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Executive Summary 

 
Seed dispersal is a critical ecological process that influences plant community structure, 

promotes regeneration, and determines species’ abilities to track shifting climatic conditions. 

As climate change accelerates, understanding what drives variation in dispersal strategies is 

increasingly important for predicting biodiversity responses and informing conservation 

strategies. While broad patterns of dispersal modes—such as the dominance of animal-

dispersed (zoochorous) plants in tropical forests and wind-dispersed (anemochorous) plants in 

higher latitudes—are well documented, these patterns have been less studied in temperate 

regions. Moreover, little is known about how dispersal modes covary with other plant 

functional traits and how their distribution is shaped by both abiotic conditions and biotic 

dispersal agents like animals. 

 

This study addresses key knowledge gaps by evaluating the biogeographic and environmental 

structuring of plant dispersal modes across temperate and boreal forests in the continental 

United States. Specifically, it investigates: 

 

1) Whether dispersal mode distributions vary predictably with climate, topography, and 

disperser availability; 

2) Whether these patterns support the resource-availability hypothesis (which links 

dispersal strategies to environmental resource gradients) or the disperser-availability 

hypothesis (which links them to the abundance of dispersal agents); and 

3) How dispersal modes are integrated with broader suites of plant functional traits. 

To answer these questions, I applied a Predictive Trait Model (PTM) using the Generalized 

Joint Attribute Modeling (GJAM) framework. This Bayesian multivariate model jointly 

estimates how dispersal modes respond to environmental and biotic variables, including annual 

precipitation, temperature, wind speed, topographic position index (TPI), and a novel metric of 

disperser availability. Disperser demand was estimated by integrating species-level diet 

fractions, body mass, and density data for frugivorous birds and granivorous mammals using 

distance sampling from NEON data. Trait and plot data were obtained from a continental-scale 

forest inventory database (Qiu et al., 2022). Visualizations included distribution maps, climate 

space plots, model coefficient plots, and a dendrogram of trait responses. 

 

Key Findings: 

1) Geographic Trends: Zoochory is more common in warm, humid, low-latitude forests, 

while anemochory dominates in cooler, drier, and more open habitats in higher latitudes 

and elevations. This spatial partitioning aligns with expectations from tropical 

ecosystems. 

2) Climatic Associations: In environmental space, zoochory is concentrated in areas of 

low water deficit and high temperature, whereas anemochory prevails in cooler and 

more water-limited conditions. These patterns suggest that environmental constraints 

shape dispersal mode prevalence across regions. 

3) PTM Results: Despite directional associations, none of the environmental predictors 

had statistically significant effects. For zoochory, wind speed showed a negative 

association, while for anemochory, temperature and wind speed had weakly positive 

effects. Disperser demand showed little influence, possibly due to limitations in the 

input dataset. 

4) Trait-Derived Clusters: A dendrogram of predictor effects showed that dispersal modes 

cluster with relevant traits—zoochory with fleshy fruits and broad leaves; anemochory 



 3 

with winged fruits and needle-like foliage—highlighting their integration into broader 

ecological syndromes. 

5) Species-Level Patterns: While plant height and seed mass were poor predictors of wind 

response, taxonomic patterns emerged. For example, Acer species consistently showed 

positive wind speed effects (some significant), reflecting adaptations for wind dispersal 

via samaras. Conversely, some conifers (e.g., Pinus sabiniana) had unexpectedly 

negative or variable responses. 

Together, these findings highlight that while plant dispersal modes are clearly structured across 

geographic and climatic gradients, their underlying drivers are multifaceted and context-

dependent. The co-occurrence of dispersal strategies with specific leaf, fruit, and seed traits 

suggests that dispersal is part of broader ecological syndromes shaped by environmental 

filtering. However, the limited predictive power of individual environmental variables 

underscores the challenges of modeling dispersal using coarse-scale data. This study also 

reveals important methodological limitations, including simplifications in the disperser 

demand metric, assumptions inherent in distance sampling, and spatial mismatches between 

plot-level and animal survey data. Moreover, the exclusion of multi-vector dispersal and long-

distance dispersal events may overlook critical processes influencing range shifts. Future 

research should focus on improving the temporal and spatial resolution of both wind and animal 

data, incorporating more detailed dispersal traits (e.g., seed release height, aerodynamic 

morphology), and expanding taxonomic and functional coverage of dispersers. By integrating 

these improvements, future models can move toward more mechanistic, trait-based predictions 

of plant movement and community assembly under global change. 
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Introduction 

Seed dispersal is an important life-history stage that determines the spatial distribution of plant 

offspring and underlies species’ abilities to colonize new environments, escape unfavorable 

conditions, and respond to climate change (Janzen, 1970; Connell, 1971; Howe & Smallwood, 

1982; Clark et al., 1998; Nathan & Muller-Landau, 2000). Most plants rely on passive dispersal 

by abiotic vectors (e.g., gravity, wind, water) or mutualistic interactions with animals (e.g., 

frugivores, scatter-hoarders). These dispersal modes have been tightly linked to fruit and seed 

morphology, suggesting a strong evolutionary interplay between dispersal vectors and plant 

functional traits (Willson et al., 1989). However, we still lack a clear understanding of how 

dispersal modes relate to other plant functional traits, and how dispersal modes are structured 

geographically and environmentally, particularly in temperate systems. Investigating drivers 

behind spatial patterns of seed dispersal modes is essential for predicting plant migration and 

range shifts under climate change. Without this knowledge, we can’t make accurate projections 

of species range shifts. 

