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Nonequilibrium properties of correlated quantum matter are being intensively investigated because of the rich
interplay between the external drive and the many-body correlations. Of particular interest is the nonequilibrium
behavior near a quantum critical point (QCP), where the system is delicately balanced between different ground
states. Although such effects are typically out of reach, we meet this challenge, providing here both both an
analytical calculation of the nonequilibrium I-V curve when the system is tuned to be critical and experimental
results to which the theory is compared. The system is a quantum dot coupled to resistive leads: a spinless
resonant level interacting with an ohmic dissipative environment. A two-channel Kondo QCP occurs when the
level is on resonance and symmetrically coupled to the leads. Using a bosonized representation, we calculate
the nonlinear I-V curve at the critical value of the gate voltage corresponding to this QCP. We then show that
it has a physically intuitive interpretation in terms of weak backscattering of non-interacting fermions coupled
to a modified environment, thus arriving at the same result through dynamical Coulomb blockade theory. The
quantitative agreement between the experimental data and our theory, with no fitting parameter, is remarkable.
As our system is fully accessible to both theory and experiment, it provides an ideal setting for addressing
nonequilibrium phenomena in correlated quantum matter.

I. INTRODUCTION

Quantum phase transitions (QPT)—abrupt changes of
ground state due to quantum fluctuations as a parameter is
tuned—are of fundamental importance in a wide variety of
condensed matter many-body systems ranging from quantum
materials to quantum magnets and nanostructures [1–4]. The
quantum critical point (QCP) separating the two competing
ground states dominates physical properties even at finite tem-
perature where a quantum critical region exists (see Fig. 1)
[1, 2]. By tuning parameters of the system to their critical
values, the system stays in the critical region down to zero
temperature: the system is tuned to criticality, such as for path
1 in Fig. 1. In contrast, detuning results in a crossover from
quantum critical behavior to one of the trivial phases (path
2). Along path 1, it is well established that thermodynamic
observables at low temperature show universal scaling. Prop-
erties away from equilibrium, such as when a bias is applied (a
nonequilibrium steady state) or a parameter suddenly changed
(a quantum quench), are much less well understood. Indeed,
quantum nonequilibrium phenomena are receiving increasing
scrutiny in recent years, and unanticipated features near QPT
have come to light [1, 5–7]. Here we present the first theoret-
ical and experimental study of a nonequilibrium I-V curve in
a system tuned to criticality.

QPT occur not only in the bulk but also on the bound-
ary of interacting systems, as in quantum impurity models
[3]. The two-channel Kondo model is a prototypical exam-
ple: two independent metallic channels each screen a local-
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FIG. 1. (a) Schematic of the system overlaid on a SEM image of
a sample. A quantum dot is formed in the carbon nanotube (CNT)
between the source and drain leads. These resistive leads create a
dissipative environment for electrons tunneling through the dot. The
tunneling barriers can be tuned with the side gates SG1 and SG2.
Applying a bias between the source and drain produces a nonequi-
librium steady state. (b) Diagram of a quantum critical region as a
function of a system parameter, λ, and temperature or voltage bias.
When parameters of the system are tuned to their critical values, the
quantum critical region extends down to zero temperature or bias
(path 1), otherwise a crossover to one of the trivial ground states oc-
curs (path 2). (c) The RG flow of source and drain coupling (tS , tD)
when the system is on resonance. For symmetric coupling, the flow
is into the strong coupling fixed point (1,1) (path 1) which is the QCP.
A slight detuning leads to a crossover to a trivial fixed point (path 2).
In this work, we focus exclusively on path 1, which ends at the QCP.
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ized spin, resulting in frustration and a non-Fermi liquid QCP.
Nanoscale systems are ideal for studying impurity QPT be-
cause of the exquisite control over parameters that they pro-
vide. Indeed, a growing number of QPT are being stud-
ied in nanosystems, including e.g. spin [8, 9] and charge
[10, 11] two-channel Kondo systems and the 0-π transition
in a Josephson junction [12–14]. These nanosystem QPT can
provide insight into more complex quantum impurity QPT,
such as those that arise in dynamical mean field theory treat-
ments of strongly correlated materials [6, 15].

Here we present both an analytical calculation of the
nonequilibrium I-V curve with system parameters tuned to
correspond to a QCP and experimental results to which the
theory is compared in detail. The system is a spin-polarized
carbon nanotube quantum dot connected to resistive leads via
tunable tunnel barriers (Fig. 1). The resistance of the leads
creates an ohmic dissipative environment [16–18], and the
quantum dot serves as the quantum impurity. The QCP oc-
curs when both (i) a level in the dot is resonant with the leads
and (ii) the dot is symmetrically coupled to them. Both of
these properties can be fine-tuned using gate voltages. At the
QCP, the conductance through the dot at zero temperature be-
comes perfect (e2/h when T → 0), while otherwise it tends
to zero. The QCP is of the two-channel Kondo type [17]. We
previously presented several scaling relations, including non-
Fermi liquid scaling along path 1 in Fig. 1, in the equilibrium
regime [18].

The interplay between nonequilibrium and many-body ef-
fects has been studied in a variety of nanosystems through
nonlinear I-V characteristics, both experimentally [12, 19–
28] and theoretically [29–46]. Experimental systems studied
include, for instance, the Kondo effect in quantum dots, tun-
neling into edge channels, and dissipative tunneling. How-
ever, to our knowledge, the nonequilibrium I-V curve of a
system tuned exactly to the critical value of the tuning con-
trol parameter corresponding to a QCP has not been mea-
sured previously, except for some preliminary indications in
our own work [18][47]. Nonlinear I-V curves in the criti-
cal regime of a QCP have certainly been reported (for exam-
ple [8, 9, 13, 48, 49]), but these all involved measurements
through weakly coupled leads that therefore probe the density
of states in the remainder of the system in equilibrium. Such
a measurement is called tunneling or transport spectroscopy
[50], in which no truly nonequilibrium effects are involved
[51]. Theoretically, in the scaling regime in which I ∝ V α,
the exponent α has been frequently deduced from the scal-
ing dimension of the leading operators at the QCP (see for
example [52, 53]). With regard to a full calculation beyond
the scaling exponent, analytical I-V curves have been ob-
tained for the crossover from a QCP to a Fermi liquid state
in the cases of the two-impurity, two-channel, and topological
Kondo models [42–45]. In Fig. 1 these correspond to prop-
erties along path 2, in which one moves out of the quantum
critical region. In contrast, here we are exclusively interested
in paths that start or end at the QCP, such as path 1. Some-
what surprisingly, the nonequilibrium I-V characteristics of
a system originally tuned to a QCP have not previously been
studied either experimentally or theoretically.

The plan and main results of the paper are as follows. We
start by defining our model for the dissipative resonant-level
problem (Sec. II) and then immediately bosonize it (Sec. III).
In Sec. IV we carry out the key step of obtaining the effective
Hamiltonian at strong tunneling, Eq. (15). This then is the
model of the QCP.

Resonant tunneling in a Luttinger liquid (LL) provides con-
siderable theoretical guidance in Secs. III and IV because tun-
neling in a resistive environment is an emulation of that sys-
tem [17, 18, 26, 54–58]. In equilibrium, resonant peaks of per-
fect conductance in a LL have been extensively studied the-
oretically [59–67], and this system has a similar two-channel
Kondo QCP, separating single-barrier (left or right) dominated
weak-tunneling regimes [60, 65]. There are significant differ-
ences in the strong-coupling model (discussed below), how-
ever, and furthermore nonequilibrium properties at the LL res-
onant tunneling QCP have been studied only in the scaling
regime (see e.g. [59, 60]).

