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Abstract

Linear vibration isolation systems, used to reduce the transmissibility of vertical

vibration, requires a vertical static displacement that increases with the square of

the natural period of the isolation system. The static displacement of a vertical

isolation system with a one second natural period is 0.25 m. The nonlinear stiffness

of buckled beams loaded in the transverse direction can be designed to reduce the

vertical static displacement requirement of vertical systems. This study presents

an analysis of large displacement mechanics of slender beams that buckle against a

constraint, and extracts the transverse constraint force via the Lagrange multiplier

enforcing the constraint. The constraint prescribes a maximum allowable lateral

displacement along the length of the beam and a specified longitudinal displacement

at the mid-span of the beam. No small curvature assumption is involved. Lateral

and longitudinal displacements are parameterized in terms of Fourier coefficients.

Coefficient values for constrained equilibria are found by minimizing the bending

strain energy such that lateral and longitudinal constraints are satisfied. Because

the full expression for curvature is used, this is a nonlinear constrained optimization

problem.

Edge and mid-point horizontal constraint positions are varied to gain a better

understanding of the constraint forces at each position. This modeling approach is

then used to design a system of post-buckled leaf springs in order to meet vibration

isolation requirements without over-stressing the springs. This process is discussed in

detail along with the process and challenges associated with the physical model. The-

oretical predictions are compared to laboratory scale measurements. Experimental

results from the physical model are compared to the theoretical and numerical simu-

lation results. The potential for rocking responses of the vertical isolation system are

quantified via the modeling of the nonlinear dynamics of a platform supported by a

system of springs and carrying a mass concentrated above the platform.
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Chapter 1

Introduction

1.1 Motivation

Vertical isolation is not often regarded as a major consideration in the development

of isolation systems for seismic design of structures, as seismic input is predominantly

in the form of horizontal ground motion. However, it has been shown that vertical

oor vibrations can be signi�cant in moderate to strong earthquakes with peak ground

acceleration (PGA) � 0:2g, whereg represents the acceleration due to gravity. The

Wieser Technical ReportAssessment of Floor Accelerations in Yielding Buildings,

shows that the median ratio of peak vertical oor accelerations to peak horizontal

ground acceleration is about one-half. For peak ground accelerations of 0.2 g, peak

vertical accelerations would be large enough to damage fragile nonstructural compo-

nents and equipment situated on the oor. Financial losses to building contents can

account for approximately 75% of the incurred losses.1 Additionally, and perhaps sur-

prisingly, vertical oor vibrations are stronger in shorter structures than in taller ones

as shown in the report's spectra, seen in �gures 1.2 through 1.5, comparing the the

normalized vertical acceleration at various relative elevations within buildings. These

1Wieser, Joseph D., Pekhan, Gokhan, Zaghi, Arash E., Itani, Ahmad E., Maragakis, Emmanuel
"Manos," Assessment of Floor Accelerations in Yielding Buildings, Technical Report MCEER-12-
0008, October 5, 2012.
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signi�cant oor vibrations can often be attributed to the fact that beam design is

almost always dictated by beam deection requirements for steel beams, �max � L
200

to L
400, as shown below in �gure 1.1. Resonance between seismic activity, or even

vertical motion induced by the horizontal isolation system, and the oor beams of a

building can amplify the deections and cause serious and costly damage.

� max � L
200 to L

400

w

L

x

z

Figure 1.1: Example of simply supported beam deection under distributed load
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Figure 1.2: Median spectra of the ratio of vertical oor acceleration to horizontal
peak ground acceleration for a three story building at column and open bay

locations
2

Figure 1.3: Median spectra of the ratio of vertical oor acceleration to horizontal
peak ground acceleration for a three story hospital building at column and open bay

locations
2

2Wieser, Joseph D., Pekhan, Gokhan, Zaghi, Arash E., Itani, Ahmad E., Maragakis, Emmanuel
"Manos," Assessment of Floor Accelerations in Yielding Buildings, Technical Report MCEER-12-
0008, October 5, 2012.

