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Summary: In the era of precision medicine, drugs are increasingly developed to target subgroups of patients with

certain biomarkers. In large all-comer trials using a biomarker stratified design (BSD), the cost of treating and

following patients for clinical outcomes may be prohibitive. With a fixed number of randomized patients, the efficiency

of testing certain treatments parameters, including the treatment effect among biomarker positive patients and the

interaction between treatment and biomarker, can be improved by increasing the proportion of biomarker positives on

study, especially when the prevalence rate of biomarker positives is low in the underlying patient population. When

the cost of assessing the true biomarker is prohibitive, one can further improve the study efficiency by oversampling

biomarker positives with a cheaper auxiliary variable or a surrogate biomarker that correlates with the true biomarker.

To improve efficiency and reduce cost, we can adopt an enrichment strategy for both scenarios by concentrating on

testing and treating patient subgroups that contain more information about specific treatment parameters of primary

interest to the investigators. In the first scenario, an enriched biomarker stratified design (EBSD) enriches the cohort

of randomized patients by directly oversampling the relevant patients with the true biomarker, while in the second

scenario, an auxiliary-variable-enriched biomarker stratified design (AEBSD) enriches the randomized cohort based

on an inexpensive auxiliary variable, thereby avoiding testing the true biomarker on all screened patients and reducing

treatment waiting time. For both designs, we discuss how to choose the optimal enrichment proportion when testing

a single hypothesis or two hypotheses simultaneously. At a requisite power, we compare the two new designs with

the BSD design in term of the number of randomized patients and the cost of trial under scenarios mimicking real

biomarker stratified trials. The new designs are illustrated with hypothetical examples for designing biomarker-driven

cancer trials.
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1. Introduction

There is a large literature on study designs integrated with treatment-selection biomarkers.

See Mandrekar and Sargent (2009), Freidlin et al. (2010) and Tajik et al. (2013) for recent

reviews. Biomarker stratified clinical trials have been frequently used to evaluate the effect

and safety of an experimental therapy relative to a control therapy as well as to evaluate

the utility of using the biomarker in directing treatments. A trial with a biomarker stratified

design (BSD) randomizes all patients to one of the treatment therapies with biomarker as

a stratification factor. Such an all-comer trial allows hypothesis testing on treatment pa-

rameters related to treatment effects among biomarker positive patients, biomarker negative

patients and the overall populations as well as the value of utilizing biomarker to direct

treatments. A BSD trial is especially useful when the biomarker of interest has weak or

moderate credentials in directing treatments based on pre-existing data (Korn and Freidlin,

2016).

In this paper, we investigate two improved designs based on biomarker stratified clinical

trials. The standard BSD design is an all-comer design, in which all eligible patients are

enrolled, tested for biomarker, and then randomized. The proportion of patients with given

biomarker values is not optimized for efficiency in testing specific treatment parameters.

Also, the number of enrolled patients in such trial is often limited by the prohibitive cost

associated with treating patients and following them for clinical outcomes. For example, when

the prevalence rate of biomarker positives is low, say less than 20%, with a given trial size,

the efficiency for testing the treatment effect among biomarker positives and the interaction

between treatment and biomarker can be very low, while the contribution of a relatively

large number of biomarker negatives to the power of testing the two treatment parameters

is small. In one of the improved designs, referred to as the enriched biomarker stratified

design (EBSD), we increase (enrich) the relative proportion of biomarker positives among
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the randomized patients from 20% to 50% or higher by keeping all biomarker positives and

retaining only a proportion of biomarker negatives. With the same number of randomized

patients, the EBSD design is able to include more patients with more information on

the relevant treatment parameters than the BSD design. In another situation where the

cost associated with testing the true biomarker is high and there exists some inexpensive

auxiliary variables that is positively correlated to the true biomarker, we can utilize the same

enrichment strategy to enrich the randomized patients with more information about specific

treatment parameters by oversampling based on the auxiliary biomarker. This improved

design is referred to as an auxiliary-variable-enriched biomarker stratified design (AEBSD).

Unlike the EBSD design, AEBSD avoids testing the true maker status for all screened

patients and can be a useful design when testing for the true biomarker is expensive or

time-consuming and there exists a cheaper auxiliary variable or surrogate biomarker that

correlates with the true biomarker and thus achieves greater cost-efficiency.

Both EBSD and AEBSD designs use an enrichment strategy - oversampling patients who

contain more information about specific treatment parameters and undersampling those who

do not - to improve the study efficiency of biomarker stratified trials. Like the biomarker

stratified design, these improved designs permit inference on the biomarker negative pop-

ulation, overall population and the interaction effect between treatment and biomarker.

But unlike the biomarker stratified design, the enrichment designs usually use a smaller

sample of biomarker negative patients, resulting in a more cost-efficient design. In this

paper, we will study how to determine the optimal enrichment proportions for both new

designs to maximize the testing efficiency for specific treatment parameters. We will compare

the relative efficiency of the two designs over BSD in term of the number of randomized

patients and the cost of the trial conduct. Yang et al. (2015) investigated a variant of an

enriched biomarker design and demonstrated that this design can improve testing efficiency
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in treatment effect among biomarker positives with continuous outcome. Both EBSD and

AEBSD represent new enrichment sampling strategies to improve trial efficiency and they

should be distinguished from the commonly used term “enrichment design” for a targeted

design or biomarker positive only design (e.g. Simon and Maitournam (2004)).

The rest of the paper is organized as follows. Section 2 introduces the background of

a biomarker stratified design (BSD). In Section 3, we describe the enriched biomarker

stratified design (EBSD) and discuss how to design a EBSD trial at the optimal enrichment

proportion for testing specific treatment parameters. In Section 4, we describe the auxiliary-

variable-enriched biomarker stratified design (AEBSD) and explain how to obtain the optimal

probabilities for selecting patients based on auxiliary biomarkers. In Section 5, we compare

the two enrichment designs with BSD in several settings mimicking real biomarker stratified

trials. In Section 6, we illustrate EBSD with a hypothetical Herceptin trial in breast cancer

and AEBSD with a EGFR-inhibitor trial in lung cancer. In Section 7, we conclude the paper

with several remarks.