 

Previous studies have documented broad geographic patterns in dispersal modes. For instance, 

zoochory (animal-dispersed seeds) dominates in tropical forests with high precipitation and 

vertebrate frugivore diversity (Chen et al., 2017; Almeida-Neto et al., 2008), whereas 

anemochory (wind-dispersed seeds) becomes more prevalent at higher latitudes and in drier, 

open habitats (Moles et al., 2007). In Amazonia, Correa et al. (2023) showed that dispersal 

mode frequencies are associated with both disperser availability and environmental conditions, 

highlighting two complementary hypotheses: the disperser-availability hypothesis, which 

suggests that the prevalence of dispersal modes are associated with the abundance of suitable 

disperers (e.g., birds, wind); and the resource-availability hypothesis, which suggests that 

zoochorous modes are more common in areas with sufficient temperature, precipitation, and 

soil fertility to support the production of costly fruits (Tabarelli et al., 2003; Correa et al., 2015). 

Questions remain as to whether the observed distribution of dispersal strategies is primarily 

driven by the availability of dispersers—such as wind intensity or frugivore abundance—or by 

environmental resource gradients that constrain the metabolic cost of fruit or seed production 

(Correa et al., 2023). 

In temperate and boreal ecosystems, however, these relationships remain poorly quantified. 

Most work has focused on mutualistic dispersal interactions (e.g., frugivory and seed caching) 

rather than broader dispersal mode distributions (Chen et al., 2017). Moreover, few studies 

have considered how dispersal strategies co-vary with other plant traits, such as fruit type, seed 

mass, or plant height, or how these combinations shift across environmental gradients. 

Understanding these associations is essential for predicting plant responses to environmental 

change and informing conservation planning, especially in ecosystems where dispersal 

limitations may hinder recovery after disturbance (Clark et al., 1998; McConkey et al., 2012). 

In this study, we examine the biogeographic and environmental patterns of plant dispersal 

modes across North American forests. Specifically, we ask: (1) Do dispersal mode distributions 

vary predictably with climate, topography, and disperser availability? (2) Are these patterns 

better explained by environmental constraints (resource-availability hypothesis) or by the 

presence of dispersal vectors (disperser-availability hypothesis)? (3) How do dispersal modes 

co-occur with other functional traits, and can these associations inform broader ecological 

strategies? 
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To answer these questions, we use a Predictive Trait Model (PTM) based on the Generalized 

Joint Attribute Modeling (GJAM) framework (Clark et al., 2017) to simultaneously model 

dispersal modes and multiple environmental and biotic predictors. By integrating trait data, 

NEON animal surveys, and spatial climate data, our study builds on tropical work such as 

Correa et al. (2023) to test these hypotheses in temperate and boreal systems. Our results offer 

new insights into the trait-environment relationships that shape plant dispersal strategies and 

highlight the importance of both environmental factors and disperser availability in structuring 

plant communities. 

 

Methods 

1 Model Structure 

To examine the environmental and biotic drivers of dispersal mode distributions across 

temperate and boreal forests, we constructed a Predictive Trait Model (PTM) using the 

Generalized Joint Attribute Modeling (GJAM) framework (Clark et al., 2017). GJAM 

accommodates multivariate responses that include continuous, discrete, ordinal, zero-inflated, 

and censored data by mapping each response onto a continuous latent scale (Clark et al., 2017). 

This allows ecological interpretations to be made on the observation scale without relying on 

nonlinear link functions, enabling direct estimation of covariances among traits and predictors 

(Clark et al., 2017). 

We implemented a multivariate response structure where the dispersal mode of tree species 

served as the response variable and the environmental (mean annual temperature, precipitation, 

wind speed, and topographic position index (TPI)) and biotic (disperser demand) covariates 

were predictors. The model formula was: Traits ~ PTM (precipitation + temperature + TPI + 

wind speed + dispersers demand).  

 

2 Data Sources 

Trait Data 

Trait data for plant species were derived from Qiu et al. (2022), which includes traits linked to 

dispersal such as: 

Trait Unit Description 

Dispersal 

Modes 

- Mode type: anemochory (dispersed by wind), zoochory (dispersed 

by animal), hydrochory (dispersed by water), barochory (dispersed 

by gravity), both anemochory and zoochory 

kCalPerGm kcal/g Seed Caloric energy content 

Leaves - Leaf type (e.g., needleleaf evergreen, broadleaf deciduous) 

Fruit - Fruit type: fleshy, capsule, nut, pod, winged 

gmPerSeed g Seed mass 

maxHt m Maximum height of the species 
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Table 1. Description of plant traits used in the Predictive Trait Model (PTM). These traits are 

hypothesized to influence or co-vary with dispersal strategies across environmental gradients. 

The frequency of dispersal modes across the dataset was: anemochory (37.5%), zoochory 

(55%), hydrochory (2%), barochory (5%), and both (0.5%). Fruit categories were derived by 

collapsing related fruit types into ecologically meaningful groups (Table A1). 

Plot Data 

We used forest inventory plot data and lab plot data from the same dataset (Qiu et al., 2022) to 

determine species composition at each site. Each species' abundance was converted to a 

proportion of total plot composition and used in calculating community-weighted means for 

PTM modelling. 

Environmental Predictors 

Climate variables, including annual precipitation, temperature, and topographic position index 

(TPI), were extracted from plot data and averaged for 2022 across plot locations. Wind speed 

was averaged over a 10-year period (2008–2017) from the Global Wind Atlas at 250 m 

resolution and 50 m above ground (Global wind atlas, n.d., Figure A1). 

Predictor Unit Source Mean Range 

Precipitation mm Plot data average (2022) 80.00 12.69 – 150.1 

Temperature °C Plot data average (2022) 12.27 -0.17 – 23.30 

TPI - Plot data (2022) -0.53 -60 - 53 

Wind speed m/s Global Wind Atlas (2008–

2017) 

4.95 0.86 – 11.80 

Disperser demand g/ha Calculated (see below) 36643.79 7154.708 - 207645.78 

Table 2. Summary of environmental and biotic predictors used in the Predictive Trait Model 

(PTM). Values represent the unit of measurement, data source, overall mean, and range across 

all forest plots included in the analysis. Climate variables reflect 2022 plot-level averages, 

wind speed is derived from a 10-year mean (2008–2017), and disperser demand is estimated 

based on frugivore and granivore density and diet. 

