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Abstract

This study focuses on a series of data-driven methods to study nonlinear dynamic

systems. First, a new method to estimate the location of unstable equilibria, specif-

ically saddle-points, based on transient trajectories from experiments is proposed.

We describe a system in which saddle-points (not easily observed in a direct sense)

influence the behavior of trajectories that pass ‘close-by’ them. This influence is

used to construct a model and thus identify a more accurate estimate of the loca-

tion using a number of refinements associated with linearization and regression. The

method is verified on a rolling-ball model. Both simulations and experiments were

conducted. The experiments consists of a small ball rolling on a relatively shallow

curved surface under the influence of gravity: a potential energy surface in two di-

mensions. Tracking the motion of the ball with a digital camera provides data that

compares closely with the output of numerical simulation. The experimental results

suggest that this method can effectively locate the saddle equilibria in a system, and

the robustness of the approach is assessed relative to the effect of noise, size of the

local neighborhood, etc., in addition to providing information on the local dynamics.

Given the relative simplicity of the experiment system used and a-priori knowledge

of the saddle-points, it is a useful testing environment for system identification in

a nonlinear context. Furthermore, a post-buckled beam model is used to test this

method. Because in real world applications, continuous elastic structures are more

common. The experiment results successfully capture both the stable and unstable

configurations. However, the natural frequency provided by this regression method

underestimates the natural frequency of the second mode. This is the result of low

sampling rate in the experiment which leads to inaccurate estimation of velocity and

acceleration from numerical differentiation. Simulation results from finite element
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method with higher sampling rate do not have this issue.

Then, a method to identify potential energy through probing a force field is pre-

sented. A small ball resting on a curve in a gravitational field offers a simple and

compelling example of potential energy. The force required to move the ball, or to

maintain it in a given position on a slope, is the negative of the vector gradient of

the potential field: the steeper the curve, the greater the force required to push the

ball up the hill (or keep it from rolling down). We thus observe the turning points

(horizontal tangency) of the potential energy shape as positions of equilibrium (in

which case the ’restoring force’ drops to zero). We appeal directly to this type of

system using both one and two-dimensional shapes: curves and surfaces. The shapes

are produced to a desired mathematical form generally using additive manufacturing,

and we use a combination of load cells to measure the forces acting on a small steel

ball-bearing subject to gravity. The measured forces, as a function of location, are

then subject to integration to recover the potential energy function. The utility of

this approach, in addition to pedagogical clarity, concerns extension and applications

to more complex systems in which the potential energy would not be typically known

a priori, for example, in nonlinear structural mechanics in which the potential energy

changes under the influence of a control parameter, but there is the possibility of force

probing the configuration space. A brief example of applying this approach to a 1-D

simple elastic structure is also presented. For multi-dimensional continuous elastic

systems, it would be hard to derive the whole potential energy field. However, it is

possible to learn the potential energy difference between different equilibria. This

information could help us learn the global stability of the stable equilibria, i.e., how

much energy is required to escape from the stable equilibria.

Finally, a case study using the two above-mentioned methods on short square

box columns is presented. This case study relies on simulation from the finite ele-
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ment method. The buckling of short square box column is dominated by the local

buckling of the panel on each side of the column. Hence, the buckling of short box

columns shares strong similarities with the buckling of a rectangular panel under

uni-axial load. The primary, secondary and tertiary bifurcation of a series of square

box columns with different height-to-width ratio is presented. Then, we focus on

the column with height-to-width ratio of 1.4142, in which the primary and second

bifurcation would happen almost simultaneously. And thus, the differences in the

energy level between different stable equilibria are important. The simulation results

show that after the secondary bifurcation, the energy ‘well’ depth for these stable

equilibria are similar initially. With the further increase of buckling load, the energy

well for the second mode is deeper and the second mode becomes the more stable

configuration. We also study the dynamic snap-through of the post-buckled column.

The regression method is used to estimate the equilibria configuration and the natu-

ral frequencies with great accuracy. We notice an interesting phenomenon, there can

be an energy exchange between different sides of the box column and hence, the real

parts of the eigenvalue of the Jacobian matrix are positive if we only take the shape

of one surface into account, whereas, if we take two next surfaces into the regression

method, the real parts become negative.
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Chapter 1

Introduction

1.1 Overview

Nonlinearity naturally exists in the real world [1], and multi-stable systems are the result

of strong nonlinearity. Although often undesirable, many applications have been designed

deliberately to take advantage of multi-stable structures. For example, a bistable energy

harvester would increase the band of frequencies in which the energy transfer e�ciency is

high [2]. Multi-stable components are also used in the design of adaptive optical systems,

mechanical memory structure [3]. The classic example of muti-stable structure in the

natural world{ the Venus ytrap even inspired the design of biomimetic robot [4].

Even though there are a lot of bene�ts associated with the multi-stable system, the non-

linearities do increase the di�culties on understanding the system mathematically. Among

all of the hard questions in the study of multi-stable system, one of them is how to locate

unstable equilibria in multi-stable systems. The unstable equilibrium plays an important

global "organizing" role. Their existence and location have a great e�ect on long-term

recurrent behavior [5]. For example, the basins of attraction of each stable equilibria in a

nonlinear system always separated by unstable equilibria. Locating the unstable equilib-

rium in a multi-stable system would help us have a better understanding of the transient

dynamics between these stable con�gurations.

Conservative dynamic systems always associated with an underlying potential energy. A

stable equilibrium would be a local minima in this potential energy function. To travel from

one local minima to another one, the system would need to "climb up" the potential energy

well �rst and the hill or ridge between two stable equilibrium would contain a unstable

equilibrium. For a single degree of freedom system, it is straightforward{the system can
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only transit through the hill between two potential wells. For a higher degrees of freedom

system, for example, a two degrees of freedom system, there could be a potential "ridge"

between two stable equilibria. The most e�cient transit route would be passing through the

lowest point on the ridge. By de�nition, this point would be an unstable equilibrium{to be

more speci�c{a saddle point because the area around this equilibrium point has a shape of

a saddle. From the analogy above, the importance of saddle point can be found, it usually

marks the least energy required to transit from one stable equilibrium to another one. Due

to its important role in nonlinear systems, a great amount of research has been conducted

to locate unstable equilibria, especially saddle points.

1.2 Previous research on locating unstable equi-

librium

Due to the challenges in solving the governing di�erential equations of nonlinear systems,

various techniques have been developed to predict the response of structures, especially

those susceptible to limit and bifurcation point instabilities.

A discrete approximation technique using interpolation and extrapolation was proposed

to approximate the �elds in a nonlinear theory of solid bodies [6]. The famous Riks method

that uses equilibrium path length as control parameter combining with the second order

iteration method of Newton was developed and proved to be an e�cient and reliable method

to study the nonlinear behavior of elastic systems under conservative loading conditions [7].