In Sec. V, we find the I-V characteristics in the quan-
tum critical regime beyond simple scaling. We start from a
Keldysh approach, which then reduces to finding backscatter-
ing rates from the golden rule. This simplification is possible
because we work to second order in the backscattering ampli-
tude (but to all orders in the coupling to the environment). The
main theoretical result of the paper is the analytical expression
for the nonlinear I-V curve at finite temperature, Eq. (21).

Experimental results are presented in Sec. VI and compared
with the theory. In particular, Fig. 2 shows excellent agree-
ment between theory and experiment.

Before concluding, we then show in Sec. VII that this result
has a simple physical interpretation, one that is not available
in the corresponding LL problem. Here, modes that initially
do not couple to the environment map to non-interacting left-
moving and right-moving fermions. Indeed, near the QCP the
natural degrees of freedom are right-moving and left-moving
fermionic channels between which there is weak tunneling in
a modified environment. In this form, dynamical Coulomb
blockade theory [68–70] yields the same expression for the
I-V curve as in Sec. V.

II. MODEL AND HAMILTONIAN

Our system is shown in Fig. 1: a spinless resonant level
between two resistive leads. The Hamiltonian in the weak-
tunneling regime consists of several parts,

H = HDot +HLeads +Hµ +HT +HEnv. (1)

HDot =εdd
†dmodels the dot with single energy level εd, which

may be tuned by the backgate voltage Vgate.

HLeads =
∑
α=S,D

∑
k

εkc
†
kαckα (2)

represents the electrons in the source (S) and drain (D) leads,
and

Hµ =
∑
α=S,D

∑
k

µαc
†
kαckα (3)
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is the chemical potential term driving the system out of equi-
librium through the applied bias V , µS/D = ±V/2.

Tunneling in our system excites the resistive environment
through fluctuations of the voltage on the source and drain.
These require a quantum description of the tunnel junction
[68–71] via junction charge and phase fluctuation operators
that are conjugate to each other, ϕS/D andQS/D. A tunneling
event shifts the charge on the corresponding junction, as, for
example, in this contribution to tunneling from the dot to the
source: c†kSe

−i
√

2πϕSd. We take the capacitance of the two
tunnel junctions to be the same and so it is natural to consider
the sum and difference variables ψ ≡ (ϕS + ϕD)/2 and ϕ ≡
ϕS − ϕD. The fluctuations ϕ involve charge flow through the
system and so couple to the environment. In contrast, ψ is
related to the total charge in the dot. Since the total charge is
not coupled to the environment [68, 69, 72], we drop ψ at this
point. We thus arrive at the tunnel Hamiltonian

HT =
∑
k

(
tSc
†
kSe
−i
√

π
2 ϕd+ tDc

†
kDe

i
√

π
2 ϕd+ h.c.

)
. (4)

Because of the sum over momentum, only the fields at x =
0 couple to the dot and environment. Since the parameters
tS and tD are initially small, the system starts in the weak
coupling regime.

Finally, the ohmic environment of resistance R is modeled
in the usual way as a bath of harmonic oscillators to which the
phase fluctuations ϕ of the junction are coupled. The model
must produce the expected temporal correlations of the phase
fluctuations, namely 〈e−iϕ(t)eiϕ(0)〉 ∝ (1/t)2r where the ex-
ponent r is related to the resistance of the environment by
r ≡ Re2/h [68–71]. We choose to represent the environment
by bosonic fields ϕ(x) and its conjugate ϑ(x) with Hamilto-
nian

HEnv =
1

2

∫ ∞
0

dx

[
1

2r
(∂xϕ)2 + 2r(∂xϑ)2

]
, (5)

which is coupled to the junction by identifying ϕ(x = 0) as
the phase ϕ in Eq. (4).

III. BOSONIZATION AT WEAK COUPLING

Our strategy is to develop a bosonized form of the weak-
coupling Hamiltonian. Bosonization is possible because an
impurity couples to only an effectively one-dimensional (1D)
subset of lead states (for non-interacting electrons). We la-
bel these semi-infinite 1D leads x ∈ (−∞, 0) for S and
x ∈ (0,+∞) for D (and set their Fermi velocities equal to
one).

We bosonize in the standard way [59, 73], choosing the con-
ventions of Ref. [59]:

c†α,L/R(x, t) = e±ikF x
Fα√
2πa0

ei
√
π[φα(x,t)±θα(x,t)] (6)

where α = S/D and L/R (± in the exponents) indi-
cates left- or right-moving particles. φα and θα are conju-
gate bosonic operators that describe electronic states in the
semi-infinite leads, obeying the standard commutation rela-
tion [φ(x′), ∂xθ(x)] = iπδ(x′ − x). a0 is a short time cutoff,
and the Fα are Klein factors. In bosonic form, the electron
density is ρL/R(x) = [±∂xφ(x)+∂xθ(x)+kF /

√
π]/(2

√
π).

It is convenient to form the charge and flavor fields [30],

φf/c(x) ≡ 1
2 [φS(−x)∓ φD(x)± θS(−x)− θD(x)]

θc/f (x) ≡ 1
2 [±φS(−x) + φD(x) + θS(−x)± θD(x)] .

(7)
Note that φf (x) is conjugate to θc(x) and likewise φc(x) to
θf (x).

The voltage bias in Hµ is handled using a time-dependent
gauge transformation [59, 68] that moves the bias to the tun-
neling term—physically, when an electron hops from a lead
to the dot it acquires a phase factor corresponding to the drop
in bias (change in energy) across that barrier. Since the QCP
occurs at symmetric coupling, we take identical coupling to
the source and drain leads, tS = tD ≡ t. With symmetric tun-
neling and capacitance, the bias voltage drops symmetrically
as well. The tunneling term is, then,

HT+µ =
t√

2πa0

[
FSde

i
√
πφcei(

√
πφf−

√
π
2 ϕ+eV t/2)

+ FDde
i
√
πφce−i(

√
πφf−

√
π
2 ϕ+eV t/2) + h.c.

]
.

(8)

All fields in Eq. (8) are taken at x = 0, and we have used
θS/D(0) = 0 [59, 74] due to the Dirichlet boundary condition
at the end of the leads.

Notice that the fields φf (x = 0) and ϕ enter in the same
way in Eq. (8), so it is natural to combine them via

φ′f (x) = φf (x)− 1√
2
ϕ(x)

ϕ′(x) =
√
rφf (x) +

1√
2r
ϕ(x).

(9)

Since the field ϕ′ completely decouples from the problem, we
drop it from further consideration. The final expression for
the Hamiltonian at weak coupling is

Heff
Leads+Env +HDot =

1

2

∫ ∞
0

dx
[
(∂xθf )2 + (∂xφc)

2 + (1 + r)(∂xθ
′
c)

2 +
1

1 + r
(∂xφ

′
f )2
]

+ εdd
†d

HT+µ =
t√

2πa0

{
FSde

i
√
πφcei(

√
πφ′

f+eV t/2) + FDde
i
√
πφce−i(

√
πφ′

f+eV t/2) + h.c.
}
.

(10)
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Thus we see that the coupling of each tunneling electron to the
environment generates an effective interaction between them.
Here, one of the sets of lead fields, (φ′f , θ

′
c), becomes interact-

ing; in contrast, in a Luttinger liquid, both sets of lead fields
would be interacting, an important distinction when we come
to interpreting our results (see Sec. VII).