3



Figure 1.4: Median spectra of the ratio of vertical oor acceleration to horizontal
peak ground acceleration for a nine story hospital building at column and open bay

locations
3

Figure 1.5: Median spectra of the ratio of vertical oor acceleration to horizontal
peak ground acceleration for a twenty story hospital building at column and open

bay locations
3

3Wieser, Joseph D., Pekhan, Gokhan, Zaghi, Arash E., Itani, Ahmad E., Maragakis, Emmanuel
"Manos," Assessment of Floor Accelerations in Yielding Buildings, Technical Report MCEER-12-
0008, October 5, 2012.
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The solution to mitigating these damaging oor oscillations lies in gaining a better

understanding of why they occur and what di�ering vertical isolation systems have to

o�er in terms of reducing transmissibility. Here, we consider the application of buckled

beams instead of common coil springs for vertical isolation. The squashed beams o�er

larger contact surfaces and greater lateral sti�ness than that of coil springs. This

attributes to a more horizontally rigid mechanism with less of a tendency to tip.

1.2 Objectives

The objectives of this study are to:

1. Determine the deformed shape of a buckled beam with a constraint on the

maximum transverse displacement and with potentially large curvatures.

2. Determine the deformed shape of a buckled beam with a constraint on both the

maximum transverse displacement and a mid-span longitudinal displacement as

a function of the longitudinal displacement.

3. Determine the nonlinear transverse force-displacement relationship (the sti�-

ness) and use that relationship to assess the natural frequency of oscillation

and relative displacement of the physical model's platform given a speci�ed

load.

4. Experimentally validate these results by comparing observations from a physical

model to those predicted by the theoretical model and simulation.

1.3 Problem Description

In order to provide a thorough analysis of the squashed beam approach, we must

�rst model the deformed con�guration of the beams. One side of an eventual square

platform using squashed beams for motion isolation will be analyzed computation-

ally to �nd the optimum constraint positions. The ends of the squashed beam will be

5



secured at each end to the lower platform, with the ability of adjustment, in predeter-

mined increments, on one edge. In order to analyze the longitudinal and transverse

sti�ness of a buckled beam, the mid-point is constrained to a prescribed horizon-

tal displacement and the transverse displacements are constrained to not exceed a

prescribed limit. The equilibrium con�guration of a transversely and longitudinally

buckled beam corresponds to the minimum of the strain energy in the squashed beam.

The result of the optimization problem provides values for the forces required at each

of the constraint locations in the form of Lagrange multipliers. Following appropriate

scaling of these Lagrange multipliers and experimentation with the physical model,

a comparison will be made between these theoretical force values and experimental

results.

6



Chapter 2

Method

2.1 Problem Formulation

The forces imposed on the squashed beam at the two ends and at the mid-point

cause internal stresses and strains throughout the elastic solid. These strains are con-

sistent with the displacements of the beam.4 These displacements can be predicted as

the con�guration that minimizes the total potential energy, ��, given by the equation

�� = �U + �V (2.1)

where �U is the internal strain energy and�V is the potential energy function of external

loads. For a beam with a cross section that is much broader than deep, the beam

behavior resembles that of a plate in single curvature bending. The internal strain

energy, �U, is given by the equation

�U =
1
2

�
EI

1 � � 2

� Z L

s=0
( �� (�s))2 d�s; (2.2)

whereE is the tensile modulus of elasticity,I = bh3=12 is the section second moment

of area,� is Poisson's ratio, and the cross section dimension isb � h with h � b.

