes, strikingly, microsporidian species with their highly reduced and compacted genomes lack the entire Tor pathway. We have also investigated gene and genome duplication events that resulted in two Tor homologs in S. cerevisiae, S. pombe, P. ostreatus, and B. dendrobatidis, and the loss of a second Tor homolog following a whole genome duplication event in R. oryzae.Results and DiscussionConservation of the Tor signaling pathway molecular componentsThe Tor pathway is well conserved among nearly all eukaryotic species examined to date. Tor is essential for life and is the target of the potent drug rapamycin in fungi, humans, and other eukaryotic organisms 2121941. Tor originated early during the eukaryotic radiation, as it is present in the basal eukaryotes Giardia lamblia 57, L. major 18 and T. brucei 19, and also in plants 58. Here we focused on the Tor pathway in the fungal kingdom and other representative unicellular opisthokont species outside of the fungi. Several genes encoding Tor complex components, upstream regulators, and downstream effectors were identified in all major groups throughout the fungal kingdom (Figure 1, Table 1). Because we used BLASTp reciprocal best hits (RBH) to identify orthologs, in some cases the absence of an ortholog in our results may represent only a failure to detect it with this method. Further, functional homologs that are not sufficiently similar enough in sequence to be identified may be present. Overall, a high degree of pathway conservation is observed in the Tor signaling cascade throughout the fungal kingdom, with the exception of microsporidia in which all Tor pathway components are absent. In addition, several pathway components are conserved in the related unicellular opisthokonts M. brevicollis, S. rosetta, and C. owczarzaki (Table 2).In S. cerevisiae, Tor1 and Tor2 interact with several proteins to form TORC1 and TORC2. TORC1 contains Tor1 or Tor2, Kog1, Tco89, and Lst8. Kog1 functions as a substrate-recruiting subunit in mammalian TORC1 (mTORC1) 13596061. A gene encoding a putative Kog1 homolog was identified in all species included in this study, with the exception of the microsporidia and S. rosetta (Tables 1 and 2). Mutation of TCO89 results in hypersensitivity to rapamycin and affects cellular integrity in S. cerevisiae 21. Tco89 is only found in S. cerevisiae and could have resulted from a specialization of the pathway exclusive to Saccharomyces species (Table 1). However, while a BLASTp search did not identify Tco89 homologs in other species, S. pombe has been reported to contain a functional homolog [GenBank:NP_588232] 12, and this suggests that functional homologs may exist in other fungal species as well. However, no homologs were identified when using S.�pombe Tco89 as a query sequence. Lst8 binds to the Tor kinase domain in S. cerevisiae to stimulate catalytic activity 9 and a putative Lst8 homolog is conserved in most species analyzed except microsporidia and S.�rosetta (Tables 1 and 2).Additional BLASTp searches identified a single Tor homolog in the following species: Lachancea thermotolerans CBS6340 [GenBank:XP_002552336], Pichia pastoris GS115 [GenBank:XP_002491471], Pichia stipitis CBS6054 [GenBank:XP_001385651], Debaryomyces hansenii CBS767 [GenBank:XP_002770885], Yarrowia lipolytica CLIB122 [GenBank:XP_505106], Podospora anserina strain S mat+ [GenBank:XP_001903968], Chaetomium globosum CBS148.51 [GenBank:XP_001226647], Magnaporthe oryzae 70-15 [GenBank:XP_001414541], Gibberella zeae PH-1 [GenBank:XP_388309], Aspergillus fumigatus Af293 [GenBank:XP_755360], Aspergillus flavus NRRL3357 [GenBank:XP_002377897], Neosartorya fischeri NRRL181 [GenBank:XP_001260509], Aspergillus terreus NIH2624 [GenBank:XP_001213640], Aspergillus nidulans FGSCA4 [GenBank:XP_663586], Aspergillus clavatus NRRL1 [GenBank:XP_001275326], Aspergillus oryzae RIB40 [GenBank: XP_001826216], and Aspergillus niger CBS513.88 [GenBank:XP_001397781]. These ascomycetes were not included in further studies.In yeast and mammals, TORC2 controls spatial aspects of growth. TORC2 includes Tor2, Avo1, Avo2, Avo3, and Bit61 922. Avo1 plays an essential role in actin cytoskeleton polarization 22 and is conserved throughout the organisms that were the focus of this study (Table 1) except in S. rosetta and C. owczarzaki (Table 2). However, due to high divergence of the AVO1 sequence amongst the known homologs, it is possible that the S. rosetta and C. owczarzaki homologs cannot be identified using the BLASTp algorithm. Avo2 is a nonessential substrate adaptor for TORC2 22 and potential homologs were identified in most species studied, with the exceptions of S. pombe, P. ostreatus, the three microsporidian species (Table 1), and M. brevicollis (Table 2). In S. cerevisiae, Avo3 (also know as Tsc11) controls cytoskeletal dynamics 922, and homologs are conserved throughout the species examined (Tables 1 and 2). Bit61, a nonessential protein that associates with TORC2 21, was only identified in S. cerevisiae (Tables 1 and 2).Upstream regulators of Tor include Tsc1 and Tsc2 (Tuberous Sclerosis 1 and 2) and the GTPase Rheb (Ras homolog enhanced in brain). In S. pombe and other eukaryotes, Tsc1 and Tsc2 form a GTPase-activating complex that negatively regulates the action of Rheb to activate TORC1 266263. Tsc1 and Tsc2 putative homologs were identified in most species in the study, with the exception of S. cerevisiae (Table 1); however, Tsc1 homologs were not identified in B. dendrobatidis, S. rosetta, or C. owczarzaki (Tables 1 and 2). In mammals and insects, four Rag GTPases (RagA-D) bind raptor (Kog1) to mediate TORC1 signaling in response to amino acids 2426. RagA and RagB are orthologs of S.�cerevisiae Gtr1 whereas RagC and RagD are orthologs of S. cerevisiae Gtr2 23. Gtr1 and Gtr2 form a complex along with Ego1 and Ego3 known as EGOC/GSE 25, which is regulated by the GTP exchange factor Vam6 23. Interestingly we found presumptive Gtr1 and Gtr2 orthologs in species in this study with the exception of microsporidia (Table 1), and Gtr1 was not identified in M. brevicollis (Table 2). However, Ego1 and Ego3, which anchor Gtr1 and Gtr2 to endosomal and vacuolar membranes, are unique to S. cerevisiae and were not identified in the other species (Table 1). This suggests that the specific EGO complex architecture might be restricted to Saccharomyces, though it is possible that functional homologs may be present in other species.In fungi, several downstream effectors are targets of Tor signaling. The PP2A phosphatase Sit4 and its regulatory subunit Tap42 regulate the expression of several TORC1-controlled genes and Gcn2-regulated translation 36465. A Sit4 homolog was identified in R. oryzae (Table 1), though a homolog of the regulatory subunit Tap42 was not (Table 1). In S. rosetta, a Sit4 homolog was not identified, though Tap42 was (Table 2). Both of these situations could indicate rewiring of the pathway, or alternatively these findings could be a result of insufficient similarity to detect with a RBH search method. Sch9, a member of the AGC kinase family and the functional homolog of the p70 S6 kinase, is a direct substrate of S. cerevisiae TORC1 involved in ribosome biogenesis 2866. Sch9 was not identified in RBH BLASTp searches with S. cerevisiae Sch9 in M. circinelloides, P. blakesleeanus, the microsporidia (Table 1), or S. rosetta (Table 2), but was identified in all other species. Putative homologs of Ypk2 kinase, a regulator of ceramide synthesis controlled by TORC2 signaling 67, were only identified in S. cerevisiae, S. pombe, (Table 1), M. brevicollis, S. rosetta, and C. owczarzaki (Table 2). Notably, the failure to detect many homologs in M. brevicollis, S. rosetta, and C. owczarzaki could be due to their evolutionary distance from the other organisms in the study and their gene divergence.Evolutionary conservation of Tor kinase protein structureThe Tor kinases are phosphatidylinositol kinase-related kinases (PIKKs) 68 and aside from their known protein kinase function also serve as evolutionary constrained scaffolds with several protein-protein interaction domains that mediate multi-protein complex formation 69. Tor protein architecture was annotated using SMART 7071 and we found that it has been maintained throughout the species of this study (Figure 2). N-terminal HEAT repeats are present in varying numbers and serve as scaffolding structures for protein-protein interactions 327273. Similarly, the FAT/toxic domain and the accompanying C-terminal FATC domain also participate in protein scaffolding and are present and conserved in all species subject to analysis. Over-expression of the FAT domain has a dominant negative effect on cell growth in yeast and this effect can be suppressed by over-expression of phospholipase C 33. The kinase domain has similarities to both lipid and protein kinases, but it is a bona fide protein kinase. The FRB (FKBP12-rapamycin binding) domain is a highly conserved 100 amino acid region of Tor with several residues that are known to be required for binding the FKBP12-rapamycin drug complex 42.In addition, the FRB domain contains several residues necessary for both phosphatidic acid binding and rapamycin interaction 7475. In mammals, phosphatidic acid binding to the FRB region may promote the assembly of mTOR complexes. It has been proposed that the potent effect of the Tor inhibitor rapamycin may be due to direct competition for overlapping phosphatidic acid binding sites within the FRB domain 76. Mutation of the conserved amino acid residues S1975, W2041, or F2048 in the FRB domain confers rapamycin resistance in S. cerevisiae 44277. Strikingly, the corresponding amino acid residues are conserved in all species examined (Figure 3). In mTOR, phosphatidic acid binding is disrupted by mutations of L2031, F2309, and Y2105 75, corresponding to S. cerevisiae Tor2 L1971, F1979, and Y2045, respectively, all of which are conserved in the studied fungal species (Figure 3).Duplication of Tor in the fungal kingdomApproximately 100 million years ago, the S. cerevisiae ancestor underwent a whole genome duplication (WGD) event, and species that descend from this evolutionary event retained duplicated subsets of genes. S. cerevisiae retained approximately 8% of duplicated genes 7879, while other fungi in this lineage have maintained varying numbers of gene duplicates, such as Candida glabrata in which a smaller number (~2%) of these pairs are maintained 80. Interestingly, several of these species, including S. cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, S. bayanus, S. castellii, and C. glabrata have retained two TOR paralogs, whereas species outside of the WGD clade, including Kluyveromyces lactis and Ashbya gossypii, have only a single TOR gene.The fates of duplicated gene paralogs can be explained through the duplication, degeneration, and complementation (DDC) model of gene duplication 81. In species with a single Tor, this protein populates both TORC1 and TORC2, each of which has distinct functions. Following duplication, each paralog likely sub-functionalized to carry out some, but not all, of its previous functions so that between the two paralogs, each process is performed. In S. cerevisiae, for example, Tor1 exclusively functions within TORC1, while Tor2 preferentially populates TORC2 but can also function in TORC1. S. pombe has two Tor paralogs as a result of an independent segmental gene duplication event, and each paralog has distinct roles not necessarily equivalent to those of S. cerevisiae Tor1 and Tor2. SpTor1 is not essential, whereas SpTor2 is essential for growth 112982.We hypothesize that similar models could apply in species encoding two Tor homologs resulting from independent gene duplication events such as P. ostreatus and B. dendrobatidis. Based on their level of identity with S.�cerevisiae Tor homologs, the B. dendrobatidis genes BDEG_08293 and BDEG_05727 have been designated TOR1 and TOR2, respectively. However, these gene names are not necessarily based on functional similarity with ScTor1 and ScTor2 but rather indicate only that there are two TOR homologs in B. dendrobatidis. A�similar naming challenge is evident in S. pombe, where the functions of SpTor1 and SpTor2 are not equivalent with those of ScTor1 and ScTor2.While several species, such as those in the Saccharomyces clade, have two Tor paralogs resulting from ancient WGD events, other species have acquired a second paralog through independent segmental gene duplication events, including B. dendrobatidis and several fission yeast species closely related to S. pombe (Figure 4). Segmental gene duplications have played a major role in the evolution of species and can result in the duplication of single genes or large blocks of genes 83. In S. cerevisiae, the duplication blocks with TOR include three paralogous gene pairs that have been retained from the ancestral WGD event: PTK1/PTK2, TOR1/TOR2, and MNN4/YJR061W 78 (Figure 5A). Further, C. glabrata, an ascomycete closely related to S. cerevisiae that diverged following the WGD, has also maintained a second TOR paralog and synteny is apparent in the region flanking the TOR1 and TOR2 genes, though one must extend the analysis to >40 kb from the TOR genes to detect it (See additional file 1: Supplemental figure 1). However, because C. glabrata and S. cerevisiae have retained different subsets of genes from the ancestral WGD, the duplicated genes surrounding TOR in these species are not homologs of one another. Further, C. glabrata has maintained fewer of the synteny blocks found in S. cerevisiae, and the block containing the TOR genes (Block 42) is not conserved in C. glabrata 80.In contrast, genomic regions surrounding the Tor paralogs in S. pombe (Figure 5B) and B. dendrobatidis (Figure 5C) are not syntenically conserved. That is, the duplicated genes are not flanked by other duplicated gene pairs, and the two TOR paralogs likely resulted from independent segmental gene duplication events. Further, there are no indications of WGDs in these species. In the Schizosaccharomycotina, the TOR gene duplication occurred prior to speciation as evidenced by the fact that S. pombe, S. octosporus, S. japonicus, and S. cryophilus have each retained a second Tor paralog; the Tor orthologs across these four species are more closely related to each other than to those from other species (Figure 4). No syntenic conservation between the genomic regions containing TOR paralogs was detected in any species of the Schizosaccharomyces group, supporting the occurrence of an independent segmental gene duplication in their common ancestor (see additional file 2: supplemental Figure 2).The Taphrinomycotina is a monophyletic taxon of the Ascomycota containing the Schizosaccharomycetes, Taphrinomycetes, Neolectomycetes, and Pneumocystidomycetes. Genomes are only available for species within the Schizosaccharomycetes (S. pombe, S. octosporus, S. japonicus, and S. cryophilus) and the Taphrinomycetes (Pneumocystis carinii). While the studied Schizosaccharomyces spp. contain two Tor homologs, a single homolog was identified in P. carinii with tBLASTx using the highly conserved S. cerevisiae FRB domain of Tor1 based on sequence data produced by the Pneumocystis Genome Project (funded by the NIH NIAID) that was obtained from http://pgp.cchmc.org at the time of publication. Based on the phylogenetic placement of these two groups 84 and the available genomic information, we hypothesize that the segmental TOR duplication is unique to the Schizosaccharomyces spp. and occurred following their divergence from the common ancestor of the Taphrinomycota, as P. carinii, the other species within this taxon with available genome data, appears to contain a single Tor homolog.Interestingly, the zygomycete R. oryzae underwent a whole genome duplication event and despite retaining 12% of the resulting duplicated genes 85 compared to 8% retained genes in a separate WGD event in S. cerevisiae 7879, two Tor paralogs have not been retained; only a single Tor homolog was identified. Currently, the Zygomycota is the only group studied without an identified species containing two Tor homologs; however, there are not enough available genomes to make a definitive conclusion in this group. Other species with independent TOR duplications likely remain to be identified in all of the major fungal lineages, and as more genome sequences become available this will be addressed.During this study, we identified three additional species that possibly have two TOR paralogs: M. brevicollis, Thecamonas trahens, and Allomyces macrogynus, species that are included in the Origins of Multicellularity Project 86. While analysis is limited because of the state of the M. brevicollis (choanoflagellate) genome, it appears that an additional bonafide Tor protein is encoded with the conserved Tor protein architecture. Thecamonas trahens is a unicellular apusomonad that also contains two TOR paralogs. Interestingly, A. macrogynus is a fungus that may contain a second paralog; however, it appears that the FRB domain overlaps with the kinase domain. This may represent a case in which TOR was duplicated but is in the process of losing one of the copies. These cases are a springboard for future studies involving the duplication of TOR within and beyond the fungal kingdom.Loss of the Tor signaling pathway in microsporidiaWhile components of the Tor signaling cascade are conserved in eukaryotes from yeasts to humans, the microsporidia, a group of highly specialized obligate intracellular pathogens completely lack all of the pathway components investigated in this study. E. cuniculi has previously been noted to lack the Tor kinase 87, and we found that all pathway components including Tor were missing not only in E. cuniculi but also in its microsporidian relatives E. bieneusi and N. ceranae (Table 2). Microsporidian genomes are highly compacted and show a marked reduced gene content. The genome of the human pathogen E. cuniculi has 1997 genes distributed throughout 11 chromosomes in a 2.9 Mb genome 88, less than half the number of protein-coding genes found in Escherichia coli. For comparison, the genome of the human pathogen E. bieneusi genome is ~6 Mb with 3,804 genes 89 and the honeybee pathogen N. ceranae genome is ~7.9 Mb with 2,614 predicted genes 90. Genome reduction has been well studied in intracellular bacteria: during the specialization process from a free-living to intracellular lifestyle, massive gene loss can occur 9192939495. We hypothesize that as a consequence of their specialization to an obligate intracellular lifestyle, the need for nutrient sensing was relaxed and these obligate intracellular microsporidia acquired nutrients from within the host cytoplasm. Thus, they no longer required the Tor pathway, which is dedicated to sensing changes in the nutrient composite of the environmental milieu. However, E. cuniculi has retained some of the genes encoding signaling pathways involved in nutrient sensing in other species, including homologs of S. cerevisiae Ras1 and Ras2 (data not shown).Interestingly, P. carinii is an obligate pathogen with a reduced genome estimated to be ~8 Mb 96, which unlike microsporidia is not obligately intracellular. A�single Tor homolog was identified [Pneumocystis Genome Project:cap3_it1_grp346_contig490] using the S. cerevisiae Tor1 FRB domain in tBLASTx, supporting our hypothesis that the microsporidia have streamlined their genomes as they adopted an obligate intracellular life cycle. P. carinii likely requires Tor because it must survive in a metabolically active form outside of host cells, undergoing cell division in the extracellular milieu of the infected host lung.Many microsporidian genomes have undergone extreme genome reduction and are among the eukaryotes with the smallest genomes. In addition to fewer genes than other species (1997 in E. cuniculi compared to 6607 in S. cerevisiae), E. cuniculi has shorter genes, small intergenic distances, and very few introns 8897. This species (and to an even greater extent, E. bieneusi) lacks several genes that are necessary for biosynthetic pathways and the tricarboxylic acid cycle in free-living organisms 888998. Remarkably, E. cuniculi must acquire ATP from its host through a series of ATP transporters anciently acquired from Rickettsia- or Chlamydia-like bacteria 99, and this is an example of how E. cuniculi, and possibly other microsporidia, can hijack mechanisms of other intracellular bacteria, fungi, or the host to survive in and adapt to their highly specialized intracellular lifestyle.ConclusionsThe Tor pathway is highly conserved with some exceptions among fungi, including several pathogens. Similarly, the molecular structural organization of the Tor kinases has been remarkably conserved as well as the presumed ability to bind the FKBP12-rapamycin complex. This feature, combined with the essential nature of the rapamycin-sensitive TORC1 pathway for cell growth, should enable the development of rapamycin-based strategies for antifungal therapies. Duplications of the Tor protein occurred in most fungal groups examined, resulting from either independent segmental gene duplication events or a WGD event. The maintenance of two Tor homologs can be explained through the DDC model of gene duplication, in which the paralogs subfunctionalize and together support all of the functions of the pre-duplicated protein. In addition, species outside of the fungal kingdom with two or more TOR homologs include the metazoan B. mori, the apusomonad protozoan T. trahens, the trypanosome protozoans L. major and T. brucei, and possibly the choanoflagellate M. brevicollis. This suggests that the Tor gene has been independently duplicated multiple times since the last common ancestor of the Opisthokonta and Excavata lineages. The Tor pathway, as well as the Tor protein itself, is highly conserved in eukaryotes, so the observation that three microsporidian species are missing the entire pathway is striking. It would appear that the specialized obligate intracellular life cycle of microsporidia allows for the acquisition of nutrients from the host cell, obviating a requirement for this central nutrient-sensing pathway that is essential in all known cases of other eukaryotes for axenic growth.MethodsIdentification of pathway component homologsTor homologs were identified using the highly conserved 100 amino acid FRB domain of S. cerevisiae Tor1 in BLASTp reciprocal best-hit searches between the specific species database and the Saccharomyces Genome Database (SGD). All queries for other Tor pathway components were retrieved from SGD and homologs were identified by BLASTp reciprocal best-hit searches, with the exception of Tsc1 and Tsc2. Tsc1 and Tsc2 protein query sequences were retrieved from the S. pombe GeneDB, and homologs were identified using BLASTp searches between the S. pombe genome database and the species database. Species identification numbers are listed in Supplemental Table 1. Protein architecture of each homolog was elucidated with Simple Modular Architecture Research Tool (SMART) analysis 7071.Accession numbers are provided for putative Tor pathway components (see Additional file 3, supplemental Table 1 for the accession numbers of putative Tor pathway components) from the following public genomic databases that were used to carry out BLAST: S. cerevisiae, SGD, http://www.yeastgenome.org; S. pombe, GeneDB, http://www.genedb.org/genedb/pombe/index.jsp; P. ostreatus, JGI, http://genome.jgi-psf.org/PleosPC15_1/PleosPC15_1.home.html; M. circinelloides, JGI and the Mucor Genome Project, http://genome.jgi-psf.org/Mucci1/Mucci1.home.html; R. oryzae, Broad Institute, http://www.broadinstitute.org/annotation/genome/rhizopus_oryzae/MultiHome.html; P. blakesleeanus, JGI, http://genome.jgi-psf.org/Phybl1/Phybl1.home.html; B. dendrobatidis, Broad Institute, http://www.broadinstitute.org/annotation/genome/batrachochytrium_dendrobatidis/MultiHome.html; S. punctatus, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; M. brevicollis, JGI, http://genome.jgi-psf.org/Monbr1/Monbr1.home.html; S. rosetta, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; C. owczarzaki, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; E. cuniculi, E. bieneusi, and N. ceranae, NCBI, http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi?organism=fungi.Phylogenetic analysis of TorThe ProtTest program 100 was used to select an appropriate model to construct the phylogenetic relationship of the Tor proteins of the studied species. For this study, the best model for phylogenetic construction of the Tor protein using maximum likelihood (ML) was JTT+I+G+F 101. The ML tree was generated using PhyML with the JTT+I+G+F mode with 500 bootstrap replicates 102103. The Tor amino acid sequences from all species were aligned with CLUSTAL W 104.Synteny analysis of TOR paralogsTor homologs in fungal species were identified with BLAST 105 using TOR1 and TOR2 of S. cerevisiae as query sequences. The TOR sequence and flanking regions (up to 100 kb) were extracted from corresponding contigs or chromosomal sequences. To analyze the synteny of TOR and flanking regions, we constructed a database of one TOR and flanking region sequence and used the other TOR homolog and flanking region sequence to perform tBLASTx searches in the database (BLOSUM62 matrix; E-value = 1e-3; gap cost: existence 11, extension 1; and low complexity regions filter). The tBLASTx results were parsed and formatted using an in-house Perl script (available upon request). The parsed and formatted tBLASTx results were then imported into Artemis software 106 for synteny analysis. We employed a cutoff value of 100 bp to filter short non-significant matches between query and database sequences.Authors� contributionsCAS carried out the homolog searches and phylogenetic analysis and drafted the manuscript. RJB performed homolog searches and participated in the design of the study. WL performed the synteny and phylogenetic analysis and helped draft the manuscript. JH and MEC conceived of the study, participated in its design and helped to draft the manuscript. All authors read and approved the final manuscript.
BackgroundThe nutrient-sensing target of rapamycin (Tor) pathway is highly conserved among eukaryotes and governs several essential cellular processes including protein synthesis, ribosome biogenesis, autophagy, and cytoskeletal organization 123. In the fungal kingdom, the Tor pathway has been best studied in the budding yeast Saccharomyces cerevisiae 234, the fission yeast Schizosaccharomyces pombe 56, and the human pathogen Candida albicans 5678. However, little is known about Tor in basal fungal lineages, including the Zygomycota and Chytridiomycota.In S. cerevisiae and S. pombe, two Tor paralogs form distinct complexes known as Tor Complex 1 (TORC1) and Tor Complex 2 (TORC2) 9101112, while in most other species, including humans, a single Tor protein can populate both complexes 11121314. Interestingly, S. cerevisiae Tor2 can complement the loss of Tor1, but Tor1 cannot complement the loss of Tor2 1516. Two Tor paralogs have also been identified in a metazoan, the silkworm Bombyx mori 17 and three Tor paralogs were identified in the trypanosomatid parasites Leishmania major 18 and the related species Trypanosoma brucei 19, the first reported Tor triumvirates.The ScTORC1 is sensitive to rapamycin and controls protein synthesis, mRNA synthesis and degradation, ribosome biogenesis, and autophagy. TORC2 is insensitive to rapamycin and is involved in the control of actin polarization and cell wall integrity 916. TORC1 consists of Tor1 or Tor2, Kog1 20, Tco89, and Lst8 21, while TORC2 contains Tor2, Lst8, Avo1, Avo2, and Avo3 22 (Figure 1A). Recently, the EGO-GTPase complex and its orthologs were shown to convey amino acid signals for TORC1 activation in yeast, insects, and mammals 23242526. In S. cerevisiae, immediate effectors of TORC1 include the PP2A-like phosphatase Sit4 27 and the AGC kinase Sch9 28. In S. pombe, Tor participates in other cellular functions including nutrient signaling 29, cell growth and differentiation 30, mitotic commitment 31, and sexual development 11 (Figure 1B).The structure of the Tor proteins is remarkably conserved (Figure 2) and features several domains for protein-protein interactions including N-terminal HEAT (Huntingtin, Elongation factor 3, PP2A A subunit, Tor) repeats 32, a FAT (FRAP, ATM, and TRRAP) domain 3334, and an FRB (FK506-Rapamycin Binding) 35 domain. The kinase and the FATC (FAT domain at the C-terminus) 3236 domains are present in the C-terminal region.The Tor inhibitor rapamycin blocks cell proliferation and is currently used as an immunosuppressive drug for organ and tissue transplant recipients and a chemotherapy agent against a variety of solid cancers 37383940. Rapamycin binds to the prolyl isomerase FKBP12 to form a protein-drug complex that then interacts with the Tor FRB domain in a ternary complex 4142. S. cerevisiae cells treated with rapamycin display phenotypes associated with nutrient depletion including G1 cell cycle arrest, cellular volume expansion, protein synthesis inhibition, glycogen accumulation, and autophagy 3543.Genetic analysis in S. cerevisiae characterizing rapamycin-resistant mutants led to the identification of FKBP12 as the intracellular receptor for rapamycin and defined Tor1 and Tor2 as the targets of the FKBP12-rapamycin complex 4. Subsequent studies resulted in the identification and characterization of the TOR1 and TOR2 gene products 1544 as well as the elucidation of the Tor signaling cascade 8454647. These pioneering studies aided in the identification of the mammalian Tor ortholog and characterization of this highly conserved signaling cascade 84849. Remarkably, expression of the human FKBP12 ortholog in yeast fpr1 (the gene that encodes FKBP12) deletion mutants complements to restore rapamycin sensitivity, and hybrid Tor proteins consisting of the yeast N-terminal domain fused to the mammalian Tor kinase domain are also functional in yeast 50. Thus, the Tor pathway has been functionally and structurally conserved from yeasts to humans over the billion years of evolution separating the two species from their last common ancestor.We now know that the fungal and metazoan kingdoms are both within the opisthokont lineage of eukaryotes and are thus more closely related to each other than the vast majority of eukaryotic organisms 5152. Moreover, these two highly successful kingdoms shared a last common ancestor as recently as one billion years ago, much more recently than most eukaryotes. Recent initiatives, particularly the UNICORN project, have facilitated the sequencing of several opisthokonts related to the last common ancestor of the metazoans and fungi, providing an interesting window into the evolution of both fungi and animals 53545556. Thus, studies on the evolutionary trajectory of the fungal kingdom in general, and of the Tor signaling cascade in particular, promise to reveal insights about how orthologous pathways function in the more complex milieu of multicellular metazoan organisms.In this study, we have capitalized upon the wealth of available genomic information by annotating the Tor pathway in several fungal organisms in which this pathway has not been described. Our study included selected species in the major groups of the fungal kingdom with genome sequences available: the basidiomycete Pleurotus ostreatus; the Mucorales zygomycetes Mucor circinelloides, Rhizopus oryzae, and Phycomyces blakesleeanus; the chytridiomycetes Spizellomyces punctatus and Batrachochytrium dendrobatidis; the microsporidian species Encephalitozoon cuniculi, Enterocytozoon bieneusi, and Nosema ceranae; and the related non-fungal opisthokonts Capsaspora owczarzaki, Salpingoeca rosetta, and Monosiga brevicollis. Whereas the Tor pathway is conserved throughout the eukaryotes, strikingly, microsporidian species with their highly reduced and compacted genomes lack the entire Tor pathway. We have also investigated gene and genome duplication events that resulted in two Tor homologs in S. cerevisiae, S. pombe, P. ostreatus, and B. dendrobatidis, and the loss of a second Tor homolog following a whole genome duplication event in R. oryzae.Results and DiscussionConservation of the Tor signaling pathway molecular componentsThe Tor pathway is well conserved among nearly all eukaryotic species examined to date. Tor is essential for life and is the target of the potent drug rapamycin in fungi, humans, and other eukaryotic organisms 2121941. Tor originated early during the eukaryotic radiation, as it is present in the basal eukaryotes Giardia lamblia 57, L. major 18 and T. brucei 19, and also in plants 58. Here we focused on the Tor pathway in the fungal kingdom and other representative unicellular opisthokont species outside of the fungi. Several genes encoding Tor complex components, upstream regulators, and downstream effectors were identified in all major groups throughout the fungal kingdom (Figure 1, Table 1). Because we used BLASTp reciprocal best hits (RBH) to identify orthologs, in some cases the absence of an ortholog in our results may represent only a failure to detect it with this method. Further, functional homologs that are not sufficiently similar enough in sequence to be identified may be present. Overall, a high degree of pathway conservation is observed in the Tor signaling cascade throughout the fungal kingdom, with the exception of microsporidia in which all Tor pathway components are absent. In addition, several pathway components are conserved in the related unicellular opisthokonts M. brevicollis, S. rosetta, and C. owczarzaki (Table 2).In S. cerevisiae, Tor1 and Tor2 interact with several proteins to form TORC1 and TORC2. TORC1 contains Tor1 or Tor2, Kog1, Tco89, and Lst8. Kog1 functions as a substrate-recruiting subunit in mammalian TORC1 (mTORC1) 13596061. A gene encoding a putative Kog1 homolog was identified in all species included in this study, with the exception of the microsporidia and S. rosetta (Tables 1 and 2). Mutation of TCO89 results in hypersensitivity to rapamycin and affects cellular integrity in S. cerevisiae 21. Tco89 is only found in S. cerevisiae and could have resulted from a specialization of the pathway exclusive to Saccharomyces species (Table 1). However, while a BLASTp search did not identify Tco89 homologs in other species, S. pombe has been reported to contain a functional homolog [GenBank:NP_588232] 12, and this suggests that functional homologs may exist in other fungal species as well. However, no homologs were identified when using S.�pombe Tco89 as a query sequence. Lst8 binds to the Tor kinase domain in S. cerevisiae to stimulate catalytic activity 9 and a putative Lst8 homolog is conserved in most species analyzed except microsporidia and S.�rosetta (Tables 1 and 2).Additional BLASTp searches identified a single Tor homolog in the following species: Lachancea thermotolerans CBS6340 [GenBank:XP_002552336], Pichia pastoris GS115 [GenBank:XP_002491471], Pichia stipitis CBS6054 [GenBank:XP_001385651], Debaryomyces hansenii CBS767 [GenBank:XP_002770885], Yarrowia lipolytica CLIB122 [GenBank:XP_505106], Podospora anserina strain S mat+ [GenBank:XP_001903968], Chaetomium globosum CBS148.51 [GenBank:XP_001226647], Magnaporthe oryzae 70-15 [GenBank:XP_001414541], Gibberella zeae PH-1 [GenBank:XP_388309], Aspergillus fumigatus Af293 [GenBank:XP_755360], Aspergillus flavus NRRL3357 [GenBank:XP_002377897], Neosartorya fischeri NRRL181 [GenBank:XP_001260509], Aspergillus terreus NIH2624 [GenBank:XP_001213640], Aspergillus nidulans FGSCA4 [GenBank:XP_663586], Aspergillus clavatus NRRL1 [GenBank:XP_001275326], Aspergillus oryzae RIB40 [GenBank: XP_001826216], and Aspergillus niger CBS513.88 [GenBank:XP_001397781]. These ascomycetes were not included in further studies.In yeast and mammals, TORC2 controls spatial aspects of growth. TORC2 includes Tor2, Avo1, Avo2, Avo3, and Bit61 922. Avo1 plays an essential role in actin cytoskeleton polarization 22 and is conserved throughout the organisms that were the focus of this study (Table 1) except in S. rosetta and C. owczarzaki (Table 2). However, due to high divergence of the AVO1 sequence amongst the known homologs, it is possible that the S. rosetta and C. owczarzaki homologs cannot be identified using the BLASTp algorithm. Avo2 is a nonessential substrate adaptor for TORC2 22 and potential homologs were identified in most species studied, with the exceptions of S. pombe, P. ostreatus, the three microsporidian species (Table 1), and M. brevicollis (Table 2). In S. cerevisiae, Avo3 (also know as Tsc11) controls cytoskeletal dynamics 922, and homologs are conserved throughout the species examined (Tables 1 and 2). Bit61, a nonessential protein that associates with TORC2 21, was only identified in S. cerevisiae (Tables 1 and 2).Upstream regulators of Tor include Tsc1 and Tsc2 (Tuberous Sclerosis 1 and 2) and the GTPase Rheb (Ras homolog enhanced in brain). In S. pombe and other eukaryotes, Tsc1 and Tsc2 form a GTPase-activating complex that negatively regulates the action of Rheb to activate TORC1 266263. Tsc1 and Tsc2 putative homologs were identified in most species in the study, with the exception of S. cerevisiae (Table 1); however, Tsc1 homologs were not identified in B. dendrobatidis, S. rosetta, or C. owczarzaki (Tables 1 and 2). In mammals and insects, four Rag GTPases (RagA-D) bind raptor (Kog1) to mediate TORC1 signaling in response to amino acids 2426. RagA and RagB are orthologs of S.�cerevisiae Gtr1 whereas RagC and RagD are orthologs of S. cerevisiae Gtr2 23. Gtr1 and Gtr2 form a complex along with Ego1 and Ego3 known as EGOC/GSE 25, which is regulated by the GTP exchange factor Vam6 23. Interestingly we found presumptive Gtr1 and Gtr2 orthologs in species in this study with the exception of microsporidia (Table 1), and Gtr1 was not identified in M. brevicollis (Table 2). However, Ego1 and Ego3, which anchor Gtr1 and Gtr2 to endosomal and vacuolar membranes, are unique to S. cerevisiae and were not identified in the other species (Table 1). This suggests that the specific EGO complex architecture might be restricted to Saccharomyces, though it is possible that functional homologs may be present in other species.In fungi, several downstream effectors are targets of Tor signaling. The PP2A phosphatase Sit4 and its regulatory subunit Tap42 regulate the expression of several TORC1-controlled genes and Gcn2-regulated translation 36465. A Sit4 homolog was identified in R. oryzae (Table 1), though a homolog of the regulatory subunit Tap42 was not (Table 1). In S. rosetta, a Sit4 homolog was not identified, though Tap42 was (Table 2). Both of these situations could indicate rewiring of the pathway, or alternatively these findings could be a result of insufficient similarity to detect with a RBH search method. Sch9, a member of the AGC kinase family and the functional homolog of the p70 S6 kinase, is a direct substrate of S. cerevisiae TORC1 involved in ribosome biogenesis 2866. Sch9 was not identified in RBH BLASTp searches with S. cerevisiae Sch9 in M. circinelloides, P. blakesleeanus, the microsporidia (Table 1), or S. rosetta (Table 2), but was identified in all other species. Putative homologs of Ypk2 kinase, a regulator of ceramide synthesis controlled by TORC2 signaling 67, were only identified in S. cerevisiae, S. pombe, (Table 1), M. brevicollis, S. rosetta, and C. owczarzaki (Table 2). Notably, the failure to detect many homologs in M. brevicollis, S. rosetta, and C. owczarzaki could be due to their evolutionary distance from the other organisms in the study and their gene divergence.Evolutionary conservation of Tor kinase protein structureThe Tor kinases are phosphatidylinositol kinase-related kinases (PIKKs) 68 and aside from their known protein kinase function also serve as evolutionary constrained scaffolds with several protein-protein interaction domains that mediate multi-protein complex formation 69. Tor protein architecture was annotated using SMART 7071 and we found that it has been maintained throughout the species of this study (Figure 2). N-terminal HEAT repeats are present in varying numbers and serve as scaffolding structures for protein-protein interactions 327273. Similarly, the FAT/toxic domain and the accompanying C-terminal FATC domain also participate in protein scaffolding and are present and conserved in all species subject to analysis. Over-expression of the FAT domain has a dominant negative effect on cell growth in yeast and this effect can be suppressed by over-expression of phospholipase C 33. The kinase domain has similarities to both lipid and protein kinases, but it is a bona fide protein kinase. The FRB (FKBP12-rapamycin binding) domain is a highly conserved 100 amino acid region of Tor with several residues that are known to be required for binding the FKBP12-rapamycin drug complex 42.In addition, the FRB domain contains several residues necessary for both phosphatidic acid binding and rapamycin interaction 7475. In mammals, phosphatidic acid binding to the FRB region may promote the assembly of mTOR complexes. It has been proposed that the potent effect of the Tor inhibitor rapamycin may be due to direct competition for overlapping phosphatidic acid binding sites within the FRB domain 76. Mutation of the conserved amino acid residues S1975, W2041, or F2048 in the FRB domain confers rapamycin resistance in S. cerevisiae 44277. Strikingly, the corresponding amino acid residues are conserved in all species examined (Figure 3). In mTOR, phosphatidic acid binding is disrupted by mutations of L2031, F2309, and Y2105 75, corresponding to S. cerevisiae Tor2 L1971, F1979, and Y2045, respectively, all of which are conserved in the studied fungal species (Figure 3).Duplication of Tor in the fungal kingdomApproximately 100 million years ago, the S. cerevisiae ancestor underwent a whole genome duplication (WGD) event, and species that descend from this evolutionary event retained duplicated subsets of genes. S. cerevisiae retained approximately 8% of duplicated genes 7879, while other fungi in this lineage have maintained varying numbers of gene duplicates, such as Candida glabrata in which a smaller number (~2%) of these pairs are maintained 80. Interestingly, several of these species, including S. cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, S. bayanus, S. castellii, and C. glabrata have retained two TOR paralogs, whereas species outside of the WGD clade, including Kluyveromyces lactis and Ashbya gossypii, have only a single TOR gene.The fates of duplicated gene paralogs can be explained through the duplication, degeneration, and complementation (DDC) model of gene duplication 81. In species with a single Tor, this protein populates both TORC1 and TORC2, each of which has distinct functions. Following duplication, each paralog likely sub-functionalized to carry out some, but not all, of its previous functions so that between the two paralogs, each process is performed. In S. cerevisiae, for example, Tor1 exclusively functions within TORC1, while Tor2 preferentially populates TORC2 but can also function in TORC1. S. pombe has two Tor paralogs as a result of an independent segmental gene duplication event, and each paralog has distinct roles not necessarily equivalent to those of S. cerevisiae Tor1 and Tor2. SpTor1 is not essential, whereas SpTor2 is essential for growth 112982.We hypothesize that similar models could apply in species encoding two Tor homologs resulting from independent gene duplication events such as P. ostreatus and B. dendrobatidis. Based on their level of identity with S.�cerevisiae Tor homologs, the B. dendrobatidis genes BDEG_08293 and BDEG_05727 have been designated TOR1 and TOR2, respectively. However, these gene names are not necessarily based on functional similarity with ScTor1 and ScTor2 but rather indicate only that there are two TOR homologs in B. dendrobatidis. A�similar naming challenge is evident in S. pombe, where the functions of SpTor1 and SpTor2 are not equivalent with those of ScTor1 and ScTor2.While several species, such as those in the Saccharomyces clade, have two Tor paralogs resulting from ancient WGD events, other species have acquired a second paralog through independent segmental gene duplication events, including B. dendrobatidis and several fission yeast species closely related to S. pombe (Figure 4). Segmental gene duplications have played a major role in the evolution of species and can result in the duplication of single genes or large blocks of genes 83. In S. cerevisiae, the duplication blocks with TOR include three paralogous gene pairs that have been retained from the ancestral WGD event: PTK1/PTK2, TOR1/TOR2, and MNN4/YJR061W 78 (Figure 5A). Further, C. glabrata, an ascomycete closely related to S. cerevisiae that diverged following the WGD, has also maintained a second TOR paralog and synteny is apparent in the region flanking the TOR1 and TOR2 genes, though one must extend the analysis to >40 kb from the TOR genes to detect it (See additional file 1: Supplemental figure 1). However, because C. glabrata and S. cerevisiae have retained different subsets of genes from the ancestral WGD, the duplicated genes surrounding TOR in these species are not homologs of one another. Further, C. glabrata has maintained fewer of the synteny blocks found in S. cerevisiae, and the block containing the TOR genes (Block 42) is not conserved in C. glabrata 80.In contrast, genomic regions surrounding the Tor paralogs in S. pombe (Figure 5B) and B. dendrobatidis (Figure 5C) are not syntenically conserved. That is, the duplicated genes are not flanked by other duplicated gene pairs, and the two TOR paralogs likely resulted from independent segmental gene duplication events. Further, there are no indications of WGDs in these species. In the Schizosaccharomycotina, the TOR gene duplication occurred prior to speciation as evidenced by the fact that S. pombe, S. octosporus, S. japonicus, and S. cryophilus have each retained a second Tor paralog; the Tor orthologs across these four species are more closely related to each other than to those from other species (Figure 4). No syntenic conservation between the genomic regions containing TOR paralogs was detected in any species of the Schizosaccharomyces group, supporting the occurrence of an independent segmental gene duplication in their common ancestor (see additional file 2: supplemental Figure 2).The Taphrinomycotina is a monophyletic taxon of the Ascomycota containing the Schizosaccharomycetes, Taphrinomycetes, Neolectomycetes, and Pneumocystidomycetes. Genomes are only available for species within the Schizosaccharomycetes (S. pombe, S. octosporus, S. japonicus, and S. cryophilus) and the Taphrinomycetes (Pneumocystis carinii). While the studied Schizosaccharomyces spp. contain two Tor homologs, a single homolog was identified in P. carinii with tBLASTx using the highly conserved S. cerevisiae FRB domain of Tor1 based on sequence data produced by the Pneumocystis Genome Project (funded by the NIH NIAID) that was obtained from http://pgp.cchmc.org at the time of publication. Based on the phylogenetic placement of these two groups 84 and the available genomic information, we hypothesize that the segmental TOR duplication is unique to the Schizosaccharomyces spp. and occurred following their divergence from the common ancestor of the Taphrinomycota, as P. carinii, the other species within this taxon with available genome data, appears to contain a single Tor homolog.Interestingly, the zygomycete R. oryzae underwent a whole genome duplication event and despite retaining 12% of the resulting duplicated genes 85 compared to 8% retained genes in a separate WGD event in S. cerevisiae 7879, two Tor paralogs have not been retained; only a single Tor homolog was identified. Currently, the Zygomycota is the only group studied without an identified species containing two Tor homologs; however, there are not enough available genomes to make a definitive conclusion in this group. Other species with independent TOR duplications likely remain to be identified in all of the major fungal lineages, and as more genome sequences become available this will be addressed.During this study, we identified three additional species that possibly have two TOR paralogs: M. brevicollis, Thecamonas trahens, and Allomyces macrogynus, species that are included in the Origins of Multicellularity Project 86. While analysis is limited because of the state of the M. brevicollis (choanoflagellate) genome, it appears that an additional bonafide Tor protein is encoded with the conserved Tor protein architecture. Thecamonas trahens is a unicellular apusomonad that also contains two TOR paralogs. Interestingly, A. macrogynus is a fungus that may contain a second paralog; however, it appears that the FRB domain overlaps with the kinase domain. This may represent a case in which TOR was duplicated but is in the process of losing one of the copies. These cases are a springboard for future studies involving the duplication of TOR within and beyond the fungal kingdom.Loss of the Tor signaling pathway in microsporidiaWhile components of the Tor signaling cascade are conserved in eukaryotes from yeasts to humans, the microsporidia, a group of highly specialized obligate intracellular pathogens completely lack all of the pathway components investigated in this study. E. cuniculi has previously been noted to lack the Tor kinase 87, and we found that all pathway components including Tor were missing not only in E. cuniculi but also in its microsporidian relatives E. bieneusi and N. ceranae (Table 2). Microsporidian genomes are highly compacted and show a marked reduced gene content. The genome of the human pathogen E. cuniculi has 1997 genes distributed throughout 11 chromosomes in a 2.9 Mb genome 88, less than half the number of protein-coding genes found in Escherichia coli. For comparison, the genome of the human pathogen E. bieneusi genome is ~6 Mb with 3,804 genes 89 and the honeybee pathogen N. ceranae genome is ~7.9 Mb with 2,614 predicted genes 90. Genome reduction has been well studied in intracellular bacteria: during the specialization process from a free-living to intracellular lifestyle, massive gene loss can occur 9192939495. We hypothesize that as a consequence of their specialization to an obligate intracellular lifestyle, the need for nutrient sensing was relaxed and these obligate intracellular microsporidia acquired nutrients from within the host cytoplasm. Thus, they no longer required the Tor pathway, which is dedicated to sensing changes in the nutrient composite of the environmental milieu. However, E. cuniculi has retained some of the genes encoding signaling pathways involved in nutrient sensing in other species, including homologs of S. cerevisiae Ras1 and Ras2 (data not shown).Interestingly, P. carinii is an obligate pathogen with a reduced genome estimated to be ~8 Mb 96, which unlike microsporidia is not obligately intracellular. A�single Tor homolog was identified [Pneumocystis Genome Project:cap3_it1_grp346_contig490] using the S. cerevisiae Tor1 FRB domain in tBLASTx, supporting our hypothesis that the microsporidia have streamlined their genomes as they adopted an obligate intracellular life cycle. P. carinii likely requires Tor because it must survive in a metabolically active form outside of host cells, undergoing cell division in the extracellular milieu of the infected host lung.Many microsporidian genomes have undergone extreme genome reduction and are among the eukaryotes with the smallest genomes. In addition to fewer genes than other species (1997 in E. cuniculi compared to 6607 in S. cerevisiae), E. cuniculi has shorter genes, small intergenic distances, and very few introns 8897. This species (and to an even greater extent, E. bieneusi) lacks several genes that are necessary for biosynthetic pathways and the tricarboxylic acid cycle in free-living organisms 888998. Remarkably, E. cuniculi must acquire ATP from its host through a series of ATP transporters anciently acquired from Rickettsia- or Chlamydia-like bacteria 99, and this is an example of how E. cuniculi, and possibly other microsporidia, can hijack mechanisms of other intracellular bacteria, fungi, or the host to survive in and adapt to their highly specialized intracellular lifestyle.ConclusionsThe Tor pathway is highly conserved with some exceptions among fungi, including several pathogens. Similarly, the molecular structural organization of the Tor kinases has been remarkably conserved as well as the presumed ability to bind the FKBP12-rapamycin complex. This feature, combined with the essential nature of the rapamycin-sensitive TORC1 pathway for cell growth, should enable the development of rapamycin-based strategies for antifungal therapies. Duplications of the Tor protein occurred in most fungal groups examined, resulting from either independent segmental gene duplication events or a WGD event. The maintenance of two Tor homologs can be explained through the DDC model of gene duplication, in which the paralogs subfunctionalize and together support all of the functions of the pre-duplicated protein. In addition, species outside of the fungal kingdom with two or more TOR homologs include the metazoan B. mori, the apusomonad protozoan T. trahens, the trypanosome protozoans L. major and T. brucei, and possibly the choanoflagellate M. brevicollis. This suggests that the Tor gene has been independently duplicated multiple times since the last common ancestor of the Opisthokonta and Excavata lineages. The Tor pathway, as well as the Tor protein itself, is highly conserved in eukaryotes, so the observation that three microsporidian species are missing the entire pathway is striking. It would appear that the specialized obligate intracellular life cycle of microsporidia allows for the acquisition of nutrients from the host cell, obviating a requirement for this central nutrient-sensing pathway that is essential in all known cases of other eukaryotes for axenic growth.MethodsIdentification of pathway component homologsTor homologs were identified using the highly conserved 100 amino acid FRB domain of S. cerevisiae Tor1 in BLASTp reciprocal best-hit searches between the specific species database and the Saccharomyces Genome Database (SGD). All queries for other Tor pathway components were retrieved from SGD and homologs were identified by BLASTp reciprocal best-hit searches, with the exception of Tsc1 and Tsc2. Tsc1 and Tsc2 protein query sequences were retrieved from the S. pombe GeneDB, and homologs were identified using BLASTp searches between the S. pombe genome database and the species database. Species identification numbers are listed in Supplemental Table 1. Protein architecture of each homolog was elucidated with Simple Modular Architecture Research Tool (SMART) analysis 7071.Accession numbers are provided for putative Tor pathway components (see Additional file 3, supplemental Table 1 for the accession numbers of putative Tor pathway components) from the following public genomic databases that were used to carry out BLAST: S. cerevisiae, SGD, http://www.yeastgenome.org; S. pombe, GeneDB, http://www.genedb.org/genedb/pombe/index.jsp; P. ostreatus, JGI, http://genome.jgi-psf.org/PleosPC15_1/PleosPC15_1.home.html; M. circinelloides, JGI and the Mucor Genome Project, http://genome.jgi-psf.org/Mucci1/Mucci1.home.html; R. oryzae, Broad Institute, http://www.broadinstitute.org/annotation/genome/rhizopus_oryzae/MultiHome.html; P. blakesleeanus, JGI, http://genome.jgi-psf.org/Phybl1/Phybl1.home.html; B. dendrobatidis, Broad Institute, http://www.broadinstitute.org/annotation/genome/batrachochytrium_dendrobatidis/MultiHome.html; S. punctatus, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; M. brevicollis, JGI, http://genome.jgi-psf.org/Monbr1/Monbr1.home.html; S. rosetta, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; C. owczarzaki, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; E. cuniculi, E. bieneusi, and N. ceranae, NCBI, http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi?organism=fungi.Phylogenetic analysis of TorThe ProtTest program 100 was used to select an appropriate model to construct the phylogenetic relationship of the Tor proteins of the studied species. For this study, the best model for phylogenetic construction of the Tor protein using maximum likelihood (ML) was JTT+I+G+F 101. The ML tree was generated using PhyML with the JTT+I+G+F mode with 500 bootstrap replicates 102103. The Tor amino acid sequences from all species were aligned with CLUSTAL W 104.Synteny analysis of TOR paralogsTor homologs in fungal species were identified with BLAST 105 using TOR1 and TOR2 of S. cerevisiae as query sequences. The TOR sequence and flanking regions (up to 100 kb) were extracted from corresponding contigs or chromosomal sequences. To analyze the synteny of TOR and flanking regions, we constructed a database of one TOR and flanking region sequence and used the other TOR homolog and flanking region sequence to perform tBLASTx searches in the database (BLOSUM62 matrix; E-value = 1e-3; gap cost: existence 11, extension 1; and low complexity regions filter). The tBLASTx results were parsed and formatted using an in-house Perl script (available upon request). The parsed and formatted tBLASTx results were then imported into Artemis software 106 for synteny analysis. We employed a cutoff value of 100 bp to filter short non-significant matches between query and database sequences.Authors� contributionsCAS carried out the homolog searches and phylogenetic analysis and drafted the manuscript. RJB performed homolog searches and participated in the design of the study. WL performed the synteny and phylogenetic analysis and helped draft the manuscript. JH and MEC conceived of the study, participated in its design and helped to draft the manuscript. All authors read and approved the final manuscript.