When the dot is symmetrically coupled to the leads and is
exactly on resonance (εd = 0), the weak-coupling description
above renormalizes to a strong-coupling fixed point [17]. This
comes about because of frustration. If the coupling is not sym-
metric, the fixed point to which the system flows corresponds
to cutting the system at the weaker link and incorporating the
dot into the other lead [see Fig. 1(c)]. Frustration between in-
corporating the dot into the source or drain ensues when the
coupling is symmetric. As a result, the dot ends up being hy-
bridized with both leads, and the system looks increasingly
uniform.

IV. THE STRONG TUNNELING LIMIT:
LINK TO A WEAK DOUBLE BARRIER

As the system scales to strong coupling, it approaches a
symmetric fixed point at which the system is translationally
invariant and so fully transparent. The properties of this fixed
point are heavily constrained by its being one of the two possi-
ble boundary fixed points in the corresponding conformal field
theory (the “periodic” fixed point) [75, 76]. Because of this
constraint, the strong coupling fixed point in our dissipative
resonant level model is the same as in the Luttinger liquid case
[59–61]; indeed, the effect of the total charge field (φc, θf )
(which is interacting in a Luttinger liquid but non-interacting
here) scales to zero at the fixed point. Furthermore, any model
that scales to the strong coupling point can be used to deduce
the properties near that point. In particular, a wire with two
weak potential barriers is a good model for the residual effect
of the quantum dot [59, 64].

For an explicit description of the strong tunneling limit
that allows calculation of the I-V curve, we therefore start
with two symmetric δ-function barriers spaced by ` in a 1D
wire of fermions denoted ψR(x) and ψL(x) for left and right
movers. The fermions are then described via bosonization by

the canonical bosonic fields θ and φ [59]. For the moment
the fields are non-interacting; we add the effect of the envi-
ronment and the bias later on. The Hamiltonian is H0 + HT

where

H0 =
1

2

∫ ∞
−∞

dx [(∂xθ)
2 + (∂xφ)2], (11a)

HT = A
∑
±

cos[2
√
πθ(±`/2)± kF `]. (11b)

The form cos[2
√
πθ] appears because it corresponds to 2kF

backscattering of the underlying fermions [59], ψ†RψL + h.c.,
as can be checked by using the bosonization relation Eq. (6)
for ψL,R to refermionize this term. This is, of course, the
expected effect of scattering from a potential barrier.

As in the weak barrier case, it is convenient to form the sum
and difference fields

θc ≡ [θ(`/2) + θ(−`/2)]/2 and θf ≡ [θ(`/2)− θ(−`/2)]/2.
(12)

(In contrast to the weak-tunneling case, the φ fields now
have Dirichlet boundary conditions, becoming discretized
constants at strong coupling [59, 74], and so do not appear
in the expressions for θc and θf here.) When on resonance for
a single level, one has kF ` = π/2 at strong coupling [73], so
that the barrier terms become

HT = A cos(2
√
πθc) sin(2

√
πθf ). (13)

We now incorporate the external bias potential V and
the fluctuating potential caused by the environmental field
ϕ. The environmental potential fluctuations are given by√

2πϕ̇ which in a Hamiltonian formulation corresponds to
ir2
√

2π∂xϑ(0), where ∂xϑ(0) appears naturally as the charge
fluctuation operator conjugate to ϕ [see Eq. (5)]. Though at
weak coupling this potential difference is applied between the
source and drain leads, Eq. (3), at strong coupling, in contrast,
the potential is applied between the right-moving fermions
(those coming from the source) and left-moving fermions
(from the drain). Applying the potential in this way is com-
monly done, for instance, in discussing the quantum Hall ef-
fect [50]. Thus, in terms of the strong coupling fermions
ψR(x) and ψL(x) the bias and environmental coupling are

Hµ+Env =
eV + ir2

√
2π∂xϑ(0)

2

[∫ −`/2
−∞

dxψ†R(x)ψR(x)−
∫ ∞
`/2

dxψ†L(x)ψL(x)

]
(14a)

=
eV + ir2

√
2π∂xϑ(0)

4

1√
π

[∫ −`/2
−∞

dx[∂xθ(x)− ∂xφ(x)]−
∫ ∞
`/2

dx[∂xθ(x) + ∂xφ(x)]

]
(14b)

= −
[
eV

4
√
π

+ i2
√

2r∂xϑ(0)

] ∫ ∞
0

dx ∂xθc(x). (14c)

The dependence on bias, the first term in (14c), is handled
by performing a time-dependent gauge transformation that

moves the bias into the barrier term HT , as at weak cou-
pling. Thus, in Eq. (13) cos(2

√
πθc) → cos(2

√
πθc + eV t).
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Since the right-moving particles (from the source) have chem-
ical potential eV higher than that of the left-moving particles
(from the drain), it is natural that the bias appears as a phase
eV t in the backscattering operator.

The next step is to integrate out the environmental degrees
of freedom ϑ(x) and ϕ(x). The bilinear coupling to the lead
fermions, the second term in (14c), then generates an effec-
tive coupling that causes θc(x) and φf (x) to be interacting
fields. The integrating-out procedure is best performed in a
Lagrangian formulation and is outlined in Appendix A. Since
they are interacting fields, we relabel them θ′c and φ′f for con-
sistency. Indeed, the resulting free Hamiltonian is, as ex-
pected, identical to that at weak coupling, Eq. (10).

The strong-coupling effective model thus obtained is

Heff =
1

2

∫ ∞
0

dx
[
(∂xθf )2 + (∂xφc)

2 (15a)

+ (1 + r)(∂xθ
′
c)

2 +
1

1 + r
(∂xφ

′
f )2
]

(15b)

+ A cos
[
2
√
πθ′c(0) + eV t

]
sin
[
2
√
πθf (0)

]
. (15c)

We emphasize that the modes represented by fields θf and
φc are free while those represented by θ′c and φ′f are inter-
acting [77]. The coupling between these two sets of modes
is given by the barrier term, (15c), that describes the devia-
tion from the uniform state characterizing the QCP. Recalling
that a bosonic operator of the form cos(2

√
πθ) corresponds

to backscattering of the underlying fermions, we see that this
coupling involves the simultaneous backscattering of both sets
of modes. Note that the bias enters the backscattering of the
interacting modes.

The strength of the barrier term, A, is not known micro-
scopically as it is the result of the flow from weak to strong
coupling. It is helpful to recall at this point the equilibrium
flow to the strong coupling point. The equilibrium RG scaling
equation for A coming from Eq. (15c) is

dA

d lnD
=

1

1 + r
A, (16)

where the energy cutoff D runs from D0 = 1 down to 0—
see the supplementary material for an explicit demonstration
using standard methods [78]. The scaling dimension of the
backscattering operator is then Ω ≡ 1 + 1/(1 + r), showing
that the operator is irrelevant and A→ 0 at the QCP.