2. Biomarker Stratified Design (BSD)

A biomarker stratified design (BSD) is a commonly used all-comer design for evaluating

treatment effects in various biomarker subgroups and the predictive value of the biomarker

for optimal treatments. As illustrated in Figure 1a, in a BSD design all screened patients

will be randomized to one of two treatments (Experimental E or Control C) with biomarker

as a stratification factor. Denote κ1 the selection probability for the biomarker positives

and κ0 the biomarker negatives. In a BSD design, both κ1 and κ0 are equal to one so that

the expected proportion of biomarker positives in the randomized cohort is equal to π, the

prevalence rate of biomarker positives in the underlying patient population.

[Figure 1 about here.]
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2.1 Notation and Assumptions

For illustrative purpose, we focus on a biomarker stratified trial in which the effect of an

experimental therapy E over a control therapy C on a binary outcome, such as tumor

response (yes vs. no), on patients with positive biomarker and negative biomarker. Let M =

{+,−} or M = {1, 0} denote the biomarker status with P (M+) = π and P (M−) = 1− π.

Let D = {E,C} or D = {1, 0} denote the treatment to which a patient is assigned by

random allocation and Y represent the response outcome (Y = 1 for response; Y = 0 for no

response). Denote the response rates for patients with D = {E,C} and M = {1, 0} as ηE1 =

P (Y = 1|D = 1,M = 1), ηE0 = P (Y = 1|D = 1,M = 0), ηC1 = P (Y = 1|D = 0,M = 1)

and ηC0 = P (Y = 1|D = 0,M = 0). Several treatment effects can be defined based on the

data arising from a BSD design. In this paper, we focus on the response rate, although other

related measures, such as log odds, could also be used.

• Treatment effect in M+ patients: B1 = ηE1 − ηC1

• Treatment effect in M− patients: B0 = ηE0 − ηC0

• Overall treatment effect: B = πB1 + (1−π)B0, which is average treatment effect weighted

by the prevalence of biomarker positivity in the population.

• Interaction between treatment and biomarker: δ = B1 −B0 = (ηE1 − ηC1)− (ηE0 − ηC0)

• Clinical benefit between biomarker-guided approach and a standard biomarker-unguided

approach:

θγ = response rate in biomarker-guided patients− response rate in biomarker-unguided patients

= [πηE1 + (1− π)ηC0]− [γπηE1 + γ(1− π)ηE0 + (1− γ)πηC1 + (1− γ)(1− π)ηC0]

= (1− γ)πB1 − γ(1− π)B0

where γ is the proportion of patients treated by the experimental therapy E in the

biomarker-unguided approach. θγ is a measure of treatment benefit difference of two strate-

gies: a biomarker-guided strategy in which optimal treatment is determined by biomarker
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and a biomarker-unguided strategy where treatment is assigned to a proportion γ of

patients without considering biomarker status. Notice that θγ can be directly estimated

from biomarker-strategy trials (e.g. Sargent et al. (2005)). When γ = 0 we have θ0 = πB1,

commonly used as a global measure for biomarker performance in treatment selection

(Brinkley et al., 2010; Janes et al., 2011, 2014).

Let n denote the total number of randomized patients in a BSD trial. Let nE1, nC1, nE0, nC0

denote the sample sizes in the D = {E,C} and M = {1, 0} groups, respectively. Let

mE1,mC1,mE0,mC0 denote the number of responding patients in the corresponding pa-

tient groups. The unbiased estimators for these parameters and the corresponding variance

estimators can be written as:

• B̂1 = η̂E1− η̂C1 and v̂ar(B̂1) = η̂E1(1− η̂E1)/nE1+ η̂C1(1− η̂C1)/nC1, where η̂E1 = mE1/nE1

and η̂C1 = mC1/nC1 are the estimates for the response rates for groups E1 and C1,

respectively.

• B̂0 = η̂E0− η̂C0 and v̂ar(B̂0) = η̂E0(1− η̂E0)/nE0+ η̂C0(1− η̂C0)/nC0, where η̂E0 = mE0/nE0

and η̂C0 = mC0/nC0 are the estimates for the response rates for groups E0 and C0,

respectively.

• B̂ = πB̂1 + (1− π)B̂0 and

v̂ar(B̂) = π2v̂ar(η̂E1) + π2v̂ar(η̂C1) + (1− π)2v̂ar(η̂E0) + (1− π)2v̂ar(η̂C0)

• δ̂ = B̂1 − B̂0 and v̂ar(δ̂) = v̂ar(B̂1) + v̂ar(B̂0)

• θ̂γ = (1− γ)πB̂1 − γ(1− π)B̂0 and v̂ar(θ̂γ) = π2(1− γ)2v̂ar(B̂1) + γ2(1− π)2v̂ar(B̂0).

For B̂ and θ̂γ we have assumed that π is known. If π is unknown it can be estimated by

n1/n where n1 is the total number of biomarker positives in the randomized cohort. In this

case, the variance expressions are more complicated.
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2.2 Hypothesis testing on treatment parameters

A typical BSD trial is designed to test one or more hypotheses involving the aforementioned

treatment parameters and the results of these tests reveal different aspects of the effect of

the experimental therapy over the control therapy conditional or unconditional on biomarker

status. Several common scenarios are listed in Table 1. The primary task designing a BSD

trial is to ensure that the design is adequately powered for testing the chosen hypothesis. Let

ξ = (B1, B0, B, δ, θγ) and ξ̂ = (B̂1, B̂0, B̂, δ̂, θ̂γ). Each element of ξ̂ is a linear combination

of (η̂E1, η̂C1, η̂E0, η̂C0), which follows a multivariate normal distribution by the central limit

theorem. As a result, each element of ξ̂ has an asymptotic normal distribution by Slutsky’s

theorem. That is, when n is large, Zi = ξ̂i−ξi√
v̂ar(ξ̂i)

∼̇ N (0, 1) for i = 1, · · · , 5. Standard normal

distribution results can be used to derive the coverage probability for the 95% confidence

interval and calculate the power for testing each treatment parameter. As an illustration, a

proof that B̂ has an asymptotic normal distribution is given in the supplementary materials.

