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Abstract

Linear vibration isolation systems, used to reduce the transmissibility of vertical
vibration, requires a vertical static displacement that increases with the square of
the natural period of the isolation system. The static displacement of a vertical
isolation system with a one second natural period is 0.25 m. The nonlinear stiffness
of buckled beams loaded in the transverse direction can be designed to reduce the
vertical static displacement requirement of vertical systems. This study presents
an analysis of large displacement mechanics of slender beams that buckle against a
constraint, and extracts the transverse constraint force via the Lagrange multiplier
enforcing the constraint. The constraint prescribes a maximum allowable lateral
displacement along the length of the beam and a specified longitudinal displacement
at the mid-span of the beam. No small curvature assumption is involved. Lateral
and longitudinal displacements are parameterized in terms of Fourier coefficients.
Coefficient values for constrained equilibria are found by minimizing the bending
strain energy such that lateral and longitudinal constraints are satisfied. Because
the full expression for curvature is used, this is a nonlinear constrained optimization
problem.

Edge and mid-point horizontal constraint positions are varied to gain a better
understanding of the constraint forces at each position. This modeling approach is
then used to design a system of post-buckled leaf springs in order to meet vibration
isolation requirements without over-stressing the springs. This process is discussed in
detail along with the process and challenges associated with the physical model. The-
oretical predictions are compared to laboratory scale measurements. Experimental
results from the physical model are compared to the theoretical and numerical simu-
lation results. The potential for rocking responses of the vertical isolation system are
quantified via the modeling of the nonlinear dynamics of a platform supported by a

system of springs and carrying a mass concentrated above the platform.
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Chapter 1

Introduction

1.1 Motivation

Vertical isolation is not often regarded as a major consideration in the development
of isolation systems for seismic design of structures, as seismic input is predominantly
in the form of horizontal ground motion. However, it has been shown that vertical
oor vibrations can be signi cant in moderate to strong earthquakes with peak ground
acceleration (PGA) 0:2g, whereg represents the acceleration due to gravity. The
Wieser Technical ReportAssessment of Floor Accelerations in Yielding Buildings
shows that the median ratio of peak vertical oor accelerations to peak horizontal
ground acceleration is about one-half. For peak ground accelerations of 0.2 g, peak
vertical accelerations would be large enough to damage fragile nonstructural compo-
nents and equipment situated on the oor. Financial losses to building contents can
account for approximately 75% of the incurred lossésAdditionally, and perhaps sur-
prisingly, vertical oor vibrations are stronger in shorter structures than in taller ones
as shown in the report's spectra, seen in gures 1.2 through 1.5, comparing the the

normalized vertical acceleration at various relative elevations within buildings. These

tWwieser, Joseph D., Pekhan, Gokhan, Zaghi, Arash E., Itani, Ahmad E., Maragakis, Emmanuel
"Manos," Assessment of Floor Accelerations in Yielding Buildings Technical Report MCEER-12-
0008, October 5, 2012.



signi cant oor vibrations can often be attributed to the fact that beam design is
almost always dictated by beam de ection requirements for steel beamsax ZLW)
to 4LOO, as shown below in gure 1.1. Resonance between seismic activity, or even

vertical motion induced by the horizontal isolation system, and the oor beams of a

building can amplify the de ections and cause serious and costly damage.

% L |
2 [ [ [ T [ [ [ [ [
L ---------------- —— =
X L to L

max 200 400

Figure 1.1: Example of simply supported beam de ection under distributed load



Figure 1.2: Median spectra of the ratio of vertical oor acceleration to horizontal
peak ground acceleration for a three story building at column and open bay

locations
2

Figure 1.3: Median spectra of the ratio of vertical oor acceleration to horizontal
peak ground acceleration for a three story hospital building at column and open bay

locations
2

2Wieser, Joseph D., Pekhan, Gokhan, Zaghi, Arash E., Itani, Ahmad E., Maragakis, Emmanuel
"Manos," Assessment of Floor Accelerations in Yielding Buildings Technical Report MCEER-12-
0008, October 5, 2012.