The linear response conductance at zero temperature is thus
that of the system defined by Eqs. (15a)-(15b). By combining
the charge and flavor fields, one clearly obtains a translation-
ally invariant system (for details see [79]), in which one there-
fore has perfect transmission and thus G = e2/h [17]. This is
the same result as for resonant tunneling in a Luttinger liquid
[59, 60]; in fact, the scaling dimension of the backscattering
operator here is also the same. This connection is explained

explicitly in Appendix B. From general considerations (see,
e.g., [60]) one expects the low temperature or bias deviation
from perfect transmission to be a power law related to this
scaling dimension, namely

∣∣dI/dV − e2/h
∣∣ ∝ T 2/(1+r) or

∝ V 2/(1+r).
V. THE I-V CURVE

We now turn to an explicit calculation of the I-V curve: we
find the correction to perfect transmission caused by the joint
backscattering term Eq. (15c). Because A is small, we work
to leading order in this term but keep all orders in the bosonic
fields, and use a Keldysh approach to find the nonequilib-
rium current [80]. The fact that we work to only second
order in A leads to a considerable simplification [81, 82]: a
Keldysh calculation for scattering by a local operator to sec-
ond order shows that the current is related to the backscatter-
ing rate Γ(V, T ), which in turn is given simply by a golden
rule expression [81, 82]. The current is given by the differ-
ence between the forward and backward rates; consequently,
the backscattering-related current is ∆I(V, T ) = e[Γ(V, T )−
Γ(−V, T )].

The backscattering matrix element needed is [56]

〈f |HT|i〉 =A 〈Rf1 | cos[2
√
πθ′c(0)]|Ri1〉

× 〈Rf2 | sin[2
√
πθf (0)]|Ri2〉,

(17)

where |R1〉 and |R2〉 represent the states of θ′c and θf , respec-
tively, and i and f label the initial and final states. Recall
that in time-dependent perturbation theory, an explicit oscilla-
tory time dependence such as eV t in Eq. (15c) factors out and
enters the energy conservation constraint. The rate is, then,
given by

Γ(V, T ) =A2 2π

~
∑
Ri1R

f
1

∑
Ri2R

f
2

× |〈Rf1 | cos
[
2
√
πθ′c(0)

]
|Ri1〉|2Pβ(Ri1)

× |〈Rf2 | sin
[
2
√
πθf (0)

]
|Ri2〉|2Pβ(Ri2)

× δ(ERi1 + ERi2 + eV − ERf1 − ERf2 ),
(18)

where Pβ(Ri1,2) = 〈Ri1,2|ρβ |Ri1,2〉 refers to the density matri-
ces of the fields and the subscript β is a reminder of the effect
of temperature.

To evaluate the rate, first rewrite the δ-function as an inte-
gral over time of an exponential. Then, notice that the factors
exp(iEi,f t/~) can be produced by acting on the initial or fi-
nal state with exp(iHt/~). Thus, changing to the Heisenberg
picture for the fields and dropping the argument x = 0 for
clarity, we find
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Γ(V, T ) =
A2

~2

∫ ∞
−∞

dt
∑
Ri1R

f
1

〈Ri1| cos
[
2
√
πθ′c(t)

]
|Rf1 〉〈R

f
1 | cos

[
2
√
πθ′c(t = 0)

]
|Ri1〉Pβ(Ri1)

×
∑
Ri2R

f
2

〈Ri2| sin
[
2
√
πθf (t)

]
|Rf2 〉〈R

f
2 | sin

[
2
√
πθf (t = 0)

]
|Ri2〉Pβ(Ri2)eieV t/~

=
A2

~2

∫ ∞
−∞

dteieV t/~
〈
cos
[
2
√
πθ′c(t)

]
cos
[
2
√
πθ′c(0)

]〉 〈
sin
[
2
√
πθf (t)

]
sin
[
2
√
πθf (0)

]〉
.

(19)

Evaluation of the bosonic correlation function is standard, see for example Refs. [68, 73]. In terms of the scaling dimension
Ω=1 + 1/(1 + r) of the backscattering operator, the result for the rate is

Γ(V, T ) =
A2

4~2

∫ ∞
−∞

dteieV t/~ exp

[
−2Ω ln sinh

(
πkBT |t|

~

)
+ 2Ω ln

πkBT

~ωR
− ΩiπSign(t)− 2Ωγ

]
=

A2

4~2

π

Γ(2Ω)

(
2πkBT

~ωR

)2Ω−1
1

ωR
exp

(
eV

2kBT

) ∣∣∣∣Γ(Ω + i
eV

2πkBT

)∣∣∣∣2 ,
(20)

where ωR is the energy cutoff of the bosonic bath and γ is Euler’s constant. Physically, as this rate involves gain of energy, it
corresponds to backscattering from the right-moving to left-moving channel [using the convention of Eqs. (3) and (14c)]. The
net current is related to the difference of this rate and that in the opposite sense, namely Γ(−V, T ). Since the energy associated
with the bias in each backscattering event is eV , we conclude that the charge carried by each quasi-particle is e. Consequently,
the backscattering-related current is ∆I(V, T ) = e[Γ(V, T )− Γ(−V, T )]. Adding this to the perfect transmission when A = 0,
we arrive at our final result for the I-V curve

I(V, T ) =
e2

h
V

1− A2π2

~2ω2
R

1

Γ( 2
1+r + 2)

(
2πkBT

~ωR

) 2
1+r

∣∣∣∣∣∣∣∣
Γ

(
1

1 + r
+ 1 + i

eV

2πkBT

)
Γ

(
1 + i

eV

2πkBT

)
∣∣∣∣∣∣∣∣
2
 . (21)

This is the main theoretical result of this paper: the nonlin-
ear I-V curve to leading order in the backscattering amplitude
A in the critical regime of a strong-coupling QCP (path 1 in
Fig. 1). Flow to this QCP occurs by tuning the system (de-
scribed by the original microscopic Hamiltonian in Sec. II)
to be on resonance and to have symmetric source and drain
barriers. The flow to the QCP is then cutoff by the tempera-
ture or bias. At large bias, a power-law dependence is found,∣∣dI/dV − e2/h

∣∣ ∝ V 2/(1+r), as expected from the equilib-
rium RG analysis at the end of Sec. IV. A plot of the full result
is shown in Fig. 2.

VI. COMPARISON TO EXPERIMENT

Experiments were performed on quantum dots fabricated
from carbon nanotubes contacted by Cr/Au electrodes. The
electrodes were further connected to the bonding pads by
Cr resistors that provided dissipation. For more informa-
tion on the fabrication and characteristics of the samples, see
Refs. [17, 18]. Here we show data from a sample with r=0.5
(for similar data for a sample with r = 0.75 see the supple-
mental material [78]). The value of r is determined in an in-
dependent equilibrium measurement of G(T ) off resonance,
which scales as T 2r [17]. Once r is fixed, we check that the
equilibrium (eV � kBT ) value of 1−G on resonance scales

as T 2/(1+r), as demonstrated previously [18]. This confirms
that the gate voltages controlling the level’s energy and the
symmetry of the barriers are tuned to their critical values.

For the critical values of the gate voltages, we next con-
sider the conductance in the full range of applied bias—both
smaller and larger than kBT , corresponding to the equilibrium
and non-equilibrium regimes, respectively. Fig. 2 shows the
conductance G, measured in units of e2/h and rescaled such
that at a given temperature 1−G(V ) is divided by 1−G(V =0),
comapared to the full non-linear theoretical result Eq. (21)
(solid line). (Note that the value of A in (21) is eliminated in
the ratio [1−G(V )]/[1−G(V =0)]. For other ways of plotting
the data, see the supplemental material [78].) Though there
are no free parameters in the theory—this is not a fit—the the-
oretical curve captures the experimental behavior remarkably
well.

