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Elasticity of population growth with respect to the  
intensity of biotic or abiotic driving factors

Charlotte T. Lee1
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Abstract.   Demographic analysis can elucidate how driving factors, such as climate or spe-
cies interactions, affect populations. One important question is how growth would respond to 
future changes in the mean intensity of a driving factor or in its variability, such as might be 
expected in a fluctuating and shifting climate. Here I develop an approach to computing new 
stochastic elasticities to address this question. The linchpin of this novel approach is the multi-
dimensional demographic difference that expresses how a population responds to change in the 
driving factor between two discrete levels of intensity. I use this difference to design a perturba-
tion matrix that links data from common empirical sampling schemes with rigorous theory for 
stochastic elasticities. Although the starting point is a difference, the products of this synthesis 
are true derivatives: they are elasticity with respect to the mean intensity of a driving factor, and 
elasticity with respect to variability in a driving factor. Applying the methods to published 
data, I demonstrate how these new elasticities can shed light on growth rate response within 
and at the boundary of the previously observed range of the driving factor, thus helpfully indi-
cating nonlinearity in the observed and in the potential future response. The stochastic ap-
proach simplifies in a fixed environment, yielding a compact formula for deterministic elasticity 
to a driving factor.
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Introduction

Demographic analysis is a powerful tool for eluci-
dating the factors that influence age-, stage-, or size-
structured populations. Examples range from life-history 
evolution (e.g., Coulson et  al. 2010) to species interac-
tions (e.g., Kalisz et al. 2014) and conservation and man-
agement (e.g., Morris and Doak 2002). Much of the 
power of demographic analysis lies in its ability to 
decompose population responses into distinct contribu-
tions from individual life-history transitions. Sensitivity 
and elasticity are long-established, widely used tools for 
pinpointing influential individual demographic rates in 
this way (e.g., Crouse et  al. 1987). Decomposition 
approaches can leave some important questions unan-
swered, however. Awareness of underlying driving factors 
(by which I mean any factor that influences the value of 
at least one demographic transition rate) is rising in 
ecology (e.g., Crone et al. 2013, Ehrlén et al. 2016). Such 
drivers often affect multiple rates simultaneously, with 
the magnitude of effect differing between rates. Examples 
of drivers having such multifaceted effects include fire 
(Menges and Quintana-Ascencio 2004, Emery and Gross 
2005), species interactions (Maron and Crone 2006, 
Evans et al. 2012), changes in temperature or moisture 
(Doak and Morris 2010, Benavides et  al. 2013), man-
agement activities such as livestock tending or vegetation 

thinning (Giroldo and Scariot 2015), road density 
(Boulanger and Stenhouse 2014), or distance from a 
forest edge (Flaspohler et  al. 2001). In such cases, the 
composite population response to the driving factor may 
play a prominent role in potentially urgent management 
questions as well as in basic questions in ecology and evo-
lution. For instance, how can the growth rate of a focal 
population be expected to respond to continued gradual 
increases in temperature, in abundance of a novel species, 
or in road construction?

Demography provides useful tools to quantify the 
effect of driving factors or interactions on population 
growth. Ehrlén et al. (2016) identify 136 plant studies con-
ducted in the past 20 years that investigate how changes 
in a driving factor affect the population growth rate pre-
dicted from a parameterized demographic model. Many 
of these studies take advantage of naturally occurring 
variation in the driving factor (and commonly involve a 
linear regression of population growth rate on the factor), 
whereas others manipulate the driver experimentally. 
Maron’s and Crone’s (2006) review of 30 studies that 
quantify the effects of animal consumption on future 
plant abundance also includes many that take such an 
experimental approach, comparing the asymptotic popu-
lation growth rate in plots where consumers are present 
to the rate in plots where consumers are absent.

Useful as it is to quantify changes in the population 
growth rate, more detailed analysis requires additional 
quantitative tools. One such tool is the life table response 
experiment (LTRE), which decomposes observed differ-
ences in population growth rate into contributions from 
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individual demographic rates (e.g., Caswell 2010, 
Davison et al. 2010). This retrospective analysis explains 
which rates are most important to an observed difference 
in growth rate, but does not address future and/or addi-
tional change. To attack that problem, researchers may 
attempt to describe the relationship between individual 
demographic rates and the driving factor. When com-
bined with sensitivities, which describe how population 
growth would respond to change in individual demo-
graphic rates, this approach can, in principle, describe 
how the population growth rate would respond to change 
in the driving factor. This reasoning is an expression of a 
total derivative using the chain rule, which, briefly, is 
dλ∕dF=Σi(�λ∕�vi)(�vi∕�F), where the population growth 
rate is λ, and where the demographic rates vi depend upon 
a shared driving factor, F.