Figure 1.4. Median spectra of the ratio of vertical oor acceleration to horizontal
peak ground acceleration for a nine story hospital building at column and open bay

locations
3

Figure 1.5: Median spectra of the ratio of vertical oor acceleration to horizontal
peak ground acceleration for a twenty story hospital building at column and open
bay locations
3

SWieser, Joseph D., Pekhan, Gokhan, Zaghi, Arash E., Itani, Ahmad E., Maragakis, Emmanuel
"Manos," Assessment of Floor Accelerations in Yielding Buildings Technical Report MCEER-12-
0008, October 5, 2012.



The solution to mitigating these damaging oor oscillations lies in gaining a better
understanding of why they occur and what di ering vertical isolation systems have to
o er in terms of reducing transmissibility. Here, we consider the application of buckled
beams instead of common coil springs for vertical isolation. The squashed beams o er
larger contact surfaces and greater lateral sti ness than that of coil springs. This

attributes to a more horizontally rigid mechanism with less of a tendency to tip.

1.2 Objectives

The objectives of this study are to:

1. Determine the deformed shape of a buckled beam with a constraint on the

maximum transverse displacement and with potentially large curvatures.

2. Determine the deformed shape of a buckled beam with a constraint on both the
maximum transverse displacement and a mid-span longitudinal displacement as

a function of the longitudinal displacement.

3. Determine the nonlinear transverse force-displacement relationship (the sti -
ness) and use that relationship to assess the natural frequency of oscillation
and relative displacement of the physical model's platform given a specied

load.

4. Experimentally validate these results by comparing observations from a physical

model to those predicted by the theoretical model and simulation.

1.3 Problem Description

In order to provide a thorough analysis of the squashed beam approach, we must
rst model the deformed con guration of the beams. One side of an eventual square
platform using squashed beams for motion isolation will be analyzed computation-

ally to nd the optimum constraint positions. The ends of the squashed beam will be

5



secured at each end to the lower platform, with the ability of adjustment, in predeter-
mined increments, on one edge. In order to analyze the longitudinal and transverse
stiness of a buckled beam, the mid-point is constrained to a prescribed horizon-
tal displacement and the transverse displacements are constrained to not exceed a
prescribed limit. The equilibrium con guration of a transversely and longitudinally
buckled beam corresponds to the minimum of the strain energy in the squashed beam.
The result of the optimization problem provides values for the forces required at each
of the constraint locations in the form of Lagrange multipliers. Following appropriate
scaling of these Lagrange multipliers and experimentation with the physical model,
a comparison will be made between these theoretical force values and experimental

results.



Chapter 2
Method

2.1 Problem Formulation

The forces imposed on the squashed beam at the two ends and at the mid-point
cause internal stresses and strains throughout the elastic solid. These strains are con-
sistent with the displacements of the bearf. These displacements can be predicted as

the con guration that minimizes the total potential energy, , given by the equation
= U+V (2.1)

whereU is the internal strain energy andV is the potential energy function of external
loads. For a beam with a cross section that is much broader than deep, the beam
behavior resembles that of a plate in single curvature bending. The internal strain

energy, U, is given by the equation

Z
El

1 2

— 1 - 2 .
U= ( (s))° ds; (2.2)
2 "

whereE is the tensile modulus of elasticity] = bh’=12 is the section second moment
of area, is Poisson's ratio, and the cross section dimensionbs h with h b
Here (s) is the curvature in units of [1/L], E is the modulus of elasticity in units

of [F/L 2], | is the moment of inertia in units of [L*], and the domains represents the

4Gavin, H. P., Minimum Total Potential Energy, Quadratic Programming and Lagrange Multi-
pliers, Department of Civil and Environmental Engineering, Duke University, 2020.



arc-length of the buckled beam in units of [L]. The potential energy of external forces

V is given by the equation 7
L

V= f(s)v(s) ds (2.3)

s=0

wheref (s) represents a distributed external load in units of [F/L] andv(s) represents

the set of displacements in units of [L}.

2.2 Constrained Minimization of Total Potential
Energy

We seek to determine the displaced con guration of the beam by minimizing its
total potential energy subject to constraints on the lateral position and the longitu-
dinal position. To accomplish this, we must rst de ne the positions on the beam
using a convenient coordinate system. For a simple two-dimensional settingand y
Cartesian coordinates are su cient. For a beam of lengtiL, we use the arc-length
of the buckled beamgs, as the independent variable, as shown in gures 2.1 and 2.2.
Thus, we can represent the curvature of the buckled beam(s), using the rst and
second derivatives ok(s) and y(s). In equation form, the most general expression

for curvature is
(xAs)y®s)  yAs)x%Xs))
(xYs)? + y{s)?)3*2

where x(s) and y(s) are the location of the beam in parametric form.