Comparing closely the experimental and theoretical results,
we see two striking features of the theory: first, it captures the
crossover regime eV ∼ kT very accurately, and, second, it
yields the correct prefactor of the universal ∝ V 2/(1+r) de-
pendence at high bias [83]. Thus our theory goes well be-
yond the frequently used scaling arguments that produce only
the exponent in the scaling regime (the slope on this log-log
plot) and not the actual conductance magnitude. The excel-
lent agreement between the theory and experiment in a wide
range of eV/kBT is a striking confirmation of our far-from-
equilibrium calculation.



7

1 0 - 1 1 0 0 1 0 1 1 0 2

1 0 0

1 0 1

1 0 2  

 

 

T ( m K )
 1 0 7   3 3 3
 1 4 3   4 0 6
 1 8 1   5 5 1

 

r = 0 . 5
 t h e o r y

e V / k B T

[1-
G(

V,T
)]/[

1-G
(0,

T)]

FIG. 2. Conductance measured in the full bias range—from much
smaller to much larger than the temperature—presented as the devia-
tion from perfect conductance 1−G(V, T ) scaled by 1−G(V =0, T )
and plotted vs. the rescaled bias eV/kBT . Here G(V, T ) is the dif-
ferential conductance G=(h/e2) dI/dV and r=0.5. Gate voltages
are tuned to their critical values; thus, for small V and T the sys-
tem approaches its QCP (see path 1 in Fig. 1). The symbols are the
experimental results at the color-coded temperatures. The red line
is the result of the non-equilibrium theory [Eq. (21)], in which there
are no free parameters. Note the excellent agreement between the
theory and data in both the crossover and power-law regimes. At
larger V/T , non-universal effects begin to set in due to 1−G(V, T )
becoming non-negligible compared to 1.

It is important to realize that, unlike measurements that use
a weakly coupled electrode as a tunnel probe that measures
the equilibrium density of states at finite bias (for example
[8, 9, 13, 48, 49]), here the two biased leads remain equally
coupled to the quantum dot, creating genuinely nonequilib-
rium conditions [29, 51].

At high enough eV/kBT , the experimental curves deviate
from the theoretical prediction (Fig. 2). There are several pos-
sible contributions to this deviation. Because 1−G is no longer
small, irrelevant operators not included in our effective strong-
coupling model [Eq. (15)] may become significant. An addi-
tional possible contribution is that the second order analysis of
the present model is inadequate at high bias. At the same time,
note that the range of applicability of our analytical results is
pushed to higher and higher eV/kBT as the temperature is
lowered.

VII. INTERPRETATION AS DYNAMICAL COULOMB
BLOCKADE

To enhance the physical understanding of our main results,
Eq. (21) and Fig. 2, we rewrite our strong coupling effective
system as a fermionic problem and thereby make a direct con-
nection to dynamical Coulomb blockade (DCB) theory. In or-
der to use non-interacting fermions, we choose to refermion-
ize the non-interacting bosonic fields (θf , φc) in Eq. (15), us-
ing the bosonization relation Eq. (6) where α now denotes this

pair. It is also convenient to move the bias out of the bar-
rier term by undoing the time-dependent gauge transforma-
tion. The coupling term Eq. (15c) is, then, replaced by the
two terms

HT = πa0A cos
[
2
√
πθ′c(0)

] [
ψ†L(0)ψR(0) + h.c.

]
Hµ = −eV θ′c(0)/

√
4π.

(22)

The fact that the bias couples to the interacting field θ′c is
a serious complication. However, note that we will calculate
the I-V curve only to leading order in A, as in Sec. V. In the
expression for the rate, the bias appears only in the energy-
conservation δ-function as the particle gains (or loses) energy
eV when it backscatters. Note that the excitations of θ′c and
θf are tightly linked in the single term in Eq. (15c), leading
to a single connection between a given |i〉 and its |f〉. Thus,
whether the energy eV comes from coupling to the interacting
or non-interacting field cannot be distinguished at this order.
We can, then, calculate the I-V curve using the bias term

H ′µ = −eV θf (0)/
√

4π. (23)

Refermionizing this term using relations analogous to those in
Eq. (6), we arrive at the auxiliary model

H ′ =
1

2

∫ ∞
−∞

dx
[
ψ†R(x)∂xψR(x)− ψ†L(x)∂xψL(x)

]
+

1

2

∫ ∞
0

dx
[
(1 + r)(∂xθ

′
c)

2 +
1

1 + r
(∂xφ

′
f )2
]

+ πa0A cos
[
2
√
πθ′c(0)

] {
ψ†L(0)ψR(0) + h.c.

}
+
eV

2

[∫ 0

−∞
dxψ†R(x)ψR(x)−

∫ ∞
0

dxψ†L(x)ψL(x)

]
.

(24)

Each line of (24) can be interpreted physically: the first line is
right- and left- moving non-interacting fermions, second line
is an interacting bosonic environment, third line shows that
backscattering of the fermions excites the environment, and
fourth line accounts for the voltage bias between the right-
and left- moving fermions.

We thus recognize the form for tunneling of non-interacting
particles through a barrier in the presence of an environment
[68–70], albeit with a strange barrier and strange environment.
Tunneling through the barrier consists of backscattering be-
tween two chiral fermion modes, and the environment θ′c in-
volves a nonlinear combination of the original electrons and
environment [the rotation Eq. (9) applies to quantities in the
exponent]. Nevertheless, the standard techniques of DCB the-
ory [68–70] can be applied to obtain the nonlinear I-V curve
to second order inA (for details of the calculation see the sup-
plemental material [78]). The result [56, 78, 84] is the same
as in the last section, Eq. (21), with the coefficient of the cor-
rection (Aπ/~ωR)2 replaced by (h/e2)/RT , where RT is the
tunneling resistance of the effective barrier in the absence of
dissipation.

The equivalence of these two coefficients is shown by con-
sidering the standard single-barrier tunneling Hamiltonian.
Denote the backscattering amplitude of the fermions by tk,q ,
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where k and q label the initial and final fermionic particle
states, HT =

∑
k,q tk,qc

†
L,kcR,q + h.c.. The standard result

for the conductance of a tunneling barrier when the amplitude
is momentum independent is 1/RT = (e2/h)|t|2[ΞN(0)]2,
where ΞN(0) is the number of states per unit energy and t is
the average matrix element. In our case, the number of states
is the size of the system L divided by the bosonization cut-
off a0, and the maximum energy for a particle excitation is
~ωR, the cutoff for the bosonic modes (−~ωR for a hole ex-
citation). The amplitude t follows from Eq. (24) noting that a
factor of 1/L is introduced in the conversion from continuous
x to discrete k. Putting these elements together one finds

1

RT
=
e2

h

(
πa0A

L

)2(
L/a0

~ωR

)2

=
e2

h

(
πA

~ωR

)2

. (25)

Thus the I-V curve that results from a DCB theory treatment
of the auxiliary strong-coupling model (24) and that found
from the true effective bosonic description (15) are identical.

This allows then the physically intuitive interpretation
of the I-V curve Eq. (21) as tunneling of non-interacting
fermions (between left-movers and right-movers) in the pres-
ence of an environment.

VIII. CONCLUSIONS

We have carried out an analytic calculation of a far-from-
equilibrium I-V curve for a system whose control parameters
are tuned to a strong-coupling QCP (path 1 in Fig. 1), and then
presented experimental results enabling a detailed theory-
experiment comparison. The calculation is made possible
through an effective bosonic description at strong-coupling.
The agreement with the experimental results throughout the
crossover and asymptotic regimes, as shown in Fig. 2, is ex-
cellent.