Later, this method is improved to be more suitable for use with �nite element method in

conjunction with the modi�ed Newton-Raphson method [8]. As result, this method, that

was originally proposed in 1979, is still widely used today{it is implemented in a great

number of commercial �nite element analysis software like Abaqus and Ansys.

A series of adaptive procedures were also proposed and were shown to be successful in

tracking the response along both stable and unstable branches in the post-buckling domain
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[9, 10, 11]. Later, an e�cient hybrid algorithm that combine the quasi-Newton method

with a deation technique was proposed. It solved the convergence problem that Newton

iterations sometimes encountered near the vicinity of a limit or bifurcation point.

Along with the above-mentioned e�orts that are mainly in the structure mechanics �eld,

researchers in other �elds also have great interests in the location of unstable equilibria. In

the economics area, the basis of the theory of learning in games is to determine the stability

of Nash equilibria [12]. If the Nash equilibrium is stable in a game, then, one would expect

the actual outcome of the game could end up in the Nash equilibrium with high possibility.

On the other hand, the outcome of the game would be hard to predict when the Nash

equilibrium is unstable. In theoretical chemistry and condensed matter physics, unstable

equilibria, especially saddle points in the potential energy �eld is also an important problem

to study. In these �elds, the con�guration of atoms could change during transition and by

locating the saddle points in the potential energy �eld, one could �nd the Minimum Energy

Path by following the gradient of the energy downhill [13].

In addition to the methods above that focus on locating the saddle point by solving

the nonlinear governing equations or in simulation, another direction is using experimental

data, i.e., the data-driven approaches. One big advantage of experimental data is that

the governing equation could be hard to �nd for some physical structures. For example,

for a simple structure such as a post-buckled beam, the initial imperfections in the shape

of the beam could be hard to represent in the governing equation. Even though there

are models that take the initial imperfection into account [5]; however, some assumptions

are typically required about the imperfection{for example, the initial shape might need to

be represented in the post-buckled mode shapes{if the initial shape is more complicated,

the governing equation would be hard to derive. Experimental data could truly reect

the structure’s behavior. In addition, in real applications, the unstable equilibrium on or

near the transient paths would be more important to researchers. Experimental data could

naturally expose these unstable equilibria that have most impact on the transition behavior.

With these advantages of using experimental data to locating unstable equilibria, however,
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few previous studies have been focus on this aspect. Harvey and Virgin theoretically and

experimentally explored the coexisting equilibria and the stability of a shallow arch [14].

The experimental results show good agreement with the numerical model. Later, Wiebe

and Virgin used dynamic data of the snap-through behavior of a post-buckled beam to

locate the saddle points. By �nding the location where the system slows down, the location

of a saddle point can be inferred with reasonable accuracy [5]. A series of works has been

focused on using path-following to locate the unstable equilibrium on the path [15, 16, 17].

These works focus on the shallow arch models and the experimental results match the

theoretical results with good agreement.

1.3 Previous work on post-buckled structures

In the following chapters, to test the methods proposed to locate unstable equilibria and

probing potential energy �elds, several models that are based on the nonlinear behavior of

post-buckled structures are used. Hence, it is worthwhile to review some of the previous

e�orts on these structures.

1.3.1 Beam theory and the buckling of beams

Buckling is the sudden change in shape of a slender structure under axial compressive load.

In early stage of buckling research, the main focuses were on the columns in buildings and

plates in ship hulls [18]. The solid column or beam (or bar), as one of the simplest models,

has been studied by generations of researchers. The study of beams can be traced back to

the 1700’s when Leonhard Euler used his calculus of variations to study the lateral deection

and buckling problems of beams and laid the foundations of (linear) Euler-Bernoulli beam

theory. It assumes, among other things, that the deection of the beam is small and the

beam is only subjected to lateral loads. Even though the Euler-Bernoulli beam theory is

just a linear theory, it is successful in predicting the buckling behavior of slender beams.

4



Until today, in commercial �nite element software like Abaqus and Ansys, beam elements

based on Euler-Bernoulli beam theory (like B23, B23H, B33 and B33H in Abaqus) is still

a powerful and e�cient tool for especially thin beams analysis. In the early 20th century,

Timoshenko and Ehrenfest introduced shear deformation and rotational inertia bending

e�ects into the beam theory and developed the Timoshenko-Ehrenfest beam theory or

simply, the Timoshenko beam theory [19]. Timoshenko beam theory could better describe

the behavior of thick beams.

In recent decades, the nonlinear post-buckled behavior of the beam/column also drew

researchers’ attention. Nayfeh and Kerider studied the vibration modes and their natural

frequencies analytically and experimentally [20]. Lacarbonara et al. used reduction meth-

ods to analyze the nonlinear vibration of a buckled beam, and the result was validated by

experimental results [21]. Nayfeh and Emam later developed the exact solution of post-

buckled beams [22]. They explored the post-buckled region and studied the critical load for

each post-buckled beam to gain stability. Wiebe and Virgin took the initial imperfection

of the beam into account and derived a two-mode reduced-order model to describe the

nonlinear dynamic behavior of a post-buckled beam [5]. In chapter 2 and chapter 3, we use

a ball rolling on a surface model to demonstrate the methods to locate unstable equilibria

and probing for potential energy surface. The governing equation of the surface is actually

the governing equation of the potential energy of a post buckled beam derived by them.

Due to the importance of the surface, it is worth to go over the derivation of the governing

equation in Ref. [5] here:

The �rst two vibration mode shapes of a clamped-clamped beam are:

�n = sinh�nx� sin�nx+ �(cosh�nx� cos�nx);

�n =
sinh�nL� sin�nL

cos�nL� cosh�nL
;

cos�nL cosh�nL = 1

(1.1)

Assuming that the beam is shallow such that the axial load within the beam can be ap-

proximated by using the average length change and using a Rayleigh-Ritz approach, the

following integro-di�erential equation can be achieved:
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�A�y + EI(y0000 � y00000 ) +

�
P +

AE

2L

Z L

0
[(y00)2 � (y0)2]dx

�
y00 = 0 (1.2)

where � is density of the material, A is the cross-section area, EI is the bending sti�ness,

y0 is the initial unloaded shape, AE is the axial sti�ness, P is the equivalent axial load.

The in-plane load resulting from the deformation of the beam is introduced by the integral

term. As in this case only the �rst two modes are considered,

y = a1�1 + a2�2

y0 = 1�1 + 2�2

(1.3)

Then, using the method of virtual work with virtual displacement w, one could have

�A

Z L

0
w�ydx+EI

Z L

0
w00(y00�y000)dx+

�
P +

AE

2L

Z L

0
[(y00)2�(y0)2]dx

� Z L

0
w0y0dx = 0 (1.4)

Using a Galerkin formulation with Eqn. (1.3) and subsequently letting w = �1 and

w = �2, respectively:

[M ]f�ag+ [K](fag � fg)�
�
P +

AE

2L
[fgT [G]fg � fagT [G]fag]

�
[G]a = 0;

[M ]ij = �A

Z L

0
�i�jdx;

[K]ij = EI

Z L

0
�00i �

00
jdx;

[G]ij =

Z L

0
�0i�
0
jdx

(1.5)

where fag and fg are the vectors of the modal and imperfection coe�cients, respectively.