(s) = (2.4)

Non-dimensionalizing all length variables by. and all force variables by
(EI)=((1 ?)L?), we obtain variables in dimensionless fornx = Lx,y = Ly, s= Ls
,dx=Ldx,dy=Ldy,ds=Lds,x%= x% y0= y0 0= g0 x00= x0&| y00= y0&|
s0= g0 | (s)= (s)=L,andP =(EI)=((1 ?L?P , and thus

141

U=> ((9)2ds: (2.5)
2 s=0

5Gavin, H. P., Minimum Total Potential Energy, Quadratic Programming and Lagrange Multi-
pliers, Department of Civil and Environmental Engineering, Duke University, 2020.



Approximating x(s) and y(s) as Fourier series
P .
x(s;a)=s(I (2)+ ,amsin(ns) (2.6)

and
X
y(s;b) = b, sin(m s ); (2.7)

m

wherea, and hy, are the coe cients used to parameterize the the con guration of the
buckled beam and its strain energy). Given sets of coe cientsa and b, x{s), x%{s),
yqs) and y°¢s) can be found analytically. Combining equation 2.2 and equation 2.4,
we have an expression for the strain energy in terms of the dimensionless arc-length,

S.

Z . . . . 2
Dap < L Cdsaytsh) yistxtsia) *

2 oo (xYs;a)? + y{s;b)?)*+>
The non-dimensional potential energy is minimized with respect to the coe cienta

S (2.8)

and b such that the following conditions are satis ed:
r

maxy(sib) 1 o 2.9)
msin(y(s; a)) 0 (2.10)
m;’:lx(x(s; b)) 1 % (2.11)
o 1 D X
] x(1=2;b) > 1 T + T (2.12)
1 (xIs;@)?+ (yIs;b)? ds 1 (2.13)

0
This constrained minimization is solved numerically using Sequential Quadratic Pro-
gramming (SQP). In the SQP method constraints are enforced using Lagrange mul-
tipliers by solving
" y "
maxrg;igl U(a;b)+ ig(a;b) (2.14)
i=1

The solution to this constrained minimization provides values for the coe cientsa

and b, along with the addition of Lagrange multipliers, , representing the forces

9



experienced at the constraint location§. The Lagrange multiplier associated with
g = max(x(s;b)) 1+ D=L 0 corresponds to the force in the& direction required
to maintain a position at x(1;b) =1 D=L. The Lagrange multiplier associated
with g; = max(y(s;b) Y=L corresponds to the force in the direction required to

prevent y(s) from exceedingY =L. In dimensional form the Lagrange multipliers, in

units of [F], are

- m . (2.15)

MATLAB ® programming is used to carry out the optimization calculation, pro-

ducing values for the minimum strain energy and constraint forces. These results are

covered in detail in the following chapter.

—|=<
I
N

|—|U|

(x(s), y(s))

Xx=0 x=L D

Figure 2.1. Example of buckled arch showing use of arc-length

<
N
|—|U|

x(s), y(s))

Figure 2.2: Example of compressed buckled arch

6Gavin, H. P., Scruggs, J. T., Constrained Optimization using Lagrange Multipliers, Department
of Civil and Environmental Engineering, Duke University, 2020.
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Chapter 3

Simulation Results

Simulations were carried out to determine the relationship between the transverse
\squashing" displacement (Z )p D=L Y=L and its associated constraint force.
These relationships are presented as the constraint force, normalized by the elastic
buckling force

2 El

Per = W (3.1)

3.1 Lateral Displacement Constraint

The computational process began by varying the lateral displacement constraint,
Y =L from (2= )p D=L to 0:5(2= )p D=L in thirty steps, while keeping the end con-
straint D=L xed at a prescribed value and the mid-point constraintX=L xed at
zero. TheBuckSquashPBpt.m MATLAB ® program was used to analyze the con-
guration of the squashed beam and to minimize the strain energy with respect to
the Fourier coe cients, a and b. An example of the equilibrium con guration of the
constrained buckled con guration forD=L = 0:1 including the con guration coordi-
nates,x(s) and y(s), and their derivatives xqs), y{s), x{s), and y{s), are shown in
Figures 3.1 to 3.6. These gures show that the con guration smoothly conforms to
the constraints, and whenY =L is less than about (23)(2= )p D=L a shap-though
buckling e ect is observed. Note also that for the longitudinal midpoint displacement

constraint X=L xed at zero, x(s) increases linearly frorx(0) =0to x(1)=1 D=L

11



in all cases. Cases of=L 6 0 are considered in the next section.