A simple physical interpretation is possible because only
one of the charge modes in the system couples to the resistive
environment, leaving the mode corresponding to fluctuations
of the total charge in the dot free. This feature is not present,
for instance, in the related problem of resonant tunneling in a
Luttinger liquid. It allows us to find the I-V curve, alterna-
tively, from the problem of tunneling between left- and right-
moving non-interacting fermions in the presence of a modi-
fied environment. The solution to that problem from dynami-
cal Coulomb blockade theory yields an explicit expression for
the nonlinear I-V curve. Comparing the results of the bosonic
and fermionic calculations, one finds that they are identical.

To our knowledge, this is the first calculation or measure-
ment of a nonequilibrium I-V curve of a system tuned to the
critical value of the control parameter. As mentioned in the
introduction, our situation is different from the measurements
in which a weakly coupled contact measures the equilibrium
density of states at finite bias (for example [8, 9, 13, 48, 49]).
Here the two biased leads remain equally coupled to the
quantum dot, creating genuinely nonequilibrium conditions
[29, 51].

A remarkable aspect of this system is that it is fully acces-
sible to both theory and experiment, allowing for a detailed

comparison between the two. This accessibility is character-
istic of other nanoscale systems exhibiting boundary QPT as
well, see e.g. [9–11], one of the reasons for increasing inter-
est in this topic. As nonequilibrium results in quantum criti-
cal states are exceedingly rare, our results provide a valuable
bench mark and test case for future studies of nonequilibrium
steady states.
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Appendix A: Integrating out the Dissipation at Strong Coupling

In this appendix we briefly show the final step in arriving
at the effective strong coupling model Eq. (15) by integrating
out the environment. We begin by rewriting the free lead and
environment Hamiltonian, Eqs. (11a) and (5), in the form of
an action,

S0 = SLeads + SEnv

=
1

2

∫∫
dτdx[(∂xθc)

2 + (∂τθc)
2 + (∂xθf )2 + (∂τθf )2]

+
1

2

∫∫
dτdx 2r [(∂xϑ)2 + (∂τϑ)2].

(A1)
(We write the action in terms of the θ fields rather than
the φ because of the boundary conditions connected to the
very weak barrier.) Since the action is quadratic except for
the backscattering occurring at the origin, the x 6= 0 de-
grees of freedom can be integrated out. If the backscat-
tering is not too strong, the free action is minimized when
θ(x, ωn) = θ(x=0, ωn) exp(−|ωnx|) and ϑ(x, ωn) = ϑ(x=
0, ωn) exp(−|ωnx|), where ωn is the Matsubara frequency
[59]. We can thus integrate out the x 6= 0 part of the system
so that the free action becomes zero-dimensional,

S0 =
1

β

∑
ωn

|ωn|[θf (ωn)2 + θc(ωn)2 + 2rϑ(ωn)2], (A2)

where all the fields are evaluated at x = 0.
The coupling between the leads and the environment is

given by the second term in Eq. (14c), which in action form
is

Scoup. = −i2
√

2

∫
dτ r [∂xϑ(0)] θc(0)

= i
2
√

2 r

β

∑
ωn

|ωn|ϑ(ωn)θc(−ωn),
(A3)
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rewritten in Matsubara summation form. Since this term is a
quadratic product of ϑ and θc, we can easily integrate out the
environment ϑ with a Gaussian path integral. The integral is
done with the partition function,

Z =

∫∫∫
D[θc]D[θf ]D[ϑ]e−S0[θc,θf ,ϑ]−Scoup.[θc,ϑ]−ST[θc,θf ],

(A4)
after which the effective partition function becomes

Zeff =

∫∫
D[θc]D[θf ]e−S

′
Leads−ST , (A5)

where

S′Leads =
1

2

∫∫
dτdx

[
(∂xθf )2 + (∂τθf )2

+(1 + r)(∂xθc)
2 + (1 + r)(∂τθc)

2
]
.

(A6)

Here we have extended the fields back to their original semi-
infinite domains. Notice that the interaction between dissipa-
tive environment and the θc field has been effectively incorpo-
rated into the free action of θc so that it becomes effectively
interacting with strength 1/(1 + r). Finally, we convert to
the Hamiltonian form and, to be consistent with the notation

of the main text, relabel (θc, φf ) as (θ′c, φ
′
f ). The relabeling

should also be carried out, of course, in the backscattering
term, Eq. (13), HT → A cos(2

√
πθ′c + eV t) sin(2

√
πθf ). We

thus arrive at Eq. (15).

Appendix B: Connection to backscattering operator in LL

The form of the backscattering term in Heff, Eq. (15), is
convenient for the calculation of the I-V curve in the Sec. V.
In this appendix, we show that it is also consistent with
the form of the backscattering operator in resonant tunneling
through a LL at zero bias [60], namely cos[2

√
πθ′(0)]∂xθ

′(0),
where θ′(x) is the interacting field describing the LL. Note in
this regard that both the c and f modes are interacting in a LL
and related to θ′(x). To arrive at this form from Eq. (15c), ex-
pand about the midpoint of the two barriers and call this point
x= 0. Then from Eq. (12), θ′c ≈ θ′(0) and θ′f ≈ ∂xθ

′(0)`/2.
Since ∂xθ′(0)`/2 is small and fluctuating, the sin [2

√
πθf (0)]

factor is simply expanded to yield π3/2∂xθ
′(0)/2kF , where

we have used kF ` = π/2 on resonance. Combining this
with cos θ′c ≈ cos θ′(0), we arrive at the expression above
for backscattering from two barriers in a LL.
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In this Supplemental Material, we provide details on five topics: (i) in Sec. S1, the derivation of the
equilibrium RG equation, (16) of the main text, (ii) in S2, an approximate RG argument for the I-V curve,
(iii) in S3, experimental data for another value of r, namely r= 0.75, (iv) in S4, the plotting of the r= 0.5
data on axes other than the log-log shown in Fig. 2 of the main text, and (v) in S5, the calculation of the
final expression for the I-V curve in Eq. (21) of the main text using dynamical Coulomb blockade theory.

Appendix S1: Renormalization Group (RG) Equation at Tree Level

In this section, we provide a detailed derivation of Eq. (16) in the main text using standard methods.
Basic techniques in this section come from the text “Condensed Matter Field Theory” Ref. [S1].

We start with the effective Hamiltonian Eq. (15) in the main text with V = 0 (i.e. in equilibrium). The
first step is to integrate out the degrees of freedom for x 6=0 following the procedure described in Appendix
A, as these are quadratic terms in the Hamiltonian. In this way, the problem is rewritten in the form of a
zero-dimensional action (all fields are evaluated at x=0),

S eff = S eff
0 + ST

=
1

β

∑
ωn

|ωn|
[
|θf (ωn)|2 + (1 + r)|θ′c(ωn)|

]
+ A

∫
dτ cos

[
2
√
πθ′c(τ)

]
sin
[
2
√
πθf (τ)

]
=

∫
|ω|<Λ

dω

2π

[
|θf (ω)|2|ω|+ (1 + r)|θ′c(ω)|2|ω|

]
+ A

∫
dτ cos

[
2
√
πθ′c(τ)

]
sin
[
2
√
πθf (τ)

]
,

(S1)

where Λ is the energy cutoff and the substitution
∑

ωn
→
∫
dω β

2π
transforms the free action into an integral

form. As usual for RG, we decrease the cutoff from Λ to Λ−dΛ and divide the field into fast and slow
modes denoted by > and <, respectively,

θ(τ) =
1

β

∫
dω

2π
e−iωtθ(ω)

=
1

β

∫
|ω|<Λ−dΛ

dω

2π
e−iωtθ(ω) +

1

β

∫
Λ−dΛ<|ω|<Λ

dω

2π
e−iωtθ(ω)

≡ θ<(τ) + θ>(τ).

