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Abstract

Problems of forecasting related time series of counts arise in a diverse array of appli-

cations such as consumer sales, epidemiology, ecology, law enforcement, and tourism.

Characteristics of high-frequency count data including many zeros, high variation,

extreme values, and varying means make the application of traditional time series

methods inappropriate. In many settings, an additional challenge is producing on-

line, multi-step forecasts for thousands of individual series in an efficient and flexible

manner. This dissertation introduces novel classes of models to address efficiency,

efficacy and scalability of dynamic models based on the concept of decouple/recouple

applied to multiple series that are individually represented via novel univariate state-

space models. The novel dynamic count mixture model involves dynamic generalized

linear models for binary and conditionally Poisson time series, with dynamic ran-

dom effects for overdispersion, and the use of dynamic covariates in both binary and

non-zero components. New multivariate models then enable information sharing in

contexts where data at a more highly aggregated level provide more incisive infer-

ence on shared patterns such as trends and seasonality. This novel decouple/recouple

strategy incorporates cross-series linkages while insulating parallel estimation of uni-

variate models. We extend these models to a general framework appropriate for

settings in which count data arises through a compound process. The motivating

application is in consumer sales contexts where variability in high-frequency sales

data arises from the compounding effects of the number of transactions and the
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number of sales-per-transactions. This framework involves adapting the dynamic

count mixture model to forecast transactions, coupled with a binary cascade concept

using a sequence of Bayesian models to predict the number of units per transac-

tion. The motivation behind the binary cascade is that the appropriate way to

model rare events is through a sequence of conditional probabilities of increasingly

rare outcomes. Several case studies in many-item, multi-step ahead supermarket

sales forecasting demonstrate improved forecasting performance using the proposed

models, with discussion of forecast accuracy metrics and the benefits of probabilistic

forecast accuracy assessment.
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1

Introduction

Modeling and forecasting of multivariate time series of non-negative counts are com-

mon interests among many companies and research groups. One key area that moti-

vates our work is that of product sales/demand forecasting, exemplified by forecasting

sales based on historical data and concomitant information in commercial outlets in-

cluding supermarkets and e-commerce sites. Forecasts for inventory management,

production planning, pricing, and marketing decisions are at the heart of business

analytics in such environments. Historically, product sales forecasting has focused

on aggregate sales of entire categories/stores or weekly/monthly sales of items due to

the lack of relevant data at the daily level for items. However, the increasing avail-

ability of rich point-of-sale data on transactions of retail items has created interest

in forecasting daily sales of individual products (Boone et al., 2019).

For large retailers this is a high-dimensional problem as forecasts are required

for multiple time granularities for many individual products across multiple outlets.

Seaman (2018) explains that physical stores can sell hundred of thousands of individ-

ual items while online retailers may sell millions. In order to function, large retailers

may need to produce up to a billion individual forecasts each day. To be effective
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in such settings, models must run efficiently in an on-line manner as new data are

collected, and do so automatically as a routine while having the ability to flag excep-

tions and call for intervention as needed. The challenge is to define a flexible class of

product-level models that can be customized to individual products within a general

framework. Then, forward/sequential analysis and multi-step ahead forecasting must

be effective and efficient computationally, and enable integration across potentially

many products to share information while maintaining scalability to increasingly

large-scale problems.

Our research to address these challenges begins with definition and development

of a novel class of univariate models for time series of non-negative counts. An-

chored in our case-study context of forecasting daily sales of products at a large

supermarket chain, key questions include accounting for various levels of seasonality

(weekly, monthly, yearly), holiday effects, price/promotion information, and unpre-

dictable drifts in levels and variability of sales. High-frequency time series like daily

sales are often characterized by high variability and extreme values, and levels of

demand across products can vary drastically, with some products selling dozens of

units per day, and others having many days with zero sales. Time series at the

fine-scale resolution of individual item sales typically contain many zeros and low

counts, so that traditional time series models and methods– such as exponential

smoothing (Hyndman et al., 2008), ARIMA models (Box et al., 2008), and condi-

tionally Gaussian/linear state-space models (West and Harrison, 1997; Prado and

West, 2010)– are not appropriate.

Due to the high-dimension, demand forecasters rely on simple, univariate, ex-

trapolative models (Ma et al., 2016; Seaman, 2018). Common examples include the

naive forecast of the last observation, moving averages, simple exponential smooth-

ing, ARIMA models, and exponential smoothing state space models. Generally, these

models do not incorporate covariates such as price and promotion, and if estimated
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at all, the covariate effects are static over time. Ali et al. (2009) found that sim-

ple methods perform well in periods without promotions, but that more advanced

models improve forecasting when promotion features are incorporated. In common

usage, these simple models produce only point forecasts and uncertainty is ignored.