Though reasonable in principle, application of chain-
rule-type approaches to specific systems can involve diffi-
culties. The core of the concept is to break the total 
derivative into two component derivatives. Rigorous 
standard methods are available for computing the indi-
vidual sensitivities �λ∕�vi, but determining the derivatives 
�vi∕�F  can be another matter. One can regress a demo-
graphic rate on the driving factor, and if the rate is a linear 
function of the driver, then the desired local derivative is 
merely the slope of the linear relationship. It can be rea-
sonable to assume that rates depend linearly on driving 
factors, at least within some range of interest (e.g., Baxter 
et al. 2006, Vitt et al. 2009, Adler et al. 2012). In general, 
however, there no reason to expect linearity, and because 
rates are positive and in many cases are also bounded 
above, a strong effect of a driver would imply eventual 
nonlinearity (e.g., Morris and Doak 2002:337). In some 
cases, nonlinearity can be dramatic (e.g., Gotelli and 
Ellison 2006). Nonlinearity can substantially complicate 
the empirical assessment of local derivatives. The reso-
lution with which the driving factor is sampled affects the 
accuracy with which the local slope of a nonlinear function 
can be estimated: for instance, barring an a priori hypothesis 
regarding functional form, at least three levels of the 
driving factor are necessary to detect any nonlinearity, and 
experimental manipulation in particular may contrast only 
two distinct levels of the driver. Furthermore, regression 
requires quantification of the driving factor. Such quanti-
fication may not always occur, and may be particularly 
challenging in cases where a species interaction has been 
experimentally manipulated, such as in consumer exclusion 
and control plots, for instance. Finally, regression must be 
performed for each rate that responds to the driver, so the 
method becomes more cumbersome the more multifaceted 
the effect of the driver. Although they do not always con-
stitute an obstacle, these potential issues can unfortunately 
limit the generality with which chain-rule-type approaches 
can rigorously be applied.

The potential issues with chain-rule-type approaches 
revolve around the extraction of derivatives from demo-
graphic data. These data are collected at different levels 
of the driving factor and are therefore fundamentally 

discontinuous. I propose that theoretical development 
would be helpful to shift some emphasis away from how 
to manipulate discontinuous data to infer an underlying 
continuous function and toward what useful and inter-
esting questions it might be possible to address by lever-
aging the discontinuous demographic data in hand. Here, 
I focus on the empirical difference in demography that 
occurs between just two given levels of a driving factor. 
This demographic difference is multidimensional if it 
involves multiple rates simultaneously. Barring further 
empirical work to sample the driving factor with greater 
resolution, this difference is the best available expression 
of how demography responds to a change in the intensity 
of the driver between these two levels. Therefore, given 
the limitation of the resolution of the discontinuous data, to 
ask what the proportional effect on population growth 
would be of a slight proportional increase in this multidi-
mensional response is equivalent to asking what the effect 
would be of a slight proportional increase in the intensity 
of the driver. It is this proportional local derivative that I 
develop here as the elasticity, EF, of population growth 
with respect to the intensity of the driving factor, or 
driver elasticity for short.

To obtain this derivative, I begin with theory for pro-
ducing a standard elasticity, by which I mean the elasticity 
of population growth with respect to a single demo-
graphic rate, all others being held constant. I first gener-
alize this theory to enable computation of the elasticity of 
population growth with respect to multiple, simultane-
ously changing demographic rates. I then propose a novel 
design to a key element of this theory to incorporate 
information about the multidimensional demographic 
effects of driving factors, such as would be available from 
empirical protocols commonly used to quantify how the 
driver affects growth rate. Thus, from two tools with two 
distinct purposes, one theoretical and one empirical, I 
synthesize a new, integrative method for quantifying the 
response of population growth to a small increase in the 
intensity of an abiotic or biotic driving factor. It is effi-
cient no matter how many rates the driver affects. Because 
it eliminates the intermediate step of determining rela-
tionships between individual demographic rates and the 
driving factor, it works even in situations where the driver 
has not been quantified or has been sampled at fewer than 
three levels. In such cases, it is not possible to determine 
nonlinearity in how demographic rates depend on the 
driver, but I show below that the resulting elasticity can 
nevertheless reveal nonlinearity in how growth rate 
depends on the driving factor within the range in which 
the driving factor has been observed, as well as at the 
boundary (and therefore immediately outside) of the 
observed range. Boundary information is critical to pre-
dictions regarding the possible effects of environmental 
change beyond what has already occurred.