Here �� (�s) is the curvature in units of [1/L], E is the modulus of elasticity in units

of [F/L 2], I is the moment of inertia in units of [L4], and the domain �s represents the

4Gavin, H. P., Minimum Total Potential Energy, Quadratic Programming and Lagrange Multi-
pliers, Department of Civil and Environmental Engineering, Duke University, 2020.
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arc-length of the buckled beam in units of [L]. The potential energy of external forces

�V is given by the equation

�V =
Z L

�s=0

�f (�s)�v(�s) d�s (2.3)

where �f (�s) represents a distributed external load in units of [F/L] and �v(�s) represents

the set of displacements in units of [L].5

2.2 Constrained Minimization of Total Potential
Energy

We seek to determine the displaced con�guration of the beam by minimizing its

total potential energy subject to constraints on the lateral position and the longitu-

dinal position. To accomplish this, we must �rst de�ne the positions on the beam

using a convenient coordinate system. For a simple two-dimensional setting, �x and �y

Cartesian coordinates are su�cient. For a beam of lengthL, we use the arc-length

of the buckled beam, �s, as the independent variable, as shown in �gures 2.1 and 2.2.

Thus, we can represent the curvature of the buckled beam,�� (�s), using the �rst and

second derivatives of �x(�s) and �y(�s). In equation form, the most general expression

for curvature is

�� (s) =
(�x0(�s)�y00(�s) � �y0(�s)�x00(�s))

(�x0(�s)2 + �y0(�s)2)3=2
(2.4)

where �x(�s) and �y(�s) are the location of the beam in parametric form.

Non-dimensionalizing all length variables byL and all force variables by

(EI )=((1 � � 2)L2), we obtain variables in dimensionless form, �x = Lx , �y = Ly , �s = Ls

, d�x = L dx, d�y = L dy, d�s = L ds , �x0 = x0, �y0 = y0, �s0 = s0 , �x00= x00=L, �y00= y00=L,

�s00= s00=L , �� (�s) = � (s)=L, and �P = ( EI )=((1 � � 2)L2)P , and thus

U =
1
2

Z 1

s=0
(� (s))2 ds: (2.5)

5Gavin, H. P., Minimum Total Potential Energy, Quadratic Programming and Lagrange Multi-
pliers, Department of Civil and Environmental Engineering, Duke University, 2020.
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Approximating x(s) and y(s) as Fourier series

x(s; a) = s(1 � ( D
L )) +

P
n an sin(n�s ) (2.6)

and

y(s; b) =
X

m

bm sin(m�s ); (2.7)

wherean and bm are the coe�cients used to parameterize the the con�guration of the

buckled beam and its strain energy,U. Given sets of coe�cientsa and b, x0(s), x00(s),

y0(s) and y00(s) can be found analytically. Combining equation 2.2 and equation 2.4,

we have an expression for the strain energy in terms of the dimensionless arc-length,

s.

U(a; b) =
1
2

Z 1

s=0

�
(x0(s; a)y00(s; b) � y0(s; b)x00(s; a))

(x0(s; a)2 + y0(s; b)2)1:5

� 2

ds (2.8)

The non-dimensional potential energy is minimized with respect to the coe�cientsa

and b such that the following conditions are satis�ed:

max
s

(y(s; b)) �
Y
L

�
2
�

r
D
L

(2.9)

min
s

(y(s; a)) � 0 (2.10)

max
s

(x(s; b)) � 1 �
D
L

(2.11)

x(1=2;b) �
1
2

�
1 �

D
L

�
+

X
L

(2.12)

Z 1

0

�
(x0(s; a))2 + ( y0(s; b))2

�
ds � 1 (2.13)

This constrained minimization is solved numerically using Sequential Quadratic Pro-

gramming (SQP). In the SQP method constraints are enforced using Lagrange mul-

tipliers � by solving

max
�

min
a;b

"

U(a; b) +
4X

i =1

� i gi (a; b))

#

: (2.14)

The solution to this constrained minimization provides values for the coe�cientsa

and b, along with the addition of Lagrange multipliers, � , representing the forces

9



experienced at the constraint locations.6 The Lagrange multiplier associated with

g3 = max( x(s; b)) � 1 + D=L � 0 corresponds to the force in thex direction required

to maintain a position at x(1; b) = 1 � D=L. The Lagrange multiplier associated

with g1 = max( y(s; b)) � Y=L corresponds to the force in they direction required to

prevent y(s) from exceedingY=L. In dimensional form the Lagrange multipliers, in

units of [F], are

�� =
EI

(1 � � 2)L2
� : (2.15)

MATLAB ® programming is used to carry out the optimization calculation, pro-

ducing values for the minimum strain energy and constraint forces. These results are

covered in detail in the following chapter.