Exponential smoothing models can produce interval predictions, but these are ei-

ther based on assumptions of normality inappropriate for low-counts, or empirical

approaches like bootstrapping that may not adapt to dynamic changes in the dis-

tribution (Hyndman et al., 2005; Taylor, 2007). Zero-inflation and overdispersion

are difficult to handle, and are usually addressed on a case-by-case basis through

specific alternative models. In this high-dimensional setting, it is infeasible to indi-

vidually customize models for each item and to monitor the suitability of the chosen

model over time. Instead, we desire an automatically flexible model that can han-

dle common characteristics of count data like zeros and overdispersion. While these

simple time series models have proven useful in aggregate sales forecasting, they are

inappropriate for forecasting low-valued counts.

A number of approaches to forecasting count-valued time series have, of course,

been developed. The issues of intermittent demand (many zeros in sales) and low

counts have been a main concern (e.g. Croston, 1972), as has over-dispersion relative

to Poisson structures. A range of modified Poisson, negative binomial, so-called “hur-

dle shifted” Poisson and jump-process models have been explored with specific appli-

cations (e.g. Chen et al., 2016; Chen and Lee, 2017; Snyder et al., 2012; McCabe and

Martin, 2005). Quantile regression and forecasting have been applied for count data

settings such as inventory management where safety stock is a major concern (Tay-

lor, 2007; Trapero et al., 2019). An intuitive approach for reducing intermittency of

data is temporal aggregation into non-interlapping intervals, e.g. aggregating daily

to weekly data, such as ADIDA (Nikolopoulos et al., 2011) and MAPA (Kourentzes

et al., 2014). Challenges associated with temporal aggregation include selecting the
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appropriate level of aggregation and disaggregation scheme, excessive smoothing of

the data, and loss of information due to having fewer observations.

Comparative analyses in Yelland (2009) highlight the utility of state-space ap-

proaches including the canonical Gamma-Poisson “local level” model (West and Har-

rison, 1997 section 10.8; Prado and West, 2010 section 4.3.7). This and other stan-

dard Bayesian state-space models have proven utility in a range of discrete-time series

contexts including dynamic network studies (e.g. Chen et al., 2018) where short-term

forecasting and local smoothing are primary goals. With a view towards improved

predictive ability and– critically– multi-step forecasting, it is perhaps somewhat sur-

prising that more elaborate and predictive Bayesian state-space models have not yet

become central to the area, especially in the context of some of the key genesis de-

velopments in Bayesian forecasting in commercial settings (e.g. West and Harrison,

1997, chapter 1, and references therein) and their exploitation over several decades.

Chapter 2 provides important background on Bayesian state-space models and,

in particular, standard univariate dynamic generalized linear models (DGLMs: West

et al., 1985; West and Harrison, 1997 chapter 15; Prado and West, 2010 section 4.4).

We detail standard sequential learning, forecasting, and component discounting in

DGLMs, and provide key examples of DGLMs which we will build upon in future

chapters. Section 2.5 describes three variational Bayes approaches to conjugate prior

specification in DGLMs, and a practical comparison of these methods. Finally, Sec-

tion 2.6 concludes the chapter with a discussion of common point forecast metrics

and probabilistic forecast evaluation for count data. The consumer forecasting field

has tended to focus on very specific point-forecast metrics, and part of our work here

is to broaden the perspective on forecast evaluation in response to, and enabled by,

the availability of fully specific probability forecast distributions.

Chapter 3 defines and develops a new class of dynamic count mixture models

(DCMMs), coupling Bayesian state-space models for binary time series with condi-
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tional count models. We build on standard univariate DGLMs to define a general

and flexible class of basic dynamic models that are customizable to individual series.

A critical aspect of DCMMs is that they inherit the sequential learning and forecast-

ing of Bayesian state-space models, allowing fast, parallel processing of decoupled

univariate models for individual series. These models allow for the incorporation

of series-specific predictors for zero-count prediction as well as for forecasting levels

of non-zero counts, and– critically for many applications– dynamic random effects

extensions for over-dispersion relative to conditionally Poisson models.