These nonlinear vector equations imply a potential energy that can be described by:

V =
1

2
fagT [K]fag�fagT [K]fg� 1

2

�
P +

AE

2L
fgT [G]fg

�
fagT [G]fag+AE

8L
(fagT [G]fag)2

(1.6)

Eqn. (1.6) is the form of the governing equation of the surfaces we use in the rolling ball

experiment, the coe�cients in the equation are adjusted such that it would be suitable for

the experiment purpose.

6



1.3.2 Buckling of plates

Similar to the beam theory, plate theory is also a well established �eld. As mentioned

before, plates has been a main topic since the early stage of buckling research. Hence, a

series of linear plate theory has been developed. Leissa provides a detail review on linear

plate theory [23]. In addition to that, Bloom and Co�n’s book takes the initial imperfection

and nonlinearity into account.

In the early stages, researchers’ attention was on the primary (or critical buckling).

In 1974, Cheo and Reiss studied the second buckling of circular plates [24]. Through the

perturbation method, they noticed the existence of an unsymmetric equilibrium branch

from axisymmetric buckled state of the uniformly compressed and clamped circular plate

when the compressive load is larger than a critical value. This phenomenon is called

secondary buckling and the critical load is therefore called secondary buckling load. Stroebel

and Aarner investigated the secondary buckling behavior of a rectangular plate using the

Movchan-Liapunov theorem [25]. Bauer, Keller and Reiss pointed out that even though

the primary buckling load is easy to determine through linear theory and it is possible to

achieve an explicit expression of the primary buckling load, however, the secondary buckling

point can only be solved numerically [26]. The authors also provides an interesting fact{the

earliest discovery of secondary bifurcation might be by Poincar�e in his famous study on the

ellipsoidal �gures of equilibrium of a rotating inviscid uid.

Secondary buckling was later veri�ed by both numerical works and experimental stud-

ies. For example, Lyman et al. used continuation methods to locate the critical load of the

second bifurcation, and veri�ed the result experimentally [27]. In a series of research by

Chen and Virgin, the authors using both numerical approaches and experiment to investi-

gate the secondary buckling behavior of rectangular plates under mechanical and thermal

load [28, 29, 30].
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1.3.3 Square box column and cylindrical shells

The box column is a common structure in civil engineering. As a result, extensive research

work has been conducted to investigate the buckling behavior of square box columns. Chen

and Santathadaporn studied the box column under eccentric axial load analytically [31].

For a box column, it can be considered as four rectangular plates, Van der Neut studied the

interaction of local buckling and column failure of thin-walled compression members [32].

The local buckling is the buckling of each plate of the column and it has great similarities

with the buckling behavior of a plate. In civil structures, to increase the ultimate strength

of box column, an e�cient design of concrete �lled steel columns are widely used. Wright

proposed a method for the analysis of the buckling behavior of plates in contact with a

rigid medium [33] which provides a solid background for research on buckling of concrete

�lled steel columns. A series of work by Uy et al., further explored the buckling behavior

of concrete �lled steel box columns [34, 35, 36].

One the other hand, the thin-walled cylinder columns just received as much attention

as the box columns since the very beginning. As early as 1960s, the buckling behavior

of a circular tube was examined [37, 38]. However, the researchers later noticed that the

experimental results on the buckling load of cylindrical shells are scattered and were signif-

icantly below the predicted buckling load [39, 40]. The main reason for this disagreement

between experiments and theory is the imperfections in experiment{like the imperfections

in shell geometry, boundary conditions, pre-buckling states, external loads and so on [41].

Hence, a primary focus of the later research about cylinder shells is centered on modelling

the imperfections and cooperating them into appropriate models [42, 43].

1.4 Dissertation Outline

In Chapter 2, we propose a new method that uses observed dynamics to locate the unstable

equilibria. Along with the location of equilibria, the local dynamics, i.e., the eigenvalues

of the Jacobian matrix at the equilibrium which provides information about stability and
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natural frequencies. We �rst use a ball rolling on a surface model to present the method

through both experiment and simulation. The impact of noise is also studied. Then, a

post-buckled beam model is used to further examine the method on a continuous elastic

system. Both experiment data and dynamic data generated by �nite element analysis is

used.

In Chapter 3, a method to probe the potential energy �elds of a nonlinear system is

presented. The concept is shown with a small ball resting on an inclined surface model.

We �rst test the method on several one-degree-of-freedom systems and then examples of

two-degrees-of-freedom systems are presented. Furthermore, two examples of probing the

energy �eld on continuous elastic systems are exhibited. One is a mildly buckled panel

which can be considered as a one degree of freedom system; while the other one is a post-

buckled beam which requires at least the �rst two modes to describe the behavior. Later,

a �nite element analysis is conducted to compare with the experimental result of probing

the post-buckled beam.

In Chapter 4, a study with the two methods introduced in Chapter 2 and Chapter 3

on post-buckled box columns is described. We �rst study the post-buckling behavior of

box columns with di�erent height-to-width ratios. The local buckling behavior of the box

columns shares great similarity with rectangular panels under uni-axial load: the corners act

like simply-supported edges. A series of dynamic trajectories of the snap-through behavior

of the post-buckled box column is also generated. Using the regression method presented in

Chapter 2, one unstable and two stable equilibria can be accurately identi�ed. The natural

frequencies also show strong quantitative agreement with the results from FFT (fast Fourier

transform).

In the Appendix, a tentative method for using the probing data to derive the potential

energy is proposed. This method has its limitations in the vicinity of the area where the

surface is relatively at. Hence, it cannot guarantee an accurate integration on the probing

data. However, it is capable of achieving the original surface ‘well’ with the test case and

the results from simulation data could provide a valuable insight into the potential energy
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�eld.
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Chapter 2

On experimentally locating saddle-points
on a potential energy surface from
observed dynamics

2.1 Introduction

Conservative dynamical systems are typically associated with an underlying potential en-

ergy, and one can easily imagine in a nonlinear context a trajectory meandering through

phase space, encountering and passing-by multiple stable and unstable equilibria as it goes

[44, 45]. Given a little positive energy dissipation we would expect a trajectory to end up in

a position of stable equilibrium (a potential energy minimum), but which �nal state persists

depends crucially on the role played by unstable equilibria (saddles of varying degrees of

instability and local maxima) as well as the initial conditions [46, 47]. However, by their

very nature, unstable equilibria are very di�cult to directly observe in an experiment.