BackgroundThe nutrient-sensing target of rapamycin (Tor) pathway is highly conserved among eukaryotes and governs several essential cellular processes including protein synthesis, ribosome biogenesis, autophagy, and cytoskeletal organization 123. In the fungal kingdom, the Tor pathway has been best studied in the budding yeast Saccharomyces cerevisiae 234, the fission yeast Schizosaccharomyces pombe 56, and the human pathogen Candida albicans 5678. However, little is known about Tor in basal fungal lineages, including the Zygomycota and Chytridiomycota.In S. cerevisiae and S. pombe, two Tor paralogs form distinct complexes known as Tor Complex 1 (TORC1) and Tor Complex 2 (TORC2) 9101112, while in most other species, including humans, a single Tor protein can populate both complexes 11121314. Interestingly, S. cerevisiae Tor2 can complement the loss of Tor1, but Tor1 cannot complement the loss of Tor2 1516. Two Tor paralogs have also been identified in a metazoan, the silkworm Bombyx mori 17 and three Tor paralogs were identified in the trypanosomatid parasites Leishmania major 18 and the related species Trypanosoma brucei 19, the first reported Tor triumvirates.The ScTORC1 is sensitive to rapamycin and controls protein synthesis, mRNA synthesis and degradation, ribosome biogenesis, and autophagy. TORC2 is insensitive to rapamycin and is involved in the control of actin polarization and cell wall integrity 916. TORC1 consists of Tor1 or Tor2, Kog1 20, Tco89, and Lst8 21, while TORC2 contains Tor2, Lst8, Avo1, Avo2, and Avo3 22 (Figure 1A). Recently, the EGO-GTPase complex and its orthologs were shown to convey amino acid signals for TORC1 activation in yeast, insects, and mammals 23242526. In S. cerevisiae, immediate effectors of TORC1 include the PP2A-like phosphatase Sit4 27 and the AGC kinase Sch9 28. In S. pombe, Tor participates in other cellular functions including nutrient signaling 29, cell growth and differentiation 30, mitotic commitment 31, and sexual development 11 (Figure 1B).The structure of the Tor proteins is remarkably conserved (Figure 2) and features several domains for protein-protein interactions including N-terminal HEAT (Huntingtin, Elongation factor 3, PP2A A subunit, Tor) repeats 32, a FAT (FRAP, ATM, and TRRAP) domain 3334, and an FRB (FK506-Rapamycin Binding) 35 domain. The kinase and the FATC (FAT domain at the C-terminus) 3236 domains are present in the C-terminal region.The Tor inhibitor rapamycin blocks cell proliferation and is currently used as an immunosuppressive drug for organ and tissue transplant recipients and a chemotherapy agent against a variety of solid cancers 37383940. Rapamycin binds to the prolyl isomerase FKBP12 to form a protein-drug complex that then interacts with the Tor FRB domain in a ternary complex 4142. S. cerevisiae cells treated with rapamycin display phenotypes associated with nutrient depletion including G1 cell cycle arrest, cellular volume expansion, protein synthesis inhibition, glycogen accumulation, and autophagy 3543.Genetic analysis in S. cerevisiae characterizing rapamycin-resistant mutants led to the identification of FKBP12 as the intracellular receptor for rapamycin and defined Tor1 and Tor2 as the targets of the FKBP12-rapamycin complex 4. Subsequent studies resulted in the identification and characterization of the TOR1 and TOR2 gene products 1544 as well as the elucidation of the Tor signaling cascade 8454647. These pioneering studies aided in the identification of the mammalian Tor ortholog and characterization of this highly conserved signaling cascade 84849. Remarkably, expression of the human FKBP12 ortholog in yeast fpr1 (the gene that encodes FKBP12) deletion mutants complements to restore rapamycin sensitivity, and hybrid Tor proteins consisting of the yeast N-terminal domain fused to the mammalian Tor kinase domain are also functional in yeast 50. Thus, the Tor pathway has been functionally and structurally conserved from yeasts to humans over the billion years of evolution separating the two species from their last common ancestor.We now know that the fungal and metazoan kingdoms are both within the opisthokont lineage of eukaryotes and are thus more closely related to each other than the vast majority of eukaryotic organisms 5152. Moreover, these two highly successful kingdoms shared a last common ancestor as recently as one billion years ago, much more recently than most eukaryotes. Recent initiatives, particularly the UNICORN project, have facilitated the sequencing of several opisthokonts related to the last common ancestor of the metazoans and fungi, providing an interesting window into the evolution of both fungi and animals 53545556. Thus, studies on the evolutionary trajectory of the fungal kingdom in general, and of the Tor signaling cascade in particular, promise to reveal insights about how orthologous pathways function in the more complex milieu of multicellular metazoan organisms.In this study, we have capitalized upon the wealth of available genomic information by annotating the Tor pathway in several fungal organisms in which this pathway has not been described. Our study included selected species in the major groups of the fungal kingdom with genome sequences available: the basidiomycete Pleurotus ostreatus; the Mucorales zygomycetes Mucor circinelloides, Rhizopus oryzae, and Phycomyces blakesleeanus; the chytridiomycetes Spizellomyces punctatus and Batrachochytrium dendrobatidis; the microsporidian species Encephalitozoon cuniculi, Enterocytozoon bieneusi, and Nosema ceranae; and the related non-fungal opisthokonts Capsaspora owczarzaki, Salpingoeca rosetta, and Monosiga brevicollis. Whereas the Tor pathway is conserved throughout the eukaryotes, strikingly, microsporidian species with their highly reduced and compacted genomes lack the entire Tor pathway. We have also investigated gene and genome duplication events that resulted in two Tor homologs in S. cerevisiae, S. pombe, P. ostreatus, and B. dendrobatidis, and the loss of a second Tor homolog following a whole genome duplication event in R. oryzae.Results and DiscussionConservation of the Tor signaling pathway molecular componentsThe Tor pathway is well conserved among nearly all eukaryotic species examined to date. Tor is essential for life and is the target of the potent drug rapamycin in fungi, humans, and other eukaryotic organisms 2121941. Tor originated early during the eukaryotic radiation, as it is present in the basal eukaryotes Giardia lamblia 57, L. major 18 and T. brucei 19, and also in plants 58. Here we focused on the Tor pathway in the fungal kingdom and other representative unicellular opisthokont species outside of the fungi. Several genes encoding Tor complex components, upstream regulators, and downstream effectors were identified in all major groups throughout the fungal kingdom (Figure 1, Table 1). Because we used BLASTp reciprocal best hits (RBH) to identify orthologs, in some cases the absence of an ortholog in our results may represent only a failure to detect it with this method. Further, functional homologs that are not sufficiently similar enough in sequence to be identified may be present. Overall, a high degree of pathway conservation is observed in the Tor signaling cascade throughout the fungal kingdom, with the exception of microsporidia in which all Tor pathway components are absent. In addition, several pathway components are conserved in the related unicellular opisthokonts M. brevicollis, S. rosetta, and C. owczarzaki (Table 2).In S. cerevisiae, Tor1 and Tor2 interact with several proteins to form TORC1 and TORC2. TORC1 contains Tor1 or Tor2, Kog1, Tco89, and Lst8. Kog1 functions as a substrate-recruiting subunit in mammalian TORC1 (mTORC1) 13596061. A gene encoding a putative Kog1 homolog was identified in all species included in this study, with the exception of the microsporidia and S. rosetta (Tables 1 and 2). Mutation of TCO89 results in hypersensitivity to rapamycin and affects cellular integrity in S. cerevisiae 21. Tco89 is only found in S. cerevisiae and could have resulted from a specialization of the pathway exclusive to Saccharomyces species (Table 1). However, while a BLASTp search did not identify Tco89 homologs in other species, S. pombe has been reported to contain a functional homolog [GenBank:NP_588232] 12, and this suggests that functional homologs may exist in other fungal species as well. However, no homologs were identified when using S.�pombe Tco89 as a query sequence. Lst8 binds to the Tor kinase domain in S. cerevisiae to stimulate catalytic activity 9 and a putative Lst8 homolog is conserved in most species analyzed except microsporidia and S.�rosetta (Tables 1 and 2).Additional BLASTp searches identified a single Tor homolog in the following species: Lachancea thermotolerans CBS6340 [GenBank:XP_002552336], Pichia pastoris GS115 [GenBank:XP_002491471], Pichia stipitis CBS6054 [GenBank:XP_001385651], Debaryomyces hansenii CBS767 [GenBank:XP_002770885], Yarrowia lipolytica CLIB122 [GenBank:XP_505106], Podospora anserina strain S mat+ [GenBank:XP_001903968], Chaetomium globosum CBS148.51 [GenBank:XP_001226647], Magnaporthe oryzae 70-15 [GenBank:XP_001414541], Gibberella zeae PH-1 [GenBank:XP_388309], Aspergillus fumigatus Af293 [GenBank:XP_755360], Aspergillus flavus NRRL3357 [GenBank:XP_002377897], Neosartorya fischeri NRRL181 [GenBank:XP_001260509], Aspergillus terreus NIH2624 [GenBank:XP_001213640], Aspergillus nidulans FGSCA4 [GenBank:XP_663586], Aspergillus clavatus NRRL1 [GenBank:XP_001275326], Aspergillus oryzae RIB40 [GenBank: XP_001826216], and Aspergillus niger CBS513.88 [GenBank:XP_001397781]. These ascomycetes were not included in further studies.In yeast and mammals, TORC2 controls spatial aspects of growth. TORC2 includes Tor2, Avo1, Avo2, Avo3, and Bit61 922. Avo1 plays an essential role in actin cytoskeleton polarization 22 and is conserved throughout the organisms that were the focus of this study (Table 1) except in S. rosetta and C. owczarzaki (Table 2). However, due to high divergence of the AVO1 sequence amongst the known homologs, it is possible that the S. rosetta and C. owczarzaki homologs cannot be identified using the BLASTp algorithm. Avo2 is a nonessential substrate adaptor for TORC2 22 and potential homologs were identified in most species studied, with the exceptions of S. pombe, P. ostreatus, the three microsporidian species (Table 1), and M. brevicollis (Table 2). In S. cerevisiae, Avo3 (also know as Tsc11) controls cytoskeletal dynamics 922, and homologs are conserved throughout the species examined (Tables 1 and 2). Bit61, a nonessential protein that associates with TORC2 21, was only identified in S. cerevisiae (Tables 1 and 2).Upstream regulators of Tor include Tsc1 and Tsc2 (Tuberous Sclerosis 1 and 2) and the GTPase Rheb (Ras homolog enhanced in brain). In S. pombe and other eukaryotes, Tsc1 and Tsc2 form a GTPase-activating complex that negatively regulates the action of Rheb to activate TORC1 266263. Tsc1 and Tsc2 putative homologs were identified in most species in the study, with the exception of S. cerevisiae (Table 1); however, Tsc1 homologs were not identified in B. dendrobatidis, S. rosetta, or C. owczarzaki (Tables 1 and 2). In mammals and insects, four Rag GTPases (RagA-D) bind raptor (Kog1) to mediate TORC1 signaling in response to amino acids 2426. RagA and RagB are orthologs of S.�cerevisiae Gtr1 whereas RagC and RagD are orthologs of S. cerevisiae Gtr2 23. Gtr1 and Gtr2 form a complex along with Ego1 and Ego3 known as EGOC/GSE 25, which is regulated by the GTP exchange factor Vam6 23. Interestingly we found presumptive Gtr1 and Gtr2 orthologs in species in this study with the exception of microsporidia (Table 1), and Gtr1 was not identified in M. brevicollis (Table 2). However, Ego1 and Ego3, which anchor Gtr1 and Gtr2 to endosomal and vacuolar membranes, are unique to S. cerevisiae and were not identified in the other species (Table 1). This suggests that the specific EGO complex architecture might be restricted to Saccharomyces, though it is possible that functional homologs may be present in other species.In fungi, several downstream effectors are targets of Tor signaling. The PP2A phosphatase Sit4 and its regulatory subunit Tap42 regulate the expression of several TORC1-controlled genes and Gcn2-regulated translation 36465. A Sit4 homolog was identified in R. oryzae (Table 1), though a homolog of the regulatory subunit Tap42 was not (Table 1). In S. rosetta, a Sit4 homolog was not identified, though Tap42 was (Table 2). Both of these situations could indicate rewiring of the pathway, or alternatively these findings could be a result of insufficient similarity to detect with a RBH search method. Sch9, a member of the AGC kinase family and the functional homolog of the p70 S6 kinase, is a direct substrate of S. cerevisiae TORC1 involved in ribosome biogenesis 2866. Sch9 was not identified in RBH BLASTp searches with S. cerevisiae Sch9 in M. circinelloides, P. blakesleeanus, the microsporidia (Table 1), or S. rosetta (Table 2), but was identified in all other species. Putative homologs of Ypk2 kinase, a regulator of ceramide synthesis controlled by TORC2 signaling 67, were only identified in S. cerevisiae, S. pombe, (Table 1), M. brevicollis, S. rosetta, and C. owczarzaki (Table 2). Notably, the failure to detect many homologs in M. brevicollis, S. rosetta, and C. owczarzaki could be due to their evolutionary distance from the other organisms in the study and their gene divergence.Evolutionary conservation of Tor kinase protein structureThe Tor kinases are phosphatidylinositol kinase-related kinases (PIKKs) 68 and aside from their known protein kinase function also serve as evolutionary constrained scaffolds with several protein-protein interaction domains that mediate multi-protein complex formation 69. Tor protein architecture was annotated using SMART 7071 and we found that it has been maintained throughout the species of this study (Figure 2). N-terminal HEAT repeats are present in varying numbers and serve as scaffolding structures for protein-protein interactions 327273. Similarly, the FAT/toxic domain and the accompanying C-terminal FATC domain also participate in protein scaffolding and are present and conserved in all species subject to analysis. Over-expression of the FAT domain has a dominant negative effect on cell growth in yeast and this effect can be suppressed by over-expression of phospholipase C 33. The kinase domain has similarities to both lipid and protein kinases, but it is a bona fide protein kinase. The FRB (FKBP12-rapamycin binding) domain is a highly conserved 100 amino acid region of Tor with several residues that are known to be required for binding the FKBP12-rapamycin drug complex 42.In addition, the FRB domain contains several residues necessary for both phosphatidic acid binding and rapamycin interaction 7475. In mammals, phosphatidic acid binding to the FRB region may promote the assembly of mTOR complexes. It has been proposed that the potent effect of the Tor inhibitor rapamycin may be due to direct competition for overlapping phosphatidic acid binding sites within the FRB domain 76. Mutation of the conserved amino acid residues S1975, W2041, or F2048 in the FRB domain confers rapamycin resistance in S. cerevisiae 44277. Strikingly, the corresponding amino acid residues are conserved in all species examined (Figure 3). In mTOR, phosphatidic acid binding is disrupted by mutations of L2031, F2309, and Y2105 75, corresponding to S. cerevisiae Tor2 L1971, F1979, and Y2045, respectively, all of which are conserved in the studied fungal species (Figure 3).Duplication of Tor in the fungal kingdomApproximately 100 million years ago, the S. cerevisiae ancestor underwent a whole genome duplication (WGD) event, and species that descend from this evolutionary event retained duplicated subsets of genes. S. cerevisiae retained approximately 8% of duplicated genes 7879, while other fungi in this lineage have maintained varying numbers of gene duplicates, such as Candida glabrata in which a smaller number (~2%) of these pairs are maintained 80. Interestingly, several of these species, including S. cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, S. bayanus, S. castellii, and C. glabrata have retained two TOR paralogs, whereas species outside of the WGD clade, including Kluyveromyces lactis and Ashbya gossypii, have only a single TOR gene.The fates of duplicated gene paralogs can be explained through the duplication, degeneration, and complementation (DDC) model of gene duplication 81. In species with a single Tor, this protein populates both TORC1 and TORC2, each of which has distinct functions. Following duplication, each paralog likely sub-functionalized to carry out some, but not all, of its previous functions so that between the two paralogs, each process is performed. In S. cerevisiae, for example, Tor1 exclusively functions within TORC1, while Tor2 preferentially populates TORC2 but can also function in TORC1. S. pombe has two Tor paralogs as a result of an independent segmental gene duplication event, and each paralog has distinct roles not necessarily equivalent to those of S. cerevisiae Tor1 and Tor2. SpTor1 is not essential, whereas SpTor2 is essential for growth 112982.We hypothesize that similar models could apply in species encoding two Tor homologs resulting from independent gene duplication events such as P. ostreatus and B. dendrobatidis. Based on their level of identity with S.�cerevisiae Tor homologs, the B. dendrobatidis genes BDEG_08293 and BDEG_05727 have been designated TOR1 and TOR2, respectively. However, these gene names are not necessarily based on functional similarity with ScTor1 and ScTor2 but rather indicate only that there are two TOR homologs in B. dendrobatidis. A�similar naming challenge is evident in S. pombe, where the functions of SpTor1 and SpTor2 are not equivalent with those of ScTor1 and ScTor2.While several species, such as those in the Saccharomyces clade, have two Tor paralogs resulting from ancient WGD events, other species have acquired a second paralog through independent segmental gene duplication events, including B. dendrobatidis and several fission yeast species closely related to S. pombe (Figure 4). Segmental gene duplications have played a major role in the evolution of species and can result in the duplication of single genes or large blocks of genes 83. In S. cerevisiae, the duplication blocks with TOR include three paralogous gene pairs that have been retained from the ancestral WGD event: PTK1/PTK2, TOR1/TOR2, and MNN4/YJR061W 78 (Figure 5A). Further, C. glabrata, an ascomycete closely related to S. cerevisiae that diverged following the WGD, has also maintained a second TOR paralog and synteny is apparent in the region flanking the TOR1 and TOR2 genes, though one must extend the analysis to >40 kb from the TOR genes to detect it (See additional file 1: Supplemental figure 1). However, because C. glabrata and S. cerevisiae have retained different subsets of genes from the ancestral WGD, the duplicated genes surrounding TOR in these species are not homologs of one another. Further, C. glabrata has maintained fewer of the synteny blocks found in S. cerevisiae, and the block containing the TOR genes (Block 42) is not conserved in C. glabrata 80.In contrast, genomic regions surrounding the Tor paralogs in S. pombe (Figure 5B) and B. dendrobatidis (Figure 5C) are not syntenically conserved. That is, the duplicated genes are not flanked by other duplicated gene pairs, and the two TOR paralogs likely resulted from independent segmental gene duplication events. Further, there are no indications of WGDs in these species. In the Schizosaccharomycotina, the TOR gene duplication occurred prior to speciation as evidenced by the fact that S. pombe, S. octosporus, S. japonicus, and S. cryophilus have each retained a second Tor paralog; the Tor orthologs across these four species are more closely related to each other than to those from other species (Figure 4). No syntenic conservation between the genomic regions containing TOR paralogs was detected in any species of the Schizosaccharomyces group, supporting the occurrence of an independent segmental gene duplication in their common ancestor (see additional file 2: supplemental Figure 2).The Taphrinomycotina is a monophyletic taxon of the Ascomycota containing the Schizosaccharomycetes, Taphrinomycetes, Neolectomycetes, and Pneumocystidomycetes. Genomes are only available for species within the Schizosaccharomycetes (S. pombe, S. octosporus, S. japonicus, and S. cryophilus) and the Taphrinomycetes (Pneumocystis carinii). While the studied Schizosaccharomyces spp. contain two Tor homologs, a single homolog was identified in P. carinii with tBLASTx using the highly conserved S. cerevisiae FRB domain of Tor1 based on sequence data produced by the Pneumocystis Genome Project (funded by the NIH NIAID) that was obtained from http://pgp.cchmc.org at the time of publication. Based on the phylogenetic placement of these two groups 84 and the available genomic information, we hypothesize that the segmental TOR duplication is unique to the Schizosaccharomyces spp. and occurred following their divergence from the common ancestor of the Taphrinomycota, as P. carinii, the other species within this taxon with available genome data, appears to contain a single Tor homolog.Interestingly, the zygomycete R. oryzae underwent a whole genome duplication event and despite retaining 12% of the resulting duplicated genes 85 compared to 8% retained genes in a separate WGD event in S. cerevisiae 7879, two Tor paralogs have not been retained; only a single Tor homolog was identified. Currently, the Zygomycota is the only group studied without an identified species containing two Tor homologs; however, there are not enough available genomes to make a definitive conclusion in this group. Other species with independent TOR duplications likely remain to be identified in all of the major fungal lineages, and as more genome sequences become available this will be addressed.During this study, we identified three additional species that possibly have two TOR paralogs: M. brevicollis, Thecamonas trahens, and Allomyces macrogynus, species that are included in the Origins of Multicellularity Project 86. While analysis is limited because of the state of the M. brevicollis (choanoflagellate) genome, it appears that an additional bonafide Tor protein is encoded with the conserved Tor protein architecture. Thecamonas trahens is a unicellular apusomonad that also contains two TOR paralogs. Interestingly, A. macrogynus is a fungus that may contain a second paralog; however, it appears that the FRB domain overlaps with the kinase domain. This may represent a case in which TOR was duplicated but is in the process of losing one of the copies. These cases are a springboard for future studies involving the duplication of TOR within and beyond the fungal kingdom.Loss of the Tor signaling pathway in microsporidiaWhile components of the Tor signaling cascade are conserved in eukaryotes from yeasts to humans, the microsporidia, a group of highly specialized obligate intracellular pathogens completely lack all of the pathway components investigated in this study. E. cuniculi has previously been noted to lack the Tor kinase 87, and we found that all pathway components including Tor were missing not only in E. cuniculi but also in its microsporidian relatives E. bieneusi and N. ceranae (Table 2). Microsporidian genomes are highly compacted and show a marked reduced gene content. The genome of the human pathogen E. cuniculi has 1997 genes distributed throughout 11 chromosomes in a 2.9 Mb genome 88, less than half the number of protein-coding genes found in Escherichia coli. For comparison, the genome of the human pathogen E. bieneusi genome is ~6 Mb with 3,804 genes 89 and the honeybee pathogen N. ceranae genome is ~7.9 Mb with 2,614 predicted genes 90. Genome reduction has been well studied in intracellular bacteria: during the specialization process from a free-living to intracellular lifestyle, massive gene loss can occur 9192939495. We hypothesize that as a consequence of their specialization to an obligate intracellular lifestyle, the need for nutrient sensing was relaxed and these obligate intracellular microsporidia acquired nutrients from within the host cytoplasm. Thus, they no longer required the Tor pathway, which is dedicated to sensing changes in the nutrient composite of the environmental milieu. However, E. cuniculi has retained some of the genes encoding signaling pathways involved in nutrient sensing in other species, including homologs of S. cerevisiae Ras1 and Ras2 (data not shown).Interestingly, P. carinii is an obligate pathogen with a reduced genome estimated to be ~8 Mb 96, which unlike microsporidia is not obligately intracellular. A�single Tor homolog was identified [Pneumocystis Genome Project:cap3_it1_grp346_contig490] using the S. cerevisiae Tor1 FRB domain in tBLASTx, supporting our hypothesis that the microsporidia have streamlined their genomes as they adopted an obligate intracellular life cycle. P. carinii likely requires Tor because it must survive in a metabolically active form outside of host cells, undergoing cell division in the extracellular milieu of the infected host lung.Many microsporidian genomes have undergone extreme genome reduction and are among the eukaryotes with the smallest genomes. In addition to fewer genes than other species (1997 in E. cuniculi compared to 6607 in S. cerevisiae), E. cuniculi has shorter genes, small intergenic distances, and very few introns 8897. This species (and to an even greater extent, E. bieneusi) lacks several genes that are necessary for biosynthetic pathways and the tricarboxylic acid cycle in free-living organisms 888998. Remarkably, E. cuniculi must acquire ATP from its host through a series of ATP transporters anciently acquired from Rickettsia- or Chlamydia-like bacteria 99, and this is an example of how E. cuniculi, and possibly other microsporidia, can hijack mechanisms of other intracellular bacteria, fungi, or the host to survive in and adapt to their highly specialized intracellular lifestyle.ConclusionsThe Tor pathway is highly conserved with some exceptions among fungi, including several pathogens. Similarly, the molecular structural organization of the Tor kinases has been remarkably conserved as well as the presumed ability to bind the FKBP12-rapamycin complex. This feature, combined with the essential nature of the rapamycin-sensitive TORC1 pathway for cell growth, should enable the development of rapamycin-based strategies for antifungal therapies. Duplications of the Tor protein occurred in most fungal groups examined, resulting from either independent segmental gene duplication events or a WGD event. The maintenance of two Tor homologs can be explained through the DDC model of gene duplication, in which the paralogs subfunctionalize and together support all of the functions of the pre-duplicated protein. In addition, species outside of the fungal kingdom with two or more TOR homologs include the metazoan B. mori, the apusomonad protozoan T. trahens, the trypanosome protozoans L. major and T. brucei, and possibly the choanoflagellate M. brevicollis. This suggests that the Tor gene has been independently duplicated multiple times since the last common ancestor of the Opisthokonta and Excavata lineages. The Tor pathway, as well as the Tor protein itself, is highly conserved in eukaryotes, so the observation that three microsporidian species are missing the entire pathway is striking. It would appear that the specialized obligate intracellular life cycle of microsporidia allows for the acquisition of nutrients from the host cell, obviating a requirement for this central nutrient-sensing pathway that is essential in all known cases of other eukaryotes for axenic growth.MethodsIdentification of pathway component homologsTor homologs were identified using the highly conserved 100 amino acid FRB domain of S. cerevisiae Tor1 in BLASTp reciprocal best-hit searches between the specific species database and the Saccharomyces Genome Database (SGD). All queries for other Tor pathway components were retrieved from SGD and homologs were identified by BLASTp reciprocal best-hit searches, with the exception of Tsc1 and Tsc2. Tsc1 and Tsc2 protein query sequences were retrieved from the S. pombe GeneDB, and homologs were identified using BLASTp searches between the S. pombe genome database and the species database. Species identification numbers are listed in Supplemental Table 1. Protein architecture of each homolog was elucidated with Simple Modular Architecture Research Tool (SMART) analysis 7071.Accession numbers are provided for putative Tor pathway components (see Additional file 3, supplemental Table 1 for the accession numbers of putative Tor pathway components) from the following public genomic databases that were used to carry out BLAST: S. cerevisiae, SGD, http://www.yeastgenome.org; S. pombe, GeneDB, http://www.genedb.org/genedb/pombe/index.jsp; P. ostreatus, JGI, http://genome.jgi-psf.org/PleosPC15_1/PleosPC15_1.home.html; M. circinelloides, JGI and the Mucor Genome Project, http://genome.jgi-psf.org/Mucci1/Mucci1.home.html; R. oryzae, Broad Institute, http://www.broadinstitute.org/annotation/genome/rhizopus_oryzae/MultiHome.html; P. blakesleeanus, JGI, http://genome.jgi-psf.org/Phybl1/Phybl1.home.html; B. dendrobatidis, Broad Institute, http://www.broadinstitute.org/annotation/genome/batrachochytrium_dendrobatidis/MultiHome.html; S. punctatus, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; M. brevicollis, JGI, http://genome.jgi-psf.org/Monbr1/Monbr1.home.html; S. rosetta, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; C. owczarzaki, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; E. cuniculi, E. bieneusi, and N. ceranae, NCBI, http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi?organism=fungi.Phylogenetic analysis of TorThe ProtTest program 100 was used to select an appropriate model to construct the phylogenetic relationship of the Tor proteins of the studied species. For this study, the best model for phylogenetic construction of the Tor protein using maximum likelihood (ML) was JTT+I+G+F 101. The ML tree was generated using PhyML with the JTT+I+G+F mode with 500 bootstrap replicates 102103. The Tor amino acid sequences from all species were aligned with CLUSTAL W 104.Synteny analysis of TOR paralogsTor homologs in fungal species were identified with BLAST 105 using TOR1 and TOR2 of S. cerevisiae as query sequences. The TOR sequence and flanking regions (up to 100 kb) were extracted from corresponding contigs or chromosomal sequences. To analyze the synteny of TOR and flanking regions, we constructed a database of one TOR and flanking region sequence and used the other TOR homolog and flanking region sequence to perform tBLASTx searches in the database (BLOSUM62 matrix; E-value = 1e-3; gap cost: existence 11, extension 1; and low complexity regions filter). The tBLASTx results were parsed and formatted using an in-house Perl script (available upon request). The parsed and formatted tBLASTx results were then imported into Artemis software 106 for synteny analysis. We employed a cutoff value of 100 bp to filter short non-significant matches between query and database sequences.Authors� contributionsCAS carried out the homolog searches and phylogenetic analysis and drafted the manuscript. RJB performed homolog searches and participated in the design of the study. WL performed the synteny and phylogenetic analysis and helped draft the manuscript. JH and MEC conceived of the study, participated in its design and helped to draft the manuscript. All authors read and approved the final manuscript.
BackgroundThe nutrient-sensing target of rapamycin (Tor) pathway is highly conserved among eukaryotes and governs several essential cellular processes including protein synthesis, ribosome biogenesis, autophagy, and cytoskeletal organization 123. In the fungal kingdom, the Tor pathway has been best studied in the budding yeast Saccharomyces cerevisiae 234, the fission yeast Schizosaccharomyces pombe 56, and the human pathogen Candida albicans 5678. However, little is known about Tor in basal fungal lineages, including the Zygomycota and Chytridiomycota.In S. cerevisiae and S. pombe, two Tor paralogs form distinct complexes known as Tor Complex 1 (TORC1) and Tor Complex 2 (TORC2) 9101112, while in most other species, including humans, a single Tor protein can populate both complexes 11121314. Interestingly, S. cerevisiae Tor2 can complement the loss of Tor1, but Tor1 cannot complement the loss of Tor2 1516. Two Tor paralogs have also been identified in a metazoan, the silkworm Bombyx mori 17 and three Tor paralogs were identified in the trypanosomatid parasites Leishmania major 18 and the related species Trypanosoma brucei 19, the first reported Tor triumvirates.The ScTORC1 is sensitive to rapamycin and controls protein synthesis, mRNA synthesis and degradation, ribosome biogenesis, and autophagy. TORC2 is insensitive to rapamycin and is involved in the control of actin polarization and cell wall integrity 916. TORC1 consists of Tor1 or Tor2, Kog1 20, Tco89, and Lst8 21, while TORC2 contains Tor2, Lst8, Avo1, Avo2, and Avo3 22 (Figure 1A). Recently, the EGO-GTPase complex and its orthologs were shown to convey amino acid signals for TORC1 activation in yeast, insects, and mammals 23242526. In S. cerevisiae, immediate effectors of TORC1 include the PP2A-like phosphatase Sit4 27 and the AGC kinase Sch9 28. In S. pombe, Tor participates in other cellular functions including nutrient signaling 29, cell growth and differentiation 30, mitotic commitment 31, and sexual development 11 (Figure 1B).The structure of the Tor proteins is remarkably conserved (Figure 2) and features several domains for protein-protein interactions including N-terminal HEAT (Huntingtin, Elongation factor 3, PP2A A subunit, Tor) repeats 32, a FAT (FRAP, ATM, and TRRAP) domain 3334, and an FRB (FK506-Rapamycin Binding) 35 domain. The kinase and the FATC (FAT domain at the C-terminus) 3236 domains are present in the C-terminal region.The Tor inhibitor rapamycin blocks cell proliferation and is currently used as an immunosuppressive drug for organ and tissue transplant recipients and a chemotherapy agent against a variety of solid cancers 37383940. Rapamycin binds to the prolyl isomerase FKBP12 to form a protein-drug complex that then interacts with the Tor FRB domain in a ternary complex 4142. S. cerevisiae cells treated with rapamycin display phenotypes associated with nutrient depletion including G1 cell cycle arrest, cellular volume expansion, protein synthesis inhibition, glycogen accumulation, and autophagy 3543.Genetic analysis in S. cerevisiae characterizing rapamycin-resistant mutants led to the identification of FKBP12 as the intracellular receptor for rapamycin and defined Tor1 and Tor2 as the targets of the FKBP12-rapamycin complex 4. Subsequent studies resulted in the identification and characterization of the TOR1 and TOR2 gene products 1544 as well as the elucidation of the Tor signaling cascade 8454647. These pioneering studies aided in the identification of the mammalian Tor ortholog and characterization of this highly conserved signaling cascade 84849. Remarkably, expression of the human FKBP12 ortholog in yeast fpr1 (the gene that encodes FKBP12) deletion mutants complements to restore rapamycin sensitivity, and hybrid Tor proteins consisting of the yeast N-terminal domain fused to the mammalian Tor kinase domain are also functional in yeast 50. Thus, the Tor pathway has been functionally and structurally conserved from yeasts to humans over the billion years of evolution separating the two species from their last common ancestor.We now know that the fungal and metazoan kingdoms are both within the opisthokont lineage of eukaryotes and are thus more closely related to each other than the vast majority of eukaryotic organisms 5152. Moreover, these two highly successful kingdoms shared a last common ancestor as recently as one billion years ago, much more recently than most eukaryotes. Recent initiatives, particularly the UNICORN project, have facilitated the sequencing of several opisthokonts related to the last common ancestor of the metazoans and fungi, providing an interesting window into the evolution of both fungi and animals 53545556. Thus, studies on the evolutionary trajectory of the fungal kingdom in general, and of the Tor signaling cascade in particular, promise to reveal insights about how orthologous pathways function in the more complex milieu of multicellular metazoan organisms.In this study, we have capitalized upon the wealth of available genomic information by annotating the Tor pathway in several fungal organisms in which this pathway has not been described. Our study included selected species in the major groups of the fungal kingdom with genome sequences available: the basidiomycete Pleurotus ostreatus; the Mucorales zygomycetes Mucor circinelloides, Rhizopus oryzae, and Phycomyces blakesleeanus; the chytridiomycetes Spizellomyces punctatus and Batrachochytrium dendrobatidis; the microsporidian species Encephalitozoon cuniculi, Enterocytozoon bieneusi, and Nosema ceranae; and the related non-fungal opisthokonts Capsaspora owczarzaki, Salpingoeca rosetta, and Monosiga brevicollis. Whereas the Tor pathway is conserved throughout the eukaryotes, strikingly, microsporidian species with their highly reduced and compacted genomes lack the entire Tor pathway. We have also investigated gene and genome duplication events that resulted in two Tor homologs in S. cerevisiae, S. pombe, P. ostreatus, and B. dendrobatidis, and the loss of a second Tor homolog following a whole genome duplication event in R. oryzae.Results and DiscussionConservation of the Tor signaling pathway molecular componentsThe Tor pathway is well conserved among nearly all eukaryotic species examined to date. Tor is essential for life and is the target of the potent drug rapamycin in fungi, humans, and other eukaryotic organisms 2121941. Tor originated early during the eukaryotic radiation, as it is present in the basal eukaryotes Giardia lamblia 57, L. major 18 and T. brucei 19, and also in plants 58. Here we focused on the Tor pathway in the fungal kingdom and other representative unicellular opisthokont species outside of the fungi. Several genes encoding Tor complex components, upstream regulators, and downstream effectors were identified in all major groups throughout the fungal kingdom (Figure 1, Table 1). Because we used BLASTp reciprocal best hits (RBH) to identify orthologs, in some cases the absence of an ortholog in our results may represent only a failure to detect it with this method. Further, functional homologs that are not sufficiently similar enough in sequence to be identified may be present. Overall, a high degree of pathway conservation is observed in the Tor signaling cascade throughout the fungal kingdom, with the exception of microsporidia in which all Tor pathway components are absent. In addition, several pathway components are conserved in the related unicellular opisthokonts M. brevicollis, S. rosetta, and C. owczarzaki (Table 2).In S. cerevisiae, Tor1 and Tor2 interact with several proteins to form TORC1 and TORC2. TORC1 contains Tor1 or Tor2, Kog1, Tco89, and Lst8. Kog1 functions as a substrate-recruiting subunit in mammalian TORC1 (mTORC1) 13596061. A gene encoding a putative Kog1 homolog was identified in all species included in this study, with the exception of the microsporidia and S. rosetta (Tables 1 and 2). Mutation of TCO89 results in hypersensitivity to rapamycin and affects cellular integrity in S. cerevisiae 21. Tco89 is only found in S. cerevisiae and could have resulted from a specialization of the pathway exclusive to Saccharomyces species (Table 1). However, while a BLASTp search did not identify Tco89 homologs in other species, S. pombe has been reported to contain a functional homolog [GenBank:NP_588232] 12, and this suggests that functional homologs may exist in other fungal species as well. However, no homologs were identified when using S.�pombe Tco89 as a query sequence. Lst8 binds to the Tor kinase domain in S. cerevisiae to stimulate catalytic activity 9 and a putative Lst8 homolog is conserved in most species analyzed except microsporidia and S.�rosetta (Tables 1 and 2).Additional BLASTp searches identified a single Tor homolog in the following species: Lachancea thermotolerans CBS6340 [GenBank:XP_002552336], Pichia pastoris GS115 [GenBank:XP_002491471], Pichia stipitis CBS6054 [GenBank:XP_001385651], Debaryomyces hansenii CBS767 [GenBank:XP_002770885], Yarrowia lipolytica CLIB122 [GenBank:XP_505106], Podospora anserina strain S mat+ [GenBank:XP_001903968], Chaetomium globosum CBS148.51 [GenBank:XP_001226647], Magnaporthe oryzae 70-15 [GenBank:XP_001414541], Gibberella zeae PH-1 [GenBank:XP_388309], Aspergillus fumigatus Af293 [GenBank:XP_755360], Aspergillus flavus NRRL3357 [GenBank:XP_002377897], Neosartorya fischeri NRRL181 [GenBank:XP_001260509], Aspergillus terreus NIH2624 [GenBank:XP_001213640], Aspergillus nidulans FGSCA4 [GenBank:XP_663586], Aspergillus clavatus NRRL1 [GenBank:XP_001275326], Aspergillus oryzae RIB40 [GenBank: XP_001826216], and Aspergillus niger CBS513.88 [GenBank:XP_001397781]. These ascomycetes were not included in further studies.In yeast and mammals, TORC2 controls spatial aspects of growth. TORC2 includes Tor2, Avo1, Avo2, Avo3, and Bit61 922. Avo1 plays an essential role in actin cytoskeleton polarization 22 and is conserved throughout the organisms that were the focus of this study (Table 1) except in S. rosetta and C. owczarzaki (Table 2). However, due to high divergence of the AVO1 sequence amongst the known homologs, it is possible that the S. rosetta and C. owczarzaki homologs cannot be identified using the BLASTp algorithm. Avo2 is a nonessential substrate adaptor for TORC2 22 and potential homologs were identified in most species studied, with the exceptions of S. pombe, P. ostreatus, the three microsporidian species (Table 1), and M. brevicollis (Table 2). In S. cerevisiae, Avo3 (also know as Tsc11) controls cytoskeletal dynamics 922, and homologs are conserved throughout the species examined (Tables 1 and 2). Bit61, a nonessential protein that associates with TORC2 21, was only identified in S. cerevisiae (Tables 1 and 2).Upstream regulators of Tor include Tsc1 and Tsc2 (Tuberous Sclerosis 1 and 2) and the GTPase Rheb (Ras homolog enhanced in brain). In S. pombe and other eukaryotes, Tsc1 and Tsc2 form a GTPase-activating complex that negatively regulates the action of Rheb to activate TORC1 266263. Tsc1 and Tsc2 putative homologs were identified in most species in the study, with the exception of S. cerevisiae (Table 1); however, Tsc1 homologs were not identified in B. dendrobatidis, S. rosetta, or C. owczarzaki (Tables 1 and 2). In mammals and insects, four Rag GTPases (RagA-D) bind raptor (Kog1) to mediate TORC1 signaling in response to amino acids 2426. RagA and RagB are orthologs of S.�cerevisiae Gtr1 whereas RagC and RagD are orthologs of S. cerevisiae Gtr2 23. Gtr1 and Gtr2 form a complex along with Ego1 and Ego3 known as EGOC/GSE 25, which is regulated by the GTP exchange factor Vam6 23. Interestingly we found presumptive Gtr1 and Gtr2 orthologs in species in this study with the exception of microsporidia (Table 1), and Gtr1 was not identified in M. brevicollis (Table 2). However, Ego1 and Ego3, which anchor Gtr1 and Gtr2 to endosomal and vacuolar membranes, are unique to S. cerevisiae and were not identified in the other species (Table 1). This suggests that the specific EGO complex architecture might be restricted to Saccharomyces, though it is possible that functional homologs may be present in other species.In fungi, several downstream effectors are targets of Tor signaling. The PP2A phosphatase Sit4 and its regulatory subunit Tap42 regulate the expression of several TORC1-controlled genes and Gcn2-regulated translation 36465. A Sit4 homolog was identified in R. oryzae (Table 1), though a homolog of the regulatory subunit Tap42 was not (Table 1). In S. rosetta, a Sit4 homolog was not identified, though Tap42 was (Table 2). Both of these situations could indicate rewiring of the pathway, or alternatively these findings could be a result of insufficient similarity to detect with a RBH search method. Sch9, a member of the AGC kinase family and the functional homolog of the p70 S6 kinase, is a direct substrate of S. cerevisiae TORC1 involved in ribosome biogenesis 2866. Sch9 was not identified in RBH BLASTp searches with S. cerevisiae Sch9 in M. circinelloides, P. blakesleeanus, the microsporidia (Table 1), or S. rosetta (Table 2), but was identified in all other species. Putative homologs of Ypk2 kinase, a regulator of ceramide synthesis controlled by TORC2 signaling 67, were only identified in S. cerevisiae, S. pombe, (Table 1), M. brevicollis, S. rosetta, and C. owczarzaki (Table 2). Notably, the failure to detect many homologs in M. brevicollis, S. rosetta, and C. owczarzaki could be due to their evolutionary distance from the other organisms in the study and their gene divergence.Evolutionary conservation of Tor kinase protein structureThe Tor kinases are phosphatidylinositol kinase-related kinases (PIKKs) 68 and aside from their known protein kinase function also serve as evolutionary constrained scaffolds with several protein-protein interaction domains that mediate multi-protein complex formation 69. Tor protein architecture was annotated using SMART 7071 and we found that it has been maintained throughout the species of this study (Figure 2). N-terminal HEAT repeats are present in varying numbers and serve as scaffolding structures for protein-protein interactions 327273. Similarly, the FAT/toxic domain and the accompanying C-terminal FATC domain also participate in protein scaffolding and are present and conserved in all species subject to analysis. Over-expression of the FAT domain has a dominant negative effect on cell growth in yeast and this effect can be suppressed by over-expression of phospholipase C 33. The kinase domain has similarities to both lipid and protein kinases, but it is a bona fide protein kinase. The FRB (FKBP12-rapamycin binding) domain is a highly conserved 100 amino acid region of Tor with several residues that are known to be required for binding the FKBP12-rapamycin drug complex 42.In addition, the FRB domain contains several residues necessary for both phosphatidic acid binding and rapamycin interaction 7475. In mammals, phosphatidic acid binding to the FRB region may promote the assembly of mTOR complexes. It has been proposed that the potent effect of the Tor inhibitor rapamycin may be due to direct competition for overlapping phosphatidic acid binding sites within the FRB domain 76. Mutation of the conserved amino acid residues S1975, W2041, or F2048 in the FRB domain confers rapamycin resistance in S. cerevisiae 44277. Strikingly, the corresponding amino acid residues are conserved in all species examined (Figure 3). In mTOR, phosphatidic acid binding is disrupted by mutations of L2031, F2309, and Y2105 75, corresponding to S. cerevisiae Tor2 L1971, F1979, and Y2045, respectively, all of which are conserved in the studied fungal species (Figure 3).Duplication of Tor in the fungal kingdomApproximately 100 million years ago, the S. cerevisiae ancestor underwent a whole genome duplication (WGD) event, and species that descend from this evolutionary event retained duplicated subsets of genes. S. cerevisiae retained approximately 8% of duplicated genes 7879, while other fungi in this lineage have maintained varying numbers of gene duplicates, such as Candida glabrata in which a smaller number (~2%) of these pairs are maintained 80. Interestingly, several of these species, including S. cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, S. bayanus, S. castellii, and C. glabrata have retained two TOR paralogs, whereas species outside of the WGD clade, including Kluyveromyces lactis and Ashbya gossypii, have only a single TOR gene.The fates of duplicated gene paralogs can be explained through the duplication, degeneration, and complementation (DDC) model of gene duplication 81. In species with a single Tor, this protein populates both TORC1 and TORC2, each of which has distinct functions. Following duplication, each paralog likely sub-functionalized to carry out some, but not all, of its previous functions so that between the two paralogs, each process is performed. In S. cerevisiae, for example, Tor1 exclusively functions within TORC1, while Tor2 preferentially populates TORC2 but can also function in TORC1. S. pombe has two Tor paralogs as a result of an independent segmental gene duplication event, and each paralog has distinct roles not necessarily equivalent to those of S. cerevisiae Tor1 and Tor2. SpTor1 is not essential, whereas SpTor2 is essential for growth 112982.We hypothesize that similar models could apply in species encoding two Tor homologs resulting from independent gene duplication events such as P. ostreatus and B. dendrobatidis. Based on their level of identity with S.�cerevisiae Tor homologs, the B. dendrobatidis genes BDEG_08293 and BDEG_05727 have been designated TOR1 and TOR2, respectively. However, these gene names are not necessarily based on functional similarity with ScTor1 and ScTor2 but rather indicate only that there are two TOR homologs in B. dendrobatidis. A�similar naming challenge is evident in S. pombe, where the functions of SpTor1 and SpTor2 are not equivalent with those of ScTor1 and ScTor2.While several species, such as those in the Saccharomyces clade, have two Tor paralogs resulting from ancient WGD events, other species have acquired a second paralog through independent segmental gene duplication events, including B. dendrobatidis and several fission yeast species closely related to S. pombe (Figure 4). Segmental gene duplications have played a major role in the evolution of species and can result in the duplication of single genes or large blocks of genes 83. In S. cerevisiae, the duplication blocks with TOR include three paralogous gene pairs that have been retained from the ancestral WGD event: PTK1/PTK2, TOR1/TOR2, and MNN4/YJR061W 78 (Figure 5A). Further, C. glabrata, an ascomycete closely related to S. cerevisiae that diverged following the WGD, has also maintained a second TOR paralog and synteny is apparent in the region flanking the TOR1 and TOR2 genes, though one must extend the analysis to >40 kb from the TOR genes to detect it (See additional file 1: Supplemental figure 1). However, because C. glabrata and S. cerevisiae have retained different subsets of genes from the ancestral WGD, the duplicated genes surrounding TOR in these species are not homologs of one another. Further, C. glabrata has maintained fewer of the synteny blocks found in S. cerevisiae, and the block containing the TOR genes (Block 42) is not conserved in C. glabrata 80.In contrast, genomic regions surrounding the Tor paralogs in S. pombe (Figure 5B) and B. dendrobatidis (Figure 5C) are not syntenically conserved. That is, the duplicated genes are not flanked by other duplicated gene pairs, and the two TOR paralogs likely resulted from independent segmental gene duplication events. Further, there are no indications of WGDs in these species. In the Schizosaccharomycotina, the TOR gene duplication occurred prior to speciation as evidenced by the fact that S. pombe, S. octosporus, S. japonicus, and S. cryophilus have each retained a second Tor paralog; the Tor orthologs across these four species are more closely related to each other than to those from other species (Figure 4). No syntenic conservation between the genomic regions containing TOR paralogs was detected in any species of the Schizosaccharomyces group, supporting the occurrence of an independent segmental gene duplication in their common ancestor (see additional file 2: supplemental Figure 2).The Taphrinomycotina is a monophyletic taxon of the Ascomycota containing the Schizosaccharomycetes, Taphrinomycetes, Neolectomycetes, and Pneumocystidomycetes. Genomes are only available for species within the Schizosaccharomycetes (S. pombe, S. octosporus, S. japonicus, and S. cryophilus) and the Taphrinomycetes (Pneumocystis carinii). While the studied Schizosaccharomyces spp. contain two Tor homologs, a single homolog was identified in P. carinii with tBLASTx using the highly conserved S. cerevisiae FRB domain of Tor1 based on sequence data produced by the Pneumocystis Genome Project (funded by the NIH NIAID) that was obtained from http://pgp.cchmc.org at the time of publication. Based on the phylogenetic placement of these two groups 84 and the available genomic information, we hypothesize that the segmental TOR duplication is unique to the Schizosaccharomyces spp. and occurred following their divergence from the common ancestor of the Taphrinomycota, as P. carinii, the other species within this taxon with available genome data, appears to contain a single Tor homolog.Interestingly, the zygomycete R. oryzae underwent a whole genome duplication event and despite retaining 12% of the resulting duplicated genes 85 compared to 8% retained genes in a separate WGD event in S. cerevisiae 7879, two Tor paralogs have not been retained; only a single Tor homolog was identified. Currently, the Zygomycota is the only group studied without an identified species containing two Tor homologs; however, there are not enough available genomes to make a definitive conclusion in this group. Other species with independent TOR duplications likely remain to be identified in all of the major fungal lineages, and as more genome sequences become available this will be addressed.During this study, we identified three additional species that possibly have two TOR paralogs: M. brevicollis, Thecamonas trahens, and Allomyces macrogynus, species that are included in the Origins of Multicellularity Project 86. While analysis is limited because of the state of the M. brevicollis (choanoflagellate) genome, it appears that an additional bonafide Tor protein is encoded with the conserved Tor protein architecture. Thecamonas trahens is a unicellular apusomonad that also contains two TOR paralogs. Interestingly, A. macrogynus is a fungus that may contain a second paralog; however, it appears that the FRB domain overlaps with the kinase domain. This may represent a case in which TOR was duplicated but is in the process of losing one of the copies. These cases are a springboard for future studies involving the duplication of TOR within and beyond the fungal kingdom.Loss of the Tor signaling pathway in microsporidiaWhile components of the Tor signaling cascade are conserved in eukaryotes from yeasts to humans, the microsporidia, a group of highly specialized obligate intracellular pathogens completely lack all of the pathway components investigated in this study. E. cuniculi has previously been noted to lack the Tor kinase 87, and we found that all pathway components including Tor were missing not only in E. cuniculi but also in its microsporidian relatives E. bieneusi and N. ceranae (Table 2). Microsporidian genomes are highly compacted and show a marked reduced gene content. The genome of the human pathogen E. cuniculi has 1997 genes distributed throughout 11 chromosomes in a 2.9 Mb genome 88, less than half the number of protein-coding genes found in Escherichia coli. For comparison, the genome of the human pathogen E. bieneusi genome is ~6 Mb with 3,804 genes 89 and the honeybee pathogen N. ceranae genome is ~7.9 Mb with 2,614 predicted genes 90. Genome reduction has been well studied in intracellular bacteria: during the specialization process from a free-living to intracellular lifestyle, massive gene loss can occur 9192939495. We hypothesize that as a consequence of their specialization to an obligate intracellular lifestyle, the need for nutrient sensing was relaxed and these obligate intracellular microsporidia acquired nutrients from within the host cytoplasm. Thus, they no longer required the Tor pathway, which is dedicated to sensing changes in the nutrient composite of the environmental milieu. However, E. cuniculi has retained some of the genes encoding signaling pathways involved in nutrient sensing in other species, including homologs of S. cerevisiae Ras1 and Ras2 (data not shown).Interestingly, P. carinii is an obligate pathogen with a reduced genome estimated to be ~8 Mb 96, which unlike microsporidia is not obligately intracellular. A�single Tor homolog was identified [Pneumocystis Genome Project:cap3_it1_grp346_contig490] using the S. cerevisiae Tor1 FRB domain in tBLASTx, supporting our hypothesis that the microsporidia have streamlined their genomes as they adopted an obligate intracellular life cycle. P. carinii likely requires Tor because it must survive in a metabolically active form outside of host cells, undergoing cell division in the extracellular milieu of the infected host lung.Many microsporidian genomes have undergone extreme genome reduction and are among the eukaryotes with the smallest genomes. In addition to fewer genes than other species (1997 in E. cuniculi compared to 6607 in S. cerevisiae), E. cuniculi has shorter genes, small intergenic distances, and very few introns 8897. This species (and to an even greater extent, E. bieneusi) lacks several genes that are necessary for biosynthetic pathways and the tricarboxylic acid cycle in free-living organisms 888998. Remarkably, E. cuniculi must acquire ATP from its host through a series of ATP transporters anciently acquired from Rickettsia- or Chlamydia-like bacteria 99, and this is an example of how E. cuniculi, and possibly other microsporidia, can hijack mechanisms of other intracellular bacteria, fungi, or the host to survive in and adapt to their highly specialized intracellular lifestyle.ConclusionsThe Tor pathway is highly conserved with some exceptions among fungi, including several pathogens. Similarly, the molecular structural organization of the Tor kinases has been remarkably conserved as well as the presumed ability to bind the FKBP12-rapamycin complex. This feature, combined with the essential nature of the rapamycin-sensitive TORC1 pathway for cell growth, should enable the development of rapamycin-based strategies for antifungal therapies. Duplications of the Tor protein occurred in most fungal groups examined, resulting from either independent segmental gene duplication events or a WGD event. The maintenance of two Tor homologs can be explained through the DDC model of gene duplication, in which the paralogs subfunctionalize and together support all of the functions of the pre-duplicated protein. In addition, species outside of the fungal kingdom with two or more TOR homologs include the metazoan B. mori, the apusomonad protozoan T. trahens, the trypanosome protozoans L. major and T. brucei, and possibly the choanoflagellate M. brevicollis. This suggests that the Tor gene has been independently duplicated multiple times since the last common ancestor of the Opisthokonta and Excavata lineages. The Tor pathway, as well as the Tor protein itself, is highly conserved in eukaryotes, so the observation that three microsporidian species are missing the entire pathway is striking. It would appear that the specialized obligate intracellular life cycle of microsporidia allows for the acquisition of nutrients from the host cell, obviating a requirement for this central nutrient-sensing pathway that is essential in all known cases of other eukaryotes for axenic growth.MethodsIdentification of pathway component homologsTor homologs were identified using the highly conserved 100 amino acid FRB domain of S. cerevisiae Tor1 in BLASTp reciprocal best-hit searches between the specific species database and the Saccharomyces Genome Database (SGD). All queries for other Tor pathway components were retrieved from SGD and homologs were identified by BLASTp reciprocal best-hit searches, with the exception of Tsc1 and Tsc2. Tsc1 and Tsc2 protein query sequences were retrieved from the S. pombe GeneDB, and homologs were identified using BLASTp searches between the S. pombe genome database and the species database. Species identification numbers are listed in Supplemental Table 1. Protein architecture of each homolog was elucidated with Simple Modular Architecture Research Tool (SMART) analysis 7071.Accession numbers are provided for putative Tor pathway components (see Additional file 3, supplemental Table 1 for the accession numbers of putative Tor pathway components) from the following public genomic databases that were used to carry out BLAST: S. cerevisiae, SGD, http://www.yeastgenome.org; S. pombe, GeneDB, http://www.genedb.org/genedb/pombe/index.jsp; P. ostreatus, JGI, http://genome.jgi-psf.org/PleosPC15_1/PleosPC15_1.home.html; M. circinelloides, JGI and the Mucor Genome Project, http://genome.jgi-psf.org/Mucci1/Mucci1.home.html; R. oryzae, Broad Institute, http://www.broadinstitute.org/annotation/genome/rhizopus_oryzae/MultiHome.html; P. blakesleeanus, JGI, http://genome.jgi-psf.org/Phybl1/Phybl1.home.html; B. dendrobatidis, Broad Institute, http://www.broadinstitute.org/annotation/genome/batrachochytrium_dendrobatidis/MultiHome.html; S. punctatus, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; M. brevicollis, JGI, http://genome.jgi-psf.org/Monbr1/Monbr1.home.html; S. rosetta, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; C. owczarzaki, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; E. cuniculi, E. bieneusi, and N. ceranae, NCBI, http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi?organism=fungi.Phylogenetic analysis of TorThe ProtTest program 100 was used to select an appropriate model to construct the phylogenetic relationship of the Tor proteins of the studied species. For this study, the best model for phylogenetic construction of the Tor protein using maximum likelihood (ML) was JTT+I+G+F 101. The ML tree was generated using PhyML with the JTT+I+G+F mode with 500 bootstrap replicates 102103. The Tor amino acid sequences from all species were aligned with CLUSTAL W 104.Synteny analysis of TOR paralogsTor homologs in fungal species were identified with BLAST 105 using TOR1 and TOR2 of S. cerevisiae as query sequences. The TOR sequence and flanking regions (up to 100 kb) were extracted from corresponding contigs or chromosomal sequences. To analyze the synteny of TOR and flanking regions, we constructed a database of one TOR and flanking region sequence and used the other TOR homolog and flanking region sequence to perform tBLASTx searches in the database (BLOSUM62 matrix; E-value = 1e-3; gap cost: existence 11, extension 1; and low complexity regions filter). The tBLASTx results were parsed and formatted using an in-house Perl script (available upon request). The parsed and formatted tBLASTx results were then imported into Artemis software 106 for synteny analysis. We employed a cutoff value of 100 bp to filter short non-significant matches between query and database sequences.Authors� contributionsCAS carried out the homolog searches and phylogenetic analysis and drafted the manuscript. RJB performed homolog searches and participated in the design of the study. WL performed the synteny and phylogenetic analysis and helped draft the manuscript. JH and MEC conceived of the study, participated in its design and helped to draft the manuscript. All authors read and approved the final manuscript.
BackgroundThe nutrient-sensing target of rapamycin (Tor) pathway is highly conserved among eukaryotes and governs several essential cellular processes including protein synthesis, ribosome biogenesis, autophagy, and cytoskeletal organization 123. In the fungal kingdom, the Tor pathway has been best studied in the budding yeast Saccharomyces cerevisiae 234, the fission yeast Schizosaccharomyces pombe 56, and the human pathogen Candida albicans 5678. However, little is known about Tor in basal fungal lineages, including the Zygomycota and Chytridiomycota.In S. cerevisiae and S. pombe, two Tor paralogs form distinct complexes known as Tor Complex 1 (TORC1) and Tor Complex 2 (TORC2) 9101112, while in most other species, including humans, a single Tor protein can populate both complexes 11121314. Interestingly, S. cerevisiae Tor2 can complement the loss of Tor1, but Tor1 cannot complement the loss of Tor2 1516. Two Tor paralogs have also been identified in a metazoan, the silkworm Bombyx mori 17 and three Tor paralogs were identified in the trypanosomatid parasites Leishmania major 18 and the related species Trypanosoma brucei 19, the first reported Tor triumvirates.The ScTORC1 is sensitive to rapamycin and controls protein synthesis, mRNA synthesis and degradation, ribosome biogenesis, and autophagy. TORC2 is insensitive to rapamycin and is involved in the control of actin polarization and cell wall integrity 916. TORC1 consists of Tor1 or Tor2, Kog1 20, Tco89, and Lst8 21, while TORC2 contains Tor2, Lst8, Avo1, Avo2, and Avo3 22 (Figure 1A). Recently, the EGO-GTPase complex and its orthologs were shown to convey amino acid signals for TORC1 activation in yeast, insects, and mammals 23242526. In S. cerevisiae, immediate effectors of TORC1 include the PP2A-like phosphatase Sit4 27 and the AGC kinase Sch9 28. In S. pombe, Tor participates in other cellular functions including nutrient signaling 29, cell growth and differentiation 30, mitotic commitment 31, and sexual development 11 (Figure 1B).The structure of the Tor proteins is remarkably conserved (Figure 2) and features several domains for protein-protein interactions including N-terminal HEAT (Huntingtin, Elongation factor 3, PP2A A subunit, Tor) repeats 32, a FAT (FRAP, ATM, and TRRAP) domain 3334, and an FRB (FK506-Rapamycin Binding) 35 domain. The kinase and the FATC (FAT domain at the C-terminus) 3236 domains are present in the C-terminal region.The Tor inhibitor rapamycin blocks cell proliferation and is currently used as an immunosuppressive drug for organ and tissue transplant recipients and a chemotherapy agent against a variety of solid cancers 37383940. Rapamycin binds to the prolyl isomerase FKBP12 to form a protein-drug complex that then interacts with the Tor FRB domain in a ternary complex 4142. S. cerevisiae cells treated with rapamycin display phenotypes associated with nutrient depletion including G1 cell cycle arrest, cellular volume expansion, protein synthesis inhibition, glycogen accumulation, and autophagy 3543.Genetic analysis in S. cerevisiae characterizing rapamycin-resistant mutants led to the identification of FKBP12 as the intracellular receptor for rapamycin and defined Tor1 and Tor2 as the targets of the FKBP12-rapamycin complex 4. Subsequent studies resulted in the identification and characterization of the TOR1 and TOR2 gene products 1544 as well as the elucidation of the Tor signaling cascade 8454647. These pioneering studies aided in the identification of the mammalian Tor ortholog and characterization of this highly conserved signaling cascade 84849. Remarkably, expression of the human FKBP12 ortholog in yeast fpr1 (the gene that encodes FKBP12) deletion mutants complements to restore rapamycin sensitivity, and hybrid Tor proteins consisting of the yeast N-terminal domain fused to the mammalian Tor kinase domain are also functional in yeast 50. Thus, the Tor pathway has been functionally and structurally conserved from yeasts to humans over the billion years of evolution separating the two species from their last common ancestor.We now know that the fungal and metazoan kingdoms are both within the opisthokont lineage of eukaryotes and are thus more closely related to each other than the vast majority of eukaryotic organisms 5152. Moreover, these two highly successful kingdoms shared a last common ancestor as recently as one billion years ago, much more recently than most eukaryotes. Recent initiatives, particularly the UNICORN project, have facilitated the sequencing of several opisthokonts related to the last common ancestor of the metazoans and fungi, providing an interesting window into the evolution of both fungi and animals 53545556. Thus, studies on the evolutionary trajectory of the fungal kingdom in general, and of the Tor signaling cascade in particular, promise to reveal insights about how orthologous pathways function in the more complex milieu of multicellular metazoan organisms.In this study, we have capitalized upon the wealth of available genomic information by annotating the Tor pathway in several fungal organisms in which this pathway has not been described. Our study included selected species in the major groups of the fungal kingdom with genome sequences available: the basidiomycete Pleurotus ostreatus; the Mucorales zygomycetes Mucor circinelloides, Rhizopus oryzae, and Phycomyces blakesleeanus; the chytridiomycetes Spizellomyces punctatus and Batrachochytrium dendrobatidis; the microsporidian species Encephalitozoon cuniculi, Enterocytozoon bieneusi, and Nosema ceranae; and the related non-fungal opisthokonts Capsaspora owczarzaki, Salpingoeca rosetta, and Monosiga brevicollis. Whereas the Tor pathway is conserved throughout the eukaryotes, strikingly, microsporidian species with their highly reduced and compacted genomes lack the entire Tor pathway. We have also investigated gene and genome duplication events that resulted in two Tor homologs in S. cerevisiae, S. pombe, P. ostreatus, and B. dendrobatidis, and the loss of a second Tor homolog following a whole genome duplication event in R. oryzae.Results and DiscussionConservation of the Tor signaling pathway molecular componentsThe Tor pathway is well conserved among nearly all eukaryotic species examined to date. Tor is essential for life and is the target of the potent drug rapamycin in fungi, humans, and other eukaryotic organisms 2121941. Tor originated early during the eukaryotic radiation, as it is present in the basal eukaryotes Giardia lamblia 57, L. major 18 and T. brucei 19, and also in plants 58. Here we focused on the Tor pathway in the fungal kingdom and other representative unicellular opisthokont species outside of the fungi. Several genes encoding Tor complex components, upstream regulators, and downstream effectors were identified in all major groups throughout the fungal kingdom (Figure 1, Table 1). Because we used BLASTp reciprocal best hits (RBH) to identify orthologs, in some cases the absence of an ortholog in our results may represent only a failure to detect it with this method. Further, functional homologs that are not sufficiently similar enough in sequence to be identified may be present. Overall, a high degree of pathway conservation is observed in the Tor signaling cascade throughout the fungal kingdom, with the exception of microsporidia in which all Tor pathway components are absent. In addition, several pathway components are conserved in the related unicellular opisthokonts M. brevicollis, S. rosetta, and C. owczarzaki (Table 2).In S. cerevisiae, Tor1 and Tor2 interact with several proteins to form TORC1 and TORC2. TORC1 contains Tor1 or Tor2, Kog1, Tco89, and Lst8. Kog1 functions as a substrate-recruiting subunit in mammalian TORC1 (mTORC1) 13596061. A gene encoding a putative Kog1 homolog was identified in all species included in this study, with the exception of the microsporidia and S. rosetta (Tables 1 and 2). Mutation of TCO89 results in hypersensitivity to rapamycin and affects cellular integrity in S. cerevisiae 21. Tco89 is only found in S. cerevisiae and could have resulted from a specialization of the pathway exclusive to Saccharomyces species (Table 1). However, while a BLASTp search did not identify Tco89 homologs in other species, S. pombe has been reported to contain a functional homolog [GenBank:NP_588232] 12, and this suggests that functional homologs may exist in other fungal species as well. However, no homologs were identified when using S.�pombe Tco89 as a query sequence. Lst8 binds to the Tor kinase domain in S. cerevisiae to stimulate catalytic activity 9 and a putative Lst8 homolog is conserved in most species analyzed except microsporidia and S.�rosetta (Tables 1 and 2).Additional BLASTp searches identified a single Tor homolog in the following species: Lachancea thermotolerans CBS6340 [GenBank:XP_002552336], Pichia pastoris GS115 [GenBank:XP_002491471], Pichia stipitis CBS6054 [GenBank:XP_001385651], Debaryomyces hansenii CBS767 [GenBank:XP_002770885], Yarrowia lipolytica CLIB122 [GenBank:XP_505106], Podospora anserina strain S mat+ [GenBank:XP_001903968], Chaetomium globosum CBS148.51 [GenBank:XP_001226647], Magnaporthe oryzae 70-15 [GenBank:XP_001414541], Gibberella zeae PH-1 [GenBank:XP_388309], Aspergillus fumigatus Af293 [GenBank:XP_755360], Aspergillus flavus NRRL3357 [GenBank:XP_002377897], Neosartorya fischeri NRRL181 [GenBank:XP_001260509], Aspergillus terreus NIH2624 [GenBank:XP_001213640], Aspergillus nidulans FGSCA4 [GenBank:XP_663586], Aspergillus clavatus NRRL1 [GenBank:XP_001275326], Aspergillus oryzae RIB40 [GenBank: XP_001826216], and Aspergillus niger CBS513.88 [GenBank:XP_001397781]. These ascomycetes were not included in further studies.In yeast and mammals, TORC2 controls spatial aspects of growth. TORC2 includes Tor2, Avo1, Avo2, Avo3, and Bit61 922. Avo1 plays an essential role in actin cytoskeleton polarization 22 and is conserved throughout the organisms that were the focus of this study (Table 1) except in S. rosetta and C. owczarzaki (Table 2). However, due to high divergence of the AVO1 sequence amongst the known homologs, it is possible that the S. rosetta and C. owczarzaki homologs cannot be identified using the BLASTp algorithm. Avo2 is a nonessential substrate adaptor for TORC2 22 and potential homologs were identified in most species studied, with the exceptions of S. pombe, P. ostreatus, the three microsporidian species (Table 1), and M. brevicollis (Table 2). In S. cerevisiae, Avo3 (also know as Tsc11) controls cytoskeletal dynamics 922, and homologs are conserved throughout the species examined (Tables 1 and 2). Bit61, a nonessential protein that associates with TORC2 21, was only identified in S. cerevisiae (Tables 1 and 2).Upstream regulators of Tor include Tsc1 and Tsc2 (Tuberous Sclerosis 1 and 2) and the GTPase Rheb (Ras homolog enhanced in brain). In S. pombe and other eukaryotes, Tsc1 and Tsc2 form a GTPase-activating complex that negatively regulates the action of Rheb to activate TORC1 266263. Tsc1 and Tsc2 putative homologs were identified in most species in the study, with the exception of S. cerevisiae (Table 1); however, Tsc1 homologs were not identified in B. dendrobatidis, S. rosetta, or C. owczarzaki (Tables 1 and 2). In mammals and insects, four Rag GTPases (RagA-D) bind raptor (Kog1) to mediate TORC1 signaling in response to amino acids 2426. RagA and RagB are orthologs of S.�cerevisiae Gtr1 whereas RagC and RagD are orthologs of S. cerevisiae Gtr2 23. Gtr1 and Gtr2 form a complex along with Ego1 and Ego3 known as EGOC/GSE 25, which is regulated by the GTP exchange factor Vam6 23. Interestingly we found presumptive Gtr1 and Gtr2 orthologs in species in this study with the exception of microsporidia (Table 1), and Gtr1 was not identified in M. brevicollis (Table 2). However, Ego1 and Ego3, which anchor Gtr1 and Gtr2 to endosomal and vacuolar membranes, are unique to S. cerevisiae and were not identified in the other species (Table 1). This suggests that the specific EGO complex architecture might be restricted to Saccharomyces, though it is possible that functional homologs may be present in other species.In fungi, several downstream effectors are targets of Tor signaling. The PP2A phosphatase Sit4 and its regulatory subunit Tap42 regulate the expression of several TORC1-controlled genes and Gcn2-regulated translation 36465. A Sit4 homolog was identified in R. oryzae (Table 1), though a homolog of the regulatory subunit Tap42 was not (Table 1). In S. rosetta, a Sit4 homolog was not identified, though Tap42 was (Table 2). Both of these situations could indicate rewiring of the pathway, or alternatively these findings could be a result of insufficient similarity to detect with a RBH search method. Sch9, a member of the AGC kinase family and the functional homolog of the p70 S6 kinase, is a direct substrate of S. cerevisiae TORC1 involved in ribosome biogenesis 2866. Sch9 was not identified in RBH BLASTp searches with S. cerevisiae Sch9 in M. circinelloides, P. blakesleeanus, the microsporidia (Table 1), or S. rosetta (Table 2), but was identified in all other species. Putative homologs of Ypk2 kinase, a regulator of ceramide synthesis controlled by TORC2 signaling 67, were only identified in S. cerevisiae, S. pombe, (Table 1), M. brevicollis, S. rosetta, and C. owczarzaki (Table 2). Notably, the failure to detect many homologs in M. brevicollis, S. rosetta, and C. owczarzaki could be due to their evolutionary distance from the other organisms in the study and their gene divergence.Evolutionary conservation of Tor kinase protein structureThe Tor kinases are phosphatidylinositol kinase-related kinases (PIKKs) 68 and aside from their known protein kinase function also serve as evolutionary constrained scaffolds with several protein-protein interaction domains that mediate multi-protein complex formation 69. Tor protein architecture was annotated using SMART 7071 and we found that it has been maintained throughout the species of this study (Figure 2). N-terminal HEAT repeats are present in varying numbers and serve as scaffolding structures for protein-protein interactions 327273. Similarly, the FAT/toxic domain and the accompanying C-terminal FATC domain also participate in protein scaffolding and are present and conserved in all species subject to analysis. Over-expression of the FAT domain has a dominant negative effect on cell growth in yeast and this effect can be suppressed by over-expression of phospholipase C 33. The kinase domain has similarities to both lipid and protein kinases, but it is a bona fide protein kinase. The FRB (FKBP12-rapamycin binding) domain is a highly conserved 100 amino acid region of Tor with several residues that are known to be required for binding the FKBP12-rapamycin drug complex 42.In addition, the FRB domain contains several residues necessary for both phosphatidic acid binding and rapamycin interaction 7475. In mammals, phosphatidic acid binding to the FRB region may promote the assembly of mTOR complexes. It has been proposed that the potent effect of the Tor inhibitor rapamycin may be due to direct competition for overlapping phosphatidic acid binding sites within the FRB domain 76. Mutation of the conserved amino acid residues S1975, W2041, or F2048 in the FRB domain confers rapamycin resistance in S. cerevisiae 44277. Strikingly, the corresponding amino acid residues are conserved in all species examined (Figure 3). In mTOR, phosphatidic acid binding is disrupted by mutations of L2031, F2309, and Y2105 75, corresponding to S. cerevisiae Tor2 L1971, F1979, and Y2045, respectively, all of which are conserved in the studied fungal species (Figure 3).Duplication of Tor in the fungal kingdomApproximately 100 million years ago, the S. cerevisiae ancestor underwent a whole genome duplication (WGD) event, and species that descend from this evolutionary event retained duplicated subsets of genes. S. cerevisiae retained approximately 8% of duplicated genes 7879, while other fungi in this lineage have maintained varying numbers of gene duplicates, such as Candida glabrata in which a smaller number (~2%) of these pairs are maintained 80. Interestingly, several of these species, including S. cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, S. bayanus, S. castellii, and C. glabrata have retained two TOR paralogs, whereas species outside of the WGD clade, including Kluyveromyces lactis and Ashbya gossypii, have only a single TOR gene.The fates of duplicated gene paralogs can be explained through the duplication, degeneration, and complementation (DDC) model of gene duplication 81. In species with a single Tor, this protein populates both TORC1 and TORC2, each of which has distinct functions. Following duplication, each paralog likely sub-functionalized to carry out some, but not all, of its previous functions so that between the two paralogs, each process is performed. In S. cerevisiae, for example, Tor1 exclusively functions within TORC1, while Tor2 preferentially populates TORC2 but can also function in TORC1. S. pombe has two Tor paralogs as a result of an independent segmental gene duplication event, and each paralog has distinct roles not necessarily equivalent to those of S. cerevisiae Tor1 and Tor2. SpTor1 is not essential, whereas SpTor2 is essential for growth 112982.We hypothesize that similar models could apply in species encoding two Tor homologs resulting from independent gene duplication events such as P. ostreatus and B. dendrobatidis. Based on their level of identity with S.�cerevisiae Tor homologs, the B. dendrobatidis genes BDEG_08293 and BDEG_05727 have been designated TOR1 and TOR2, respectively. However, these gene names are not necessarily based on functional similarity with ScTor1 and ScTor2 but rather indicate only that there are two TOR homologs in B. dendrobatidis. A�similar naming challenge is evident in S. pombe, where the functions of SpTor1 and SpTor2 are not equivalent with those of ScTor1 and ScTor2.While several species, such as those in the Saccharomyces clade, have two Tor paralogs resulting from ancient WGD events, other species have acquired a second paralog through independent segmental gene duplication events, including B. dendrobatidis and several fission yeast species closely related to S. pombe (Figure 4). Segmental gene duplications have played a major role in the evolution of species and can result in the duplication of single genes or large blocks of genes 83. In S. cerevisiae, the duplication blocks with TOR include three paralogous gene pairs that have been retained from the ancestral WGD event: PTK1/PTK2, TOR1/TOR2, and MNN4/YJR061W 78 (Figure 5A). Further, C. glabrata, an ascomycete closely related to S. cerevisiae that diverged following the WGD, has also maintained a second TOR paralog and synteny is apparent in the region flanking the TOR1 and TOR2 genes, though one must extend the analysis to >40 kb from the TOR genes to detect it (See additional file 1: Supplemental figure 1). However, because C. glabrata and S. cerevisiae have retained different subsets of genes from the ancestral WGD, the duplicated genes surrounding TOR in these species are not homologs of one another. Further, C. glabrata has maintained fewer of the synteny blocks found in S. cerevisiae, and the block containing the TOR genes (Block 42) is not conserved in C. glabrata 80.In contrast, genomic regions surrounding the Tor paralogs in S. pombe (Figure 5B) and B. dendrobatidis (Figure 5C) are not syntenically conserved. That is, the duplicated genes are not flanked by other duplicated gene pairs, and the two TOR paralogs likely resulted from independent segmental gene duplication events. Further, there are no indications of WGDs in these species. In the Schizosaccharomycotina, the TOR gene duplication occurred prior to speciation as evidenced by the fact that S. pombe, S. octosporus, S. japonicus, and S. cryophilus have each retained a second Tor paralog; the Tor orthologs across these four species are more closely related to each other than to those from other species (Figure 4). No syntenic conservation between the genomic regions containing TOR paralogs was detected in any species of the Schizosaccharomyces group, supporting the occurrence of an independent segmental gene duplication in their common ancestor (see additional file 2: supplemental Figure 2).The Taphrinomycotina is a monophyletic taxon of the Ascomycota containing the Schizosaccharomycetes, Taphrinomycetes, Neolectomycetes, and Pneumocystidomycetes. Genomes are only available for species within the Schizosaccharomycetes (S. pombe, S. octosporus, S. japonicus, and S. cryophilus) and the Taphrinomycetes (Pneumocystis carinii). While the studied Schizosaccharomyces spp. contain two Tor homologs, a single homolog was identified in P. carinii with tBLASTx using the highly conserved S. cerevisiae FRB domain of Tor1 based on sequence data produced by the Pneumocystis Genome Project (funded by the NIH NIAID) that was obtained from http://pgp.cchmc.org at the time of publication. Based on the phylogenetic placement of these two groups 84 and the available genomic information, we hypothesize that the segmental TOR duplication is unique to the Schizosaccharomyces spp. and occurred following their divergence from the common ancestor of the Taphrinomycota, as P. carinii, the other species within this taxon with available genome data, appears to contain a single Tor homolog.Interestingly, the zygomycete R. oryzae underwent a whole genome duplication event and despite retaining 12% of the resulting duplicated genes 85 compared to 8% retained genes in a separate WGD event in S. cerevisiae 7879, two Tor paralogs have not been retained; only a single Tor homolog was identified. Currently, the Zygomycota is the only group studied without an identified species containing two Tor homologs; however, there are not enough available genomes to make a definitive conclusion in this group. Other species with independent TOR duplications likely remain to be identified in all of the major fungal lineages, and as more genome sequences become available this will be addressed.During this study, we identified three additional species that possibly have two TOR paralogs: M. brevicollis, Thecamonas trahens, and Allomyces macrogynus, species that are included in the Origins of Multicellularity Project 86. While analysis is limited because of the state of the M. brevicollis (choanoflagellate) genome, it appears that an additional bonafide Tor protein is encoded with the conserved Tor protein architecture. Thecamonas trahens is a unicellular apusomonad that also contains two TOR paralogs. Interestingly, A. macrogynus is a fungus that may contain a second paralog; however, it appears that the FRB domain overlaps with the kinase domain. This may represent a case in which TOR was duplicated but is in the process of losing one of the copies. These cases are a springboard for future studies involving the duplication of TOR within and beyond the fungal kingdom.Loss of the Tor signaling pathway in microsporidiaWhile components of the Tor signaling cascade are conserved in eukaryotes from yeasts to humans, the microsporidia, a group of highly specialized obligate intracellular pathogens completely lack all of the pathway components investigated in this study. E. cuniculi has previously been noted to lack the Tor kinase 87, and we found that all pathway components including Tor were missing not only in E. cuniculi but also in its microsporidian relatives E. bieneusi and N. ceranae (Table 2). Microsporidian genomes are highly compacted and show a marked reduced gene content. The genome of the human pathogen E. cuniculi has 1997 genes distributed throughout 11 chromosomes in a 2.9 Mb genome 88, less than half the number of protein-coding genes found in Escherichia coli. For comparison, the genome of the human pathogen E. bieneusi genome is ~6 Mb with 3,804 genes 89 and the honeybee pathogen N. ceranae genome is ~7.9 Mb with 2,614 predicted genes 90. Genome reduction has been well studied in intracellular bacteria: during the specialization process from a free-living to intracellular lifestyle, massive gene loss can occur 9192939495. We hypothesize that as a consequence of their specialization to an obligate intracellular lifestyle, the need for nutrient sensing was relaxed and these obligate intracellular microsporidia acquired nutrients from within the host cytoplasm. Thus, they no longer required the Tor pathway, which is dedicated to sensing changes in the nutrient composite of the environmental milieu. However, E. cuniculi has retained some of the genes encoding signaling pathways involved in nutrient sensing in other species, including homologs of S. cerevisiae Ras1 and Ras2 (data not shown).Interestingly, P. carinii is an obligate pathogen with a reduced genome estimated to be ~8 Mb 96, which unlike microsporidia is not obligately intracellular. A�single Tor homolog was identified [Pneumocystis Genome Project:cap3_it1_grp346_contig490] using the S. cerevisiae Tor1 FRB domain in tBLASTx, supporting our hypothesis that the microsporidia have streamlined their genomes as they adopted an obligate intracellular life cycle. P. carinii likely requires Tor because it must survive in a metabolically active form outside of host cells, undergoing cell division in the extracellular milieu of the infected host lung.Many microsporidian genomes have undergone extreme genome reduction and are among the eukaryotes with the smallest genomes. In addition to fewer genes than other species (1997 in E. cuniculi compared to 6607 in S. cerevisiae), E. cuniculi has shorter genes, small intergenic distances, and very few introns 8897. This species (and to an even greater extent, E. bieneusi) lacks several genes that are necessary for biosynthetic pathways and the tricarboxylic acid cycle in free-living organisms 888998. Remarkably, E. cuniculi must acquire ATP from its host through a series of ATP transporters anciently acquired from Rickettsia- or Chlamydia-like bacteria 99, and this is an example of how E. cuniculi, and possibly other microsporidia, can hijack mechanisms of other intracellular bacteria, fungi, or the host to survive in and adapt to their highly specialized intracellular lifestyle.ConclusionsThe Tor pathway is highly conserved with some exceptions among fungi, including several pathogens. Similarly, the molecular structural organization of the Tor kinases has been remarkably conserved as well as the presumed ability to bind the FKBP12-rapamycin complex. This feature, combined with the essential nature of the rapamycin-sensitive TORC1 pathway for cell growth, should enable the development of rapamycin-based strategies for antifungal therapies. Duplications of the Tor protein occurred in most fungal groups examined, resulting from either independent segmental gene duplication events or a WGD event. The maintenance of two Tor homologs can be explained through the DDC model of gene duplication, in which the paralogs subfunctionalize and together support all of the functions of the pre-duplicated protein. In addition, species outside of the fungal kingdom with two or more TOR homologs include the metazoan B. mori, the apusomonad protozoan T. trahens, the trypanosome protozoans L. major and T. brucei, and possibly the choanoflagellate M. brevicollis. This suggests that the Tor gene has been independently duplicated multiple times since the last common ancestor of the Opisthokonta and Excavata lineages. The Tor pathway, as well as the Tor protein itself, is highly conserved in eukaryotes, so the observation that three microsporidian species are missing the entire pathway is striking. It would appear that the specialized obligate intracellular life cycle of microsporidia allows for the acquisition of nutrients from the host cell, obviating a requirement for this central nutrient-sensing pathway that is essential in all known cases of other eukaryotes for axenic growth.MethodsIdentification of pathway component homologsTor homologs were identified using the highly conserved 100 amino acid FRB domain of S. cerevisiae Tor1 in BLASTp reciprocal best-hit searches between the specific species database and the Saccharomyces Genome Database (SGD). All queries for other Tor pathway components were retrieved from SGD and homologs were identified by BLASTp reciprocal best-hit searches, with the exception of Tsc1 and Tsc2. Tsc1 and Tsc2 protein query sequences were retrieved from the S. pombe GeneDB, and homologs were identified using BLASTp searches between the S. pombe genome database and the species database. Species identification numbers are listed in Supplemental Table 1. Protein architecture of each homolog was elucidated with Simple Modular Architecture Research Tool (SMART) analysis 7071.Accession numbers are provided for putative Tor pathway components (see Additional file 3, supplemental Table 1 for the accession numbers of putative Tor pathway components) from the following public genomic databases that were used to carry out BLAST: S. cerevisiae, SGD, http://www.yeastgenome.org; S. pombe, GeneDB, http://www.genedb.org/genedb/pombe/index.jsp; P. ostreatus, JGI, http://genome.jgi-psf.org/PleosPC15_1/PleosPC15_1.home.html; M. circinelloides, JGI and the Mucor Genome Project, http://genome.jgi-psf.org/Mucci1/Mucci1.home.html; R. oryzae, Broad Institute, http://www.broadinstitute.org/annotation/genome/rhizopus_oryzae/MultiHome.html; P. blakesleeanus, JGI, http://genome.jgi-psf.org/Phybl1/Phybl1.home.html; B. dendrobatidis, Broad Institute, http://www.broadinstitute.org/annotation/genome/batrachochytrium_dendrobatidis/MultiHome.html; S. punctatus, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; M. brevicollis, JGI, http://genome.jgi-psf.org/Monbr1/Monbr1.home.html; S. rosetta, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; C. owczarzaki, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; E. cuniculi, E. bieneusi, and N. ceranae, NCBI, http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi?organism=fungi.Phylogenetic analysis of TorThe ProtTest program 100 was used to select an appropriate model to construct the phylogenetic relationship of the Tor proteins of the studied species. For this study, the best model for phylogenetic construction of the Tor protein using maximum likelihood (ML) was JTT+I+G+F 101. The ML tree was generated using PhyML with the JTT+I+G+F mode with 500 bootstrap replicates 102103. The Tor amino acid sequences from all species were aligned with CLUSTAL W 104.Synteny analysis of TOR paralogsTor homologs in fungal species were identified with BLAST 105 using TOR1 and TOR2 of S. cerevisiae as query sequences. The TOR sequence and flanking regions (up to 100 kb) were extracted from corresponding contigs or chromosomal sequences. To analyze the synteny of TOR and flanking regions, we constructed a database of one TOR and flanking region sequence and used the other TOR homolog and flanking region sequence to perform tBLASTx searches in the database (BLOSUM62 matrix; E-value = 1e-3; gap cost: existence 11, extension 1; and low complexity regions filter). The tBLASTx results were parsed and formatted using an in-house Perl script (available upon request). The parsed and formatted tBLASTx results were then imported into Artemis software 106 for synteny analysis. We employed a cutoff value of 100 bp to filter short non-significant matches between query and database sequences.Authors� contributionsCAS carried out the homolog searches and phylogenetic analysis and drafted the manuscript. RJB performed homolog searches and participated in the design of the study. WL performed the synteny and phylogenetic analysis and helped draft the manuscript. JH and MEC conceived of the study, participated in its design and helped to draft the manuscript. All authors read and approved the final manuscript.