Disperser Demand Estimation 

Disperser demand was estimated based on consumer density, body mass, and diet fraction using 

the formula: Demand (g/ha)=Density × Diet Fraction × Body Mass.  We used NEON breeding 

landbird point counts survey (2025) and NEON small mammal box trapping (2025) to calculate 

birds’ and small mammals’ density. We calculated birds’ and small mammals’ demands for 

fruits and seeds separately and combined them for final modeling.  

For bird density, we first estimated point-level demand and then aggregated point-level demand 

to the plot level by averaging across all points associated with each plot. Bird density was 

calculated with the formula: density = (n / p) / A, where: n = number of detections, p = detection 

probability, A = effective area (4.91 ha, based on a 250 m diameter point). Distance sampling 

was conducted using the Distance package in R (Miller et al., 2019). Truncation was set at 450 

m (99% of observations; Buckland et al., 2001). Model selection for calculating detection 

probability followed recommendations from Buckland et al. (2001): Hazard-rate with simple 
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polynomial adjustments (AIC = 402201.86) was selected as the best model based on 

comparisons with uniform and half-normal functions. In cases with fewer than 20 detections 

per species, a general detection probability estimate from all bird species (p̂ = 0.31) was applied 

(Table A2). Small mammals density calculation follows similar procedure (Table A3).  

Bird diet fractions were obtained from Dubovyk (2024) and birds body mass (in grams) is 

sourced from the lab trait dataset, updated with the Dunning dataset (WB3-update August 

2023.xls., n.d.) and online searches for species not covered for bird. Small mammals’ diet 

fraction and body mass were obtained from lab dataset. 

Demand was calculated separately for fruit and seed dispersers (birds and mammals) and then 

summed to produce the final disperser_demand predictor. Results of bird and small mammals 

demand as dispersers are shown in Figure A2. Of 532 bird and 219 mammal points, 131 

locations overlapped. For these, we selected the nearest forest plot within a 5 km radius, 

resulting in 97 valid points for the final model.  

 

3 Analysis Workflow 

We first visualized the geographic distribution of dispersal modes using all available plot data 

by generating distribution maps across the study region. To better understand the 

environmental conditions associated with different dispersal strategies, we constructed climate 

space plots, plotting environmental variables against the dispersal mode. 

For statistical modeling, we ran the Predictive Trait Model (PTM) using the processed dataset 

that matched NEON animal survey sites with plot-level trait and climate data. Model outputs 

from the Generalized Joint Attribute Model (GJAM) were used to evaluate how plant traits and 

environmental conditions covary with dispersal modes.  

To help interpretation of PTM results, we produced coefficient plots of posterior distributions 

for selected predictors across dispersal modes, highlighting effect size and uncertainty and a 

dendrogram to examine clustering relationships among plant traits used in the PTM. Trait 

distance matrices were computed using scaled values, and clustering was performed using 

hierarchical agglomerative methods. The dendrogram was constructed using the ‘ggdendro’ 

and ‘dendextend’ R packages (de Vries and Ripley, 2022; Galili, 2015), with visualization 

aided by ggplot2 (Wickham, 2016). 

All analyses and visualizations were conducted in R (R Core Team, 2024). Spatial data were 

processed using base R functions and visualized using ggplot2. All code was documented for 

reproducibility. 

 

Results 

 
Geographic Patterns of Dispersal Modes 

 

The geographic distribution of dispersal modes, visualized as community-weighted means 

(CWMs) weighted by mean fecundity (g/ha), reveals distinct spatial patterns across North 

America (Figure 1). Zoochory (animal dispersal) dominates in the southeastern United States 
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and other low-latitude regions, especially in eastern deciduous forests and southern mixed 

woodlands. Its prevalence decreases toward higher latitudes and more arid or open landscapes 

in the west. In contrast, anemochory (wind dispersal) shows an inverse pattern, with greater 

representation in northern latitudes and western interior regions such as the boreal forests and 

Great Plains.  

 

 
Figure 1. Geographic distribution of zoochory and anemochory across North America. Values 

represent the proportion of each dispersal mode within communities, weighted by mean 

fecundity (g/ha). Darker colors indicate higher community-weighted representation of the 

dispersal mode. Maps highlight the latitudinal gradient, with zoochory concentrated in lower 

latitudes and anemochory more common in northern and interior regions. 

 

 Climatic Space of Dispersal Modes 

 

The climate space distribution of zoochory and anemochory, plotted using mean annual 

temperature (°C) and mean monthly water deficit (mm), reveals distinct ecological niches for 

each dispersal strategy (Figure 2). Zoochorous species tend to dominate in warmer and wetter 

regions, clustering in areas with higher mean annual temperatures and lower water deficits, 

consistent with environments that support frugivorous animal communities. In contrast, 

anemochorous species are more prominent in cooler and drier climates, particularly in regions 

with elevated water deficits and lower mean temperatures.  

 
 

Figure 2. Climatic space for zoochory and anemochory across North America. Each pixel 

represents a cell in mean annual temperature (°C) and mean monthly water deficit (mm) space, 

with shading indicating mean fecundity (g/ha) for communities dominated by each dispersal 

mode. Darker pixels correspond to higher fecundity values. Zoochory peaks in warm, low-

deficit climates, while anemochory is more prevalent in cooler, water-limited environments. 
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Model Estimates for Environmental Drivers of Dispersal Modes 

 

Posterior estimates from the Predictive Trait Model (PTM) identified distinct environmental 

correlates for zoochory and anemochory (Figure 3). For zoochory (top panel), the most 

influential predictor was wind speed, with a mean estimate of –1.27 (95% CI: –3.63 to 1.42), 

indicating a generally negative association between zoochory and high wind environments. 