It is also quite natural to ask the question: under what circumstances might trajec-

tories escape the local con�nes of a potential energy minimum. In nonlinear systems we

must consider stability in-the-large, where perturbations are not necessarily small and co-

existing equilibria come into play [48]. This situation is quite straightforward for a single-

degree-of-freedom (DOF) system in which the location of an adjacent unstable equilibrium

(potential energy hill-top) is easily identi�ed, and a trajectory e�ectively has no choice but

to transition over the hilltop if it is to escape. However, in multi-DOF systems, the exit of

trajectories would likely be inuenced by the location of the various other equilibria that

might be present as it explores the phase space, and this presents considerable challenges

especially in an experimental context [49].

In order to �x these ideas in a relatively simple dynamical system setting, it is compelling

to develop the analogy of a small ball rolling along a single-valued curved surface under the
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inuence of gravity, and de�ned by a trajectory that lives in this 2D con�guration space

(X;Y ): a potential energy surface. In a linear system we might simply have a potential

energy function in the form of a paraboloid [44], with a single minimum. However, in a

nonlinear system the potential energy surface would typically contain a variety of turning

points, including the possibility of saddle-points, that is, equilibria characterized locally by

positive and negative curvature [50, 51]. Despite the presence of stable manifolds, they are

still unstable, and by de�nition, would not be easily identi�ed in experiments. However,

they typically play a crucial organizing role in the global dynamics of a system [52, 53, 54],

for example, in de�ning catchment regions for stable equilibria, and it it easy to envision

that a trajectory might �nd it energetically-easier, (if we include kinetic energy) to escape

by passing through a saddle-point (a kind of mountain pass) rather than going right over

a hill-top before perhaps ending up at a remote stable equilibrium. A railroad between

villages in adjacent valleys is built around a mountain rather than directly over its peak.

There are many examples of structural and particle or rigid body mechanical systems

in which behavior can be described in terms of two generalized coordinates. The double

pendulum is a good example, in which there is a single stable equilibrium (the hanging down

con�guration) and three unstable ones (involving various inverted states). In a dynamics

context this leads to a 4D phase space (with two velocities ( _X(t); _Y (t)) in addition to the

positions (X(t); Y (t))) [46]. Another example is a relatively slender shallow arch subject to

snap-through to an inverted con�guration after a perturbation. Depending on the geometry,

this snap-through is often achieved with an asymmetric component (in addition to a vertical

deection) and thus is often modeled as a simpli�ed 2-DOF system [5, 47], despite it being

a continuous elastic system. Here, we appeal to the ball-on-a-surface concept, used, for

example, to successfully to demonstrate chaos in which the surface was shaken laterally

[55]. This is the basis of the physical model and experiment to be described next.

The main goal of this study is: can we estimate the locations of unstable equilibria

(saddle-points) based on limited information associated with transient trajectories, espe-

cially based on necessarily noisy experimental data. A number of alternative system iden-
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ti�cation techniques that rely on processing time series have been developed for various

applications [56]. Restoring force surface (RFS) analysis [57, 58], nonlinear nonlinear au-

toregressive moving average with exogenous inputs (NARMAX) modeling [59, 60, 61, 62],

and Hilbert transform-based data decomposition [63, 64] have all been proved to be e�ective

methods to explore the nonlinear behavior of a system using experimental data. In this

study, we speci�cally focus on identifying unstable equilibrium points from experimental

data along with the local dynamics. The speci�c system chosen has the advantage that

it can be modeled unambiguously, and hence provide simulated data for comparative pur-

poses. It is also relatively easy to conduct experiments on, especially with the ability to

machine a surface shape to high accuracy, and measure motion using relatively high-speed

digital cameras.

2.2 Method to locate the saddle equilibria in the

system

In this study, a local linear regression method was used to �nd the location of the saddle

equilibrium. This method requires a rough initial guess of the location of the equilibrium

position being sought. In practical cases and certainly in the 2-D system here, the approxi-

mate location of the equilibrium can quite easily be estimated. For example, the estimated

location of the saddle points on the surface in Figure 2.2a can be simply measured by ruler.

In a more general context, consider a nonlinear dynamic system of the form:

_x = f(x); x 2 IR2n (2.1)

where x is a vector that represents the state of the system in phase space. In a 2-DOF
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system,

x =

266666664

x

_x

y

_y

377777775
(2.2)

Assuming xe is the vector that represents any equilibrium in the system, i.e. xe =

[xe; 0; ye; 0], where (xe; ye) is the location of the equilibrium. A new vector �x is de�ned

as �x = x � xe, the error in estimating the location of saddle equilibrium point. Then,

Eqn. (2.1) can be expanded around xe into a Taylor’s series as a function of �x:

_�x = f(xe) +r � f(xe)�x +H:O:T: (2.3)

The contributions from higher order terms (H:O:T:) are negligible in the local region of

the equilibrium, i.e., we have linearized around the equilibrium. Furthermore, the constant

(�rst) term on the right-hand side is zero at equilibrium, by de�nition. Thus, �nding the

vector xe that leads the �rst term to be zero, the equilibrium can be located.

After we collect the dynamic information _x and x in the vicinity of the equilibrium, we

use linear regression to build the relationship between _x and x, which would give us:

_x = b2n�1 + A2n�2nx (2.4)

where the vector b is associated with the constant terms in the linear regression, n is the

degrees of freedom in the system. Then, we introduce the vector �x as �x = x � xe into

Eqn. (2.4):

_�x = b2n�1 + A2n�2n(�x + xe)

= (b2n�1 + A2n�2nxe) + A2n�2n�x (2.5)

As xe is a constant vector, of only n parameters, it would only shift the constant term

in the regression model while keeping the matrix A unchanged. In Eqn. (2.5), the �rst and
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second terms on the right-hand-side are associated with the �rst and second terms in the

right-hand-side of Eqn. (2.3), respectively. Then, the location of equilibrium in the phase

space which is represented by xe can be calculated by solving for the vector xe that satis�es

the equation:

b2n�1 + A2n�2nxe = 0 (2.6)

And the eigenvalues of matrix A2n�2n provide the linearized dynamics information near

the equilibrium point xe.

2.3 The rolling ball model

2.3.1 The Physical Model

(a)
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Figure 2.1: (a) The shape of potential energy surface; the Z-direction has been
elongated to exhibit the features of the surface. (b) Contour plot of the surface, the
crosses are saddle points, solid circles are stable equilibria and hollow circle is the
unstable equilibrium.

Motivated by the aforementioned example of the snap-through buckling of a shallow
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elastic arch [5], consider the 2D surface as shown in Fig. 2.1.

This surface has �ve turning points. Two minima W1 : (x = �89:01; y = 5:67)

and W2 : (x = 93:82; y = 4:34); two saddle points S1 : (x = �12:86; y = 75:66) and

S2 : (x = �11:27; y = �72:68); and a maximum (hill-top) H : (x = �4:74; y = �3:19)

which is close to the origin (the unit is mm). In terms of an arch, we can associate x with

a vertical deection, and y with an angle, so that the two minima represent the initial and

snapped-through (stable) equilibria; and the two saddles represent predominantly angled

con�gurations that the system will typically pass through. However, although the motiva-

tion derives from a continuous elastic system, we can study this shape directly, by placing

a relatively small ball on the surface, and allowing it to respond dynamically under gravity.