Many ecologically important driving factors vary sub-
stantially through time. Prominent examples include 
climate and species interactions. Furthermore, fluctuation 
in additional factors can influence a focal population 
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along with the driving factor of interest, resulting in back-
ground variation in demographic rates and/or context 
dependency in the response to the driving factor (e.g., 
Maron et al. 2014). Therefore, it is desirable that measures 
of elasticity of population growth with respect to a driving 
factor also accommodate temporal variability. To my 
knowledge, this is not a feature explicitly addressed by 
other approaches to the demographic effects of driving 
factors (although computer simulation should usually be 
an option). The approach presented here is rigorously sto-
chastic, and highlights the effects of variation in the driver 
while also accounting for additional, background fluctu-
ation. It can separate the influence of change in the mean 
effect of a driving factor from the influence of change in 
the variability in the effect of a driving factor. In a con-
stant environment, the approach simplifies to a single, 
compact, easy-to-apply formula.

As a final note, the methods described here address sit-
uations where a driving factor affects the numerical 
values of demographic rates. These situations are distinct 
from ones where the driving factor affects the sequence of 
demographic transition rates, such as when hurricanes or 
fires alter the sequence of environments that plants expe-
rience (e.g., Quintana-Ascencio et al. 2003, Tuljapurkar 
et al. 2003). In such systems, the methods developed here 
would be appropriate for investigating changes not in 
hurricane or fire frequency, but in the intensity of the suc-
cessional or regrowth processes that drive subsequent 
vegetation change. Also distinct, and not addressed here, 
are situations where a driving factor such as disease or an 
interacting species participates in population structure 
(e.g., Ettl and Cottone 2004, Lee and Inouye 2010).

Methods

In an environment that does not vary, the basic 
equation for change in a structured population is 

where the vector n(t) contains the abundances of each 
demographic class (age, stage, size, etc.) at time t, and the 
constant projection matrix A contains the rates at which 
members of each class transition into every class during 
one time interval (e.g., Caswell 2001). The total abun-
dance of such a population eventually changes at con-
stant rate, λ. The proportional response in this asymptotic 
growth rate that results from a proportional change in 
one element aij of the matrix A is the elasticity, Eij, of the 
growth rate with respect to that matrix element, defined 
as Eij = (�λ∕λ)(aij∕�aij) (e.g., Caswell 2001).

When the environment changes from year to year, the 
projection matrix also varies: 

In a variable environment, a population does not achieve 
a constant rate of change, but instead approaches a long-run 
average growth rate, log λs = lim

t→∞
(1∕t) log [N(t)∕N(0)], 

where N(t) is the sum of the elements of n(t) (Tuljapurkar 
1990). This growth rate responds to changes in the elements 
of the projection matrix, but in a variable environment, a 
given demographic transition is described not by a single 
value, aij, but rather by a set of values, aij(t). There are dif-
ferent ways to perturb a set of values, and Tuljapurkar et al. 
(2003) examine the different ways in which it is meaningful 
to define elasticity of the stochastic growth rate, log λs, in 
light of this fact. They distinguish between the proportional 
response of the long-run growth rate to change in only the 
mean value of a matrix element, which they call ESμ, 
the response to change in only the variability around the 
mean, ESσ, and the response to change in the mean and 
variability simultaneously (called ES for historical reasons). 
Tuljapurkar et  al. (2003) provide a single, compact 
expression for determining these different elasticities (given 
here as Eq.  3) by substituting in the appropriate pertur-
bation matrix, as I will discuss in greater detail.

It is possible, and frequently desirable, to express pro-
jection matrix elements as functions of underlying vital 
rates such as survival, growth or retrogression, or fecundity 
(e.g., Morris and Doak 2002). Haridas and Tuljapurkar 
(2005) adapt the perturbation matrices presented in 
Tuljapurkar et  al. (2003) to compute elasticities with 
respect to the mean or variability of a single underlying 
vital rate, with all other rates held constant; Morris et al. 
(2008: appendix B) describe this approach in greater detail.

To develop a new elasticity, I first note that the key to 
the flexibility of the approach of Tuljapurkar et al. (2003) 
is a perturbation matrix C(t). This matrix prescribes 
changes to the elements of the projection matrix A(t), 
with different choices for this perturbation matrix leading 
to different elasticities. For example, Tuljapurkar et al. 
(2003) let Cij(t) = μij, where μij =aij(t), the mean of the i, 
jth matrix entry of the projection matrix, and let all other 
elements of the perturbation matrix C(t) be 0. This choice 
perturbs a single matrix element in isolation, in pro-
portion to the mean of that matrix element in every time 
step. This changes the mean of the distribution of the i, 
jth projection matrix element without changing its varia-
bility; substituting this matrix into Eq. 3 yields the sto-
chastic elasticity E

Sμ
ij  of the long-run growth rate with 

respect to the mean of the i, jth matrix element. To obtain 
the stochastic elasticity ESσ

ij
 of the long-run growth rate 

with respect to the higher moments (variability) of aij(t), 
Tuljapurkar et al. (2003) let Cij(t) = aij(t) − μij, with other 
elements of C(t) being 0. This choice adds a larger amount 
in years when the rate is farther above its mean, and sub-
tracts a larger amount in years when the rate is farther 
below its mean, changing the variability of the distri-
bution of the i, jth element without changing its mean.