[Table 1 about here.]

3. Enriched Biomarker Stratified Designs (EBSD)

Figure 1b shows a diagram for the EBSD design, in which biomarker positive patients will

be selected into the cohort of randomized patients with probability κ1 and the biomarker

negative patients will be selected into the randomized cohort with probability κ0, and only

those patients in the randomized cohort will be treated and followed up. In this paper,

our discussion is focused on equal allocation of patients to the two treatment arms. The

proposed approach can be easily extended to unequal allocation between treatment arms.

Indeed, the allocation ratio between treatment arms can be another design parameter subject

to optimization for the power of testing specific hypotheses. For all scenarios of hypothesis

testing listed in Table 1, we will search for the optimal enrichment proportion πe > 0. The
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expected proportion of positives in the trial is κ1π
κ1π+κ0(1−π) . If we set the above = πe then

κ0 = κ1
π/(1−π)
πe/(1−πe) . Any pair (κ0, κ1) satisfying the above will work. Thus, there is no unique

solution pair (κ0, κ1) for any given πe > 0. However, we want to minimize the number

of patients omitted from the study (i.e., maximize the number selected for randomization

among screened patients), so we choose κ0 and κ1 to be as large as possible. This additional

consideration yields the following unique values for κ0 and κ1:

κ0 = κ1 = 1 if πe = π

κ0 = π/(1−π)
πe/(1−πe) , κ1 = 1, if πe > π

κ0 = 1, κ1 = πe/(1−πe)
π/(1−π) , if πe < π

Thus, for any given πe, including the optimal πopte , the values of κ0 and κ1 are uniquely

determined as above.

3.1 Test on B

The variance for the estimate of the overall treatment effect B̂ = πB̂1 + (1 − π)B̂0 can be

written as

var(B̂) = π22ηE1(1− ηE1)

nπe
+π22ηC1(1− ηC1)

nπe
+(1−π)2

2ηE0(1− ηE0)

n(1− πe)
+(1−π)2

2ηC0(1− ηC0)

n(1− πe)
(1)

For an EBSD trial with n randomized patients, the optimal enrichment proportion πopte for

biomarker positive patients can be obtained by minimizing v̂ar(B̂). It is straightforward to

show the optimal enrichment proportion for biomarker positives

πopte =
1

1 + 1−π
π

√
φ

(2)

where

φ =
ηE0(1− ηE0) + ηC0(1− ηC0)

ηE1(1− ηE1) + ηC1(1− ηC1)
(3)

Note that πopte approaches π when φ approaches 1.
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3.2 Test on δ

For an EBSD trial with n randomized patients, the optimal enrichment proportion πopte for

biomarker positive patients in testing δ can be obtained by finding the minimizer for var(δ̂)

var(δ̂) =
2ηE1(1− ηE1)

nπe
+

2ηC1(1− ηC1)

nπe
+

2ηE0(1− ηE0)

n(1− πe)
+

2ηC0(1− ηC0)

n(1− πe)
(4)

The optimal enrichment proportion in this case is given by

πopte =
1

1 +
√
φ

(5)

where φ is defined in (3). Note that πopte approaches 0.5 when φ approaches 1.

3.3 Test on θγ

When testing θγ = (1− γ)πB1 − γ(1− π)B0 with an EBSD design with 0 6 γ 6 1, one can

minimize

var(θ̂γ) =
2(1− γ)2π2

nπe
·(ηE1(1− ηE1) + ηC1(1− ηC1))+

2γ2(1− π)2

n(1− πe)
·(ηE0(1− ηE0) + ηC0(1− ηC0))

(6)

It is straightforward to obtain the solution

πopte =
1

1 + γ(1−π)
(1−γ)π

√
φ

(7)

where φ is defined in (3). Note that when γ = 0 we have θ0 = πB1 and πopte = 1 and when

γ = 1 we have θ1 = −(1− π)B0 and πopte = 0.

3.4 Testing two hypotheses

Without loss of generality, we will use an α splitting approach in the discussion of simul-

taneously testing two hypotheses. Other testing procedures for control of the overall type I

error involving multiple hypotheses can be adopted (e.g. (Matsui et al., 2014)) but these will

not be discussed in this paper. When testing two hypotheses, as in cases 12, 13, 14, 15 in

Table 1, we can find the optimal enrichment proportion πe by minimizing the maximum of

the required sample sizes for the first hypothesis and the second hypothesis at given type I
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errors (α1, α2) and type II errors (β1, β2). For example, for testing B1 and δ, the sample size

n(πe;H1a) for the first hypothesis is given as

n(πe;H1a) =
(zα1/2 + zβ1)

2

B2
1/var

∗(B̂1)
(8)

For the second hypothesis, the sample size n(πe;H2a) is

n(πe;H2a) =
(zα2/2 + zβ2)

2

δ2/var∗(δ̂)
(9)

where var∗(B̂1) = nvar(B̂1) and var∗(δ̂) = nvar(δ̂). The optimal πe, i.e. πopte , such that

nmax = max(n(πe;H1a), n(πe;H2a)) is minimized can be obtained straightforwardly by nu-

merical method.