BackgroundThe nutrient-sensing target of rapamycin (Tor) pathway is highly conserved among eukaryotes and governs several essential cellular processes including protein synthesis, ribosome biogenesis, autophagy, and cytoskeletal organization 123. In the fungal kingdom, the Tor pathway has been best studied in the budding yeast Saccharomyces cerevisiae 234, the fission yeast Schizosaccharomyces pombe 56, and the human pathogen Candida albicans 5678. However, little is known about Tor in basal fungal lineages, including the Zygomycota and Chytridiomycota.In S. cerevisiae and S. pombe, two Tor paralogs form distinct complexes known as Tor Complex 1 (TORC1) and Tor Complex 2 (TORC2) 9101112, while in most other species, including humans, a single Tor protein can populate both complexes 11121314. Interestingly, S. cerevisiae Tor2 can complement the loss of Tor1, but Tor1 cannot complement the loss of Tor2 1516. Two Tor paralogs have also been identified in a metazoan, the silkworm Bombyx mori 17 and three Tor paralogs were identified in the trypanosomatid parasites Leishmania major 18 and the related species Trypanosoma brucei 19, the first reported Tor triumvirates.The ScTORC1 is sensitive to rapamycin and controls protein synthesis, mRNA synthesis and degradation, ribosome biogenesis, and autophagy. TORC2 is insensitive to rapamycin and is involved in the control of actin polarization and cell wall integrity 916. TORC1 consists of Tor1 or Tor2, Kog1 20, Tco89, and Lst8 21, while TORC2 contains Tor2, Lst8, Avo1, Avo2, and Avo3 22 (Figure 1A). Recently, the EGO-GTPase complex and its orthologs were shown to convey amino acid signals for TORC1 activation in yeast, insects, and mammals 23242526. In S. cerevisiae, immediate effectors of TORC1 include the PP2A-like phosphatase Sit4 27 and the AGC kinase Sch9 28. In S. pombe, Tor participates in other cellular functions including nutrient signaling 29, cell growth and differentiation 30, mitotic commitment 31, and sexual development 11 (Figure 1B).The structure of the Tor proteins is remarkably conserved (Figure 2) and features several domains for protein-protein interactions including N-terminal HEAT (Huntingtin, Elongation factor 3, PP2A A subunit, Tor) repeats 32, a FAT (FRAP, ATM, and TRRAP) domain 3334, and an FRB (FK506-Rapamycin Binding) 35 domain. The kinase and the FATC (FAT domain at the C-terminus) 3236 domains are present in the C-terminal region.The Tor inhibitor rapamycin blocks cell proliferation and is currently used as an immunosuppressive drug for organ and tissue transplant recipients and a chemotherapy agent against a variety of solid cancers 37383940. Rapamycin binds to the prolyl isomerase FKBP12 to form a protein-drug complex that then interacts with the Tor FRB domain in a ternary complex 4142. S. cerevisiae cells treated with rapamycin display phenotypes associated with nutrient depletion including G1 cell cycle arrest, cellular volume expansion, protein synthesis inhibition, glycogen accumulation, and autophagy 3543.Genetic analysis in S. cerevisiae characterizing rapamycin-resistant mutants led to the identification of FKBP12 as the intracellular receptor for rapamycin and defined Tor1 and Tor2 as the targets of the FKBP12-rapamycin complex 4. Subsequent studies resulted in the identification and characterization of the TOR1 and TOR2 gene products 1544 as well as the elucidation of the Tor signaling cascade 8454647. These pioneering studies aided in the identification of the mammalian Tor ortholog and characterization of this highly conserved signaling cascade 84849. Remarkably, expression of the human FKBP12 ortholog in yeast fpr1 (the gene that encodes FKBP12) deletion mutants complements to restore rapamycin sensitivity, and hybrid Tor proteins consisting of the yeast N-terminal domain fused to the mammalian Tor kinase domain are also functional in yeast 50. Thus, the Tor pathway has been functionally and structurally conserved from yeasts to humans over the billion years of evolution separating the two species from their last common ancestor.We now know that the fungal and metazoan kingdoms are both within the opisthokont lineage of eukaryotes and are thus more closely related to each other than the vast majority of eukaryotic organisms 5152. Moreover, these two highly successful kingdoms shared a last common ancestor as recently as one billion years ago, much more recently than most eukaryotes. Recent initiatives, particularly the UNICORN project, have facilitated the sequencing of several opisthokonts related to the last common ancestor of the metazoans and fungi, providing an interesting window into the evolution of both fungi and animals 53545556. Thus, studies on the evolutionary trajectory of the fungal kingdom in general, and of the Tor signaling cascade in particular, promise to reveal insights about how orthologous pathways function in the more complex milieu of multicellular metazoan organisms.In this study, we have capitalized upon the wealth of available genomic information by annotating the Tor pathway in several fungal organisms in which this pathway has not been described. Our study included selected species in the major groups of the fungal kingdom with genome sequences available: the basidiomycete Pleurotus ostreatus; the Mucorales zygomycetes Mucor circinelloides, Rhizopus oryzae, and Phycomyces blakesleeanus; the chytridiomycetes Spizellomyces punctatus and Batrachochytrium dendrobatidis; the microsporidian species Encephalitozoon cuniculi, Enterocytozoon bieneusi, and Nosema ceranae; and the related non-fungal opisthokonts Capsaspora owczarzaki, Salpingoeca rosetta, and Monosiga brevicollis. Whereas the Tor pathway is conserved throughout the eukaryotes, strikingly, microsporidian species with their highly reduced and compacted genomes lack the entire Tor pathway. We have also investigated gene and genome duplication events that resulted in two Tor homologs in S. cerevisiae, S. pombe, P. ostreatus, and B. dendrobatidis, and the loss of a second Tor homolog following a whole genome duplication event in R. oryzae.Results and DiscussionConservation of the Tor signaling pathway molecular componentsThe Tor pathway is well conserved among nearly all eukaryotic species examined to date. Tor is essential for life and is the target of the potent drug rapamycin in fungi, humans, and other eukaryotic organisms 2121941. Tor originated early during the eukaryotic radiation, as it is present in the basal eukaryotes Giardia lamblia 57, L. major 18 and T. brucei 19, and also in plants 58. Here we focused on the Tor pathway in the fungal kingdom and other representative unicellular opisthokont species outside of the fungi. Several genes encoding Tor complex components, upstream regulators, and downstream effectors were identified in all major groups throughout the fungal kingdom (Figure 1, Table 1). Because we used BLASTp reciprocal best hits (RBH) to identify orthologs, in some cases the absence of an ortholog in our results may represent only a failure to detect it with this method. Further, functional homologs that are not sufficiently similar enough in sequence to be identified may be present. Overall, a high degree of pathway conservation is observed in the Tor signaling cascade throughout the fungal kingdom, with the exception of microsporidia in which all Tor pathway components are absent. In addition, several pathway components are conserved in the related unicellular opisthokonts M. brevicollis, S. rosetta, and C. owczarzaki (Table 2).In S. cerevisiae, Tor1 and Tor2 interact with several proteins to form TORC1 and TORC2. TORC1 contains Tor1 or Tor2, Kog1, Tco89, and Lst8. Kog1 functions as a substrate-recruiting subunit in mammalian TORC1 (mTORC1) 13596061. A gene encoding a putative Kog1 homolog was identified in all species included in this study, with the exception of the microsporidia and S. rosetta (Tables 1 and 2). Mutation of TCO89 results in hypersensitivity to rapamycin and affects cellular integrity in S. cerevisiae 21. Tco89 is only found in S. cerevisiae and could have resulted from a specialization of the pathway exclusive to Saccharomyces species (Table 1). However, while a BLASTp search did not identify Tco89 homologs in other species, S. pombe has been reported to contain a functional homolog [GenBank:NP_588232] 12, and this suggests that functional homologs may exist in other fungal species as well. However, no homologs were identified when using S.�pombe Tco89 as a query sequence. Lst8 binds to the Tor kinase domain in S. cerevisiae to stimulate catalytic activity 9 and a putative Lst8 homolog is conserved in most species analyzed except microsporidia and S.�rosetta (Tables 1 and 2).Additional BLASTp searches identified a single Tor homolog in the following species: Lachancea thermotolerans CBS6340 [GenBank:XP_002552336], Pichia pastoris GS115 [GenBank:XP_002491471], Pichia stipitis CBS6054 [GenBank:XP_001385651], Debaryomyces hansenii CBS767 [GenBank:XP_002770885], Yarrowia lipolytica CLIB122 [GenBank:XP_505106], Podospora anserina strain S mat+ [GenBank:XP_001903968], Chaetomium globosum CBS148.51 [GenBank:XP_001226647], Magnaporthe oryzae 70-15 [GenBank:XP_001414541], Gibberella zeae PH-1 [GenBank:XP_388309], Aspergillus fumigatus Af293 [GenBank:XP_755360], Aspergillus flavus NRRL3357 [GenBank:XP_002377897], Neosartorya fischeri NRRL181 [GenBank:XP_001260509], Aspergillus terreus NIH2624 [GenBank:XP_001213640], Aspergillus nidulans FGSCA4 [GenBank:XP_663586], Aspergillus clavatus NRRL1 [GenBank:XP_001275326], Aspergillus oryzae RIB40 [GenBank: XP_001826216], and Aspergillus niger CBS513.88 [GenBank:XP_001397781]. These ascomycetes were not included in further studies.In yeast and mammals, TORC2 controls spatial aspects of growth. TORC2 includes Tor2, Avo1, Avo2, Avo3, and Bit61 922. Avo1 plays an essential role in actin cytoskeleton polarization 22 and is conserved throughout the organisms that were the focus of this study (Table 1) except in S. rosetta and C. owczarzaki (Table 2). However, due to high divergence of the AVO1 sequence amongst the known homologs, it is possible that the S. rosetta and C. owczarzaki homologs cannot be identified using the BLASTp algorithm. Avo2 is a nonessential substrate adaptor for TORC2 22 and potential homologs were identified in most species studied, with the exceptions of S. pombe, P. ostreatus, the three microsporidian species (Table 1), and M. brevicollis (Table 2). In S. cerevisiae, Avo3 (also know as Tsc11) controls cytoskeletal dynamics 922, and homologs are conserved throughout the species examined (Tables 1 and 2). Bit61, a nonessential protein that associates with TORC2 21, was only identified in S. cerevisiae (Tables 1 and 2).Upstream regulators of Tor include Tsc1 and Tsc2 (Tuberous Sclerosis 1 and 2) and the GTPase Rheb (Ras homolog enhanced in brain). In S. pombe and other eukaryotes, Tsc1 and Tsc2 form a GTPase-activating complex that negatively regulates the action of Rheb to activate TORC1 266263. Tsc1 and Tsc2 putative homologs were identified in most species in the study, with the exception of S. cerevisiae (Table 1); however, Tsc1 homologs were not identified in B. dendrobatidis, S. rosetta, or C. owczarzaki (Tables 1 and 2). In mammals and insects, four Rag GTPases (RagA-D) bind raptor (Kog1) to mediate TORC1 signaling in response to amino acids 2426. RagA and RagB are orthologs of S.�cerevisiae Gtr1 whereas RagC and RagD are orthologs of S. cerevisiae Gtr2 23. Gtr1 and Gtr2 form a complex along with Ego1 and Ego3 known as EGOC/GSE 25, which is regulated by the GTP exchange factor Vam6 23. Interestingly we found presumptive Gtr1 and Gtr2 orthologs in species in this study with the exception of microsporidia (Table 1), and Gtr1 was not identified in M. brevicollis (Table 2). However, Ego1 and Ego3, which anchor Gtr1 and Gtr2 to endosomal and vacuolar membranes, are unique to S. cerevisiae and were not identified in the other species (Table 1). This suggests that the specific EGO complex architecture might be restricted to Saccharomyces, though it is possible that functional homologs may be present in other species.In fungi, several downstream effectors are targets of Tor signaling. The PP2A phosphatase Sit4 and its regulatory subunit Tap42 regulate the expression of several TORC1-controlled genes and Gcn2-regulated translation 36465. A Sit4 homolog was identified in R. oryzae (Table 1), though a homolog of the regulatory subunit Tap42 was not (Table 1). In S. rosetta, a Sit4 homolog was not identified, though Tap42 was (Table 2). Both of these situations could indicate rewiring of the pathway, or alternatively these findings could be a result of insufficient similarity to detect with a RBH search method. Sch9, a member of the AGC kinase family and the functional homolog of the p70 S6 kinase, is a direct substrate of S. cerevisiae TORC1 involved in ribosome biogenesis 2866. Sch9 was not identified in RBH BLASTp searches with S. cerevisiae Sch9 in M. circinelloides, P. blakesleeanus, the microsporidia (Table 1), or S. rosetta (Table 2), but was identified in all other species. Putative homologs of Ypk2 kinase, a regulator of ceramide synthesis controlled by TORC2 signaling 67, were only identified in S. cerevisiae, S. pombe, (Table 1), M. brevicollis, S. rosetta, and C. owczarzaki (Table 2). Notably, the failure to detect many homologs in M. brevicollis, S. rosetta, and C. owczarzaki could be due to their evolutionary distance from the other organisms in the study and their gene divergence.Evolutionary conservation of Tor kinase protein structureThe Tor kinases are phosphatidylinositol kinase-related kinases (PIKKs) 68 and aside from their known protein kinase function also serve as evolutionary constrained scaffolds with several protein-protein interaction domains that mediate multi-protein complex formation 69. Tor protein architecture was annotated using SMART 7071 and we found that it has been maintained throughout the species of this study (Figure 2). N-terminal HEAT repeats are present in varying numbers and serve as scaffolding structures for protein-protein interactions 327273. Similarly, the FAT/toxic domain and the accompanying C-terminal FATC domain also participate in protein scaffolding and are present and conserved in all species subject to analysis. Over-expression of the FAT domain has a dominant negative effect on cell growth in yeast and this effect can be suppressed by over-expression of phospholipase C 33. The kinase domain has similarities to both lipid and protein kinases, but it is a bona fide protein kinase. The FRB (FKBP12-rapamycin binding) domain is a highly conserved 100 amino acid region of Tor with several residues that are known to be required for binding the FKBP12-rapamycin drug complex 42.In addition, the FRB domain contains several residues necessary for both phosphatidic acid binding and rapamycin interaction 7475. In mammals, phosphatidic acid binding to the FRB region may promote the assembly of mTOR complexes. It has been proposed that the potent effect of the Tor inhibitor rapamycin may be due to direct competition for overlapping phosphatidic acid binding sites within the FRB domain 76. Mutation of the conserved amino acid residues S1975, W2041, or F2048 in the FRB domain confers rapamycin resistance in S. cerevisiae 44277. Strikingly, the corresponding amino acid residues are conserved in all species examined (Figure 3). In mTOR, phosphatidic acid binding is disrupted by mutations of L2031, F2309, and Y2105 75, corresponding to S. cerevisiae Tor2 L1971, F1979, and Y2045, respectively, all of which are conserved in the studied fungal species (Figure 3).Duplication of Tor in the fungal kingdomApproximately 100 million years ago, the S. cerevisiae ancestor underwent a whole genome duplication (WGD) event, and species that descend from this evolutionary event retained duplicated subsets of genes. S. cerevisiae retained approximately 8% of duplicated genes 7879, while other fungi in this lineage have maintained varying numbers of gene duplicates, such as Candida glabrata in which a smaller number (~2%) of these pairs are maintained 80. Interestingly, several of these species, including S. cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, S. bayanus, S. castellii, and C. glabrata have retained two TOR paralogs, whereas species outside of the WGD clade, including Kluyveromyces lactis and Ashbya gossypii, have only a single TOR gene.The fates of duplicated gene paralogs can be explained through the duplication, degeneration, and complementation (DDC) model of gene duplication 81. In species with a single Tor, this protein populates both TORC1 and TORC2, each of which has distinct functions. Following duplication, each paralog likely sub-functionalized to carry out some, but not all, of its previous functions so that between the two paralogs, each process is performed. In S. cerevisiae, for example, Tor1 exclusively functions within TORC1, while Tor2 preferentially populates TORC2 but can also function in TORC1. S. pombe has two Tor paralogs as a result of an independent segmental gene duplication event, and each paralog has distinct roles not necessarily equivalent to those of S. cerevisiae Tor1 and Tor2. SpTor1 is not essential, whereas SpTor2 is essential for growth 112982.We hypothesize that similar models could apply in species encoding two Tor homologs resulting from independent gene duplication events such as P. ostreatus and B. dendrobatidis. Based on their level of identity with S.�cerevisiae Tor homologs, the B. dendrobatidis genes BDEG_08293 and BDEG_05727 have been designated TOR1 and TOR2, respectively. However, these gene names are not necessarily based on functional similarity with ScTor1 and ScTor2 but rather indicate only that there are two TOR homologs in B. dendrobatidis. A�similar naming challenge is evident in S. pombe, where the functions of SpTor1 and SpTor2 are not equivalent with those of ScTor1 and ScTor2.While several species, such as those in the Saccharomyces clade, have two Tor paralogs resulting from ancient WGD events, other species have acquired a second paralog through independent segmental gene duplication events, including B. dendrobatidis and several fission yeast species closely related to S. pombe (Figure 4). Segmental gene duplications have played a major role in the evolution of species and can result in the duplication of single genes or large blocks of genes 83. In S. cerevisiae, the duplication blocks with TOR include three paralogous gene pairs that have been retained from the ancestral WGD event: PTK1/PTK2, TOR1/TOR2, and MNN4/YJR061W 78 (Figure 5A). Further, C. glabrata, an ascomycete closely related to S. cerevisiae that diverged following the WGD, has also maintained a second TOR paralog and synteny is apparent in the region flanking the TOR1 and TOR2 genes, though one must extend the analysis to >40 kb from the TOR genes to detect it (See additional file 1: Supplemental figure 1). However, because C. glabrata and S. cerevisiae have retained different subsets of genes from the ancestral WGD, the duplicated genes surrounding TOR in these species are not homologs of one another. Further, C. glabrata has maintained fewer of the synteny blocks found in S. cerevisiae, and the block containing the TOR genes (Block 42) is not conserved in C. glabrata 80.In contrast, genomic regions surrounding the Tor paralogs in S. pombe (Figure 5B) and B. dendrobatidis (Figure 5C) are not syntenically conserved. That is, the duplicated genes are not flanked by other duplicated gene pairs, and the two TOR paralogs likely resulted from independent segmental gene duplication events. Further, there are no indications of WGDs in these species. In the Schizosaccharomycotina, the TOR gene duplication occurred prior to speciation as evidenced by the fact that S. pombe, S. octosporus, S. japonicus, and S. cryophilus have each retained a second Tor paralog; the Tor orthologs across these four species are more closely related to each other than to those from other species (Figure 4). No syntenic conservation between the genomic regions containing TOR paralogs was detected in any species of the Schizosaccharomyces group, supporting the occurrence of an independent segmental gene duplication in their common ancestor (see additional file 2: supplemental Figure 2).The Taphrinomycotina is a monophyletic taxon of the Ascomycota containing the Schizosaccharomycetes, Taphrinomycetes, Neolectomycetes, and Pneumocystidomycetes. Genomes are only available for species within the Schizosaccharomycetes (S. pombe, S. octosporus, S. japonicus, and S. cryophilus) and the Taphrinomycetes (Pneumocystis carinii). While the studied Schizosaccharomyces spp. contain two Tor homologs, a single homolog was identified in P. carinii with tBLASTx using the highly conserved S. cerevisiae FRB domain of Tor1 based on sequence data produced by the Pneumocystis Genome Project (funded by the NIH NIAID) that was obtained from http://pgp.cchmc.org at the time of publication. Based on the phylogenetic placement of these two groups 84 and the available genomic information, we hypothesize that the segmental TOR duplication is unique to the Schizosaccharomyces spp. and occurred following their divergence from the common ancestor of the Taphrinomycota, as P. carinii, the other species within this taxon with available genome data, appears to contain a single Tor homolog.Interestingly, the zygomycete R. oryzae underwent a whole genome duplication event and despite retaining 12% of the resulting duplicated genes 85 compared to 8% retained genes in a separate WGD event in S. cerevisiae 7879, two Tor paralogs have not been retained; only a single Tor homolog was identified. Currently, the Zygomycota is the only group studied without an identified species containing two Tor homologs; however, there are not enough available genomes to make a definitive conclusion in this group. Other species with independent TOR duplications likely remain to be identified in all of the major fungal lineages, and as more genome sequences become available this will be addressed.During this study, we identified three additional species that possibly have two TOR paralogs: M. brevicollis, Thecamonas trahens, and Allomyces macrogynus, species that are included in the Origins of Multicellularity Project 86. While analysis is limited because of the state of the M. brevicollis (choanoflagellate) genome, it appears that an additional bonafide Tor protein is encoded with the conserved Tor protein architecture. Thecamonas trahens is a unicellular apusomonad that also contains two TOR paralogs. Interestingly, A. macrogynus is a fungus that may contain a second paralog; however, it appears that the FRB domain overlaps with the kinase domain. This may represent a case in which TOR was duplicated but is in the process of losing one of the copies. These cases are a springboard for future studies involving the duplication of TOR within and beyond the fungal kingdom.Loss of the Tor signaling pathway in microsporidiaWhile components of the Tor signaling cascade are conserved in eukaryotes from yeasts to humans, the microsporidia, a group of highly specialized obligate intracellular pathogens completely lack all of the pathway components investigated in this study. E. cuniculi has previously been noted to lack the Tor kinase 87, and we found that all pathway components including Tor were missing not only in E. cuniculi but also in its microsporidian relatives E. bieneusi and N. ceranae (Table 2). Microsporidian genomes are highly compacted and show a marked reduced gene content. The genome of the human pathogen E. cuniculi has 1997 genes distributed throughout 11 chromosomes in a 2.9 Mb genome 88, less than half the number of protein-coding genes found in Escherichia coli. For comparison, the genome of the human pathogen E. bieneusi genome is ~6 Mb with 3,804 genes 89 and the honeybee pathogen N. ceranae genome is ~7.9 Mb with 2,614 predicted genes 90. Genome reduction has been well studied in intracellular bacteria: during the specialization process from a free-living to intracellular lifestyle, massive gene loss can occur 9192939495. We hypothesize that as a consequence of their specialization to an obligate intracellular lifestyle, the need for nutrient sensing was relaxed and these obligate intracellular microsporidia acquired nutrients from within the host cytoplasm. Thus, they no longer required the Tor pathway, which is dedicated to sensing changes in the nutrient composite of the environmental milieu. However, E. cuniculi has retained some of the genes encoding signaling pathways involved in nutrient sensing in other species, including homologs of S. cerevisiae Ras1 and Ras2 (data not shown).Interestingly, P. carinii is an obligate pathogen with a reduced genome estimated to be ~8 Mb 96, which unlike microsporidia is not obligately intracellular. A�single Tor homolog was identified [Pneumocystis Genome Project:cap3_it1_grp346_contig490] using the S. cerevisiae Tor1 FRB domain in tBLASTx, supporting our hypothesis that the microsporidia have streamlined their genomes as they adopted an obligate intracellular life cycle. P. carinii likely requires Tor because it must survive in a metabolically active form outside of host cells, undergoing cell division in the extracellular milieu of the infected host lung.Many microsporidian genomes have undergone extreme genome reduction and are among the eukaryotes with the smallest genomes. In addition to fewer genes than other species (1997 in E. cuniculi compared to 6607 in S. cerevisiae), E. cuniculi has shorter genes, small intergenic distances, and very few introns 8897. This species (and to an even greater extent, E. bieneusi) lacks several genes that are necessary for biosynthetic pathways and the tricarboxylic acid cycle in free-living organisms 888998. Remarkably, E. cuniculi must acquire ATP from its host through a series of ATP transporters anciently acquired from Rickettsia- or Chlamydia-like bacteria 99, and this is an example of how E. cuniculi, and possibly other microsporidia, can hijack mechanisms of other intracellular bacteria, fungi, or the host to survive in and adapt to their highly specialized intracellular lifestyle.ConclusionsThe Tor pathway is highly conserved with some exceptions among fungi, including several pathogens. Similarly, the molecular structural organization of the Tor kinases has been remarkably conserved as well as the presumed ability to bind the FKBP12-rapamycin complex. This feature, combined with the essential nature of the rapamycin-sensitive TORC1 pathway for cell growth, should enable the development of rapamycin-based strategies for antifungal therapies. Duplications of the Tor protein occurred in most fungal groups examined, resulting from either independent segmental gene duplication events or a WGD event. The maintenance of two Tor homologs can be explained through the DDC model of gene duplication, in which the paralogs subfunctionalize and together support all of the functions of the pre-duplicated protein. In addition, species outside of the fungal kingdom with two or more TOR homologs include the metazoan B. mori, the apusomonad protozoan T. trahens, the trypanosome protozoans L. major and T. brucei, and possibly the choanoflagellate M. brevicollis. This suggests that the Tor gene has been independently duplicated multiple times since the last common ancestor of the Opisthokonta and Excavata lineages. The Tor pathway, as well as the Tor protein itself, is highly conserved in eukaryotes, so the observation that three microsporidian species are missing the entire pathway is striking. It would appear that the specialized obligate intracellular life cycle of microsporidia allows for the acquisition of nutrients from the host cell, obviating a requirement for this central nutrient-sensing pathway that is essential in all known cases of other eukaryotes for axenic growth.MethodsIdentification of pathway component homologsTor homologs were identified using the highly conserved 100 amino acid FRB domain of S. cerevisiae Tor1 in BLASTp reciprocal best-hit searches between the specific species database and the Saccharomyces Genome Database (SGD). All queries for other Tor pathway components were retrieved from SGD and homologs were identified by BLASTp reciprocal best-hit searches, with the exception of Tsc1 and Tsc2. Tsc1 and Tsc2 protein query sequences were retrieved from the S. pombe GeneDB, and homologs were identified using BLASTp searches between the S. pombe genome database and the species database. Species identification numbers are listed in Supplemental Table 1. Protein architecture of each homolog was elucidated with Simple Modular Architecture Research Tool (SMART) analysis 7071.Accession numbers are provided for putative Tor pathway components (see Additional file 3, supplemental Table 1 for the accession numbers of putative Tor pathway components) from the following public genomic databases that were used to carry out BLAST: S. cerevisiae, SGD, http://www.yeastgenome.org; S. pombe, GeneDB, http://www.genedb.org/genedb/pombe/index.jsp; P. ostreatus, JGI, http://genome.jgi-psf.org/PleosPC15_1/PleosPC15_1.home.html; M. circinelloides, JGI and the Mucor Genome Project, http://genome.jgi-psf.org/Mucci1/Mucci1.home.html; R. oryzae, Broad Institute, http://www.broadinstitute.org/annotation/genome/rhizopus_oryzae/MultiHome.html; P. blakesleeanus, JGI, http://genome.jgi-psf.org/Phybl1/Phybl1.home.html; B. dendrobatidis, Broad Institute, http://www.broadinstitute.org/annotation/genome/batrachochytrium_dendrobatidis/MultiHome.html; S. punctatus, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; M. brevicollis, JGI, http://genome.jgi-psf.org/Monbr1/Monbr1.home.html; S. rosetta, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; C. owczarzaki, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; E. cuniculi, E. bieneusi, and N. ceranae, NCBI, http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi?organism=fungi.Phylogenetic analysis of TorThe ProtTest program 100 was used to select an appropriate model to construct the phylogenetic relationship of the Tor proteins of the studied species. For this study, the best model for phylogenetic construction of the Tor protein using maximum likelihood (ML) was JTT+I+G+F 101. The ML tree was generated using PhyML with the JTT+I+G+F mode with 500 bootstrap replicates 102103. The Tor amino acid sequences from all species were aligned with CLUSTAL W 104.Synteny analysis of TOR paralogsTor homologs in fungal species were identified with BLAST 105 using TOR1 and TOR2 of S. cerevisiae as query sequences. The TOR sequence and flanking regions (up to 100 kb) were extracted from corresponding contigs or chromosomal sequences. To analyze the synteny of TOR and flanking regions, we constructed a database of one TOR and flanking region sequence and used the other TOR homolog and flanking region sequence to perform tBLASTx searches in the database (BLOSUM62 matrix; E-value = 1e-3; gap cost: existence 11, extension 1; and low complexity regions filter). The tBLASTx results were parsed and formatted using an in-house Perl script (available upon request). The parsed and formatted tBLASTx results were then imported into Artemis software 106 for synteny analysis. We employed a cutoff value of 100 bp to filter short non-significant matches between query and database sequences.Authors� contributionsCAS carried out the homolog searches and phylogenetic analysis and drafted the manuscript. RJB performed homolog searches and participated in the design of the study. WL performed the synteny and phylogenetic analysis and helped draft the manuscript. JH and MEC conceived of the study, participated in its design and helped to draft the manuscript. All authors read and approved the final manuscript.
BackgroundThe nutrient-sensing target of rapamycin (Tor) pathway is highly conserved among eukaryotes and governs several essential cellular processes including protein synthesis, ribosome biogenesis, autophagy, and cytoskeletal organization 123. In the fungal kingdom, the Tor pathway has been best studied in the budding yeast Saccharomyces cerevisiae 234, the fission yeast Schizosaccharomyces pombe 56, and the human pathogen Candida albicans 5678. However, little is known about Tor in basal fungal lineages, including the Zygomycota and Chytridiomycota.In S. cerevisiae and S. pombe, two Tor paralogs form distinct complexes known as Tor Complex 1 (TORC1) and Tor Complex 2 (TORC2) 9101112, while in most other species, including humans, a single Tor protein can populate both complexes 11121314. Interestingly, S. cerevisiae Tor2 can complement the loss of Tor1, but Tor1 cannot complement the loss of Tor2 1516. Two Tor paralogs have also been identified in a metazoan, the silkworm Bombyx mori 17 and three Tor paralogs were identified in the trypanosomatid parasites Leishmania major 18 and the related species Trypanosoma brucei 19, the first reported Tor triumvirates.The ScTORC1 is sensitive to rapamycin and controls protein synthesis, mRNA synthesis and degradation, ribosome biogenesis, and autophagy. TORC2 is insensitive to rapamycin and is involved in the control of actin polarization and cell wall integrity 916. TORC1 consists of Tor1 or Tor2, Kog1 20, Tco89, and Lst8 21, while TORC2 contains Tor2, Lst8, Avo1, Avo2, and Avo3 22 (Figure 1A). Recently, the EGO-GTPase complex and its orthologs were shown to convey amino acid signals for TORC1 activation in yeast, insects, and mammals 23242526. In S. cerevisiae, immediate effectors of TORC1 include the PP2A-like phosphatase Sit4 27 and the AGC kinase Sch9 28. In S. pombe, Tor participates in other cellular functions including nutrient signaling 29, cell growth and differentiation 30, mitotic commitment 31, and sexual development 11 (Figure 1B).The structure of the Tor proteins is remarkably conserved (Figure 2) and features several domains for protein-protein interactions including N-terminal HEAT (Huntingtin, Elongation factor 3, PP2A A subunit, Tor) repeats 32, a FAT (FRAP, ATM, and TRRAP) domain 3334, and an FRB (FK506-Rapamycin Binding) 35 domain. The kinase and the FATC (FAT domain at the C-terminus) 3236 domains are present in the C-terminal region.The Tor inhibitor rapamycin blocks cell proliferation and is currently used as an immunosuppressive drug for organ and tissue transplant recipients and a chemotherapy agent against a variety of solid cancers 37383940. Rapamycin binds to the prolyl isomerase FKBP12 to form a protein-drug complex that then interacts with the Tor FRB domain in a ternary complex 4142. S. cerevisiae cells treated with rapamycin display phenotypes associated with nutrient depletion including G1 cell cycle arrest, cellular volume expansion, protein synthesis inhibition, glycogen accumulation, and autophagy 3543.Genetic analysis in S. cerevisiae characterizing rapamycin-resistant mutants led to the identification of FKBP12 as the intracellular receptor for rapamycin and defined Tor1 and Tor2 as the targets of the FKBP12-rapamycin complex 4. Subsequent studies resulted in the identification and characterization of the TOR1 and TOR2 gene products 1544 as well as the elucidation of the Tor signaling cascade 8454647. These pioneering studies aided in the identification of the mammalian Tor ortholog and characterization of this highly conserved signaling cascade 84849. Remarkably, expression of the human FKBP12 ortholog in yeast fpr1 (the gene that encodes FKBP12) deletion mutants complements to restore rapamycin sensitivity, and hybrid Tor proteins consisting of the yeast N-terminal domain fused to the mammalian Tor kinase domain are also functional in yeast 50. Thus, the Tor pathway has been functionally and structurally conserved from yeasts to humans over the billion years of evolution separating the two species from their last common ancestor.We now know that the fungal and metazoan kingdoms are both within the opisthokont lineage of eukaryotes and are thus more closely related to each other than the vast majority of eukaryotic organisms 5152. Moreover, these two highly successful kingdoms shared a last common ancestor as recently as one billion years ago, much more recently than most eukaryotes. Recent initiatives, particularly the UNICORN project, have facilitated the sequencing of several opisthokonts related to the last common ancestor of the metazoans and fungi, providing an interesting window into the evolution of both fungi and animals 53545556. Thus, studies on the evolutionary trajectory of the fungal kingdom in general, and of the Tor signaling cascade in particular, promise to reveal insights about how orthologous pathways function in the more complex milieu of multicellular metazoan organisms.In this study, we have capitalized upon the wealth of available genomic information by annotating the Tor pathway in several fungal organisms in which this pathway has not been described. Our study included selected species in the major groups of the fungal kingdom with genome sequences available: the basidiomycete Pleurotus ostreatus; the Mucorales zygomycetes Mucor circinelloides, Rhizopus oryzae, and Phycomyces blakesleeanus; the chytridiomycetes Spizellomyces punctatus and Batrachochytrium dendrobatidis; the microsporidian species Encephalitozoon cuniculi, Enterocytozoon bieneusi, and Nosema ceranae; and the related non-fungal opisthokonts Capsaspora owczarzaki, Salpingoeca rosetta, and Monosiga brevicollis. Whereas the Tor pathway is conserved throughout the eukaryotes, strikingly, microsporidian species with their highly reduced and compacted genomes lack the entire Tor pathway. We have also investigated gene and genome duplication events that resulted in two Tor homologs in S. cerevisiae, S. pombe, P. ostreatus, and B. dendrobatidis, and the loss of a second Tor homolog following a whole genome duplication event in R. oryzae.Results and DiscussionConservation of the Tor signaling pathway molecular componentsThe Tor pathway is well conserved among nearly all eukaryotic species examined to date. Tor is essential for life and is the target of the potent drug rapamycin in fungi, humans, and other eukaryotic organisms 2121941. Tor originated early during the eukaryotic radiation, as it is present in the basal eukaryotes Giardia lamblia 57, L. major 18 and T. brucei 19, and also in plants 58. Here we focused on the Tor pathway in the fungal kingdom and other representative unicellular opisthokont species outside of the fungi. Several genes encoding Tor complex components, upstream regulators, and downstream effectors were identified in all major groups throughout the fungal kingdom (Figure 1, Table 1). Because we used BLASTp reciprocal best hits (RBH) to identify orthologs, in some cases the absence of an ortholog in our results may represent only a failure to detect it with this method. Further, functional homologs that are not sufficiently similar enough in sequence to be identified may be present. Overall, a high degree of pathway conservation is observed in the Tor signaling cascade throughout the fungal kingdom, with the exception of microsporidia in which all Tor pathway components are absent. In addition, several pathway components are conserved in the related unicellular opisthokonts M. brevicollis, S. rosetta, and C. owczarzaki (Table 2).In S. cerevisiae, Tor1 and Tor2 interact with several proteins to form TORC1 and TORC2. TORC1 contains Tor1 or Tor2, Kog1, Tco89, and Lst8. Kog1 functions as a substrate-recruiting subunit in mammalian TORC1 (mTORC1) 13596061. A gene encoding a putative Kog1 homolog was identified in all species included in this study, with the exception of the microsporidia and S. rosetta (Tables 1 and 2). Mutation of TCO89 results in hypersensitivity to rapamycin and affects cellular integrity in S. cerevisiae 21. Tco89 is only found in S. cerevisiae and could have resulted from a specialization of the pathway exclusive to Saccharomyces species (Table 1). However, while a BLASTp search did not identify Tco89 homologs in other species, S. pombe has been reported to contain a functional homolog [GenBank:NP_588232] 12, and this suggests that functional homologs may exist in other fungal species as well. However, no homologs were identified when using S.�pombe Tco89 as a query sequence. Lst8 binds to the Tor kinase domain in S. cerevisiae to stimulate catalytic activity 9 and a putative Lst8 homolog is conserved in most species analyzed except microsporidia and S.�rosetta (Tables 1 and 2).Additional BLASTp searches identified a single Tor homolog in the following species: Lachancea thermotolerans CBS6340 [GenBank:XP_002552336], Pichia pastoris GS115 [GenBank:XP_002491471], Pichia stipitis CBS6054 [GenBank:XP_001385651], Debaryomyces hansenii CBS767 [GenBank:XP_002770885], Yarrowia lipolytica CLIB122 [GenBank:XP_505106], Podospora anserina strain S mat+ [GenBank:XP_001903968], Chaetomium globosum CBS148.51 [GenBank:XP_001226647], Magnaporthe oryzae 70-15 [GenBank:XP_001414541], Gibberella zeae PH-1 [GenBank:XP_388309], Aspergillus fumigatus Af293 [GenBank:XP_755360], Aspergillus flavus NRRL3357 [GenBank:XP_002377897], Neosartorya fischeri NRRL181 [GenBank:XP_001260509], Aspergillus terreus NIH2624 [GenBank:XP_001213640], Aspergillus nidulans FGSCA4 [GenBank:XP_663586], Aspergillus clavatus NRRL1 [GenBank:XP_001275326], Aspergillus oryzae RIB40 [GenBank: XP_001826216], and Aspergillus niger CBS513.88 [GenBank:XP_001397781]. These ascomycetes were not included in further studies.In yeast and mammals, TORC2 controls spatial aspects of growth. TORC2 includes Tor2, Avo1, Avo2, Avo3, and Bit61 922. Avo1 plays an essential role in actin cytoskeleton polarization 22 and is conserved throughout the organisms that were the focus of this study (Table 1) except in S. rosetta and C. owczarzaki (Table 2). However, due to high divergence of the AVO1 sequence amongst the known homologs, it is possible that the S. rosetta and C. owczarzaki homologs cannot be identified using the BLASTp algorithm. Avo2 is a nonessential substrate adaptor for TORC2 22 and potential homologs were identified in most species studied, with the exceptions of S. pombe, P. ostreatus, the three microsporidian species (Table 1), and M. brevicollis (Table 2). In S. cerevisiae, Avo3 (also know as Tsc11) controls cytoskeletal dynamics 922, and homologs are conserved throughout the species examined (Tables 1 and 2). Bit61, a nonessential protein that associates with TORC2 21, was only identified in S. cerevisiae (Tables 1 and 2).Upstream regulators of Tor include Tsc1 and Tsc2 (Tuberous Sclerosis 1 and 2) and the GTPase Rheb (Ras homolog enhanced in brain). In S. pombe and other eukaryotes, Tsc1 and Tsc2 form a GTPase-activating complex that negatively regulates the action of Rheb to activate TORC1 266263. Tsc1 and Tsc2 putative homologs were identified in most species in the study, with the exception of S. cerevisiae (Table 1); however, Tsc1 homologs were not identified in B. dendrobatidis, S. rosetta, or C. owczarzaki (Tables 1 and 2). In mammals and insects, four Rag GTPases (RagA-D) bind raptor (Kog1) to mediate TORC1 signaling in response to amino acids 2426. RagA and RagB are orthologs of S.�cerevisiae Gtr1 whereas RagC and RagD are orthologs of S. cerevisiae Gtr2 23. Gtr1 and Gtr2 form a complex along with Ego1 and Ego3 known as EGOC/GSE 25, which is regulated by the GTP exchange factor Vam6 23. Interestingly we found presumptive Gtr1 and Gtr2 orthologs in species in this study with the exception of microsporidia (Table 1), and Gtr1 was not identified in M. brevicollis (Table 2). However, Ego1 and Ego3, which anchor Gtr1 and Gtr2 to endosomal and vacuolar membranes, are unique to S. cerevisiae and were not identified in the other species (Table 1). This suggests that the specific EGO complex architecture might be restricted to Saccharomyces, though it is possible that functional homologs may be present in other species.In fungi, several downstream effectors are targets of Tor signaling. The PP2A phosphatase Sit4 and its regulatory subunit Tap42 regulate the expression of several TORC1-controlled genes and Gcn2-regulated translation 36465. A Sit4 homolog was identified in R. oryzae (Table 1), though a homolog of the regulatory subunit Tap42 was not (Table 1). In S. rosetta, a Sit4 homolog was not identified, though Tap42 was (Table 2). Both of these situations could indicate rewiring of the pathway, or alternatively these findings could be a result of insufficient similarity to detect with a RBH search method. Sch9, a member of the AGC kinase family and the functional homolog of the p70 S6 kinase, is a direct substrate of S. cerevisiae TORC1 involved in ribosome biogenesis 2866. Sch9 was not identified in RBH BLASTp searches with S. cerevisiae Sch9 in M. circinelloides, P. blakesleeanus, the microsporidia (Table 1), or S. rosetta (Table 2), but was identified in all other species. Putative homologs of Ypk2 kinase, a regulator of ceramide synthesis controlled by TORC2 signaling 67, were only identified in S. cerevisiae, S. pombe, (Table 1), M. brevicollis, S. rosetta, and C. owczarzaki (Table 2). Notably, the failure to detect many homologs in M. brevicollis, S. rosetta, and C. owczarzaki could be due to their evolutionary distance from the other organisms in the study and their gene divergence.Evolutionary conservation of Tor kinase protein structureThe Tor kinases are phosphatidylinositol kinase-related kinases (PIKKs) 68 and aside from their known protein kinase function also serve as evolutionary constrained scaffolds with several protein-protein interaction domains that mediate multi-protein complex formation 69. Tor protein architecture was annotated using SMART 7071 and we found that it has been maintained throughout the species of this study (Figure 2). N-terminal HEAT repeats are present in varying numbers and serve as scaffolding structures for protein-protein interactions 327273. Similarly, the FAT/toxic domain and the accompanying C-terminal FATC domain also participate in protein scaffolding and are present and conserved in all species subject to analysis. Over-expression of the FAT domain has a dominant negative effect on cell growth in yeast and this effect can be suppressed by over-expression of phospholipase C 33. The kinase domain has similarities to both lipid and protein kinases, but it is a bona fide protein kinase. The FRB (FKBP12-rapamycin binding) domain is a highly conserved 100 amino acid region of Tor with several residues that are known to be required for binding the FKBP12-rapamycin drug complex 42.In addition, the FRB domain contains several residues necessary for both phosphatidic acid binding and rapamycin interaction 7475. In mammals, phosphatidic acid binding to the FRB region may promote the assembly of mTOR complexes. It has been proposed that the potent effect of the Tor inhibitor rapamycin may be due to direct competition for overlapping phosphatidic acid binding sites within the FRB domain 76. Mutation of the conserved amino acid residues S1975, W2041, or F2048 in the FRB domain confers rapamycin resistance in S. cerevisiae 44277. Strikingly, the corresponding amino acid residues are conserved in all species examined (Figure 3). In mTOR, phosphatidic acid binding is disrupted by mutations of L2031, F2309, and Y2105 75, corresponding to S. cerevisiae Tor2 L1971, F1979, and Y2045, respectively, all of which are conserved in the studied fungal species (Figure 3).Duplication of Tor in the fungal kingdomApproximately 100 million years ago, the S. cerevisiae ancestor underwent a whole genome duplication (WGD) event, and species that descend from this evolutionary event retained duplicated subsets of genes. S. cerevisiae retained approximately 8% of duplicated genes 7879, while other fungi in this lineage have maintained varying numbers of gene duplicates, such as Candida glabrata in which a smaller number (~2%) of these pairs are maintained 80. Interestingly, several of these species, including S. cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, S. bayanus, S. castellii, and C. glabrata have retained two TOR paralogs, whereas species outside of the WGD clade, including Kluyveromyces lactis and Ashbya gossypii, have only a single TOR gene.The fates of duplicated gene paralogs can be explained through the duplication, degeneration, and complementation (DDC) model of gene duplication 81. In species with a single Tor, this protein populates both TORC1 and TORC2, each of which has distinct functions. Following duplication, each paralog likely sub-functionalized to carry out some, but not all, of its previous functions so that between the two paralogs, each process is performed. In S. cerevisiae, for example, Tor1 exclusively functions within TORC1, while Tor2 preferentially populates TORC2 but can also function in TORC1. S. pombe has two Tor paralogs as a result of an independent segmental gene duplication event, and each paralog has distinct roles not necessarily equivalent to those of S. cerevisiae Tor1 and Tor2. SpTor1 is not essential, whereas SpTor2 is essential for growth 112982.We hypothesize that similar models could apply in species encoding two Tor homologs resulting from independent gene duplication events such as P. ostreatus and B. dendrobatidis. Based on their level of identity with S.�cerevisiae Tor homologs, the B. dendrobatidis genes BDEG_08293 and BDEG_05727 have been designated TOR1 and TOR2, respectively. However, these gene names are not necessarily based on functional similarity with ScTor1 and ScTor2 but rather indicate only that there are two TOR homologs in B. dendrobatidis. A�similar naming challenge is evident in S. pombe, where the functions of SpTor1 and SpTor2 are not equivalent with those of ScTor1 and ScTor2.While several species, such as those in the Saccharomyces clade, have two Tor paralogs resulting from ancient WGD events, other species have acquired a second paralog through independent segmental gene duplication events, including B. dendrobatidis and several fission yeast species closely related to S. pombe (Figure 4). Segmental gene duplications have played a major role in the evolution of species and can result in the duplication of single genes or large blocks of genes 83. In S. cerevisiae, the duplication blocks with TOR include three paralogous gene pairs that have been retained from the ancestral WGD event: PTK1/PTK2, TOR1/TOR2, and MNN4/YJR061W 78 (Figure 5A). Further, C. glabrata, an ascomycete closely related to S. cerevisiae that diverged following the WGD, has also maintained a second TOR paralog and synteny is apparent in the region flanking the TOR1 and TOR2 genes, though one must extend the analysis to >40 kb from the TOR genes to detect it (See additional file 1: Supplemental figure 1). However, because C. glabrata and S. cerevisiae have retained different subsets of genes from the ancestral WGD, the duplicated genes surrounding TOR in these species are not homologs of one another. Further, C. glabrata has maintained fewer of the synteny blocks found in S. cerevisiae, and the block containing the TOR genes (Block 42) is not conserved in C. glabrata 80.In contrast, genomic regions surrounding the Tor paralogs in S. pombe (Figure 5B) and B. dendrobatidis (Figure 5C) are not syntenically conserved. That is, the duplicated genes are not flanked by other duplicated gene pairs, and the two TOR paralogs likely resulted from independent segmental gene duplication events. Further, there are no indications of WGDs in these species. In the Schizosaccharomycotina, the TOR gene duplication occurred prior to speciation as evidenced by the fact that S. pombe, S. octosporus, S. japonicus, and S. cryophilus have each retained a second Tor paralog; the Tor orthologs across these four species are more closely related to each other than to those from other species (Figure 4). No syntenic conservation between the genomic regions containing TOR paralogs was detected in any species of the Schizosaccharomyces group, supporting the occurrence of an independent segmental gene duplication in their common ancestor (see additional file 2: supplemental Figure 2).The Taphrinomycotina is a monophyletic taxon of the Ascomycota containing the Schizosaccharomycetes, Taphrinomycetes, Neolectomycetes, and Pneumocystidomycetes. Genomes are only available for species within the Schizosaccharomycetes (S. pombe, S. octosporus, S. japonicus, and S. cryophilus) and the Taphrinomycetes (Pneumocystis carinii). While the studied Schizosaccharomyces spp. contain two Tor homologs, a single homolog was identified in P. carinii with tBLASTx using the highly conserved S. cerevisiae FRB domain of Tor1 based on sequence data produced by the Pneumocystis Genome Project (funded by the NIH NIAID) that was obtained from http://pgp.cchmc.org at the time of publication. Based on the phylogenetic placement of these two groups 84 and the available genomic information, we hypothesize that the segmental TOR duplication is unique to the Schizosaccharomyces spp. and occurred following their divergence from the common ancestor of the Taphrinomycota, as P. carinii, the other species within this taxon with available genome data, appears to contain a single Tor homolog.Interestingly, the zygomycete R. oryzae underwent a whole genome duplication event and despite retaining 12% of the resulting duplicated genes 85 compared to 8% retained genes in a separate WGD event in S. cerevisiae 7879, two Tor paralogs have not been retained; only a single Tor homolog was identified. Currently, the Zygomycota is the only group studied without an identified species containing two Tor homologs; however, there are not enough available genomes to make a definitive conclusion in this group. Other species with independent TOR duplications likely remain to be identified in all of the major fungal lineages, and as more genome sequences become available this will be addressed.During this study, we identified three additional species that possibly have two TOR paralogs: M. brevicollis, Thecamonas trahens, and Allomyces macrogynus, species that are included in the Origins of Multicellularity Project 86. While analysis is limited because of the state of the M. brevicollis (choanoflagellate) genome, it appears that an additional bonafide Tor protein is encoded with the conserved Tor protein architecture. Thecamonas trahens is a unicellular apusomonad that also contains two TOR paralogs. Interestingly, A. macrogynus is a fungus that may contain a second paralog; however, it appears that the FRB domain overlaps with the kinase domain. This may represent a case in which TOR was duplicated but is in the process of losing one of the copies. These cases are a springboard for future studies involving the duplication of TOR within and beyond the fungal kingdom.Loss of the Tor signaling pathway in microsporidiaWhile components of the Tor signaling cascade are conserved in eukaryotes from yeasts to humans, the microsporidia, a group of highly specialized obligate intracellular pathogens completely lack all of the pathway components investigated in this study. E. cuniculi has previously been noted to lack the Tor kinase 87, and we found that all pathway components including Tor were missing not only in E. cuniculi but also in its microsporidian relatives E. bieneusi and N. ceranae (Table 2). Microsporidian genomes are highly compacted and show a marked reduced gene content. The genome of the human pathogen E. cuniculi has 1997 genes distributed throughout 11 chromosomes in a 2.9 Mb genome 88, less than half the number of protein-coding genes found in Escherichia coli. For comparison, the genome of the human pathogen E. bieneusi genome is ~6 Mb with 3,804 genes 89 and the honeybee pathogen N. ceranae genome is ~7.9 Mb with 2,614 predicted genes 90. Genome reduction has been well studied in intracellular bacteria: during the specialization process from a free-living to intracellular lifestyle, massive gene loss can occur 9192939495. We hypothesize that as a consequence of their specialization to an obligate intracellular lifestyle, the need for nutrient sensing was relaxed and these obligate intracellular microsporidia acquired nutrients from within the host cytoplasm. Thus, they no longer required the Tor pathway, which is dedicated to sensing changes in the nutrient composite of the environmental milieu. However, E. cuniculi has retained some of the genes encoding signaling pathways involved in nutrient sensing in other species, including homologs of S. cerevisiae Ras1 and Ras2 (data not shown).Interestingly, P. carinii is an obligate pathogen with a reduced genome estimated to be ~8 Mb 96, which unlike microsporidia is not obligately intracellular. A�single Tor homolog was identified [Pneumocystis Genome Project:cap3_it1_grp346_contig490] using the S. cerevisiae Tor1 FRB domain in tBLASTx, supporting our hypothesis that the microsporidia have streamlined their genomes as they adopted an obligate intracellular life cycle. P. carinii likely requires Tor because it must survive in a metabolically active form outside of host cells, undergoing cell division in the extracellular milieu of the infected host lung.Many microsporidian genomes have undergone extreme genome reduction and are among the eukaryotes with the smallest genomes. In addition to fewer genes than other species (1997 in E. cuniculi compared to 6607 in S. cerevisiae), E. cuniculi has shorter genes, small intergenic distances, and very few introns 8897. This species (and to an even greater extent, E. bieneusi) lacks several genes that are necessary for biosynthetic pathways and the tricarboxylic acid cycle in free-living organisms 888998. Remarkably, E. cuniculi must acquire ATP from its host through a series of ATP transporters anciently acquired from Rickettsia- or Chlamydia-like bacteria 99, and this is an example of how E. cuniculi, and possibly other microsporidia, can hijack mechanisms of other intracellular bacteria, fungi, or the host to survive in and adapt to their highly specialized intracellular lifestyle.ConclusionsThe Tor pathway is highly conserved with some exceptions among fungi, including several pathogens. Similarly, the molecular structural organization of the Tor kinases has been remarkably conserved as well as the presumed ability to bind the FKBP12-rapamycin complex. This feature, combined with the essential nature of the rapamycin-sensitive TORC1 pathway for cell growth, should enable the development of rapamycin-based strategies for antifungal therapies. Duplications of the Tor protein occurred in most fungal groups examined, resulting from either independent segmental gene duplication events or a WGD event. The maintenance of two Tor homologs can be explained through the DDC model of gene duplication, in which the paralogs subfunctionalize and together support all of the functions of the pre-duplicated protein. In addition, species outside of the fungal kingdom with two or more TOR homologs include the metazoan B. mori, the apusomonad protozoan T. trahens, the trypanosome protozoans L. major and T. brucei, and possibly the choanoflagellate M. brevicollis. This suggests that the Tor gene has been independently duplicated multiple times since the last common ancestor of the Opisthokonta and Excavata lineages. The Tor pathway, as well as the Tor protein itself, is highly conserved in eukaryotes, so the observation that three microsporidian species are missing the entire pathway is striking. It would appear that the specialized obligate intracellular life cycle of microsporidia allows for the acquisition of nutrients from the host cell, obviating a requirement for this central nutrient-sensing pathway that is essential in all known cases of other eukaryotes for axenic growth.MethodsIdentification of pathway component homologsTor homologs were identified using the highly conserved 100 amino acid FRB domain of S. cerevisiae Tor1 in BLASTp reciprocal best-hit searches between the specific species database and the Saccharomyces Genome Database (SGD). All queries for other Tor pathway components were retrieved from SGD and homologs were identified by BLASTp reciprocal best-hit searches, with the exception of Tsc1 and Tsc2. Tsc1 and Tsc2 protein query sequences were retrieved from the S. pombe GeneDB, and homologs were identified using BLASTp searches between the S. pombe genome database and the species database. Species identification numbers are listed in Supplemental Table 1. Protein architecture of each homolog was elucidated with Simple Modular Architecture Research Tool (SMART) analysis 7071.Accession numbers are provided for putative Tor pathway components (see Additional file 3, supplemental Table 1 for the accession numbers of putative Tor pathway components) from the following public genomic databases that were used to carry out BLAST: S. cerevisiae, SGD, http://www.yeastgenome.org; S. pombe, GeneDB, http://www.genedb.org/genedb/pombe/index.jsp; P. ostreatus, JGI, http://genome.jgi-psf.org/PleosPC15_1/PleosPC15_1.home.html; M. circinelloides, JGI and the Mucor Genome Project, http://genome.jgi-psf.org/Mucci1/Mucci1.home.html; R. oryzae, Broad Institute, http://www.broadinstitute.org/annotation/genome/rhizopus_oryzae/MultiHome.html; P. blakesleeanus, JGI, http://genome.jgi-psf.org/Phybl1/Phybl1.home.html; B. dendrobatidis, Broad Institute, http://www.broadinstitute.org/annotation/genome/batrachochytrium_dendrobatidis/MultiHome.html; S. punctatus, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; M. brevicollis, JGI, http://genome.jgi-psf.org/Monbr1/Monbr1.home.html; S. rosetta, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; C. owczarzaki, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; E. cuniculi, E. bieneusi, and N. ceranae, NCBI, http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi?organism=fungi.Phylogenetic analysis of TorThe ProtTest program 100 was used to select an appropriate model to construct the phylogenetic relationship of the Tor proteins of the studied species. For this study, the best model for phylogenetic construction of the Tor protein using maximum likelihood (ML) was JTT+I+G+F 101. The ML tree was generated using PhyML with the JTT+I+G+F mode with 500 bootstrap replicates 102103. The Tor amino acid sequences from all species were aligned with CLUSTAL W 104.Synteny analysis of TOR paralogsTor homologs in fungal species were identified with BLAST 105 using TOR1 and TOR2 of S. cerevisiae as query sequences. The TOR sequence and flanking regions (up to 100 kb) were extracted from corresponding contigs or chromosomal sequences. To analyze the synteny of TOR and flanking regions, we constructed a database of one TOR and flanking region sequence and used the other TOR homolog and flanking region sequence to perform tBLASTx searches in the database (BLOSUM62 matrix; E-value = 1e-3; gap cost: existence 11, extension 1; and low complexity regions filter). The tBLASTx results were parsed and formatted using an in-house Perl script (available upon request). The parsed and formatted tBLASTx results were then imported into Artemis software 106 for synteny analysis. We employed a cutoff value of 100 bp to filter short non-significant matches between query and database sequences.Authors� contributionsCAS carried out the homolog searches and phylogenetic analysis and drafted the manuscript. RJB performed homolog searches and participated in the design of the study. WL performed the synteny and phylogenetic analysis and helped draft the manuscript. JH and MEC conceived of the study, participated in its design and helped to draft the manuscript. All authors read and approved the final manuscript.