�x = 0 �x = L � D

�s = 0

�s

�s = L

Y
L = 2

�

q
D
L

(�x(�s), �y(�s))

x

y

Figure 2.1: Example of buckled arch showing use of arc-length

�x = 0 �x = L � D

�s = 0 �s = L

Y
L � 2

�

q
D
L

(�x(�s), �y(�s))

x

y

Figure 2.2: Example of compressed buckled arch

6Gavin, H. P., Scruggs, J. T., Constrained Optimization using Lagrange Multipliers, Department
of Civil and Environmental Engineering, Duke University, 2020.
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Chapter 3

Simulation Results

Simulations were carried out to determine the relationship between the transverse

\squashing" displacement (2=� )
p

D=L � Y=L and its associated constraint force.

These relationships are presented as the constraint force,�� , normalized by the elastic

buckling force

Pcr =
� 2 EI

(1 � � 2)L2
(3.1)

3.1 Lateral Displacement Constraint

The computational process began by varying the lateral displacement constraint,

Y=L from (2=� )
p

D=L to 0:5(2=� )
p

D=L in thirty steps, while keeping the end con-

straint D=L �xed at a prescribed value and the mid-point constraintX=L �xed at

zero. TheBuckSquashPPopt.m MATLAB ® program was used to analyze the con-

�guration of the squashed beam and to minimize the strain energy with respect to

the Fourier coe�cients, a and b. An example of the equilibrium con�guration of the

constrained buckled con�guration forD=L = 0:1 including the con�guration coordi-

nates,x(s) and y(s), and their derivatives x0(s), y0(s), x00(s), and y00(s), are shown in

Figures 3.1 to 3.6. These �gures show that the con�guration smoothly conforms to

the constraints, and whenY=L is less than about (2=3)(2=� )
p

D=L a snap-though

buckling e�ect is observed. Note also that for the longitudinal midpoint displacement

constraint X=L �xed at zero, x(s) increases linearly fromx(0) = 0 to x(1) = 1 � D=L

11



in all cases. Cases ofX=L 6= 0 are considered in the next section.

Figure 3.1: Equilibrium con�guration of the laterally constrained buckled beam,
and the associated longitudinalx(s) and lateral y(s) displacements, and their

derivatives. D=L = 0:10 and (2=� )
p

D=L � Y=L = 0:016.

Figure 3.2: Equilibrium con�guration of the laterally constrained buckled beam,
and the associated longitudinalx(s) and lateral y(s) displacements, and their

derivatives. D=L = 0:10 and (2=� )
p

D=L � Y=L = 0:033.

Figure 3.3: Equilibrium con�guration of the laterally constrained buckled beam,
and the associated longitudinalx(s) and lateral y(s) displacements, and their

derivatives. D=L = 0:10 and (2=� )
p

D=L � Y=L = 0:050.

12



Figure 3.4: Equilibrium con�guration of the laterally constrained buckled beam,
and the associated longitudinalx(s) and lateral y(s) displacements, and their

derivatives. D=L = 0:10 and (2=� )
p

D=L � Y=L = 0:067.

Figure 3.5: Equilibrium con�guration of the laterally constrained buckled beam,
and the associated longitudinalx(s) and lateral y(s) displacements, and their

derivatives. D=L = 0:10 and (2=� )
p

D=L � Y=L = 0:084.