Temperature also showed a negative effect (–0.472; CI: –1.36 to 0.29), while precipitation had 

a small negative estimate (–0.088; CI: –0.184 to 0.017), suggesting that zoochorous species 

may be less prevalent in drier or cooler areas. The effects of TPI (0.211; CI: –0.017 to 0.416) 

and disperser demand (6.88×10⁻⁶; CI: –1.41×10⁻⁴ to 2.10×10⁻⁴) were weak and negligible.  

 

For anemochory (bottom panel), wind speed had a slightly positive effect (0.0098; CI: –1.63 

to 1.70), but the wide credible interval suggests substantial uncertainty. Temperature had the 

strongest estimate among all predictors (0.462; CI: –0.377 to 1.22), indicating a possible 

positive association with anemochorous strategies in warmer regions. Precipitation (–0.0105), 

TPI (0.142), and disperser demand (7.06×10⁻⁵) showed minimal effects with confidence 

intervals that include zero, suggesting limited evidence for strong directional influences from 

these variables. Together, these results indicate directional association with ecological 

expectations, but the high degree of posterior uncertainty limits definitive interpretation. 

 

 

 

Zoochory 
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Figure 3. Posterior distributions of predictor coefficients from the Predictive Trait Model 

(PTM) for zoochory (top) and anemochory (bottom). Bars represent 95% credible intervals. 

Although wind speed and temperature show the strongest effects in both models, none of the 

predictors are statistically significant (credible intervals all include zero). Detailed coefficient 

values and uncertainty bounds are provided in Table A4. 

 

Trait Response Similarities Based on Predictor Effects 

 

The dendrogram generated from model output visualizes the similarity in how different traits 

respond to the set of environmental predictors in the PTM, rather than direct correlations 

between traits themselves (Figure 4; Clark, 2024). Dispersal modes appear across different 

branches, indicating contrasting environmental response profiles. For example, anumochory 

clusters closely with traits such as needle-leaved evergreen foliage and winged fruit, consistent 

with traits that are typically adapted to open, seasonal, or high-wind environments. In contrast, 

zoochory is grouped nearer to fleshy fruit types and broad-leaved deciduous species, reflecting 

trait syndromes commonly associated with animal-mediated dispersal in mesic forest 

environments. Interestingly, barochory clusters with needle-leaved deciduous species, which 

indicate adaptation to harsh, nutrient-poor, or drought-prone habitats, where traits such as 

needle-leaved deciduous and minimal dispersal investment (barochory) are beneficial. 

 

This dendrogram emphasizes how different dispersal strategies co-occur with specific 

ecological traits under similar environmental gradients, potentially pointing to functional trait 

combinations that enhance performance under given conditions. As emphasized by Clark 

(2023), the clustering reflects trait responses to predictors rather than intrinsic trait similarities, 

providing a valuable framework for interpreting the ecological assembly of trait syndromes in 

plant communities. 

Anemochory 
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Figure 4. Hierarchical clustering of traits based on similarity in response to environmental 

predictors in the PTM. The dendrogram reflects shared patterns in model coefficients rather 

than direct trait correlations. Dispersal modes form distinct clusters: anemochory with needle 

leaves and winged fruits, zoochory with fleshy fruits and broad leaves.  

Wind Speed Effects Relative to Seed and Height 

To further explore trait-based variation in wind-mediated dispersal, we examined species-

specific estimates of wind speed effects from the PTM in relation to seed mass and maximum 

plant height for anemochorous species (Figure 5). The first plot displays wind speed effect 

estimates against maximum height, while the second relates them to seed mass (g/seed). 

Despite theoretical expectations that taller plants or lighter seeds should benefit more from 

wind dispersal due to prolonged airborne time and reduced terminal velocity (Greene & 

Johnson, 1989; Tackenberg, 2003), no clear relationship emerges in either case. 

 

Across a wide range of maximum heights (10–60 m), wind speed effect estimates fluctuate 

without a consistent pattern. Similarly, wind speed estimates do not align clearly with seed 

mass. Most species cluster around very small seed sizes (<0.1 g), but their wind response 

estimates vary from slightly negative to moderately positive. One outlier, Pinus sabiniana, has 

a notably larger seed mass (0.55 g) and a strongly negative wind effect estimate, but it alone 

does not define a broader trend.  

 

However, when evaluating the full species-level results (Table A5), certain taxonomic patterns 

and individual species stand out. Most acer species consistently exhibit positive wind speed 

estimates, including Acer pensylvanicum (0.0589), Acer rubrum (0.0238), Acer saccharum 

(0.0407), and Acer spicatum (0.0569), with two (Acer pensylvanicum and Acer spicatum) 

showing statistically significant positive effects. These results align with their known 

morphological adaptated samaras that facilitate wind dispersal. In contrast, Platanus 
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occidentalis showed a significant negative effect of wind speed (–0.0443; 95% CI: –0.0859 to 

–0.00276), suggesting lower dispersal success in windy environments despite being classified 

as anemochorous. Similarly, several conifer species including Pinus taeda and Pinus sabiniana 

had negative wind speed effects, though these were not statistically significant. Conversely, 

several species showed strong positive but non-significant wind responses, including Thuja 

plicata (0.046), Picea mariana (0.0446), and Tsuga heterophylla (0.0428), possibly reflecting 

adaptation to high-elevation or high-wind habitats where such traits offer a selective advantage. 
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Figure 5. Species-level wind speed effect estimates for anemochorous plants plotted against 

seed mass (bottom) and maximum height (top). While no strong linear relationships are 

observed, several taxonomic and functional groups (e.g., Acer species, conifers) show 

consistent patterns in wind response. Significant effects are noted for both positive and 

negative associations (see Table A5). 