For a physically reasonable scale we choose to describe the surface (in terms of mm) using,

Z(x; y) =8:333� 0:04733x� 0:01737y + (�5012:18x2 + 0:2984x4

� 2739:2y2 + 0:2415y4 + 0:5369x2y2)� 10�6;

(2.7)

shown as a contour plot shown in Fig. 2.1b, and where the stable equilibria are marked by

solid circles and the saddles by crosses. We note that the system is not quite symmetric in

x or y, the small bias terms reects the non-generic nature of pure symmetry in physical

systems.

With the assumption of pure rolling, i.e. no slipping or bouncing, and linear viscous

damping, the equations of motion of the ball on this surface are

(1 + Z2
x)�x+ ZxZy �y = �C1 _x� Zx

�
5

7
g + Zxx _x2 + 2Zxy _x _y + Zyy _y2

�
ZxZy �x+ (1 + Z2

y )�y = �C2 _y � Zy

�
5

7
g + Zxx _x2 + 2Zxy _x _y + Zyy _y2

� (2.8)

where Z(x; y) is de�ned in Eqn. (2.7), the subscripts represent partial derivatives, g is the

gravitational acceleration, C1 and C2 are damping ratios. In this physical model, the damp-

ing ratios in x and y direction can be assumed to be equal, i.e., C1 = C2 and will be relatively

small. In the simulation, the magnitude of the damping coe�cient is 0.4; this value is deter-

mined by the logarithmic dehttps://www.overleaf.com/project/5eab3c204b6655000131c782crement

of experimental free-decay data [55]. It is noted that since the surface is globally bounded,
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the ball will not roll o� to in�nity. Furthermore, some of the terms appearing in Eqn. (2.8)

can be neglected if the surface is relatively shallow, although no such approximation is

included in this work.

2.3.2 Experiment

2.3.2.1 Experimental setup

To produce this surface, a piece of black Delrin plastic block was chosen to route the surface

from Eqn. (2.7) . And coupled with a small (21.95 mm diameter) rubber-coated steel ball,

the Delrin surface could provide su�cient friction to guarantee rolling motion of the ball

(see Figure 2.2a). The motion of the ball was then tracked (from above) using a relatively

high-speed digital camera (the black surface color helped to provide contrast with the (light-

colored) ball). The surface was produced using a CNC milling machine by exactly matching

the shape described by Eqn. (2.7) to very high resolution (0.003 mm). Figure 2.2b shows the

experiment setup. A high-speed camera (Basler acA640-750uc with AZURE-0412ZM) was

located approximately 700 mm above the surface to capture the motion of the geometric

center of the ball in terms of instantaneous pixel locations (resolution 1 pixel = 0.625 mm,

frame rate = 198 Hz). The videos were processed in MATLAB to extract the position of

the ball at each frame.

A key component in the approach described in this study centers on energy. Despite a

small amount of damping, we are essentially dealing with a conservative system, such that

the initial conditions used to generate trajectories set the total energy of a given trajectory.

Since the aim of this study is to assess the extent to which trajectories are inuenced by

saddle-points it is necessary to encourage trajectories to at least pass relatively close to

a saddle. Theoretically, and given the small amount of damping present, it is possible

to choose an exact set of initial conditions such that the ensuing trajectory will come to

rest exactly on the saddle. In practice this is not possible of course; we wish to generate

transients that come into the vicinity of a saddle’s location and at relatively low speed,

and thus initial conditions need to be carefully controlled. Although this is not an issue
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in numerical simulations, in an experimental context this requires some e�ort. Two types

of initial condition were used in the experiment. The �rst type is to release the ball at

di�erent locations (and thus potential energy) on the surface with zero initial velocity. The

second type is to start the ball at rest at one of the stable equilibrium and provide the

ball a certain initial velocity (kinetic energy) in speci�c directions. The �rst approach was

relatively easy to achieve. In order to facilitate the second type of initial condition, a release

system was designed which is shown in Figure 2.2b.

(a)

Weight

Stopper
Linear bearing

Camera
Potential energy 
surface

(b)

Figure 2.2: (a) The Delrin surface used in experiment; (b) Schematic of experimental
setup.

The nonlinear surface was attached directly onto a linear bearing, the moving part of

which was connected to a weight. After the weight was released, it would pull the bearing

along with the surface and camera to move under constant acceleration, until the bearing hit

the stopper. The advantage of a constant acceleration is that it enabled the rubber-coated

ball to stay at the stable point until the bearing hit the stopper, at which point the motion

of the ball was initiated with a somewhat prescribed initial velocity. Some re�nements

(based on trial and error) were incorporated, including using a cushioned material attached

to the stopper to absorb energy at contact and a pair of strong magnets to prevent the

surface from bouncing back after the contact. The setup used in the experiment is shown

in Figure 2.3a. By changing the number of weights or the releasing location, the magnitude
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of initial velocity could be prescribed.

In addition, the angle between the surface and the linear bearing is adjustable using

the slot shown in Figure 2.3b. The camera was �xed with the surface; hence, no further

coordinate transformation is required. Then, by adjusting the amount of weight and the

angle of the surface, the desired initial velocity could be achieved. When the ball was

released with zero initial velocity, the linear bearing was �xed on the supporting table by a

magnet to prevent the movement of the surface. Thus, the initial position (x(0); y(0) or the

initial velocity ( _x(0); _y(0)) were judiciously controlled such that trajectories were generated

that had a tendency to approach the suspected location of the saddle points at relatively

low speeds.

(a) (b)

Figure 2.3: (a) The experiment setup; (b) the slot for angle adjustment.

An example trajectory from the experiment and from simulation (based on Eqns. (2.8))

are shown in Figure 2.4. The eigenvectors of the Hessian matrix of Eqn. (2.7) at the saddle

point are also presented as lines with arrows while the direction of the arrows indicate

the stability of the eigenvectors. As the trajectories are approaching the saddle point,

the velocity slows down in the unstable manifold, while begin to oscillate on the stable

direction. After the trajectories pass the saddle point, they speed up and escape in the

unstable direction.
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(a) (b)

Figure 2.4 : (a) An example trajectory from experiment; _x(0) = 0 ; _y(0) = 0; (b)
an example trajectory from simulation, _x(0) 6= 0; _y(0) 6= 0. The diameter of the red
dashed circle is 10 mm. The eigenvectors of the Hessian matrix of Eqn. (2.7) at the
equilibrium are shown as lines with arrows; the black line represents the hyperbolic
direction, the red line represents the oscillatory direction.