The perturbation matrix plays the same key role in sto-
chastic elasticities to underlying vital rates such as sur-
vival (Haridas and Tuljapurkar 2005). For instance, 
following Haridas and Tuljapurkar (2005), Morris et al. 
(2008: appendix B) choose Cx(t)= v̄x(𝜕A(t))∕(𝜕vx), where 
the matrix derivative is the matrix of derivatives of indi-
vidual projection matrix elements with respect to vx. 

(1)n(t)=An(t−1),

(2)n(t)=A(t)n(t−1).
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These derivatives are determined by how matrix elements 
involve vx, which depends upon the structure of the pro-
jection matrix. The result of this matrix perturbation is 
E

Sμ
vx

, the stochastic elasticity of the long-run growth rate 
with respect to the mean of vital rate vx. Using instead 
Cx(t)= (vx(t)− v̄x)(𝜕A(t))∕(𝜕vx) yields ESσ

vx
, the stochastic 

elasticity of the long-run growth rate with respect to var-
iability around the mean in vital rate vx.

In order to move beyond elasticity with respect to indi-
vidual matrix elements or vital rates, I now note that the 
perturbation matrix Cx(t) can accommodate simulta-
neous, correlated perturbations of multiple matrix ele-
ments. In fact, it already does so in the case of elasticity 
with respect to vital rates, where multiple matrix elements 
change, and where correlations between matrix elements 
arise due to shared dependence of multiple matrix 
elements on individual vital rates as described by the 
projection matrix. Nothing about the methods of 
Tuljapurkar et  al. (2003) or Haridas and Tuljapurkar 
(2005), however, constrains the perturbation matrix to 
changes arising from single demographic rates, and 
indeed, the original derivation in Tuljapurkar (1990) is 
general. One can in principle specify whatever matrix per-
turbation one desires, and use it in Eq.  3, to apply the 
perturbation to any demography and to compute the 
elasticity that reports the resulting effect on the stochastic 
growth rate. The crucial point is to specify perturbations 
that are biologically meaningful. To obtain elasticity with 
respect to a driving factor, I develop a new perturbation 
matrix that encapsulates the multifaceted changes to the 
projection matrix that arise from change in an underlying 
driving factor or interaction. I approach the determi-
nation of this new perturbation matrix empirically, as the 
matrix response to perturbation of a driving factor will 
vary between different biological systems.

To assess demographic responses to driving factors, 
one must monitor demographic rates under at least two 
levels of driver intensity. Possible treatment pairs include, 
for example, herbivore exclusion treatment and untreated 
control, plots beneath a rainout shelter and controls, 
control plots and artificially warmed plots, and so on. 
Plots could also be arranged along an environmental gra-
dient. Such empirical protocols are already in widespread 
use to quantify the demographic effects of biotic or 
abiotic driving factors (e.g., Ehrlén et al. 2016). They are 
also the basis for LTRE studies (Caswell 2001, Davison 
et al. 2010), where the goal is to decompose the effect of 
change in the driving factor into contributions from indi-
vidual demographic transitions.

For the remainder of this paper, I assume the minimum 
necessary two levels for the driving factor. Because two 
levels are inadequate to infer nonlinearity in the response 
of demographic rates to the driver through nonlinear 
regression, this assumption will help to illustrate in the 
next section how elasticity to driving factors can never-
theless indicate nonlinearity in the response of popu-
lation growth to the driver. In the treatment where the 
driving factor is lesser, I label rates with a minus sign, and 

in the treatment where the factor is greater, I use a plus 
sign. Thus, v−

x
(t) is the value (averaged across replicates) 

of the xth vital rate in year t in the treatment where the 
factor is lesser, and v+

x
(t) is its value in the treatment where 

the factor is greater. Then in year t, the response of the 
xth vital rate to manipulation of the driving factor is 
Δx(t)= v+

x
(t)−v−

x
(t). Across T years, the mean response of 

the xth rate is the mean treatment difference, 
Δ̄x = (1∕T)ΣT

t=1
Δx(t).

I assemble all vital rates into a projection matrix for 
each year, one for each level of the driving factor. This 
yields a series of yearly projection matrices in each 
treatment. As do the individual measured vital rates, each 
matrix element has an empirical response to manipu-
lation in each year, which is the difference between 
treatment levels in a given year: Δij(t)=a+

ij
(t)−a−

ij
(t). Each 

matrix element also has a mean response across years, 
Δ̄ij = (1∕T)ΣT

t=1
Δij(t)=E{Δij(t)}. These are the differences 

that express the multifaceted effects on demography of 
change in the driving factor.