 

 

Discussion 
 

Our observation map reveals strong geographic and climatic partitioning of plant dispersal 

modes across North America. Zoochory dominates in warmer, low-latitude regions while 

anemochory increases with latitude and in more open, seasonally dry ecosystems. These 

findings support long-standing biogeographic patterns observed globally, where animal 

dispersal is prevalent in species-rich tropical and subtropical ecosystems (Correa et al., 2023; 

Moles et al., 2007; Chen et al., 2017), and wind dispersal becomes increasingly dominant at 

higher latitudes and elevations, particularly in open or seasonal biomes (Correa et al., 2023). 

 

The observed climate space separation further underscores the ecological divergence of these 

strategies: zoochory clusters in warm, low-deficit environments conducive to frugivory, while 

anemochory occupies cooler, water-limited conditions. This aligns with theoretical 

expectations that frugivorous animals are more abundant and active in mesic environments 

(Russo and Chapman, 2011), while abiotic dispersal mechanisms become more dominant 

under limiting environmental constraints (Nathan & Muller-Landau, 2000). 

 

Despite these clear biogeographic trends, our PTM results show considerable uncertainty in the 

statistical relationships between environmental predictors and dispersal modes. While 

zoochory showed a negative association with wind speed, temperature, and precipitation, and 
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anemochory showed weakly positive associations with wind and temperature, none of these 

predictors had statistically significant effects. These results diverge slightly from prior findings 

in tropical systems where wind strongly correlates with dispersal mode (Correa et al., 2023). 

One explanation for this may lie in the greater climatic and ecological heterogeneity of 

temperate systems, where dispersal modes are influenced by multiple interacting variables—

including disturbance history, forest structure, and disperser presence—making coarse-scale 

climatic predictors insufficient. Additionally, zoochory’s weak association with disperser 

demand in our model suggests that simple biomass- or density-based metrics may not 

adequately capture the behavioral or functional capacity of animal dispersers (Sheard et al., 

2020). For instance, a bird’s hand-wing index may need to be involved in our demand equation 

to consider different dispersal ability for different species (Sheard et al., 2020). 

The trait dendrogram revealed coherent functional groupings aligned with dispersal syndromes. 

Anemochory clustered with needle-leaved evergreen foliage and winged fruits—traits typical 

of wind-dispersed species in open or seasonal environments (Augspurger, 1986). In contrast, 

zoochory aligned with fleshy fruits and broad leaves, consistent with adaptation to frugivory. 

Barochory’s association with needle-leaved deciduous species may suggests a distinct 

ecological strategy: minimal dispersal investment, likely advantageous in resource-poor, stable 

environments such as alpine or boreal systems (Moles & Westoby, 2004). These trait-based 

groupings support the idea that environmental filters promote the co-occurrence of functional 

traits, reinforcing that dispersal mode is rarely independent but part of broader ecological 

strategies involving life history, resource use, and reproductive investment (Westoby et al., 

2002; Cornwell & Ackerly, 2009; Götzenberger et al., 2012).  

While wind dispersal is commonly modeled using proxies such as seed mass or plant height, 

our analysis of anemochorous species reveals that these traits alone poorly predict wind 

response. Across a wide range of plant sizes and seed masses, wind speed effects remain highly 

variable—echoing previous research showing that effective wind dispersal is governed by a 

complex interplay of structural and aerodynamic traits, including seed terminal velocity, 

surface morphology, drag, release height, and wind regime characteristics (Nathan et al., 2002; 

Tackenberg, 2003). 

A surprising result was the weak or even slightly positive association between wind speed and 

anemochory, despite theoretical concerns that strong winds could hinder rather than help 

gliding seeds. Indeed, while moderate winds facilitate horizontal seed displacement, 

excessively strong or turbulent winds may induce erratic seed trajectories or cause premature 

descent (Nathan et al., 2002). For gliding or autorotating seeds like samaras, optimal dispersal 

may occur under intermediate conditions where vertical lift and lateral transport are balanced 

(Augspurger, 1986; Katul et al., 2005). The coarse temporal and spatial averaging of wind 

speed in our dataset (10-year mean at 50 m height) may also obscure finer-scale effects. For 

example, gustiness or canopy-level turbulence during the seed release window may be more 

ecologically relevant than long-term mean wind speeds (Soons et al., 2004; Thomson et al., 

2011). 

 

Conclusion 

Seed dispersal is a fundamental ecological process that influences plant community structure 

and enables species to respond to environmental change. By examining the geographic and 
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environmental structuring of dispersal modes across North America, this study offers new 

insights into the drivers of variation in plant dispersal strategies beyond tropical ecosystems, 

which have been the primary focus of most previous research. 

Our findings provide partial support for both the resource-availability and disperser-availability 

hypotheses. Dispersal mode distributions showed clear geographic and climatic structuring, 

with zoochory concentrated in warmer, wetter environments and anemochory more common 

in cooler, drier, and higher-wind regions. These patterns suggest that both environmental 

constraints and disperser availability shape broad-scale distributions. However, the relatively 

weak statistical associations in our model highlight the complexity of these interactions and 

the potential for unmeasured factors—such as forest structure, disturbance regimes, and fine-

scale disperser behavior—to influence outcomes. Moreover, the co-occurrence of dispersal 

modes with suites of functional traits (e.g., zoochory with fleshy fruits and broad leaves; 

anemochory with winged fruits and needle-leaved evergreen foliage) reinforces the idea that 

dispersal strategies are embedded within broader ecological syndromes. Together, these 

insights underscore the importance of considering multiple axes of trait and environmental 

variation when predicting species’ dispersal capacities and responses to environmental change. 