2.3.2.2 Experimental method

In the experiment, the frame rate of the camera was set at 198 frames per second. The

videos were processed in MATLAB after collection. The original videos were converted to

binary videos in which the ball is white against a black background. The location of the

ball was approximated by the geometric center of the white area. In the central area of the

visual �eld, distortion was not signi�cant.

After the position information was extracted, the velocities and accelerations were calcu-

lated through numerical di�erentiation. In experimental context, noise is almost inevitable.

And also, as is well known, the process of di�erentiation has the tendency to amplify noise

[65], and this can be seen in Figure 2.5. Figure 2.5 presents the position, velocity and ac-

celeration in the x direction of one example trajectory in which the black solid lines are the

noisy data of position, velocity and acceleration respectively, based on a sample trajectory

from the experiment. The progressive ampli�cation e�ect through numerical di�erentiation,
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Figure 2.5 : Comparison of noisy data with �ltered data from experiment.

especially for acceleration, can be observed clearly. To reduce the noise level, a zero-phase

digital �lter is used. We used the �lt�lt method in MATLAB to reduce the noise in the

position signals �rst and then achieve the velocities and accelerations through numerical

di�erentiation. In Figure 2.5, the red dashed line represents the �ltered data.

2.3.3 Simulation Results

First, the approach was tested using the outcome of numerical simulation of Eqns. (2.8).

The study was conducted for all stable equilibria and saddle points, even though the stable

equilibria were readily identi�ed from the �nal locations of all trajectories. The results

present similar trends for all equilibria, however in this section we speci�cally focus attention

on the results regarding the saddleS1 : (xe = � 12:863; ye = 75:659) with the lower potential

energy level, which was also the focus of [47]. It is worth pointing out that this method

is not e�ective in locating the unstable (hill-top) equilibrium for this model because the

trajectories rarely pass close-by. Hence, we did not apply this method to the hill-top

equilibrium.

Firstly, an initial estimation of the saddle's location is needed. The exact location

of the saddle point is (� 12:863; 75:659) (in mm). We rounded the numbers to achieve
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Figure 2.6 : Variation of error{the distance between calculated and theoretical equi-
librium with the diameter of the circle area in simulation, where �e = jjxcalc

e � x theo
e jj 2.

an "estimation", which is ( � 10; 70). The initial error, which is de�ned as the distance

between the initial guess to the exact location, is about 6.342 mm. Then, 100 trajectories

were generated in MATLAB based on solving Eqn. (2.8) byODE45. The data points that

fall into a circular area around the initial estimation with speci�c diameters were included

for linear regression. After that, the value of xe that would �t Eqn. 2.6 was calculated.

In this study, we de�ne the error as the distance between the calculated and theoretical

equilibrium, i.e., �e = jjxcalc
e � x theo

e jj2 where xcalc
e and x theo

e are the calculated and the

theoretical location of the equilibrium, respectively. This error is used as a measure of the

accuracy of the method.

As discussed previously, the assumption that higher order terms are negligible would

only be valid in a small region around the equilibrium. Hence, the diameter of the circular

area is a parameter in this method. Figure 2.6 shows the variation of error with the diameter

of the circle area.

For a local vicinity characterized by a circle of diameter of 10 mm (the smallest area used

in simulation), the new error is 0:855 mm which is signi�cantly smaller than the starting

estimation. With an increase in the diameter of the area, the error is also increasing. The
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Figure 2.7 : Variation of error with rounds of regression executed in simulation. The
diameter of the circular area is 10 mm.

reason is that the nonlinearities (second- and higher-order terms) are no longer negligible

as the diameter grows. Of course, if the diameter is su�ciently large that more than one

equilibrium is encompassed, then the approach would not be expected to work.

To achieve more accurate results, another round of local linear regression can be ex-

ecuted based on the estimated location of equilibrium from previous calculation. The

calculated equilibrium from the previous 'round' is the new initial estimation and the data

points that fall into a circular area around this new estimation are included for subsequent

linear regression. Figure 2.7 presents the variation of error with the number of rounds of

regression executed. As suggested by the plot, the distance rapidly decreases and converges

to 0.096 mm after four rounds of regression. When applying this method, the validity of

the result can be veri�ed by the convergence tendency.

Along with the location of equilibrium, this method can also provide linearized dynam-

ics around the equilibrium, like the stability of the equilibrium, natural frequencies and

damping ratio. For a saddle-point equilibrium, the frequency along the stable manifold is

di�cult to measure directly in an experiment. In Eqn. (2.3), r � f (xe) is the linearized

Jacobian matrix around the equilibrium. Thus, by �nding the eigenvalues of r � f (xe),
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Table 2.1 : Comparison of calculated eigenvalue with di�erent diameters in the fourth
round in simulation.

Hyperbolic direction Oscillatory direction

Positive Negative Real Imaginary

Theory 4.621 -5.421 -0.400 8.996

Diameter(mm)

10 4.616 -5.480 -0.408 8.922

20 4.659 -5.255 -0.477 8.975

40 4.638 -5.483 -0.495 9.233

80 5.176 -6.651 -0.652 8.677

the stability of equilibrium and the frequencies on the stable manifold that relates to the

transient oscillatory motion near the saddle point can be determined.

Table 2.1 lists the eigenvalues at the saddle points along with the eigenvalues calculated

by linear regression with di�erent diameters in the fourth round. In the predominantly

hyperbolic direction, which is unstable/stable, a pair of real eigenvalues exist, while in

the oscillatory direction we obtain a pair of complex conjugate eigenvalues. The �rst row

are the eigenvalues from theory. The eigenvalues from di�erent local areas suggests that

the accuracy of the eigenvalues is compromised with the increase of the area's diameter,

as expected. Table 2.2 illustrates the variation of eigenvalues from di�erent rounds of

regression. The convergence tendency can also be observed on the eigenvalues. After the

fourth round, the variation of eigenvalues between di�erent rounds are trivial.

2.3.4 Experimental Results

Using experimental data, a total number of 105 valid trajectories were collected. A valid

trajectory is de�ned as the one in which the shortest distance between the trajectory to the

equilibrium to be studied is smaller than 5 mm, i.e., the trajectory must pass into a circular

area with diameter of 10 mm around the estimated location of the saddle point. The same
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Table 2.2 : Eigenvalues in theory compare with eigenvalues calculated from linear
regression from di�erent rounds in simulation.

Hyperbolic direction Oscillatory direction

Positive Negative Real Imaginary

Theory 4.621 -5.421 -0.4 8.996

Round

1 5.261 -6.069 -0.401 7.876

2 4.503 -5.567 -0.407 9.106

3 4.633 -5.483 -0.408 8.920

4 4.616 -5.480 -0.409 8.922

5 4.613 -5.480 -0.409 8.926

6 4.609 -5.491 -0.410 8.934

7 4.609 -5.491 -0.410 8.934

8 4.609 -5.491 -0.410 8.934

initial estimated location (6 :342 mm away from the exact location of the equilibrium) is

used for the �rst round of regression. Similar to the simulation results, multiple rounds of

regression were conducted and the inuence of the area's size was again assessed.