The motivating application in consumer sales forecasting is introduced in Sec-

tion 3.4. The case study context is supermarket sales of many individual items, and

several examples of item-level sales highlight the uses of DCMMs and the flexibility

of the new model class to adapt to substantially differing features of count time se-

ries. As part of this, we discuss results for a range of metrics for forecast assessment,

including standard point-forecast measures, probabilistic calibration and coverage.

Chapter 4 addresses the interest in multivariate cross-series linkages and borrow-

ing of information on shared characteristics and patterns. Our main focus here is on

the potential for multivariate models to improve multi-step ahead forecasts at the

level of individual series, while maintaining efficiency of the forward/sequential anal-

ysis and, critically, enabling scaling to many series. Among multivariate approaches,

a number of authors have explored models for counts or proportions (e.g. Quintana

and West, 1988; West and Harrison, 1997 chapter 16; Da-Silva and Migon, 2016).

However, there do not exist general classes of models addressing our key desiderata

of flexibility at the single-series level, analytic tractability and capacity to scale to

higher dimensions. Most existing models tend to be specific to applications and not

easily amenable to integrating covariate information at the individual series level.

Further, many require intense computations such as Markov chain Monte Carlo or

sequential particle methods (e.g. Cargnoni et al., 1997; Aktekin et al., 2018), which
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is antithetical to our concern for fast, sequential analysis and cross-series integration

with many series. Our work here builds on the flexible class of univariate DCMMs

and defines a novel multi-scale approach to integrating cross-series information about

common patterns, exemplified in terms of time-varying seasonality where a seasonal

pattern is evident across series but with series-specific random effects. Critically,

our new decouple/recouple approach enables information sharing while avoiding in-

tense computations typical of random-effects/hierarchical models. The basic idea is

of using aggregate level data to inform on micro-level series is one example of a de-

couple/recouple strategy that maximally exploits series-specific customization while

enabling integration in multivariate models; see Chen et al. (2019, 2018); Gruber and

West (2016, 2017) for models that exploit this strategy in very different contexts.

Section 4.5 revisits application in the consumer sales case study, illustrating the use

and impact of the multi-scale framework across several products in the context of

sales forecasting of multiple related items.

Chapter 5 compares the univariate and multi-scale DCMM to other existing mod-

els that could be used in the context of product sales forecasting. The comparison

models each fall within the framework of observation driven models with an au-

toregressive dependence component. We present results for common point forecast

metrics as well as probabilistic forecast evaluation. Although the performance for

these comparison approaches is reasonable for point forecast metrics, the DCMM is

preferable in our application due to the dynamic covariate effects, efficient multi-scale

framework, and automatic handling of overdispersion and excess zeros.

Chapter 6 defines the new class of dynamic binary cascade models (DBCMs) in-

corporating a novel concept of binary cascades. This begins with flexible DCMMs to

assess and forecast daily item-level transactions. Coupled with this, development of

our dynamic binary cascade concept involves a class of Bayesian nonparametric mod-

els to predict the number of items sold per transaction (or “basket”). This is a new
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approach involving novel Bayesian dynamic models that are customizable to diverse

levels of sales from sporadic/intermittent to persistent. Section 6.2 concerns the in-

tegration of cross-series information using the novel multi-scale approach introduced

in Section 4. We adapt this to forecasting transactions rather than sales; this enables

relevant data shared in forecasting item-level demand, which is then coupled with

the new binary cascade approach for sales per transaction. This decouple/recouple

framework maximally exploits analytic tractability for sequential learning and fore-

casting for each individual item and enables information sharing across items while

maintaining computational scalability; the resulting computational burden remains

linear in the number of items. Section 6.3 develops and showcases a series of examples

of the application of this new model class in analysis and forecasting of supermarket

sales with a number of items evidencing substantially different features in sales levels

and variation over time.

Summary comments and a discussion of potential future research areas in Sec-

tion 7 conclude the dissertation.
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2

Bayesian State-Space Models and Count
Forecasting

2.1 Bayesian State-Space Modeling

The models presented in this dissertation fall within the framework of Bayesian state-

space models. This chapter provides relevant information about dynamic generalized

linear models (DGLMs), a type of Bayesian state-space model, which serve as a

building block for the reminder of the dissertation. Bayesian state-space models are

defined by an observation equation, evolution equation, and initial prior information.

The observation equation represents the stochastic relationship between some output

and an underlying state vector. The evolution equation specifies the structure of the

random evolution of the state vector as a function of the previous value of the state

vector.