Methodologically, this study introduces a novel approach for estimating animal disperser 

availability by integrating diet, body size, and density data into a predictive trait model. This 

represents a step toward more mechanistic models of plant-disperser interactions. However, at 

the same time, it underscores current data gaps and several important limitations. First, we do 

not distinguish forest types or ecoregions, which could introduce bias as dispersal strategies 

are often constrained by local biome conditions (Correa et al., 2023). Second, the analysis does 

not account for species with multiple dispersal vectors (e.g., those exhibiting both zoochory 

and barochory) or the occurrence of long-distance dispersal events, both of which play crucial 

roles in colonization processes and range expansion (Nathan et al., 2008; Jordano et al., 2007). 

Our disperser demand variable may also oversimplify complex plant-animal interactions. For 

example, differences in flight morphology (e.g., wing shape in birds) can influence dispersal 

potential (Sheard et al., 2020). Furthermore, the bird density estimates derived from distance 

sampling carry their own assumptions and limitations. A uniform truncation distance was 

applied across all species, potentially masking differences in detectability among species with 

distinct vocalization or behavior. For species with fewer than 20 detections, we applied an 

average detection probability (p̂ = 0.31), which may not accurately reflect species-specific 

detectability. As with all distance sampling approaches, the method assumes perfect detection 

at 0 m and accurate distance measurements from observers—assumptions that may not hold 

consistently in the field. Additionally, our animal disperser dataset was constrained by the 

spatial overlap between NEON animal observations and plot-level trait data, limiting sample 

size and potentially excluding relevant disperser species. Expanding the spatial and taxonomic 

coverage of frugivore and granivore data would improve estimates of disperser availability and 

ecological interactions. Finally, wind speed is averaged across a decade and does not account 

for interannual variation or conditions during seed release periods, which are often critical 

windows for dispersal success. Moving forward, further studies are needed to improve spatial 

and temporal resolution of disperser and wind data, incorporating multiple dispersal modes, 

and expanding trait coverage. 
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Appendix 

 
Table A1. Reclassification of original fruit types into broader ecological categories used in 

the analysis. Groupings reflect morphological traits linked to dispersal mechanisms. 

Reclassified Category Original Fruit Types Merged 

Fleshy syncarpium, pome, berry, berry-cone, drupe, fleshy fruit 

Winged achenosum, samara, winged drupe, winged nut 

Nut nutlet 

Capsule capsule 

Pod pod 

 
Figure A1. Wind speed distribution used in analysis. 

 

Left: Map of mean annual wind speed (2008–2017) at 50 m above ground across North 

America, obtained from the Global Wind Atlas. Color gradient indicates wind speed in m/s, 

with red/orange indicating higher wind regions (e.g., coastal and mountainous areas). 

Right: Mean wind speed as a function of the percentile of windiest areas. The plot shows that 

the windiest 10% of locations exceed 8.5 m/s, with a steady decline across the remaining 

landscape. These data were used as predictors in the PTM to evaluate environmental 

influences on dispersal mode. 

 
 

Table A2. Bird species detection probabilities and estimated densities used to calculate 

disperser demand. Detection probabilities (p̂) and standard errors (SE) are derived from 

distance sampling. Only a subset of species is shown here due to space constraints. Plot-level 

estimates of frugivore and granivore demand (g/ha) below are based on species-level diet 

fractions, body mass, and detection-adjusted density. Full table includes >500 rows; only the 

first several rows are displayed here as an example. 

 

scientificName p_hat se_hat n_detections 
Cyanocitta cristata 0.42174596 0.0149244 348 
Vireo olivaceus 0.18507039 0.00329695 1422 
Troglodytes hiemalis 0.1862124 0.01526735 59 
Catharus guttatus 0.34727464 0.01486059 238 
Seiurus aurocapilla 0.18504635 0.00370677 819 
Sitta canadensis 0.25389794 0.02225704 306 
Setophaga virens 0.1819007 0.0058505 278 
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Vireo solitarius 0.13597013 0.01103439 106 
Setophaga fusca 0.09982215 0.00644197 85 
Certhia americana 0.13779815 0.00885611 102 
Poecile atricapillus 0.22994129 0.01705118 133 
Sphyrapicus varius 0.26534681 0.01418452 110 
Catharus ustulatus 0.28924054 0.00755021 359 
Zenaida macroura 0.37819043 0.00940783 1325 
Coccyzus erythropthalmus 0.31072678 NA 5 
Catharus fuscescens 0.20775635 0.00955675 199 
Piranga olivacea 0.26575947 0.00949533 215 
Setophaga americana 0.1434305 0.00518275 323 
Setophaga caerulescens 0.13694121 0.00955135 91 
Contopus virens 0.30045822 0.01147204 353 
Haemorhous purpureus 0.31072678 NA 11 
Picoides villosus 0.26149817 0.01550656 114 
Pheucticus ludovicianus 0.22655286 0.01903214 44 
Dryocopus pileatus 0.51469207 0.02424304 166 
Corvus corax 0.80902161 0.03651302 262 
Aves sp. 0.17466929 0.01616377 156 
Buteo platypterus 0.31072678 NA 12 
Setophaga coronata 0.25345858 0.00637558 373 
Mniotilta varia 0.16276003 0.00789348 192 
Setophaga pensylvanica 0.15174485 0.00832994 147 
Sitta carolinensis 0.2676877 0.01004084 274 
Picoides pubescens 0.20036434 0.01528383 95 
Setophaga pinus 0.17685073 0.00577701 299 
Regulus satrapa 0.14355261 0.00786821 127 
Picidae sp. 0.49089733 0.02336476 153 
Junco hyemalis 0.23932956 0.00572846 491 
Oreothlypis ruficapilla 0.19251046 0.01136032 149 
Setophaga ruticilla 0.1415674 0.007077 149 
Myiarchus crinitus 0.33963558 0.01670197 404 
Hylocichla mustelina 0.35952557 0.01607976 177 
Geothlypis trichas 0.28682311 0.01304005 242 
Pipilo erythrophthalmus 0.22621382 0.00616069 448 
Empidonax minimus 0.15028924 0.00970321 124 
Baeolophus bicolor 0.30817318 0.0068575 835 
Meleagris gallopavo 0.76420988 0.12975316 44 
Turdus migratorius 0.39549696 0.01482909 339 
Bonasa umbellus 0.31072678 NA 9 
Melanerpes carolinus 0.35213249 0.01160395 499 
Agelaius phoeniceus 0.45896291 0.02468607 401 
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Quiscalus quiscula 0.31512706 0.03305483 79 
Gavia sp. 0.31072678 NA 14 