(S2)

Based on these definitions, the action is divided into three parts: S eff
> + S eff

< + S eff
I where >, <, and I

represent the fast mode, the slow mode, and the interaction between them, respectively, with

S eff
< =

∫
|ω|<Λ−dΛ

dω

2π

[
|θf (ω)|2|ω|+ (1 + r)|θ′c(ω)|2|ω|

]
S eff
> =

∫
Λ−dΛ<|ω|<Λ

dω

2π

[
|θf (ω)|2|ω|+ (1 + r)|θ′c(ω)|2|ω|

]
S eff
I = A

∫
dτ cos

{
2
√
π [θ′c<(τ) + θ′c>(τ)]

}
sin
{

2
√
π [θf<(τ) + θf>(τ)]

}
.

(S3)
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Notice that the> and< parts come from the free quadratic action while the I part comes from the backscat-
tering term.

In the RG process, parameters are effectively “flowing” such that the system’s partition function remains
invariant. When we divide the action into fast and slow modes, the partition function becomes

Z =

∫∫∫∫
Dθ′c<Dθf<Dθ

′
c>Dθf>e

−S eff
< −S eff

> −S eff
I

=

∫∫
Dθ′c<Dθf<e

−S eff
<

∫∫
Dθ′c>Dθf>e

−S eff
> e−S

eff
I

=

∫∫
Dθ′c<Dθf<e

−S eff
< 〈e−S eff

I 〉>,

(S4)

where the expectation is calculated over all fast modes. Since the backscatteringA is small, we approximate
〈e−S eff

I 〉> ≈ e−〈S
eff
I 〉> , which can be calculated as

〈S eff
I 〉> =

∫∫
Dθ′c>Dθf>e

−S eff
> A

∫
dτ cos

{
2
√
π [θ′c<(τ) + θ′c>(τ)]

}
sin
{

2
√
π [θf<(τ) + θf>(τ)]

}
=
A

4i

∑
γ,η=±1

∫
dτ η ei2

√
π[γθ′c<+ηθf<]

∫
Dθ′ce

−S eff
c>ei2

√
πγ

∫
>
dω
2π
θ′c(ω)

∫
Dθfe

−S eff
f>ei2

√
πη

∫
>
dω
2π
θf (ω),

(S5)
where S eff

c> =
∫

Λ−dΛ<|ω|<Λ
dω
2π

[(1 + r)|θ′c(ω)|2|ω|] and S eff
f> =

∫
Λ−dΛ<|ω|<Λ

dω
2π

[|θf (ω)|2|ω|] are the fast-
mode actions. These two integrals are standard Gaussian integrals, whence

〈S eff
I 〉> =

A

4i

∑
γ,η=±1

∫
dτ η ei2

√
π[γθ′c<+ηθf<]e−2π(1+ 1

1+r
)
∫ Λ
Λ−dΛ dω/2π|ω|

= Ae−(1+ 1
1+r

) dΛ
Λ

∫
dτ cos

[
2
√
πθ′c(τ)

]
sin
[
2
√
πθf (τ)

]
.

(S6)

Before we compare Eq. (S6) with the tunneling term in Eq. (S1) at the beginning of this section, we need
to rescale the frequency as ω = ω ′Λ/(Λ + dΛ) such that the cutoff of ω′ scales back to Λ. Consequently,
to keep the partition function invariant, we have an effective backscattering strength Aeff which is related
to the original A by

Aeff = A+ dA = Ae
dΛ
Λ
−(1+ 1

1+r
) dΛ

Λ ≈ A− A 1

1 + r

dΛ

Λ
. (S7)

Now we choose the bandwidth D as the cutoff such that dD = −dΛ, and we arrive at

dA

d lnD
=

1

1 + r
A, (S8)

which is Eq. (16) in the main text.

Appendix S2: Approximate RG argument for I-V curve

It is interesting to compare the data and full theoretical results to a much simpler but approximate
treatment of the I-V curve that can be developed starting from the equilibrium RG equation, Eq. (S8).
Note that A is thus energy dependent, A(ε) = A0ε

1/(1+r) where A0 is a constant. This power-law scal-
ing is cut off below T , making A temperature dependent as well, A(ε, T ). The differential conductance
G(V, T ) = dI/dV can be obtained approximately by integrating the spectral function of the transmission
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probability T (ε, T ) = 1 − R(ε, T ) over ε with R ∝ A2. A more accurate but technically much more
complex RG treatment would involve computing R(ε, T, V ) out of equilibrium at a finite bias V . This has
been done for the single-channel Kondo model [S2, S3] and for a resonant level with gate dissipation [S4],
for instance, but not for the more complex two-channel Kondo model that we are dealing with here.

With the approximation R(ε, T, V ) ≈ R(ε, T, V =0), the non-linear current therefore reads,

I(V, T ) ≈ e

h

∫ D0

−D0

dε [1−R(ε, T )] [fR(ε)− fL(ε)] , (S9)

where fL/R(ε) is the Fermi-Dirac distribution. The normalized reflection probability R(V, T )/R(0, T )
from (S9) exhibits a crossover from power-law behavior in V/T ,

R(V, T )/R(0, T ) ≈ (V/T )2/(1+r) for V/T > 1, (S10)

to the constant value 1 for V/T→0, as expected from general considerations.
The result of solving Eq. (S9) is plotted in Figs. S1 and S2 (black line) and compared to the full theory of

the main text [Eq. (21)] as well as experimental data presented in the next sections. While the power-law
behavior is captured by this approximation, the magnitude of the conductance (i.e. the prefactor) and the
cross-over from weak to strong bias are not. The explicit bias dependence of the reflection probability
R(ε, T, V ) [S2, S3] clearly would be essential in moving the RG curve toward the experimental data and
the full theory.

Appendix S3: Experimental Data for r = 0.75

To confirm the experimental features highlighted in the main text, we present data for r = 0.75 in Fig. S1.
The agreement between the full theory (red line) and the experiment is excellent. Note in particular that
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(0,
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FIG. S1. Deviation from perfect conductance 1 − G(V, T ), scaled by 1 − G(V = 0, T ), as a function of
eV/kBT for r = 0.75. [G(V, T ) is the differential conductance, G ≡ (h/e2) dI/dV .] The symbols are
experimental results at the color-coded temperatures. The red and black lines result from the full non-
equilibrium and approximate RG theories, respectively, in which there are no free parameters [Eqs. (21)
and (S9), respectively]. As for the r = 0.5 data shown in the main text, note the excellent agreement
between the full theory and the data in both the crossover and power-law regimes. The deviations from
scaling seen at high bias in Fig. 2 of the main text were not investigated in this sample (the bias range was
limited). The data are taken from Ref. [S5].
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the theory goes right through the data in both the crossover region from low to high bias and the scaling
regime. Thus our theory goes well beyond the frequently used scaling arguments that produce only the
exponent in the scaling regime (the slope on this log-log plot) and not the actual conductance magnitude.