Now, I wish to perturb simultaneously every projection 
matrix element that has a nonzero response to the driving 
factor in at least 1 year. The key novel operational feature 
of elasticity with respect to a driving factor is to perturb 
each matrix element in proportion not to its mean or to 
its deviation from the mean, as in previous approaches, 
but in proportion to its mean response to treatment or to 
a given year’s deviation from the mean treatment response. 
I let each perturbation matrix element be the mean 
treatment response of the corresponding projection 
matrix element, Cij(t)=Δ̄ij, to obtain elasticity of the sto-
chastic growth rate with respect to change in the mean 
demographic response to the driving factor, ESμ

F
. I let each 

perturbation matrix element instead be the deviation in 
each period from mean treatment response in the corre-
sponding projection matrix element, Cij(t)=Δij(t)−Δ̄ij, to 
obtain elasticity with respect to variability in the demo-
graphic response to the driving factor, ESσ

F
. These choices 

for the design of the perturbation matrix single out the 
multifaceted response to the driving factor against a 
background of other potential sources of demographic 
variation. Because this perturbation is derived from the 
difference between treatment pairs, the values of the 
demographic rates to which the perturbation is applied 
are free to vary according to background fluctuation. The 
resulting slight perturbation to the projection matrix is 
proportional to the observed multidimensional response 
to the driver, including all correlations between vital rates 
due to shared dependence on the driving factor.

With new perturbation matrices in hand, we are now 
prepared to compute elasticities. As detailed in 
Tuljapurkar et  al. (2003), Haridas and Tuljapurkar 
(2005), and Morris et al. (2008: appendix B), given a spe-
cific choice for the perturbation matrix C(t), the elasticity 
of the long-run stochastic growth rate is 

(3)
ES = lim

T→∞

1

T

T∑

t=1

v�(t)C(t)u(t)

λ(t)v�(t)u(t+1)
.
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Here, the vectors u(t) and v′(t) are a sequence of popu-
lation age structures and reproductive value vectors, 
respectively, associated with the demography at a given 
level of the driving factor, and λ(t) is the corresponding 
period-specific rate of population growth. Tuljapurkar 
(1990) defines these three quantities; note that the realized, 
time-dependent vectors u(t) and v′(t) are not the constant 
eigenvectors denoted using the time-independent notation 
u and v, and that the period-specific growth rate λ(t) is 
similarly distinct from an eigenvalue, λ. To compute these 
quantities, one generates a long sequence of projection 
matrices to be perturbed, A(t), using independent and 
identically distributed draws from any set of projection 
matrices observed through time. Projecting the popu-
lation forward through this sequence of matrices from an 
arbitrary initial population structure yields a corre-
sponding sequence of population age structures, u(t), and 
period-specific growth rates λ(t)= ||A(t)u(t)||, where the 
magnitude notation on the right-hand side indicates that 
vector elements should be summed. Projecting backward 
through the same A(t) from an arbitrary final repro-
ductive value yields the v′(t). Initial and final segments of 
these sequences are discarded to avoid transients. Letting 
Cij(t)=Δ̄ij in this expression yields the elasticity of popu-
lation growth with respect to the mean demographic 
response to the driving factor; letting Cij(t)=Δij(t)−Δ̄ij 
yields elasticity with respect to the variability in demo-
graphic response to the driver.

This development of elasticity works solely with demo-
graphic data, not with an underlying driving factor itself. 
This is a strength of the approach, because the data 
directly concern demography only: inference (such as 
nonlinear regression) is necessary to involve the driver. 
Up to this point, I have assumed that demography has 
been assessed at only two levels of driver intensity, and 
have not needed to assume that the value of the driving 
factor has been quantified at these levels. Finally, as 
described in the Introduction section, the demographic 
differences Δij are the best available estimates of the effect 
of changes in the driver on the population. Eq. 3 accepts 
them as a multidimensional demographic difference and 
rigorously produces proportional local derivatives in the 
long-time limit (Tuljapurkar 1990, Steinsaltz et al. 2011). 
The resulting derivatives are the proportional change in 
long-run population growth with respect to the mean or 
variability of the observed multidimensional difference. 
Because the observed demographic change is functionally 
equivalent, given the resolution of the data, to a change 
between two levels of the intensity of the underlying 
driving factor, henceforward I refer to these derivatives 
as the elasticity of stochastic growth with respect to the 
mean intensity of a driving factor, ESμ

F
, or the variability 

in the intensity of the driving factor, ESσ
F

. For brevity, I 
refer to them collectively as driver elasticities.