BackgroundThe nutrient-sensing target of rapamycin (Tor) pathway is highly conserved among eukaryotes and governs several essential cellular processes including protein synthesis, ribosome biogenesis, autophagy, and cytoskeletal organization 123. In the fungal kingdom, the Tor pathway has been best studied in the budding yeast Saccharomyces cerevisiae 234, the fission yeast Schizosaccharomyces pombe 56, and the human pathogen Candida albicans 5678. However, little is known about Tor in basal fungal lineages, including the Zygomycota and Chytridiomycota.In S. cerevisiae and S. pombe, two Tor paralogs form distinct complexes known as Tor Complex 1 (TORC1) and Tor Complex 2 (TORC2) 9101112, while in most other species, including humans, a single Tor protein can populate both complexes 11121314. Interestingly, S. cerevisiae Tor2 can complement the loss of Tor1, but Tor1 cannot complement the loss of Tor2 1516. Two Tor paralogs have also been identified in a metazoan, the silkworm Bombyx mori 17 and three Tor paralogs were identified in the trypanosomatid parasites Leishmania major 18 and the related species Trypanosoma brucei 19, the first reported Tor triumvirates.The ScTORC1 is sensitive to rapamycin and controls protein synthesis, mRNA synthesis and degradation, ribosome biogenesis, and autophagy. TORC2 is insensitive to rapamycin and is involved in the control of actin polarization and cell wall integrity 916. TORC1 consists of Tor1 or Tor2, Kog1 20, Tco89, and Lst8 21, while TORC2 contains Tor2, Lst8, Avo1, Avo2, and Avo3 22 (Figure 1A). Recently, the EGO-GTPase complex and its orthologs were shown to convey amino acid signals for TORC1 activation in yeast, insects, and mammals 23242526. In S. cerevisiae, immediate effectors of TORC1 include the PP2A-like phosphatase Sit4 27 and the AGC kinase Sch9 28. In S. pombe, Tor participates in other cellular functions including nutrient signaling 29, cell growth and differentiation 30, mitotic commitment 31, and sexual development 11 (Figure 1B).The structure of the Tor proteins is remarkably conserved (Figure 2) and features several domains for protein-protein interactions including N-terminal HEAT (Huntingtin, Elongation factor 3, PP2A A subunit, Tor) repeats 32, a FAT (FRAP, ATM, and TRRAP) domain 3334, and an FRB (FK506-Rapamycin Binding) 35 domain. The kinase and the FATC (FAT domain at the C-terminus) 3236 domains are present in the C-terminal region.The Tor inhibitor rapamycin blocks cell proliferation and is currently used as an immunosuppressive drug for organ and tissue transplant recipients and a chemotherapy agent against a variety of solid cancers 37383940. Rapamycin binds to the prolyl isomerase FKBP12 to form a protein-drug complex that then interacts with the Tor FRB domain in a ternary complex 4142. S. cerevisiae cells treated with rapamycin display phenotypes associated with nutrient depletion including G1 cell cycle arrest, cellular volume expansion, protein synthesis inhibition, glycogen accumulation, and autophagy 3543.Genetic analysis in S. cerevisiae characterizing rapamycin-resistant mutants led to the identification of FKBP12 as the intracellular receptor for rapamycin and defined Tor1 and Tor2 as the targets of the FKBP12-rapamycin complex 4. Subsequent studies resulted in the identification and characterization of the TOR1 and TOR2 gene products 1544 as well as the elucidation of the Tor signaling cascade 8454647. These pioneering studies aided in the identification of the mammalian Tor ortholog and characterization of this highly conserved signaling cascade 84849. Remarkably, expression of the human FKBP12 ortholog in yeast fpr1 (the gene that encodes FKBP12) deletion mutants complements to restore rapamycin sensitivity, and hybrid Tor proteins consisting of the yeast N-terminal domain fused to the mammalian Tor kinase domain are also functional in yeast 50. Thus, the Tor pathway has been functionally and structurally conserved from yeasts to humans over the billion years of evolution separating the two species from their last common ancestor.We now know that the fungal and metazoan kingdoms are both within the opisthokont lineage of eukaryotes and are thus more closely related to each other than the vast majority of eukaryotic organisms 5152. Moreover, these two highly successful kingdoms shared a last common ancestor as recently as one billion years ago, much more recently than most eukaryotes. Recent initiatives, particularly the UNICORN project, have facilitated the sequencing of several opisthokonts related to the last common ancestor of the metazoans and fungi, providing an interesting window into the evolution of both fungi and animals 53545556. Thus, studies on the evolutionary trajectory of the fungal kingdom in general, and of the Tor signaling cascade in particular, promise to reveal insights about how orthologous pathways function in the more complex milieu of multicellular metazoan organisms.In this study, we have capitalized upon the wealth of available genomic information by annotating the Tor pathway in several fungal organisms in which this pathway has not been described. Our study included selected species in the major groups of the fungal kingdom with genome sequences available: the basidiomycete Pleurotus ostreatus; the Mucorales zygomycetes Mucor circinelloides, Rhizopus oryzae, and Phycomyces blakesleeanus; the chytridiomycetes Spizellomyces punctatus and Batrachochytrium dendrobatidis; the microsporidian species Encephalitozoon cuniculi, Enterocytozoon bieneusi, and Nosema ceranae; and the related non-fungal opisthokonts Capsaspora owczarzaki, Salpingoeca rosetta, and Monosiga brevicollis. Whereas the Tor pathway is conserved throughout the eukaryotes, strikingly, microsporidian species with their highly reduced and compacted genomes lack the entire Tor pathway. We have also investigated gene and genome duplication events that resulted in two Tor homologs in S. cerevisiae, S. pombe, P. ostreatus, and B. dendrobatidis, and the loss of a second Tor homolog following a whole genome duplication event in R. oryzae.Results and DiscussionConservation of the Tor signaling pathway molecular componentsThe Tor pathway is well conserved among nearly all eukaryotic species examined to date. Tor is essential for life and is the target of the potent drug rapamycin in fungi, humans, and other eukaryotic organisms 2121941. Tor originated early during the eukaryotic radiation, as it is present in the basal eukaryotes Giardia lamblia 57, L. major 18 and T. brucei 19, and also in plants 58. Here we focused on the Tor pathway in the fungal kingdom and other representative unicellular opisthokont species outside of the fungi. Several genes encoding Tor complex components, upstream regulators, and downstream effectors were identified in all major groups throughout the fungal kingdom (Figure 1, Table 1). Because we used BLASTp reciprocal best hits (RBH) to identify orthologs, in some cases the absence of an ortholog in our results may represent only a failure to detect it with this method. Further, functional homologs that are not sufficiently similar enough in sequence to be identified may be present. Overall, a high degree of pathway conservation is observed in the Tor signaling cascade throughout the fungal kingdom, with the exception of microsporidia in which all Tor pathway components are absent. In addition, several pathway components are conserved in the related unicellular opisthokonts M. brevicollis, S. rosetta, and C. owczarzaki (Table 2).In S. cerevisiae, Tor1 and Tor2 interact with several proteins to form TORC1 and TORC2. TORC1 contains Tor1 or Tor2, Kog1, Tco89, and Lst8. Kog1 functions as a substrate-recruiting subunit in mammalian TORC1 (mTORC1) 13596061. A gene encoding a putative Kog1 homolog was identified in all species included in this study, with the exception of the microsporidia and S. rosetta (Tables 1 and 2). Mutation of TCO89 results in hypersensitivity to rapamycin and affects cellular integrity in S. cerevisiae 21. Tco89 is only found in S. cerevisiae and could have resulted from a specialization of the pathway exclusive to Saccharomyces species (Table 1). However, while a BLASTp search did not identify Tco89 homologs in other species, S. pombe has been reported to contain a functional homolog [GenBank:NP_588232] 12, and this suggests that functional homologs may exist in other fungal species as well. However, no homologs were identified when using S.�pombe Tco89 as a query sequence. Lst8 binds to the Tor kinase domain in S. cerevisiae to stimulate catalytic activity 9 and a putative Lst8 homolog is conserved in most species analyzed except microsporidia and S.�rosetta (Tables 1 and 2).Additional BLASTp searches identified a single Tor homolog in the following species: Lachancea thermotolerans CBS6340 [GenBank:XP_002552336], Pichia pastoris GS115 [GenBank:XP_002491471], Pichia stipitis CBS6054 [GenBank:XP_001385651], Debaryomyces hansenii CBS767 [GenBank:XP_002770885], Yarrowia lipolytica CLIB122 [GenBank:XP_505106], Podospora anserina strain S mat+ [GenBank:XP_001903968], Chaetomium globosum CBS148.51 [GenBank:XP_001226647], Magnaporthe oryzae 70-15 [GenBank:XP_001414541], Gibberella zeae PH-1 [GenBank:XP_388309], Aspergillus fumigatus Af293 [GenBank:XP_755360], Aspergillus flavus NRRL3357 [GenBank:XP_002377897], Neosartorya fischeri NRRL181 [GenBank:XP_001260509], Aspergillus terreus NIH2624 [GenBank:XP_001213640], Aspergillus nidulans FGSCA4 [GenBank:XP_663586], Aspergillus clavatus NRRL1 [GenBank:XP_001275326], Aspergillus oryzae RIB40 [GenBank: XP_001826216], and Aspergillus niger CBS513.88 [GenBank:XP_001397781]. These ascomycetes were not included in further studies.In yeast and mammals, TORC2 controls spatial aspects of growth. TORC2 includes Tor2, Avo1, Avo2, Avo3, and Bit61 922. Avo1 plays an essential role in actin cytoskeleton polarization 22 and is conserved throughout the organisms that were the focus of this study (Table 1) except in S. rosetta and C. owczarzaki (Table 2). However, due to high divergence of the AVO1 sequence amongst the known homologs, it is possible that the S. rosetta and C. owczarzaki homologs cannot be identified using the BLASTp algorithm. Avo2 is a nonessential substrate adaptor for TORC2 22 and potential homologs were identified in most species studied, with the exceptions of S. pombe, P. ostreatus, the three microsporidian species (Table 1), and M. brevicollis (Table 2). In S. cerevisiae, Avo3 (also know as Tsc11) controls cytoskeletal dynamics 922, and homologs are conserved throughout the species examined (Tables 1 and 2). Bit61, a nonessential protein that associates with TORC2 21, was only identified in S. cerevisiae (Tables 1 and 2).Upstream regulators of Tor include Tsc1 and Tsc2 (Tuberous Sclerosis 1 and 2) and the GTPase Rheb (Ras homolog enhanced in brain). In S. pombe and other eukaryotes, Tsc1 and Tsc2 form a GTPase-activating complex that negatively regulates the action of Rheb to activate TORC1 266263. Tsc1 and Tsc2 putative homologs were identified in most species in the study, with the exception of S. cerevisiae (Table 1); however, Tsc1 homologs were not identified in B. dendrobatidis, S. rosetta, or C. owczarzaki (Tables 1 and 2). In mammals and insects, four Rag GTPases (RagA-D) bind raptor (Kog1) to mediate TORC1 signaling in response to amino acids 2426. RagA and RagB are orthologs of S.�cerevisiae Gtr1 whereas RagC and RagD are orthologs of S. cerevisiae Gtr2 23. Gtr1 and Gtr2 form a complex along with Ego1 and Ego3 known as EGOC/GSE 25, which is regulated by the GTP exchange factor Vam6 23. Interestingly we found presumptive Gtr1 and Gtr2 orthologs in species in this study with the exception of microsporidia (Table 1), and Gtr1 was not identified in M. brevicollis (Table 2). However, Ego1 and Ego3, which anchor Gtr1 and Gtr2 to endosomal and vacuolar membranes, are unique to S. cerevisiae and were not identified in the other species (Table 1). This suggests that the specific EGO complex architecture might be restricted to Saccharomyces, though it is possible that functional homologs may be present in other species.In fungi, several downstream effectors are targets of Tor signaling. The PP2A phosphatase Sit4 and its regulatory subunit Tap42 regulate the expression of several TORC1-controlled genes and Gcn2-regulated translation 36465. A Sit4 homolog was identified in R. oryzae (Table 1), though a homolog of the regulatory subunit Tap42 was not (Table 1). In S. rosetta, a Sit4 homolog was not identified, though Tap42 was (Table 2). Both of these situations could indicate rewiring of the pathway, or alternatively these findings could be a result of insufficient similarity to detect with a RBH search method. Sch9, a member of the AGC kinase family and the functional homolog of the p70 S6 kinase, is a direct substrate of S. cerevisiae TORC1 involved in ribosome biogenesis 2866. Sch9 was not identified in RBH BLASTp searches with S. cerevisiae Sch9 in M. circinelloides, P. blakesleeanus, the microsporidia (Table 1), or S. rosetta (Table 2), but was identified in all other species. Putative homologs of Ypk2 kinase, a regulator of ceramide synthesis controlled by TORC2 signaling 67, were only identified in S. cerevisiae, S. pombe, (Table 1), M. brevicollis, S. rosetta, and C. owczarzaki (Table 2). Notably, the failure to detect many homologs in M. brevicollis, S. rosetta, and C. owczarzaki could be due to their evolutionary distance from the other organisms in the study and their gene divergence.Evolutionary conservation of Tor kinase protein structureThe Tor kinases are phosphatidylinositol kinase-related kinases (PIKKs) 68 and aside from their known protein kinase function also serve as evolutionary constrained scaffolds with several protein-protein interaction domains that mediate multi-protein complex formation 69. Tor protein architecture was annotated using SMART 7071 and we found that it has been maintained throughout the species of this study (Figure 2). N-terminal HEAT repeats are present in varying numbers and serve as scaffolding structures for protein-protein interactions 327273. Similarly, the FAT/toxic domain and the accompanying C-terminal FATC domain also participate in protein scaffolding and are present and conserved in all species subject to analysis. Over-expression of the FAT domain has a dominant negative effect on cell growth in yeast and this effect can be suppressed by over-expression of phospholipase C 33. The kinase domain has similarities to both lipid and protein kinases, but it is a bona fide protein kinase. The FRB (FKBP12-rapamycin binding) domain is a highly conserved 100 amino acid region of Tor with several residues that are known to be required for binding the FKBP12-rapamycin drug complex 42.In addition, the FRB domain contains several residues necessary for both phosphatidic acid binding and rapamycin interaction 7475. In mammals, phosphatidic acid binding to the FRB region may promote the assembly of mTOR complexes. It has been proposed that the potent effect of the Tor inhibitor rapamycin may be due to direct competition for overlapping phosphatidic acid binding sites within the FRB domain 76. Mutation of the conserved amino acid residues S1975, W2041, or F2048 in the FRB domain confers rapamycin resistance in S. cerevisiae 44277. Strikingly, the corresponding amino acid residues are conserved in all species examined (Figure 3). In mTOR, phosphatidic acid binding is disrupted by mutations of L2031, F2309, and Y2105 75, corresponding to S. cerevisiae Tor2 L1971, F1979, and Y2045, respectively, all of which are conserved in the studied fungal species (Figure 3).Duplication of Tor in the fungal kingdomApproximately 100 million years ago, the S. cerevisiae ancestor underwent a whole genome duplication (WGD) event, and species that descend from this evolutionary event retained duplicated subsets of genes. S. cerevisiae retained approximately 8% of duplicated genes 7879, while other fungi in this lineage have maintained varying numbers of gene duplicates, such as Candida glabrata in which a smaller number (~2%) of these pairs are maintained 80. Interestingly, several of these species, including S. cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, S. bayanus, S. castellii, and C. glabrata have retained two TOR paralogs, whereas species outside of the WGD clade, including Kluyveromyces lactis and Ashbya gossypii, have only a single TOR gene.The fates of duplicated gene paralogs can be explained through the duplication, degeneration, and complementation (DDC) model of gene duplication 81. In species with a single Tor, this protein populates both TORC1 and TORC2, each of which has distinct functions. Following duplication, each paralog likely sub-functionalized to carry out some, but not all, of its previous functions so that between the two paralogs, each process is performed. In S. cerevisiae, for example, Tor1 exclusively functions within TORC1, while Tor2 preferentially populates TORC2 but can also function in TORC1. S. pombe has two Tor paralogs as a result of an independent segmental gene duplication event, and each paralog has distinct roles not necessarily equivalent to those of S. cerevisiae Tor1 and Tor2. SpTor1 is not essential, whereas SpTor2 is essential for growth 112982.We hypothesize that similar models could apply in species encoding two Tor homologs resulting from independent gene duplication events such as P. ostreatus and B. dendrobatidis. Based on their level of identity with S.�cerevisiae Tor homologs, the B. dendrobatidis genes BDEG_08293 and BDEG_05727 have been designated TOR1 and TOR2, respectively. However, these gene names are not necessarily based on functional similarity with ScTor1 and ScTor2 but rather indicate only that there are two TOR homologs in B. dendrobatidis. A�similar naming challenge is evident in S. pombe, where the functions of SpTor1 and SpTor2 are not equivalent with those of ScTor1 and ScTor2.While several species, such as those in the Saccharomyces clade, have two Tor paralogs resulting from ancient WGD events, other species have acquired a second paralog through independent segmental gene duplication events, including B. dendrobatidis and several fission yeast species closely related to S. pombe (Figure 4). Segmental gene duplications have played a major role in the evolution of species and can result in the duplication of single genes or large blocks of genes 83. In S. cerevisiae, the duplication blocks with TOR include three paralogous gene pairs that have been retained from the ancestral WGD event: PTK1/PTK2, TOR1/TOR2, and MNN4/YJR061W 78 (Figure 5A). Further, C. glabrata, an ascomycete closely related to S. cerevisiae that diverged following the WGD, has also maintained a second TOR paralog and synteny is apparent in the region flanking the TOR1 and TOR2 genes, though one must extend the analysis to >40 kb from the TOR genes to detect it (See additional file 1: Supplemental figure 1). However, because C. glabrata and S. cerevisiae have retained different subsets of genes from the ancestral WGD, the duplicated genes surrounding TOR in these species are not homologs of one another. Further, C. glabrata has maintained fewer of the synteny blocks found in S. cerevisiae, and the block containing the TOR genes (Block 42) is not conserved in C. glabrata 80.In contrast, genomic regions surrounding the Tor paralogs in S. pombe (Figure 5B) and B. dendrobatidis (Figure 5C) are not syntenically conserved. That is, the duplicated genes are not flanked by other duplicated gene pairs, and the two TOR paralogs likely resulted from independent segmental gene duplication events. Further, there are no indications of WGDs in these species. In the Schizosaccharomycotina, the TOR gene duplication occurred prior to speciation as evidenced by the fact that S. pombe, S. octosporus, S. japonicus, and S. cryophilus have each retained a second Tor paralog; the Tor orthologs across these four species are more closely related to each other than to those from other species (Figure 4). No syntenic conservation between the genomic regions containing TOR paralogs was detected in any species of the Schizosaccharomyces group, supporting the occurrence of an independent segmental gene duplication in their common ancestor (see additional file 2: supplemental Figure 2).The Taphrinomycotina is a monophyletic taxon of the Ascomycota containing the Schizosaccharomycetes, Taphrinomycetes, Neolectomycetes, and Pneumocystidomycetes. Genomes are only available for species within the Schizosaccharomycetes (S. pombe, S. octosporus, S. japonicus, and S. cryophilus) and the Taphrinomycetes (Pneumocystis carinii). While the studied Schizosaccharomyces spp. contain two Tor homologs, a single homolog was identified in P. carinii with tBLASTx using the highly conserved S. cerevisiae FRB domain of Tor1 based on sequence data produced by the Pneumocystis Genome Project (funded by the NIH NIAID) that was obtained from http://pgp.cchmc.org at the time of publication. Based on the phylogenetic placement of these two groups 84 and the available genomic information, we hypothesize that the segmental TOR duplication is unique to the Schizosaccharomyces spp. and occurred following their divergence from the common ancestor of the Taphrinomycota, as P. carinii, the other species within this taxon with available genome data, appears to contain a single Tor homolog.Interestingly, the zygomycete R. oryzae underwent a whole genome duplication event and despite retaining 12% of the resulting duplicated genes 85 compared to 8% retained genes in a separate WGD event in S. cerevisiae 7879, two Tor paralogs have not been retained; only a single Tor homolog was identified. Currently, the Zygomycota is the only group studied without an identified species containing two Tor homologs; however, there are not enough available genomes to make a definitive conclusion in this group. Other species with independent TOR duplications likely remain to be identified in all of the major fungal lineages, and as more genome sequences become available this will be addressed.During this study, we identified three additional species that possibly have two TOR paralogs: M. brevicollis, Thecamonas trahens, and Allomyces macrogynus, species that are included in the Origins of Multicellularity Project 86. While analysis is limited because of the state of the M. brevicollis (choanoflagellate) genome, it appears that an additional bonafide Tor protein is encoded with the conserved Tor protein architecture. Thecamonas trahens is a unicellular apusomonad that also contains two TOR paralogs. Interestingly, A. macrogynus is a fungus that may contain a second paralog; however, it appears that the FRB domain overlaps with the kinase domain. This may represent a case in which TOR was duplicated but is in the process of losing one of the copies. These cases are a springboard for future studies involving the duplication of TOR within and beyond the fungal kingdom.Loss of the Tor signaling pathway in microsporidiaWhile components of the Tor signaling cascade are conserved in eukaryotes from yeasts to humans, the microsporidia, a group of highly specialized obligate intracellular pathogens completely lack all of the pathway components investigated in this study. E. cuniculi has previously been noted to lack the Tor kinase 87, and we found that all pathway components including Tor were missing not only in E. cuniculi but also in its microsporidian relatives E. bieneusi and N. ceranae (Table 2). Microsporidian genomes are highly compacted and show a marked reduced gene content. The genome of the human pathogen E. cuniculi has 1997 genes distributed throughout 11 chromosomes in a 2.9 Mb genome 88, less than half the number of protein-coding genes found in Escherichia coli. For comparison, the genome of the human pathogen E. bieneusi genome is ~6 Mb with 3,804 genes 89 and the honeybee pathogen N. ceranae genome is ~7.9 Mb with 2,614 predicted genes 90. Genome reduction has been well studied in intracellular bacteria: during the specialization process from a free-living to intracellular lifestyle, massive gene loss can occur 9192939495. We hypothesize that as a consequence of their specialization to an obligate intracellular lifestyle, the need for nutrient sensing was relaxed and these obligate intracellular microsporidia acquired nutrients from within the host cytoplasm. Thus, they no longer required the Tor pathway, which is dedicated to sensing changes in the nutrient composite of the environmental milieu. However, E. cuniculi has retained some of the genes encoding signaling pathways involved in nutrient sensing in other species, including homologs of S. cerevisiae Ras1 and Ras2 (data not shown).Interestingly, P. carinii is an obligate pathogen with a reduced genome estimated to be ~8 Mb 96, which unlike microsporidia is not obligately intracellular. A�single Tor homolog was identified [Pneumocystis Genome Project:cap3_it1_grp346_contig490] using the S. cerevisiae Tor1 FRB domain in tBLASTx, supporting our hypothesis that the microsporidia have streamlined their genomes as they adopted an obligate intracellular life cycle. P. carinii likely requires Tor because it must survive in a metabolically active form outside of host cells, undergoing cell division in the extracellular milieu of the infected host lung.Many microsporidian genomes have undergone extreme genome reduction and are among the eukaryotes with the smallest genomes. In addition to fewer genes than other species (1997 in E. cuniculi compared to 6607 in S. cerevisiae), E. cuniculi has shorter genes, small intergenic distances, and very few introns 8897. This species (and to an even greater extent, E. bieneusi) lacks several genes that are necessary for biosynthetic pathways and the tricarboxylic acid cycle in free-living organisms 888998. Remarkably, E. cuniculi must acquire ATP from its host through a series of ATP transporters anciently acquired from Rickettsia- or Chlamydia-like bacteria 99, and this is an example of how E. cuniculi, and possibly other microsporidia, can hijack mechanisms of other intracellular bacteria, fungi, or the host to survive in and adapt to their highly specialized intracellular lifestyle.ConclusionsThe Tor pathway is highly conserved with some exceptions among fungi, including several pathogens. Similarly, the molecular structural organization of the Tor kinases has been remarkably conserved as well as the presumed ability to bind the FKBP12-rapamycin complex. This feature, combined with the essential nature of the rapamycin-sensitive TORC1 pathway for cell growth, should enable the development of rapamycin-based strategies for antifungal therapies. Duplications of the Tor protein occurred in most fungal groups examined, resulting from either independent segmental gene duplication events or a WGD event. The maintenance of two Tor homologs can be explained through the DDC model of gene duplication, in which the paralogs subfunctionalize and together support all of the functions of the pre-duplicated protein. In addition, species outside of the fungal kingdom with two or more TOR homologs include the metazoan B. mori, the apusomonad protozoan T. trahens, the trypanosome protozoans L. major and T. brucei, and possibly the choanoflagellate M. brevicollis. This suggests that the Tor gene has been independently duplicated multiple times since the last common ancestor of the Opisthokonta and Excavata lineages. The Tor pathway, as well as the Tor protein itself, is highly conserved in eukaryotes, so the observation that three microsporidian species are missing the entire pathway is striking. It would appear that the specialized obligate intracellular life cycle of microsporidia allows for the acquisition of nutrients from the host cell, obviating a requirement for this central nutrient-sensing pathway that is essential in all known cases of other eukaryotes for axenic growth.MethodsIdentification of pathway component homologsTor homologs were identified using the highly conserved 100 amino acid FRB domain of S. cerevisiae Tor1 in BLASTp reciprocal best-hit searches between the specific species database and the Saccharomyces Genome Database (SGD). All queries for other Tor pathway components were retrieved from SGD and homologs were identified by BLASTp reciprocal best-hit searches, with the exception of Tsc1 and Tsc2. Tsc1 and Tsc2 protein query sequences were retrieved from the S. pombe GeneDB, and homologs were identified using BLASTp searches between the S. pombe genome database and the species database. Species identification numbers are listed in Supplemental Table 1. Protein architecture of each homolog was elucidated with Simple Modular Architecture Research Tool (SMART) analysis 7071.Accession numbers are provided for putative Tor pathway components (see Additional file 3, supplemental Table 1 for the accession numbers of putative Tor pathway components) from the following public genomic databases that were used to carry out BLAST: S. cerevisiae, SGD, http://www.yeastgenome.org; S. pombe, GeneDB, http://www.genedb.org/genedb/pombe/index.jsp; P. ostreatus, JGI, http://genome.jgi-psf.org/PleosPC15_1/PleosPC15_1.home.html; M. circinelloides, JGI and the Mucor Genome Project, http://genome.jgi-psf.org/Mucci1/Mucci1.home.html; R. oryzae, Broad Institute, http://www.broadinstitute.org/annotation/genome/rhizopus_oryzae/MultiHome.html; P. blakesleeanus, JGI, http://genome.jgi-psf.org/Phybl1/Phybl1.home.html; B. dendrobatidis, Broad Institute, http://www.broadinstitute.org/annotation/genome/batrachochytrium_dendrobatidis/MultiHome.html; S. punctatus, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; M. brevicollis, JGI, http://genome.jgi-psf.org/Monbr1/Monbr1.home.html; S. rosetta, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; C. owczarzaki, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; E. cuniculi, E. bieneusi, and N. ceranae, NCBI, http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi?organism=fungi.Phylogenetic analysis of TorThe ProtTest program 100 was used to select an appropriate model to construct the phylogenetic relationship of the Tor proteins of the studied species. For this study, the best model for phylogenetic construction of the Tor protein using maximum likelihood (ML) was JTT+I+G+F 101. The ML tree was generated using PhyML with the JTT+I+G+F mode with 500 bootstrap replicates 102103. The Tor amino acid sequences from all species were aligned with CLUSTAL W 104.Synteny analysis of TOR paralogsTor homologs in fungal species were identified with BLAST 105 using TOR1 and TOR2 of S. cerevisiae as query sequences. The TOR sequence and flanking regions (up to 100 kb) were extracted from corresponding contigs or chromosomal sequences. To analyze the synteny of TOR and flanking regions, we constructed a database of one TOR and flanking region sequence and used the other TOR homolog and flanking region sequence to perform tBLASTx searches in the database (BLOSUM62 matrix; E-value = 1e-3; gap cost: existence 11, extension 1; and low complexity regions filter). The tBLASTx results were parsed and formatted using an in-house Perl script (available upon request). The parsed and formatted tBLASTx results were then imported into Artemis software 106 for synteny analysis. We employed a cutoff value of 100 bp to filter short non-significant matches between query and database sequences.Authors� contributionsCAS carried out the homolog searches and phylogenetic analysis and drafted the manuscript. RJB performed homolog searches and participated in the design of the study. WL performed the synteny and phylogenetic analysis and helped draft the manuscript. JH and MEC conceived of the study, participated in its design and helped to draft the manuscript. All authors read and approved the final manuscript.
BackgroundThe nutrient-sensing target of rapamycin (Tor) pathway is highly conserved among eukaryotes and governs several essential cellular processes including protein synthesis, ribosome biogenesis, autophagy, and cytoskeletal organization 123. In the fungal kingdom, the Tor pathway has been best studied in the budding yeast Saccharomyces cerevisiae 234, the fission yeast Schizosaccharomyces pombe 56, and the human pathogen Candida albicans 5678. However, little is known about Tor in basal fungal lineages, including the Zygomycota and Chytridiomycota.In S. cerevisiae and S. pombe, two Tor paralogs form distinct complexes known as Tor Complex 1 (TORC1) and Tor Complex 2 (TORC2) 9101112, while in most other species, including humans, a single Tor protein can populate both complexes 11121314. Interestingly, S. cerevisiae Tor2 can complement the loss of Tor1, but Tor1 cannot complement the loss of Tor2 1516. Two Tor paralogs have also been identified in a metazoan, the silkworm Bombyx mori 17 and three Tor paralogs were identified in the trypanosomatid parasites Leishmania major 18 and the related species Trypanosoma brucei 19, the first reported Tor triumvirates.The ScTORC1 is sensitive to rapamycin and controls protein synthesis, mRNA synthesis and degradation, ribosome biogenesis, and autophagy. TORC2 is insensitive to rapamycin and is involved in the control of actin polarization and cell wall integrity 916. TORC1 consists of Tor1 or Tor2, Kog1 20, Tco89, and Lst8 21, while TORC2 contains Tor2, Lst8, Avo1, Avo2, and Avo3 22 (Figure 1A). Recently, the EGO-GTPase complex and its orthologs were shown to convey amino acid signals for TORC1 activation in yeast, insects, and mammals 23242526. In S. cerevisiae, immediate effectors of TORC1 include the PP2A-like phosphatase Sit4 27 and the AGC kinase Sch9 28. In S. pombe, Tor participates in other cellular functions including nutrient signaling 29, cell growth and differentiation 30, mitotic commitment 31, and sexual development 11 (Figure 1B).The structure of the Tor proteins is remarkably conserved (Figure 2) and features several domains for protein-protein interactions including N-terminal HEAT (Huntingtin, Elongation factor 3, PP2A A subunit, Tor) repeats 32, a FAT (FRAP, ATM, and TRRAP) domain 3334, and an FRB (FK506-Rapamycin Binding) 35 domain. The kinase and the FATC (FAT domain at the C-terminus) 3236 domains are present in the C-terminal region.The Tor inhibitor rapamycin blocks cell proliferation and is currently used as an immunosuppressive drug for organ and tissue transplant recipients and a chemotherapy agent against a variety of solid cancers 37383940. Rapamycin binds to the prolyl isomerase FKBP12 to form a protein-drug complex that then interacts with the Tor FRB domain in a ternary complex 4142. S. cerevisiae cells treated with rapamycin display phenotypes associated with nutrient depletion including G1 cell cycle arrest, cellular volume expansion, protein synthesis inhibition, glycogen accumulation, and autophagy 3543.Genetic analysis in S. cerevisiae characterizing rapamycin-resistant mutants led to the identification of FKBP12 as the intracellular receptor for rapamycin and defined Tor1 and Tor2 as the targets of the FKBP12-rapamycin complex 4. Subsequent studies resulted in the identification and characterization of the TOR1 and TOR2 gene products 1544 as well as the elucidation of the Tor signaling cascade 8454647. These pioneering studies aided in the identification of the mammalian Tor ortholog and characterization of this highly conserved signaling cascade 84849. Remarkably, expression of the human FKBP12 ortholog in yeast fpr1 (the gene that encodes FKBP12) deletion mutants complements to restore rapamycin sensitivity, and hybrid Tor proteins consisting of the yeast N-terminal domain fused to the mammalian Tor kinase domain are also functional in yeast 50. Thus, the Tor pathway has been functionally and structurally conserved from yeasts to humans over the billion years of evolution separating the two species from their last common ancestor.We now know that the fungal and metazoan kingdoms are both within the opisthokont lineage of eukaryotes and are thus more closely related to each other than the vast majority of eukaryotic organisms 5152. Moreover, these two highly successful kingdoms shared a last common ancestor as recently as one billion years ago, much more recently than most eukaryotes. Recent initiatives, particularly the UNICORN project, have facilitated the sequencing of several opisthokonts related to the last common ancestor of the metazoans and fungi, providing an interesting window into the evolution of both fungi and animals 53545556. Thus, studies on the evolutionary trajectory of the fungal kingdom in general, and of the Tor signaling cascade in particular, promise to reveal insights about how orthologous pathways function in the more complex milieu of multicellular metazoan organisms.In this study, we have capitalized upon the wealth of available genomic information by annotating the Tor pathway in several fungal organisms in which this pathway has not been described. Our study included selected species in the major groups of the fungal kingdom with genome sequences available: the basidiomycete Pleurotus ostreatus; the Mucorales zygomycetes Mucor circinelloides, Rhizopus oryzae, and Phycomyces blakesleeanus; the chytridiomycetes Spizellomyces punctatus and Batrachochytrium dendrobatidis; the microsporidian species Encephalitozoon cuniculi, Enterocytozoon bieneusi, and Nosema ceranae; and the related non-fungal opisthokonts Capsaspora owczarzaki, Salpingoeca rosetta, and Monosiga brevicollis. Whereas the Tor pathway is conserved throughout the eukaryotes, strikingly, microsporidian species with their highly reduced and compacted genomes lack the entire Tor pathway. We have also investigated gene and genome duplication events that resulted in two Tor homologs in S. cerevisiae, S. pombe, P. ostreatus, and B. dendrobatidis, and the loss of a second Tor homolog following a whole genome duplication event in R. oryzae.Results and DiscussionConservation of the Tor signaling pathway molecular componentsThe Tor pathway is well conserved among nearly all eukaryotic species examined to date. Tor is essential for life and is the target of the potent drug rapamycin in fungi, humans, and other eukaryotic organisms 2121941. Tor originated early during the eukaryotic radiation, as it is present in the basal eukaryotes Giardia lamblia 57, L. major 18 and T. brucei 19, and also in plants 58. Here we focused on the Tor pathway in the fungal kingdom and other representative unicellular opisthokont species outside of the fungi. Several genes encoding Tor complex components, upstream regulators, and downstream effectors were identified in all major groups throughout the fungal kingdom (Figure 1, Table 1). Because we used BLASTp reciprocal best hits (RBH) to identify orthologs, in some cases the absence of an ortholog in our results may represent only a failure to detect it with this method. Further, functional homologs that are not sufficiently similar enough in sequence to be identified may be present. Overall, a high degree of pathway conservation is observed in the Tor signaling cascade throughout the fungal kingdom, with the exception of microsporidia in which all Tor pathway components are absent. In addition, several pathway components are conserved in the related unicellular opisthokonts M. brevicollis, S. rosetta, and C. owczarzaki (Table 2).In S. cerevisiae, Tor1 and Tor2 interact with several proteins to form TORC1 and TORC2. TORC1 contains Tor1 or Tor2, Kog1, Tco89, and Lst8. Kog1 functions as a substrate-recruiting subunit in mammalian TORC1 (mTORC1) 13596061. A gene encoding a putative Kog1 homolog was identified in all species included in this study, with the exception of the microsporidia and S. rosetta (Tables 1 and 2). Mutation of TCO89 results in hypersensitivity to rapamycin and affects cellular integrity in S. cerevisiae 21. Tco89 is only found in S. cerevisiae and could have resulted from a specialization of the pathway exclusive to Saccharomyces species (Table 1). However, while a BLASTp search did not identify Tco89 homologs in other species, S. pombe has been reported to contain a functional homolog [GenBank:NP_588232] 12, and this suggests that functional homologs may exist in other fungal species as well. However, no homologs were identified when using S.�pombe Tco89 as a query sequence. Lst8 binds to the Tor kinase domain in S. cerevisiae to stimulate catalytic activity 9 and a putative Lst8 homolog is conserved in most species analyzed except microsporidia and S.�rosetta (Tables 1 and 2).Additional BLASTp searches identified a single Tor homolog in the following species: Lachancea thermotolerans CBS6340 [GenBank:XP_002552336], Pichia pastoris GS115 [GenBank:XP_002491471], Pichia stipitis CBS6054 [GenBank:XP_001385651], Debaryomyces hansenii CBS767 [GenBank:XP_002770885], Yarrowia lipolytica CLIB122 [GenBank:XP_505106], Podospora anserina strain S mat+ [GenBank:XP_001903968], Chaetomium globosum CBS148.51 [GenBank:XP_001226647], Magnaporthe oryzae 70-15 [GenBank:XP_001414541], Gibberella zeae PH-1 [GenBank:XP_388309], Aspergillus fumigatus Af293 [GenBank:XP_755360], Aspergillus flavus NRRL3357 [GenBank:XP_002377897], Neosartorya fischeri NRRL181 [GenBank:XP_001260509], Aspergillus terreus NIH2624 [GenBank:XP_001213640], Aspergillus nidulans FGSCA4 [GenBank:XP_663586], Aspergillus clavatus NRRL1 [GenBank:XP_001275326], Aspergillus oryzae RIB40 [GenBank: XP_001826216], and Aspergillus niger CBS513.88 [GenBank:XP_001397781]. These ascomycetes were not included in further studies.In yeast and mammals, TORC2 controls spatial aspects of growth. TORC2 includes Tor2, Avo1, Avo2, Avo3, and Bit61 922. Avo1 plays an essential role in actin cytoskeleton polarization 22 and is conserved throughout the organisms that were the focus of this study (Table 1) except in S. rosetta and C. owczarzaki (Table 2). However, due to high divergence of the AVO1 sequence amongst the known homologs, it is possible that the S. rosetta and C. owczarzaki homologs cannot be identified using the BLASTp algorithm. Avo2 is a nonessential substrate adaptor for TORC2 22 and potential homologs were identified in most species studied, with the exceptions of S. pombe, P. ostreatus, the three microsporidian species (Table 1), and M. brevicollis (Table 2). In S. cerevisiae, Avo3 (also know as Tsc11) controls cytoskeletal dynamics 922, and homologs are conserved throughout the species examined (Tables 1 and 2). Bit61, a nonessential protein that associates with TORC2 21, was only identified in S. cerevisiae (Tables 1 and 2).Upstream regulators of Tor include Tsc1 and Tsc2 (Tuberous Sclerosis 1 and 2) and the GTPase Rheb (Ras homolog enhanced in brain). In S. pombe and other eukaryotes, Tsc1 and Tsc2 form a GTPase-activating complex that negatively regulates the action of Rheb to activate TORC1 266263. Tsc1 and Tsc2 putative homologs were identified in most species in the study, with the exception of S. cerevisiae (Table 1); however, Tsc1 homologs were not identified in B. dendrobatidis, S. rosetta, or C. owczarzaki (Tables 1 and 2). In mammals and insects, four Rag GTPases (RagA-D) bind raptor (Kog1) to mediate TORC1 signaling in response to amino acids 2426. RagA and RagB are orthologs of S.�cerevisiae Gtr1 whereas RagC and RagD are orthologs of S. cerevisiae Gtr2 23. Gtr1 and Gtr2 form a complex along with Ego1 and Ego3 known as EGOC/GSE 25, which is regulated by the GTP exchange factor Vam6 23. Interestingly we found presumptive Gtr1 and Gtr2 orthologs in species in this study with the exception of microsporidia (Table 1), and Gtr1 was not identified in M. brevicollis (Table 2). However, Ego1 and Ego3, which anchor Gtr1 and Gtr2 to endosomal and vacuolar membranes, are unique to S. cerevisiae and were not identified in the other species (Table 1). This suggests that the specific EGO complex architecture might be restricted to Saccharomyces, though it is possible that functional homologs may be present in other species.In fungi, several downstream effectors are targets of Tor signaling. The PP2A phosphatase Sit4 and its regulatory subunit Tap42 regulate the expression of several TORC1-controlled genes and Gcn2-regulated translation 36465. A Sit4 homolog was identified in R. oryzae (Table 1), though a homolog of the regulatory subunit Tap42 was not (Table 1). In S. rosetta, a Sit4 homolog was not identified, though Tap42 was (Table 2). Both of these situations could indicate rewiring of the pathway, or alternatively these findings could be a result of insufficient similarity to detect with a RBH search method. Sch9, a member of the AGC kinase family and the functional homolog of the p70 S6 kinase, is a direct substrate of S. cerevisiae TORC1 involved in ribosome biogenesis 2866. Sch9 was not identified in RBH BLASTp searches with S. cerevisiae Sch9 in M. circinelloides, P. blakesleeanus, the microsporidia (Table 1), or S. rosetta (Table 2), but was identified in all other species. Putative homologs of Ypk2 kinase, a regulator of ceramide synthesis controlled by TORC2 signaling 67, were only identified in S. cerevisiae, S. pombe, (Table 1), M. brevicollis, S. rosetta, and C. owczarzaki (Table 2). Notably, the failure to detect many homologs in M. brevicollis, S. rosetta, and C. owczarzaki could be due to their evolutionary distance from the other organisms in the study and their gene divergence.Evolutionary conservation of Tor kinase protein structureThe Tor kinases are phosphatidylinositol kinase-related kinases (PIKKs) 68 and aside from their known protein kinase function also serve as evolutionary constrained scaffolds with several protein-protein interaction domains that mediate multi-protein complex formation 69. Tor protein architecture was annotated using SMART 7071 and we found that it has been maintained throughout the species of this study (Figure 2). N-terminal HEAT repeats are present in varying numbers and serve as scaffolding structures for protein-protein interactions 327273. Similarly, the FAT/toxic domain and the accompanying C-terminal FATC domain also participate in protein scaffolding and are present and conserved in all species subject to analysis. Over-expression of the FAT domain has a dominant negative effect on cell growth in yeast and this effect can be suppressed by over-expression of phospholipase C 33. The kinase domain has similarities to both lipid and protein kinases, but it is a bona fide protein kinase. The FRB (FKBP12-rapamycin binding) domain is a highly conserved 100 amino acid region of Tor with several residues that are known to be required for binding the FKBP12-rapamycin drug complex 42.In addition, the FRB domain contains several residues necessary for both phosphatidic acid binding and rapamycin interaction 7475. In mammals, phosphatidic acid binding to the FRB region may promote the assembly of mTOR complexes. It has been proposed that the potent effect of the Tor inhibitor rapamycin may be due to direct competition for overlapping phosphatidic acid binding sites within the FRB domain 76. Mutation of the conserved amino acid residues S1975, W2041, or F2048 in the FRB domain confers rapamycin resistance in S. cerevisiae 44277. Strikingly, the corresponding amino acid residues are conserved in all species examined (Figure 3). In mTOR, phosphatidic acid binding is disrupted by mutations of L2031, F2309, and Y2105 75, corresponding to S. cerevisiae Tor2 L1971, F1979, and Y2045, respectively, all of which are conserved in the studied fungal species (Figure 3).Duplication of Tor in the fungal kingdomApproximately 100 million years ago, the S. cerevisiae ancestor underwent a whole genome duplication (WGD) event, and species that descend from this evolutionary event retained duplicated subsets of genes. S. cerevisiae retained approximately 8% of duplicated genes 7879, while other fungi in this lineage have maintained varying numbers of gene duplicates, such as Candida glabrata in which a smaller number (~2%) of these pairs are maintained 80. Interestingly, several of these species, including S. cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, S. bayanus, S. castellii, and C. glabrata have retained two TOR paralogs, whereas species outside of the WGD clade, including Kluyveromyces lactis and Ashbya gossypii, have only a single TOR gene.The fates of duplicated gene paralogs can be explained through the duplication, degeneration, and complementation (DDC) model of gene duplication 81. In species with a single Tor, this protein populates both TORC1 and TORC2, each of which has distinct functions. Following duplication, each paralog likely sub-functionalized to carry out some, but not all, of its previous functions so that between the two paralogs, each process is performed. In S. cerevisiae, for example, Tor1 exclusively functions within TORC1, while Tor2 preferentially populates TORC2 but can also function in TORC1. S. pombe has two Tor paralogs as a result of an independent segmental gene duplication event, and each paralog has distinct roles not necessarily equivalent to those of S. cerevisiae Tor1 and Tor2. SpTor1 is not essential, whereas SpTor2 is essential for growth 112982.We hypothesize that similar models could apply in species encoding two Tor homologs resulting from independent gene duplication events such as P. ostreatus and B. dendrobatidis. Based on their level of identity with S.�cerevisiae Tor homologs, the B. dendrobatidis genes BDEG_08293 and BDEG_05727 have been designated TOR1 and TOR2, respectively. However, these gene names are not necessarily based on functional similarity with ScTor1 and ScTor2 but rather indicate only that there are two TOR homologs in B. dendrobatidis. A�similar naming challenge is evident in S. pombe, where the functions of SpTor1 and SpTor2 are not equivalent with those of ScTor1 and ScTor2.While several species, such as those in the Saccharomyces clade, have two Tor paralogs resulting from ancient WGD events, other species have acquired a second paralog through independent segmental gene duplication events, including B. dendrobatidis and several fission yeast species closely related to S. pombe (Figure 4). Segmental gene duplications have played a major role in the evolution of species and can result in the duplication of single genes or large blocks of genes 83. In S. cerevisiae, the duplication blocks with TOR include three paralogous gene pairs that have been retained from the ancestral WGD event: PTK1/PTK2, TOR1/TOR2, and MNN4/YJR061W 78 (Figure 5A). Further, C. glabrata, an ascomycete closely related to S. cerevisiae that diverged following the WGD, has also maintained a second TOR paralog and synteny is apparent in the region flanking the TOR1 and TOR2 genes, though one must extend the analysis to >40 kb from the TOR genes to detect it (See additional file 1: Supplemental figure 1). However, because C. glabrata and S. cerevisiae have retained different subsets of genes from the ancestral WGD, the duplicated genes surrounding TOR in these species are not homologs of one another. Further, C. glabrata has maintained fewer of the synteny blocks found in S. cerevisiae, and the block containing the TOR genes (Block 42) is not conserved in C. glabrata 80.In contrast, genomic regions surrounding the Tor paralogs in S. pombe (Figure 5B) and B. dendrobatidis (Figure 5C) are not syntenically conserved. That is, the duplicated genes are not flanked by other duplicated gene pairs, and the two TOR paralogs likely resulted from independent segmental gene duplication events. Further, there are no indications of WGDs in these species. In the Schizosaccharomycotina, the TOR gene duplication occurred prior to speciation as evidenced by the fact that S. pombe, S. octosporus, S. japonicus, and S. cryophilus have each retained a second Tor paralog; the Tor orthologs across these four species are more closely related to each other than to those from other species (Figure 4). No syntenic conservation between the genomic regions containing TOR paralogs was detected in any species of the Schizosaccharomyces group, supporting the occurrence of an independent segmental gene duplication in their common ancestor (see additional file 2: supplemental Figure 2).The Taphrinomycotina is a monophyletic taxon of the Ascomycota containing the Schizosaccharomycetes, Taphrinomycetes, Neolectomycetes, and Pneumocystidomycetes. Genomes are only available for species within the Schizosaccharomycetes (S. pombe, S. octosporus, S. japonicus, and S. cryophilus) and the Taphrinomycetes (Pneumocystis carinii). While the studied Schizosaccharomyces spp. contain two Tor homologs, a single homolog was identified in P. carinii with tBLASTx using the highly conserved S. cerevisiae FRB domain of Tor1 based on sequence data produced by the Pneumocystis Genome Project (funded by the NIH NIAID) that was obtained from http://pgp.cchmc.org at the time of publication. Based on the phylogenetic placement of these two groups 84 and the available genomic information, we hypothesize that the segmental TOR duplication is unique to the Schizosaccharomyces spp. and occurred following their divergence from the common ancestor of the Taphrinomycota, as P. carinii, the other species within this taxon with available genome data, appears to contain a single Tor homolog.Interestingly, the zygomycete R. oryzae underwent a whole genome duplication event and despite retaining 12% of the resulting duplicated genes 85 compared to 8% retained genes in a separate WGD event in S. cerevisiae 7879, two Tor paralogs have not been retained; only a single Tor homolog was identified. Currently, the Zygomycota is the only group studied without an identified species containing two Tor homologs; however, there are not enough available genomes to make a definitive conclusion in this group. Other species with independent TOR duplications likely remain to be identified in all of the major fungal lineages, and as more genome sequences become available this will be addressed.During this study, we identified three additional species that possibly have two TOR paralogs: M. brevicollis, Thecamonas trahens, and Allomyces macrogynus, species that are included in the Origins of Multicellularity Project 86. While analysis is limited because of the state of the M. brevicollis (choanoflagellate) genome, it appears that an additional bonafide Tor protein is encoded with the conserved Tor protein architecture. Thecamonas trahens is a unicellular apusomonad that also contains two TOR paralogs. Interestingly, A. macrogynus is a fungus that may contain a second paralog; however, it appears that the FRB domain overlaps with the kinase domain. This may represent a case in which TOR was duplicated but is in the process of losing one of the copies. These cases are a springboard for future studies involving the duplication of TOR within and beyond the fungal kingdom.Loss of the Tor signaling pathway in microsporidiaWhile components of the Tor signaling cascade are conserved in eukaryotes from yeasts to humans, the microsporidia, a group of highly specialized obligate intracellular pathogens completely lack all of the pathway components investigated in this study. E. cuniculi has previously been noted to lack the Tor kinase 87, and we found that all pathway components including Tor were missing not only in E. cuniculi but also in its microsporidian relatives E. bieneusi and N. ceranae (Table 2). Microsporidian genomes are highly compacted and show a marked reduced gene content. The genome of the human pathogen E. cuniculi has 1997 genes distributed throughout 11 chromosomes in a 2.9 Mb genome 88, less than half the number of protein-coding genes found in Escherichia coli. For comparison, the genome of the human pathogen E. bieneusi genome is ~6 Mb with 3,804 genes 89 and the honeybee pathogen N. ceranae genome is ~7.9 Mb with 2,614 predicted genes 90. Genome reduction has been well studied in intracellular bacteria: during the specialization process from a free-living to intracellular lifestyle, massive gene loss can occur 9192939495. We hypothesize that as a consequence of their specialization to an obligate intracellular lifestyle, the need for nutrient sensing was relaxed and these obligate intracellular microsporidia acquired nutrients from within the host cytoplasm. Thus, they no longer required the Tor pathway, which is dedicated to sensing changes in the nutrient composite of the environmental milieu. However, E. cuniculi has retained some of the genes encoding signaling pathways involved in nutrient sensing in other species, including homologs of S. cerevisiae Ras1 and Ras2 (data not shown).Interestingly, P. carinii is an obligate pathogen with a reduced genome estimated to be ~8 Mb 96, which unlike microsporidia is not obligately intracellular. A�single Tor homolog was identified [Pneumocystis Genome Project:cap3_it1_grp346_contig490] using the S. cerevisiae Tor1 FRB domain in tBLASTx, supporting our hypothesis that the microsporidia have streamlined their genomes as they adopted an obligate intracellular life cycle. P. carinii likely requires Tor because it must survive in a metabolically active form outside of host cells, undergoing cell division in the extracellular milieu of the infected host lung.Many microsporidian genomes have undergone extreme genome reduction and are among the eukaryotes with the smallest genomes. In addition to fewer genes than other species (1997 in E. cuniculi compared to 6607 in S. cerevisiae), E. cuniculi has shorter genes, small intergenic distances, and very few introns 8897. This species (and to an even greater extent, E. bieneusi) lacks several genes that are necessary for biosynthetic pathways and the tricarboxylic acid cycle in free-living organisms 888998. Remarkably, E. cuniculi must acquire ATP from its host through a series of ATP transporters anciently acquired from Rickettsia- or Chlamydia-like bacteria 99, and this is an example of how E. cuniculi, and possibly other microsporidia, can hijack mechanisms of other intracellular bacteria, fungi, or the host to survive in and adapt to their highly specialized intracellular lifestyle.ConclusionsThe Tor pathway is highly conserved with some exceptions among fungi, including several pathogens. Similarly, the molecular structural organization of the Tor kinases has been remarkably conserved as well as the presumed ability to bind the FKBP12-rapamycin complex. This feature, combined with the essential nature of the rapamycin-sensitive TORC1 pathway for cell growth, should enable the development of rapamycin-based strategies for antifungal therapies. Duplications of the Tor protein occurred in most fungal groups examined, resulting from either independent segmental gene duplication events or a WGD event. The maintenance of two Tor homologs can be explained through the DDC model of gene duplication, in which the paralogs subfunctionalize and together support all of the functions of the pre-duplicated protein. In addition, species outside of the fungal kingdom with two or more TOR homologs include the metazoan B. mori, the apusomonad protozoan T. trahens, the trypanosome protozoans L. major and T. brucei, and possibly the choanoflagellate M. brevicollis. This suggests that the Tor gene has been independently duplicated multiple times since the last common ancestor of the Opisthokonta and Excavata lineages. The Tor pathway, as well as the Tor protein itself, is highly conserved in eukaryotes, so the observation that three microsporidian species are missing the entire pathway is striking. It would appear that the specialized obligate intracellular life cycle of microsporidia allows for the acquisition of nutrients from the host cell, obviating a requirement for this central nutrient-sensing pathway that is essential in all known cases of other eukaryotes for axenic growth.MethodsIdentification of pathway component homologsTor homologs were identified using the highly conserved 100 amino acid FRB domain of S. cerevisiae Tor1 in BLASTp reciprocal best-hit searches between the specific species database and the Saccharomyces Genome Database (SGD). All queries for other Tor pathway components were retrieved from SGD and homologs were identified by BLASTp reciprocal best-hit searches, with the exception of Tsc1 and Tsc2. Tsc1 and Tsc2 protein query sequences were retrieved from the S. pombe GeneDB, and homologs were identified using BLASTp searches between the S. pombe genome database and the species database. Species identification numbers are listed in Supplemental Table 1. Protein architecture of each homolog was elucidated with Simple Modular Architecture Research Tool (SMART) analysis 7071.Accession numbers are provided for putative Tor pathway components (see Additional file 3, supplemental Table 1 for the accession numbers of putative Tor pathway components) from the following public genomic databases that were used to carry out BLAST: S. cerevisiae, SGD, http://www.yeastgenome.org; S. pombe, GeneDB, http://www.genedb.org/genedb/pombe/index.jsp; P. ostreatus, JGI, http://genome.jgi-psf.org/PleosPC15_1/PleosPC15_1.home.html; M. circinelloides, JGI and the Mucor Genome Project, http://genome.jgi-psf.org/Mucci1/Mucci1.home.html; R. oryzae, Broad Institute, http://www.broadinstitute.org/annotation/genome/rhizopus_oryzae/MultiHome.html; P. blakesleeanus, JGI, http://genome.jgi-psf.org/Phybl1/Phybl1.home.html; B. dendrobatidis, Broad Institute, http://www.broadinstitute.org/annotation/genome/batrachochytrium_dendrobatidis/MultiHome.html; S. punctatus, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; M. brevicollis, JGI, http://genome.jgi-psf.org/Monbr1/Monbr1.home.html; S. rosetta, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; C. owczarzaki, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; E. cuniculi, E. bieneusi, and N. ceranae, NCBI, http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi?organism=fungi.Phylogenetic analysis of TorThe ProtTest program 100 was used to select an appropriate model to construct the phylogenetic relationship of the Tor proteins of the studied species. For this study, the best model for phylogenetic construction of the Tor protein using maximum likelihood (ML) was JTT+I+G+F 101. The ML tree was generated using PhyML with the JTT+I+G+F mode with 500 bootstrap replicates 102103. The Tor amino acid sequences from all species were aligned with CLUSTAL W 104.Synteny analysis of TOR paralogsTor homologs in fungal species were identified with BLAST 105 using TOR1 and TOR2 of S. cerevisiae as query sequences. The TOR sequence and flanking regions (up to 100 kb) were extracted from corresponding contigs or chromosomal sequences. To analyze the synteny of TOR and flanking regions, we constructed a database of one TOR and flanking region sequence and used the other TOR homolog and flanking region sequence to perform tBLASTx searches in the database (BLOSUM62 matrix; E-value = 1e-3; gap cost: existence 11, extension 1; and low complexity regions filter). The tBLASTx results were parsed and formatted using an in-house Perl script (available upon request). The parsed and formatted tBLASTx results were then imported into Artemis software 106 for synteny analysis. We employed a cutoff value of 100 bp to filter short non-significant matches between query and database sequences.Authors� contributionsCAS carried out the homolog searches and phylogenetic analysis and drafted the manuscript. RJB performed homolog searches and participated in the design of the study. WL performed the synteny and phylogenetic analysis and helped draft the manuscript. JH and MEC conceived of the study, participated in its design and helped to draft the manuscript. All authors read and approved the final manuscript.