Appendix S4: Experimental Data Other Than log-log Plots

To supplement the comparison between experimental data and the theoretical results, here we provide
plots of the same data as in the main text using different combinations of log and linear scales. For the
r = 0.5 case, in Fig. S2 we plot in four different ways the deviation of the differential conductance from
perfect e2/h: [1−G(V, T )]/ [1−G(0, T )] vs. eV/kBT is plotted on (a) log-log, (b) semi-log, (c) linear-log,
and (d) linear-linear scales. Focusing on the crossover regime, note the excellent agreement between the
experimental data and theoretical results (red line).
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FIG. S2. Comparison between the experimental data and theoretical calculations with dissipation r = 0.5
[same data as in in Fig. 2 of main text]. We emphasize the excellent agreement of the theoretical curve (red
line) with the experimental data in the crossover regime.
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Appendix S5: Derivation of Dynamical Coulomb Blockade (DCB) Result

In this section we derive our result for the I-V curve, main text Eq. (21), from DCB theory, following the
classic DCB literature such as [S6–S9]. We start with the refermionized Hamiltonian (24) of the main text,

H ′ = H0 +Hr +Hbias

=
1

2

∫ ∞
−∞

dx
[
ψ†R(x)∂xψR(x)− ψ†L(x)∂xψL(x)

]
+ πa0A cos

[
2
√
πθ′c(0)

] [
ψ†L(0)ψR(0) + h.c.

]
+
eV

2

[∫ 0

−∞
dxψ†R(x)ψR(x)−

∫ ∞
0

dxψ†L(x)ψL(x)

]
+

1

2

∫ ∞
0

dx
[
(1 + r)(∂xθ

′
c)

2 +
1

1 + r
(∂xφ

′
f )

2
]
,

(S11)
which describes two channels of chiral fermions and the environment-coupled tunneling between them. The
backscattering Hamiltonian can be rewritten as a product of the bosonic and fermionic parts Hr = HB

r H
F
r ,

with HB
r = cos [2

√
πθ′c(0)]. Using |i〉 and |f〉 to represent the initial and final states, we calculate the rate

of backscattering between those two states with Fermi’s golden rule Γi→f = 2π
~

∣∣〈f |Hr|i〉
∣∣2δ(Ei−Ef ). The

sum over possible initial and final states needed to obtain a macroscopic observable then yields

Γ(V, T ) =
2π

~

∫ +∞

−∞
dEidEf

∑
Ri1R

f
1

|〈Ei|HF
r |Ef〉|2|〈Ri|HB

r |Rf〉|2

× Pβ(Ri)Pβ(E)δ(Ei + Ei
R + eV − Ef − Ef

R),

(S12)

where |Ei〉 represents the initial state of a quasi-particle in the right-moving channel with energy Ei and
|Ef〉 refers to the left-moving final state. As mentioned in the main text, θ′c now functions as the dissipative
bath, whose initial and final states are given by |Ri,f〉. Meanwhile, the initial density matrix element of
bosonic states is described by Pβ(Ri) = 〈Ri|ρβ|Ri〉 (here β is a reminder that the density of states is
thermally dependent). The fermionic statistics is described by Pβ(E) [see Eq. (S16) below].

For later convenience, we rewrite the delta function in its integral form

δ(Ei + Ei
R + eV − Ef − Ef

R) =
1

2π~

∫ ∞
−∞

dt exp

[
i

~
(Ei + Ei

R + eV − Ef − Ef
R)t

]
. (S13)

Combining the energy phase of the baths (Ei,f
R ) with the corresponding matrix elements yields∑

Ri,Rf

|〈Rf | cos
[
2
√
πθ′c(0)

]
|Ri〉|2 · e

i
~ (EiR−E

f
R)tPβ(Ri)

=
∑
Ri,Rf

〈Ri| cos
[
2
√
πθ′c(t, 0)

]
|Rf〉〈Rf | cos

[
2
√
πθ′c(0, 0)

]
|Ri〉Pβ(Ri)

=
〈
cos
[
2
√
πθ′c(t, 0)

]
cos
[
2
√
πθ′c(0, 0)

]〉
=

1

4

〈
ei2
√
πθ′c(t,0)e−i2

√
πθ′c(0,0)

〉
=

1

4
eJ(t),

(S14)

where J(t) ≡ 4π〈[θ′c(t)− θ′c(0)] θ′c(0)〉 is the phase-phase correlation function. [In obtaining (S14), we
used the relations [S6] 〈eiθ(t)eiθ(0)〉 = 0 and 〈ei2

√
παθ(t)e−i2

√
παθ(0)〉 = eα

24π〈[θ(t)−θ(0)]θ(0)〉 = eα
2J(t).] Since

the free bosonic action is quadratic, we can calculate this correlation with a Gaussian integral [S6, S8]

J(t) = − 2

1 + r
ln sinh(

πkBT |t|
~

) +
2

1 + r
ln
πkBT

~ωR
− 2

1 + r

iπ

2
Sign(t)− 2

1 + r
γ, (S15)

where ωR is the energy cutoff of the bosonic bath and γ is Euler’s constant.
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Next we deal with the fermionic part. In the DCB method [S6], the backscattering barrier is treated as an
effective backscattering resistance RT so that the fermionic matrix element can rewritten as

|〈Ei|HF
r |Ef〉|2Pβ(E) =

~
2πe2RT

f(Ei)[1− f(Ef )], (S16)

where f(E) represents the equilibrium Fermi-Dirac distribution.
Combining the fermionic and bosonic parts and including the phase factor exp

[
i(Ei − Ef + eV )t/~

]
,

we arrive at the expression for the backscattering rate

Γ(V, T ) =
1

2π~e2RT

∫ ∞
∞

dEidEff(Ei)
[
1− f(Ef + eV )

] ∫ +∞

−∞
dteJ(t)e

i
~ (Ei−Ef )t

=
1

2πe2RT

e
eV

2kBT

Γ( 2
1+r

+ 2)

(
2πkBT

~ωR

) 2
1+r

+1

~ωR
∣∣∣∣Γ(

1

1 + r
+ 1 + i

eV

2πkBT
)

∣∣∣∣2 . (S17)

Physically, this rate only involves tunneling from the right-moving to left-moving channel. The net tunnel-
ing rate is described by the difference Γ(V, T ) − Γ(−V, T ). Since the energy associated with the bias in
each backscattering process is eV , we can reasonably argue that the charge carried by each quasi-particle
is e. Consequently, the backscattering-related current is ∆I(V, T ) = e [Γ(V, T )− Γ(−V, T )].

As a limiting case, we know from Eq. (S11) that when A = 0 the two fermionic chiral channels are
decoupled, and the system attains a perfect conductance G = e2/h. Thus we conclude that the current is

I(V, T ) =
e2

h
V −∆I(V, T )

=
e2

h
V − e [Γ(V, T )− Γ(−V, T )]

=
e2

h
V − 1

RT

1

Γ( 2
1+r

+ 2)

(
2πkBT

~ωR

) 2
1+r

× V ×
|Γ( 1

1+r
+ 1 + i eV

2πkBT
)|2

|Γ(1 + i eV
2πkBT

)|2
,

(S18)

where we have used the equality sinh(πx) = πx · 1/|Γ(1 + ix)|2. Eq. (S18) is exactly the current given in
the main text [Eq. (21)].

[S1] Alexander Altland and Ben Simons, Condensed Matter Field Theory (Cambridge University Press, Cambridge, 2006).
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