4. Auxiliary-variable-enriched Biomarker Stratified Design (AEBSD)

The cost of the assessment of the true status of a biomarker M for all patients is often

prohibitive. However, suppose that we have an auxiliary variable or a biomarker based on

another assay M̃ that is predictive of M and can be easily and cheaply assessed. One can

enrich the study with true biomarker positive patients by selecting patients to be randomized

based on the values of M̃ . Only the patients selected for randomization will have their true

biomarkers M measured. Let π and π̃ denote the prevalence rates of patients with positive

true biomarker (M = 1) and positive auxiliary biomarker (M̃ = 1) respectively in the

population. The positive predictive value PPV is the probability that a patient with positive

auxiliary biomarker (M̃ = 1) also has a positive true biomarker (M = 1). That is, PPV =

Pr(M = 1|M̃ = 1). Let κ̃1 ∈ [0, 1] and κ̃0 ∈ [0, 1] represent the probability of patients

with positive and negative auxiliary variable M̃ being selected into the randomized cohort,

respectively. The enrichment proportion for an auxiliary positive patient is π̃e = π̃κ̃1
π̃κ̃1+(1−π̃)κ̃0 .

The probability of a randomized patient with a positive true biomarker can be written as

πe = PPV π̃e +

(
π − π̃PPV

1− π̃

)
(1− π̃e) (10)
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For statistical testing and inference concerning B or θγ we need a consistent estimate for

π when π is unknown. We may estimate π by noting π = e11κ̃1π̃ + e01κ̃0(1 − π̃), where

e11 = P (M = 1|M̃ = 1, R = 1) and e01 = P (M = 1|M̃ = 0, R = 1) and R = 1 indicates that

the patient is selected into the randomized cohort.

4.1 Testing one hypothesis

In designing an AEBSD trial, our goal is to find the optimal π̃e that minimizes the number

of randomized patients for testing a specific hypothesis (or hypotheses) as in Table 1.

Here we illustrate the idea for testing H0 : δ = 0 against Ha : δ = δ∗, where δ is the

interaction between treatment and biomarker. To minimize the number of randomize patients

we minimize var(δ̂), which is

var(δ̂) =
2ηE1(1− ηE1)

nπe
+

2ηC1(1− ηC1)

nπe
+

2ηE0(1− ηE0)

n(1− πe)
+

2ηC0(1− ηC0)

n(1− πe)
(11)

where the denominator of each term is the expected number of patients in subgroups defined

by D and M . Thus, for given n, π, π̃, PPV , ηE1, ηC1, ηE0, ηC0, we can find the optimal π̃e in

[0, 1] that minimizes var(δ̂). The result is given by

π̃opte =
(1− π̃)πlocalopte − π + π̃PPV

PPV − π (12)

where πlocalopte is the local optimal solution whose global optimal solution is the same as πopte in

Section 3.2 but adjusted according to π and PPV . When πopte ∈ [min(π, PPV ),max(π, PPV )],

πlocalopte = πopte . Otherwise πlocalopte = π or PPV , whichever is closer to πopte .

4.2 Testing two hypotheses

When testing two hypotheses is of interest, as the cases 12, 13, 14, 15 in Table 1, we can

find the optimal π̃e by minimizing the maximum of the required sample sizes for the first

hypothesis and the second hypothesis at given α1, β1, α2, β2. For example, for case 13, the

sample size n(π̃e;H1a) for the first hypothesis is given as n(π̃e;H1a) =
(zα1/2+zβ1 )

2

B2
1/var

∗(B̂1)
where

zα1 and zβ1 is the standard normal distribution percentile for α1/2 and β1. For the second
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hypothesis, the sample size n(π̃e;H2a) is n(π̃e;H2a) =
(zα2/2+zβ2 )

2

δ2/var∗(δ̂)
where zα2/2 and zβ2 is the

standard normal distribution percentile for α2/2 and β2. The goal is to find the optimal π̃e

such that nmax = max(n(π̃e;H1a), n(π̃e;H2a)) is minimized. The local optimal πlocalopte can

be determined by π, PPV , πopte , the global optimal solution in Section 4.1 and the solution

for n(π̃e;H1a) = n(π̃e;H2a). Details are given in supplementary materials. The optimal π̃e in

this case, π̃opte , can also be calculated by equation (12) using πlocalopte .

5. Numerical Studies

5.1 EBSD design

In this numerical study, we assume that the prevalence of biomarker positive patients in

the population is 0.2 and that selected patients will be randomized with equal allocation to

treatment D = {1, 0}. For the sake of illustration, we assume the response of each patient

follows a logistic regression model logit(Y = 1|D,M) = b0+b1D+b2M+b3TM . We consider

two types of interaction between treatment and biomarker, quantitative and qualitative

(Polley et al., 2013). In the case of quantitative interaction between treatment and biomarker,

we set b0 = −0.5, b1 = 0.4, b2 = −0.8, b3 = 0.6, as seen in Figure 2a, and the logistic model

yields the response rates 0.43, 0.21, 0.48 and 0.38 for patient groups in E1, C1, E0 and C0,

respectively. Figure 3 describes the relationship between statistical power for testing specific

treatment parameters B,B1, B0, δ and θγ and the enrichment proportion πe at the given

number of randomized patients n = 200, 300, 500, 1000. These plots demonstrate that the

optimal enrichment proportion πe varies by the specific testing parameter and πe reaches the

highest power for B1 at 1, B0 at 0, B at 0.19, δ at 0.48 and θγ at 0.68. Note that the BSD

design corresponds to πe = 0.2 in these plots, demonstrating the EBSD design can achieve

significant efficiency gain for a given sample size at optimal enrichment proportion πopte .

[Figure 2 about here.]
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[Figure 3 about here.]

As seen in Figure 2b, for the case of qualitative interaction between treatment and biomarker,

we set b0 = −0.5, b1 = −0.8, b2 = −0.1, b3 = 1.5, which yields the response rates 0.21, 0.10,

0.12 and 0.11 for patient groups E1, C1, E0 and C0, respectively. Figure 4 describes the

relationship between the power for the specific treatment parameters B,B1, B0, δ and θγ and

the enrichment proportion πe at the number of randomized patients n = 200, 300, 500, 1000.