BackgroundThe nutrient-sensing target of rapamycin (Tor) pathway is highly conserved among eukaryotes and governs several essential cellular processes including protein synthesis, ribosome biogenesis, autophagy, and cytoskeletal organization 123. In the fungal kingdom, the Tor pathway has been best studied in the budding yeast Saccharomyces cerevisiae 234, the fission yeast Schizosaccharomyces pombe 56, and the human pathogen Candida albicans 5678. However, little is known about Tor in basal fungal lineages, including the Zygomycota and Chytridiomycota.In S. cerevisiae and S. pombe, two Tor paralogs form distinct complexes known as Tor Complex 1 (TORC1) and Tor Complex 2 (TORC2) 9101112, while in most other species, including humans, a single Tor protein can populate both complexes 11121314. Interestingly, S. cerevisiae Tor2 can complement the loss of Tor1, but Tor1 cannot complement the loss of Tor2 1516. Two Tor paralogs have also been identified in a metazoan, the silkworm Bombyx mori 17 and three Tor paralogs were identified in the trypanosomatid parasites Leishmania major 18 and the related species Trypanosoma brucei 19, the first reported Tor triumvirates.The ScTORC1 is sensitive to rapamycin and controls protein synthesis, mRNA synthesis and degradation, ribosome biogenesis, and autophagy. TORC2 is insensitive to rapamycin and is involved in the control of actin polarization and cell wall integrity 916. TORC1 consists of Tor1 or Tor2, Kog1 20, Tco89, and Lst8 21, while TORC2 contains Tor2, Lst8, Avo1, Avo2, and Avo3 22 (Figure 1A). Recently, the EGO-GTPase complex and its orthologs were shown to convey amino acid signals for TORC1 activation in yeast, insects, and mammals 23242526. In S. cerevisiae, immediate effectors of TORC1 include the PP2A-like phosphatase Sit4 27 and the AGC kinase Sch9 28. In S. pombe, Tor participates in other cellular functions including nutrient signaling 29, cell growth and differentiation 30, mitotic commitment 31, and sexual development 11 (Figure 1B).The structure of the Tor proteins is remarkably conserved (Figure 2) and features several domains for protein-protein interactions including N-terminal HEAT (Huntingtin, Elongation factor 3, PP2A A subunit, Tor) repeats 32, a FAT (FRAP, ATM, and TRRAP) domain 3334, and an FRB (FK506-Rapamycin Binding) 35 domain. The kinase and the FATC (FAT domain at the C-terminus) 3236 domains are present in the C-terminal region.The Tor inhibitor rapamycin blocks cell proliferation and is currently used as an immunosuppressive drug for organ and tissue transplant recipients and a chemotherapy agent against a variety of solid cancers 37383940. Rapamycin binds to the prolyl isomerase FKBP12 to form a protein-drug complex that then interacts with the Tor FRB domain in a ternary complex 4142. S. cerevisiae cells treated with rapamycin display phenotypes associated with nutrient depletion including G1 cell cycle arrest, cellular volume expansion, protein synthesis inhibition, glycogen accumulation, and autophagy 3543.Genetic analysis in S. cerevisiae characterizing rapamycin-resistant mutants led to the identification of FKBP12 as the intracellular receptor for rapamycin and defined Tor1 and Tor2 as the targets of the FKBP12-rapamycin complex 4. Subsequent studies resulted in the identification and characterization of the TOR1 and TOR2 gene products 1544 as well as the elucidation of the Tor signaling cascade 8454647. These pioneering studies aided in the identification of the mammalian Tor ortholog and characterization of this highly conserved signaling cascade 84849. Remarkably, expression of the human FKBP12 ortholog in yeast fpr1 (the gene that encodes FKBP12) deletion mutants complements to restore rapamycin sensitivity, and hybrid Tor proteins consisting of the yeast N-terminal domain fused to the mammalian Tor kinase domain are also functional in yeast 50. Thus, the Tor pathway has been functionally and structurally conserved from yeasts to humans over the billion years of evolution separating the two species from their last common ancestor.We now know that the fungal and metazoan kingdoms are both within the opisthokont lineage of eukaryotes and are thus more closely related to each other than the vast majority of eukaryotic organisms 5152. Moreover, these two highly successful kingdoms shared a last common ancestor as recently as one billion years ago, much more recently than most eukaryotes. Recent initiatives, particularly the UNICORN project, have facilitated the sequencing of several opisthokonts related to the last common ancestor of the metazoans and fungi, providing an interesting window into the evolution of both fungi and animals 53545556. Thus, studies on the evolutionary trajectory of the fungal kingdom in general, and of the Tor signaling cascade in particular, promise to reveal insights about how orthologous pathways function in the more complex milieu of multicellular metazoan organisms.In this study, we have capitalized upon the wealth of available genomic information by annotating the Tor pathway in several fungal organisms in which this pathway has not been described. Our study included selected species in the major groups of the fungal kingdom with genome sequences available: the basidiomycete Pleurotus ostreatus; the Mucorales zygomycetes Mucor circinelloides, Rhizopus oryzae, and Phycomyces blakesleeanus; the chytridiomycetes Spizellomyces punctatus and Batrachochytrium dendrobatidis; the microsporidian species Encephalitozoon cuniculi, Enterocytozoon bieneusi, and Nosema ceranae; and the related non-fungal opisthokonts Capsaspora owczarzaki, Salpingoeca rosetta, and Monosiga brevicollis. Whereas the Tor pathway is conserved throughout the eukaryotes, strikingly, microsporidian species with their highly reduced and compacted genomes lack the entire Tor pathway. We have also investigated gene and genome duplication events that resulted in two Tor homologs in S. cerevisiae, S. pombe, P. ostreatus, and B. dendrobatidis, and the loss of a second Tor homolog following a whole genome duplication event in R. oryzae.Results and DiscussionConservation of the Tor signaling pathway molecular componentsThe Tor pathway is well conserved among nearly all eukaryotic species examined to date. Tor is essential for life and is the target of the potent drug rapamycin in fungi, humans, and other eukaryotic organisms 2121941. Tor originated early during the eukaryotic radiation, as it is present in the basal eukaryotes Giardia lamblia 57, L. major 18 and T. brucei 19, and also in plants 58. Here we focused on the Tor pathway in the fungal kingdom and other representative unicellular opisthokont species outside of the fungi. Several genes encoding Tor complex components, upstream regulators, and downstream effectors were identified in all major groups throughout the fungal kingdom (Figure 1, Table 1). Because we used BLASTp reciprocal best hits (RBH) to identify orthologs, in some cases the absence of an ortholog in our results may represent only a failure to detect it with this method. Further, functional homologs that are not sufficiently similar enough in sequence to be identified may be present. Overall, a high degree of pathway conservation is observed in the Tor signaling cascade throughout the fungal kingdom, with the exception of microsporidia in which all Tor pathway components are absent. In addition, several pathway components are conserved in the related unicellular opisthokonts M. brevicollis, S. rosetta, and C. owczarzaki (Table 2).In S. cerevisiae, Tor1 and Tor2 interact with several proteins to form TORC1 and TORC2. TORC1 contains Tor1 or Tor2, Kog1, Tco89, and Lst8. Kog1 functions as a substrate-recruiting subunit in mammalian TORC1 (mTORC1) 13596061. A gene encoding a putative Kog1 homolog was identified in all species included in this study, with the exception of the microsporidia and S. rosetta (Tables 1 and 2). Mutation of TCO89 results in hypersensitivity to rapamycin and affects cellular integrity in S. cerevisiae 21. Tco89 is only found in S. cerevisiae and could have resulted from a specialization of the pathway exclusive to Saccharomyces species (Table 1). However, while a BLASTp search did not identify Tco89 homologs in other species, S. pombe has been reported to contain a functional homolog [GenBank:NP_588232] 12, and this suggests that functional homologs may exist in other fungal species as well. However, no homologs were identified when using S.�pombe Tco89 as a query sequence. Lst8 binds to the Tor kinase domain in S. cerevisiae to stimulate catalytic activity 9 and a putative Lst8 homolog is conserved in most species analyzed except microsporidia and S.�rosetta (Tables 1 and 2).Additional BLASTp searches identified a single Tor homolog in the following species: Lachancea thermotolerans CBS6340 [GenBank:XP_002552336], Pichia pastoris GS115 [GenBank:XP_002491471], Pichia stipitis CBS6054 [GenBank:XP_001385651], Debaryomyces hansenii CBS767 [GenBank:XP_002770885], Yarrowia lipolytica CLIB122 [GenBank:XP_505106], Podospora anserina strain S mat+ [GenBank:XP_001903968], Chaetomium globosum CBS148.51 [GenBank:XP_001226647], Magnaporthe oryzae 70-15 [GenBank:XP_001414541], Gibberella zeae PH-1 [GenBank:XP_388309], Aspergillus fumigatus Af293 [GenBank:XP_755360], Aspergillus flavus NRRL3357 [GenBank:XP_002377897], Neosartorya fischeri NRRL181 [GenBank:XP_001260509], Aspergillus terreus NIH2624 [GenBank:XP_001213640], Aspergillus nidulans FGSCA4 [GenBank:XP_663586], Aspergillus clavatus NRRL1 [GenBank:XP_001275326], Aspergillus oryzae RIB40 [GenBank: XP_001826216], and Aspergillus niger CBS513.88 [GenBank:XP_001397781]. These ascomycetes were not included in further studies.In yeast and mammals, TORC2 controls spatial aspects of growth. TORC2 includes Tor2, Avo1, Avo2, Avo3, and Bit61 922. Avo1 plays an essential role in actin cytoskeleton polarization 22 and is conserved throughout the organisms that were the focus of this study (Table 1) except in S. rosetta and C. owczarzaki (Table 2). However, due to high divergence of the AVO1 sequence amongst the known homologs, it is possible that the S. rosetta and C. owczarzaki homologs cannot be identified using the BLASTp algorithm. Avo2 is a nonessential substrate adaptor for TORC2 22 and potential homologs were identified in most species studied, with the exceptions of S. pombe, P. ostreatus, the three microsporidian species (Table 1), and M. brevicollis (Table 2). In S. cerevisiae, Avo3 (also know as Tsc11) controls cytoskeletal dynamics 922, and homologs are conserved throughout the species examined (Tables 1 and 2). Bit61, a nonessential protein that associates with TORC2 21, was only identified in S. cerevisiae (Tables 1 and 2).Upstream regulators of Tor include Tsc1 and Tsc2 (Tuberous Sclerosis 1 and 2) and the GTPase Rheb (Ras homolog enhanced in brain). In S. pombe and other eukaryotes, Tsc1 and Tsc2 form a GTPase-activating complex that negatively regulates the action of Rheb to activate TORC1 266263. Tsc1 and Tsc2 putative homologs were identified in most species in the study, with the exception of S. cerevisiae (Table 1); however, Tsc1 homologs were not identified in B. dendrobatidis, S. rosetta, or C. owczarzaki (Tables 1 and 2). In mammals and insects, four Rag GTPases (RagA-D) bind raptor (Kog1) to mediate TORC1 signaling in response to amino acids 2426. RagA and RagB are orthologs of S.�cerevisiae Gtr1 whereas RagC and RagD are orthologs of S. cerevisiae Gtr2 23. Gtr1 and Gtr2 form a complex along with Ego1 and Ego3 known as EGOC/GSE 25, which is regulated by the GTP exchange factor Vam6 23. Interestingly we found presumptive Gtr1 and Gtr2 orthologs in species in this study with the exception of microsporidia (Table 1), and Gtr1 was not identified in M. brevicollis (Table 2). However, Ego1 and Ego3, which anchor Gtr1 and Gtr2 to endosomal and vacuolar membranes, are unique to S. cerevisiae and were not identified in the other species (Table 1). This suggests that the specific EGO complex architecture might be restricted to Saccharomyces, though it is possible that functional homologs may be present in other species.In fungi, several downstream effectors are targets of Tor signaling. The PP2A phosphatase Sit4 and its regulatory subunit Tap42 regulate the expression of several TORC1-controlled genes and Gcn2-regulated translation 36465. A Sit4 homolog was identified in R. oryzae (Table 1), though a homolog of the regulatory subunit Tap42 was not (Table 1). In S. rosetta, a Sit4 homolog was not identified, though Tap42 was (Table 2). Both of these situations could indicate rewiring of the pathway, or alternatively these findings could be a result of insufficient similarity to detect with a RBH search method. Sch9, a member of the AGC kinase family and the functional homolog of the p70 S6 kinase, is a direct substrate of S. cerevisiae TORC1 involved in ribosome biogenesis 2866. Sch9 was not identified in RBH BLASTp searches with S. cerevisiae Sch9 in M. circinelloides, P. blakesleeanus, the microsporidia (Table 1), or S. rosetta (Table 2), but was identified in all other species. Putative homologs of Ypk2 kinase, a regulator of ceramide synthesis controlled by TORC2 signaling 67, were only identified in S. cerevisiae, S. pombe, (Table 1), M. brevicollis, S. rosetta, and C. owczarzaki (Table 2). Notably, the failure to detect many homologs in M. brevicollis, S. rosetta, and C. owczarzaki could be due to their evolutionary distance from the other organisms in the study and their gene divergence.Evolutionary conservation of Tor kinase protein structureThe Tor kinases are phosphatidylinositol kinase-related kinases (PIKKs) 68 and aside from their known protein kinase function also serve as evolutionary constrained scaffolds with several protein-protein interaction domains that mediate multi-protein complex formation 69. Tor protein architecture was annotated using SMART 7071 and we found that it has been maintained throughout the species of this study (Figure 2). N-terminal HEAT repeats are present in varying numbers and serve as scaffolding structures for protein-protein interactions 327273. Similarly, the FAT/toxic domain and the accompanying C-terminal FATC domain also participate in protein scaffolding and are present and conserved in all species subject to analysis. Over-expression of the FAT domain has a dominant negative effect on cell growth in yeast and this effect can be suppressed by over-expression of phospholipase C 33. The kinase domain has similarities to both lipid and protein kinases, but it is a bona fide protein kinase. The FRB (FKBP12-rapamycin binding) domain is a highly conserved 100 amino acid region of Tor with several residues that are known to be required for binding the FKBP12-rapamycin drug complex 42.In addition, the FRB domain contains several residues necessary for both phosphatidic acid binding and rapamycin interaction 7475. In mammals, phosphatidic acid binding to the FRB region may promote the assembly of mTOR complexes. It has been proposed that the potent effect of the Tor inhibitor rapamycin may be due to direct competition for overlapping phosphatidic acid binding sites within the FRB domain 76. Mutation of the conserved amino acid residues S1975, W2041, or F2048 in the FRB domain confers rapamycin resistance in S. cerevisiae 44277. Strikingly, the corresponding amino acid residues are conserved in all species examined (Figure 3). In mTOR, phosphatidic acid binding is disrupted by mutations of L2031, F2309, and Y2105 75, corresponding to S. cerevisiae Tor2 L1971, F1979, and Y2045, respectively, all of which are conserved in the studied fungal species (Figure 3).Duplication of Tor in the fungal kingdomApproximately 100 million years ago, the S. cerevisiae ancestor underwent a whole genome duplication (WGD) event, and species that descend from this evolutionary event retained duplicated subsets of genes. S. cerevisiae retained approximately 8% of duplicated genes 7879, while other fungi in this lineage have maintained varying numbers of gene duplicates, such as Candida glabrata in which a smaller number (~2%) of these pairs are maintained 80. Interestingly, several of these species, including S. cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, S. bayanus, S. castellii, and C. glabrata have retained two TOR paralogs, whereas species outside of the WGD clade, including Kluyveromyces lactis and Ashbya gossypii, have only a single TOR gene.The fates of duplicated gene paralogs can be explained through the duplication, degeneration, and complementation (DDC) model of gene duplication 81. In species with a single Tor, this protein populates both TORC1 and TORC2, each of which has distinct functions. Following duplication, each paralog likely sub-functionalized to carry out some, but not all, of its previous functions so that between the two paralogs, each process is performed. In S. cerevisiae, for example, Tor1 exclusively functions within TORC1, while Tor2 preferentially populates TORC2 but can also function in TORC1. S. pombe has two Tor paralogs as a result of an independent segmental gene duplication event, and each paralog has distinct roles not necessarily equivalent to those of S. cerevisiae Tor1 and Tor2. SpTor1 is not essential, whereas SpTor2 is essential for growth 112982.We hypothesize that similar models could apply in species encoding two Tor homologs resulting from independent gene duplication events such as P. ostreatus and B. dendrobatidis. Based on their level of identity with S.�cerevisiae Tor homologs, the B. dendrobatidis genes BDEG_08293 and BDEG_05727 have been designated TOR1 and TOR2, respectively. However, these gene names are not necessarily based on functional similarity with ScTor1 and ScTor2 but rather indicate only that there are two TOR homologs in B. dendrobatidis. A�similar naming challenge is evident in S. pombe, where the functions of SpTor1 and SpTor2 are not equivalent with those of ScTor1 and ScTor2.While several species, such as those in the Saccharomyces clade, have two Tor paralogs resulting from ancient WGD events, other species have acquired a second paralog through independent segmental gene duplication events, including B. dendrobatidis and several fission yeast species closely related to S. pombe (Figure 4). Segmental gene duplications have played a major role in the evolution of species and can result in the duplication of single genes or large blocks of genes 83. In S. cerevisiae, the duplication blocks with TOR include three paralogous gene pairs that have been retained from the ancestral WGD event: PTK1/PTK2, TOR1/TOR2, and MNN4/YJR061W 78 (Figure 5A). Further, C. glabrata, an ascomycete closely related to S. cerevisiae that diverged following the WGD, has also maintained a second TOR paralog and synteny is apparent in the region flanking the TOR1 and TOR2 genes, though one must extend the analysis to >40 kb from the TOR genes to detect it (See additional file 1: Supplemental figure 1). However, because C. glabrata and S. cerevisiae have retained different subsets of genes from the ancestral WGD, the duplicated genes surrounding TOR in these species are not homologs of one another. Further, C. glabrata has maintained fewer of the synteny blocks found in S. cerevisiae, and the block containing the TOR genes (Block 42) is not conserved in C. glabrata 80.In contrast, genomic regions surrounding the Tor paralogs in S. pombe (Figure 5B) and B. dendrobatidis (Figure 5C) are not syntenically conserved. That is, the duplicated genes are not flanked by other duplicated gene pairs, and the two TOR paralogs likely resulted from independent segmental gene duplication events. Further, there are no indications of WGDs in these species. In the Schizosaccharomycotina, the TOR gene duplication occurred prior to speciation as evidenced by the fact that S. pombe, S. octosporus, S. japonicus, and S. cryophilus have each retained a second Tor paralog; the Tor orthologs across these four species are more closely related to each other than to those from other species (Figure 4). No syntenic conservation between the genomic regions containing TOR paralogs was detected in any species of the Schizosaccharomyces group, supporting the occurrence of an independent segmental gene duplication in their common ancestor (see additional file 2: supplemental Figure 2).The Taphrinomycotina is a monophyletic taxon of the Ascomycota containing the Schizosaccharomycetes, Taphrinomycetes, Neolectomycetes, and Pneumocystidomycetes. Genomes are only available for species within the Schizosaccharomycetes (S. pombe, S. octosporus, S. japonicus, and S. cryophilus) and the Taphrinomycetes (Pneumocystis carinii). While the studied Schizosaccharomyces spp. contain two Tor homologs, a single homolog was identified in P. carinii with tBLASTx using the highly conserved S. cerevisiae FRB domain of Tor1 based on sequence data produced by the Pneumocystis Genome Project (funded by the NIH NIAID) that was obtained from http://pgp.cchmc.org at the time of publication. Based on the phylogenetic placement of these two groups 84 and the available genomic information, we hypothesize that the segmental TOR duplication is unique to the Schizosaccharomyces spp. and occurred following their divergence from the common ancestor of the Taphrinomycota, as P. carinii, the other species within this taxon with available genome data, appears to contain a single Tor homolog.Interestingly, the zygomycete R. oryzae underwent a whole genome duplication event and despite retaining 12% of the resulting duplicated genes 85 compared to 8% retained genes in a separate WGD event in S. cerevisiae 7879, two Tor paralogs have not been retained; only a single Tor homolog was identified. Currently, the Zygomycota is the only group studied without an identified species containing two Tor homologs; however, there are not enough available genomes to make a definitive conclusion in this group. Other species with independent TOR duplications likely remain to be identified in all of the major fungal lineages, and as more genome sequences become available this will be addressed.During this study, we identified three additional species that possibly have two TOR paralogs: M. brevicollis, Thecamonas trahens, and Allomyces macrogynus, species that are included in the Origins of Multicellularity Project 86. While analysis is limited because of the state of the M. brevicollis (choanoflagellate) genome, it appears that an additional bonafide Tor protein is encoded with the conserved Tor protein architecture. Thecamonas trahens is a unicellular apusomonad that also contains two TOR paralogs. Interestingly, A. macrogynus is a fungus that may contain a second paralog; however, it appears that the FRB domain overlaps with the kinase domain. This may represent a case in which TOR was duplicated but is in the process of losing one of the copies. These cases are a springboard for future studies involving the duplication of TOR within and beyond the fungal kingdom.Loss of the Tor signaling pathway in microsporidiaWhile components of the Tor signaling cascade are conserved in eukaryotes from yeasts to humans, the microsporidia, a group of highly specialized obligate intracellular pathogens completely lack all of the pathway components investigated in this study. E. cuniculi has previously been noted to lack the Tor kinase 87, and we found that all pathway components including Tor were missing not only in E. cuniculi but also in its microsporidian relatives E. bieneusi and N. ceranae (Table 2). Microsporidian genomes are highly compacted and show a marked reduced gene content. The genome of the human pathogen E. cuniculi has 1997 genes distributed throughout 11 chromosomes in a 2.9 Mb genome 88, less than half the number of protein-coding genes found in Escherichia coli. For comparison, the genome of the human pathogen E. bieneusi genome is ~6 Mb with 3,804 genes 89 and the honeybee pathogen N. ceranae genome is ~7.9 Mb with 2,614 predicted genes 90. Genome reduction has been well studied in intracellular bacteria: during the specialization process from a free-living to intracellular lifestyle, massive gene loss can occur 9192939495. We hypothesize that as a consequence of their specialization to an obligate intracellular lifestyle, the need for nutrient sensing was relaxed and these obligate intracellular microsporidia acquired nutrients from within the host cytoplasm. Thus, they no longer required the Tor pathway, which is dedicated to sensing changes in the nutrient composite of the environmental milieu. However, E. cuniculi has retained some of the genes encoding signaling pathways involved in nutrient sensing in other species, including homologs of S. cerevisiae Ras1 and Ras2 (data not shown).Interestingly, P. carinii is an obligate pathogen with a reduced genome estimated to be ~8 Mb 96, which unlike microsporidia is not obligately intracellular. A�single Tor homolog was identified [Pneumocystis Genome Project:cap3_it1_grp346_contig490] using the S. cerevisiae Tor1 FRB domain in tBLASTx, supporting our hypothesis that the microsporidia have streamlined their genomes as they adopted an obligate intracellular life cycle. P. carinii likely requires Tor because it must survive in a metabolically active form outside of host cells, undergoing cell division in the extracellular milieu of the infected host lung.Many microsporidian genomes have undergone extreme genome reduction and are among the eukaryotes with the smallest genomes. In addition to fewer genes than other species (1997 in E. cuniculi compared to 6607 in S. cerevisiae), E. cuniculi has shorter genes, small intergenic distances, and very few introns 8897. This species (and to an even greater extent, E. bieneusi) lacks several genes that are necessary for biosynthetic pathways and the tricarboxylic acid cycle in free-living organisms 888998. Remarkably, E. cuniculi must acquire ATP from its host through a series of ATP transporters anciently acquired from Rickettsia- or Chlamydia-like bacteria 99, and this is an example of how E. cuniculi, and possibly other microsporidia, can hijack mechanisms of other intracellular bacteria, fungi, or the host to survive in and adapt to their highly specialized intracellular lifestyle.ConclusionsThe Tor pathway is highly conserved with some exceptions among fungi, including several pathogens. Similarly, the molecular structural organization of the Tor kinases has been remarkably conserved as well as the presumed ability to bind the FKBP12-rapamycin complex. This feature, combined with the essential nature of the rapamycin-sensitive TORC1 pathway for cell growth, should enable the development of rapamycin-based strategies for antifungal therapies. Duplications of the Tor protein occurred in most fungal groups examined, resulting from either independent segmental gene duplication events or a WGD event. The maintenance of two Tor homologs can be explained through the DDC model of gene duplication, in which the paralogs subfunctionalize and together support all of the functions of the pre-duplicated protein. In addition, species outside of the fungal kingdom with two or more TOR homologs include the metazoan B. mori, the apusomonad protozoan T. trahens, the trypanosome protozoans L. major and T. brucei, and possibly the choanoflagellate M. brevicollis. This suggests that the Tor gene has been independently duplicated multiple times since the last common ancestor of the Opisthokonta and Excavata lineages. The Tor pathway, as well as the Tor protein itself, is highly conserved in eukaryotes, so the observation that three microsporidian species are missing the entire pathway is striking. It would appear that the specialized obligate intracellular life cycle of microsporidia allows for the acquisition of nutrients from the host cell, obviating a requirement for this central nutrient-sensing pathway that is essential in all known cases of other eukaryotes for axenic growth.MethodsIdentification of pathway component homologsTor homologs were identified using the highly conserved 100 amino acid FRB domain of S. cerevisiae Tor1 in BLASTp reciprocal best-hit searches between the specific species database and the Saccharomyces Genome Database (SGD). All queries for other Tor pathway components were retrieved from SGD and homologs were identified by BLASTp reciprocal best-hit searches, with the exception of Tsc1 and Tsc2. Tsc1 and Tsc2 protein query sequences were retrieved from the S. pombe GeneDB, and homologs were identified using BLASTp searches between the S. pombe genome database and the species database. Species identification numbers are listed in Supplemental Table 1. Protein architecture of each homolog was elucidated with Simple Modular Architecture Research Tool (SMART) analysis 7071.Accession numbers are provided for putative Tor pathway components (see Additional file 3, supplemental Table 1 for the accession numbers of putative Tor pathway components) from the following public genomic databases that were used to carry out BLAST: S. cerevisiae, SGD, http://www.yeastgenome.org; S. pombe, GeneDB, http://www.genedb.org/genedb/pombe/index.jsp; P. ostreatus, JGI, http://genome.jgi-psf.org/PleosPC15_1/PleosPC15_1.home.html; M. circinelloides, JGI and the Mucor Genome Project, http://genome.jgi-psf.org/Mucci1/Mucci1.home.html; R. oryzae, Broad Institute, http://www.broadinstitute.org/annotation/genome/rhizopus_oryzae/MultiHome.html; P. blakesleeanus, JGI, http://genome.jgi-psf.org/Phybl1/Phybl1.home.html; B. dendrobatidis, Broad Institute, http://www.broadinstitute.org/annotation/genome/batrachochytrium_dendrobatidis/MultiHome.html; S. punctatus, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; M. brevicollis, JGI, http://genome.jgi-psf.org/Monbr1/Monbr1.home.html; S. rosetta, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; C. owczarzaki, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; E. cuniculi, E. bieneusi, and N. ceranae, NCBI, http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi?organism=fungi.Phylogenetic analysis of TorThe ProtTest program 100 was used to select an appropriate model to construct the phylogenetic relationship of the Tor proteins of the studied species. For this study, the best model for phylogenetic construction of the Tor protein using maximum likelihood (ML) was JTT+I+G+F 101. The ML tree was generated using PhyML with the JTT+I+G+F mode with 500 bootstrap replicates 102103. The Tor amino acid sequences from all species were aligned with CLUSTAL W 104.Synteny analysis of TOR paralogsTor homologs in fungal species were identified with BLAST 105 using TOR1 and TOR2 of S. cerevisiae as query sequences. The TOR sequence and flanking regions (up to 100 kb) were extracted from corresponding contigs or chromosomal sequences. To analyze the synteny of TOR and flanking regions, we constructed a database of one TOR and flanking region sequence and used the other TOR homolog and flanking region sequence to perform tBLASTx searches in the database (BLOSUM62 matrix; E-value = 1e-3; gap cost: existence 11, extension 1; and low complexity regions filter). The tBLASTx results were parsed and formatted using an in-house Perl script (available upon request). The parsed and formatted tBLASTx results were then imported into Artemis software 106 for synteny analysis. We employed a cutoff value of 100 bp to filter short non-significant matches between query and database sequences.Authors� contributionsCAS carried out the homolog searches and phylogenetic analysis and drafted the manuscript. RJB performed homolog searches and participated in the design of the study. WL performed the synteny and phylogenetic analysis and helped draft the manuscript. JH and MEC conceived of the study, participated in its design and helped to draft the manuscript. All authors read and approved the final manuscript.
BackgroundThe nutrient-sensing target of rapamycin (Tor) pathway is highly conserved among eukaryotes and governs several essential cellular processes including protein synthesis, ribosome biogenesis, autophagy, and cytoskeletal organization 123. In the fungal kingdom, the Tor pathway has been best studied in the budding yeast Saccharomyces cerevisiae 234, the fission yeast Schizosaccharomyces pombe 56, and the human pathogen Candida albicans 5678. However, little is known about Tor in basal fungal lineages, including the Zygomycota and Chytridiomycota.In S. cerevisiae and S. pombe, two Tor paralogs form distinct complexes known as Tor Complex 1 (TORC1) and Tor Complex 2 (TORC2) 9101112, while in most other species, including humans, a single Tor protein can populate both complexes 11121314. Interestingly, S. cerevisiae Tor2 can complement the loss of Tor1, but Tor1 cannot complement the loss of Tor2 1516. Two Tor paralogs have also been identified in a metazoan, the silkworm Bombyx mori 17 and three Tor paralogs were identified in the trypanosomatid parasites Leishmania major 18 and the related species Trypanosoma brucei 19, the first reported Tor triumvirates.The ScTORC1 is sensitive to rapamycin and controls protein synthesis, mRNA synthesis and degradation, ribosome biogenesis, and autophagy. TORC2 is insensitive to rapamycin and is involved in the control of actin polarization and cell wall integrity 916. TORC1 consists of Tor1 or Tor2, Kog1 20, Tco89, and Lst8 21, while TORC2 contains Tor2, Lst8, Avo1, Avo2, and Avo3 22 (Figure 1A). Recently, the EGO-GTPase complex and its orthologs were shown to convey amino acid signals for TORC1 activation in yeast, insects, and mammals 23242526. In S. cerevisiae, immediate effectors of TORC1 include the PP2A-like phosphatase Sit4 27 and the AGC kinase Sch9 28. In S. pombe, Tor participates in other cellular functions including nutrient signaling 29, cell growth and differentiation 30, mitotic commitment 31, and sexual development 11 (Figure 1B).The structure of the Tor proteins is remarkably conserved (Figure 2) and features several domains for protein-protein interactions including N-terminal HEAT (Huntingtin, Elongation factor 3, PP2A A subunit, Tor) repeats 32, a FAT (FRAP, ATM, and TRRAP) domain 3334, and an FRB (FK506-Rapamycin Binding) 35 domain. The kinase and the FATC (FAT domain at the C-terminus) 3236 domains are present in the C-terminal region.The Tor inhibitor rapamycin blocks cell proliferation and is currently used as an immunosuppressive drug for organ and tissue transplant recipients and a chemotherapy agent against a variety of solid cancers 37383940. Rapamycin binds to the prolyl isomerase FKBP12 to form a protein-drug complex that then interacts with the Tor FRB domain in a ternary complex 4142. S. cerevisiae cells treated with rapamycin display phenotypes associated with nutrient depletion including G1 cell cycle arrest, cellular volume expansion, protein synthesis inhibition, glycogen accumulation, and autophagy 3543.Genetic analysis in S. cerevisiae characterizing rapamycin-resistant mutants led to the identification of FKBP12 as the intracellular receptor for rapamycin and defined Tor1 and Tor2 as the targets of the FKBP12-rapamycin complex 4. Subsequent studies resulted in the identification and characterization of the TOR1 and TOR2 gene products 1544 as well as the elucidation of the Tor signaling cascade 8454647. These pioneering studies aided in the identification of the mammalian Tor ortholog and characterization of this highly conserved signaling cascade 84849. Remarkably, expression of the human FKBP12 ortholog in yeast fpr1 (the gene that encodes FKBP12) deletion mutants complements to restore rapamycin sensitivity, and hybrid Tor proteins consisting of the yeast N-terminal domain fused to the mammalian Tor kinase domain are also functional in yeast 50. Thus, the Tor pathway has been functionally and structurally conserved from yeasts to humans over the billion years of evolution separating the two species from their last common ancestor.We now know that the fungal and metazoan kingdoms are both within the opisthokont lineage of eukaryotes and are thus more closely related to each other than the vast majority of eukaryotic organisms 5152. Moreover, these two highly successful kingdoms shared a last common ancestor as recently as one billion years ago, much more recently than most eukaryotes. Recent initiatives, particularly the UNICORN project, have facilitated the sequencing of several opisthokonts related to the last common ancestor of the metazoans and fungi, providing an interesting window into the evolution of both fungi and animals 53545556. Thus, studies on the evolutionary trajectory of the fungal kingdom in general, and of the Tor signaling cascade in particular, promise to reveal insights about how orthologous pathways function in the more complex milieu of multicellular metazoan organisms.In this study, we have capitalized upon the wealth of available genomic information by annotating the Tor pathway in several fungal organisms in which this pathway has not been described. Our study included selected species in the major groups of the fungal kingdom with genome sequences available: the basidiomycete Pleurotus ostreatus; the Mucorales zygomycetes Mucor circinelloides, Rhizopus oryzae, and Phycomyces blakesleeanus; the chytridiomycetes Spizellomyces punctatus and Batrachochytrium dendrobatidis; the microsporidian species Encephalitozoon cuniculi, Enterocytozoon bieneusi, and Nosema ceranae; and the related non-fungal opisthokonts Capsaspora owczarzaki, Salpingoeca rosetta, and Monosiga brevicollis. Whereas the Tor pathway is conserved throughout the eukaryotes, strikingly, microsporidian species with their highly reduced and compacted genomes lack the entire Tor pathway. We have also investigated gene and genome duplication events that resulted in two Tor homologs in S. cerevisiae, S. pombe, P. ostreatus, and B. dendrobatidis, and the loss of a second Tor homolog following a whole genome duplication event in R. oryzae.Results and DiscussionConservation of the Tor signaling pathway molecular componentsThe Tor pathway is well conserved among nearly all eukaryotic species examined to date. Tor is essential for life and is the target of the potent drug rapamycin in fungi, humans, and other eukaryotic organisms 2121941. Tor originated early during the eukaryotic radiation, as it is present in the basal eukaryotes Giardia lamblia 57, L. major 18 and T. brucei 19, and also in plants 58. Here we focused on the Tor pathway in the fungal kingdom and other representative unicellular opisthokont species outside of the fungi. Several genes encoding Tor complex components, upstream regulators, and downstream effectors were identified in all major groups throughout the fungal kingdom (Figure 1, Table 1). Because we used BLASTp reciprocal best hits (RBH) to identify orthologs, in some cases the absence of an ortholog in our results may represent only a failure to detect it with this method. Further, functional homologs that are not sufficiently similar enough in sequence to be identified may be present. Overall, a high degree of pathway conservation is observed in the Tor signaling cascade throughout the fungal kingdom, with the exception of microsporidia in which all Tor pathway components are absent. In addition, several pathway components are conserved in the related unicellular opisthokonts M. brevicollis, S. rosetta, and C. owczarzaki (Table 2).In S. cerevisiae, Tor1 and Tor2 interact with several proteins to form TORC1 and TORC2. TORC1 contains Tor1 or Tor2, Kog1, Tco89, and Lst8. Kog1 functions as a substrate-recruiting subunit in mammalian TORC1 (mTORC1) 13596061. A gene encoding a putative Kog1 homolog was identified in all species included in this study, with the exception of the microsporidia and S. rosetta (Tables 1 and 2). Mutation of TCO89 results in hypersensitivity to rapamycin and affects cellular integrity in S. cerevisiae 21. Tco89 is only found in S. cerevisiae and could have resulted from a specialization of the pathway exclusive to Saccharomyces species (Table 1). However, while a BLASTp search did not identify Tco89 homologs in other species, S. pombe has been reported to contain a functional homolog [GenBank:NP_588232] 12, and this suggests that functional homologs may exist in other fungal species as well. However, no homologs were identified when using S.�pombe Tco89 as a query sequence. Lst8 binds to the Tor kinase domain in S. cerevisiae to stimulate catalytic activity 9 and a putative Lst8 homolog is conserved in most species analyzed except microsporidia and S.�rosetta (Tables 1 and 2).Additional BLASTp searches identified a single Tor homolog in the following species: Lachancea thermotolerans CBS6340 [GenBank:XP_002552336], Pichia pastoris GS115 [GenBank:XP_002491471], Pichia stipitis CBS6054 [GenBank:XP_001385651], Debaryomyces hansenii CBS767 [GenBank:XP_002770885], Yarrowia lipolytica CLIB122 [GenBank:XP_505106], Podospora anserina strain S mat+ [GenBank:XP_001903968], Chaetomium globosum CBS148.51 [GenBank:XP_001226647], Magnaporthe oryzae 70-15 [GenBank:XP_001414541], Gibberella zeae PH-1 [GenBank:XP_388309], Aspergillus fumigatus Af293 [GenBank:XP_755360], Aspergillus flavus NRRL3357 [GenBank:XP_002377897], Neosartorya fischeri NRRL181 [GenBank:XP_001260509], Aspergillus terreus NIH2624 [GenBank:XP_001213640], Aspergillus nidulans FGSCA4 [GenBank:XP_663586], Aspergillus clavatus NRRL1 [GenBank:XP_001275326], Aspergillus oryzae RIB40 [GenBank: XP_001826216], and Aspergillus niger CBS513.88 [GenBank:XP_001397781]. These ascomycetes were not included in further studies.In yeast and mammals, TORC2 controls spatial aspects of growth. TORC2 includes Tor2, Avo1, Avo2, Avo3, and Bit61 922. Avo1 plays an essential role in actin cytoskeleton polarization 22 and is conserved throughout the organisms that were the focus of this study (Table 1) except in S. rosetta and C. owczarzaki (Table 2). However, due to high divergence of the AVO1 sequence amongst the known homologs, it is possible that the S. rosetta and C. owczarzaki homologs cannot be identified using the BLASTp algorithm. Avo2 is a nonessential substrate adaptor for TORC2 22 and potential homologs were identified in most species studied, with the exceptions of S. pombe, P. ostreatus, the three microsporidian species (Table 1), and M. brevicollis (Table 2). In S. cerevisiae, Avo3 (also know as Tsc11) controls cytoskeletal dynamics 922, and homologs are conserved throughout the species examined (Tables 1 and 2). Bit61, a nonessential protein that associates with TORC2 21, was only identified in S. cerevisiae (Tables 1 and 2).Upstream regulators of Tor include Tsc1 and Tsc2 (Tuberous Sclerosis 1 and 2) and the GTPase Rheb (Ras homolog enhanced in brain). In S. pombe and other eukaryotes, Tsc1 and Tsc2 form a GTPase-activating complex that negatively regulates the action of Rheb to activate TORC1 266263. Tsc1 and Tsc2 putative homologs were identified in most species in the study, with the exception of S. cerevisiae (Table 1); however, Tsc1 homologs were not identified in B. dendrobatidis, S. rosetta, or C. owczarzaki (Tables 1 and 2). In mammals and insects, four Rag GTPases (RagA-D) bind raptor (Kog1) to mediate TORC1 signaling in response to amino acids 2426. RagA and RagB are orthologs of S.�cerevisiae Gtr1 whereas RagC and RagD are orthologs of S. cerevisiae Gtr2 23. Gtr1 and Gtr2 form a complex along with Ego1 and Ego3 known as EGOC/GSE 25, which is regulated by the GTP exchange factor Vam6 23. Interestingly we found presumptive Gtr1 and Gtr2 orthologs in species in this study with the exception of microsporidia (Table 1), and Gtr1 was not identified in M. brevicollis (Table 2). However, Ego1 and Ego3, which anchor Gtr1 and Gtr2 to endosomal and vacuolar membranes, are unique to S. cerevisiae and were not identified in the other species (Table 1). This suggests that the specific EGO complex architecture might be restricted to Saccharomyces, though it is possible that functional homologs may be present in other species.In fungi, several downstream effectors are targets of Tor signaling. The PP2A phosphatase Sit4 and its regulatory subunit Tap42 regulate the expression of several TORC1-controlled genes and Gcn2-regulated translation 36465. A Sit4 homolog was identified in R. oryzae (Table 1), though a homolog of the regulatory subunit Tap42 was not (Table 1). In S. rosetta, a Sit4 homolog was not identified, though Tap42 was (Table 2). Both of these situations could indicate rewiring of the pathway, or alternatively these findings could be a result of insufficient similarity to detect with a RBH search method. Sch9, a member of the AGC kinase family and the functional homolog of the p70 S6 kinase, is a direct substrate of S. cerevisiae TORC1 involved in ribosome biogenesis 2866. Sch9 was not identified in RBH BLASTp searches with S. cerevisiae Sch9 in M. circinelloides, P. blakesleeanus, the microsporidia (Table 1), or S. rosetta (Table 2), but was identified in all other species. Putative homologs of Ypk2 kinase, a regulator of ceramide synthesis controlled by TORC2 signaling 67, were only identified in S. cerevisiae, S. pombe, (Table 1), M. brevicollis, S. rosetta, and C. owczarzaki (Table 2). Notably, the failure to detect many homologs in M. brevicollis, S. rosetta, and C. owczarzaki could be due to their evolutionary distance from the other organisms in the study and their gene divergence.Evolutionary conservation of Tor kinase protein structureThe Tor kinases are phosphatidylinositol kinase-related kinases (PIKKs) 68 and aside from their known protein kinase function also serve as evolutionary constrained scaffolds with several protein-protein interaction domains that mediate multi-protein complex formation 69. Tor protein architecture was annotated using SMART 7071 and we found that it has been maintained throughout the species of this study (Figure 2). N-terminal HEAT repeats are present in varying numbers and serve as scaffolding structures for protein-protein interactions 327273. Similarly, the FAT/toxic domain and the accompanying C-terminal FATC domain also participate in protein scaffolding and are present and conserved in all species subject to analysis. Over-expression of the FAT domain has a dominant negative effect on cell growth in yeast and this effect can be suppressed by over-expression of phospholipase C 33. The kinase domain has similarities to both lipid and protein kinases, but it is a bona fide protein kinase. The FRB (FKBP12-rapamycin binding) domain is a highly conserved 100 amino acid region of Tor with several residues that are known to be required for binding the FKBP12-rapamycin drug complex 42.In addition, the FRB domain contains several residues necessary for both phosphatidic acid binding and rapamycin interaction 7475. In mammals, phosphatidic acid binding to the FRB region may promote the assembly of mTOR complexes. It has been proposed that the potent effect of the Tor inhibitor rapamycin may be due to direct competition for overlapping phosphatidic acid binding sites within the FRB domain 76. Mutation of the conserved amino acid residues S1975, W2041, or F2048 in the FRB domain confers rapamycin resistance in S. cerevisiae 44277. Strikingly, the corresponding amino acid residues are conserved in all species examined (Figure 3). In mTOR, phosphatidic acid binding is disrupted by mutations of L2031, F2309, and Y2105 75, corresponding to S. cerevisiae Tor2 L1971, F1979, and Y2045, respectively, all of which are conserved in the studied fungal species (Figure 3).Duplication of Tor in the fungal kingdomApproximately 100 million years ago, the S. cerevisiae ancestor underwent a whole genome duplication (WGD) event, and species that descend from this evolutionary event retained duplicated subsets of genes. S. cerevisiae retained approximately 8% of duplicated genes 7879, while other fungi in this lineage have maintained varying numbers of gene duplicates, such as Candida glabrata in which a smaller number (~2%) of these pairs are maintained 80. Interestingly, several of these species, including S. cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, S. bayanus, S. castellii, and C. glabrata have retained two TOR paralogs, whereas species outside of the WGD clade, including Kluyveromyces lactis and Ashbya gossypii, have only a single TOR gene.The fates of duplicated gene paralogs can be explained through the duplication, degeneration, and complementation (DDC) model of gene duplication 81. In species with a single Tor, this protein populates both TORC1 and TORC2, each of which has distinct functions. Following duplication, each paralog likely sub-functionalized to carry out some, but not all, of its previous functions so that between the two paralogs, each process is performed. In S. cerevisiae, for example, Tor1 exclusively functions within TORC1, while Tor2 preferentially populates TORC2 but can also function in TORC1. S. pombe has two Tor paralogs as a result of an independent segmental gene duplication event, and each paralog has distinct roles not necessarily equivalent to those of S. cerevisiae Tor1 and Tor2. SpTor1 is not essential, whereas SpTor2 is essential for growth 112982.We hypothesize that similar models could apply in species encoding two Tor homologs resulting from independent gene duplication events such as P. ostreatus and B. dendrobatidis. Based on their level of identity with S.�cerevisiae Tor homologs, the B. dendrobatidis genes BDEG_08293 and BDEG_05727 have been designated TOR1 and TOR2, respectively. However, these gene names are not necessarily based on functional similarity with ScTor1 and ScTor2 but rather indicate only that there are two TOR homologs in B. dendrobatidis. A�similar naming challenge is evident in S. pombe, where the functions of SpTor1 and SpTor2 are not equivalent with those of ScTor1 and ScTor2.While several species, such as those in the Saccharomyces clade, have two Tor paralogs resulting from ancient WGD events, other species have acquired a second paralog through independent segmental gene duplication events, including B. dendrobatidis and several fission yeast species closely related to S. pombe (Figure 4). Segmental gene duplications have played a major role in the evolution of species and can result in the duplication of single genes or large blocks of genes 83. In S. cerevisiae, the duplication blocks with TOR include three paralogous gene pairs that have been retained from the ancestral WGD event: PTK1/PTK2, TOR1/TOR2, and MNN4/YJR061W 78 (Figure 5A). Further, C. glabrata, an ascomycete closely related to S. cerevisiae that diverged following the WGD, has also maintained a second TOR paralog and synteny is apparent in the region flanking the TOR1 and TOR2 genes, though one must extend the analysis to >40 kb from the TOR genes to detect it (See additional file 1: Supplemental figure 1). However, because C. glabrata and S. cerevisiae have retained different subsets of genes from the ancestral WGD, the duplicated genes surrounding TOR in these species are not homologs of one another. Further, C. glabrata has maintained fewer of the synteny blocks found in S. cerevisiae, and the block containing the TOR genes (Block 42) is not conserved in C. glabrata 80.In contrast, genomic regions surrounding the Tor paralogs in S. pombe (Figure 5B) and B. dendrobatidis (Figure 5C) are not syntenically conserved. That is, the duplicated genes are not flanked by other duplicated gene pairs, and the two TOR paralogs likely resulted from independent segmental gene duplication events. Further, there are no indications of WGDs in these species. In the Schizosaccharomycotina, the TOR gene duplication occurred prior to speciation as evidenced by the fact that S. pombe, S. octosporus, S. japonicus, and S. cryophilus have each retained a second Tor paralog; the Tor orthologs across these four species are more closely related to each other than to those from other species (Figure 4). No syntenic conservation between the genomic regions containing TOR paralogs was detected in any species of the Schizosaccharomyces group, supporting the occurrence of an independent segmental gene duplication in their common ancestor (see additional file 2: supplemental Figure 2).The Taphrinomycotina is a monophyletic taxon of the Ascomycota containing the Schizosaccharomycetes, Taphrinomycetes, Neolectomycetes, and Pneumocystidomycetes. Genomes are only available for species within the Schizosaccharomycetes (S. pombe, S. octosporus, S. japonicus, and S. cryophilus) and the Taphrinomycetes (Pneumocystis carinii). While the studied Schizosaccharomyces spp. contain two Tor homologs, a single homolog was identified in P. carinii with tBLASTx using the highly conserved S. cerevisiae FRB domain of Tor1 based on sequence data produced by the Pneumocystis Genome Project (funded by the NIH NIAID) that was obtained from http://pgp.cchmc.org at the time of publication. Based on the phylogenetic placement of these two groups 84 and the available genomic information, we hypothesize that the segmental TOR duplication is unique to the Schizosaccharomyces spp. and occurred following their divergence from the common ancestor of the Taphrinomycota, as P. carinii, the other species within this taxon with available genome data, appears to contain a single Tor homolog.Interestingly, the zygomycete R. oryzae underwent a whole genome duplication event and despite retaining 12% of the resulting duplicated genes 85 compared to 8% retained genes in a separate WGD event in S. cerevisiae 7879, two Tor paralogs have not been retained; only a single Tor homolog was identified. Currently, the Zygomycota is the only group studied without an identified species containing two Tor homologs; however, there are not enough available genomes to make a definitive conclusion in this group. Other species with independent TOR duplications likely remain to be identified in all of the major fungal lineages, and as more genome sequences become available this will be addressed.During this study, we identified three additional species that possibly have two TOR paralogs: M. brevicollis, Thecamonas trahens, and Allomyces macrogynus, species that are included in the Origins of Multicellularity Project 86. While analysis is limited because of the state of the M. brevicollis (choanoflagellate) genome, it appears that an additional bonafide Tor protein is encoded with the conserved Tor protein architecture. Thecamonas trahens is a unicellular apusomonad that also contains two TOR paralogs. Interestingly, A. macrogynus is a fungus that may contain a second paralog; however, it appears that the FRB domain overlaps with the kinase domain. This may represent a case in which TOR was duplicated but is in the process of losing one of the copies. These cases are a springboard for future studies involving the duplication of TOR within and beyond the fungal kingdom.Loss of the Tor signaling pathway in microsporidiaWhile components of the Tor signaling cascade are conserved in eukaryotes from yeasts to humans, the microsporidia, a group of highly specialized obligate intracellular pathogens completely lack all of the pathway components investigated in this study. E. cuniculi has previously been noted to lack the Tor kinase 87, and we found that all pathway components including Tor were missing not only in E. cuniculi but also in its microsporidian relatives E. bieneusi and N. ceranae (Table 2). Microsporidian genomes are highly compacted and show a marked reduced gene content. The genome of the human pathogen E. cuniculi has 1997 genes distributed throughout 11 chromosomes in a 2.9 Mb genome 88, less than half the number of protein-coding genes found in Escherichia coli. For comparison, the genome of the human pathogen E. bieneusi genome is ~6 Mb with 3,804 genes 89 and the honeybee pathogen N. ceranae genome is ~7.9 Mb with 2,614 predicted genes 90. Genome reduction has been well studied in intracellular bacteria: during the specialization process from a free-living to intracellular lifestyle, massive gene loss can occur 9192939495. We hypothesize that as a consequence of their specialization to an obligate intracellular lifestyle, the need for nutrient sensing was relaxed and these obligate intracellular microsporidia acquired nutrients from within the host cytoplasm. Thus, they no longer required the Tor pathway, which is dedicated to sensing changes in the nutrient composite of the environmental milieu. However, E. cuniculi has retained some of the genes encoding signaling pathways involved in nutrient sensing in other species, including homologs of S. cerevisiae Ras1 and Ras2 (data not shown).Interestingly, P. carinii is an obligate pathogen with a reduced genome estimated to be ~8 Mb 96, which unlike microsporidia is not obligately intracellular. A�single Tor homolog was identified [Pneumocystis Genome Project:cap3_it1_grp346_contig490] using the S. cerevisiae Tor1 FRB domain in tBLASTx, supporting our hypothesis that the microsporidia have streamlined their genomes as they adopted an obligate intracellular life cycle. P. carinii likely requires Tor because it must survive in a metabolically active form outside of host cells, undergoing cell division in the extracellular milieu of the infected host lung.Many microsporidian genomes have undergone extreme genome reduction and are among the eukaryotes with the smallest genomes. In addition to fewer genes than other species (1997 in E. cuniculi compared to 6607 in S. cerevisiae), E. cuniculi has shorter genes, small intergenic distances, and very few introns 8897. This species (and to an even greater extent, E. bieneusi) lacks several genes that are necessary for biosynthetic pathways and the tricarboxylic acid cycle in free-living organisms 888998. Remarkably, E. cuniculi must acquire ATP from its host through a series of ATP transporters anciently acquired from Rickettsia- or Chlamydia-like bacteria 99, and this is an example of how E. cuniculi, and possibly other microsporidia, can hijack mechanisms of other intracellular bacteria, fungi, or the host to survive in and adapt to their highly specialized intracellular lifestyle.ConclusionsThe Tor pathway is highly conserved with some exceptions among fungi, including several pathogens. Similarly, the molecular structural organization of the Tor kinases has been remarkably conserved as well as the presumed ability to bind the FKBP12-rapamycin complex. This feature, combined with the essential nature of the rapamycin-sensitive TORC1 pathway for cell growth, should enable the development of rapamycin-based strategies for antifungal therapies. Duplications of the Tor protein occurred in most fungal groups examined, resulting from either independent segmental gene duplication events or a WGD event. The maintenance of two Tor homologs can be explained through the DDC model of gene duplication, in which the paralogs subfunctionalize and together support all of the functions of the pre-duplicated protein. In addition, species outside of the fungal kingdom with two or more TOR homologs include the metazoan B. mori, the apusomonad protozoan T. trahens, the trypanosome protozoans L. major and T. brucei, and possibly the choanoflagellate M. brevicollis. This suggests that the Tor gene has been independently duplicated multiple times since the last common ancestor of the Opisthokonta and Excavata lineages. The Tor pathway, as well as the Tor protein itself, is highly conserved in eukaryotes, so the observation that three microsporidian species are missing the entire pathway is striking. It would appear that the specialized obligate intracellular life cycle of microsporidia allows for the acquisition of nutrients from the host cell, obviating a requirement for this central nutrient-sensing pathway that is essential in all known cases of other eukaryotes for axenic growth.MethodsIdentification of pathway component homologsTor homologs were identified using the highly conserved 100 amino acid FRB domain of S. cerevisiae Tor1 in BLASTp reciprocal best-hit searches between the specific species database and the Saccharomyces Genome Database (SGD). All queries for other Tor pathway components were retrieved from SGD and homologs were identified by BLASTp reciprocal best-hit searches, with the exception of Tsc1 and Tsc2. Tsc1 and Tsc2 protein query sequences were retrieved from the S. pombe GeneDB, and homologs were identified using BLASTp searches between the S. pombe genome database and the species database. Species identification numbers are listed in Supplemental Table 1. Protein architecture of each homolog was elucidated with Simple Modular Architecture Research Tool (SMART) analysis 7071.Accession numbers are provided for putative Tor pathway components (see Additional file 3, supplemental Table 1 for the accession numbers of putative Tor pathway components) from the following public genomic databases that were used to carry out BLAST: S. cerevisiae, SGD, http://www.yeastgenome.org; S. pombe, GeneDB, http://www.genedb.org/genedb/pombe/index.jsp; P. ostreatus, JGI, http://genome.jgi-psf.org/PleosPC15_1/PleosPC15_1.home.html; M. circinelloides, JGI and the Mucor Genome Project, http://genome.jgi-psf.org/Mucci1/Mucci1.home.html; R. oryzae, Broad Institute, http://www.broadinstitute.org/annotation/genome/rhizopus_oryzae/MultiHome.html; P. blakesleeanus, JGI, http://genome.jgi-psf.org/Phybl1/Phybl1.home.html; B. dendrobatidis, Broad Institute, http://www.broadinstitute.org/annotation/genome/batrachochytrium_dendrobatidis/MultiHome.html; S. punctatus, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; M. brevicollis, JGI, http://genome.jgi-psf.org/Monbr1/Monbr1.home.html; S. rosetta, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; C. owczarzaki, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; E. cuniculi, E. bieneusi, and N. ceranae, NCBI, http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi?organism=fungi.Phylogenetic analysis of TorThe ProtTest program 100 was used to select an appropriate model to construct the phylogenetic relationship of the Tor proteins of the studied species. For this study, the best model for phylogenetic construction of the Tor protein using maximum likelihood (ML) was JTT+I+G+F 101. The ML tree was generated using PhyML with the JTT+I+G+F mode with 500 bootstrap replicates 102103. The Tor amino acid sequences from all species were aligned with CLUSTAL W 104.Synteny analysis of TOR paralogsTor homologs in fungal species were identified with BLAST 105 using TOR1 and TOR2 of S. cerevisiae as query sequences. The TOR sequence and flanking regions (up to 100 kb) were extracted from corresponding contigs or chromosomal sequences. To analyze the synteny of TOR and flanking regions, we constructed a database of one TOR and flanking region sequence and used the other TOR homolog and flanking region sequence to perform tBLASTx searches in the database (BLOSUM62 matrix; E-value = 1e-3; gap cost: existence 11, extension 1; and low complexity regions filter). The tBLASTx results were parsed and formatted using an in-house Perl script (available upon request). The parsed and formatted tBLASTx results were then imported into Artemis software 106 for synteny analysis. We employed a cutoff value of 100 bp to filter short non-significant matches between query and database sequences.Authors� contributionsCAS carried out the homolog searches and phylogenetic analysis and drafted the manuscript. RJB performed homolog searches and participated in the design of the study. WL performed the synteny and phylogenetic analysis and helped draft the manuscript. JH and MEC conceived of the study, participated in its design and helped to draft the manuscript. All authors read and approved the final manuscript.