Figure 2.8 presents the sensitivity of the error with rounds of regression. Figure 2.8a

shows that the distance reduces to 1:362 mm in the �rst round of regression. After the

fourth round of regression, the error converges to 0:787 mm which is 87:59% smaller than

the initial error of 6 :342 mm. Table 2.3 presents the eigenvalues from di�erence rounds. In

Figure 2.8b, the variable �� e is de�ned as �� e = �e� �ejRound !1 to compare the convergence

of the experimental result with the simulation result, because error in the simulation result

is smaller than the experiment result. The experimental results exhibit similar convergent

tendency.

Figure 2.9 compares the relative experimental and simulation errors with respect to

di�erent diameter of the circular area. It can be seen that the experimental result exhibits
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(a) (b)

Figure 2.8 : Variation of error with the rounds of regression executed. (a) The
result from experiment; (b) comparison of experiment and simulation result (�e in
Figure 2.7), where ��e = �e � �ejRound !1 , �e = jjxcalc

e � x theo
e jj 2.

a similar trend to the simulation result. For both experimental and simulation results, the

errors increase with the diameter in a relative slow rate when the diameter is not greater

than 20 mm. When the diameter is larger than 25 mm, ��e increases with the diameter more

rapidly and a linear relationship between ��e and the diameter is exhibited in Figure 2.9.

The eigenvalues from Table 2.4 illustrate the variation of eigenvalues with the diameter

of the area. Comparing with the converged eigenvalues after six rounds of regression, the

accuracy of the eigenvalues is comparatively good before the diameter increases to 80 mm.

This tendency is the same as the simulation result.

2.3.5 The inuence of available trajectories

As presented previously, a good estimation can be calculated from all 105 available trajec-

tories collected in the experiment. However, another important question to be answered is

how many trajectories or data points would lead to a "good enough" result. Even though

the more important factor would be the number of data points, in experiments, the data

is collected in the form of trajectories. Hence, we chose the number of trajectories as the

variable to be studied.

We randomly chose a certain number of trajectories from the library of the total 105
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Table 2.3 : Eigenvalues calculated from linear regression in di�erent round in exper-
iment.

Round
Hyperbolic direction Oscillatory direction

Positive Negative Real Imaginary

1 5.350 -5.756 -0.113 8.960

2 4.419 -4.856 -0.120 10.319

3 4.500 -4.902 -0.097 10.212

4 4.513 -4.915 -0.099 10.214

5 4.517 -4.922 -0.099 10.207

6 4.517 -4.922 -0.099 10.207

7 4.517 -4.922 -0.099 10.207

8 4.517 -4.922 -0.099 10.207

Table 2.4 : The converged eigenvalues in theory compared with eigenvalues calcu-
lated from linear regression with di�erent area size in the fourth round in experiment.

Hyperbolic direction Oscillatory direction

Positive Negative Real Imaginary

Converged 4.517 -4.922 -0.099 10.207

Diameter(mm)

10 4.517 -4.922 -0.099 10.207

20 4.637 -5.127 -0.163 10.187

40 4.381 -4.979 -0.193 10.157

80 4.397 -4.332 -0.293 9.316

120 4.154 -4.4629 -0.367 8.209
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Figure 2.9 : Comparison of the relative errors of experimental and simulation result
in with respect to di�erent diameter of the circular area. ��e = �e � �ejd=10 , where
�e = jjxcalc

e � x theo
e jj 2 and x-axis represents the diameter of the circular region.

Figure 2.10 : Variation of means and standard deviations of �e with the number of
trajectories. The red dots are the means of �e while the error bars show 1=4 of the
standard deviation. The numbers next to the red dots are the average number of data
points that fall into a circular area with 10 mm diameter around the equilibrium. The
black dashed line represents the value of �e achieved by all 105 available trajectories
from experiment, where �e = jjxcalc

e � x theo
e jj 2.
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available trajectories, and used our method to �nd the location of the equilibrium based

on this subset. This process is repeated 100 times. For each run, error, that is �e which is

de�ned as �e = jjxcalc
e � x theo

e jj2, was recorded. In addition, the number of data points that

fall into the circle area with 10 mm diameter around the estimated location of the saddle

point was also collected. Then, the means and standard deviations of �e and the average

data points were calculated. Figure 2.10 presents the variation of means and standard

deviation of �e and the averages of available data points with the number of trajectories.

When there are only 10 trajectories, both the means and standard deviations of �e are

relatively large. As the number of available trajectories increases to 20, the mean and

standard deviation reduce signi�cantly. Further increasing the amount of trajectories, the

mean of �e only changes moderately, but the standard deviation keeps decreasing. Part of

this decline is due to the fact that there are only 105 available trajectories in total; as the

amount of trajectories gets closer to 105, the standard deviation would de�nitely reduce.

However, the decreases in mean and standard deviation from 10 to 20 trajectories suggests

that a threshold exists. When the amount of trajectories is low, the random measurement

error can dominate the data and compromises the accuracy. As the number of trajectories

increase, the actual behavior of the dynamic system dominates and the accuracy of the

calculated equilibrium increases.

2.3.6 Robustness against noise

In Figure 2.5, it shows that with a properly tuned �lter, the noise can be reduced e�ectively

in the experiment. The total variation method [66, 67] has also been proven to be an

e�ective technique for extracting information from noisy data. In the experiment, the

magnitude of the noise level is di�cult to control. Hence, the inuence of noise is studied

through simulations. The noise is introduced into the simulated position data and ampli�ed

through numerical di�erentiation to replicate what happens in a real, noisy experiment. The

new position vector R is de�ned as:

R = r + � Z (2.9)
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Figure 2.11 : Comparison of the actual accelerations, accelerations with noise and
the noised data after the low-pass �lter in simulation.

where r is the original position vector from simulation without noise; Z is a vector of

independent identically distributed Gaussian entries with zero mean and unit standard de-

viation and � is the magnitude of noise. After the noise is added, to simulate the scenario

in the experiment, we use numerical di�erentiation to calculate the velocities and accel-

erations. One could expect the noise would be ampli�ed signi�cantly through numerical

di�erentiation. In Figure 2.11, the accelerations of an example trajectory are presented.

The blue lines are the original data without noise, the red lines are the data with noise

achieved from numerically di�erentiating the position data R with respect to time twice.

In the simulation, we �rst collect 100 trajectories that pass the vicinity of the equilibrium

point by using ODE45 in MATLAB to solve Eqns. (2.8) numerically and add the noise as

described above to the trajectories. In theODE45 solver, the sampling rate is speci�ed

to be the same as the experiment (198 samples per second), hence, the same �lter that is

used previously for experimental data can be used for simulation again. Then, we applied

our method twice on the data: one on the noisy data, while the other one on the �ltered

data{similar to the experiment, we applied the �lt�lt method on the position signal and

then used numerical di�erentiation to get the velocities and accelerations. In Figure 2.11,

the accelerations are presented. The �ltered data are represented by the green lines while
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Table 2.5 : Comparison of error, i.e., �e = jjxcalc
e � x theo

e jj 2, under di�erent levels of
noise, with and without �ltering. The frequencies solved from the governing equation
for the hyperbolic and oscillatory directions are N/A and 1:4318, respectively.