Again, these plots show that the optimal enrichment proportion πe varies by the specific

testing parameter and πe reaches the highest power for B1 at 1, B0 at 0, B at 0.21, δ at 0.52

and θγ at 0.71.

[Figure 4 about here.]

To further verify the performance of the proposed treatment parameter estimators and

their variance estimators under EBSD, simulation was conducted based on 1000 simulations.

At a given sample size n = 500, Table 2 lists the estimates for B,B1, B0, δ, θγ for EBSD at

πopte and BSD. Other quantities, including the standard errors based on the proposed variance

estimators (std.p), the simulated standard error (std.e), and the 95%CI coverage probability

based on the estimated standard error (coverage), are also provided. It can be seen that the

proposed estimators yield consistent estimates with negligible bias and variance estimators

yield standard errors close to the simulated one and a satisfying 95% nominal coverage

probability. It can also be seen that the EBSD design at πopte yields much smaller standard

error than the BSD design, indicating the EBSD design is significantly more efficient that

the BSD, except for testing the overall treatment effect B, where BSD at π = 0.2 is very

close to its optimal πpte = 0.19 for the quantitative interaction and 0.21 for the qualitative

interaction and understandably the BSD at the setting yields similar performance as the

EBSD.

[Table 2 about here.]
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Table 3 summarizes the results of designing a EBSD trial to test two treatment parameters

simultaneously at given powers, 90% for H1 and 80% for H2. The results for EBSD are

obtained at πopte with the method described in Section 3.4. The coverage probability for all

treatment effect estimates achieves their corresponding nominal levels; for B̂1 the coverage

probability is close to 99% and for the second treatment effect estimate the coverage prob-

ability is close to 96%. It can be seen that the EBSD needs significantly less randomized

patients to achieve requisite powers for testing two hypotheses than BSD in all combinations

of hypothesis testing. Also, the efficiency gain for testing two hypotheses is generally larger

than that of testing a single hypothesis.

[Table 3 about here.]

5.2 AEBSD design

In this numerical study, we investigate the relationship of patient ratio and cost ratio with

PPV for testing the interaction δ under AEBSD. Quantitative and qualitative interactions

are both investigated. For a quantitative interaction, ηE1 = 0.43, ηC1 = 0.21, ηE0 = 0.48

and ηC0 = 0.38. For a qualitative interaction, ηE1 = 0.53, ηC1 = 0.35, ηE0 = 0.21 and

ηC0 = 0.38. We assume α = 0.05, β = 0.1 in the calculation. The unit cost is 500 for

biomarker assay and the average unit cost is 10, 000 for treating and following each patient.

Figure 5 shows decreasing trends for both patient ratio and cost ratio with an increasing

PPV for both quantitative and qualitative interactions. Table 4 gives further details on the

screening ratio nsratio for AEBSD over BSD. Similar results are obtained for testing two

treatment parameters simultaneously. Details can be found in the supplementary materials.

[Figure 5 about here.]

[Table 4 about here.]
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6. Case Studies

6.1 Herceptin trial with EBSD

The breast cancer chemotherapy Herceptin is a well-known success story of personalized

medicine. Human epidermal growth factor receptor-2 protein (HER2) is over-expressed in

approximately 20% of breast cancer patients (Korkaya and Wicha, 2013). Herceptin, a target

agent on HER2, was shown to be effective in patients with HER2+ metastatic breast cancer

(Baselga, 2001; Joensuu et al., 2006). Retrospective studies also suggested that HER2-

patients could also benefit from Herceptin (Paik et al., 2008). For illustration, we assume

that the overall response rate (ORR), a binary endpoint based on the percentage of patients

whose cancer shrinks or disappears after treatment, is to be used in designing a first-line

metastatic breast cancer therapy for Herceptin plus chemotherapy E versus chemotherapy

C. We assume that these response rates for groups E1 and C1 are ηE1 = 45% and ηC1 = 29%

respectively in HER2+ patients and that the response rates for groups E0 and C0 is 45%

and 40%, respectively. Our goal is to illustrate how to design a EBSD trial at the optimal

enrichment proportion πe when the investigators are primarily interested in testing a single

hypothesis involving a single treatment parameter from (B1, B0, B, δ, θγ) with γ = 0.2. The

optimal enrichment proportion πopte is obtained by the method described in Section 3 to

achieve the maximum efficiency for the specific test for given n. The top panel of Table 5

shows the required number of randomized patients for EBSD and BSD at two-sided α = 0.05

and β = 0.1. The ratio of randomized patents nratio and the cost ratio cratio for EBSD versus

BSD are also provided, where the unit cost for ascertaining true biomarker is 300 and the

unit cost for treating and following patient is averaged 10, 000 for one year (Schmidt, 2011).

In this case, the cost of screening and IHC testing for HER2 is significantly lower than the

cost of treatment and patient follow-up.

[Table 5 about here.]
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Table 5 also illustrates the case of designing an EBSD trial when testing two hypotheses.

We consider the first hypothesis of interest to be the test on treatment effect among HER2+

patients B1, which is often the primary goal in a biomarker-driven clinical trial. The sec-

ond hypothesis will be chosen from (B0, B, δ, θγ), testing the treatment effect in biomarker

negatives, the treatment effect in the overall population, the interaction between treatment

and biomarker, and the clinical benefit of selecting treatment by biomarker. The response

rates for the four groups of patients defined by treatment and biomarker are the same for the

case of single hypothesis testing. To control the overall type error at the level of two-sided

0.05, we split the α between the first hypothesis and the second hypothesis. The number of

randomized patients for testing each hypothesis for given α1 = 0.01, β1 = 0.10, α2 = 0.04 and

β2 = 0.2 are calculated, and the maximum of the two sample sizes is chosen as the size of the

trial. The optimal enrichment proportion πopte for the EBSD design is obtained by numerical

methods to achieve the smallest of the maximum number of randomized patients required

by testing both hypotheses with respective power greater than 1 − β1 and 1 − β2 for the

two hypotheses. In the bottom panel of Table 5, the ratio of randomized patents of the two

designs nratio and the ratio of cost cratio are listed. Pebsd indicates the probability of success

when testing two hypotheses for EBSD. In designing trials with two primary hypotheses, one

can obtain the probability of success, i.e. the probability of rejecting either null hypothesis

under the alterative (Matsui et al., 2014). The probability of success is calculated using the

joint distribution of two testing statistics Z1 = B̂1√
v̂ar(B̂1)

and Z2 = δ̂√
v̂ar(δ̂)

.