Calculation of a deterministic driver elasticity could be 
desirable when sampling through time is insufficient for 
a stochastic analysis. By analogy with the stochastic 
approach, if one were to project the population repeatedly 

through a single, constant projection matrix, the popu-
lation would achieve a stable growth rate λ, which can be 
computed directly as the dominant eigenvalue of the pro-
jection matrix, and a stable age structure vector u and 
reproductive value vector v′, the right and left eigen-
vectors associated with the dominant eigenvalue, respec-
tively. Then the deterministic elasticity is 

 where the perturbation matrix for a driving factor is 
Cij = Δij; this single possible choice yields a single elas-
ticity EF, as there is no variability in the response to the 
factor. The values of this elasticity should be the same as 
through use of the chain rule with a linear relationship 
between each vital rate and the driving factor.

Both the stochastic and the deterministic elasticities 
are local derivatives, and they apply at the level of demo
graphy used to generate the series of projection matrices 
A(t) in Eqs. 3 and 4. Thus, the perturbation matrix 
approach enables one to compute elasticities any level of 
intensity of the driving factor at which demography has 
been observed. In the next section, I use a worked example 
to illustrate the application and interpretation of these 
elasticities.

Example and Results

This section walks through the calculation and inter-
pretation of driver elasticities using data from Jacquemyn 
et  al. (2012); Matlab code for calculation appears as 
Appendix S1. Jacquemyn et al. (2012) present a stochastic 
LTRE to determine the long-term population effects of 
cattle grazing on the grassland herb Primula veris. They 
contrast grazed plots with fenced controls that were 
mowed once a year, monitoring two populations in both 
treatments for 10 yr to obtain a series of nine projection 
matrices for each population-by-treatment combination. 
They establish four stage classes (seedlings, juveniles, veg-
etative individuals, and flowering individuals); demo-
graphic rates are survival, growth conditional on survival, 
probability of flowering, and a fecundity term, which is 
the product of average number of flowers, average number 
of seeds per fruit, and proportion of seeds germinating 
and establishing as seedlings. Jacquemyn et  al. (2012: 
Eq. 1) provide the structure of the transition matrix, along 
with the values of each rate in each year in their appendix 
A1. I use this information to compute elasticities of the 
long-run growth of P. veris with respect to grazing.

The mowing treatment removes plant biomass, but 
other aspects of grazing are absent. I designate mown 
plots the low-grazing treatment (−), and the cattle-access 
plots the high-grazing treatment (+). Following Jac
quemyn et al. (2012), I first average across the two rep-
licate populations in each treatment. I use Eq. 1 from 
Jacquemyn et  al. (2012) to assemble the demographic 
rates into nine yearly projection matrices in each treatment 
level. For instance, the (2, 1) matrix element a21 describes 

(4)EF =
v�Cu

λv�u
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the rate of transition from seedlings (column 1) into juve-
niles (row 2), and is a product involving seedling survival 
(σL, using the notation of Jacquemyn et al. (2012)) and 
seedling growth into the vegetatively reproductive stage 
(γL): a21 = σL (1 − γL). Fig. 1a shows the values through 
time for each of the two underlying vital rates (σL and γL) 
in each treatment. Fig.  1b shows the resulting values 
through time of the (2, 1) matrix element in each treatment. 
Because growth rates of seedlings into vegetatively repro-
ductive individuals are very low (Fig. 1a), their comple-
ments (1  −  γL) are near 1, and as a result the matrix 
element largely reflects seedling survival rates (compare 
top and middle panels). Fig. 1c shows how the difference 
between treatments in the (2, 1) matrix element 
(Δ2,1(t)=a+

2,1
(t)−a−

2,1
(t)) fluctuates around its mean. This 

is the treatment response of the element in each year.
Fig.  2 summarizes the treatment response shown in 

Fig. 1c for all 16 matrix elements. The first four elements 
are transitions from the seedling class to every other class, 
the second four are transitions from juveniles, the third 
four are from vegetative individuals, and the last four 
from flowering individuals. The 13th element, a14, which 
is the only one that can take on values (and hence also 
treatment response values) greater than 1, is the fecundity 
element. The most negative responses to treatment occur 
in transitions from vegetative (12th element, a43) or 

flowering (16th element, a44) individuals to flowering 
individuals, whereas reproduction (13th element, a14) 
and transitions from flowering to vegetative individuals 
(15th, a34) respond most positively. These treatment 
responses are detrimental to population growth except 
for reproduction (a14), which increases due to an increase 
in seedling establishment (Jacquemyn et al. 2012).