Noise level

� (mm)

Noisy Filtered

Error

�e (mm)

Frequencies

(Hz)

Error

�e (mm)

Frequencies

(Hz)

0 0.562 N/A 1.426 0.980 N/A 1.443

0.01 0.930 N/A 1.501 0.920 N/A 1.445

0.02 7.280 N/A 1.555 0.616 N/A 1.444

0.03 5.264 N/A 1.391 0.880 N/A 1.443

0.04 5.575 N/A 1.486 0.583 N/A 1.445

the red lines are noisy data. One can see that the �ltered data can basically capture the

behavior of the original data correctly as the green lines are close to the blue lines which

represent the actual accelerations achieved from theODE45 solver.

In Table 2.5, the impact of the noise level is shown. TheN/A under the frequencies

column indicates that the system is unstable in the associated direction. In general, for both

raw data and �ltered data, the distance between the calculated and theoretical equilibrium

increases with the increase of noise level. For a small noise level, like� = 0 :01 mm, good

estimations can be achieved from both the noisy data and �ltered data. However, as the

noise level increases further, the result from the �ltered data is signi�cantly better than

the results from noise data. By comparing the error from noisy data and distance from the

�ltered data, one can �nd that the result from �ltered data are comparatively more robust

against an increase of noise level. And both errors and frequencies are robust against the

increase of noise level.

Hence, this method can provide robust inference with small noise level without any

noise reduction technique. However, for larger noise levels, it would be better to preprocess

the data to reduce the noise �rst.
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2.3.7 Comparison of linear method with quadratic method

In Eqn. (2.3), we only keep the linear term in the right-hand-side of the equation. Of

course, for better accuracy, the quadratic term could also be considered:

_�x = f (xe) + r � f (xe)�x +

2

6
6
6
6
4

�x T r 2f 1�x
...

�x T r 2f n �x

3

7
7
7
7
5

+ H:O:T: (2.10)

Linearization is based on retaining the �rst non-zero term in the Taylor's expansion,

appropriate in a local neighborhood of equilibrium. However, in the experimental context,

due to the limitations of experimental equipment (for example, the limitation on sam-

pling rate), or proximate equilibria, it might not be possible to collect enough data points

within such a small area surrounding the equilibrium. Hence, more terms might need to be

considered in Eqn. 2.10 to achieve a better result.

In this part, we compare the performances of the linear expansion with quadratic expan-

sion under di�erent conditions through the rolling ball model. We are speci�cally interested

in the inuence of the following factors:

� Area (around the equilibrium where data is collected)

� Number of available data points

� Convergence rate

� Noise level

and how the performances of linear and quadratic approximations depend on these vari-

ables. In this study, the error �e and the diameter of the aread is nondimensionalized by

the radius of the ball, i.e.,

�e =
jjxcalc

e � x theo
e jj2

r
;

�d = d=r;

(2.11)

where r is the radius of the ball.
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2.3.8 Simulation and experimental results

First, we compare the performance of linear and quadratic expansions under di�erent num-

ber of available data points. The result is presented in Figure 2.12, in which the black

circles represent the result from quadratic method and the red diamonds from the linear

method. Note that there are multiple data points for a single method; an indication that

the method failed to converge. For small number of available data points (< 50), neither

method converges. As the number of available points increases (to about 100), the linear

method begins to converge and remains unchanged with a further increase in the number

of points. On the other hand, the quadratic method does not converge until the num-

ber of point increases to about 300. After convergence, the (steady-state) result from the

quadratic method is slightly better than the result from the linear method. The quadratic

method has more terms that needed to be �tted, and hence, it is expected to require more

data points to achieve an accurate result.

Figure 2.12 : Comparison of error from linear and quadratic expansion with di�erent
number of points in simulation. The diameter of the area is 10mm (a little less than
one nondimensional unit).

Next, the performance of the two methods under di�erent area size is studied and the re-
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sults are presented in Figure 2.13. The �rst thing worth mentioning is that with a relatively

large area size, neither of the two methods achieve a good estimation for the location of the

equilibrium point. However, the behavior of the linear and quadratic methods in large area

size are not the same{the linear method converges to a location with large error while the

quadratic method oscillates between two estimates{this phenomenon can be observed in

both the experimental and simulation results. As expected, the errors from both methods

are small when the diameter of the area is small. With the increase of the size of the area,

the error from linear method increase rapidly while the quadratic method can still provide

a relative good result. After the size of the area is greater than 6 (equivalent to about 76.2

mm), the quadratic method ceases to converge. Both experimental and simulation results

support this trend. However, it is noticeable that in the experimental result, for some small

areas, the result from quadratic method has a larger error than the linear method. This

could be the result of noise in the experimental data which will be discussed later.

(a) (b)

Figure 2.13 : Variation of the error from linear and quadratic method with the size
of the area, the diameter is also nonlimensionalized as�d = d=r wherer is the radius
of the ball. (a) Simulation results. (b) Experimental results.

Figure 2.14 compares the convergence rate of the two methods. The diameter of the

area is �xed at 10 mm. Both the simulation and experimental results suggest that there is

almost no di�erence in terms of convergence rate with small area size and adequate data

points.
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(a) (b)

Figure 2.14 : Comparison of the convergence rate of the linear and quadratic method.
The diameter of the area is 10mm. (a) Simulation results. (b) Experimental results.

In experimental case, noise is an unavoidable factor. But it is di�cult to control the

level of noise in an experiment. Hence, we only use simulation to study the impact of

(varying) noise on the two methods.

Noise is introduced into the simulated position data and ampli�ed through numerical

di�erentiation to replicate what happens in a real, noisy experiment. The method is the

same as introduced in Eqn. (2.9). The only di�erence is that� , the magnitude of the noise is

nondimensonalized. By comparing the amplitude of experimental noise on raw acceleration

data without �ltering, we estimate the noise level is about 3 � 10� 3.

After introducing the noise into the position data, a �lter (the same as used for the

experimental data) is applied and followed by numerical di�erentiation to extract the ve-

locities and accelerations. Figure 2.15 presents the variation of errors of the linear and

quadratic method with noise level. The diameter in Figure 2.15a is again 10 mm. Based

on previous study, we know that in this small area, the linear expansion can provide a

good estimation of the dynamics of the system and the inuence from the quadratic term

is negligible. However, the quadratic method increases the possibility of "over�tting" when

the noise level is relative high. In Figure 2.15a, we observe that for low noise level, both

the linear and quadratic methods perform well. As the noise level increases to 3� 10� 3, the
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