Figure 3.1: Equilibrium con guration of the laterally constrained buckled beam,
and the associated longitudinak(s) and Iatef_gal y(s) displacements, and their

derivatives. D=L =0:10and (2= ) D=L Y=L=0:016.

Figure 3.2: Equilibrium con guration of the laterally constrained buckled beam,
and the associated longitudinak(s) and Iateﬁal y(s) displacements, and their
derivatives. D=L =0:10 and (2= ) D=L Y=L=0:033.

Figure 3.3: Equilibrium con guration of the laterally constrained buckled beam,
and the associated longitudinak(s) and IatngaI y(s) displacements, and their
derivatives. D=L =0:10 and (2= ) D=L Y=L=0:050.

12



Figure 3.4: Equilibrium con guration of the laterally constrained buckled beam,
and the associated longitudinak(s) and IatngaI y(s) displacements, and their
derivatives. D=L =0:10 and (2= ) D=L Y=L=0:067.

Figure 3.5: Equilibrium con guration of the laterally constrained buckled beam,
and the associated longitudinak(s) and IatngaI y(s) displacements, and their
derivatives. D=L =0:10 and (2= ) D=L Y=L=0:084.

Figure 3.6: Equilibrium con guration of the laterally constrained buckled beam,
and the associated longitudinak(s) and IatngaI y(s) displacements, and their
derivatives. D=L =0:10and (2= ) D=L Y=L=0:101.

13



Repeating this process fob=L = 0.02, 0.05, 0.1, 0.15, 0.20, and 0.30. The scaled
Lagrange multipliers for the lateral and longitudinal constraints, normalized by, are
plotted with respect to the lateral displacement constraint, (2 )p D=L Y=L These
results are shown in gures 3.7 through 3.12. These gures show that constraint forces
increase monotonically and non-linearly up to the onset of snap-through buckling,
and that beyond the snap-through buckling, the constraint forces drop sharply. This
indicates an instability in the force-displacement behavior.

For values of D=L less than about 0.2, the relationship between the transverse
constraint displacement and the transverse force has an in ection point at relatively
low values of force. This in ection point is most pronounced foD=L  0:15. Be-
yond this in ection point, the transverse force increases roughly quadratically with
transverse displacement. Both of these behaviors are desirable for vertical vibration
isolation systems; The in ection in behavior reduces the required static displacement
by up to fty percent for the D=L = 0:15 case. The quadratic increase in force with
larger values ofY =L makes the natural frequency of the vertical isolation system
roughly insensitive to the mass of the isolated object over a certain range of masses.

As the longitudinal displacement constraintD=L increases, both longitudinal con-
straint forces and lateral constraint forces increase. The lateral constraint forces (and
lateral sti ness) are more sensitive tdD=L than are the longitudinal constraint forces.

At the largest values of D=L considered, the sequential quadratic programming
method as implemented in this study did not converge to a globally optimum solution
for every value ofY=L. In these cases there are jagged irregularities or missing data

in the force-displacement relationships.

14



Figure 3.7: Relationship between the squashing constraint position=L to the
horizontal end constraint force and the vertical squashing constraint force for
D=L =0:02.

Figure 3.8: Relationship between the squashing constraint position=L to the
horizontal end constraint force and the vertical squashing constraint force for
D=L =0:05.

15



Figure 3.9: Relationship between the squashing constraint position=L to the
horizontal end constraint force and the vertical squashing constraint force for
D=L =0:10.

Figure 3.10: Relationship between the squashing constraint positidfL to the
horizontal end constraint force and the vertical squashing constraint force for
D=L =0:15.
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Figure 3.11: Relationship between the squashing constraint positiodf=L to the
horizontal end constraint force and the vertical squashing constraint force for
D=L =0:20.