6.2 EGFR-inhibitor trial using AEBSD

In this case study, we consider designing a hypothetical AEBSD trial for comparing the 5-

month progression-free-survival (5mPFS) rate of gefitinib (E) versus carboplatin and pacli-

taxel (C) in patients with non-small-cell lung cancer (NSCLC). The example is hypothetical,

but the 5mPFS for each patient group is based on the results of an actual clinical trial
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(IPASS) (Mok et al., 2009). The mutation of epidermal growth factor receptor (EGFR)

is thought predictive of the effect of gefitinib in treating non-small cell lung cancer. The

prevalence of EGFR mutations in approximately 50% in Asia, significantly higher than the

10% prevalence in North America (Shi et al., 2015; Kerr, 2013). As a result of the high

prevalence rate of EGFR mutants, IPASS was successfully conducted in Asia and found that

gefitinib significantly extended PFS among patients with EGFR mutations, but resulted in

significantly shorter PFS for patients with EGFR wild types (Mok et al., 2009; Maemondo

et al., 2010).

We consider a biomarker stratified trial to be conducted in North America with the goal

of testing two primary hypotheses: H1: the treatment effect among patients with EGFR

mutations B1 and H2: the interaction between treatment and EGFR mutation δ. We set

two-sided α1 = α2 = 0.025 and β1 = β2 = 0.1. A BSD design with the objectives of testing

B1 and δ is very inefficient, as it would enroll, treat and follow a large number of patients

who are EGFR wild-types and therefore would entail a waste of limited resource. For an

AEBSD design, it is known that EGFR mutations are more commonly observed in patients

with adenocarcinomas and no prior history of smoking, as well as in females and those of

Asian descent (Kerr, 2013). A predictive score, the auxiliary variable in this case, can be built

using these easily and cheaply assessed prognostic factors. We have assumed the prevalence

rate of “high-score” patients is 15% and the true EGFR mutations is at least 60% among

the “high-score” patients.

Mimicking the IPASS trial, we choose the median PFS for groups E1, C1, E0, C0 as 9.82,

4.71, 2.00 and 5.70 months, respectively, indicating a strong qualitative interaction between

treatment and biomarker. Under the exponential hazards, we assume the 5mPFS for these

groups are 0.65, 0.41, 0.13 and 0.48, respectively. Under these design parameters, we find

the optimal selection probability κ̃1 = 1 for auxiliary positive patients and κ̃0 = 0 for the
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auxiliary negative patients. The number of randomized patients for the two designs are

nAEBSD = 338 and nBSD = 2023 with nratio = 0.167, and the cost ratio cratio = 0.172. In

the calculation of the trial cost, we assume that the unit cost of testing EGFR mutation is

1, 000, the average treatment cost and the average follow-up cost are 7, 500 and 2, 500 for each

patient in the randomized cohort while the unit cost for determining the EGFR predictive

score is 50. These cost estimates are based on the literature reflecting the experience of the

United States (Horgan et al., 2011; Sauter and Butnor, 2016).

7. Discussion

In this paper, we propose two new enrichment designs for biomarker stratified clinical trials.

The key idea of enrichment sampling is to oversample patients who contain more information

about specific treatment parameters and undersample those who do not. We demonstrate

that the new designs can significantly improve study efficiency in term of increased power

and higher estimation precision with a fixed number of randomized patients and therefore

reduce the cost of conducting trials. We give analytic solutions or numerical algorithms for

finding the optimal probabilities for selecting patients with positive and negative biomarkers

into the randomized cohort for the EBSD design and the optimal probabilities of selecting

patients with positive and negative auxiliary biomarkers for the AEBSD design. We also

demonstrate how to determine the sample size for EBSD and AEBSD designs when testing

a single treatment parameter or two treatment parameters simultaneously. The numerical

studies and the case studies demonstrate the superior performance of the new designs over

the BSD.

Enrichment sampling strategies have been proposed and successfully used in observational

studies to test association between disease and risk factors (Morara et al., 2007; Wang and

Zhou, 2010; Strauss et al., 2010) and to estimate the accuracy of biomarkers in predicting

disease condition (Wang et al., 2012, 2013). These papers demonstrate that biased sampling
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with enrichment of relevant patient subgroups, those that contain more information on

estimands, leads to more efficient studies that requires significantly fewer patients and

study cost. The enrichment strategies can be applied to other biomarker-driven clinical trial

designs, such as the biomarker strategy design. See Freidlin et al. (2010) for a review. In a

biomarker strategy design, patients are randomly assigned to a biomarker-guided arm that

uses the biomarker to determine whether a patient receive the experimental therapy or the

control therapy or to a biomarker-unguided arm that randomly assign the patients to the

experimental therapy and control therapy regardless of biomarker status.

In this paper we consider a binary endpoint such as tumor response or survival rate at

a landmark time. The extension of our discussion to an unequal randomization ratio is

straightforward. Indeed, the allocation ratio between treatment arms can be optimized for

additional efficiency gains to test specific treatments parameters. An enrichment strategy is

equally applicable to trials involving more than two treatments.