Figure 3.6: Equilibrium con�guration of the laterally constrained buckled beam,
and the associated longitudinalx(s) and lateral y(s) displacements, and their

derivatives. D=L = 0:10 and (2=� )
p

D=L � Y=L = 0:101.

13



Repeating this process forD=L = 0.02, 0.05, 0.1, 0.15, 0.20, and 0.30. The scaled

Lagrange multipliers for the lateral and longitudinal constraints, normalized byPcr are

plotted with respect to the lateral displacement constraint, (2=� )
p

D=L � Y=L. These

results are shown in �gures 3.7 through 3.12. These �gures show that constraint forces

increase monotonically and non-linearly up to the onset of snap-through buckling,

and that beyond the snap-through buckling, the constraint forces drop sharply. This

indicates an instability in the force-displacement behavior.

For values ofD=L less than about 0.2, the relationship between the transverse

constraint displacement and the transverse force has an inection point at relatively

low values of force. This inection point is most pronounced forD=L � 0:15. Be-

yond this inection point, the transverse force increases roughly quadratically with

transverse displacement. Both of these behaviors are desirable for vertical vibration

isolation systems; The inection in behavior reduces the required static displacement

by up to �fty percent for the D=L = 0:15 case. The quadratic increase in force with

larger values ofY=L makes the natural frequency of the vertical isolation system

roughly insensitive to the mass of the isolated object over a certain range of masses.

As the longitudinal displacement constraintD=L increases, both longitudinal con-

straint forces and lateral constraint forces increase. The lateral constraint forces (and

lateral sti�ness) are more sensitive toD=L than are the longitudinal constraint forces.

At the largest values ofD=L considered, the sequential quadratic programming

method as implemented in this study did not converge to a globally optimum solution

for every value ofY=L. In these cases there are jagged irregularities or missing data

in the force-displacement relationships.
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Figure 3.7: Relationship between the squashing constraint positionY=L to the
horizontal end constraint force and the vertical squashing constraint force for

D=L = 0:02.

Figure 3.8: Relationship between the squashing constraint positionY=L to the
horizontal end constraint force and the vertical squashing constraint force for

D=L = 0:05.
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Figure 3.9: Relationship between the squashing constraint positionY=L to the
horizontal end constraint force and the vertical squashing constraint force for

D=L = 0:10.

Figure 3.10: Relationship between the squashing constraint positionY=L to the
horizontal end constraint force and the vertical squashing constraint force for

D=L = 0:15.
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Figure 3.11: Relationship between the squashing constraint positionY=L to the
horizontal end constraint force and the vertical squashing constraint force for

D=L = 0:20.

Figure 3.12: Relationship between the squashing constraint positionY=L to the
horizontal end constraint force and the vertical squashing constraint force for

D=L = 0:30.
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3.2 Horizontal Mid-span Displacement Constraint

We now vary the mid-point constraint, while keeping both the transverse con-

straint and the longitudinal end constraint �xed. The longitudinal end constraint

of D
L = 0:07 was chosen due to the quality of simulation results provided at that

location. Figures 3.13 through 3.15 show the results graphically. Lagrange multiplier

values are recorded in table 3.1. Note here that forX=L 6= 0, x(s) is not linear in

s (Figure 3.14) thus giving rise to an asymmetric con�guration of (x(s); y(s)) (Fig-

ure 3.13). For � 0:05 < X=L < +0:05 the vertical and lateral constraint forces are

not signi�cantly sensitive to X=L . This interesting preliminary result merits further

investigation.
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Figure 3.13: Horizontal mid-point constraint variation with edge constraint and
lateral constraint �xed at D

L = 0:07.

Figure 3.14: x and y coordinates along the beam as a function of the arc-length,
x(s) and y(s), and their derivatives dx(s)

ds , dy(s)
ds , d2x(s)

ds2 , and d2y(s)
ds2 .

Table 3.1: Table of Lagrange multiplier values or constraint forces (vertical
constraint Y

L = 0:12, edge constraintDL = 0:07).