Figure 3.12: Relationship between the squashing constraint positidfL to the
horizontal end constraint force and the vertical squashing constraint force for
D=L =0:30.
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3.2 Horizontal Mid-span Displacement Constraint

We now vary the mid-point constraint, while keeping both the transverse con-
straint and the longitudinal end constraint xed. The longitudinal end constraint
of % = 0:07 was chosen due to the quality of simulation results provided at that
location. Figures 3.13 through 3.15 show the results graphically. Lagrange multiplier
values are recorded in table 3.1. Note here that fok=L 6 0, x(s) is not linear in
s (Figure 3.14) thus giving rise to an asymmetric con guration of X(s); y(s)) (Fig-
ure 3.13). For 0:05< X=L < +0:05 the vertical and lateral constraint forces are
not signi cantly sensitive to X=L. This interesting preliminary result merits further

investigation.
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Figure 3.13: Horizontal mid-point constraint variation with edge constraint and
lateral constraint xed at 2 = 0:07.

Figure 3.14: x and y coordinates along the beam as a function of the arc-length,

x(s) and y(s), and their derivatives & &) ) 5ng EYE)

Table 3.1: Table of Lagrange multiplier values or constraint forces (vertical
constraint - = 0:12, edge constraint2 = 0:07).

Lagrange multiplier values,

L 1 3 4
=L =0:07 7:4571 1:2831 0:2211

19



Figure 3.15: Constraint position vs constraint forces% =0:07.
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Chapter 4

Physical Model and Experimental
Validation

A fully three-dimensional vertical isolation system was designed, built, and ex-
perimentally assessed in order to validate the model for the nonlinear elastic vertical

isolation system analyzed in the previous sections.

4.1 Design and Construction of the three-dimensional
Vertical Isolation System

Transitioning from the theoretical model to the physical model presented a number
of challenges to be overcome. The two most obvious of these were the di erence in
size of the physical model and the addition of one more spatial dimension. The
model needed to be easily movable and manageable by a single person. To make the
isolation system more compact, the buckled arches were arranged as half-arches in
such a manner that would facilitate small adjustments at the constraint locations.
This allowed for each half-arch isolation spring to be two feet long, taking up far
less space than a single four-foot long full arch. The half-arches were xed against
displacement and rotation at the top and pined against displacement at the bottom,
thereby making the system invulnerable to the snap-through instability analyzed in
the full-arch system.

The construction of the physical model required carpentry skills and common ma-
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terials. A support table was fabricated using wooden 2x4s arﬁjinch thick plywood
cut to 36 inches by 36 inches. The top platform, to be supported by the half-arch
springs, was cut to the same 36 inch by 36 inch dimensions. The constraint positions
were fabricated from aluminum angle sections that are 1x%xinch for the bottom
constraints and %x%x%3 inch for the top constraints. The half-arches were purchased
pre-cut to two inches wide by two feet long by 0.048 inch thick galvanized steel strips.
These were initially used as the spring material, as shown in gure 4.1. Upon initial
observations of the spring behavior, plastic deformation was evident with relatively
small displacements of the platform. This prompted a change in material to spring
steel strips with nearly the same dimensions, increasing only the thickness slightly to
0.05 inch. Eight strips of two foot length were cut from a 25 foot long roll of spring
steel using an angle grinder. After ensuring that the strips measured the same length
and that edges were squared, the new springs were installed on the table as shown in
gure 4.2.

During this process, guide rods were also added to help prevent rocking, or out-
of-plane rotation, of the top platform due to small inconsistencies in the applied load,
accidental eccentricities in mass and sti ness, and other incidental imperfections in
isolation system. Guide rods were fashioned froril inch partially threaded steel
bolts and used linear sleeve bearings at the pass-through of the top platform for
smooth movement, as shown in gures 4.2 and 4.3. The guide rods improved the
overall stability of the platform, but presented new challenges with the potential for
binding. This binding occurred if the platform was forced to rotate from a level
position, causing one or more of the guide rods to bind. To mitigate this issue,
graphite lubricant was added to the rods where the sleeve bearings made contact.
Additionally, the bolts were loosened one quarter turn from their xed position on
the bottom platform to allow for slight exibility and account for small errors in the

construction process. Future modi cations to the table may include the replacement

22



of the linear sleeve bearings with linear ball bearings, capable of slight misalignment

correction and smoother operation.