Compared to the BSD design, one limitation of the EBSD and AEBSD designs is that

they may significantly prolong the time of trial completion, as the latter designs require

longer time to accrue sufficient number of biomarker positive patients. In this paper, the

cost introduced by prolonged trial completion time has not been considered. In practice, this

issue can be addressed by verifying that the EBSD and AEBSD designs under the optimal

selection on κ̃1 and κ̃0 will lead to an estimated time of trial completion that the investigators

can accept. If not, the standard BSD design may be used.
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(a) Biomarker Stratified Design (BSD)
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Figure 1: Diagram for (a) Biomarker stratified design (BSD), (b) Enriched biomarker
stratified design (EBSD) and (c) Auxiliary-variable-enriched biomarker stratified design
(AEBSD). For BSD and EBSD, π is the prevalence of biomarker positives in the population;
κ1 and κ0 are the selection probability for biomarker positives and biomarker negatives into
the randomized cohort, respectively. For AEBSD, π̃ is the prevalence of auxiliary positives in
the population; κ̃1 and κ̃0 are the selection probability for auxiliary positives and auxiliary
negatives into the randomized cohort, respectively.
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Figure 2: Illustration for (a) quantitative interaction with response rates ηE1 = 0.43, ηC1 =
0.21, ηE0 = 0.48 and ηC0 = 0.38 and (b) qualitative interaction with response rates ηE1 =
0.21, ηC1 = 0.10, ηE0 = 0.12 and ηC0 = 0.11
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Figure 3: The power for testing a specific treatment parameter at different enrichment
proportions πe for EBSD for quantitative interaction
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Figure 4: The power for testing a specific treatment parameter at different enrichment
proportions πe for EBSD for qualitative interaction
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Figure 5: Relationship of patient and cost ratio with PPV for testing the interaction
between treatment and biomarker δ under AEBSD. (a) Patient ratio with quantitative
interaction; (b) Cost ratio with quantitative interaction; (c) Patient ratio with qualitative
interaction; (d) Cost ratio with qualitative interaction.
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Table 1: Tests on different treatment parameters and their combinations

Case Hypothesis Interpretation
1 H0: B1 = 0 vs. Ha: B1 6= 0 Test on B1

2 H0: B0 = 0 vs. Ha: B0 6= 0 Test on B0

3 H0: B = 0 vs. Ha: B 6= 0 Test on B

4 H0: δ = 0 vs. Ha: δ 6= 0 Test on δ

5 H0: θγ = 0 vs. Ha: θγ 6= 0 Test on θγ

12 H10: B1 = 0 vs. H1a: B1 6= 0 Test on B1 and B0

H20: B0 = 0 vs. H2a: B0 6= 0

13 H10: B1 = 0 vs. H1a: B1 6= 0 Test on B1 and B
H20: B = 0 vs. H2a: B 6= 0

14 H10: B1 = 0 vs. H1a: B1 6= 0 Test on B1 and δ
H20: δ = 0 vs. H2a: δ 6= 0

15 H10: B1 = 0 vs. H1a: B1 6= 0 Test on B1 and θγ
H20: θγ = 0 vs. H2a: θγ 6= 0
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Table 2: Simulation results for EBSD and BSD for testing a single hypothesis (n = 500)

Test B1 B0 B δ θγ

BSD EBSD BSD EBSD BSD EBSD BSD EBSD BSD EBSD

quantitative interaction
π, πopte 0.2 1 0.2 0 0.2 0.188 0.2 0.480 0.2 0.675

true 0.211 0.211 0.097 0.097 0.120 0.120 0.114 0.114 0.030 0.030
estimate 0.211 0.212 0.097 0.098 0.120 0.118 0.110 0.113 0.030 0.030

std.p 0.090 0.041 0.049 0.044 0.043 0.043 0.103 0.084 0.017 0.011
std.e 0.091 0.040 0.049 0.044 0.044 0.043 0.103 0.085 0.017 0.011

coverage 0.943 0.952 0.949 0.945 0.951 0.949 0.942 0.946 0.944 0.947

qualitative interaction
π, πopte 0.2 1 0.2 0 0.2 0.214 0.2 0.521 0.2 0.710

true 0.171 0.171 -0.163 -0.163 -0.097 -0.097 0.334 0.334 0.044 0.044
estimate 0.171 0.171 -0.162 -0.164 -0.097 -0.096 0.335 0.333 0.044 0.044

std.p 0.097 0.044 0.045 0.040 0.042 0.041 0.107 0.084 0.018 0.011
std.e 0.100 0.044 0.045 0.041 0.042 0.041 0.108 0.085 0.018 0.011

coverage 0.944 0.948 0.951 0.941 0.949 0.945 0.947 0.948 0.941 0.951

γ = 0.1 is assumed for θγ . We also set π = 20%, α = 0.05, nsim = 1000
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Table 3: Simulation results for EBSD and BSD for testing two hypotheses at targeted powers

Test B1 & B0 B1 & B B1 & δ B1 & θγ

BSD EBSD BSD EBSD BSD EBSD BSD EBSD

quantitative interaction
π, πopte 0.2 0.244 0.2 0.416 0.2 0.480 0.2 0.675
n 1374 1130 1374 661 3449 2315 1374 538

B1 B1 B1 B1

true 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211
estimate 0.211 0.211 0.211 0.212 0.211 0.212 0.211 0.211

std.p 0.055 0.054 0.055 0.055 0.035 0.027 0.055 0.047
std.e 0.055 0.055 0.055 0.054 0.034 0.027 0.054 0.048

coverage 0.987 0.988 0.989 0.987 0.991 0.991 0.987 0.990

B0 B δ θγ
true 0.097 0.097 0.120 0.120 0.114 0.114 0.030 0.030

estimate 0.097 0.097 0.120 0.120 0.113 0.114 0.030 0.030
std.p 0.030 0.034 0.026 0.041 0.039 0.039 0.010 0.010
std.e 0.030 0.033 0.027 0.041 0.039 0.039 0.010 0.011

coverage 0.963 0.961 0.958 0.962 0.961 0.960 0.955 0.951

qualitative interaction
π, πopte 0.2 0.658 0.2 0.495 0.2 0.873 0.2 0.939
n 2444 742 2444 988 2444 560 2444 520