Lagrange multiplier values,�
D=L � 1 � 3 � 4

D=L = 0:07 7:4571 1:2831 9:2211
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Figure 3.15: Constraint position vs constraint forces,DL = 0:07.
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Chapter 4

Physical Model and Experimental
Validation

A fully three-dimensional vertical isolation system was designed, built, and ex-

perimentally assessed in order to validate the model for the nonlinear elastic vertical

isolation system analyzed in the previous sections.

4.1 Design and Construction of the three-dimensional
Vertical Isolation System

Transitioning from the theoretical model to the physical model presented a number

of challenges to be overcome. The two most obvious of these were the di�erence in

size of the physical model and the addition of one more spatial dimension. The

model needed to be easily movable and manageable by a single person. To make the

isolation system more compact, the buckled arches were arranged as half-arches in

such a manner that would facilitate small adjustments at the constraint locations.

This allowed for each half-arch isolation spring to be two feet long, taking up far

less space than a single four-foot long full arch. The half-arches were �xed against

displacement and rotation at the top and pined against displacement at the bottom,

thereby making the system invulnerable to the snap-through instability analyzed in

the full-arch system.

The construction of the physical model required carpentry skills and common ma-
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terials. A support table was fabricated using wooden 2x4s and34 inch thick plywood

cut to 36 inches by 36 inches. The top platform, to be supported by the half-arch

springs, was cut to the same 36 inch by 36 inch dimensions. The constraint positions

were fabricated from aluminum angle sections that are 1x1x1
8 inch for the bottom

constraints and 3
4x 3

4x 1
16 inch for the top constraints. The half-arches were purchased

pre-cut to two inches wide by two feet long by 0.048 inch thick galvanized steel strips.

These were initially used as the spring material, as shown in �gure 4.1. Upon initial

observations of the spring behavior, plastic deformation was evident with relatively

small displacements of the platform. This prompted a change in material to spring

steel strips with nearly the same dimensions, increasing only the thickness slightly to

0.05 inch. Eight strips of two foot length were cut from a 25 foot long roll of spring

steel using an angle grinder. After ensuring that the strips measured the same length

and that edges were squared, the new springs were installed on the table as shown in

�gure 4.2.

During this process, guide rods were also added to help prevent rocking, or out-

of-plane rotation, of the top platform due to small inconsistencies in the applied load,

accidental eccentricities in mass and sti�ness, and other incidental imperfections in

isolation system. Guide rods were fashioned from34 inch partially threaded steel

bolts and used linear sleeve bearings at the pass-through of the top platform for

smooth movement, as shown in �gures 4.2 and 4.3. The guide rods improved the

overall stability of the platform, but presented new challenges with the potential for

binding. This binding occurred if the platform was forced to rotate from a level

position, causing one or more of the guide rods to bind. To mitigate this issue,

graphite lubricant was added to the rods where the sleeve bearings made contact.

Additionally, the bolts were loosened one quarter turn from their �xed position on

the bottom platform to allow for slight exibility and account for small errors in the

construction process. Future modi�cations to the table may include the replacement
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of the linear sleeve bearings with linear ball bearings, capable of slight misalignment

correction and smoother operation.

Figure 4.1: Vertical Isolation Table - galvanized springs

Figure 4.2: Vertical Isolation Table - spring steel springs with guide rods
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Figure 4.3: Vertical Isolation Table - spring arrangement

4.2 Experimentation

Following the results from MATLAB ® simulation, we now take the idea of the

mid-point constraint and apply this to a physical model using a half-arch con�g-

uration. What previously served as a midpoint constraint now serves as an edge

constraint and allows for adjustment, while preventing snap through behavior, seen

in the plots depicting the buckled beams from �gures 3.1 through 3.12. By elimi-

nating the possibility for this behavior, we can assume that the force response of the

system will be more predictable as the load and platform displacement increase.