Figure 4.1: Vertical Isolation Table - galvanized springs

Figure 4.2: Vertical Isolation Table - spring steel springs with guide rods
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Figure 4.3: Vertical Isolation Table - spring arrangement
4.2 EXxperimentation

Following the results from MATLAB® simulation, we now take the idea of the
mid-point constraint and apply this to a physical model using a half-arch con g-
uration. What previously served as a midpoint constraint now serves as an edge
constraint and allows for adjustment, while preventing snap through behavior, seen
in the plots depicting the buckled beams from gures 3.1 through 3.12. By elimi-
nating the possibility for this behavior, we can assume that the force response of the

system will be more predictable as the load and platform displacement increase.

4.2.1 Setup

To measure the platform's displacement under load, xed loads were added to the
top and center of the platform in ve pound increments from zero to 100 pounds.
Measurements were made at the corners of the platform on each side and values were

averaged together if di erences existed. The numbers were subtracted from the zero
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position to obtain the displacement for each load, as seen in table 4.1. The force
values were also adjusted to account for the platform weight of approximately 27
pounds. Images of the platform loaded at 50 pounds and 100 pounds are shown in
gures 4.8 through 4.11.

For the frequency of oscillation of the platform, results were gathered under load-
ings of 50 pounds and 100 pounds. The platform was depres%ehhch and released
as a timer was started. Cycles were counted as the platform returned to the bottom
position each time for approximately ve seconds. This process was repeated three

times for each loading con guration and results were averaged.

4.2.2 Results

The force and displacement values from the model were non-dimensionalized, sim-
ilar to the simulation results, for easier comparison. The force values were non-
dimensionalized by dividing the value by the critical force required to buckle the

beams. ThisP. value was calculated as

2E| bR
Pcr - W1 with | = E’ (41)

where E = 29;000 00(psi is the modulus of elasticity for steel, = 0:3 is Poisson's
ratio for steel, | = (8)(0:055*=12 = 8:33 10 ° in* is the moment of inertia, and

L = 48 in is the length of the full beam. Here we usdé = 8 in to represent the
combined width of four full arches to be consistent with the calculations completed
for the simulation. This gives us aP,; = 11:4 Ibs. Initial model con guration
results for the force values and displacements, with=L = 0:0833, can be found in
table 4.1 with the values for non-dimensionalized force versus displacement in table
4.2 and corresponding plot in gure 4.4. The plot shows how the spring response
begins to demonstrate slightly non-linear behavior as the load increases and smaller

displacements are observed. Now, we can compare the experimental data to the
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simulation data from previous sections. First, we must ensure that the beam edge
constraint displacement for the simulationD=L matches the initial con guration of
the physical model,D=L = 0:0833. This is because the behavior of the springs
depends on the constraint displacemeriD=L as seen in the analyses of the previous
section. Plotting the new data against the adjusted simulation data we can compare
the results. This is shown in gure 4.5. Multiple iterations can be seen in this plot
denoted by the di erent colored markers.

As the platform was loaded and after weight was removed, careful observations
were made to note changes in the spring behavior and condition. Though the half-arch
con guration does show an ability to support higher loads, some buckling away from
the underside of the top platform was observed as the superimposed load increased
above 205 Ibs in the initial con guration of D=L = 0:0833, seen in gure 4.13. This
buckling was expected due to the understanding of the full arch behavior and snap-
through observed in previous simulations. Regardless of the stresses placed on the
springs during these experiments, no yielding of the spring steel was noticed after
careful inspection following each experiment.

Taking the experiment a little further, we adjust the edge constraints by 1/2
inch, for D=L = 0:1042. A similar adjustment is made in the MATLAB simulation
to match. The plot of this data against the adjusted simulation data is shown in
gure 4.7. Comparing the results from the two constraint locations, we see that
the experimental results and simulation results correlate very closely in both cases.
The accurate prediction of the nonlinear elastic behavior of this system validates the
nonlinear elastic model derived and analyzed in this thesis. This validation allows us
to proceed with further studies using the simulation methods, having added con dence
in our results.