B1 B1 B1 B1

true 0.171 0.171 0.171 0.171 0.171 0.171 0.171 0.171
estimate 0.170 0.170 0.171 0.172 0.171 0.171 0.171 0.171

std.p 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044
std.e 0.045 0.044 0.046 0.044 0.044 0.045 0.045 0.045

coverage 0.988 0.990 0.987 0.990 0.989 0.990 0.990 0.989

B0 B δ θγ
true -0.163 -0.163 -0.097 -0.097 0.334 0.334 0.044 0.044

estimate -0.163 -0.164 -0.096 -0.096 0.335 0.335 0.044 0.044
std.p 0.020 0.056 0.019 0.033 0.049 0.114 0.008 0.015
std.e 0.021 0.057 0.019 0.034 0.049 0.116 0.008 0.015

coverage 0.958 0.958 0.954 0.956 0.960 0.954 0.957 0.941

γ = 0.1 is assumed for θγ . We also set π = 20%, α1 = 0.01, α2 = 0.04, β1 = 0.1, β2 = 0.2, nsim = 1000
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Table 4: Numerical results for AEBSD design for testing δ

π π̃ PPV π̃opte naebsd nsaebsd nbsd nratio cratio nsratio
quantitative interaction

0.05 0.05 0.2 1.000 4325 86500 14199 0.305 0.334 6.092
0.5 0.958 2902 55592 14199 0.204 0.223 3.915
0.8 0.595 2902 34516 14199 0.204 0.216 2.431

0.1 0.1 0.2 1.000 4325 43251 7559 0.572 0.599 5.722
0.5 0.955 2902 27716 7559 0.384 0.401 3.667
0.8 0.589 2902 17082 7559 0.384 0.395 2.260

0.15 0.15 0.2 1.000 4325 28834 5381 0.804 0.829 5.358
0.5 0.951 2902 18408 5381 0.539 0.556 3.421
0.8 0.582 2902 11252 5381 0.539 0.549 2.091

qualitative interaction
0.05 0.05 0.2 1.000 546 10920 1882 0.290 0.318 5.802

0.5 1.000 333 6660 1882 0.177 0.194 3.539
0.8 0.647 332 4296 1882 0.176 0.187 2.283

0.1 0.1 0.2 1.000 546 5461 986 0.554 0.580 5.539
0.5 1.000 333 3330 986 0.338 0.354 3.377
0.8 0.642 332 2131 986 0.337 0.347 2.161

0.15 0.15 0.2 1.000 546 3640 690 0.791 0.816 5.275
0.5 1.000 333 2220 690 0.483 0.498 3.217
0.8 0.635 332 1407 690 0.481 0.491 2.039

π̃opte is optimal enrichment proportion for auxiliary positive patient; naebsd is the number of randomized patients for AEBSD;

nbsd is the number of randomized patients for BSD; nbsd is the number of randomized patients for BSD; nratio is the ratio of

nEBSD and nBSD; nsratio is the ratio of the number of screened patients for AEBSD versus BSD; cratio is the cost ratio for

conducting AEBSD and BSD. α = 0.05, β = 0.1. The unit cost is 500 for ascertaining true biomarker, the average unit cost is

10, 000 for treatment and follow-up, and the unit cost is 50 for ascertaining auxiliary variable.
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Table 5: Herceptin trial: Testing one or two hypotheses with EBSD at optimal enrichment
proportion πopte compared to BSD

Test true πopte nebsd Pebsd nbsd Pbsd nratio nsratio cratio
Testing a single hypothesis

B1 0.160 1.000 372 0.900 1861 0.900 0.200 1.000 0.216
B0 0.050 0.000 4098 0.900 5122 0.900 0.800 1.000 0.804
B 0.072 0.194 1948 0.900 1949 0.900 1.000 1.007 1.000
δ 0.110 0.491 3267 0.900 4996 0.900 0.654 1.605 0.673
θ0 0.032 1.000 372 0.900 1861 0.900 0.200 1.000 0.216
θγ 0.025 0.685 1071 0.900 2643 0.900 0.405 1.387 0.425

Testing two hypotheses

B1 & B0 0.160, 0.050 0.139 3797 0.980 4087 0.997 0.929 1.000 0.930
B1 & B 0.160, 0.072 0.318 1663 0.961 2635 0.985 0.631 1.002 0.638
B1 & δ 0.160, 0.110 0.491 2607 1.000 3986 0.985 0.654 1.606 0.673
B1 & θ0 0.160, 0.032 0.999 528 0.965 2635 0.964 0.200 1.001 0.216
B1 & θγ 0.160, 0.025 0.685 855 0.940 2635 0.909 0.325 1.111 0.340

πopte is optimal enrichment proportion for biomarker positives; nebsd is the number of randomized patients for EBSD; Pebsd is

the power of testing a single hypothesis and the probability of success of testing two hypotheses for EBSD; nbsd is the number

of randomized patients for BSD; Pbsd is the power of testing a single hypothesis and the probability of success of testing two

hypotheses for BSD; nratio is the ratio of nEBSD and nBSD; nsratio is the ratio of the number of screened patients for EBSD

versus BSD; cratio is the cost ratio for conducting EBSD and BSD. γ = 0.2 is assumed for θγ . We also assume π = 0.2, the

unit cost is 300 for ascertaining true biomarker and the average unit cost is 10, 000 for treatment and follow-up. For testing on

a single hypothesis, α = 0.05, β = 0.1. For testing two hypotheses, α1 = 0.01, β1 = 0.1, α2 = 0.04, β2 = 0.2.
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