BackgroundThe nutrient-sensing target of rapamycin (Tor) pathway is highly conserved among eukaryotes and governs several essential cellular processes including protein synthesis, ribosome biogenesis, autophagy, and cytoskeletal organization 123. In the fungal kingdom, the Tor pathway has been best studied in the budding yeast Saccharomyces cerevisiae 234, the fission yeast Schizosaccharomyces pombe 56, and the human pathogen Candida albicans 5678. However, little is known about Tor in basal fungal lineages, including the Zygomycota and Chytridiomycota.In S. cerevisiae and S. pombe, two Tor paralogs form distinct complexes known as Tor Complex 1 (TORC1) and Tor Complex 2 (TORC2) 9101112, while in most other species, including humans, a single Tor protein can populate both complexes 11121314. Interestingly, S. cerevisiae Tor2 can complement the loss of Tor1, but Tor1 cannot complement the loss of Tor2 1516. Two Tor paralogs have also been identified in a metazoan, the silkworm Bombyx mori 17 and three Tor paralogs were identified in the trypanosomatid parasites Leishmania major 18 and the related species Trypanosoma brucei 19, the first reported Tor triumvirates.The ScTORC1 is sensitive to rapamycin and controls protein synthesis, mRNA synthesis and degradation, ribosome biogenesis, and autophagy. TORC2 is insensitive to rapamycin and is involved in the control of actin polarization and cell wall integrity 916. TORC1 consists of Tor1 or Tor2, Kog1 20, Tco89, and Lst8 21, while TORC2 contains Tor2, Lst8, Avo1, Avo2, and Avo3 22 (Figure 1A). Recently, the EGO-GTPase complex and its orthologs were shown to convey amino acid signals for TORC1 activation in yeast, insects, and mammals 23242526. In S. cerevisiae, immediate effectors of TORC1 include the PP2A-like phosphatase Sit4 27 and the AGC kinase Sch9 28. In S. pombe, Tor participates in other cellular functions including nutrient signaling 29, cell growth and differentiation 30, mitotic commitment 31, and sexual development 11 (Figure 1B).The structure of the Tor proteins is remarkably conserved (Figure 2) and features several domains for protein-protein interactions including N-terminal HEAT (Huntingtin, Elongation factor 3, PP2A A subunit, Tor) repeats 32, a FAT (FRAP, ATM, and TRRAP) domain 3334, and an FRB (FK506-Rapamycin Binding) 35 domain. The kinase and the FATC (FAT domain at the C-terminus) 3236 domains are present in the C-terminal region.The Tor inhibitor rapamycin blocks cell proliferation and is currently used as an immunosuppressive drug for organ and tissue transplant recipients and a chemotherapy agent against a variety of solid cancers 37383940. Rapamycin binds to the prolyl isomerase FKBP12 to form a protein-drug complex that then interacts with the Tor FRB domain in a ternary complex 4142. S. cerevisiae cells treated with rapamycin display phenotypes associated with nutrient depletion including G1 cell cycle arrest, cellular volume expansion, protein synthesis inhibition, glycogen accumulation, and autophagy 3543.Genetic analysis in S. cerevisiae characterizing rapamycin-resistant mutants led to the identification of FKBP12 as the intracellular receptor for rapamycin and defined Tor1 and Tor2 as the targets of the FKBP12-rapamycin complex 4. Subsequent studies resulted in the identification and characterization of the TOR1 and TOR2 gene products 1544 as well as the elucidation of the Tor signaling cascade 8454647. These pioneering studies aided in the identification of the mammalian Tor ortholog and characterization of this highly conserved signaling cascade 84849. Remarkably, expression of the human FKBP12 ortholog in yeast fpr1 (the gene that encodes FKBP12) deletion mutants complements to restore rapamycin sensitivity, and hybrid Tor proteins consisting of the yeast N-terminal domain fused to the mammalian Tor kinase domain are also functional in yeast 50. Thus, the Tor pathway has been functionally and structurally conserved from yeasts to humans over the billion years of evolution separating the two species from their last common ancestor.We now know that the fungal and metazoan kingdoms are both within the opisthokont lineage of eukaryotes and are thus more closely related to each other than the vast majority of eukaryotic organisms 5152. Moreover, these two highly successful kingdoms shared a last common ancestor as recently as one billion years ago, much more recently than most eukaryotes. Recent initiatives, particularly the UNICORN project, have facilitated the sequencing of several opisthokonts related to the last common ancestor of the metazoans and fungi, providing an interesting window into the evolution of both fungi and animals 53545556. Thus, studies on the evolutionary trajectory of the fungal kingdom in general, and of the Tor signaling cascade in particular, promise to reveal insights about how orthologous pathways function in the more complex milieu of multicellular metazoan organisms.In this study, we have capitalized upon the wealth of available genomic information by annotating the Tor pathway in several fungal organisms in which this pathway has not been described. Our study included selected species in the major groups of the fungal kingdom with genome sequences available: the basidiomycete Pleurotus ostreatus; the Mucorales zygomycetes Mucor circinelloides, Rhizopus oryzae, and Phycomyces blakesleeanus; the chytridiomycetes Spizellomyces punctatus and Batrachochytrium dendrobatidis; the microsporidian species Encephalitozoon cuniculi, Enterocytozoon bieneusi, and Nosema ceranae; and the related non-fungal opisthokonts Capsaspora owczarzaki, Salpingoeca rosetta, and Monosiga brevicollis. Whereas the Tor pathway is conserved throughout the eukaryotes, strikingly, microsporidian species with their highly reduced and compacted genomes lack the entire Tor pathway. We have also investigated gene and genome duplication events that resulted in two Tor homologs in S. cerevisiae, S. pombe, P. ostreatus, and B. dendrobatidis, and the loss of a second Tor homolog following a whole genome duplication event in R. oryzae.Results and DiscussionConservation of the Tor signaling pathway molecular componentsThe Tor pathway is well conserved among nearly all eukaryotic species examined to date. Tor is essential for life and is the target of the potent drug rapamycin in fungi, humans, and other eukaryotic organisms 2121941. Tor originated early during the eukaryotic radiation, as it is present in the basal eukaryotes Giardia lamblia 57, L. major 18 and T. brucei 19, and also in plants 58. Here we focused on the Tor pathway in the fungal kingdom and other representative unicellular opisthokont species outside of the fungi. Several genes encoding Tor complex components, upstream regulators, and downstream effectors were identified in all major groups throughout the fungal kingdom (Figure 1, Table 1). Because we used BLASTp reciprocal best hits (RBH) to identify orthologs, in some cases the absence of an ortholog in our results may represent only a failure to detect it with this method. Further, functional homologs that are not sufficiently similar enough in sequence to be identified may be present. Overall, a high degree of pathway conservation is observed in the Tor signaling cascade throughout the fungal kingdom, with the exception of microsporidia in which all Tor pathway components are absent. In addition, several pathway components are conserved in the related unicellular opisthokonts M. brevicollis, S. rosetta, and C. owczarzaki (Table 2).In S. cerevisiae, Tor1 and Tor2 interact with several proteins to form TORC1 and TORC2. TORC1 contains Tor1 or Tor2, Kog1, Tco89, and Lst8. Kog1 functions as a substrate-recruiting subunit in mammalian TORC1 (mTORC1) 13596061. A gene encoding a putative Kog1 homolog was identified in all species included in this study, with the exception of the microsporidia and S. rosetta (Tables 1 and 2). Mutation of TCO89 results in hypersensitivity to rapamycin and affects cellular integrity in S. cerevisiae 21. Tco89 is only found in S. cerevisiae and could have resulted from a specialization of the pathway exclusive to Saccharomyces species (Table 1). However, while a BLASTp search did not identify Tco89 homologs in other species, S. pombe has been reported to contain a functional homolog [GenBank:NP_588232] 12, and this suggests that functional homologs may exist in other fungal species as well. However, no homologs were identified when using S.�pombe Tco89 as a query sequence. Lst8 binds to the Tor kinase domain in S. cerevisiae to stimulate catalytic activity 9 and a putative Lst8 homolog is conserved in most species analyzed except microsporidia and S.�rosetta (Tables 1 and 2).Additional BLASTp searches identified a single Tor homolog in the following species: Lachancea thermotolerans CBS6340 [GenBank:XP_002552336], Pichia pastoris GS115 [GenBank:XP_002491471], Pichia stipitis CBS6054 [GenBank:XP_001385651], Debaryomyces hansenii CBS767 [GenBank:XP_002770885], Yarrowia lipolytica CLIB122 [GenBank:XP_505106], Podospora anserina strain S mat+ [GenBank:XP_001903968], Chaetomium globosum CBS148.51 [GenBank:XP_001226647], Magnaporthe oryzae 70-15 [GenBank:XP_001414541], Gibberella zeae PH-1 [GenBank:XP_388309], Aspergillus fumigatus Af293 [GenBank:XP_755360], Aspergillus flavus NRRL3357 [GenBank:XP_002377897], Neosartorya fischeri NRRL181 [GenBank:XP_001260509], Aspergillus terreus NIH2624 [GenBank:XP_001213640], Aspergillus nidulans FGSCA4 [GenBank:XP_663586], Aspergillus clavatus NRRL1 [GenBank:XP_001275326], Aspergillus oryzae RIB40 [GenBank: XP_001826216], and Aspergillus niger CBS513.88 [GenBank:XP_001397781]. These ascomycetes were not included in further studies.In yeast and mammals, TORC2 controls spatial aspects of growth. TORC2 includes Tor2, Avo1, Avo2, Avo3, and Bit61 922. Avo1 plays an essential role in actin cytoskeleton polarization 22 and is conserved throughout the organisms that were the focus of this study (Table 1) except in S. rosetta and C. owczarzaki (Table 2). However, due to high divergence of the AVO1 sequence amongst the known homologs, it is possible that the S. rosetta and C. owczarzaki homologs cannot be identified using the BLASTp algorithm. Avo2 is a nonessential substrate adaptor for TORC2 22 and potential homologs were identified in most species studied, with the exceptions of S. pombe, P. ostreatus, the three microsporidian species (Table 1), and M. brevicollis (Table 2). In S. cerevisiae, Avo3 (also know as Tsc11) controls cytoskeletal dynamics 922, and homologs are conserved throughout the species examined (Tables 1 and 2). Bit61, a nonessential protein that associates with TORC2 21, was only identified in S. cerevisiae (Tables 1 and 2).Upstream regulators of Tor include Tsc1 and Tsc2 (Tuberous Sclerosis 1 and 2) and the GTPase Rheb (Ras homolog enhanced in brain). In S. pombe and other eukaryotes, Tsc1 and Tsc2 form a GTPase-activating complex that negatively regulates the action of Rheb to activate TORC1 266263. Tsc1 and Tsc2 putative homologs were identified in most species in the study, with the exception of S. cerevisiae (Table 1); however, Tsc1 homologs were not identified in B. dendrobatidis, S. rosetta, or C. owczarzaki (Tables 1 and 2). In mammals and insects, four Rag GTPases (RagA-D) bind raptor (Kog1) to mediate TORC1 signaling in response to amino acids 2426. RagA and RagB are orthologs of S.�cerevisiae Gtr1 whereas RagC and RagD are orthologs of S. cerevisiae Gtr2 23. Gtr1 and Gtr2 form a complex along with Ego1 and Ego3 known as EGOC/GSE 25, which is regulated by the GTP exchange factor Vam6 23. Interestingly we found presumptive Gtr1 and Gtr2 orthologs in species in this study with the exception of microsporidia (Table 1), and Gtr1 was not identified in M. brevicollis (Table 2). However, Ego1 and Ego3, which anchor Gtr1 and Gtr2 to endosomal and vacuolar membranes, are unique to S. cerevisiae and were not identified in the other species (Table 1). This suggests that the specific EGO complex architecture might be restricted to Saccharomyces, though it is possible that functional homologs may be present in other species.In fungi, several downstream effectors are targets of Tor signaling. The PP2A phosphatase Sit4 and its regulatory subunit Tap42 regulate the expression of several TORC1-controlled genes and Gcn2-regulated translation 36465. A Sit4 homolog was identified in R. oryzae (Table 1), though a homolog of the regulatory subunit Tap42 was not (Table 1). In S. rosetta, a Sit4 homolog was not identified, though Tap42 was (Table 2). Both of these situations could indicate rewiring of the pathway, or alternatively these findings could be a result of insufficient similarity to detect with a RBH search method. Sch9, a member of the AGC kinase family and the functional homolog of the p70 S6 kinase, is a direct substrate of S. cerevisiae TORC1 involved in ribosome biogenesis 2866. Sch9 was not identified in RBH BLASTp searches with S. cerevisiae Sch9 in M. circinelloides, P. blakesleeanus, the microsporidia (Table 1), or S. rosetta (Table 2), but was identified in all other species. Putative homologs of Ypk2 kinase, a regulator of ceramide synthesis controlled by TORC2 signaling 67, were only identified in S. cerevisiae, S. pombe, (Table 1), M. brevicollis, S. rosetta, and C. owczarzaki (Table 2). Notably, the failure to detect many homologs in M. brevicollis, S. rosetta, and C. owczarzaki could be due to their evolutionary distance from the other organisms in the study and their gene divergence.Evolutionary conservation of Tor kinase protein structureThe Tor kinases are phosphatidylinositol kinase-related kinases (PIKKs) 68 and aside from their known protein kinase function also serve as evolutionary constrained scaffolds with several protein-protein interaction domains that mediate multi-protein complex formation 69. Tor protein architecture was annotated using SMART 7071 and we found that it has been maintained throughout the species of this study (Figure 2). N-terminal HEAT repeats are present in varying numbers and serve as scaffolding structures for protein-protein interactions 327273. Similarly, the FAT/toxic domain and the accompanying C-terminal FATC domain also participate in protein scaffolding and are present and conserved in all species subject to analysis. Over-expression of the FAT domain has a dominant negative effect on cell growth in yeast and this effect can be suppressed by over-expression of phospholipase C 33. The kinase domain has similarities to both lipid and protein kinases, but it is a bona fide protein kinase. The FRB (FKBP12-rapamycin binding) domain is a highly conserved 100 amino acid region of Tor with several residues that are known to be required for binding the FKBP12-rapamycin drug complex 42.In addition, the FRB domain contains several residues necessary for both phosphatidic acid binding and rapamycin interaction 7475. In mammals, phosphatidic acid binding to the FRB region may promote the assembly of mTOR complexes. It has been proposed that the potent effect of the Tor inhibitor rapamycin may be due to direct competition for overlapping phosphatidic acid binding sites within the FRB domain 76. Mutation of the conserved amino acid residues S1975, W2041, or F2048 in the FRB domain confers rapamycin resistance in S. cerevisiae 44277. Strikingly, the corresponding amino acid residues are conserved in all species examined (Figure 3). In mTOR, phosphatidic acid binding is disrupted by mutations of L2031, F2309, and Y2105 75, corresponding to S. cerevisiae Tor2 L1971, F1979, and Y2045, respectively, all of which are conserved in the studied fungal species (Figure 3).Duplication of Tor in the fungal kingdomApproximately 100 million years ago, the S. cerevisiae ancestor underwent a whole genome duplication (WGD) event, and species that descend from this evolutionary event retained duplicated subsets of genes. S. cerevisiae retained approximately 8% of duplicated genes 7879, while other fungi in this lineage have maintained varying numbers of gene duplicates, such as Candida glabrata in which a smaller number (~2%) of these pairs are maintained 80. Interestingly, several of these species, including S. cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, S. bayanus, S. castellii, and C. glabrata have retained two TOR paralogs, whereas species outside of the WGD clade, including Kluyveromyces lactis and Ashbya gossypii, have only a single TOR gene.The fates of duplicated gene paralogs can be explained through the duplication, degeneration, and complementation (DDC) model of gene duplication 81. In species with a single Tor, this protein populates both TORC1 and TORC2, each of which has distinct functions. Following duplication, each paralog likely sub-functionalized to carry out some, but not all, of its previous functions so that between the two paralogs, each process is performed. In S. cerevisiae, for example, Tor1 exclusively functions within TORC1, while Tor2 preferentially populates TORC2 but can also function in TORC1. S. pombe has two Tor paralogs as a result of an independent segmental gene duplication event, and each paralog has distinct roles not necessarily equivalent to those of S. cerevisiae Tor1 and Tor2. SpTor1 is not essential, whereas SpTor2 is essential for growth 112982.We hypothesize that similar models could apply in species encoding two Tor homologs resulting from independent gene duplication events such as P. ostreatus and B. dendrobatidis. Based on their level of identity with S.�cerevisiae Tor homologs, the B. dendrobatidis genes BDEG_08293 and BDEG_05727 have been designated TOR1 and TOR2, respectively. However, these gene names are not necessarily based on functional similarity with ScTor1 and ScTor2 but rather indicate only that there are two TOR homologs in B. dendrobatidis. A�similar naming challenge is evident in S. pombe, where the functions of SpTor1 and SpTor2 are not equivalent with those of ScTor1 and ScTor2.While several species, such as those in the Saccharomyces clade, have two Tor paralogs resulting from ancient WGD events, other species have acquired a second paralog through independent segmental gene duplication events, including B. dendrobatidis and several fission yeast species closely related to S. pombe (Figure 4). Segmental gene duplications have played a major role in the evolution of species and can result in the duplication of single genes or large blocks of genes 83. In S. cerevisiae, the duplication blocks with TOR include three paralogous gene pairs that have been retained from the ancestral WGD event: PTK1/PTK2, TOR1/TOR2, and MNN4/YJR061W 78 (Figure 5A). Further, C. glabrata, an ascomycete closely related to S. cerevisiae that diverged following the WGD, has also maintained a second TOR paralog and synteny is apparent in the region flanking the TOR1 and TOR2 genes, though one must extend the analysis to >40 kb from the TOR genes to detect it (See additional file 1: Supplemental figure 1). However, because C. glabrata and S. cerevisiae have retained different subsets of genes from the ancestral WGD, the duplicated genes surrounding TOR in these species are not homologs of one another. Further, C. glabrata has maintained fewer of the synteny blocks found in S. cerevisiae, and the block containing the TOR genes (Block 42) is not conserved in C. glabrata 80.In contrast, genomic regions surrounding the Tor paralogs in S. pombe (Figure 5B) and B. dendrobatidis (Figure 5C) are not syntenically conserved. That is, the duplicated genes are not flanked by other duplicated gene pairs, and the two TOR paralogs likely resulted from independent segmental gene duplication events. Further, there are no indications of WGDs in these species. In the Schizosaccharomycotina, the TOR gene duplication occurred prior to speciation as evidenced by the fact that S. pombe, S. octosporus, S. japonicus, and S. cryophilus have each retained a second Tor paralog; the Tor orthologs across these four species are more closely related to each other than to those from other species (Figure 4). No syntenic conservation between the genomic regions containing TOR paralogs was detected in any species of the Schizosaccharomyces group, supporting the occurrence of an independent segmental gene duplication in their common ancestor (see additional file 2: supplemental Figure 2).The Taphrinomycotina is a monophyletic taxon of the Ascomycota containing the Schizosaccharomycetes, Taphrinomycetes, Neolectomycetes, and Pneumocystidomycetes. Genomes are only available for species within the Schizosaccharomycetes (S. pombe, S. octosporus, S. japonicus, and S. cryophilus) and the Taphrinomycetes (Pneumocystis carinii). While the studied Schizosaccharomyces spp. contain two Tor homologs, a single homolog was identified in P. carinii with tBLASTx using the highly conserved S. cerevisiae FRB domain of Tor1 based on sequence data produced by the Pneumocystis Genome Project (funded by the NIH NIAID) that was obtained from http://pgp.cchmc.org at the time of publication. Based on the phylogenetic placement of these two groups 84 and the available genomic information, we hypothesize that the segmental TOR duplication is unique to the Schizosaccharomyces spp. and occurred following their divergence from the common ancestor of the Taphrinomycota, as P. carinii, the other species within this taxon with available genome data, appears to contain a single Tor homolog.Interestingly, the zygomycete R. oryzae underwent a whole genome duplication event and despite retaining 12% of the resulting duplicated genes 85 compared to 8% retained genes in a separate WGD event in S. cerevisiae 7879, two Tor paralogs have not been retained; only a single Tor homolog was identified. Currently, the Zygomycota is the only group studied without an identified species containing two Tor homologs; however, there are not enough available genomes to make a definitive conclusion in this group. Other species with independent TOR duplications likely remain to be identified in all of the major fungal lineages, and as more genome sequences become available this will be addressed.During this study, we identified three additional species that possibly have two TOR paralogs: M. brevicollis, Thecamonas trahens, and Allomyces macrogynus, species that are included in the Origins of Multicellularity Project 86. While analysis is limited because of the state of the M. brevicollis (choanoflagellate) genome, it appears that an additional bonafide Tor protein is encoded with the conserved Tor protein architecture. Thecamonas trahens is a unicellular apusomonad that also contains two TOR paralogs. Interestingly, A. macrogynus is a fungus that may contain a second paralog; however, it appears that the FRB domain overlaps with the kinase domain. This may represent a case in which TOR was duplicated but is in the process of losing one of the copies. These cases are a springboard for future studies involving the duplication of TOR within and beyond the fungal kingdom.Loss of the Tor signaling pathway in microsporidiaWhile components of the Tor signaling cascade are conserved in eukaryotes from yeasts to humans, the microsporidia, a group of highly specialized obligate intracellular pathogens completely lack all of the pathway components investigated in this study. E. cuniculi has previously been noted to lack the Tor kinase 87, and we found that all pathway components including Tor were missing not only in E. cuniculi but also in its microsporidian relatives E. bieneusi and N. ceranae (Table 2). Microsporidian genomes are highly compacted and show a marked reduced gene content. The genome of the human pathogen E. cuniculi has 1997 genes distributed throughout 11 chromosomes in a 2.9 Mb genome 88, less than half the number of protein-coding genes found in Escherichia coli. For comparison, the genome of the human pathogen E. bieneusi genome is ~6 Mb with 3,804 genes 89 and the honeybee pathogen N. ceranae genome is ~7.9 Mb with 2,614 predicted genes 90. Genome reduction has been well studied in intracellular bacteria: during the specialization process from a free-living to intracellular lifestyle, massive gene loss can occur 9192939495. We hypothesize that as a consequence of their specialization to an obligate intracellular lifestyle, the need for nutrient sensing was relaxed and these obligate intracellular microsporidia acquired nutrients from within the host cytoplasm. Thus, they no longer required the Tor pathway, which is dedicated to sensing changes in the nutrient composite of the environmental milieu. However, E. cuniculi has retained some of the genes encoding signaling pathways involved in nutrient sensing in other species, including homologs of S. cerevisiae Ras1 and Ras2 (data not shown).Interestingly, P. carinii is an obligate pathogen with a reduced genome estimated to be ~8 Mb 96, which unlike microsporidia is not obligately intracellular. A�single Tor homolog was identified [Pneumocystis Genome Project:cap3_it1_grp346_contig490] using the S. cerevisiae Tor1 FRB domain in tBLASTx, supporting our hypothesis that the microsporidia have streamlined their genomes as they adopted an obligate intracellular life cycle. P. carinii likely requires Tor because it must survive in a metabolically active form outside of host cells, undergoing cell division in the extracellular milieu of the infected host lung.Many microsporidian genomes have undergone extreme genome reduction and are among the eukaryotes with the smallest genomes. In addition to fewer genes than other species (1997 in E. cuniculi compared to 6607 in S. cerevisiae), E. cuniculi has shorter genes, small intergenic distances, and very few introns 8897. This species (and to an even greater extent, E. bieneusi) lacks several genes that are necessary for biosynthetic pathways and the tricarboxylic acid cycle in free-living organisms 888998. Remarkably, E. cuniculi must acquire ATP from its host through a series of ATP transporters anciently acquired from Rickettsia- or Chlamydia-like bacteria 99, and this is an example of how E. cuniculi, and possibly other microsporidia, can hijack mechanisms of other intracellular bacteria, fungi, or the host to survive in and adapt to their highly specialized intracellular lifestyle.ConclusionsThe Tor pathway is highly conserved with some exceptions among fungi, including several pathogens. Similarly, the molecular structural organization of the Tor kinases has been remarkably conserved as well as the presumed ability to bind the FKBP12-rapamycin complex. This feature, combined with the essential nature of the rapamycin-sensitive TORC1 pathway for cell growth, should enable the development of rapamycin-based strategies for antifungal therapies. Duplications of the Tor protein occurred in most fungal groups examined, resulting from either independent segmental gene duplication events or a WGD event. The maintenance of two Tor homologs can be explained through the DDC model of gene duplication, in which the paralogs subfunctionalize and together support all of the functions of the pre-duplicated protein. In addition, species outside of the fungal kingdom with two or more TOR homologs include the metazoan B. mori, the apusomonad protozoan T. trahens, the trypanosome protozoans L. major and T. brucei, and possibly the choanoflagellate M. brevicollis. This suggests that the Tor gene has been independently duplicated multiple times since the last common ancestor of the Opisthokonta and Excavata lineages. The Tor pathway, as well as the Tor protein itself, is highly conserved in eukaryotes, so the observation that three microsporidian species are missing the entire pathway is striking. It would appear that the specialized obligate intracellular life cycle of microsporidia allows for the acquisition of nutrients from the host cell, obviating a requirement for this central nutrient-sensing pathway that is essential in all known cases of other eukaryotes for axenic growth.MethodsIdentification of pathway component homologsTor homologs were identified using the highly conserved 100 amino acid FRB domain of S. cerevisiae Tor1 in BLASTp reciprocal best-hit searches between the specific species database and the Saccharomyces Genome Database (SGD). All queries for other Tor pathway components were retrieved from SGD and homologs were identified by BLASTp reciprocal best-hit searches, with the exception of Tsc1 and Tsc2. Tsc1 and Tsc2 protein query sequences were retrieved from the S. pombe GeneDB, and homologs were identified using BLASTp searches between the S. pombe genome database and the species database. Species identification numbers are listed in Supplemental Table 1. Protein architecture of each homolog was elucidated with Simple Modular Architecture Research Tool (SMART) analysis 7071.Accession numbers are provided for putative Tor pathway components (see Additional file 3, supplemental Table 1 for the accession numbers of putative Tor pathway components) from the following public genomic databases that were used to carry out BLAST: S. cerevisiae, SGD, http://www.yeastgenome.org; S. pombe, GeneDB, http://www.genedb.org/genedb/pombe/index.jsp; P. ostreatus, JGI, http://genome.jgi-psf.org/PleosPC15_1/PleosPC15_1.home.html; M. circinelloides, JGI and the Mucor Genome Project, http://genome.jgi-psf.org/Mucci1/Mucci1.home.html; R. oryzae, Broad Institute, http://www.broadinstitute.org/annotation/genome/rhizopus_oryzae/MultiHome.html; P. blakesleeanus, JGI, http://genome.jgi-psf.org/Phybl1/Phybl1.home.html; B. dendrobatidis, Broad Institute, http://www.broadinstitute.org/annotation/genome/batrachochytrium_dendrobatidis/MultiHome.html; S. punctatus, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; M. brevicollis, JGI, http://genome.jgi-psf.org/Monbr1/Monbr1.home.html; S. rosetta, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; C. owczarzaki, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; E. cuniculi, E. bieneusi, and N. ceranae, NCBI, http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi?organism=fungi.Phylogenetic analysis of TorThe ProtTest program 100 was used to select an appropriate model to construct the phylogenetic relationship of the Tor proteins of the studied species. For this study, the best model for phylogenetic construction of the Tor protein using maximum likelihood (ML) was JTT+I+G+F 101. The ML tree was generated using PhyML with the JTT+I+G+F mode with 500 bootstrap replicates 102103. The Tor amino acid sequences from all species were aligned with CLUSTAL W 104.Synteny analysis of TOR paralogsTor homologs in fungal species were identified with BLAST 105 using TOR1 and TOR2 of S. cerevisiae as query sequences. The TOR sequence and flanking regions (up to 100 kb) were extracted from corresponding contigs or chromosomal sequences. To analyze the synteny of TOR and flanking regions, we constructed a database of one TOR and flanking region sequence and used the other TOR homolog and flanking region sequence to perform tBLASTx searches in the database (BLOSUM62 matrix; E-value = 1e-3; gap cost: existence 11, extension 1; and low complexity regions filter). The tBLASTx results were parsed and formatted using an in-house Perl script (available upon request). The parsed and formatted tBLASTx results were then imported into Artemis software 106 for synteny analysis. We employed a cutoff value of 100 bp to filter short non-significant matches between query and database sequences.Authors� contributionsCAS carried out the homolog searches and phylogenetic analysis and drafted the manuscript. RJB performed homolog searches and participated in the design of the study. WL performed the synteny and phylogenetic analysis and helped draft the manuscript. JH and MEC conceived of the study, participated in its design and helped to draft the manuscript. All authors read and approved the final manuscript.
BackgroundThe nutrient-sensing target of rapamycin (Tor) pathway is highly conserved among eukaryotes and governs several essential cellular processes including protein synthesis, ribosome biogenesis, autophagy, and cytoskeletal organization 123. In the fungal kingdom, the Tor pathway has been best studied in the budding yeast Saccharomyces cerevisiae 234, the fission yeast Schizosaccharomyces pombe 56, and the human pathogen Candida albicans 5678. However, little is known about Tor in basal fungal lineages, including the Zygomycota and Chytridiomycota.In S. cerevisiae and S. pombe, two Tor paralogs form distinct complexes known as Tor Complex 1 (TORC1) and Tor Complex 2 (TORC2) 9101112, while in most other species, including humans, a single Tor protein can populate both complexes 11121314. Interestingly, S. cerevisiae Tor2 can complement the loss of Tor1, but Tor1 cannot complement the loss of Tor2 1516. Two Tor paralogs have also been identified in a metazoan, the silkworm Bombyx mori 17 and three Tor paralogs were identified in the trypanosomatid parasites Leishmania major 18 and the related species Trypanosoma brucei 19, the first reported Tor triumvirates.The ScTORC1 is sensitive to rapamycin and controls protein synthesis, mRNA synthesis and degradation, ribosome biogenesis, and autophagy. TORC2 is insensitive to rapamycin and is involved in the control of actin polarization and cell wall integrity 916. TORC1 consists of Tor1 or Tor2, Kog1 20, Tco89, and Lst8 21, while TORC2 contains Tor2, Lst8, Avo1, Avo2, and Avo3 22 (Figure 1A). Recently, the EGO-GTPase complex and its orthologs were shown to convey amino acid signals for TORC1 activation in yeast, insects, and mammals 23242526. In S. cerevisiae, immediate effectors of TORC1 include the PP2A-like phosphatase Sit4 27 and the AGC kinase Sch9 28. In S. pombe, Tor participates in other cellular functions including nutrient signaling 29, cell growth and differentiation 30, mitotic commitment 31, and sexual development 11 (Figure 1B).The structure of the Tor proteins is remarkably conserved (Figure 2) and features several domains for protein-protein interactions including N-terminal HEAT (Huntingtin, Elongation factor 3, PP2A A subunit, Tor) repeats 32, a FAT (FRAP, ATM, and TRRAP) domain 3334, and an FRB (FK506-Rapamycin Binding) 35 domain. The kinase and the FATC (FAT domain at the C-terminus) 3236 domains are present in the C-terminal region.The Tor inhibitor rapamycin blocks cell proliferation and is currently used as an immunosuppressive drug for organ and tissue transplant recipients and a chemotherapy agent against a variety of solid cancers 37383940. Rapamycin binds to the prolyl isomerase FKBP12 to form a protein-drug complex that then interacts with the Tor FRB domain in a ternary complex 4142. S. cerevisiae cells treated with rapamycin display phenotypes associated with nutrient depletion including G1 cell cycle arrest, cellular volume expansion, protein synthesis inhibition, glycogen accumulation, and autophagy 3543.Genetic analysis in S. cerevisiae characterizing rapamycin-resistant mutants led to the identification of FKBP12 as the intracellular receptor for rapamycin and defined Tor1 and Tor2 as the targets of the FKBP12-rapamycin complex 4. Subsequent studies resulted in the identification and characterization of the TOR1 and TOR2 gene products 1544 as well as the elucidation of the Tor signaling cascade 8454647. These pioneering studies aided in the identification of the mammalian Tor ortholog and characterization of this highly conserved signaling cascade 84849. Remarkably, expression of the human FKBP12 ortholog in yeast fpr1 (the gene that encodes FKBP12) deletion mutants complements to restore rapamycin sensitivity, and hybrid Tor proteins consisting of the yeast N-terminal domain fused to the mammalian Tor kinase domain are also functional in yeast 50. Thus, the Tor pathway has been functionally and structurally conserved from yeasts to humans over the billion years of evolution separating the two species from their last common ancestor.We now know that the fungal and metazoan kingdoms are both within the opisthokont lineage of eukaryotes and are thus more closely related to each other than the vast majority of eukaryotic organisms 5152. Moreover, these two highly successful kingdoms shared a last common ancestor as recently as one billion years ago, much more recently than most eukaryotes. Recent initiatives, particularly the UNICORN project, have facilitated the sequencing of several opisthokonts related to the last common ancestor of the metazoans and fungi, providing an interesting window into the evolution of both fungi and animals 53545556. Thus, studies on the evolutionary trajectory of the fungal kingdom in general, and of the Tor signaling cascade in particular, promise to reveal insights about how orthologous pathways function in the more complex milieu of multicellular metazoan organisms.In this study, we have capitalized upon the wealth of available genomic information by annotating the Tor pathway in several fungal organisms in which this pathway has not been described. Our study included selected species in the major groups of the fungal kingdom with genome sequences available: the basidiomycete Pleurotus ostreatus; the Mucorales zygomycetes Mucor circinelloides, Rhizopus oryzae, and Phycomyces blakesleeanus; the chytridiomycetes Spizellomyces punctatus and Batrachochytrium dendrobatidis; the microsporidian species Encephalitozoon cuniculi, Enterocytozoon bieneusi, and Nosema ceranae; and the related non-fungal opisthokonts Capsaspora owczarzaki, Salpingoeca rosetta, and Monosiga brevicollis. Whereas the Tor pathway is conserved throughout the eukaryotes, strikingly, microsporidian species with their highly reduced and compacted genomes lack the entire Tor pathway. We have also investigated gene and genome duplication events that resulted in two Tor homologs in S. cerevisiae, S. pombe, P. ostreatus, and B. dendrobatidis, and the loss of a second Tor homolog following a whole genome duplication event in R. oryzae.Results and DiscussionConservation of the Tor signaling pathway molecular componentsThe Tor pathway is well conserved among nearly all eukaryotic species examined to date. Tor is essential for life and is the target of the potent drug rapamycin in fungi, humans, and other eukaryotic organisms 2121941. Tor originated early during the eukaryotic radiation, as it is present in the basal eukaryotes Giardia lamblia 57, L. major 18 and T. brucei 19, and also in plants 58. Here we focused on the Tor pathway in the fungal kingdom and other representative unicellular opisthokont species outside of the fungi. Several genes encoding Tor complex components, upstream regulators, and downstream effectors were identified in all major groups throughout the fungal kingdom (Figure 1, Table 1). Because we used BLASTp reciprocal best hits (RBH) to identify orthologs, in some cases the absence of an ortholog in our results may represent only a failure to detect it with this method. Further, functional homologs that are not sufficiently similar enough in sequence to be identified may be present. Overall, a high degree of pathway conservation is observed in the Tor signaling cascade throughout the fungal kingdom, with the exception of microsporidia in which all Tor pathway components are absent. In addition, several pathway components are conserved in the related unicellular opisthokonts M. brevicollis, S. rosetta, and C. owczarzaki (Table 2).In S. cerevisiae, Tor1 and Tor2 interact with several proteins to form TORC1 and TORC2. TORC1 contains Tor1 or Tor2, Kog1, Tco89, and Lst8. Kog1 functions as a substrate-recruiting subunit in mammalian TORC1 (mTORC1) 13596061. A gene encoding a putative Kog1 homolog was identified in all species included in this study, with the exception of the microsporidia and S. rosetta (Tables 1 and 2). Mutation of TCO89 results in hypersensitivity to rapamycin and affects cellular integrity in S. cerevisiae 21. Tco89 is only found in S. cerevisiae and could have resulted from a specialization of the pathway exclusive to Saccharomyces species (Table 1). However, while a BLASTp search did not identify Tco89 homologs in other species, S. pombe has been reported to contain a functional homolog [GenBank:NP_588232] 12, and this suggests that functional homologs may exist in other fungal species as well. However, no homologs were identified when using S.�pombe Tco89 as a query sequence. Lst8 binds to the Tor kinase domain in S. cerevisiae to stimulate catalytic activity 9 and a putative Lst8 homolog is conserved in most species analyzed except microsporidia and S.�rosetta (Tables 1 and 2).Additional BLASTp searches identified a single Tor homolog in the following species: Lachancea thermotolerans CBS6340 [GenBank:XP_002552336], Pichia pastoris GS115 [GenBank:XP_002491471], Pichia stipitis CBS6054 [GenBank:XP_001385651], Debaryomyces hansenii CBS767 [GenBank:XP_002770885], Yarrowia lipolytica CLIB122 [GenBank:XP_505106], Podospora anserina strain S mat+ [GenBank:XP_001903968], Chaetomium globosum CBS148.51 [GenBank:XP_001226647], Magnaporthe oryzae 70-15 [GenBank:XP_001414541], Gibberella zeae PH-1 [GenBank:XP_388309], Aspergillus fumigatus Af293 [GenBank:XP_755360], Aspergillus flavus NRRL3357 [GenBank:XP_002377897], Neosartorya fischeri NRRL181 [GenBank:XP_001260509], Aspergillus terreus NIH2624 [GenBank:XP_001213640], Aspergillus nidulans FGSCA4 [GenBank:XP_663586], Aspergillus clavatus NRRL1 [GenBank:XP_001275326], Aspergillus oryzae RIB40 [GenBank: XP_001826216], and Aspergillus niger CBS513.88 [GenBank:XP_001397781]. These ascomycetes were not included in further studies.In yeast and mammals, TORC2 controls spatial aspects of growth. TORC2 includes Tor2, Avo1, Avo2, Avo3, and Bit61 922. Avo1 plays an essential role in actin cytoskeleton polarization 22 and is conserved throughout the organisms that were the focus of this study (Table 1) except in S. rosetta and C. owczarzaki (Table 2). However, due to high divergence of the AVO1 sequence amongst the known homologs, it is possible that the S. rosetta and C. owczarzaki homologs cannot be identified using the BLASTp algorithm. Avo2 is a nonessential substrate adaptor for TORC2 22 and potential homologs were identified in most species studied, with the exceptions of S. pombe, P. ostreatus, the three microsporidian species (Table 1), and M. brevicollis (Table 2). In S. cerevisiae, Avo3 (also know as Tsc11) controls cytoskeletal dynamics 922, and homologs are conserved throughout the species examined (Tables 1 and 2). Bit61, a nonessential protein that associates with TORC2 21, was only identified in S. cerevisiae (Tables 1 and 2).Upstream regulators of Tor include Tsc1 and Tsc2 (Tuberous Sclerosis 1 and 2) and the GTPase Rheb (Ras homolog enhanced in brain). In S. pombe and other eukaryotes, Tsc1 and Tsc2 form a GTPase-activating complex that negatively regulates the action of Rheb to activate TORC1 266263. Tsc1 and Tsc2 putative homologs were identified in most species in the study, with the exception of S. cerevisiae (Table 1); however, Tsc1 homologs were not identified in B. dendrobatidis, S. rosetta, or C. owczarzaki (Tables 1 and 2). In mammals and insects, four Rag GTPases (RagA-D) bind raptor (Kog1) to mediate TORC1 signaling in response to amino acids 2426. RagA and RagB are orthologs of S.�cerevisiae Gtr1 whereas RagC and RagD are orthologs of S. cerevisiae Gtr2 23. Gtr1 and Gtr2 form a complex along with Ego1 and Ego3 known as EGOC/GSE 25, which is regulated by the GTP exchange factor Vam6 23. Interestingly we found presumptive Gtr1 and Gtr2 orthologs in species in this study with the exception of microsporidia (Table 1), and Gtr1 was not identified in M. brevicollis (Table 2). However, Ego1 and Ego3, which anchor Gtr1 and Gtr2 to endosomal and vacuolar membranes, are unique to S. cerevisiae and were not identified in the other species (Table 1). This suggests that the specific EGO complex architecture might be restricted to Saccharomyces, though it is possible that functional homologs may be present in other species.In fungi, several downstream effectors are targets of Tor signaling. The PP2A phosphatase Sit4 and its regulatory subunit Tap42 regulate the expression of several TORC1-controlled genes and Gcn2-regulated translation 36465. A Sit4 homolog was identified in R. oryzae (Table 1), though a homolog of the regulatory subunit Tap42 was not (Table 1). In S. rosetta, a Sit4 homolog was not identified, though Tap42 was (Table 2). Both of these situations could indicate rewiring of the pathway, or alternatively these findings could be a result of insufficient similarity to detect with a RBH search method. Sch9, a member of the AGC kinase family and the functional homolog of the p70 S6 kinase, is a direct substrate of S. cerevisiae TORC1 involved in ribosome biogenesis 2866. Sch9 was not identified in RBH BLASTp searches with S. cerevisiae Sch9 in M. circinelloides, P. blakesleeanus, the microsporidia (Table 1), or S. rosetta (Table 2), but was identified in all other species. Putative homologs of Ypk2 kinase, a regulator of ceramide synthesis controlled by TORC2 signaling 67, were only identified in S. cerevisiae, S. pombe, (Table 1), M. brevicollis, S. rosetta, and C. owczarzaki (Table 2). Notably, the failure to detect many homologs in M. brevicollis, S. rosetta, and C. owczarzaki could be due to their evolutionary distance from the other organisms in the study and their gene divergence.Evolutionary conservation of Tor kinase protein structureThe Tor kinases are phosphatidylinositol kinase-related kinases (PIKKs) 68 and aside from their known protein kinase function also serve as evolutionary constrained scaffolds with several protein-protein interaction domains that mediate multi-protein complex formation 69. Tor protein architecture was annotated using SMART 7071 and we found that it has been maintained throughout the species of this study (Figure 2). N-terminal HEAT repeats are present in varying numbers and serve as scaffolding structures for protein-protein interactions 327273. Similarly, the FAT/toxic domain and the accompanying C-terminal FATC domain also participate in protein scaffolding and are present and conserved in all species subject to analysis. Over-expression of the FAT domain has a dominant negative effect on cell growth in yeast and this effect can be suppressed by over-expression of phospholipase C 33. The kinase domain has similarities to both lipid and protein kinases, but it is a bona fide protein kinase. The FRB (FKBP12-rapamycin binding) domain is a highly conserved 100 amino acid region of Tor with several residues that are known to be required for binding the FKBP12-rapamycin drug complex 42.In addition, the FRB domain contains several residues necessary for both phosphatidic acid binding and rapamycin interaction 7475. In mammals, phosphatidic acid binding to the FRB region may promote the assembly of mTOR complexes. It has been proposed that the potent effect of the Tor inhibitor rapamycin may be due to direct competition for overlapping phosphatidic acid binding sites within the FRB domain 76. Mutation of the conserved amino acid residues S1975, W2041, or F2048 in the FRB domain confers rapamycin resistance in S. cerevisiae 44277. Strikingly, the corresponding amino acid residues are conserved in all species examined (Figure 3). In mTOR, phosphatidic acid binding is disrupted by mutations of L2031, F2309, and Y2105 75, corresponding to S. cerevisiae Tor2 L1971, F1979, and Y2045, respectively, all of which are conserved in the studied fungal species (Figure 3).Duplication of Tor in the fungal kingdomApproximately 100 million years ago, the S. cerevisiae ancestor underwent a whole genome duplication (WGD) event, and species that descend from this evolutionary event retained duplicated subsets of genes. S. cerevisiae retained approximately 8% of duplicated genes 7879, while other fungi in this lineage have maintained varying numbers of gene duplicates, such as Candida glabrata in which a smaller number (~2%) of these pairs are maintained 80. Interestingly, several of these species, including S. cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, S. bayanus, S. castellii, and C. glabrata have retained two TOR paralogs, whereas species outside of the WGD clade, including Kluyveromyces lactis and Ashbya gossypii, have only a single TOR gene.The fates of duplicated gene paralogs can be explained through the duplication, degeneration, and complementation (DDC) model of gene duplication 81. In species with a single Tor, this protein populates both TORC1 and TORC2, each of which has distinct functions. Following duplication, each paralog likely sub-functionalized to carry out some, but not all, of its previous functions so that between the two paralogs, each process is performed. In S. cerevisiae, for example, Tor1 exclusively functions within TORC1, while Tor2 preferentially populates TORC2 but can also function in TORC1. S. pombe has two Tor paralogs as a result of an independent segmental gene duplication event, and each paralog has distinct roles not necessarily equivalent to those of S. cerevisiae Tor1 and Tor2. SpTor1 is not essential, whereas SpTor2 is essential for growth 112982.We hypothesize that similar models could apply in species encoding two Tor homologs resulting from independent gene duplication events such as P. ostreatus and B. dendrobatidis. Based on their level of identity with S.�cerevisiae Tor homologs, the B. dendrobatidis genes BDEG_08293 and BDEG_05727 have been designated TOR1 and TOR2, respectively. However, these gene names are not necessarily based on functional similarity with ScTor1 and ScTor2 but rather indicate only that there are two TOR homologs in B. dendrobatidis. A�similar naming challenge is evident in S. pombe, where the functions of SpTor1 and SpTor2 are not equivalent with those of ScTor1 and ScTor2.While several species, such as those in the Saccharomyces clade, have two Tor paralogs resulting from ancient WGD events, other species have acquired a second paralog through independent segmental gene duplication events, including B. dendrobatidis and several fission yeast species closely related to S. pombe (Figure 4). Segmental gene duplications have played a major role in the evolution of species and can result in the duplication of single genes or large blocks of genes 83. In S. cerevisiae, the duplication blocks with TOR include three paralogous gene pairs that have been retained from the ancestral WGD event: PTK1/PTK2, TOR1/TOR2, and MNN4/YJR061W 78 (Figure 5A). Further, C. glabrata, an ascomycete closely related to S. cerevisiae that diverged following the WGD, has also maintained a second TOR paralog and synteny is apparent in the region flanking the TOR1 and TOR2 genes, though one must extend the analysis to >40 kb from the TOR genes to detect it (See additional file 1: Supplemental figure 1). However, because C. glabrata and S. cerevisiae have retained different subsets of genes from the ancestral WGD, the duplicated genes surrounding TOR in these species are not homologs of one another. Further, C. glabrata has maintained fewer of the synteny blocks found in S. cerevisiae, and the block containing the TOR genes (Block 42) is not conserved in C. glabrata 80.In contrast, genomic regions surrounding the Tor paralogs in S. pombe (Figure 5B) and B. dendrobatidis (Figure 5C) are not syntenically conserved. That is, the duplicated genes are not flanked by other duplicated gene pairs, and the two TOR paralogs likely resulted from independent segmental gene duplication events. Further, there are no indications of WGDs in these species. In the Schizosaccharomycotina, the TOR gene duplication occurred prior to speciation as evidenced by the fact that S. pombe, S. octosporus, S. japonicus, and S. cryophilus have each retained a second Tor paralog; the Tor orthologs across these four species are more closely related to each other than to those from other species (Figure 4). No syntenic conservation between the genomic regions containing TOR paralogs was detected in any species of the Schizosaccharomyces group, supporting the occurrence of an independent segmental gene duplication in their common ancestor (see additional file 2: supplemental Figure 2).The Taphrinomycotina is a monophyletic taxon of the Ascomycota containing the Schizosaccharomycetes, Taphrinomycetes, Neolectomycetes, and Pneumocystidomycetes. Genomes are only available for species within the Schizosaccharomycetes (S. pombe, S. octosporus, S. japonicus, and S. cryophilus) and the Taphrinomycetes (Pneumocystis carinii). While the studied Schizosaccharomyces spp. contain two Tor homologs, a single homolog was identified in P. carinii with tBLASTx using the highly conserved S. cerevisiae FRB domain of Tor1 based on sequence data produced by the Pneumocystis Genome Project (funded by the NIH NIAID) that was obtained from http://pgp.cchmc.org at the time of publication. Based on the phylogenetic placement of these two groups 84 and the available genomic information, we hypothesize that the segmental TOR duplication is unique to the Schizosaccharomyces spp. and occurred following their divergence from the common ancestor of the Taphrinomycota, as P. carinii, the other species within this taxon with available genome data, appears to contain a single Tor homolog.Interestingly, the zygomycete R. oryzae underwent a whole genome duplication event and despite retaining 12% of the resulting duplicated genes 85 compared to 8% retained genes in a separate WGD event in S. cerevisiae 7879, two Tor paralogs have not been retained; only a single Tor homolog was identified. Currently, the Zygomycota is the only group studied without an identified species containing two Tor homologs; however, there are not enough available genomes to make a definitive conclusion in this group. Other species with independent TOR duplications likely remain to be identified in all of the major fungal lineages, and as more genome sequences become available this will be addressed.During this study, we identified three additional species that possibly have two TOR paralogs: M. brevicollis, Thecamonas trahens, and Allomyces macrogynus, species that are included in the Origins of Multicellularity Project 86. While analysis is limited because of the state of the M. brevicollis (choanoflagellate) genome, it appears that an additional bonafide Tor protein is encoded with the conserved Tor protein architecture. Thecamonas trahens is a unicellular apusomonad that also contains two TOR paralogs. Interestingly, A. macrogynus is a fungus that may contain a second paralog; however, it appears that the FRB domain overlaps with the kinase domain. This may represent a case in which TOR was duplicated but is in the process of losing one of the copies. These cases are a springboard for future studies involving the duplication of TOR within and beyond the fungal kingdom.Loss of the Tor signaling pathway in microsporidiaWhile components of the Tor signaling cascade are conserved in eukaryotes from yeasts to humans, the microsporidia, a group of highly specialized obligate intracellular pathogens completely lack all of the pathway components investigated in this study. E. cuniculi has previously been noted to lack the Tor kinase 87, and we found that all pathway components including Tor were missing not only in E. cuniculi but also in its microsporidian relatives E. bieneusi and N. ceranae (Table 2). Microsporidian genomes are highly compacted and show a marked reduced gene content. The genome of the human pathogen E. cuniculi has 1997 genes distributed throughout 11 chromosomes in a 2.9 Mb genome 88, less than half the number of protein-coding genes found in Escherichia coli. For comparison, the genome of the human pathogen E. bieneusi genome is ~6 Mb with 3,804 genes 89 and the honeybee pathogen N. ceranae genome is ~7.9 Mb with 2,614 predicted genes 90. Genome reduction has been well studied in intracellular bacteria: during the specialization process from a free-living to intracellular lifestyle, massive gene loss can occur 9192939495. We hypothesize that as a consequence of their specialization to an obligate intracellular lifestyle, the need for nutrient sensing was relaxed and these obligate intracellular microsporidia acquired nutrients from within the host cytoplasm. Thus, they no longer required the Tor pathway, which is dedicated to sensing changes in the nutrient composite of the environmental milieu. However, E. cuniculi has retained some of the genes encoding signaling pathways involved in nutrient sensing in other species, including homologs of S. cerevisiae Ras1 and Ras2 (data not shown).Interestingly, P. carinii is an obligate pathogen with a reduced genome estimated to be ~8 Mb 96, which unlike microsporidia is not obligately intracellular. A�single Tor homolog was identified [Pneumocystis Genome Project:cap3_it1_grp346_contig490] using the S. cerevisiae Tor1 FRB domain in tBLASTx, supporting our hypothesis that the microsporidia have streamlined their genomes as they adopted an obligate intracellular life cycle. P. carinii likely requires Tor because it must survive in a metabolically active form outside of host cells, undergoing cell division in the extracellular milieu of the infected host lung.Many microsporidian genomes have undergone extreme genome reduction and are among the eukaryotes with the smallest genomes. In addition to fewer genes than other species (1997 in E. cuniculi compared to 6607 in S. cerevisiae), E. cuniculi has shorter genes, small intergenic distances, and very few introns 8897. This species (and to an even greater extent, E. bieneusi) lacks several genes that are necessary for biosynthetic pathways and the tricarboxylic acid cycle in free-living organisms 888998. Remarkably, E. cuniculi must acquire ATP from its host through a series of ATP transporters anciently acquired from Rickettsia- or Chlamydia-like bacteria 99, and this is an example of how E. cuniculi, and possibly other microsporidia, can hijack mechanisms of other intracellular bacteria, fungi, or the host to survive in and adapt to their highly specialized intracellular lifestyle.ConclusionsThe Tor pathway is highly conserved with some exceptions among fungi, including several pathogens. Similarly, the molecular structural organization of the Tor kinases has been remarkably conserved as well as the presumed ability to bind the FKBP12-rapamycin complex. This feature, combined with the essential nature of the rapamycin-sensitive TORC1 pathway for cell growth, should enable the development of rapamycin-based strategies for antifungal therapies. Duplications of the Tor protein occurred in most fungal groups examined, resulting from either independent segmental gene duplication events or a WGD event. The maintenance of two Tor homologs can be explained through the DDC model of gene duplication, in which the paralogs subfunctionalize and together support all of the functions of the pre-duplicated protein. In addition, species outside of the fungal kingdom with two or more TOR homologs include the metazoan B. mori, the apusomonad protozoan T. trahens, the trypanosome protozoans L. major and T. brucei, and possibly the choanoflagellate M. brevicollis. This suggests that the Tor gene has been independently duplicated multiple times since the last common ancestor of the Opisthokonta and Excavata lineages. The Tor pathway, as well as the Tor protein itself, is highly conserved in eukaryotes, so the observation that three microsporidian species are missing the entire pathway is striking. It would appear that the specialized obligate intracellular life cycle of microsporidia allows for the acquisition of nutrients from the host cell, obviating a requirement for this central nutrient-sensing pathway that is essential in all known cases of other eukaryotes for axenic growth.MethodsIdentification of pathway component homologsTor homologs were identified using the highly conserved 100 amino acid FRB domain of S. cerevisiae Tor1 in BLASTp reciprocal best-hit searches between the specific species database and the Saccharomyces Genome Database (SGD). All queries for other Tor pathway components were retrieved from SGD and homologs were identified by BLASTp reciprocal best-hit searches, with the exception of Tsc1 and Tsc2. Tsc1 and Tsc2 protein query sequences were retrieved from the S. pombe GeneDB, and homologs were identified using BLASTp searches between the S. pombe genome database and the species database. Species identification numbers are listed in Supplemental Table 1. Protein architecture of each homolog was elucidated with Simple Modular Architecture Research Tool (SMART) analysis 7071.Accession numbers are provided for putative Tor pathway components (see Additional file 3, supplemental Table 1 for the accession numbers of putative Tor pathway components) from the following public genomic databases that were used to carry out BLAST: S. cerevisiae, SGD, http://www.yeastgenome.org; S. pombe, GeneDB, http://www.genedb.org/genedb/pombe/index.jsp; P. ostreatus, JGI, http://genome.jgi-psf.org/PleosPC15_1/PleosPC15_1.home.html; M. circinelloides, JGI and the Mucor Genome Project, http://genome.jgi-psf.org/Mucci1/Mucci1.home.html; R. oryzae, Broad Institute, http://www.broadinstitute.org/annotation/genome/rhizopus_oryzae/MultiHome.html; P. blakesleeanus, JGI, http://genome.jgi-psf.org/Phybl1/Phybl1.home.html; B. dendrobatidis, Broad Institute, http://www.broadinstitute.org/annotation/genome/batrachochytrium_dendrobatidis/MultiHome.html; S. punctatus, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; M. brevicollis, JGI, http://genome.jgi-psf.org/Monbr1/Monbr1.home.html; S. rosetta, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; C. owczarzaki, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; E. cuniculi, E. bieneusi, and N. ceranae, NCBI, http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi?organism=fungi.Phylogenetic analysis of TorThe ProtTest program 100 was used to select an appropriate model to construct the phylogenetic relationship of the Tor proteins of the studied species. For this study, the best model for phylogenetic construction of the Tor protein using maximum likelihood (ML) was JTT+I+G+F 101. The ML tree was generated using PhyML with the JTT+I+G+F mode with 500 bootstrap replicates 102103. The Tor amino acid sequences from all species were aligned with CLUSTAL W 104.Synteny analysis of TOR paralogsTor homologs in fungal species were identified with BLAST 105 using TOR1 and TOR2 of S. cerevisiae as query sequences. The TOR sequence and flanking regions (up to 100 kb) were extracted from corresponding contigs or chromosomal sequences. To analyze the synteny of TOR and flanking regions, we constructed a database of one TOR and flanking region sequence and used the other TOR homolog and flanking region sequence to perform tBLASTx searches in the database (BLOSUM62 matrix; E-value = 1e-3; gap cost: existence 11, extension 1; and low complexity regions filter). The tBLASTx results were parsed and formatted using an in-house Perl script (available upon request). The parsed and formatted tBLASTx results were then imported into Artemis software 106 for synteny analysis. We employed a cutoff value of 100 bp to filter short non-significant matches between query and database sequences.Authors� contributionsCAS carried out the homolog searches and phylogenetic analysis and drafted the manuscript. RJB performed homolog searches and participated in the design of the study. WL performed the synteny and phylogenetic analysis and helped draft the manuscript. JH and MEC conceived of the study, participated in its design and helped to draft the manuscript. All authors read and approved the final manuscript.
BackgroundThe nutrient-sensing target of rapamycin (Tor) pathway is highly conserved among eukaryotes and governs several essential cellular processes including protein synthesis, ribosome biogenesis, autophagy, and cytoskeletal organization 123. In the fungal kingdom, the Tor pathway has been best studied in the budding yeast Saccharomyces cerevisiae 234, the fission yeast Schizosaccharomyces pombe 56, and the human pathogen Candida albicans 5678. However, little is known about Tor in basal fungal lineages, including the Zygomycota and Chytridiomycota.In S. cerevisiae and S. pombe, two Tor paralogs form distinct complexes known as Tor Complex 1 (TORC1) and Tor Complex 2 (TORC2) 9101112, while in most other species, including humans, a single Tor protein can populate both complexes 11121314. Interestingly, S. cerevisiae Tor2 can complement the loss of Tor1, but Tor1 cannot complement the loss of Tor2 1516. Two Tor paralogs have also been identified in a metazoan, the silkworm Bombyx mori 17 and three Tor paralogs were identified in the trypanosomatid parasites Leishmania major 18 and the related species Trypanosoma brucei 19, the first reported Tor triumvirates.The ScTORC1 is sensitive to rapamycin and controls protein synthesis, mRNA synthesis and degradation, ribosome biogenesis, and autophagy. TORC2 is insensitive to rapamycin and is involved in the control of actin polarization and cell wall integrity 916. TORC1 consists of Tor1 or Tor2, Kog1 20, Tco89, and Lst8 21, while TORC2 contains Tor2, Lst8, Avo1, Avo2, and Avo3 22 (Figure 1A). Recently, the EGO-GTPase complex and its orthologs were shown to convey amino acid signals for TORC1 activation in yeast, insects, and mammals 23242526. In S. cerevisiae, immediate effectors of TORC1 include the PP2A-like phosphatase Sit4 27 and the AGC kinase Sch9 28. In S. pombe, Tor participates in other cellular functions including nutrient signaling 29, cell growth and differentiation 30, mitotic commitment 31, and sexual development 11 (Figure 1B).The structure of the Tor proteins is remarkably conserved (Figure 2) and features several domains for protein-protein interactions including N-terminal HEAT (Huntingtin, Elongation factor 3, PP2A A subunit, Tor) repeats 32, a FAT (FRAP, ATM, and TRRAP) domain 3334, and an FRB (FK506-Rapamycin Binding) 35 domain. The kinase and the FATC (FAT domain at the C-terminus) 3236 domains are present in the C-terminal region.The Tor inhibitor rapamycin blocks cell proliferation and is currently used as an immunosuppressive drug for organ and tissue transplant recipients and a chemotherapy agent against a variety of solid cancers 37383940. Rapamycin binds to the prolyl isomerase FKBP12 to form a protein-drug complex that then interacts with the Tor FRB domain in a ternary complex 4142. S. cerevisiae cells treated with rapamycin display phenotypes associated with nutrient depletion including G1 cell cycle arrest, cellular volume expansion, protein synthesis inhibition, glycogen accumulation, and autophagy 3543.Genetic analysis in S. cerevisiae characterizing rapamycin-resistant mutants led to the identification of FKBP12 as the intracellular receptor for rapamycin and defined Tor1 and Tor2 as the targets of the FKBP12-rapamycin complex 4. Subsequent studies resulted in the identification and characterization of the TOR1 and TOR2 gene products 1544 as well as the elucidation of the Tor signaling cascade 8454647. These pioneering studies aided in the identification of the mammalian Tor ortholog and characterization of this highly conserved signaling cascade 84849. Remarkably, expression of the human FKBP12 ortholog in yeast fpr1 (the gene that encodes FKBP12) deletion mutants complements to restore rapamycin sensitivity, and hybrid Tor proteins consisting of the yeast N-terminal domain fused to the mammalian Tor kinase domain are also functional in yeast 50. Thus, the Tor pathway has been functionally and structurally conserved from yeasts to humans over the billion years of evolution separating the two species from their last common ancestor.We now know that the fungal and metazoan kingdoms are both within the opisthokont lineage of eukaryotes and are thus more closely related to each other than the vast majority of eukaryotic organisms 5152. Moreover, these two highly successful kingdoms shared a last common ancestor as recently as one billion years ago, much more recently than most eukaryotes. Recent initiatives, particularly the UNICORN project, have facilitated the sequencing of several opisthokonts related to the last common ancestor of the metazoans and fungi, providing an interesting window into the evolution of both fungi and animals 53545556. Thus, studies on the evolutionary trajectory of the fungal kingdom in general, and of the Tor signaling cascade in particular, promise to reveal insights about how orthologous pathways function in the more complex milieu of multicellular metazoan organisms.In this study, we have capitalized upon the wealth of available genomic information by annotating the Tor pathway in several fungal organisms in which this pathway has not been described. Our study included selected species in the major groups of the fungal kingdom with genome sequences available: the basidiomycete Pleurotus ostreatus; the Mucorales zygomycetes Mucor circinelloides, Rhizopus oryzae, and Phycomyces blakesleeanus; the chytridiomycetes Spizellomyces punctatus and Batrachochytrium dendrobatidis; the microsporidian species Encephalitozoon cuniculi, Enterocytozoon bieneusi, and Nosema ceranae; and the related non-fungal opisthokonts Capsaspora owczarzaki, Salpingoeca rosetta, and Monosiga brevicollis. Whereas the Tor pathway is conserved throughout the eukaryotes, strikingly, microsporidian species with their highly reduced and compacted genomes lack the entire Tor pathway. We have also investigated gene and genome duplication events that resulted in two Tor homologs in S. cerevisiae, S. pombe, P. ostreatus, and B. dendrobatidis, and the loss of a second Tor homolog following a whole genome duplication event in R. oryzae.Results and DiscussionConservation of the Tor signaling pathway molecular componentsThe Tor pathway is well conserved among nearly all eukaryotic species examined to date. Tor is essential for life and is the target of the potent drug rapamycin in fungi, humans, and other eukaryotic organisms 2121941. Tor originated early during the eukaryotic radiation, as it is present in the basal eukaryotes Giardia lamblia 57, L. major 18 and T. brucei 19, and also in plants 58. Here we focused on the Tor pathway in the fungal kingdom and other representative unicellular opisthokont species outside of the fungi. Several genes encoding Tor complex components, upstream regulators, and downstream effectors were identified in all major groups throughout the fungal kingdom (Figure 1, Table 1). Because we used BLASTp reciprocal best hits (RBH) to identify orthologs, in some cases the absence of an ortholog in our results may represent only a failure to detect it with this method. Further, functional homologs that are not sufficiently similar enough in sequence to be identified may be present. Overall, a high degree of pathway conservation is observed in the Tor signaling cascade throughout the fungal kingdom, with the exception of microsporidia in which all Tor pathway components are absent. In addition, several pathway components are conserved in the related unicellular opisthokonts M. brevicollis, S. rosetta, and C. owczarzaki (Table 2).In S. cerevisiae, Tor1 and Tor2 interact with several proteins to form TORC1 and TORC2. TORC1 contains Tor1 or Tor2, Kog1, Tco89, and Lst8. Kog1 functions as a substrate-recruiting subunit in mammalian TORC1 (mTORC1) 13596061. A gene encoding a putative Kog1 homolog was identified in all species included in this study, with the exception of the microsporidia and S. rosetta (Tables 1 and 2). Mutation of TCO89 results in hypersensitivity to rapamycin and affects cellular integrity in S. cerevisiae 21. Tco89 is only found in S. cerevisiae and could have resulted from a specialization of the pathway exclusive to Saccharomyces species (Table 1). However, while a BLASTp search did not identify Tco89 homologs in other species, S. pombe has been reported to contain a functional homolog [GenBank:NP_588232] 12, and this suggests that functional homologs may exist in other fungal species as well. However, no homologs were identified when using S.�pombe Tco89 as a query sequence. Lst8 binds to the Tor kinase domain in S. cerevisiae to stimulate catalytic activity 9 and a putative Lst8 homolog is conserved in most species analyzed except microsporidia and S.�rosetta (Tables 1 and 2).Additional BLASTp searches identified a single Tor homolog in the following species: Lachancea thermotolerans CBS6340 [GenBank:XP_002552336], Pichia pastoris GS115 [GenBank:XP_002491471], Pichia stipitis CBS6054 [GenBank:XP_001385651], Debaryomyces hansenii CBS767 [GenBank:XP_002770885], Yarrowia lipolytica CLIB122 [GenBank:XP_505106], Podospora anserina strain S mat+ [GenBank:XP_001903968], Chaetomium globosum CBS148.51 [GenBank:XP_001226647], Magnaporthe oryzae 70-15 [GenBank:XP_001414541], Gibberella zeae PH-1 [GenBank:XP_388309], Aspergillus fumigatus Af293 [GenBank:XP_755360], Aspergillus flavus NRRL3357 [GenBank:XP_002377897], Neosartorya fischeri NRRL181 [GenBank:XP_001260509], Aspergillus terreus NIH2624 [GenBank:XP_001213640], Aspergillus nidulans FGSCA4 [GenBank:XP_663586], Aspergillus clavatus NRRL1 [GenBank:XP_001275326], Aspergillus oryzae RIB40 [GenBank: XP_001826216], and Aspergillus niger CBS513.88 [GenBank:XP_001397781]. These ascomycetes were not included in further studies.In yeast and mammals, TORC2 controls spatial aspects of growth. TORC2 includes Tor2, Avo1, Avo2, Avo3, and Bit61 922. Avo1 plays an essential role in actin cytoskeleton polarization 22 and is conserved throughout the organisms that were the focus of this study (Table 1) except in S. rosetta and C. owczarzaki (Table 2). However, due to high divergence of the AVO1 sequence amongst the known homologs, it is possible that the S. rosetta and C. owczarzaki homologs cannot be identified using the BLASTp algorithm. Avo2 is a nonessential substrate adaptor for TORC2 22 and potential homologs were identified in most species studied, with the exceptions of S. pombe, P. ostreatus, the three microsporidian species (Table 1), and M. brevicollis (Table 2). In S. cerevisiae, Avo3 (also know as Tsc11) controls cytoskeletal dynamics 922, and homologs are conserved throughout the species examined (Tables 1 and 2). Bit61, a nonessential protein that associates with TORC2 21, was only identified in S. cerevisiae (Tables 1 and 2).Upstream regulators of Tor include Tsc1 and Tsc2 (Tuberous Sclerosis 1 and 2) and the GTPase Rheb (Ras homolog enhanced in brain). In S. pombe and other eukaryotes, Tsc1 and Tsc2 form a GTPase-activating complex that negatively regulates the action of Rheb to activate TORC1 266263. Tsc1 and Tsc2 putative homologs were identified in most species in the study, with the exception of S. cerevisiae (Table 1); however, Tsc1 homologs were not identified in B. dendrobatidis, S. rosetta, or C. owczarzaki (Tables 1 and 2). In mammals and insects, four Rag GTPases (RagA-D) bind raptor (Kog1) to mediate TORC1 signaling in response to amino acids 2426. RagA and RagB are orthologs of S.�cerevisiae Gtr1 whereas RagC and RagD are orthologs of S. cerevisiae Gtr2 23. Gtr1 and Gtr2 form a complex along with Ego1 and Ego3 known as EGOC/GSE 25, which is regulated by the GTP exchange factor Vam6 23. Interestingly we found presumptive Gtr1 and Gtr2 orthologs in species in this study with the exception of microsporidia (Table 1), and Gtr1 was not identified in M. brevicollis (Table 2). However, Ego1 and Ego3, which anchor Gtr1 and Gtr2 to endosomal and vacuolar membranes, are unique to S. cerevisiae and were not identified in the other species (Table 1). This suggests that the specific EGO complex architecture might be restricted to Saccharomyces, though it is possible that functional homologs may be present in other species.In fungi, several downstream effectors are targets of Tor signaling. The PP2A phosphatase Sit4 and its regulatory subunit Tap42 regulate the expression of several TORC1-controlled genes and Gcn2-regulated translation 36465. A Sit4 homolog was identified in R. oryzae (Table 1), though a homolog of the regulatory subunit Tap42 was not (Table 1). In S. rosetta, a Sit4 homolog was not identified, though Tap42 was (Table 2). Both of these situations could indicate rewiring of the pathway, or alternatively these findings could be a result of insufficient similarity to detect with a RBH search method. Sch9, a member of the AGC kinase family and the functional homolog of the p70 S6 kinase, is a direct substrate of S. cerevisiae TORC1 involved in ribosome biogenesis 2866. Sch9 was not identified in RBH BLASTp searches with S. cerevisiae Sch9 in M. circinelloides, P. blakesleeanus, the microsporidia (Table 1), or S. rosetta (Table 2), but was identified in all other species. Putative homologs of Ypk2 kinase, a regulator of ceramide synthesis controlled by TORC2 signaling 67, were only identified in S. cerevisiae, S. pombe, (Table 1), M. brevicollis, S. rosetta, and C. owczarzaki (Table 2). Notably, the failure to detect many homologs in M. brevicollis, S. rosetta, and C. owczarzaki could be due to their evolutionary distance from the other organisms in the study and their gene divergence.Evolutionary conservation of Tor kinase protein structureThe Tor kinases are phosphatidylinositol kinase-related kinases (PIKKs) 68 and aside from their known protein kinase function also serve as evolutionary constrained scaffolds with several protein-protein interaction domains that mediate multi-protein complex formation 69. Tor protein architecture was annotated using SMART 7071 and we found that it has been maintained throughout the species of this study (Figure 2). N-terminal HEAT repeats are present in varying numbers and serve as scaffolding structures for protein-protein interactions 327273. Similarly, the FAT/toxic domain and the accompanying C-terminal FATC domain also participate in protein scaffolding and are present and conserved in all species subject to analysis. Over-expression of the FAT domain has a dominant negative effect on cell growth in yeast and this effect can be suppressed by over-expression of phospholipase C 33. The kinase domain has similarities to both lipid and protein kinases, but it is a bona fide protein kinase. The FRB (FKBP12-rapamycin binding) domain is a highly conserved 100 amino acid region of Tor with several residues that are known to be required for binding the FKBP12-rapamycin drug complex 42.In addition, the FRB domain contains several residues necessary for both phosphatidic acid binding and rapamycin interaction 7475. In mammals, phosphatidic acid binding to the FRB region may promote the assembly of mTOR complexes. It has been proposed that the potent effect of the Tor inhibitor rapamycin may be due to direct competition for overlapping phosphatidic acid binding sites within the FRB domain 76. Mutation of the conserved amino acid residues S1975, W2041, or F2048 in the FRB domain confers rapamycin resistance in S. cerevisiae 44277. Strikingly, the corresponding amino acid residues are conserved in all species examined (Figure 3). In mTOR, phosphatidic acid binding is disrupted by mutations of L2031, F2309, and Y2105 75, corresponding to S. cerevisiae Tor2 L1971, F1979, and Y2045, respectively, all of which are conserved in the studied fungal species (Figure 3).Duplication of Tor in the fungal kingdomApproximately 100 million years ago, the S. cerevisiae ancestor underwent a whole genome duplication (WGD) event, and species that descend from this evolutionary event retained duplicated subsets of genes. S. cerevisiae retained approximately 8% of duplicated genes 7879, while other fungi in this lineage have maintained varying numbers of gene duplicates, such as Candida glabrata in which a smaller number (~2%) of these pairs are maintained 80. Interestingly, several of these species, including S. cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, S. bayanus, S. castellii, and C. glabrata have retained two TOR paralogs, whereas species outside of the WGD clade, including Kluyveromyces lactis and Ashbya gossypii, have only a single TOR gene.The fates of duplicated gene paralogs can be explained through the duplication, degeneration, and complementation (DDC) model of gene duplication 81. In species with a single Tor, this protein populates both TORC1 and TORC2, each of which has distinct functions. Following duplication, each paralog likely sub-functionalized to carry out some, but not all, of its previous functions so that between the two paralogs, each process is performed. In S. cerevisiae, for example, Tor1 exclusively functions within TORC1, while Tor2 preferentially populates TORC2 but can also function in TORC1. S. pombe has two Tor paralogs as a result of an independent segmental gene duplication event, and each paralog has distinct roles not necessarily equivalent to those of S. cerevisiae Tor1 and Tor2. SpTor1 is not essential, whereas SpTor2 is essential for growth 112982.We hypothesize that similar models could apply in species encoding two Tor homologs resulting from independent gene duplication events such as P. ostreatus and B. dendrobatidis. Based on their level of identity with S.�cerevisiae Tor homologs, the B. dendrobatidis genes BDEG_08293 and BDEG_05727 have been designated TOR1 and TOR2, respectively. However, these gene names are not necessarily based on functional similarity with ScTor1 and ScTor2 but rather indicate only that there are two TOR homologs in B. dendrobatidis. A�similar naming challenge is evident in S. pombe, where the functions of SpTor1 and SpTor2 are not equivalent with those of ScTor1 and ScTor2.While several species, such as those in the Saccharomyces clade, have two Tor paralogs resulting from ancient WGD events, other species have acquired a second paralog through independent segmental gene duplication events, including B. dendrobatidis and several fission yeast species closely related to S. pombe (Figure 4). Segmental gene duplications have played a major role in the evolution of species and can result in the duplication of single genes or large blocks of genes 83. In S. cerevisiae, the duplication blocks with TOR include three paralogous gene pairs that have been retained from the ancestral WGD event: PTK1/PTK2, TOR1/TOR2, and MNN4/YJR061W 78 (Figure 5A). Further, C. glabrata, an ascomycete closely related to S. cerevisiae that diverged following the WGD, has also maintained a second TOR paralog and synteny is apparent in the region flanking the TOR1 and TOR2 genes, though one must extend the analysis to >40 kb from the TOR genes to detect it (See additional file 1: Supplemental figure 1). However, because C. glabrata and S. cerevisiae have retained different subsets of genes from the ancestral WGD, the duplicated genes surrounding TOR in these species are not homologs of one another. Further, C. glabrata has maintained fewer of the synteny blocks found in S. cerevisiae, and the block containing the TOR genes (Block 42) is not conserved in C. glabrata 80.In contrast, genomic regions surrounding the Tor paralogs in S. pombe (Figure 5B) and B. dendrobatidis (Figure 5C) are not syntenically conserved. That is, the duplicated genes are not flanked by other duplicated gene pairs, and the two TOR paralogs likely resulted from independent segmental gene duplication events. Further, there are no indications of WGDs in these species. In the Schizosaccharomycotina, the TOR gene duplication occurred prior to speciation as evidenced by the fact that S. pombe, S. octosporus, S. japonicus, and S. cryophilus have each retained a second Tor paralog; the Tor orthologs across these four species are more closely related to each other than to those from other species (Figure 4). No syntenic conservation between the genomic regions containing TOR paralogs was detected in any species of the Schizosaccharomyces group, supporting the occurrence of an independent segmental gene duplication in their common ancestor (see additional file 2: supplemental Figure 2).The Taphrinomycotina is a monophyletic taxon of the Ascomycota containing the Schizosaccharomycetes, Taphrinomycetes, Neolectomycetes, and Pneumocystidomycetes. Genomes are only available for species within the Schizosaccharomycetes (S. pombe, S. octosporus, S. japonicus, and S. cryophilus) and the Taphrinomycetes (Pneumocystis carinii). While the studied Schizosaccharomyces spp. contain two Tor homologs, a single homolog was identified in P. carinii with tBLASTx using the highly conserved S. cerevisiae FRB domain of Tor1 based on sequence data produced by the Pneumocystis Genome Project (funded by the NIH NIAID) that was obtained from http://pgp.cchmc.org at the time of publication. Based on the phylogenetic placement of these two groups 84 and the available genomic information, we hypothesize that the segmental TOR duplication is unique to the Schizosaccharomyces spp. and occurred following their divergence from the common ancestor of the Taphrinomycota, as P. carinii, the other species within this taxon with available genome data, appears to contain a single Tor homolog.Interestingly, the zygomycete R. oryzae underwent a whole genome duplication event and despite retaining 12% of the resulting duplicated genes 85 compared to 8% retained genes in a separate WGD event in S. cerevisiae 7879, two Tor paralogs have not been retained; only a single Tor homolog was identified. Currently, the Zygomycota is the only group studied without an identified species containing two Tor homologs; however, there are not enough available genomes to make a definitive conclusion in this group. Other species with independent TOR duplications likely remain to be identified in all of the major fungal lineages, and as more genome sequences become available this will be addressed.During this study, we identified three additional species that possibly have two TOR paralogs: M. brevicollis, Thecamonas trahens, and Allomyces macrogynus, species that are included in the Origins of Multicellularity Project 86. While analysis is limited because of the state of the M. brevicollis (choanoflagellate) genome, it appears that an additional bonafide Tor protein is encoded with the conserved Tor protein architecture. Thecamonas trahens is a unicellular apusomonad that also contains two TOR paralogs. Interestingly, A. macrogynus is a fungus that may contain a second paralog; however, it appears that the FRB domain overlaps with the kinase domain. This may represent a case in which TOR was duplicated but is in the process of losing one of the copies. These cases are a springboard for future studies involving the duplication of TOR within and beyond the fungal kingdom.Loss of the Tor signaling pathway in microsporidiaWhile components of the Tor signaling cascade are conserved in eukaryotes from yeasts to humans, the microsporidia, a group of highly specialized obligate intracellular pathogens completely lack all of the pathway components investigated in this study. E. cuniculi has previously been noted to lack the Tor kinase 87, and we found that all pathway components including Tor were missing not only in E. cuniculi but also in its microsporidian relatives E. bieneusi and N. ceranae (Table 2). Microsporidian genomes are highly compacted and show a marked reduced gene content. The genome of the human pathogen E. cuniculi has 1997 genes distributed throughout 11 chromosomes in a 2.9 Mb genome 88, less than half the number of protein-coding genes found in Escherichia coli. For comparison, the genome of the human pathogen E. bieneusi genome is ~6 Mb with 3,804 genes 89 and the honeybee pathogen N. ceranae genome is ~7.9 Mb with 2,614 predicted genes 90. Genome reduction has been well studied in intracellular bacteria: during the specialization process from a free-living to intracellular lifestyle, massive gene loss can occur 9192939495. We hypothesize that as a consequence of their specialization to an obligate intracellular lifestyle, the need for nutrient sensing was relaxed and these obligate intracellular microsporidia acquired nutrients from within the host cytoplasm. Thus, they no longer required the Tor pathway, which is dedicated to sensing changes in the nutrient composite of the environmental milieu. However, E. cuniculi has retained some of the genes encoding signaling pathways involved in nutrient sensing in other species, including homologs of S. cerevisiae Ras1 and Ras2 (data not shown).Interestingly, P. carinii is an obligate pathogen with a reduced genome estimated to be ~8 Mb 96, which unlike microsporidia is not obligately intracellular. A�single Tor homolog was identified [Pneumocystis Genome Project:cap3_it1_grp346_contig490] using the S. cerevisiae Tor1 FRB domain in tBLASTx, supporting our hypothesis that the microsporidia have streamlined their genomes as they adopted an obligate intracellular life cycle. P. carinii likely requires Tor because it must survive in a metabolically active form outside of host cells, undergoing cell division in the extracellular milieu of the infected host lung.Many microsporidian genomes have undergone extreme genome reduction and are among the eukaryotes with the smallest genomes. In addition to fewer genes than other species (1997 in E. cuniculi compared to 6607 in S. cerevisiae), E. cuniculi has shorter genes, small intergenic distances, and very few introns 8897. This species (and to an even greater extent, E. bieneusi) lacks several genes that are necessary for biosynthetic pathways and the tricarboxylic acid cycle in free-living organisms 888998. Remarkably, E. cuniculi must acquire ATP from its host through a series of ATP transporters anciently acquired from Rickettsia- or Chlamydia-like bacteria 99, and this is an example of how E. cuniculi, and possibly other microsporidia, can hijack mechanisms of other intracellular bacteria, fungi, or the host to survive in and adapt to their highly specialized intracellular lifestyle.ConclusionsThe Tor pathway is highly conserved with some exceptions among fungi, including several pathogens. Similarly, the molecular structural organization of the Tor kinases has been remarkably conserved as well as the presumed ability to bind the FKBP12-rapamycin complex. This feature, combined with the essential nature of the rapamycin-sensitive TORC1 pathway for cell growth, should enable the development of rapamycin-based strategies for antifungal therapies. Duplications of the Tor protein occurred in most fungal groups examined, resulting from either independent segmental gene duplication events or a WGD event. The maintenance of two Tor homologs can be explained through the DDC model of gene duplication, in which the paralogs subfunctionalize and together support all of the functions of the pre-duplicated protein. In addition, species outside of the fungal kingdom with two or more TOR homologs include the metazoan B. mori, the apusomonad protozoan T. trahens, the trypanosome protozoans L. major and T. brucei, and possibly the choanoflagellate M. brevicollis. This suggests that the Tor gene has been independently duplicated multiple times since the last common ancestor of the Opisthokonta and Excavata lineages. The Tor pathway, as well as the Tor protein itself, is highly conserved in eukaryotes, so the observation that three microsporidian species are missing the entire pathway is striking. It would appear that the specialized obligate intracellular life cycle of microsporidia allows for the acquisition of nutrients from the host cell, obviating a requirement for this central nutrient-sensing pathway that is essential in all known cases of other eukaryotes for axenic growth.MethodsIdentification of pathway component homologsTor homologs were identified using the highly conserved 100 amino acid FRB domain of S. cerevisiae Tor1 in BLASTp reciprocal best-hit searches between the specific species database and the Saccharomyces Genome Database (SGD). All queries for other Tor pathway components were retrieved from SGD and homologs were identified by BLASTp reciprocal best-hit searches, with the exception of Tsc1 and Tsc2. Tsc1 and Tsc2 protein query sequences were retrieved from the S. pombe GeneDB, and homologs were identified using BLASTp searches between the S. pombe genome database and the species database. Species identification numbers are listed in Supplemental Table 1. Protein architecture of each homolog was elucidated with Simple Modular Architecture Research Tool (SMART) analysis 7071.Accession numbers are provided for putative Tor pathway components (see Additional file 3, supplemental Table 1 for the accession numbers of putative Tor pathway components) from the following public genomic databases that were used to carry out BLAST: S. cerevisiae, SGD, http://www.yeastgenome.org; S. pombe, GeneDB, http://www.genedb.org/genedb/pombe/index.jsp; P. ostreatus, JGI, http://genome.jgi-psf.org/PleosPC15_1/PleosPC15_1.home.html; M. circinelloides, JGI and the Mucor Genome Project, http://genome.jgi-psf.org/Mucci1/Mucci1.home.html; R. oryzae, Broad Institute, http://www.broadinstitute.org/annotation/genome/rhizopus_oryzae/MultiHome.html; P. blakesleeanus, JGI, http://genome.jgi-psf.org/Phybl1/Phybl1.home.html; B. dendrobatidis, Broad Institute, http://www.broadinstitute.org/annotation/genome/batrachochytrium_dendrobatidis/MultiHome.html; S. punctatus, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; M. brevicollis, JGI, http://genome.jgi-psf.org/Monbr1/Monbr1.home.html; S. rosetta, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; C. owczarzaki, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; E. cuniculi, E. bieneusi, and N. ceranae, NCBI, http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi?organism=fungi.Phylogenetic analysis of TorThe ProtTest program 100 was used to select an appropriate model to construct the phylogenetic relationship of the Tor proteins of the studied species. For this study, the best model for phylogenetic construction of the Tor protein using maximum likelihood (ML) was JTT+I+G+F 101. The ML tree was generated using PhyML with the JTT+I+G+F mode with 500 bootstrap replicates 102103. The Tor amino acid sequences from all species were aligned with CLUSTAL W 104.Synteny analysis of TOR paralogsTor homologs in fungal species were identified with BLAST 105 using TOR1 and TOR2 of S. cerevisiae as query sequences. The TOR sequence and flanking regions (up to 100 kb) were extracted from corresponding contigs or chromosomal sequences. To analyze the synteny of TOR and flanking regions, we constructed a database of one TOR and flanking region sequence and used the other TOR homolog and flanking region sequence to perform tBLASTx searches in the database (BLOSUM62 matrix; E-value = 1e-3; gap cost: existence 11, extension 1; and low complexity regions filter). The tBLASTx results were parsed and formatted using an in-house Perl script (available upon request). The parsed and formatted tBLASTx results were then imported into Artemis software 106 for synteny analysis. We employed a cutoff value of 100 bp to filter short non-significant matches between query and database sequences.Authors� contributionsCAS carried out the homolog searches and phylogenetic analysis and drafted the manuscript. RJB performed homolog searches and participated in the design of the study. WL performed the synteny and phylogenetic analysis and helped draft the manuscript. JH and MEC conceived of the study, participated in its design and helped to draft the manuscript. All authors read and approved the final manuscript.