 

Plot-level estimates 

 

plotID Frugivore demand 
(g/HA) 

Granivore demand 
(g/HA) 

Mean density 
per HA 

Mean density 

ABBY_001 8220.20704 3044.13952 1.15970607 0.05562181 
ABBY_002 5398.1373 24668.2178 1.10618214 0.07524953 
ABBY_003 5609.6185 26685.3832 1.10570091 0.03890937 
ABBY_004 7034.71912 21756.972 0.88543209 0.04629197 
ABBY_006 3323.00048 2954.05427 1.14156957 0.05215134 
ABBY_007 28178.6579 19423.4543 1.36193522 0.05926907 
ABBY_008 4887.2868 9752.92473 1.33079722 0.04596873 
ABBY_009 6267.03507 19961.0238 1.07646946 0.07470086 
ABBY_010 6292.97033 23401.9875 1.2422443 0.03221712 
ABBY_011 8731.11162 29706.1272 1.48852667 0.03731556 
ABBY_013 6510.98285 45079.2198 1.34355165 0.03898758 
ABBY_014 5595.22071 11922.7709 0.91130644 0.05698815 
ABBY_016 3356.29356 2645.62388 1.28842471 0.03969223 
ABBY_017 9379.50245 1886.91485 1.53701701 0.03766809 
ABBY_018 9318.86448 32747.988 1.30301463 0.03869887 
ABBY_019 3958.5977 5178.51233 0.69862758 0.04584429 
ABBY_020 5304.70846 21333.1593 0.70386351 0.02194867 
ABBY_023 2914.45947 64456.1493 1.74767632 0.05649894 
ABBY_077 4908.03652 23941.1359 1.04359609 0.03582105 
BARR_021 0 136.122952 0.64163062 0.00812956 
BARR_031 0 204.184428 0.47731425 0.00233368 
BARR_034 0 51.0461069 0.37124441 0.00106067 
BARR_035 0 90.7486346 0.49499255 0.00117078 
BARR_038 0 294.933062 0.68945391 0.00277453 
BARR_039 0 272.245904 0.55686662 0.00282007 
BART_003 2538.30712 1681.21404 1.21142068 0.00801082 
BART_004 2414.41879 1683.84865 1.36157271 0.00874181 
BART_009 2439.72023 2031.65495 1.30764867 0.00877456 
BART_012 1714.14277 1334.38012 1.31742103 0.00801832 
BART_015 2532.05745 1275.20035 1.39706149 0.00969998 
BART_016 3117.59093 2041.81485 1.36363353 0.00935031 
BART_018 3214.22528 3025.00255 1.18541502 0.00926791 
BART_025 2468.54864 2482.25769 1.00959891 0.01051532 
BART_082 2561.02484 3022.51041 1.22097124 0.01074444 
BLAN_001 6307.8703 27509.5844 1.54484342 0.01436936 
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BLAN_003 13363.6069 32473.7926 0.99306438 0.01396014 
BLAN_004 43031.1635 58812.4021 1.08002207 0.01557985 
BLAN_005 9142.54466 4840.26613 1.32041974 0.0153124 

 

Table A3. Plot-level estimates of animal disperser demand across NEON forest plots. Values 

represent estimated frugivore and granivore demand in grams per hectare (g/ha) for each plot, 

based on NEON small mammal survey data. Decimal latitude and longitude indicate the 

geographic location of each plot centroid. Only display subset of the table due to space 

limitation. 

 

plotID 
Frugivore demand 
(g/HA) 

Granivore demand 
(g/HA) decimalLatitude decimalLongitude 

ABBY_002 9572.10714 14839.1786 45.740362 -122.30974 
ABBY_004 6302.78571 13504.2857 45.76854 -122.30036 
ABBY_007 2871.5 2871.5 45.768772 -122.36299 
ABBY_010 2659.27778 3341.33333 45.777213 -122.37368 
ABBY_014 661.5 661.5 45.749698 -122.31731 
ABBY_023 4680.5 4680.5 45.746374 -122.3814 
BART_001 5810 8346 44.046877 -71.305115 
BART_007 4042 4696 44.051112 -71.298377 
BART_012 17116.2857 21318.8571 44.047478 -71.315451 
BART_015 8700.33333 13587.3333 44.042898 -71.275059 
BART_062 13003.6 14644 44.05735 -71.308646 
BART_084 8206 11999 44.048501 -71.297965 
BLAN_001 5827.75 6006.25 39.08948 -77.9581 
BLAN_003 446 446 39.079499 -77.962386 
BLAN_006 446 446 39.084621 -77.962278 
BLAN_009 5116.57143 5381.14286 39.085574 -77.958408 
CLBJ_033 817.666667 902.666667 33.379549 -97.620436 
CLBJ_037 566 566 33.320829 -97.583125 
CLBJ_039 188.666667 1647 33.328603 -97.582408 
CLBJ_040 849 849 33.378889 -97.64828 
CLBJ_041 817.666667 817.666667 33.412252 -97.662234 
CLBJ_042 1686.66667 2149.28889 33.371728 -97.596108 
CLBJ_057 566 566 33.374409 -97.642297 
CPER_002 0 637.6 40.810459 -104.73087 
CPER_004 5165 10342.55 40.813091 -104.69854 
CPER_005 205 6237.25 40.854109 -104.72692 
CPER_006 0 7280 40.813581 -104.74875 
CPER_008 0 7280 40.798781 -104.74749 
CPER_009 0 637.6 40.82539 -104.74734 
CPER_011 1600.4 7355.82 40.86758 -104.70364 
CPER_015 4771.5 10178.3 40.853174 -104.74301 
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DCFS_003 6743.29167 33288.875 47.204875 -99.184072 
DCFS_004 820 1591 47.170237 -99.05172 