4.2.1 Setup

To measure the platform's displacement under load, �xed loads were added to the

top and center of the platform in �ve pound increments from zero to 100 pounds.

Measurements were made at the corners of the platform on each side and values were

averaged together if di�erences existed. The numbers were subtracted from the zero
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position to obtain the displacement for each load, as seen in table 4.1. The force

values were also adjusted to account for the platform weight of approximately 27

pounds. Images of the platform loaded at 50 pounds and 100 pounds are shown in

�gures 4.8 through 4.11.

For the frequency of oscillation of the platform, results were gathered under load-

ings of 50 pounds and 100 pounds. The platform was depressed1
2 inch and released

as a timer was started. Cycles were counted as the platform returned to the bottom

position each time for approximately �ve seconds. This process was repeated three

times for each loading con�guration and results were averaged.

4.2.2 Results

The force and displacement values from the model were non-dimensionalized, sim-

ilar to the simulation results, for easier comparison. The force values were non-

dimensionalized by dividing the value by the critical force required to buckle the

beams. ThisPcr value was calculated as

Pcr =
� 2EI

(1 � � 2)L2
; with I =

bh3

12
; (4.1)

where E = 29; 000; 000psi is the modulus of elasticity for steel,� = 0:3 is Poisson's

ratio for steel, I = (8)(0 :05)3=12 = 8:33 � 10� 5 in4 is the moment of inertia, and

L = 48 in is the length of the full beam. Here we useb = 8 in to represent the

combined width of four full arches to be consistent with the calculations completed

for the simulation. This gives us aPcr = 11:4 lbs. Initial model con�guration

results for the force values and displacements, withD=L = 0:0833, can be found in

table 4.1 with the values for non-dimensionalized force versus displacement in table

4.2 and corresponding plot in �gure 4.4. The plot shows how the spring response

begins to demonstrate slightly non-linear behavior as the load increases and smaller

displacements are observed. Now, we can compare the experimental data to the
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simulation data from previous sections. First, we must ensure that the beam edge

constraint displacement for the simulationD=L matches the initial con�guration of

the physical model, D=L = 0:0833. This is because the behavior of the springs

depends on the constraint displacementD=L as seen in the analyses of the previous

section. Plotting the new data against the adjusted simulation data we can compare

the results. This is shown in �gure 4.5. Multiple iterations can be seen in this plot

denoted by the di�erent colored markers.

As the platform was loaded and after weight was removed, careful observations

were made to note changes in the spring behavior and condition. Though the half-arch

con�guration does show an ability to support higher loads, some buckling away from

the underside of the top platform was observed as the superimposed load increased

above 205 lbs in the initial con�guration ofD=L = 0:0833, seen in �gure 4.13. This

buckling was expected due to the understanding of the full arch behavior and snap-

through observed in previous simulations. Regardless of the stresses placed on the

springs during these experiments, no yielding of the spring steel was noticed after

careful inspection following each experiment.

Taking the experiment a little further, we adjust the edge constraints by 1/2

inch, for D=L = 0:1042. A similar adjustment is made in the MATLAB simulation

to match. The plot of this data against the adjusted simulation data is shown in

�gure 4.7. Comparing the results from the two constraint locations, we see that

the experimental results and simulation results correlate very closely in both cases.

The accurate prediction of the nonlinear elastic behavior of this system validates the

nonlinear elastic model derived and analyzed in this thesis. This validation allows us

to proceed with further studies using the simulation methods, having added con�dence

in our results.

Results for the frequency of oscillation can be found in table 4.3. The averaged

values for the two loading con�gurations show virtually no di�erence in the frequency
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of oscillation given the di�erence in load and therefore, the same periodT � 0:38 sec.

This is good news, as the oscillation behavior of such a vertical isolation system will

remain constant if the mass and loads remain within a speci�ed design range.