BackgroundThe nutrient-sensing target of rapamycin (Tor) pathway is highly conserved among eukaryotes and governs several essential cellular processes including protein synthesis, ribosome biogenesis, autophagy, and cytoskeletal organization 123. In the fungal kingdom, the Tor pathway has been best studied in the budding yeast Saccharomyces cerevisiae 234, the fission yeast Schizosaccharomyces pombe 56, and the human pathogen Candida albicans 5678. However, little is known about Tor in basal fungal lineages, including the Zygomycota and Chytridiomycota.In S. cerevisiae and S. pombe, two Tor paralogs form distinct complexes known as Tor Complex 1 (TORC1) and Tor Complex 2 (TORC2) 9101112, while in most other species, including humans, a single Tor protein can populate both complexes 11121314. Interestingly, S. cerevisiae Tor2 can complement the loss of Tor1, but Tor1 cannot complement the loss of Tor2 1516. Two Tor paralogs have also been identified in a metazoan, the silkworm Bombyx mori 17 and three Tor paralogs were identified in the trypanosomatid parasites Leishmania major 18 and the related species Trypanosoma brucei 19, the first reported Tor triumvirates.The ScTORC1 is sensitive to rapamycin and controls protein synthesis, mRNA synthesis and degradation, ribosome biogenesis, and autophagy. TORC2 is insensitive to rapamycin and is involved in the control of actin polarization and cell wall integrity 916. TORC1 consists of Tor1 or Tor2, Kog1 20, Tco89, and Lst8 21, while TORC2 contains Tor2, Lst8, Avo1, Avo2, and Avo3 22 (Figure 1A). Recently, the EGO-GTPase complex and its orthologs were shown to convey amino acid signals for TORC1 activation in yeast, insects, and mammals 23242526. In S. cerevisiae, immediate effectors of TORC1 include the PP2A-like phosphatase Sit4 27 and the AGC kinase Sch9 28. In S. pombe, Tor participates in other cellular functions including nutrient signaling 29, cell growth and differentiation 30, mitotic commitment 31, and sexual development 11 (Figure 1B).The structure of the Tor proteins is remarkably conserved (Figure 2) and features several domains for protein-protein interactions including N-terminal HEAT (Huntingtin, Elongation factor 3, PP2A A subunit, Tor) repeats 32, a FAT (FRAP, ATM, and TRRAP) domain 3334, and an FRB (FK506-Rapamycin Binding) 35 domain. The kinase and the FATC (FAT domain at the C-terminus) 3236 domains are present in the C-terminal region.The Tor inhibitor rapamycin blocks cell proliferation and is currently used as an immunosuppressive drug for organ and tissue transplant recipients and a chemotherapy agent against a variety of solid cancers 37383940. Rapamycin binds to the prolyl isomerase FKBP12 to form a protein-drug complex that then interacts with the Tor FRB domain in a ternary complex 4142. S. cerevisiae cells treated with rapamycin display phenotypes associated with nutrient depletion including G1 cell cycle arrest, cellular volume expansion, protein synthesis inhibition, glycogen accumulation, and autophagy 3543.Genetic analysis in S. cerevisiae characterizing rapamycin-resistant mutants led to the identification of FKBP12 as the intracellular receptor for rapamycin and defined Tor1 and Tor2 as the targets of the FKBP12-rapamycin complex 4. Subsequent studies resulted in the identification and characterization of the TOR1 and TOR2 gene products 1544 as well as the elucidation of the Tor signaling cascade 8454647. These pioneering studies aided in the identification of the mammalian Tor ortholog and characterization of this highly conserved signaling cascade 84849. Remarkably, expression of the human FKBP12 ortholog in yeast fpr1 (the gene that encodes FKBP12) deletion mutants complements to restore rapamycin sensitivity, and hybrid Tor proteins consisting of the yeast N-terminal domain fused to the mammalian Tor kinase domain are also functional in yeast 50. Thus, the Tor pathway has been functionally and structurally conserved from yeasts to humans over the billion years of evolution separating the two species from their last common ancestor.We now know that the fungal and metazoan kingdoms are both within the opisthokont lineage of eukaryotes and are thus more closely related to each other than the vast majority of eukaryotic organisms 5152. Moreover, these two highly successful kingdoms shared a last common ancestor as recently as one billion years ago, much more recently than most eukaryotes. Recent initiatives, particularly the UNICORN project, have facilitated the sequencing of several opisthokonts related to the last common ancestor of the metazoans and fungi, providing an interesting window into the evolution of both fungi and animals 53545556. Thus, studies on the evolutionary trajectory of the fungal kingdom in general, and of the Tor signaling cascade in particular, promise to reveal insights about how orthologous pathways function in the more complex milieu of multicellular metazoan organisms.In this study, we have capitalized upon the wealth of available genomic information by annotating the Tor pathway in several fungal organisms in which this pathway has not been described. Our study included selected species in the major groups of the fungal kingdom with genome sequences available: the basidiomycete Pleurotus ostreatus; the Mucorales zygomycetes Mucor circinelloides, Rhizopus oryzae, and Phycomyces blakesleeanus; the chytridiomycetes Spizellomyces punctatus and Batrachochytrium dendrobatidis; the microsporidian species Encephalitozoon cuniculi, Enterocytozoon bieneusi, and Nosema ceranae; and the related non-fungal opisthokonts Capsaspora owczarzaki, Salpingoeca rosetta, and Monosiga brevicollis. Whereas the Tor pathway is conserved throughout the eukaryotes, strikingly, microsporidian species with their highly reduced and compacted genomes lack the entire Tor pathway. We have also investigated gene and genome duplication events that resulted in two Tor homologs in S. cerevisiae, S. pombe, P. ostreatus, and B. dendrobatidis, and the loss of a second Tor homolog following a whole genome duplication event in R. oryzae.Results and DiscussionConservation of the Tor signaling pathway molecular componentsThe Tor pathway is well conserved among nearly all eukaryotic species examined to date. Tor is essential for life and is the target of the potent drug rapamycin in fungi, humans, and other eukaryotic organisms 2121941. Tor originated early during the eukaryotic radiation, as it is present in the basal eukaryotes Giardia lamblia 57, L. major 18 and T. brucei 19, and also in plants 58. Here we focused on the Tor pathway in the fungal kingdom and other representative unicellular opisthokont species outside of the fungi. Several genes encoding Tor complex components, upstream regulators, and downstream effectors were identified in all major groups throughout the fungal kingdom (Figure 1, Table 1). Because we used BLASTp reciprocal best hits (RBH) to identify orthologs, in some cases the absence of an ortholog in our results may represent only a failure to detect it with this method. Further, functional homologs that are not sufficiently similar enough in sequence to be identified may be present. Overall, a high degree of pathway conservation is observed in the Tor signaling cascade throughout the fungal kingdom, with the exception of microsporidia in which all Tor pathway components are absent. In addition, several pathway components are conserved in the related unicellular opisthokonts M. brevicollis, S. rosetta, and C. owczarzaki (Table 2).In S. cerevisiae, Tor1 and Tor2 interact with several proteins to form TORC1 and TORC2. TORC1 contains Tor1 or Tor2, Kog1, Tco89, and Lst8. Kog1 functions as a substrate-recruiting subunit in mammalian TORC1 (mTORC1) 13596061. A gene encoding a putative Kog1 homolog was identified in all species included in this study, with the exception of the microsporidia and S. rosetta (Tables 1 and 2). Mutation of TCO89 results in hypersensitivity to rapamycin and affects cellular integrity in S. cerevisiae 21. Tco89 is only found in S. cerevisiae and could have resulted from a specialization of the pathway exclusive to Saccharomyces species (Table 1). However, while a BLASTp search did not identify Tco89 homologs in other species, S. pombe has been reported to contain a functional homolog [GenBank:NP_588232] 12, and this suggests that functional homologs may exist in other fungal species as well. However, no homologs were identified when using S.�pombe Tco89 as a query sequence. Lst8 binds to the Tor kinase domain in S. cerevisiae to stimulate catalytic activity 9 and a putative Lst8 homolog is conserved in most species analyzed except microsporidia and S.�rosetta (Tables 1 and 2).Additional BLASTp searches identified a single Tor homolog in the following species: Lachancea thermotolerans CBS6340 [GenBank:XP_002552336], Pichia pastoris GS115 [GenBank:XP_002491471], Pichia stipitis CBS6054 [GenBank:XP_001385651], Debaryomyces hansenii CBS767 [GenBank:XP_002770885], Yarrowia lipolytica CLIB122 [GenBank:XP_505106], Podospora anserina strain S mat+ [GenBank:XP_001903968], Chaetomium globosum CBS148.51 [GenBank:XP_001226647], Magnaporthe oryzae 70-15 [GenBank:XP_001414541], Gibberella zeae PH-1 [GenBank:XP_388309], Aspergillus fumigatus Af293 [GenBank:XP_755360], Aspergillus flavus NRRL3357 [GenBank:XP_002377897], Neosartorya fischeri NRRL181 [GenBank:XP_001260509], Aspergillus terreus NIH2624 [GenBank:XP_001213640], Aspergillus nidulans FGSCA4 [GenBank:XP_663586], Aspergillus clavatus NRRL1 [GenBank:XP_001275326], Aspergillus oryzae RIB40 [GenBank: XP_001826216], and Aspergillus niger CBS513.88 [GenBank:XP_001397781]. These ascomycetes were not included in further studies.In yeast and mammals, TORC2 controls spatial aspects of growth. TORC2 includes Tor2, Avo1, Avo2, Avo3, and Bit61 922. Avo1 plays an essential role in actin cytoskeleton polarization 22 and is conserved throughout the organisms that were the focus of this study (Table 1) except in S. rosetta and C. owczarzaki (Table 2). However, due to high divergence of the AVO1 sequence amongst the known homologs, it is possible that the S. rosetta and C. owczarzaki homologs cannot be identified using the BLASTp algorithm. Avo2 is a nonessential substrate adaptor for TORC2 22 and potential homologs were identified in most species studied, with the exceptions of S. pombe, P. ostreatus, the three microsporidian species (Table 1), and M. brevicollis (Table 2). In S. cerevisiae, Avo3 (also know as Tsc11) controls cytoskeletal dynamics 922, and homologs are conserved throughout the species examined (Tables 1 and 2). Bit61, a nonessential protein that associates with TORC2 21, was only identified in S. cerevisiae (Tables 1 and 2).Upstream regulators of Tor include Tsc1 and Tsc2 (Tuberous Sclerosis 1 and 2) and the GTPase Rheb (Ras homolog enhanced in brain). In S. pombe and other eukaryotes, Tsc1 and Tsc2 form a GTPase-activating complex that negatively regulates the action of Rheb to activate TORC1 266263. Tsc1 and Tsc2 putative homologs were identified in most species in the study, with the exception of S. cerevisiae (Table 1); however, Tsc1 homologs were not identified in B. dendrobatidis, S. rosetta, or C. owczarzaki (Tables 1 and 2). In mammals and insects, four Rag GTPases (RagA-D) bind raptor (Kog1) to mediate TORC1 signaling in response to amino acids 2426. RagA and RagB are orthologs of S.�cerevisiae Gtr1 whereas RagC and RagD are orthologs of S. cerevisiae Gtr2 23. Gtr1 and Gtr2 form a complex along with Ego1 and Ego3 known as EGOC/GSE 25, which is regulated by the GTP exchange factor Vam6 23. Interestingly we found presumptive Gtr1 and Gtr2 orthologs in species in this study with the exception of microsporidia (Table 1), and Gtr1 was not identified in M. brevicollis (Table 2). However, Ego1 and Ego3, which anchor Gtr1 and Gtr2 to endosomal and vacuolar membranes, are unique to S. cerevisiae and were not identified in the other species (Table 1). This suggests that the specific EGO complex architecture might be restricted to Saccharomyces, though it is possible that functional homologs may be present in other species.In fungi, several downstream effectors are targets of Tor signaling. The PP2A phosphatase Sit4 and its regulatory subunit Tap42 regulate the expression of several TORC1-controlled genes and Gcn2-regulated translation 36465. A Sit4 homolog was identified in R. oryzae (Table 1), though a homolog of the regulatory subunit Tap42 was not (Table 1). In S. rosetta, a Sit4 homolog was not identified, though Tap42 was (Table 2). Both of these situations could indicate rewiring of the pathway, or alternatively these findings could be a result of insufficient similarity to detect with a RBH search method. Sch9, a member of the AGC kinase family and the functional homolog of the p70 S6 kinase, is a direct substrate of S. cerevisiae TORC1 involved in ribosome biogenesis 2866. Sch9 was not identified in RBH BLASTp searches with S. cerevisiae Sch9 in M. circinelloides, P. blakesleeanus, the microsporidia (Table 1), or S. rosetta (Table 2), but was identified in all other species. Putative homologs of Ypk2 kinase, a regulator of ceramide synthesis controlled by TORC2 signaling 67, were only identified in S. cerevisiae, S. pombe, (Table 1), M. brevicollis, S. rosetta, and C. owczarzaki (Table 2). Notably, the failure to detect many homologs in M. brevicollis, S. rosetta, and C. owczarzaki could be due to their evolutionary distance from the other organisms in the study and their gene divergence.Evolutionary conservation of Tor kinase protein structureThe Tor kinases are phosphatidylinositol kinase-related kinases (PIKKs) 68 and aside from their known protein kinase function also serve as evolutionary constrained scaffolds with several protein-protein interaction domains that mediate multi-protein complex formation 69. Tor protein architecture was annotated using SMART 7071 and we found that it has been maintained throughout the species of this study (Figure 2). N-terminal HEAT repeats are present in varying numbers and serve as scaffolding structures for protein-protein interactions 327273. Similarly, the FAT/toxic domain and the accompanying C-terminal FATC domain also participate in protein scaffolding and are present and conserved in all species subject to analysis. Over-expression of the FAT domain has a dominant negative effect on cell growth in yeast and this effect can be suppressed by over-expression of phospholipase C 33. The kinase domain has similarities to both lipid and protein kinases, but it is a bona fide protein kinase. The FRB (FKBP12-rapamycin binding) domain is a highly conserved 100 amino acid region of Tor with several residues that are known to be required for binding the FKBP12-rapamycin drug complex 42.In addition, the FRB domain contains several residues necessary for both phosphatidic acid binding and rapamycin interaction 7475. In mammals, phosphatidic acid binding to the FRB region may promote the assembly of mTOR complexes. It has been proposed that the potent effect of the Tor inhibitor rapamycin may be due to direct competition for overlapping phosphatidic acid binding sites within the FRB domain 76. Mutation of the conserved amino acid residues S1975, W2041, or F2048 in the FRB domain confers rapamycin resistance in S. cerevisiae 44277. Strikingly, the corresponding amino acid residues are conserved in all species examined (Figure 3). In mTOR, phosphatidic acid binding is disrupted by mutations of L2031, F2309, and Y2105 75, corresponding to S. cerevisiae Tor2 L1971, F1979, and Y2045, respectively, all of which are conserved in the studied fungal species (Figure 3).Duplication of Tor in the fungal kingdomApproximately 100 million years ago, the S. cerevisiae ancestor underwent a whole genome duplication (WGD) event, and species that descend from this evolutionary event retained duplicated subsets of genes. S. cerevisiae retained approximately 8% of duplicated genes 7879, while other fungi in this lineage have maintained varying numbers of gene duplicates, such as Candida glabrata in which a smaller number (~2%) of these pairs are maintained 80. Interestingly, several of these species, including S. cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, S. bayanus, S. castellii, and C. glabrata have retained two TOR paralogs, whereas species outside of the WGD clade, including Kluyveromyces lactis and Ashbya gossypii, have only a single TOR gene.The fates of duplicated gene paralogs can be explained through the duplication, degeneration, and complementation (DDC) model of gene duplication 81. In species with a single Tor, this protein populates both TORC1 and TORC2, each of which has distinct functions. Following duplication, each paralog likely sub-functionalized to carry out some, but not all, of its previous functions so that between the two paralogs, each process is performed. In S. cerevisiae, for example, Tor1 exclusively functions within TORC1, while Tor2 preferentially populates TORC2 but can also function in TORC1. S. pombe has two Tor paralogs as a result of an independent segmental gene duplication event, and each paralog has distinct roles not necessarily equivalent to those of S. cerevisiae Tor1 and Tor2. SpTor1 is not essential, whereas SpTor2 is essential for growth 112982.We hypothesize that similar models could apply in species encoding two Tor homologs resulting from independent gene duplication events such as P. ostreatus and B. dendrobatidis. Based on their level of identity with S.�cerevisiae Tor homologs, the B. dendrobatidis genes BDEG_08293 and BDEG_05727 have been designated TOR1 and TOR2, respectively. However, these gene names are not necessarily based on functional similarity with ScTor1 and ScTor2 but rather indicate only that there are two TOR homologs in B. dendrobatidis. A�similar naming challenge is evident in S. pombe, where the functions of SpTor1 and SpTor2 are not equivalent with those of ScTor1 and ScTor2.While several species, such as those in the Saccharomyces clade, have two Tor paralogs resulting from ancient WGD events, other species have acquired a second paralog through independent segmental gene duplication events, including B. dendrobatidis and several fission yeast species closely related to S. pombe (Figure 4). Segmental gene duplications have played a major role in the evolution of species and can result in the duplication of single genes or large blocks of genes 83. In S. cerevisiae, the duplication blocks with TOR include three paralogous gene pairs that have been retained from the ancestral WGD event: PTK1/PTK2, TOR1/TOR2, and MNN4/YJR061W 78 (Figure 5A). Further, C. glabrata, an ascomycete closely related to S. cerevisiae that diverged following the WGD, has also maintained a second TOR paralog and synteny is apparent in the region flanking the TOR1 and TOR2 genes, though one must extend the analysis to >40 kb from the TOR genes to detect it (See additional file 1: Supplemental figure 1). However, because C. glabrata and S. cerevisiae have retained different subsets of genes from the ancestral WGD, the duplicated genes surrounding TOR in these species are not homologs of one another. Further, C. glabrata has maintained fewer of the synteny blocks found in S. cerevisiae, and the block containing the TOR genes (Block 42) is not conserved in C. glabrata 80.In contrast, genomic regions surrounding the Tor paralogs in S. pombe (Figure 5B) and B. dendrobatidis (Figure 5C) are not syntenically conserved. That is, the duplicated genes are not flanked by other duplicated gene pairs, and the two TOR paralogs likely resulted from independent segmental gene duplication events. Further, there are no indications of WGDs in these species. In the Schizosaccharomycotina, the TOR gene duplication occurred prior to speciation as evidenced by the fact that S. pombe, S. octosporus, S. japonicus, and S. cryophilus have each retained a second Tor paralog; the Tor orthologs across these four species are more closely related to each other than to those from other species (Figure 4). No syntenic conservation between the genomic regions containing TOR paralogs was detected in any species of the Schizosaccharomyces group, supporting the occurrence of an independent segmental gene duplication in their common ancestor (see additional file 2: supplemental Figure 2).The Taphrinomycotina is a monophyletic taxon of the Ascomycota containing the Schizosaccharomycetes, Taphrinomycetes, Neolectomycetes, and Pneumocystidomycetes. Genomes are only available for species within the Schizosaccharomycetes (S. pombe, S. octosporus, S. japonicus, and S. cryophilus) and the Taphrinomycetes (Pneumocystis carinii). While the studied Schizosaccharomyces spp. contain two Tor homologs, a single homolog was identified in P. carinii with tBLASTx using the highly conserved S. cerevisiae FRB domain of Tor1 based on sequence data produced by the Pneumocystis Genome Project (funded by the NIH NIAID) that was obtained from http://pgp.cchmc.org at the time of publication. Based on the phylogenetic placement of these two groups 84 and the available genomic information, we hypothesize that the segmental TOR duplication is unique to the Schizosaccharomyces spp. and occurred following their divergence from the common ancestor of the Taphrinomycota, as P. carinii, the other species within this taxon with available genome data, appears to contain a single Tor homolog.Interestingly, the zygomycete R. oryzae underwent a whole genome duplication event and despite retaining 12% of the resulting duplicated genes 85 compared to 8% retained genes in a separate WGD event in S. cerevisiae 7879, two Tor paralogs have not been retained; only a single Tor homolog was identified. Currently, the Zygomycota is the only group studied without an identified species containing two Tor homologs; however, there are not enough available genomes to make a definitive conclusion in this group. Other species with independent TOR duplications likely remain to be identified in all of the major fungal lineages, and as more genome sequences become available this will be addressed.During this study, we identified three additional species that possibly have two TOR paralogs: M. brevicollis, Thecamonas trahens, and Allomyces macrogynus, species that are included in the Origins of Multicellularity Project 86. While analysis is limited because of the state of the M. brevicollis (choanoflagellate) genome, it appears that an additional bonafide Tor protein is encoded with the conserved Tor protein architecture. Thecamonas trahens is a unicellular apusomonad that also contains two TOR paralogs. Interestingly, A. macrogynus is a fungus that may contain a second paralog; however, it appears that the FRB domain overlaps with the kinase domain. This may represent a case in which TOR was duplicated but is in the process of losing one of the copies. These cases are a springboard for future studies involving the duplication of TOR within and beyond the fungal kingdom.Loss of the Tor signaling pathway in microsporidiaWhile components of the Tor signaling cascade are conserved in eukaryotes from yeasts to humans, the microsporidia, a group of highly specialized obligate intracellular pathogens completely lack all of the pathway components investigated in this study. E. cuniculi has previously been noted to lack the Tor kinase 87, and we found that all pathway components including Tor were missing not only in E. cuniculi but also in its microsporidian relatives E. bieneusi and N. ceranae (Table 2). Microsporidian genomes are highly compacted and show a marked reduced gene content. The genome of the human pathogen E. cuniculi has 1997 genes distributed throughout 11 chromosomes in a 2.9 Mb genome 88, less than half the number of protein-coding genes found in Escherichia coli. For comparison, the genome of the human pathogen E. bieneusi genome is ~6 Mb with 3,804 genes 89 and the honeybee pathogen N. ceranae genome is ~7.9 Mb with 2,614 predicted genes 90. Genome reduction has been well studied in intracellular bacteria: during the specialization process from a free-living to intracellular lifestyle, massive gene loss can occur 9192939495. We hypothesize that as a consequence of their specialization to an obligate intracellular lifestyle, the need for nutrient sensing was relaxed and these obligate intracellular microsporidia acquired nutrients from within the host cytoplasm. Thus, they no longer required the Tor pathway, which is dedicated to sensing changes in the nutrient composite of the environmental milieu. However, E. cuniculi has retained some of the genes encoding signaling pathways involved in nutrient sensing in other species, including homologs of S. cerevisiae Ras1 and Ras2 (data not shown).Interestingly, P. carinii is an obligate pathogen with a reduced genome estimated to be ~8 Mb 96, which unlike microsporidia is not obligately intracellular. A�single Tor homolog was identified [Pneumocystis Genome Project:cap3_it1_grp346_contig490] using the S. cerevisiae Tor1 FRB domain in tBLASTx, supporting our hypothesis that the microsporidia have streamlined their genomes as they adopted an obligate intracellular life cycle. P. carinii likely requires Tor because it must survive in a metabolically active form outside of host cells, undergoing cell division in the extracellular milieu of the infected host lung.Many microsporidian genomes have undergone extreme genome reduction and are among the eukaryotes with the smallest genomes. In addition to fewer genes than other species (1997 in E. cuniculi compared to 6607 in S. cerevisiae), E. cuniculi has shorter genes, small intergenic distances, and very few introns 8897. This species (and to an even greater extent, E. bieneusi) lacks several genes that are necessary for biosynthetic pathways and the tricarboxylic acid cycle in free-living organisms 888998. Remarkably, E. cuniculi must acquire ATP from its host through a series of ATP transporters anciently acquired from Rickettsia- or Chlamydia-like bacteria 99, and this is an example of how E. cuniculi, and possibly other microsporidia, can hijack mechanisms of other intracellular bacteria, fungi, or the host to survive in and adapt to their highly specialized intracellular lifestyle.ConclusionsThe Tor pathway is highly conserved with some exceptions among fungi, including several pathogens. Similarly, the molecular structural organization of the Tor kinases has been remarkably conserved as well as the presumed ability to bind the FKBP12-rapamycin complex. This feature, combined with the essential nature of the rapamycin-sensitive TORC1 pathway for cell growth, should enable the development of rapamycin-based strategies for antifungal therapies. Duplications of the Tor protein occurred in most fungal groups examined, resulting from either independent segmental gene duplication events or a WGD event. The maintenance of two Tor homologs can be explained through the DDC model of gene duplication, in which the paralogs subfunctionalize and together support all of the functions of the pre-duplicated protein. In addition, species outside of the fungal kingdom with two or more TOR homologs include the metazoan B. mori, the apusomonad protozoan T. trahens, the trypanosome protozoans L. major and T. brucei, and possibly the choanoflagellate M. brevicollis. This suggests that the Tor gene has been independently duplicated multiple times since the last common ancestor of the Opisthokonta and Excavata lineages. The Tor pathway, as well as the Tor protein itself, is highly conserved in eukaryotes, so the observation that three microsporidian species are missing the entire pathway is striking. It would appear that the specialized obligate intracellular life cycle of microsporidia allows for the acquisition of nutrients from the host cell, obviating a requirement for this central nutrient-sensing pathway that is essential in all known cases of other eukaryotes for axenic growth.MethodsIdentification of pathway component homologsTor homologs were identified using the highly conserved 100 amino acid FRB domain of S. cerevisiae Tor1 in BLASTp reciprocal best-hit searches between the specific species database and the Saccharomyces Genome Database (SGD). All queries for other Tor pathway components were retrieved from SGD and homologs were identified by BLASTp reciprocal best-hit searches, with the exception of Tsc1 and Tsc2. Tsc1 and Tsc2 protein query sequences were retrieved from the S. pombe GeneDB, and homologs were identified using BLASTp searches between the S. pombe genome database and the species database. Species identification numbers are listed in Supplemental Table 1. Protein architecture of each homolog was elucidated with Simple Modular Architecture Research Tool (SMART) analysis 7071.Accession numbers are provided for putative Tor pathway components (see Additional file 3, supplemental Table 1 for the accession numbers of putative Tor pathway components) from the following public genomic databases that were used to carry out BLAST: S. cerevisiae, SGD, http://www.yeastgenome.org; S. pombe, GeneDB, http://www.genedb.org/genedb/pombe/index.jsp; P. ostreatus, JGI, http://genome.jgi-psf.org/PleosPC15_1/PleosPC15_1.home.html; M. circinelloides, JGI and the Mucor Genome Project, http://genome.jgi-psf.org/Mucci1/Mucci1.home.html; R. oryzae, Broad Institute, http://www.broadinstitute.org/annotation/genome/rhizopus_oryzae/MultiHome.html; P. blakesleeanus, JGI, http://genome.jgi-psf.org/Phybl1/Phybl1.home.html; B. dendrobatidis, Broad Institute, http://www.broadinstitute.org/annotation/genome/batrachochytrium_dendrobatidis/MultiHome.html; S. punctatus, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; M. brevicollis, JGI, http://genome.jgi-psf.org/Monbr1/Monbr1.home.html; S. rosetta, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; C. owczarzaki, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; E. cuniculi, E. bieneusi, and N. ceranae, NCBI, http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi?organism=fungi.Phylogenetic analysis of TorThe ProtTest program 100 was used to select an appropriate model to construct the phylogenetic relationship of the Tor proteins of the studied species. For this study, the best model for phylogenetic construction of the Tor protein using maximum likelihood (ML) was JTT+I+G+F 101. The ML tree was generated using PhyML with the JTT+I+G+F mode with 500 bootstrap replicates 102103. The Tor amino acid sequences from all species were aligned with CLUSTAL W 104.Synteny analysis of TOR paralogsTor homologs in fungal species were identified with BLAST 105 using TOR1 and TOR2 of S. cerevisiae as query sequences. The TOR sequence and flanking regions (up to 100 kb) were extracted from corresponding contigs or chromosomal sequences. To analyze the synteny of TOR and flanking regions, we constructed a database of one TOR and flanking region sequence and used the other TOR homolog and flanking region sequence to perform tBLASTx searches in the database (BLOSUM62 matrix; E-value = 1e-3; gap cost: existence 11, extension 1; and low complexity regions filter). The tBLASTx results were parsed and formatted using an in-house Perl script (available upon request). The parsed and formatted tBLASTx results were then imported into Artemis software 106 for synteny analysis. We employed a cutoff value of 100 bp to filter short non-significant matches between query and database sequences.Authors� contributionsCAS carried out the homolog searches and phylogenetic analysis and drafted the manuscript. RJB performed homolog searches and participated in the design of the study. WL performed the synteny and phylogenetic analysis and helped draft the manuscript. JH and MEC conceived of the study, participated in its design and helped to draft the manuscript. All authors read and approved the final manuscript.
BackgroundThe nutrient-sensing target of rapamycin (Tor) pathway is highly conserved among eukaryotes and governs several essential cellular processes including protein synthesis, ribosome biogenesis, autophagy, and cytoskeletal organization 123. In the fungal kingdom, the Tor pathway has been best studied in the budding yeast Saccharomyces cerevisiae 234, the fission yeast Schizosaccharomyces pombe 56, and the human pathogen Candida albicans 5678. However, little is known about Tor in basal fungal lineages, including the Zygomycota and Chytridiomycota.In S. cerevisiae and S. pombe, two Tor paralogs form distinct complexes known as Tor Complex 1 (TORC1) and Tor Complex 2 (TORC2) 9101112, while in most other species, including humans, a single Tor protein can populate both complexes 11121314. Interestingly, S. cerevisiae Tor2 can complement the loss of Tor1, but Tor1 cannot complement the loss of Tor2 1516. Two Tor paralogs have also been identified in a metazoan, the silkworm Bombyx mori 17 and three Tor paralogs were identified in the trypanosomatid parasites Leishmania major 18 and the related species Trypanosoma brucei 19, the first reported Tor triumvirates.The ScTORC1 is sensitive to rapamycin and controls protein synthesis, mRNA synthesis and degradation, ribosome biogenesis, and autophagy. TORC2 is insensitive to rapamycin and is involved in the control of actin polarization and cell wall integrity 916. TORC1 consists of Tor1 or Tor2, Kog1 20, Tco89, and Lst8 21, while TORC2 contains Tor2, Lst8, Avo1, Avo2, and Avo3 22 (Figure 1A). Recently, the EGO-GTPase complex and its orthologs were shown to convey amino acid signals for TORC1 activation in yeast, insects, and mammals 23242526. In S. cerevisiae, immediate effectors of TORC1 include the PP2A-like phosphatase Sit4 27 and the AGC kinase Sch9 28. In S. pombe, Tor participates in other cellular functions including nutrient signaling 29, cell growth and differentiation 30, mitotic commitment 31, and sexual development 11 (Figure 1B).The structure of the Tor proteins is remarkably conserved (Figure 2) and features several domains for protein-protein interactions including N-terminal HEAT (Huntingtin, Elongation factor 3, PP2A A subunit, Tor) repeats 32, a FAT (FRAP, ATM, and TRRAP) domain 3334, and an FRB (FK506-Rapamycin Binding) 35 domain. The kinase and the FATC (FAT domain at the C-terminus) 3236 domains are present in the C-terminal region.The Tor inhibitor rapamycin blocks cell proliferation and is currently used as an immunosuppressive drug for organ and tissue transplant recipients and a chemotherapy agent against a variety of solid cancers 37383940. Rapamycin binds to the prolyl isomerase FKBP12 to form a protein-drug complex that then interacts with the Tor FRB domain in a ternary complex 4142. S. cerevisiae cells treated with rapamycin display phenotypes associated with nutrient depletion including G1 cell cycle arrest, cellular volume expansion, protein synthesis inhibition, glycogen accumulation, and autophagy 3543.Genetic analysis in S. cerevisiae characterizing rapamycin-resistant mutants led to the identification of FKBP12 as the intracellular receptor for rapamycin and defined Tor1 and Tor2 as the targets of the FKBP12-rapamycin complex 4. Subsequent studies resulted in the identification and characterization of the TOR1 and TOR2 gene products 1544 as well as the elucidation of the Tor signaling cascade 8454647. These pioneering studies aided in the identification of the mammalian Tor ortholog and characterization of this highly conserved signaling cascade 84849. Remarkably, expression of the human FKBP12 ortholog in yeast fpr1 (the gene that encodes FKBP12) deletion mutants complements to restore rapamycin sensitivity, and hybrid Tor proteins consisting of the yeast N-terminal domain fused to the mammalian Tor kinase domain are also functional in yeast 50. Thus, the Tor pathway has been functionally and structurally conserved from yeasts to humans over the billion years of evolution separating the two species from their last common ancestor.We now know that the fungal and metazoan kingdoms are both within the opisthokont lineage of eukaryotes and are thus more closely related to each other than the vast majority of eukaryotic organisms 5152. Moreover, these two highly successful kingdoms shared a last common ancestor as recently as one billion years ago, much more recently than most eukaryotes. Recent initiatives, particularly the UNICORN project, have facilitated the sequencing of several opisthokonts related to the last common ancestor of the metazoans and fungi, providing an interesting window into the evolution of both fungi and animals 53545556. Thus, studies on the evolutionary trajectory of the fungal kingdom in general, and of the Tor signaling cascade in particular, promise to reveal insights about how orthologous pathways function in the more complex milieu of multicellular metazoan organisms.In this study, we have capitalized upon the wealth of available genomic information by annotating the Tor pathway in several fungal organisms in which this pathway has not been described. Our study included selected species in the major groups of the fungal kingdom with genome sequences available: the basidiomycete Pleurotus ostreatus; the Mucorales zygomycetes Mucor circinelloides, Rhizopus oryzae, and Phycomyces blakesleeanus; the chytridiomycetes Spizellomyces punctatus and Batrachochytrium dendrobatidis; the microsporidian species Encephalitozoon cuniculi, Enterocytozoon bieneusi, and Nosema ceranae; and the related non-fungal opisthokonts Capsaspora owczarzaki, Salpingoeca rosetta, and Monosiga brevicollis. Whereas the Tor pathway is conserved throughout the eukaryotes, strikingly, microsporidian species with their highly reduced and compacted genomes lack the entire Tor pathway. We have also investigated gene and genome duplication events that resulted in two Tor homologs in S. cerevisiae, S. pombe, P. ostreatus, and B. dendrobatidis, and the loss of a second Tor homolog following a whole genome duplication event in R. oryzae.Results and DiscussionConservation of the Tor signaling pathway molecular componentsThe Tor pathway is well conserved among nearly all eukaryotic species examined to date. Tor is essential for life and is the target of the potent drug rapamycin in fungi, humans, and other eukaryotic organisms 2121941. Tor originated early during the eukaryotic radiation, as it is present in the basal eukaryotes Giardia lamblia 57, L. major 18 and T. brucei 19, and also in plants 58. Here we focused on the Tor pathway in the fungal kingdom and other representative unicellular opisthokont species outside of the fungi. Several genes encoding Tor complex components, upstream regulators, and downstream effectors were identified in all major groups throughout the fungal kingdom (Figure 1, Table 1). Because we used BLASTp reciprocal best hits (RBH) to identify orthologs, in some cases the absence of an ortholog in our results may represent only a failure to detect it with this method. Further, functional homologs that are not sufficiently similar enough in sequence to be identified may be present. Overall, a high degree of pathway conservation is observed in the Tor signaling cascade throughout the fungal kingdom, with the exception of microsporidia in which all Tor pathway components are absent. In addition, several pathway components are conserved in the related unicellular opisthokonts M. brevicollis, S. rosetta, and C. owczarzaki (Table 2).In S. cerevisiae, Tor1 and Tor2 interact with several proteins to form TORC1 and TORC2. TORC1 contains Tor1 or Tor2, Kog1, Tco89, and Lst8. Kog1 functions as a substrate-recruiting subunit in mammalian TORC1 (mTORC1) 13596061. A gene encoding a putative Kog1 homolog was identified in all species included in this study, with the exception of the microsporidia and S. rosetta (Tables 1 and 2). Mutation of TCO89 results in hypersensitivity to rapamycin and affects cellular integrity in S. cerevisiae 21. Tco89 is only found in S. cerevisiae and could have resulted from a specialization of the pathway exclusive to Saccharomyces species (Table 1). However, while a BLASTp search did not identify Tco89 homologs in other species, S. pombe has been reported to contain a functional homolog [GenBank:NP_588232] 12, and this suggests that functional homologs may exist in other fungal species as well. However, no homologs were identified when using S.�pombe Tco89 as a query sequence. Lst8 binds to the Tor kinase domain in S. cerevisiae to stimulate catalytic activity 9 and a putative Lst8 homolog is conserved in most species analyzed except microsporidia and S.�rosetta (Tables 1 and 2).Additional BLASTp searches identified a single Tor homolog in the following species: Lachancea thermotolerans CBS6340 [GenBank:XP_002552336], Pichia pastoris GS115 [GenBank:XP_002491471], Pichia stipitis CBS6054 [GenBank:XP_001385651], Debaryomyces hansenii CBS767 [GenBank:XP_002770885], Yarrowia lipolytica CLIB122 [GenBank:XP_505106], Podospora anserina strain S mat+ [GenBank:XP_001903968], Chaetomium globosum CBS148.51 [GenBank:XP_001226647], Magnaporthe oryzae 70-15 [GenBank:XP_001414541], Gibberella zeae PH-1 [GenBank:XP_388309], Aspergillus fumigatus Af293 [GenBank:XP_755360], Aspergillus flavus NRRL3357 [GenBank:XP_002377897], Neosartorya fischeri NRRL181 [GenBank:XP_001260509], Aspergillus terreus NIH2624 [GenBank:XP_001213640], Aspergillus nidulans FGSCA4 [GenBank:XP_663586], Aspergillus clavatus NRRL1 [GenBank:XP_001275326], Aspergillus oryzae RIB40 [GenBank: XP_001826216], and Aspergillus niger CBS513.88 [GenBank:XP_001397781]. These ascomycetes were not included in further studies.In yeast and mammals, TORC2 controls spatial aspects of growth. TORC2 includes Tor2, Avo1, Avo2, Avo3, and Bit61 922. Avo1 plays an essential role in actin cytoskeleton polarization 22 and is conserved throughout the organisms that were the focus of this study (Table 1) except in S. rosetta and C. owczarzaki (Table 2). However, due to high divergence of the AVO1 sequence amongst the known homologs, it is possible that the S. rosetta and C. owczarzaki homologs cannot be identified using the BLASTp algorithm. Avo2 is a nonessential substrate adaptor for TORC2 22 and potential homologs were identified in most species studied, with the exceptions of S. pombe, P. ostreatus, the three microsporidian species (Table 1), and M. brevicollis (Table 2). In S. cerevisiae, Avo3 (also know as Tsc11) controls cytoskeletal dynamics 922, and homologs are conserved throughout the species examined (Tables 1 and 2). Bit61, a nonessential protein that associates with TORC2 21, was only identified in S. cerevisiae (Tables 1 and 2).Upstream regulators of Tor include Tsc1 and Tsc2 (Tuberous Sclerosis 1 and 2) and the GTPase Rheb (Ras homolog enhanced in brain). In S. pombe and other eukaryotes, Tsc1 and Tsc2 form a GTPase-activating complex that negatively regulates the action of Rheb to activate TORC1 266263. Tsc1 and Tsc2 putative homologs were identified in most species in the study, with the exception of S. cerevisiae (Table 1); however, Tsc1 homologs were not identified in B. dendrobatidis, S. rosetta, or C. owczarzaki (Tables 1 and 2). In mammals and insects, four Rag GTPases (RagA-D) bind raptor (Kog1) to mediate TORC1 signaling in response to amino acids 2426. RagA and RagB are orthologs of S.�cerevisiae Gtr1 whereas RagC and RagD are orthologs of S. cerevisiae Gtr2 23. Gtr1 and Gtr2 form a complex along with Ego1 and Ego3 known as EGOC/GSE 25, which is regulated by the GTP exchange factor Vam6 23. Interestingly we found presumptive Gtr1 and Gtr2 orthologs in species in this study with the exception of microsporidia (Table 1), and Gtr1 was not identified in M. brevicollis (Table 2). However, Ego1 and Ego3, which anchor Gtr1 and Gtr2 to endosomal and vacuolar membranes, are unique to S. cerevisiae and were not identified in the other species (Table 1). This suggests that the specific EGO complex architecture might be restricted to Saccharomyces, though it is possible that functional homologs may be present in other species.In fungi, several downstream effectors are targets of Tor signaling. The PP2A phosphatase Sit4 and its regulatory subunit Tap42 regulate the expression of several TORC1-controlled genes and Gcn2-regulated translation 36465. A Sit4 homolog was identified in R. oryzae (Table 1), though a homolog of the regulatory subunit Tap42 was not (Table 1). In S. rosetta, a Sit4 homolog was not identified, though Tap42 was (Table 2). Both of these situations could indicate rewiring of the pathway, or alternatively these findings could be a result of insufficient similarity to detect with a RBH search method. Sch9, a member of the AGC kinase family and the functional homolog of the p70 S6 kinase, is a direct substrate of S. cerevisiae TORC1 involved in ribosome biogenesis 2866. Sch9 was not identified in RBH BLASTp searches with S. cerevisiae Sch9 in M. circinelloides, P. blakesleeanus, the microsporidia (Table 1), or S. rosetta (Table 2), but was identified in all other species. Putative homologs of Ypk2 kinase, a regulator of ceramide synthesis controlled by TORC2 signaling 67, were only identified in S. cerevisiae, S. pombe, (Table 1), M. brevicollis, S. rosetta, and C. owczarzaki (Table 2). Notably, the failure to detect many homologs in M. brevicollis, S. rosetta, and C. owczarzaki could be due to their evolutionary distance from the other organisms in the study and their gene divergence.Evolutionary conservation of Tor kinase protein structureThe Tor kinases are phosphatidylinositol kinase-related kinases (PIKKs) 68 and aside from their known protein kinase function also serve as evolutionary constrained scaffolds with several protein-protein interaction domains that mediate multi-protein complex formation 69. Tor protein architecture was annotated using SMART 7071 and we found that it has been maintained throughout the species of this study (Figure 2). N-terminal HEAT repeats are present in varying numbers and serve as scaffolding structures for protein-protein interactions 327273. Similarly, the FAT/toxic domain and the accompanying C-terminal FATC domain also participate in protein scaffolding and are present and conserved in all species subject to analysis. Over-expression of the FAT domain has a dominant negative effect on cell growth in yeast and this effect can be suppressed by over-expression of phospholipase C 33. The kinase domain has similarities to both lipid and protein kinases, but it is a bona fide protein kinase. The FRB (FKBP12-rapamycin binding) domain is a highly conserved 100 amino acid region of Tor with several residues that are known to be required for binding the FKBP12-rapamycin drug complex 42.In addition, the FRB domain contains several residues necessary for both phosphatidic acid binding and rapamycin interaction 7475. In mammals, phosphatidic acid binding to the FRB region may promote the assembly of mTOR complexes. It has been proposed that the potent effect of the Tor inhibitor rapamycin may be due to direct competition for overlapping phosphatidic acid binding sites within the FRB domain 76. Mutation of the conserved amino acid residues S1975, W2041, or F2048 in the FRB domain confers rapamycin resistance in S. cerevisiae 44277. Strikingly, the corresponding amino acid residues are conserved in all species examined (Figure 3). In mTOR, phosphatidic acid binding is disrupted by mutations of L2031, F2309, and Y2105 75, corresponding to S. cerevisiae Tor2 L1971, F1979, and Y2045, respectively, all of which are conserved in the studied fungal species (Figure 3).Duplication of Tor in the fungal kingdomApproximately 100 million years ago, the S. cerevisiae ancestor underwent a whole genome duplication (WGD) event, and species that descend from this evolutionary event retained duplicated subsets of genes. S. cerevisiae retained approximately 8% of duplicated genes 7879, while other fungi in this lineage have maintained varying numbers of gene duplicates, such as Candida glabrata in which a smaller number (~2%) of these pairs are maintained 80. Interestingly, several of these species, including S. cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, S. bayanus, S. castellii, and C. glabrata have retained two TOR paralogs, whereas species outside of the WGD clade, including Kluyveromyces lactis and Ashbya gossypii, have only a single TOR gene.The fates of duplicated gene paralogs can be explained through the duplication, degeneration, and complementation (DDC) model of gene duplication 81. In species with a single Tor, this protein populates both TORC1 and TORC2, each of which has distinct functions. Following duplication, each paralog likely sub-functionalized to carry out some, but not all, of its previous functions so that between the two paralogs, each process is performed. In S. cerevisiae, for example, Tor1 exclusively functions within TORC1, while Tor2 preferentially populates TORC2 but can also function in TORC1. S. pombe has two Tor paralogs as a result of an independent segmental gene duplication event, and each paralog has distinct roles not necessarily equivalent to those of S. cerevisiae Tor1 and Tor2. SpTor1 is not essential, whereas SpTor2 is essential for growth 112982.We hypothesize that similar models could apply in species encoding two Tor homologs resulting from independent gene duplication events such as P. ostreatus and B. dendrobatidis. Based on their level of identity with S.�cerevisiae Tor homologs, the B. dendrobatidis genes BDEG_08293 and BDEG_05727 have been designated TOR1 and TOR2, respectively. However, these gene names are not necessarily based on functional similarity with ScTor1 and ScTor2 but rather indicate only that there are two TOR homologs in B. dendrobatidis. A�similar naming challenge is evident in S. pombe, where the functions of SpTor1 and SpTor2 are not equivalent with those of ScTor1 and ScTor2.While several species, such as those in the Saccharomyces clade, have two Tor paralogs resulting from ancient WGD events, other species have acquired a second paralog through independent segmental gene duplication events, including B. dendrobatidis and several fission yeast species closely related to S. pombe (Figure 4). Segmental gene duplications have played a major role in the evolution of species and can result in the duplication of single genes or large blocks of genes 83. In S. cerevisiae, the duplication blocks with TOR include three paralogous gene pairs that have been retained from the ancestral WGD event: PTK1/PTK2, TOR1/TOR2, and MNN4/YJR061W 78 (Figure 5A). Further, C. glabrata, an ascomycete closely related to S. cerevisiae that diverged following the WGD, has also maintained a second TOR paralog and synteny is apparent in the region flanking the TOR1 and TOR2 genes, though one must extend the analysis to >40 kb from the TOR genes to detect it (See additional file 1: Supplemental figure 1). However, because C. glabrata and S. cerevisiae have retained different subsets of genes from the ancestral WGD, the duplicated genes surrounding TOR in these species are not homologs of one another. Further, C. glabrata has maintained fewer of the synteny blocks found in S. cerevisiae, and the block containing the TOR genes (Block 42) is not conserved in C. glabrata 80.In contrast, genomic regions surrounding the Tor paralogs in S. pombe (Figure 5B) and B. dendrobatidis (Figure 5C) are not syntenically conserved. That is, the duplicated genes are not flanked by other duplicated gene pairs, and the two TOR paralogs likely resulted from independent segmental gene duplication events. Further, there are no indications of WGDs in these species. In the Schizosaccharomycotina, the TOR gene duplication occurred prior to speciation as evidenced by the fact that S. pombe, S. octosporus, S. japonicus, and S. cryophilus have each retained a second Tor paralog; the Tor orthologs across these four species are more closely related to each other than to those from other species (Figure 4). No syntenic conservation between the genomic regions containing TOR paralogs was detected in any species of the Schizosaccharomyces group, supporting the occurrence of an independent segmental gene duplication in their common ancestor (see additional file 2: supplemental Figure 2).The Taphrinomycotina is a monophyletic taxon of the Ascomycota containing the Schizosaccharomycetes, Taphrinomycetes, Neolectomycetes, and Pneumocystidomycetes. Genomes are only available for species within the Schizosaccharomycetes (S. pombe, S. octosporus, S. japonicus, and S. cryophilus) and the Taphrinomycetes (Pneumocystis carinii). While the studied Schizosaccharomyces spp. contain two Tor homologs, a single homolog was identified in P. carinii with tBLASTx using the highly conserved S. cerevisiae FRB domain of Tor1 based on sequence data produced by the Pneumocystis Genome Project (funded by the NIH NIAID) that was obtained from http://pgp.cchmc.org at the time of publication. Based on the phylogenetic placement of these two groups 84 and the available genomic information, we hypothesize that the segmental TOR duplication is unique to the Schizosaccharomyces spp. and occurred following their divergence from the common ancestor of the Taphrinomycota, as P. carinii, the other species within this taxon with available genome data, appears to contain a single Tor homolog.Interestingly, the zygomycete R. oryzae underwent a whole genome duplication event and despite retaining 12% of the resulting duplicated genes 85 compared to 8% retained genes in a separate WGD event in S. cerevisiae 7879, two Tor paralogs have not been retained; only a single Tor homolog was identified. Currently, the Zygomycota is the only group studied without an identified species containing two Tor homologs; however, there are not enough available genomes to make a definitive conclusion in this group. Other species with independent TOR duplications likely remain to be identified in all of the major fungal lineages, and as more genome sequences become available this will be addressed.During this study, we identified three additional species that possibly have two TOR paralogs: M. brevicollis, Thecamonas trahens, and Allomyces macrogynus, species that are included in the Origins of Multicellularity Project 86. While analysis is limited because of the state of the M. brevicollis (choanoflagellate) genome, it appears that an additional bonafide Tor protein is encoded with the conserved Tor protein architecture. Thecamonas trahens is a unicellular apusomonad that also contains two TOR paralogs. Interestingly, A. macrogynus is a fungus that may contain a second paralog; however, it appears that the FRB domain overlaps with the kinase domain. This may represent a case in which TOR was duplicated but is in the process of losing one of the copies. These cases are a springboard for future studies involving the duplication of TOR within and beyond the fungal kingdom.Loss of the Tor signaling pathway in microsporidiaWhile components of the Tor signaling cascade are conserved in eukaryotes from yeasts to humans, the microsporidia, a group of highly specialized obligate intracellular pathogens completely lack all of the pathway components investigated in this study. E. cuniculi has previously been noted to lack the Tor kinase 87, and we found that all pathway components including Tor were missing not only in E. cuniculi but also in its microsporidian relatives E. bieneusi and N. ceranae (Table 2). Microsporidian genomes are highly compacted and show a marked reduced gene content. The genome of the human pathogen E. cuniculi has 1997 genes distributed throughout 11 chromosomes in a 2.9 Mb genome 88, less than half the number of protein-coding genes found in Escherichia coli. For comparison, the genome of the human pathogen E. bieneusi genome is ~6 Mb with 3,804 genes 89 and the honeybee pathogen N. ceranae genome is ~7.9 Mb with 2,614 predicted genes 90. Genome reduction has been well studied in intracellular bacteria: during the specialization process from a free-living to intracellular lifestyle, massive gene loss can occur 9192939495. We hypothesize that as a consequence of their specialization to an obligate intracellular lifestyle, the need for nutrient sensing was relaxed and these obligate intracellular microsporidia acquired nutrients from within the host cytoplasm. Thus, they no longer required the Tor pathway, which is dedicated to sensing changes in the nutrient composite of the environmental milieu. However, E. cuniculi has retained some of the genes encoding signaling pathways involved in nutrient sensing in other species, including homologs of S. cerevisiae Ras1 and Ras2 (data not shown).Interestingly, P. carinii is an obligate pathogen with a reduced genome estimated to be ~8 Mb 96, which unlike microsporidia is not obligately intracellular. A�single Tor homolog was identified [Pneumocystis Genome Project:cap3_it1_grp346_contig490] using the S. cerevisiae Tor1 FRB domain in tBLASTx, supporting our hypothesis that the microsporidia have streamlined their genomes as they adopted an obligate intracellular life cycle. P. carinii likely requires Tor because it must survive in a metabolically active form outside of host cells, undergoing cell division in the extracellular milieu of the infected host lung.Many microsporidian genomes have undergone extreme genome reduction and are among the eukaryotes with the smallest genomes. In addition to fewer genes than other species (1997 in E. cuniculi compared to 6607 in S. cerevisiae), E. cuniculi has shorter genes, small intergenic distances, and very few introns 8897. This species (and to an even greater extent, E. bieneusi) lacks several genes that are necessary for biosynthetic pathways and the tricarboxylic acid cycle in free-living organisms 888998. Remarkably, E. cuniculi must acquire ATP from its host through a series of ATP transporters anciently acquired from Rickettsia- or Chlamydia-like bacteria 99, and this is an example of how E. cuniculi, and possibly other microsporidia, can hijack mechanisms of other intracellular bacteria, fungi, or the host to survive in and adapt to their highly specialized intracellular lifestyle.ConclusionsThe Tor pathway is highly conserved with some exceptions among fungi, including several pathogens. Similarly, the molecular structural organization of the Tor kinases has been remarkably conserved as well as the presumed ability to bind the FKBP12-rapamycin complex. This feature, combined with the essential nature of the rapamycin-sensitive TORC1 pathway for cell growth, should enable the development of rapamycin-based strategies for antifungal therapies. Duplications of the Tor protein occurred in most fungal groups examined, resulting from either independent segmental gene duplication events or a WGD event. The maintenance of two Tor homologs can be explained through the DDC model of gene duplication, in which the paralogs subfunctionalize and together support all of the functions of the pre-duplicated protein. In addition, species outside of the fungal kingdom with two or more TOR homologs include the metazoan B. mori, the apusomonad protozoan T. trahens, the trypanosome protozoans L. major and T. brucei, and possibly the choanoflagellate M. brevicollis. This suggests that the Tor gene has been independently duplicated multiple times since the last common ancestor of the Opisthokonta and Excavata lineages. The Tor pathway, as well as the Tor protein itself, is highly conserved in eukaryotes, so the observation that three microsporidian species are missing the entire pathway is striking. It would appear that the specialized obligate intracellular life cycle of microsporidia allows for the acquisition of nutrients from the host cell, obviating a requirement for this central nutrient-sensing pathway that is essential in all known cases of other eukaryotes for axenic growth.MethodsIdentification of pathway component homologsTor homologs were identified using the highly conserved 100 amino acid FRB domain of S. cerevisiae Tor1 in BLASTp reciprocal best-hit searches between the specific species database and the Saccharomyces Genome Database (SGD). All queries for other Tor pathway components were retrieved from SGD and homologs were identified by BLASTp reciprocal best-hit searches, with the exception of Tsc1 and Tsc2. Tsc1 and Tsc2 protein query sequences were retrieved from the S. pombe GeneDB, and homologs were identified using BLASTp searches between the S. pombe genome database and the species database. Species identification numbers are listed in Supplemental Table 1. Protein architecture of each homolog was elucidated with Simple Modular Architecture Research Tool (SMART) analysis 7071.Accession numbers are provided for putative Tor pathway components (see Additional file 3, supplemental Table 1 for the accession numbers of putative Tor pathway components) from the following public genomic databases that were used to carry out BLAST: S. cerevisiae, SGD, http://www.yeastgenome.org; S. pombe, GeneDB, http://www.genedb.org/genedb/pombe/index.jsp; P. ostreatus, JGI, http://genome.jgi-psf.org/PleosPC15_1/PleosPC15_1.home.html; M. circinelloides, JGI and the Mucor Genome Project, http://genome.jgi-psf.org/Mucci1/Mucci1.home.html; R. oryzae, Broad Institute, http://www.broadinstitute.org/annotation/genome/rhizopus_oryzae/MultiHome.html; P. blakesleeanus, JGI, http://genome.jgi-psf.org/Phybl1/Phybl1.home.html; B. dendrobatidis, Broad Institute, http://www.broadinstitute.org/annotation/genome/batrachochytrium_dendrobatidis/MultiHome.html; S. punctatus, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; M. brevicollis, JGI, http://genome.jgi-psf.org/Monbr1/Monbr1.home.html; S. rosetta, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; C. owczarzaki, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; E. cuniculi, E. bieneusi, and N. ceranae, NCBI, http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi?organism=fungi.Phylogenetic analysis of TorThe ProtTest program 100 was used to select an appropriate model to construct the phylogenetic relationship of the Tor proteins of the studied species. For this study, the best model for phylogenetic construction of the Tor protein using maximum likelihood (ML) was JTT+I+G+F 101. The ML tree was generated using PhyML with the JTT+I+G+F mode with 500 bootstrap replicates 102103. The Tor amino acid sequences from all species were aligned with CLUSTAL W 104.Synteny analysis of TOR paralogsTor homologs in fungal species were identified with BLAST 105 using TOR1 and TOR2 of S. cerevisiae as query sequences. The TOR sequence and flanking regions (up to 100 kb) were extracted from corresponding contigs or chromosomal sequences. To analyze the synteny of TOR and flanking regions, we constructed a database of one TOR and flanking region sequence and used the other TOR homolog and flanking region sequence to perform tBLASTx searches in the database (BLOSUM62 matrix; E-value = 1e-3; gap cost: existence 11, extension 1; and low complexity regions filter). The tBLASTx results were parsed and formatted using an in-house Perl script (available upon request). The parsed and formatted tBLASTx results were then imported into Artemis software 106 for synteny analysis. We employed a cutoff value of 100 bp to filter short non-significant matches between query and database sequences.Authors� contributionsCAS carried out the homolog searches and phylogenetic analysis and drafted the manuscript. RJB performed homolog searches and participated in the design of the study. WL performed the synteny and phylogenetic analysis and helped draft the manuscript. JH and MEC conceived of the study, participated in its design and helped to draft the manuscript. All authors read and approved the final manuscript.