I generate T = 10,000 matrices A(t) using independent 
and identically distributed draws from the nine observed 
grazed projection matrices. I form driver perturbation 
matrices as described in the previous section, and use 
them in Eq. 3 to obtain elasticities. Using the observed 
grazed projection matrices to generate structure and 
reproductive value vectors produces derivatives at the 
treatment level of grazing. This asks, “What would the 
response in long-term population growth be if grazing 
intensity increased by a slight proportion, such that the 
demographic response increased by a slight proportion?” 
I also compute elasticities using the observed mowing 
control matrices for the long series of projection matrices. 
This asks, “What would be the response if only a slight 
proportion of grazing intensity applied, such that the 
demographic response was only a slight proportion of 
what actually was observed?”

The stochastic growth rates I compute from these long 
series are log λs = 0.1019 in the mown control and log 

Fig. 1.  Calculation of the response of a matrix element to a driving factor, for use in the perturbation matrix. Data for Primula 
veris in mown control (−) and grazed treatments (+), from Jacquemyn et al. (2012). (a) Seedling survival (σL) and growth (γL) to 
vegetatively reproducing individuals. (b) The matrix element (a21 = σL(1 − γL)) describing transition from seedling to juvenile, in 
both control and grazing treatment. (c) The empirical response to grazing in this matrix element, Δ21(t), is the difference between its 
values in the two treatments; the dashed line shows the mean through time. [Color figure can be viewed at wileyonlinelibrary.com]
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λs = 0.0183 in the grazing treatment; these accord well 
with Jacquemyn et al. (2012). The elasticities in grazed 
plots are ESμ

F
=−0.1543 with respect to the mean response 

to grazing, and ESσ
F

=−0.0001 with respect to the varia-
bility in response to grazing. In the mown control, the 
elasticities are ESμ

F
=−0.0390 and ESσ

F
=0.0003.

These driver elasticities illuminate how long-run pop-
ulation growth in P. veris depends on grazing, and they 
do so in a unique way that complements the analyses in 
Jacquemyn et al. (2012). In the course of their stochastic 
LTRE, Jacquemyn et  al. (2012) calculate stochastic 
growth rates, elasticities with respect to vital rates, and 
contributions of vital rates to observed differences in 
growth rate. These enable Jacquemyn et  al. (2012) to 
make many valuable inferences regarding the biology of 
the study species and its demographic responses to 
grazing. The only quantitative information about specif-
ically how long-run population growth responds to 
grazing, however, are the values of the population growth 
rate in control and treatment plots. What is added by the 
driver elasticities is information about shape of the full 
relationship between the long-run stochastic growth rate 
and grazing, particularly immediately outside the range 
of grazing intensity that was actually observed.

In the mown control, the elasticity with respect to the 
mean intensity of grazing is E

Sμ

F
= ([� log λs]∕[ log λs])

(F∕�F)=−0.0390. This is the proportional change in the 
long-run growth rate, log λs, due to a small change in 
demography that is proportional to the observed response 

to grazing. Multiplying this with the population growth 
rate in the mown control, log λs = 0.1019, reveals that 
the absolute change in population growth is −0.0040. In 
the grazed treatment, the absolute change is −0.0028: the 
elasticity (ESμ

F
=−0.1543) is greater at the higher level of 

grazing, but it is a greater proportion of a much smaller 
long-run growth rate (log λs  =  0.0183), resulting in a 
smaller absolute change. Because I applied the same 
demographic perturbation in the two treatments, we can 
directly compare the two absolute changes in growth 
rate, and infer from the difference between them that the 
negative effects of grazing pressure decrease at higher 
levels of grazing intensity. This implies a nonlinear rela-
tionship between population growth and grazing, which 
must be due to different responses of population growth 
to the same demographic change (because with only two 
treatment categories, no nonlinearity can be inferred 
between demographic rates and grazing). Fig.  3 illus-
trates one simple possibility for the relationship between 
population growth and grazing.

Thus, the driver elasticities suggest increasing resil-
ience to grazing on the part of P.  veris under higher 
grazing pressure. Using stochastic LTRE, Jacquemyn 
et  al. (2012) identified that the primary mechanism 
through which grazing reduces population growth is 
lowered flower and seed production. They also identified, 
however, that grazing increases seed establishment in 
P. veris, and suggest that treading by cattle opens micro-
sites for seedling germination, increases light penetration 

Fig. 2.  Box plots showing the distribution of the response of each matrix element to the driving factor. Counting from the left, 
elements 1–4 are transitions from seedling to each of the seedling, juvenile, vegetative, and flowering stages. Elements 5–8 are 
transitions from juveniles to each possible stage, elements 9–12 are transitions from vegetative individuals, and elements 13–16 are 
transitions from flowering individuals. For each element, an asterisk indicates the mean treatment response, and the horizontal line 
within each box is the median. Box edges indicate the 25th and 75th percentiles, and the whiskers encompass remaining non-
outlying points. Outliers (Element 3) are plotted individually using (+) signs. [Color figure can be viewed at wileyonlinelibrary.com]
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for seedling growth, and decreases density dependence 
among seedlings. The addition of the present elasticity 
analysis suggests that under more intense grazing than 
was experimentally applied, these positive effects could 
more effectively counteract the negative effects of 
decreased fecundity, and that further increases in grazing 
pressure therefore would not be as detrimental to P. veris 
as one might suppose based upon only the change in pop-
ulation growth between treatments.