 

Figure A2. Spatial distribution of estimated demand (g/ha) for fruits and seeds across NEON 

plots. Top two maps show frugivory and granivory demand by birds; bottom two maps show 

corresponding demand by small mammals. Demand values were derived from body mass, 

diet fraction, and detection-based density estimates at each NEON site. Warmer colors 

indicate higher estimated demand 

 

 
 

 

 

Table A4. Posterior estimates from the Predictive Trait Model (PTM) for zoochory and 

anemochory. For each dispersal mode, predictor effects are reported as posterior means with 

standard error (SE) and 95% credible intervals (CI_025, CI_975). Asterisks (*) indicate 

statistically significant estimates (credible interval excludes zero). Table is sorted by 

estimate. 

Zoochory 

trait Estimate SE CI_025 CI_975 sig95 
intercept 31.8 9.19 12.8 47.6 * 
tpi 0.211 0.123 -0.0174 0.416 

 

demandHA 6.88E-06 8.72E-05 -0.000141 0.00021 
 

prec -0.0879 0.054 -0.184 0.0165 
 

temp -0.472 0.391 -1.36 0.289 
 

WindSpeed -1.27 1.26 -3.63 1.42 
 

 

Anemochory: 

trait Estimate SE CI_025 CI_975 sig95 
intercept 2.42 8.01 -13.7 16.6 

 

temp 0.462 0.388 -0.377 1.22 
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tpi 0.142 0.11 -0.0785 0.334 
 

WindSpeed 0.00979 0.861 -1.63 1.7 
 

demandHA 7.06E-05 8.46E-
05 

-5.41E-05 0.000255 
 

prec -0.0105 0.0582 -0.123 0.0975 
 

 

Table A5. Species-level wind speed effect estimates from the PTM for anemochorous 

species. Posterior means, standard errors (SE), and 95% credible intervals (CI_025, CI_975) 

are reported for each species. Asterisks (*) indicate statistically significant effects. Some 

ssociated trait values are included here, including seed energy content (kCalPerGm) and 

maximum plant height (maxHt). Table is sorted by estimate. Only display subset of the table 

due to space limitation. 

 

species Estimate SE CI_025 CI_975 sig95 kCalPerGm maxHt 
abiesBalsamea 0.0727 0.0145 0.0355 0.0885 * 6.8 18 
acerPensylva 0.0589 0.0224 0.00719 0.088 * 4.845 4 
acerSpicatum 0.0569 0.0224 0.00256 0.0878 * 4.845 4 
betulaAlleghan 0.0569 0.0204 0.00978 0.0871 * 5.25 23 
betulaPapyrife 0.0558 0.0233 0.00668 0.0881 * 5.4 21 
pinusResinosa 0.0475 0.0252 -0.00316 0.087 

 
6.1 24 

thujaPlicata 0.046 0.0272 -0.0145 0.0868 
 

6 50 
piceaMariana 0.0446 0.0283 -0.0154 0.0867 

 
6.1 20 

tsugaHeteroph 0.0428 0.0257 -0.00798 0.0856 
 

5.7 60 
acerSaccharu 0.0407 0.0232 -0.00945 0.0815 

 
4.6 35 

piceaRubens 0.0401 0.0266 -0.00969 0.0861 
 

6.475 25.5 
fraxinusAmerican 0.0365 0.0244 -0.0133 0.0808 

 
5.2 27 

fraxinusNigra 0.0321 0.0211 -0.00708 0.0765 
 

5.2 27 
betulaLenta 0.0312 0.0253 -0.019 0.0785 

 
5.25 21 

pinusJeffreyi 0.0289 0.0304 -0.0267 0.0844 
 

5.8 38.28461538 
abiesAmabilis 0.0272 0.0259 -0.0221 0.0785 

 
6.9 55 

pinusContorta 0.0239 0.0297 -0.0309 0.0806 
 

6 30 
acerRubrum 0.0238 0.0144 -0.0045 0.0515 

 
4.845 27 

tsugaCanadens 0.0231 0.0363 -0.0477 0.0842 
 

5.7 32 
pinusStrobus 0.0223 0.0351 -0.045 0.0813 

 
5.551 46 

pinusLamberti 0.0197 0.0313 -0.0389 0.0801 
 

6.5 76 
piceaEngelman 0.0194 0.0351 -0.0533 0.0838 

 
6.7 25.5 

pinusPonderos 0.0156 0.0347 -0.0509 0.0816 
 

5.6 75 
liriodenTulipife 0.0147 0.0243 -0.0397 0.0572 

 
0 37 

 

 

Some portions of the text were refined using ChatGPT (OpenAI, 2024) for grammar and 

clarity.  
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