BackgroundThe nutrient-sensing target of rapamycin (Tor) pathway is highly conserved among eukaryotes and governs several essential cellular processes including protein synthesis, ribosome biogenesis, autophagy, and cytoskeletal organization 123. In the fungal kingdom, the Tor pathway has been best studied in the budding yeast Saccharomyces cerevisiae 234, the fission yeast Schizosaccharomyces pombe 56, and the human pathogen Candida albicans 5678. However, little is known about Tor in basal fungal lineages, including the Zygomycota and Chytridiomycota.In S. cerevisiae and S. pombe, two Tor paralogs form distinct complexes known as Tor Complex 1 (TORC1) and Tor Complex 2 (TORC2) 9101112, while in most other species, including humans, a single Tor protein can populate both complexes 11121314. Interestingly, S. cerevisiae Tor2 can complement the loss of Tor1, but Tor1 cannot complement the loss of Tor2 1516. Two Tor paralogs have also been identified in a metazoan, the silkworm Bombyx mori 17 and three Tor paralogs were identified in the trypanosomatid parasites Leishmania major 18 and the related species Trypanosoma brucei 19, the first reported Tor triumvirates.The ScTORC1 is sensitive to rapamycin and controls protein synthesis, mRNA synthesis and degradation, ribosome biogenesis, and autophagy. TORC2 is insensitive to rapamycin and is involved in the control of actin polarization and cell wall integrity 916. TORC1 consists of Tor1 or Tor2, Kog1 20, Tco89, and Lst8 21, while TORC2 contains Tor2, Lst8, Avo1, Avo2, and Avo3 22 (Figure 1A). Recently, the EGO-GTPase complex and its orthologs were shown to convey amino acid signals for TORC1 activation in yeast, insects, and mammals 23242526. In S. cerevisiae, immediate effectors of TORC1 include the PP2A-like phosphatase Sit4 27 and the AGC kinase Sch9 28. In S. pombe, Tor participates in other cellular functions including nutrient signaling 29, cell growth and differentiation 30, mitotic commitment 31, and sexual development 11 (Figure 1B).The structure of the Tor proteins is remarkably conserved (Figure 2) and features several domains for protein-protein interactions including N-terminal HEAT (Huntingtin, Elongation factor 3, PP2A A subunit, Tor) repeats 32, a FAT (FRAP, ATM, and TRRAP) domain 3334, and an FRB (FK506-Rapamycin Binding) 35 domain. The kinase and the FATC (FAT domain at the C-terminus) 3236 domains are present in the C-terminal region.The Tor inhibitor rapamycin blocks cell proliferation and is currently used as an immunosuppressive drug for organ and tissue transplant recipients and a chemotherapy agent against a variety of solid cancers 37383940. Rapamycin binds to the prolyl isomerase FKBP12 to form a protein-drug complex that then interacts with the Tor FRB domain in a ternary complex 4142. S. cerevisiae cells treated with rapamycin display phenotypes associated with nutrient depletion including G1 cell cycle arrest, cellular volume expansion, protein synthesis inhibition, glycogen accumulation, and autophagy 3543.Genetic analysis in S. cerevisiae characterizing rapamycin-resistant mutants led to the identification of FKBP12 as the intracellular receptor for rapamycin and defined Tor1 and Tor2 as the targets of the FKBP12-rapamycin complex 4. Subsequent studies resulted in the identification and characterization of the TOR1 and TOR2 gene products 1544 as well as the elucidation of the Tor signaling cascade 8454647. These pioneering studies aided in the identification of the mammalian Tor ortholog and characterization of this highly conserved signaling cascade 84849. Remarkably, expression of the human FKBP12 ortholog in yeast fpr1 (the gene that encodes FKBP12) deletion mutants complements to restore rapamycin sensitivity, and hybrid Tor proteins consisting of the yeast N-terminal domain fused to the mammalian Tor kinase domain are also functional in yeast 50. Thus, the Tor pathway has been functionally and structurally conserved from yeasts to humans over the billion years of evolution separating the two species from their last common ancestor.We now know that the fungal and metazoan kingdoms are both within the opisthokont lineage of eukaryotes and are thus more closely related to each other than the vast majority of eukaryotic organisms 5152. Moreover, these two highly successful kingdoms shared a last common ancestor as recently as one billion years ago, much more recently than most eukaryotes. Recent initiatives, particularly the UNICORN project, have facilitated the sequencing of several opisthokonts related to the last common ancestor of the metazoans and fungi, providing an interesting window into the evolution of both fungi and animals 53545556. Thus, studies on the evolutionary trajectory of the fungal kingdom in general, and of the Tor signaling cascade in particular, promise to reveal insights about how orthologous pathways function in the more complex milieu of multicellular metazoan organisms.In this study, we have capitalized upon the wealth of available genomic information by annotating the Tor pathway in several fungal organisms in which this pathway has not been described. Our study included selected species in the major groups of the fungal kingdom with genome sequences available: the basidiomycete Pleurotus ostreatus; the Mucorales zygomycetes Mucor circinelloides, Rhizopus oryzae, and Phycomyces blakesleeanus; the chytridiomycetes Spizellomyces punctatus and Batrachochytrium dendrobatidis; the microsporidian species Encephalitozoon cuniculi, Enterocytozoon bieneusi, and Nosema ceranae; and the related non-fungal opisthokonts Capsaspora owczarzaki, Salpingoeca rosetta, and Monosiga brevicollis. Whereas the Tor pathway is conserved throughout the eukaryotes, strikingly, microsporidian species with their highly reduced and compacted genomes lack the entire Tor pathway. We have also investigated gene and genome duplication events that resulted in two Tor homologs in S. cerevisiae, S. pombe, P. ostreatus, and B. dendrobatidis, and the loss of a second Tor homolog following a whole genome duplication event in R. oryzae.Results and DiscussionConservation of the Tor signaling pathway molecular componentsThe Tor pathway is well conserved among nearly all eukaryotic species examined to date. Tor is essential for life and is the target of the potent drug rapamycin in fungi, humans, and other eukaryotic organisms 2121941. Tor originated early during the eukaryotic radiation, as it is present in the basal eukaryotes Giardia lamblia 57, L. major 18 and T. brucei 19, and also in plants 58. Here we focused on the Tor pathway in the fungal kingdom and other representative unicellular opisthokont species outside of the fungi. Several genes encoding Tor complex components, upstream regulators, and downstream effectors were identified in all major groups throughout the fungal kingdom (Figure 1, Table 1). Because we used BLASTp reciprocal best hits (RBH) to identify orthologs, in some cases the absence of an ortholog in our results may represent only a failure to detect it with this method. Further, functional homologs that are not sufficiently similar enough in sequence to be identified may be present. Overall, a high degree of pathway conservation is observed in the Tor signaling cascade throughout the fungal kingdom, with the exception of microsporidia in which all Tor pathway components are absent. In addition, several pathway components are conserved in the related unicellular opisthokonts M. brevicollis, S. rosetta, and C. owczarzaki (Table 2).In S. cerevisiae, Tor1 and Tor2 interact with several proteins to form TORC1 and TORC2. TORC1 contains Tor1 or Tor2, Kog1, Tco89, and Lst8. Kog1 functions as a substrate-recruiting subunit in mammalian TORC1 (mTORC1) 13596061. A gene encoding a putative Kog1 homolog was identified in all species included in this study, with the exception of the microsporidia and S. rosetta (Tables 1 and 2). Mutation of TCO89 results in hypersensitivity to rapamycin and affects cellular integrity in S. cerevisiae 21. Tco89 is only found in S. cerevisiae and could have resulted from a specialization of the pathway exclusive to Saccharomyces species (Table 1). However, while a BLASTp search did not identify Tco89 homologs in other species, S. pombe has been reported to contain a functional homolog [GenBank:NP_588232] 12, and this suggests that functional homologs may exist in other fungal species as well. However, no homologs were identified when using S.�pombe Tco89 as a query sequence. Lst8 binds to the Tor kinase domain in S. cerevisiae to stimulate catalytic activity 9 and a putative Lst8 homolog is conserved in most species analyzed except microsporidia and S.�rosetta (Tables 1 and 2).Additional BLASTp searches identified a single Tor homolog in the following species: Lachancea thermotolerans CBS6340 [GenBank:XP_002552336], Pichia pastoris GS115 [GenBank:XP_002491471], Pichia stipitis CBS6054 [GenBank:XP_001385651], Debaryomyces hansenii CBS767 [GenBank:XP_002770885], Yarrowia lipolytica CLIB122 [GenBank:XP_505106], Podospora anserina strain S mat+ [GenBank:XP_001903968], Chaetomium globosum CBS148.51 [GenBank:XP_001226647], Magnaporthe oryzae 70-15 [GenBank:XP_001414541], Gibberella zeae PH-1 [GenBank:XP_388309], Aspergillus fumigatus Af293 [GenBank:XP_755360], Aspergillus flavus NRRL3357 [GenBank:XP_002377897], Neosartorya fischeri NRRL181 [GenBank:XP_001260509], Aspergillus terreus NIH2624 [GenBank:XP_001213640], Aspergillus nidulans FGSCA4 [GenBank:XP_663586], Aspergillus clavatus NRRL1 [GenBank:XP_001275326], Aspergillus oryzae RIB40 [GenBank: XP_001826216], and Aspergillus niger CBS513.88 [GenBank:XP_001397781]. These ascomycetes were not included in further studies.In yeast and mammals, TORC2 controls spatial aspects of growth. TORC2 includes Tor2, Avo1, Avo2, Avo3, and Bit61 922. Avo1 plays an essential role in actin cytoskeleton polarization 22 and is conserved throughout the organisms that were the focus of this study (Table 1) except in S. rosetta and C. owczarzaki (Table 2). However, due to high divergence of the AVO1 sequence amongst the known homologs, it is possible that the S. rosetta and C. owczarzaki homologs cannot be identified using the BLASTp algorithm. Avo2 is a nonessential substrate adaptor for TORC2 22 and potential homologs were identified in most species studied, with the exceptions of S. pombe, P. ostreatus, the three microsporidian species (Table 1), and M. brevicollis (Table 2). In S. cerevisiae, Avo3 (also know as Tsc11) controls cytoskeletal dynamics 922, and homologs are conserved throughout the species examined (Tables 1 and 2). Bit61, a nonessential protein that associates with TORC2 21, was only identified in S. cerevisiae (Tables 1 and 2).Upstream regulators of Tor include Tsc1 and Tsc2 (Tuberous Sclerosis 1 and 2) and the GTPase Rheb (Ras homolog enhanced in brain). In S. pombe and other eukaryotes, Tsc1 and Tsc2 form a GTPase-activating complex that negatively regulates the action of Rheb to activate TORC1 266263. Tsc1 and Tsc2 putative homologs were identified in most species in the study, with the exception of S. cerevisiae (Table 1); however, Tsc1 homologs were not identified in B. dendrobatidis, S. rosetta, or C. owczarzaki (Tables 1 and 2). In mammals and insects, four Rag GTPases (RagA-D) bind raptor (Kog1) to mediate TORC1 signaling in response to amino acids 2426. RagA and RagB are orthologs of S.�cerevisiae Gtr1 whereas RagC and RagD are orthologs of S. cerevisiae Gtr2 23. Gtr1 and Gtr2 form a complex along with Ego1 and Ego3 known as EGOC/GSE 25, which is regulated by the GTP exchange factor Vam6 23. Interestingly we found presumptive Gtr1 and Gtr2 orthologs in species in this study with the exception of microsporidia (Table 1), and Gtr1 was not identified in M. brevicollis (Table 2). However, Ego1 and Ego3, which anchor Gtr1 and Gtr2 to endosomal and vacuolar membranes, are unique to S. cerevisiae and were not identified in the other species (Table 1). This suggests that the specific EGO complex architecture might be restricted to Saccharomyces, though it is possible that functional homologs may be present in other species.In fungi, several downstream effectors are targets of Tor signaling. The PP2A phosphatase Sit4 and its regulatory subunit Tap42 regulate the expression of several TORC1-controlled genes and Gcn2-regulated translation 36465. A Sit4 homolog was identified in R. oryzae (Table 1), though a homolog of the regulatory subunit Tap42 was not (Table 1). In S. rosetta, a Sit4 homolog was not identified, though Tap42 was (Table 2). Both of these situations could indicate rewiring of the pathway, or alternatively these findings could be a result of insufficient similarity to detect with a RBH search method. Sch9, a member of the AGC kinase family and the functional homolog of the p70 S6 kinase, is a direct substrate of S. cerevisiae TORC1 involved in ribosome biogenesis 2866. Sch9 was not identified in RBH BLASTp searches with S. cerevisiae Sch9 in M. circinelloides, P. blakesleeanus, the microsporidia (Table 1), or S. rosetta (Table 2), but was identified in all other species. Putative homologs of Ypk2 kinase, a regulator of ceramide synthesis controlled by TORC2 signaling 67, were only identified in S. cerevisiae, S. pombe, (Table 1), M. brevicollis, S. rosetta, and C. owczarzaki (Table 2). Notably, the failure to detect many homologs in M. brevicollis, S. rosetta, and C. owczarzaki could be due to their evolutionary distance from the other organisms in the study and their gene divergence.Evolutionary conservation of Tor kinase protein structureThe Tor kinases are phosphatidylinositol kinase-related kinases (PIKKs) 68 and aside from their known protein kinase function also serve as evolutionary constrained scaffolds with several protein-protein interaction domains that mediate multi-protein complex formation 69. Tor protein architecture was annotated using SMART 7071 and we found that it has been maintained throughout the species of this study (Figure 2). N-terminal HEAT repeats are present in varying numbers and serve as scaffolding structures for protein-protein interactions 327273. Similarly, the FAT/toxic domain and the accompanying C-terminal FATC domain also participate in protein scaffolding and are present and conserved in all species subject to analysis. Over-expression of the FAT domain has a dominant negative effect on cell growth in yeast and this effect can be suppressed by over-expression of phospholipase C 33. The kinase domain has similarities to both lipid and protein kinases, but it is a bona fide protein kinase. The FRB (FKBP12-rapamycin binding) domain is a highly conserved 100 amino acid region of Tor with several residues that are known to be required for binding the FKBP12-rapamycin drug complex 42.In addition, the FRB domain contains several residues necessary for both phosphatidic acid binding and rapamycin interaction 7475. In mammals, phosphatidic acid binding to the FRB region may promote the assembly of mTOR complexes. It has been proposed that the potent effect of the Tor inhibitor rapamycin may be due to direct competition for overlapping phosphatidic acid binding sites within the FRB domain 76. Mutation of the conserved amino acid residues S1975, W2041, or F2048 in the FRB domain confers rapamycin resistance in S. cerevisiae 44277. Strikingly, the corresponding amino acid residues are conserved in all species examined (Figure 3). In mTOR, phosphatidic acid binding is disrupted by mutations of L2031, F2309, and Y2105 75, corresponding to S. cerevisiae Tor2 L1971, F1979, and Y2045, respectively, all of which are conserved in the studied fungal species (Figure 3).Duplication of Tor in the fungal kingdomApproximately 100 million years ago, the S. cerevisiae ancestor underwent a whole genome duplication (WGD) event, and species that descend from this evolutionary event retained duplicated subsets of genes. S. cerevisiae retained approximately 8% of duplicated genes 7879, while other fungi in this lineage have maintained varying numbers of gene duplicates, such as Candida glabrata in which a smaller number (~2%) of these pairs are maintained 80. Interestingly, several of these species, including S. cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, S. bayanus, S. castellii, and C. glabrata have retained two TOR paralogs, whereas species outside of the WGD clade, including Kluyveromyces lactis and Ashbya gossypii, have only a single TOR gene.The fates of duplicated gene paralogs can be explained through the duplication, degeneration, and complementation (DDC) model of gene duplication 81. In species with a single Tor, this protein populates both TORC1 and TORC2, each of which has distinct functions. Following duplication, each paralog likely sub-functionalized to carry out some, but not all, of its previous functions so that between the two paralogs, each process is performed. In S. cerevisiae, for example, Tor1 exclusively functions within TORC1, while Tor2 preferentially populates TORC2 but can also function in TORC1. S. pombe has two Tor paralogs as a result of an independent segmental gene duplication event, and each paralog has distinct roles not necessarily equivalent to those of S. cerevisiae Tor1 and Tor2. SpTor1 is not essential, whereas SpTor2 is essential for growth 112982.We hypothesize that similar models could apply in species encoding two Tor homologs resulting from independent gene duplication events such as P. ostreatus and B. dendrobatidis. Based on their level of identity with S.�cerevisiae Tor homologs, the B. dendrobatidis genes BDEG_08293 and BDEG_05727 have been designated TOR1 and TOR2, respectively. However, these gene names are not necessarily based on functional similarity with ScTor1 and ScTor2 but rather indicate only that there are two TOR homologs in B. dendrobatidis. A�similar naming challenge is evident in S. pombe, where the functions of SpTor1 and SpTor2 are not equivalent with those of ScTor1 and ScTor2.While several species, such as those in the Saccharomyces clade, have two Tor paralogs resulting from ancient WGD events, other species have acquired a second paralog through independent segmental gene duplication events, including B. dendrobatidis and several fission yeast species closely related to S. pombe (Figure 4). Segmental gene duplications have played a major role in the evolution of species and can result in the duplication of single genes or large blocks of genes 83. In S. cerevisiae, the duplication blocks with TOR include three paralogous gene pairs that have been retained from the ancestral WGD event: PTK1/PTK2, TOR1/TOR2, and MNN4/YJR061W 78 (Figure 5A). Further, C. glabrata, an ascomycete closely related to S. cerevisiae that diverged following the WGD, has also maintained a second TOR paralog and synteny is apparent in the region flanking the TOR1 and TOR2 genes, though one must extend the analysis to >40 kb from the TOR genes to detect it (See additional file 1: Supplemental figure 1). However, because C. glabrata and S. cerevisiae have retained different subsets of genes from the ancestral WGD, the duplicated genes surrounding TOR in these species are not homologs of one another. Further, C. glabrata has maintained fewer of the synteny blocks found in S. cerevisiae, and the block containing the TOR genes (Block 42) is not conserved in C. glabrata 80.In contrast, genomic regions surrounding the Tor paralogs in S. pombe (Figure 5B) and B. dendrobatidis (Figure 5C) are not syntenically conserved. That is, the duplicated genes are not flanked by other duplicated gene pairs, and the two TOR paralogs likely resulted from independent segmental gene duplication events. Further, there are no indications of WGDs in these species. In the Schizosaccharomycotina, the TOR gene duplication occurred prior to speciation as evidenced by the fact that S. pombe, S. octosporus, S. japonicus, and S. cryophilus have each retained a second Tor paralog; the Tor orthologs across these four species are more closely related to each other than to those from other species (Figure 4). No syntenic conservation between the genomic regions containing TOR paralogs was detected in any species of the Schizosaccharomyces group, supporting the occurrence of an independent segmental gene duplication in their common ancestor (see additional file 2: supplemental Figure 2).The Taphrinomycotina is a monophyletic taxon of the Ascomycota containing the Schizosaccharomycetes, Taphrinomycetes, Neolectomycetes, and Pneumocystidomycetes. Genomes are only available for species within the Schizosaccharomycetes (S. pombe, S. octosporus, S. japonicus, and S. cryophilus) and the Taphrinomycetes (Pneumocystis carinii). While the studied Schizosaccharomyces spp. contain two Tor homologs, a single homolog was identified in P. carinii with tBLASTx using the highly conserved S. cerevisiae FRB domain of Tor1 based on sequence data produced by the Pneumocystis Genome Project (funded by the NIH NIAID) that was obtained from http://pgp.cchmc.org at the time of publication. Based on the phylogenetic placement of these two groups 84 and the available genomic information, we hypothesize that the segmental TOR duplication is unique to the Schizosaccharomyces spp. and occurred following their divergence from the common ancestor of the Taphrinomycota, as P. carinii, the other species within this taxon with available genome data, appears to contain a single Tor homolog.Interestingly, the zygomycete R. oryzae underwent a whole genome duplication event and despite retaining 12% of the resulting duplicated genes 85 compared to 8% retained genes in a separate WGD event in S. cerevisiae 7879, two Tor paralogs have not been retained; only a single Tor homolog was identified. Currently, the Zygomycota is the only group studied without an identified species containing two Tor homologs; however, there are not enough available genomes to make a definitive conclusion in this group. Other species with independent TOR duplications likely remain to be identified in all of the major fungal lineages, and as more genome sequences become available this will be addressed.During this study, we identified three additional species that possibly have two TOR paralogs: M. brevicollis, Thecamonas trahens, and Allomyces macrogynus, species that are included in the Origins of Multicellularity Project 86. While analysis is limited because of the state of the M. brevicollis (choanoflagellate) genome, it appears that an additional bonafide Tor protein is encoded with the conserved Tor protein architecture. Thecamonas trahens is a unicellular apusomonad that also contains two TOR paralogs. Interestingly, A. macrogynus is a fungus that may contain a second paralog; however, it appears that the FRB domain overlaps with the kinase domain. This may represent a case in which TOR was duplicated but is in the process of losing one of the copies. These cases are a springboard for future studies involving the duplication of TOR within and beyond the fungal kingdom.Loss of the Tor signaling pathway in microsporidiaWhile components of the Tor signaling cascade are conserved in eukaryotes from yeasts to humans, the microsporidia, a group of highly specialized obligate intracellular pathogens completely lack all of the pathway components investigated in this study. E. cuniculi has previously been noted to lack the Tor kinase 87, and we found that all pathway components including Tor were missing not only in E. cuniculi but also in its microsporidian relatives E. bieneusi and N. ceranae (Table 2). Microsporidian genomes are highly compacted and show a marked reduced gene content. The genome of the human pathogen E. cuniculi has 1997 genes distributed throughout 11 chromosomes in a 2.9 Mb genome 88, less than half the number of protein-coding genes found in Escherichia coli. For comparison, the genome of the human pathogen E. bieneusi genome is ~6 Mb with 3,804 genes 89 and the honeybee pathogen N. ceranae genome is ~7.9 Mb with 2,614 predicted genes 90. Genome reduction has been well studied in intracellular bacteria: during the specialization process from a free-living to intracellular lifestyle, massive gene loss can occur 9192939495. We hypothesize that as a consequence of their specialization to an obligate intracellular lifestyle, the need for nutrient sensing was relaxed and these obligate intracellular microsporidia acquired nutrients from within the host cytoplasm. Thus, they no longer required the Tor pathway, which is dedicated to sensing changes in the nutrient composite of the environmental milieu. However, E. cuniculi has retained some of the genes encoding signaling pathways involved in nutrient sensing in other species, including homologs of S. cerevisiae Ras1 and Ras2 (data not shown).Interestingly, P. carinii is an obligate pathogen with a reduced genome estimated to be ~8 Mb 96, which unlike microsporidia is not obligately intracellular. A�single Tor homolog was identified [Pneumocystis Genome Project:cap3_it1_grp346_contig490] using the S. cerevisiae Tor1 FRB domain in tBLASTx, supporting our hypothesis that the microsporidia have streamlined their genomes as they adopted an obligate intracellular life cycle. P. carinii likely requires Tor because it must survive in a metabolically active form outside of host cells, undergoing cell division in the extracellular milieu of the infected host lung.Many microsporidian genomes have undergone extreme genome reduction and are among the eukaryotes with the smallest genomes. In addition to fewer genes than other species (1997 in E. cuniculi compared to 6607 in S. cerevisiae), E. cuniculi has shorter genes, small intergenic distances, and very few introns 8897. This species (and to an even greater extent, E. bieneusi) lacks several genes that are necessary for biosynthetic pathways and the tricarboxylic acid cycle in free-living organisms 888998. Remarkably, E. cuniculi must acquire ATP from its host through a series of ATP transporters anciently acquired from Rickettsia- or Chlamydia-like bacteria 99, and this is an example of how E. cuniculi, and possibly other microsporidia, can hijack mechanisms of other intracellular bacteria, fungi, or the host to survive in and adapt to their highly specialized intracellular lifestyle.ConclusionsThe Tor pathway is highly conserved with some exceptions among fungi, including several pathogens. Similarly, the molecular structural organization of the Tor kinases has been remarkably conserved as well as the presumed ability to bind the FKBP12-rapamycin complex. This feature, combined with the essential nature of the rapamycin-sensitive TORC1 pathway for cell growth, should enable the development of rapamycin-based strategies for antifungal therapies. Duplications of the Tor protein occurred in most fungal groups examined, resulting from either independent segmental gene duplication events or a WGD event. The maintenance of two Tor homologs can be explained through the DDC model of gene duplication, in which the paralogs subfunctionalize and together support all of the functions of the pre-duplicated protein. In addition, species outside of the fungal kingdom with two or more TOR homologs include the metazoan B. mori, the apusomonad protozoan T. trahens, the trypanosome protozoans L. major and T. brucei, and possibly the choanoflagellate M. brevicollis. This suggests that the Tor gene has been independently duplicated multiple times since the last common ancestor of the Opisthokonta and Excavata lineages. The Tor pathway, as well as the Tor protein itself, is highly conserved in eukaryotes, so the observation that three microsporidian species are missing the entire pathway is striking. It would appear that the specialized obligate intracellular life cycle of microsporidia allows for the acquisition of nutrients from the host cell, obviating a requirement for this central nutrient-sensing pathway that is essential in all known cases of other eukaryotes for axenic growth.MethodsIdentification of pathway component homologsTor homologs were identified using the highly conserved 100 amino acid FRB domain of S. cerevisiae Tor1 in BLASTp reciprocal best-hit searches between the specific species database and the Saccharomyces Genome Database (SGD). All queries for other Tor pathway components were retrieved from SGD and homologs were identified by BLASTp reciprocal best-hit searches, with the exception of Tsc1 and Tsc2. Tsc1 and Tsc2 protein query sequences were retrieved from the S. pombe GeneDB, and homologs were identified using BLASTp searches between the S. pombe genome database and the species database. Species identification numbers are listed in Supplemental Table 1. Protein architecture of each homolog was elucidated with Simple Modular Architecture Research Tool (SMART) analysis 7071.Accession numbers are provided for putative Tor pathway components (see Additional file 3, supplemental Table 1 for the accession numbers of putative Tor pathway components) from the following public genomic databases that were used to carry out BLAST: S. cerevisiae, SGD, http://www.yeastgenome.org; S. pombe, GeneDB, http://www.genedb.org/genedb/pombe/index.jsp; P. ostreatus, JGI, http://genome.jgi-psf.org/PleosPC15_1/PleosPC15_1.home.html; M. circinelloides, JGI and the Mucor Genome Project, http://genome.jgi-psf.org/Mucci1/Mucci1.home.html; R. oryzae, Broad Institute, http://www.broadinstitute.org/annotation/genome/rhizopus_oryzae/MultiHome.html; P. blakesleeanus, JGI, http://genome.jgi-psf.org/Phybl1/Phybl1.home.html; B. dendrobatidis, Broad Institute, http://www.broadinstitute.org/annotation/genome/batrachochytrium_dendrobatidis/MultiHome.html; S. punctatus, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; M. brevicollis, JGI, http://genome.jgi-psf.org/Monbr1/Monbr1.home.html; S. rosetta, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; C. owczarzaki, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; E. cuniculi, E. bieneusi, and N. ceranae, NCBI, http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi?organism=fungi.Phylogenetic analysis of TorThe ProtTest program 100 was used to select an appropriate model to construct the phylogenetic relationship of the Tor proteins of the studied species. For this study, the best model for phylogenetic construction of the Tor protein using maximum likelihood (ML) was JTT+I+G+F 101. The ML tree was generated using PhyML with the JTT+I+G+F mode with 500 bootstrap replicates 102103. The Tor amino acid sequences from all species were aligned with CLUSTAL W 104.Synteny analysis of TOR paralogsTor homologs in fungal species were identified with BLAST 105 using TOR1 and TOR2 of S. cerevisiae as query sequences. The TOR sequence and flanking regions (up to 100 kb) were extracted from corresponding contigs or chromosomal sequences. To analyze the synteny of TOR and flanking regions, we constructed a database of one TOR and flanking region sequence and used the other TOR homolog and flanking region sequence to perform tBLASTx searches in the database (BLOSUM62 matrix; E-value = 1e-3; gap cost: existence 11, extension 1; and low complexity regions filter). The tBLASTx results were parsed and formatted using an in-house Perl script (available upon request). The parsed and formatted tBLASTx results were then imported into Artemis software 106 for synteny analysis. We employed a cutoff value of 100 bp to filter short non-significant matches between query and database sequences.Authors� contributionsCAS carried out the homolog searches and phylogenetic analysis and drafted the manuscript. RJB performed homolog searches and participated in the design of the study. WL performed the synteny and phylogenetic analysis and helped draft the manuscript. JH and MEC conceived of the study, participated in its design and helped to draft the manuscript. All authors read and approved the final manuscript.
BackgroundThe nutrient-sensing target of rapamycin (Tor) pathway is highly conserved among eukaryotes and governs several essential cellular processes including protein synthesis, ribosome biogenesis, autophagy, and cytoskeletal organization 123. In the fungal kingdom, the Tor pathway has been best studied in the budding yeast Saccharomyces cerevisiae 234, the fission yeast Schizosaccharomyces pombe 56, and the human pathogen Candida albicans 5678. However, little is known about Tor in basal fungal lineages, including the Zygomycota and Chytridiomycota.In S. cerevisiae and S. pombe, two Tor paralogs form distinct complexes known as Tor Complex 1 (TORC1) and Tor Complex 2 (TORC2) 9101112, while in most other species, including humans, a single Tor protein can populate both complexes 11121314. Interestingly, S. cerevisiae Tor2 can complement the loss of Tor1, but Tor1 cannot complement the loss of Tor2 1516. Two Tor paralogs have also been identified in a metazoan, the silkworm Bombyx mori 17 and three Tor paralogs were identified in the trypanosomatid parasites Leishmania major 18 and the related species Trypanosoma brucei 19, the first reported Tor triumvirates.The ScTORC1 is sensitive to rapamycin and controls protein synthesis, mRNA synthesis and degradation, ribosome biogenesis, and autophagy. TORC2 is insensitive to rapamycin and is involved in the control of actin polarization and cell wall integrity 916. TORC1 consists of Tor1 or Tor2, Kog1 20, Tco89, and Lst8 21, while TORC2 contains Tor2, Lst8, Avo1, Avo2, and Avo3 22 (Figure 1A). Recently, the EGO-GTPase complex and its orthologs were shown to convey amino acid signals for TORC1 activation in yeast, insects, and mammals 23242526. In S. cerevisiae, immediate effectors of TORC1 include the PP2A-like phosphatase Sit4 27 and the AGC kinase Sch9 28. In S. pombe, Tor participates in other cellular functions including nutrient signaling 29, cell growth and differentiation 30, mitotic commitment 31, and sexual development 11 (Figure 1B).The structure of the Tor proteins is remarkably conserved (Figure 2) and features several domains for protein-protein interactions including N-terminal HEAT (Huntingtin, Elongation factor 3, PP2A A subunit, Tor) repeats 32, a FAT (FRAP, ATM, and TRRAP) domain 3334, and an FRB (FK506-Rapamycin Binding) 35 domain. The kinase and the FATC (FAT domain at the C-terminus) 3236 domains are present in the C-terminal region.The Tor inhibitor rapamycin blocks cell proliferation and is currently used as an immunosuppressive drug for organ and tissue transplant recipients and a chemotherapy agent against a variety of solid cancers 37383940. Rapamycin binds to the prolyl isomerase FKBP12 to form a protein-drug complex that then interacts with the Tor FRB domain in a ternary complex 4142. S. cerevisiae cells treated with rapamycin display phenotypes associated with nutrient depletion including G1 cell cycle arrest, cellular volume expansion, protein synthesis inhibition, glycogen accumulation, and autophagy 3543.Genetic analysis in S. cerevisiae characterizing rapamycin-resistant mutants led to the identification of FKBP12 as the intracellular receptor for rapamycin and defined Tor1 and Tor2 as the targets of the FKBP12-rapamycin complex 4. Subsequent studies resulted in the identification and characterization of the TOR1 and TOR2 gene products 1544 as well as the elucidation of the Tor signaling cascade 8454647. These pioneering studies aided in the identification of the mammalian Tor ortholog and characterization of this highly conserved signaling cascade 84849. Remarkably, expression of the human FKBP12 ortholog in yeast fpr1 (the gene that encodes FKBP12) deletion mutants complements to restore rapamycin sensitivity, and hybrid Tor proteins consisting of the yeast N-terminal domain fused to the mammalian Tor kinase domain are also functional in yeast 50. Thus, the Tor pathway has been functionally and structurally conserved from yeasts to humans over the billion years of evolution separating the two species from their last common ancestor.We now know that the fungal and metazoan kingdoms are both within the opisthokont lineage of eukaryotes and are thus more closely related to each other than the vast majority of eukaryotic organisms 5152. Moreover, these two highly successful kingdoms shared a last common ancestor as recently as one billion years ago, much more recently than most eukaryotes. Recent initiatives, particularly the UNICORN project, have facilitated the sequencing of several opisthokonts related to the last common ancestor of the metazoans and fungi, providing an interesting window into the evolution of both fungi and animals 53545556. Thus, studies on the evolutionary trajectory of the fungal kingdom in general, and of the Tor signaling cascade in particular, promise to reveal insights about how orthologous pathways function in the more complex milieu of multicellular metazoan organisms.In this study, we have capitalized upon the wealth of available genomic information by annotating the Tor pathway in several fungal organisms in which this pathway has not been described. Our study included selected species in the major groups of the fungal kingdom with genome sequences available: the basidiomycete Pleurotus ostreatus; the Mucorales zygomycetes Mucor circinelloides, Rhizopus oryzae, and Phycomyces blakesleeanus; the chytridiomycetes Spizellomyces punctatus and Batrachochytrium dendrobatidis; the microsporidian species Encephalitozoon cuniculi, Enterocytozoon bieneusi, and Nosema ceranae; and the related non-fungal opisthokonts Capsaspora owczarzaki, Salpingoeca rosetta, and Monosiga brevicollis. Whereas the Tor pathway is conserved throughout the eukaryotes, strikingly, microsporidian species with their highly reduced and compacted genomes lack the entire Tor pathway. We have also investigated gene and genome duplication events that resulted in two Tor homologs in S. cerevisiae, S. pombe, P. ostreatus, and B. dendrobatidis, and the loss of a second Tor homolog following a whole genome duplication event in R. oryzae.Results and DiscussionConservation of the Tor signaling pathway molecular componentsThe Tor pathway is well conserved among nearly all eukaryotic species examined to date. Tor is essential for life and is the target of the potent drug rapamycin in fungi, humans, and other eukaryotic organisms 2121941. Tor originated early during the eukaryotic radiation, as it is present in the basal eukaryotes Giardia lamblia 57, L. major 18 and T. brucei 19, and also in plants 58. Here we focused on the Tor pathway in the fungal kingdom and other representative unicellular opisthokont species outside of the fungi. Several genes encoding Tor complex components, upstream regulators, and downstream effectors were identified in all major groups throughout the fungal kingdom (Figure 1, Table 1). Because we used BLASTp reciprocal best hits (RBH) to identify orthologs, in some cases the absence of an ortholog in our results may represent only a failure to detect it with this method. Further, functional homologs that are not sufficiently similar enough in sequence to be identified may be present. Overall, a high degree of pathway conservation is observed in the Tor signaling cascade throughout the fungal kingdom, with the exception of microsporidia in which all Tor pathway components are absent. In addition, several pathway components are conserved in the related unicellular opisthokonts M. brevicollis, S. rosetta, and C. owczarzaki (Table 2).In S. cerevisiae, Tor1 and Tor2 interact with several proteins to form TORC1 and TORC2. TORC1 contains Tor1 or Tor2, Kog1, Tco89, and Lst8. Kog1 functions as a substrate-recruiting subunit in mammalian TORC1 (mTORC1) 13596061. A gene encoding a putative Kog1 homolog was identified in all species included in this study, with the exception of the microsporidia and S. rosetta (Tables 1 and 2). Mutation of TCO89 results in hypersensitivity to rapamycin and affects cellular integrity in S. cerevisiae 21. Tco89 is only found in S. cerevisiae and could have resulted from a specialization of the pathway exclusive to Saccharomyces species (Table 1). However, while a BLASTp search did not identify Tco89 homologs in other species, S. pombe has been reported to contain a functional homolog [GenBank:NP_588232] 12, and this suggests that functional homologs may exist in other fungal species as well. However, no homologs were identified when using S.�pombe Tco89 as a query sequence. Lst8 binds to the Tor kinase domain in S. cerevisiae to stimulate catalytic activity 9 and a putative Lst8 homolog is conserved in most species analyzed except microsporidia and S.�rosetta (Tables 1 and 2).Additional BLASTp searches identified a single Tor homolog in the following species: Lachancea thermotolerans CBS6340 [GenBank:XP_002552336], Pichia pastoris GS115 [GenBank:XP_002491471], Pichia stipitis CBS6054 [GenBank:XP_001385651], Debaryomyces hansenii CBS767 [GenBank:XP_002770885], Yarrowia lipolytica CLIB122 [GenBank:XP_505106], Podospora anserina strain S mat+ [GenBank:XP_001903968], Chaetomium globosum CBS148.51 [GenBank:XP_001226647], Magnaporthe oryzae 70-15 [GenBank:XP_001414541], Gibberella zeae PH-1 [GenBank:XP_388309], Aspergillus fumigatus Af293 [GenBank:XP_755360], Aspergillus flavus NRRL3357 [GenBank:XP_002377897], Neosartorya fischeri NRRL181 [GenBank:XP_001260509], Aspergillus terreus NIH2624 [GenBank:XP_001213640], Aspergillus nidulans FGSCA4 [GenBank:XP_663586], Aspergillus clavatus NRRL1 [GenBank:XP_001275326], Aspergillus oryzae RIB40 [GenBank: XP_001826216], and Aspergillus niger CBS513.88 [GenBank:XP_001397781]. These ascomycetes were not included in further studies.In yeast and mammals, TORC2 controls spatial aspects of growth. TORC2 includes Tor2, Avo1, Avo2, Avo3, and Bit61 922. Avo1 plays an essential role in actin cytoskeleton polarization 22 and is conserved throughout the organisms that were the focus of this study (Table 1) except in S. rosetta and C. owczarzaki (Table 2). However, due to high divergence of the AVO1 sequence amongst the known homologs, it is possible that the S. rosetta and C. owczarzaki homologs cannot be identified using the BLASTp algorithm. Avo2 is a nonessential substrate adaptor for TORC2 22 and potential homologs were identified in most species studied, with the exceptions of S. pombe, P. ostreatus, the three microsporidian species (Table 1), and M. brevicollis (Table 2). In S. cerevisiae, Avo3 (also know as Tsc11) controls cytoskeletal dynamics 922, and homologs are conserved throughout the species examined (Tables 1 and 2). Bit61, a nonessential protein that associates with TORC2 21, was only identified in S. cerevisiae (Tables 1 and 2).Upstream regulators of Tor include Tsc1 and Tsc2 (Tuberous Sclerosis 1 and 2) and the GTPase Rheb (Ras homolog enhanced in brain). In S. pombe and other eukaryotes, Tsc1 and Tsc2 form a GTPase-activating complex that negatively regulates the action of Rheb to activate TORC1 266263. Tsc1 and Tsc2 putative homologs were identified in most species in the study, with the exception of S. cerevisiae (Table 1); however, Tsc1 homologs were not identified in B. dendrobatidis, S. rosetta, or C. owczarzaki (Tables 1 and 2). In mammals and insects, four Rag GTPases (RagA-D) bind raptor (Kog1) to mediate TORC1 signaling in response to amino acids 2426. RagA and RagB are orthologs of S.�cerevisiae Gtr1 whereas RagC and RagD are orthologs of S. cerevisiae Gtr2 23. Gtr1 and Gtr2 form a complex along with Ego1 and Ego3 known as EGOC/GSE 25, which is regulated by the GTP exchange factor Vam6 23. Interestingly we found presumptive Gtr1 and Gtr2 orthologs in species in this study with the exception of microsporidia (Table 1), and Gtr1 was not identified in M. brevicollis (Table 2). However, Ego1 and Ego3, which anchor Gtr1 and Gtr2 to endosomal and vacuolar membranes, are unique to S. cerevisiae and were not identified in the other species (Table 1). This suggests that the specific EGO complex architecture might be restricted to Saccharomyces, though it is possible that functional homologs may be present in other species.In fungi, several downstream effectors are targets of Tor signaling. The PP2A phosphatase Sit4 and its regulatory subunit Tap42 regulate the expression of several TORC1-controlled genes and Gcn2-regulated translation 36465. A Sit4 homolog was identified in R. oryzae (Table 1), though a homolog of the regulatory subunit Tap42 was not (Table 1). In S. rosetta, a Sit4 homolog was not identified, though Tap42 was (Table 2). Both of these situations could indicate rewiring of the pathway, or alternatively these findings could be a result of insufficient similarity to detect with a RBH search method. Sch9, a member of the AGC kinase family and the functional homolog of the p70 S6 kinase, is a direct substrate of S. cerevisiae TORC1 involved in ribosome biogenesis 2866. Sch9 was not identified in RBH BLASTp searches with S. cerevisiae Sch9 in M. circinelloides, P. blakesleeanus, the microsporidia (Table 1), or S. rosetta (Table 2), but was identified in all other species. Putative homologs of Ypk2 kinase, a regulator of ceramide synthesis controlled by TORC2 signaling 67, were only identified in S. cerevisiae, S. pombe, (Table 1), M. brevicollis, S. rosetta, and C. owczarzaki (Table 2). Notably, the failure to detect many homologs in M. brevicollis, S. rosetta, and C. owczarzaki could be due to their evolutionary distance from the other organisms in the study and their gene divergence.Evolutionary conservation of Tor kinase protein structureThe Tor kinases are phosphatidylinositol kinase-related kinases (PIKKs) 68 and aside from their known protein kinase function also serve as evolutionary constrained scaffolds with several protein-protein interaction domains that mediate multi-protein complex formation 69. Tor protein architecture was annotated using SMART 7071 and we found that it has been maintained throughout the species of this study (Figure 2). N-terminal HEAT repeats are present in varying numbers and serve as scaffolding structures for protein-protein interactions 327273. Similarly, the FAT/toxic domain and the accompanying C-terminal FATC domain also participate in protein scaffolding and are present and conserved in all species subject to analysis. Over-expression of the FAT domain has a dominant negative effect on cell growth in yeast and this effect can be suppressed by over-expression of phospholipase C 33. The kinase domain has similarities to both lipid and protein kinases, but it is a bona fide protein kinase. The FRB (FKBP12-rapamycin binding) domain is a highly conserved 100 amino acid region of Tor with several residues that are known to be required for binding the FKBP12-rapamycin drug complex 42.In addition, the FRB domain contains several residues necessary for both phosphatidic acid binding and rapamycin interaction 7475. In mammals, phosphatidic acid binding to the FRB region may promote the assembly of mTOR complexes. It has been proposed that the potent effect of the Tor inhibitor rapamycin may be due to direct competition for overlapping phosphatidic acid binding sites within the FRB domain 76. Mutation of the conserved amino acid residues S1975, W2041, or F2048 in the FRB domain confers rapamycin resistance in S. cerevisiae 44277. Strikingly, the corresponding amino acid residues are conserved in all species examined (Figure 3). In mTOR, phosphatidic acid binding is disrupted by mutations of L2031, F2309, and Y2105 75, corresponding to S. cerevisiae Tor2 L1971, F1979, and Y2045, respectively, all of which are conserved in the studied fungal species (Figure 3).Duplication of Tor in the fungal kingdomApproximately 100 million years ago, the S. cerevisiae ancestor underwent a whole genome duplication (WGD) event, and species that descend from this evolutionary event retained duplicated subsets of genes. S. cerevisiae retained approximately 8% of duplicated genes 7879, while other fungi in this lineage have maintained varying numbers of gene duplicates, such as Candida glabrata in which a smaller number (~2%) of these pairs are maintained 80. Interestingly, several of these species, including S. cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, S. bayanus, S. castellii, and C. glabrata have retained two TOR paralogs, whereas species outside of the WGD clade, including Kluyveromyces lactis and Ashbya gossypii, have only a single TOR gene.The fates of duplicated gene paralogs can be explained through the duplication, degeneration, and complementation (DDC) model of gene duplication 81. In species with a single Tor, this protein populates both TORC1 and TORC2, each of which has distinct functions. Following duplication, each paralog likely sub-functionalized to carry out some, but not all, of its previous functions so that between the two paralogs, each process is performed. In S. cerevisiae, for example, Tor1 exclusively functions within TORC1, while Tor2 preferentially populates TORC2 but can also function in TORC1. S. pombe has two Tor paralogs as a result of an independent segmental gene duplication event, and each paralog has distinct roles not necessarily equivalent to those of S. cerevisiae Tor1 and Tor2. SpTor1 is not essential, whereas SpTor2 is essential for growth 112982.We hypothesize that similar models could apply in species encoding two Tor homologs resulting from independent gene duplication events such as P. ostreatus and B. dendrobatidis. Based on their level of identity with S.�cerevisiae Tor homologs, the B. dendrobatidis genes BDEG_08293 and BDEG_05727 have been designated TOR1 and TOR2, respectively. However, these gene names are not necessarily based on functional similarity with ScTor1 and ScTor2 but rather indicate only that there are two TOR homologs in B. dendrobatidis. A�similar naming challenge is evident in S. pombe, where the functions of SpTor1 and SpTor2 are not equivalent with those of ScTor1 and ScTor2.While several species, such as those in the Saccharomyces clade, have two Tor paralogs resulting from ancient WGD events, other species have acquired a second paralog through independent segmental gene duplication events, including B. dendrobatidis and several fission yeast species closely related to S. pombe (Figure 4). Segmental gene duplications have played a major role in the evolution of species and can result in the duplication of single genes or large blocks of genes 83. In S. cerevisiae, the duplication blocks with TOR include three paralogous gene pairs that have been retained from the ancestral WGD event: PTK1/PTK2, TOR1/TOR2, and MNN4/YJR061W 78 (Figure 5A). Further, C. glabrata, an ascomycete closely related to S. cerevisiae that diverged following the WGD, has also maintained a second TOR paralog and synteny is apparent in the region flanking the TOR1 and TOR2 genes, though one must extend the analysis to >40 kb from the TOR genes to detect it (See additional file 1: Supplemental figure 1). However, because C. glabrata and S. cerevisiae have retained different subsets of genes from the ancestral WGD, the duplicated genes surrounding TOR in these species are not homologs of one another. Further, C. glabrata has maintained fewer of the synteny blocks found in S. cerevisiae, and the block containing the TOR genes (Block 42) is not conserved in C. glabrata 80.In contrast, genomic regions surrounding the Tor paralogs in S. pombe (Figure 5B) and B. dendrobatidis (Figure 5C) are not syntenically conserved. That is, the duplicated genes are not flanked by other duplicated gene pairs, and the two TOR paralogs likely resulted from independent segmental gene duplication events. Further, there are no indications of WGDs in these species. In the Schizosaccharomycotina, the TOR gene duplication occurred prior to speciation as evidenced by the fact that S. pombe, S. octosporus, S. japonicus, and S. cryophilus have each retained a second Tor paralog; the Tor orthologs across these four species are more closely related to each other than to those from other species (Figure 4). No syntenic conservation between the genomic regions containing TOR paralogs was detected in any species of the Schizosaccharomyces group, supporting the occurrence of an independent segmental gene duplication in their common ancestor (see additional file 2: supplemental Figure 2).The Taphrinomycotina is a monophyletic taxon of the Ascomycota containing the Schizosaccharomycetes, Taphrinomycetes, Neolectomycetes, and Pneumocystidomycetes. Genomes are only available for species within the Schizosaccharomycetes (S. pombe, S. octosporus, S. japonicus, and S. cryophilus) and the Taphrinomycetes (Pneumocystis carinii). While the studied Schizosaccharomyces spp. contain two Tor homologs, a single homolog was identified in P. carinii with tBLASTx using the highly conserved S. cerevisiae FRB domain of Tor1 based on sequence data produced by the Pneumocystis Genome Project (funded by the NIH NIAID) that was obtained from http://pgp.cchmc.org at the time of publication. Based on the phylogenetic placement of these two groups 84 and the available genomic information, we hypothesize that the segmental TOR duplication is unique to the Schizosaccharomyces spp. and occurred following their divergence from the common ancestor of the Taphrinomycota, as P. carinii, the other species within this taxon with available genome data, appears to contain a single Tor homolog.Interestingly, the zygomycete R. oryzae underwent a whole genome duplication event and despite retaining 12% of the resulting duplicated genes 85 compared to 8% retained genes in a separate WGD event in S. cerevisiae 7879, two Tor paralogs have not been retained; only a single Tor homolog was identified. Currently, the Zygomycota is the only group studied without an identified species containing two Tor homologs; however, there are not enough available genomes to make a definitive conclusion in this group. Other species with independent TOR duplications likely remain to be identified in all of the major fungal lineages, and as more genome sequences become available this will be addressed.During this study, we identified three additional species that possibly have two TOR paralogs: M. brevicollis, Thecamonas trahens, and Allomyces macrogynus, species that are included in the Origins of Multicellularity Project 86. While analysis is limited because of the state of the M. brevicollis (choanoflagellate) genome, it appears that an additional bonafide Tor protein is encoded with the conserved Tor protein architecture. Thecamonas trahens is a unicellular apusomonad that also contains two TOR paralogs. Interestingly, A. macrogynus is a fungus that may contain a second paralog; however, it appears that the FRB domain overlaps with the kinase domain. This may represent a case in which TOR was duplicated but is in the process of losing one of the copies. These cases are a springboard for future studies involving the duplication of TOR within and beyond the fungal kingdom.Loss of the Tor signaling pathway in microsporidiaWhile components of the Tor signaling cascade are conserved in eukaryotes from yeasts to humans, the microsporidia, a group of highly specialized obligate intracellular pathogens completely lack all of the pathway components investigated in this study. E. cuniculi has previously been noted to lack the Tor kinase 87, and we found that all pathway components including Tor were missing not only in E. cuniculi but also in its microsporidian relatives E. bieneusi and N. ceranae (Table 2). Microsporidian genomes are highly compacted and show a marked reduced gene content. The genome of the human pathogen E. cuniculi has 1997 genes distributed throughout 11 chromosomes in a 2.9 Mb genome 88, less than half the number of protein-coding genes found in Escherichia coli. For comparison, the genome of the human pathogen E. bieneusi genome is ~6 Mb with 3,804 genes 89 and the honeybee pathogen N. ceranae genome is ~7.9 Mb with 2,614 predicted genes 90. Genome reduction has been well studied in intracellular bacteria: during the specialization process from a free-living to intracellular lifestyle, massive gene loss can occur 9192939495. We hypothesize that as a consequence of their specialization to an obligate intracellular lifestyle, the need for nutrient sensing was relaxed and these obligate intracellular microsporidia acquired nutrients from within the host cytoplasm. Thus, they no longer required the Tor pathway, which is dedicated to sensing changes in the nutrient composite of the environmental milieu. However, E. cuniculi has retained some of the genes encoding signaling pathways involved in nutrient sensing in other species, including homologs of S. cerevisiae Ras1 and Ras2 (data not shown).Interestingly, P. carinii is an obligate pathogen with a reduced genome estimated to be ~8 Mb 96, which unlike microsporidia is not obligately intracellular. A�single Tor homolog was identified [Pneumocystis Genome Project:cap3_it1_grp346_contig490] using the S. cerevisiae Tor1 FRB domain in tBLASTx, supporting our hypothesis that the microsporidia have streamlined their genomes as they adopted an obligate intracellular life cycle. P. carinii likely requires Tor because it must survive in a metabolically active form outside of host cells, undergoing cell division in the extracellular milieu of the infected host lung.Many microsporidian genomes have undergone extreme genome reduction and are among the eukaryotes with the smallest genomes. In addition to fewer genes than other species (1997 in E. cuniculi compared to 6607 in S. cerevisiae), E. cuniculi has shorter genes, small intergenic distances, and very few introns 8897. This species (and to an even greater extent, E. bieneusi) lacks several genes that are necessary for biosynthetic pathways and the tricarboxylic acid cycle in free-living organisms 888998. Remarkably, E. cuniculi must acquire ATP from its host through a series of ATP transporters anciently acquired from Rickettsia- or Chlamydia-like bacteria 99, and this is an example of how E. cuniculi, and possibly other microsporidia, can hijack mechanisms of other intracellular bacteria, fungi, or the host to survive in and adapt to their highly specialized intracellular lifestyle.ConclusionsThe Tor pathway is highly conserved with some exceptions among fungi, including several pathogens. Similarly, the molecular structural organization of the Tor kinases has been remarkably conserved as well as the presumed ability to bind the FKBP12-rapamycin complex. This feature, combined with the essential nature of the rapamycin-sensitive TORC1 pathway for cell growth, should enable the development of rapamycin-based strategies for antifungal therapies. Duplications of the Tor protein occurred in most fungal groups examined, resulting from either independent segmental gene duplication events or a WGD event. The maintenance of two Tor homologs can be explained through the DDC model of gene duplication, in which the paralogs subfunctionalize and together support all of the functions of the pre-duplicated protein. In addition, species outside of the fungal kingdom with two or more TOR homologs include the metazoan B. mori, the apusomonad protozoan T. trahens, the trypanosome protozoans L. major and T. brucei, and possibly the choanoflagellate M. brevicollis. This suggests that the Tor gene has been independently duplicated multiple times since the last common ancestor of the Opisthokonta and Excavata lineages. The Tor pathway, as well as the Tor protein itself, is highly conserved in eukaryotes, so the observation that three microsporidian species are missing the entire pathway is striking. It would appear that the specialized obligate intracellular life cycle of microsporidia allows for the acquisition of nutrients from the host cell, obviating a requirement for this central nutrient-sensing pathway that is essential in all known cases of other eukaryotes for axenic growth.MethodsIdentification of pathway component homologsTor homologs were identified using the highly conserved 100 amino acid FRB domain of S. cerevisiae Tor1 in BLASTp reciprocal best-hit searches between the specific species database and the Saccharomyces Genome Database (SGD). All queries for other Tor pathway components were retrieved from SGD and homologs were identified by BLASTp reciprocal best-hit searches, with the exception of Tsc1 and Tsc2. Tsc1 and Tsc2 protein query sequences were retrieved from the S. pombe GeneDB, and homologs were identified using BLASTp searches between the S. pombe genome database and the species database. Species identification numbers are listed in Supplemental Table 1. Protein architecture of each homolog was elucidated with Simple Modular Architecture Research Tool (SMART) analysis 7071.Accession numbers are provided for putative Tor pathway components (see Additional file 3, supplemental Table 1 for the accession numbers of putative Tor pathway components) from the following public genomic databases that were used to carry out BLAST: S. cerevisiae, SGD, http://www.yeastgenome.org; S. pombe, GeneDB, http://www.genedb.org/genedb/pombe/index.jsp; P. ostreatus, JGI, http://genome.jgi-psf.org/PleosPC15_1/PleosPC15_1.home.html; M. circinelloides, JGI and the Mucor Genome Project, http://genome.jgi-psf.org/Mucci1/Mucci1.home.html; R. oryzae, Broad Institute, http://www.broadinstitute.org/annotation/genome/rhizopus_oryzae/MultiHome.html; P. blakesleeanus, JGI, http://genome.jgi-psf.org/Phybl1/Phybl1.home.html; B. dendrobatidis, Broad Institute, http://www.broadinstitute.org/annotation/genome/batrachochytrium_dendrobatidis/MultiHome.html; S. punctatus, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; M. brevicollis, JGI, http://genome.jgi-psf.org/Monbr1/Monbr1.home.html; S. rosetta, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; C. owczarzaki, Broad Institute and the UNICORN initiative, http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html; E. cuniculi, E. bieneusi, and N. ceranae, NCBI, http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi?organism=fungi.Phylogenetic analysis of TorThe ProtTest program 100 was used to select an appropriate model to construct the phylogenetic relationship of the Tor proteins of the studied species. For this study, the best model for phylogenetic construction of the Tor protein using maximum likelihood (ML) was JTT+I+G+F 101. The ML tree was generated using PhyML with the JTT+I+G+F mode with 500 bootstrap replicates 102103. The Tor amino acid sequences from all species were aligned with CLUSTAL W 104.Synteny analysis of TOR paralogsTor homologs in fungal species were identified with BLAST 105 using TOR1 and TOR2 of S. cerevisiae as query sequences. The TOR sequence and flanking regions (up to 100 kb) were extracted from corresponding contigs or chromosomal sequences. To analyze the synteny of TOR and flanking regions, we constructed a database of one TOR and flanking region sequence and used the other TOR homolog and flanking region sequence to perform tBLASTx searches in the database (BLOSUM62 matrix; E-value = 1e-3; gap cost: existence 11, extension 1; and low complexity regions filter). The tBLASTx results were parsed and formatted using an in-house Perl script (available upon request). The parsed and formatted tBLASTx results were then imported into Artemis software 106 for synteny analysis. We employed a cutoff value of 100 bp to filter short non-significant matches between query and database sequences.Authors� contributionsCAS carried out the homolog searches and phylogenetic analysis and drafted the manuscript. RJB performed homolog searches and participated in the design of the study. WL performed the synteny and phylogenetic analysis and helped draft the manuscript. JH and MEC conceived of the study, participated in its design and helped to draft the manuscript. All authors read and approved the final manuscript.
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