The elasticities to variability in herbivory are two to 
four orders of magnitude smaller than the elasticities to 
mean herbivory intensity, so the effect of variability in 
herbivory is essentially negligible in this system. Little 
explicit information on variability in cattle grazing 
appears in Jacquemyn et al. (2012), although the mean 
density is 15 cows/ha. It is not clear whether the observed 
year-to-year variability in the response of P. veris to her-
bivory is due primarily to changes in cattle abundance 
and/or condition, or to other factors, such as rainfall, 
which could affect plant response to grazing in addition 
to other independent or interactive stochastic effects on 
plant demography. All told, whether the minor effect of 
variability in response to a driving factor is specific to this 
study or is likely to hold in other biological systems is an 
interesting question for future study.

Discussion

I have presented a novel approach to obtaining elasticity 
of population growth rate with respect to a driving biotic 
or abiotic factor. It readily accepts data from a familiar 
empirical design in the form of the different effects of the 

driver on multiple demographic rates, including any 
between-rate correlations that arise as a result. In a var-
iable environment, this approach separates the effect of the 
mean demographic response to the driving factor from 
effects of the variability in response, and can do so against 
a background of additional variability. Interpreted as a 
local proportional derivative, driver elasticities enable 
extrapolation beyond observed levels of the driving factor, 
in a way that can capture nonlinearity in the relationship 
between growth rate and driver. The approach works in 
cases where the driving factor is manipulated experimen-
tally, as in the Primula veris example here, or in cases where 
demography is documented under at least two naturally 
occurring levels of a driving factor.

The methods described here should generalize to other 
study systems where demography has been quantified for 
at least two levels of driver intensity. Where there are only 
two levels, as in the example here, there is a single 
treatment response, and a small proportion of this single 
response can be applied to both levels. The situation 
would be more complex given more levels of the driving 
factor. In general, monitoring demography at L levels of 
the driving factor yields up to L − 1 different treatment 
responses (more if differences are taken between non-
neighboring levels), any of which could be applied as a 
prospective perturbation to as many as all L levels of 
observed demography. For instance, given three levels of 
the driver, one can choose from two single-segment mul-
tidimensional differences to perturb the central level. 
Generally speaking, if the multidimensional treatment 
response changes with the intensity of the driving factor, 
then at least some demographic rates depend nonlinearly 
on the driver, which could contribute additionally to 
nonlinearity in the response of population growth to the 
driver. Beyond this, one must clarify which calculated 
elasticities result from which demographic perturbations, 
and take care in the interpretation of different elasticities. 
Depending on the biological system and the questions 
asked, it could be reasonable to apply the same pertur-
bation to all levels in order to be able to compare them 
all, for instance, and/or to apply a proportion of each 
treatment response to its associated endpoints only, in 
order to compare neighboring points using their shared 
treatment response.

In some cases, the effects of multiple drivers are present 
in the same dataset. To calculate multiple driver elastic-
ities, one would confront a choice of assessing each driver 
independently by pooling across a second driver when 
determining the treatment response to a first, or of 
assessing the treatment response to each driver only at a 
given level of the other to reveal interactions. As in the 
case of multiple treatment levels, this choice and asso-
ciated inferences would likely depend upon the questions 
being asked of a particular study system; several possibil-
ities could be informative if stated clearly and applied in 
a way consistent with desired comparisons.

In the P.  veris example, elasticities predict that 
increasing the variability of response to herbivory would 

Fig. 3.  Schematic diagram illustrating how driver elasticities 
can illuminate the shape of the relationship between long-run 
population growth and a driving factor. Bold arrows show 
information from driver elasticities; they originate at the value 
of the stochastic growth rate in each treatment (see Example and 
results subsection for details). Lesser change at higher grazing 
intensity implies that population growth depends nonlinearly 
on the driver. The dotted curve shows one possibility for this 
relationship that is consistent with the elasticity information. 
[Color figure can be viewed at wileyonlinelibrary.com]
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have little effect on population dynamics. It would be 
interesting to know whether elasticities to driver varia-
bility would also be small in other systems, especially 
ones where the driver is conspicuously variable. Examples 
of such drivers include insect herbivore abundances or 
climatic variables, which can sometimes fluctuate dra-
matically. Because elasticities to a driving factor single 
out one source of demographic variability against a 
potentially variable background of other factors, they 
represent a useful addition to the ecological toolbox for 
understanding how natural populations could respond to 
changing conditions.
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