Results for the frequency of oscillation can be found in table 4.3. The averaged

values for the two loading con gurations show virtually no di erence in the frequency
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of oscillation

given the di erence in load and therefore, the same peridd 0:38 sec.

This is good news, as the oscillation behavior of such a vertical isolation system will

remain constant if the mass and loads remain within a speci ed design range.

Table 4.1: Table of displacement under loading - 5 Ib increments, including an
adjustment of 27 Ibs for the top platform

Displacement Values

Force (lbs) Measurement (in) | Displacement (in)

27 8 0

32 7:6875 0:3125

37 7:40625 0:59375

42 7:25 0:75

47 7:0625 0:9375

52 6:875 1:125

57 6:75 1:25

62 6:625 1:375

67 6:53125 1:46875

72 6:4375 1:5625

77 6:375 1:625

82 6:28125 1:71875

87 6:21875 1:78125

92 6:125 1:875

97 6:0625 1:9375

102 6 2

107 5:96875 2:03125

112 5:9375 2:0625

117 5:875 2:125

122 5:8125 2:1875
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Continuation of Table 4.1

127
132
137
142
147
152
157
162
167
172
177
182
187
192
197
202
207
212
217
222
227
232
237
242
247
252

5:78125
575
5:6875
5:625
5:59375
5:53125
S5
5:4375
5:40625
5:375
5:34375
5:3125
5:28125
5:25
5:234375
5:21875
5:203125
5:1875
5:15625
5:125
5:109375
5:07812
5:0625
5:03125
5:015625
4:984375

2:21875
2:25
2:3125
2:375
2:40625
2:46875
2:5
2:5625
2:59375
2:625
2:65625
2:6875
2:71875
2:75
2:765625
2:78125
2:796875
2:8125
2:84375
2:875
2:890625
2:921875
2:9375
2:96875
2:984375
3:015625
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Continuation of Table 4.1

257

262

4:96875

4:9375

3:03125

3:0625

Table 4.2: Table of non-dimensionalized values for force and displacement

Non-dimensionalized Force and Disp.

Force (P=P.) | Disp. (D=L + 0:015)
2.37 0.01500
2.81 0.02151
3.25 0.02737
3.69 0.03063
4.13 0.03453
4.57 0.03844
5.01 0.04104
5.45 0.04365
5.89 0.04560
6.33 0.04755
6.77 0.04885
7.21 0.05081
7.65 0.05211
8.09 0.05406
8.53 0.05536
8.97 0.05667
9.41 0.05732
9.85 0.05797
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Continuation of Table 4.2

10.28 0.05927
10.72 0.06057
11.16 0.06122
11.60 0.06188
12.04 0.06318
12.48 0.06448
12.92 0.06513
13.36 0.06643
13.80 0.06708
14.24 0.06839
14.68 0.06904
15.12 0.06969
15.56 0.07034
16.00 0.07099
16.44 0.07164
16.88 0.07229
17.32 0.07262
17.76 0.07294
18.20 0.07327
18.64 0.07359
19.08 0.07424
19.51 0.07490
19.95 0.07522
20.39 0.07587
20.83 0.07620
21.27 0.07685
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Continuation of Table 4.2
21.71 0.07717
22.15 0.07783
22.59 0.07815
23.03 0.07880

Figure 4.4: Plot of D=L vs P=P,, for 0-235 Ibs of superimposed loadD=L = 0:0833
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Figure 4.5: Plot comparing results of experimental and simulatioB=L vs P=P,

Figure 4.6: Plot of D=L vs P=P,, for 0-235 Ibs of superimposed loadD=L = 0:1042
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Figure 4.7: Plot comparing results of experimental and simulatioD=L vs P=P,,

Table 4.3: Table of oscillation frequencies

Averaged Oscillations in cycles per second (cps)
Force(lbs) Cycles Time(seq Freqg:(cp9
75 12 4:50 2:67
75 13 5:12 2:54
75 14 5:17 2:71
75AV G 2:64
125 14 5:26 2:66
125 15 5:65 2:65
125 13 5:17 2:51
125AV G 2:61
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Figure 4.8: Vertical Isolation Table - 50Ib load

Figure 4.9: Vertical Isolation Table - 50lb load spring view
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Figure 4.10: Vertical Isolation Table - 100Ib load

Figure 4.11: Vertical Isolation Table - 100Ib load spring view
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