Table 4.1: Table of displacement under loading - 5 lb increments, including an
adjustment of 27 lbs for the top platform

Displacement Values

Force (lbs) Measurement (in) Displacement (in)

27 8 0

32 7:6875 0:3125

37 7:40625 0:59375

42 7:25 0:75

47 7:0625 0:9375

52 6:875 1:125

57 6:75 1:25

62 6:625 1:375

67 6:53125 1:46875

72 6:4375 1:5625

77 6:375 1:625

82 6:28125 1:71875

87 6:21875 1:78125

92 6:125 1:875

97 6:0625 1:9375

102 6 2

107 5:96875 2:03125

112 5:9375 2:0625

117 5:875 2:125

122 5:8125 2:1875
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Continuation of Table 4.1

127 5:78125 2:21875

132 5:75 2:25

137 5:6875 2:3125

142 5:625 2:375

147 5:59375 2:40625

152 5:53125 2:46875

157 5:5 2:5

162 5:4375 2:5625

167 5:40625 2:59375

172 5:375 2:625

177 5:34375 2:65625

182 5:3125 2:6875

187 5:28125 2:71875

192 5:25 2:75

197 5:234375 2:765625

202 5:21875 2:78125

207 5:203125 2:796875

212 5:1875 2:8125

217 5:15625 2:84375

222 5:125 2:875

227 5:109375 2:890625

232 5:07812 2:921875

237 5:0625 2:9375

242 5:03125 2:96875

247 5:015625 2:984375

252 4:984375 3:015625
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Continuation of Table 4.1

257 4:96875 3:03125

262 4:9375 3:0625

Table 4.2: Table of non-dimensionalized values for force and displacement

Non-dimensionalized Force and Disp.

Force (P=P cr ) Disp. (D =L + 0:015)

2.37 0.01500

2.81 0.02151

3.25 0.02737

3.69 0.03063

4.13 0.03453

4.57 0.03844

5.01 0.04104

5.45 0.04365

5.89 0.04560

6.33 0.04755

6.77 0.04885

7.21 0.05081

7.65 0.05211

8.09 0.05406

8.53 0.05536

8.97 0.05667

9.41 0.05732

9.85 0.05797
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Continuation of Table 4.2

10.28 0.05927

10.72 0.06057

11.16 0.06122

11.60 0.06188

12.04 0.06318

12.48 0.06448

12.92 0.06513

13.36 0.06643

13.80 0.06708

14.24 0.06839

14.68 0.06904

15.12 0.06969

15.56 0.07034

16.00 0.07099

16.44 0.07164

16.88 0.07229

17.32 0.07262

17.76 0.07294

18.20 0.07327

18.64 0.07359

19.08 0.07424

19.51 0.07490

19.95 0.07522

20.39 0.07587

20.83 0.07620

21.27 0.07685
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Continuation of Table 4.2

21.71 0.07717

22.15 0.07783

22.59 0.07815

23.03 0.07880

Figure 4.4: Plot ofD=L vs P=Pcr for 0-235 lbs of superimposed load -D=L = 0:0833
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Figure 4.5: Plot comparing results of experimental and simulationD=L vs P=Pcr

Figure 4.6: Plot ofD=L vs P=Pcr for 0-235 lbs of superimposed load -D=L = 0:1042

32



Figure 4.7: Plot comparing results of experimental and simulationD=L vs P=Pcr

Table 4.3: Table of oscillation frequencies

Averaged Oscillations in cycles per second (cps)
Force(lbs) Cycles T ime(sec) F req:(cps)
75 12 4:50 2:67
75 13 5:12 2:54
75 14 5:17 2:71
75AV G �� �� 2:64
125 14 5:26 2:66
125 15 5:65 2:65
125 13 5:17 2:51
125AV G �� �� 2:61

33



Figure 4.8: Vertical Isolation Table - 50lb load

Figure 4.9: Vertical Isolation Table - 50lb load spring view
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Figure 4.10: Vertical Isolation Table - 100lb load

Figure 4.11: Vertical Isolation Table - 100lb load spring view
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