There are many benefits to Bayesian state-space models in the context of prod-

uct sales forecasting. Data are modeled on their natural scale rather than being

transformed. Bayesian analysis naturally implements sequential learning and fore-

casting through state evolutions and prior-posterior updates at each time t. Bayesian
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forecasting utilizes full predictive distributions rather than just point forecasts, and

simulation at any time point provides access to summary forecasts on arbitrary func-

tions of the future data over multiple steps ahead. This allows forecasters to study

quantities like the total sales over the next k days, the probability of exceeding some

number of sales in the next k days, etc. Components of state-space models, such

as levels, trends, seasonality, and regression components, are easily interpretable

by non-statisticians. Time-varying model components allow non-stationarities to

be captured and for models to adapt to unpredictable changes. Inference on time-

varying model components can help understand how relationships between predictors

and the outcome may vary through time. A key question in product sales forecasting

is how changes in price and promotion affect sales and whether this effect varies over

time. In addition to producing forecasts, Bayesian state-space models can provide

insight into questions of this nature. Finally, the Bayesian framework allows incor-

poration of expert information or interventions into the model at any time point via

modifications of “current” priors over state parameters. For example, store managers

may want to intervene on a model if they have outside knowledge what may affect

sales such as an upcoming hurricane/blizzard or other local information.

2.2 Sequential Learning in DGLMs

General notation follows that of standard Bayesian dynamic linear models (West

and Harrison, 1997). Denote by yt a univariate time series observed at discrete,

equally-space times t “ 1, . . . , T . At any time t, having observed y1:t, the avail-

able information is denoted—and sequentially updated—by Dt “ tyt,Dt´1, It´1u,

where It´1 represents any additional relevant information besides past data becom-

ing available at time t ´ 1 (such as covariate values and information used to define

interventions in the model). For any vector of time indices t ` 1:t ` k for k ą 0,

forecasting yt`1:t`k at time t is based on the information set tDt, Itu. The full class
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of DGLMs defines Bayesian state-space modeling of data conditionally arising from

distributions with exponential family form.

In a specified DGLM, the observation model has p.d.f. of exponential family form

ppyt | ηt, φq “ bpyt, φq exp rφtytηt ´ apηtqus (2.1)

where ηt is the natural parameter that maps to linear predictor λt “ gpηtq via link

function gp¨q. The known scale factor φ is set to 1 in Bernoulli and Poisson models,

and bp¨, ¨q is a known function specific to the chosen sampling distribution. Often,

gp¨q is set to the identity, and the natural parameter is the linear predictor. Dynamic

regression is defined by the state-space form

λt “ F1tθt where θt “ Gtθt´1 ` ωt and ωt „ p0,Wtq (2.2)

with the following elements:

• θt is the latent, time-varying state vector, and Ft is a known vector of constants

or realized values of predictor variables (a.k.a. regressors).

• The evolution equation in (2.2) specifies a conditionally linear Markov process

for the state vector through time: Gt is a known state matrix specifying struc-

tural evolution of the state vector, and ωt is a stochastic innovation vector (or

evolution “noise”).

• The notation ωt „ p0,Wtq indicates that Epωt|Dt´1, It´1q “ 0 and

Vpωt|Dt´1, It´1q “ Wt, the latter variance matrix being known at time t ´ 1.

The distribution of ωt is otherwise not specified, but is generally expected to

be unimodal and symmetric about zero.

• The ωt are independent over time and, at time t ´ 1, ωt and θt´1 are condi-

tionally independent given tDt´1, It´1u.

The standard DGLM analysis (West et al., 1985; West and Harrison, 1997 chap-

ter 15; Prado and West, 2010 section 4.4) has the following features.
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1. At any time t ´ 1, the current information is summarized in the posterior

for the current state vector via the mean vector and variance matrix, namely

pθt´1 | Dt´1, It´1q „ pmt´1,Ct´1q.

2. Through the evolution equation this induces 1´step ahead prior moments on

the state vector of the form pθt | Dt´1, It´1q „ pat,Rtq with at “ Gtmt´1 and

Rt “ GtCt´1G
1
t `Wt.

3. A version of the so-called variational Bayes concept then applies to choose a

conjugate prior for ηt, denoted by pηt | Dt´1, It´1q „ CPpαt, βtq with form

ppηt | Dt´1, It´1q “ cpαt, βtq exp tαtηt ´ βtapηtqu. Here cp¨, ¨q is a function of the

hyper-parameters of known form depending on the specific exponential family

model. See Section 2.5 for further discussion on the variational Bayes methods.

4. The hyper-parameters αt and βt are evaluated so that the conjugate prior

satisfies the prior moment constraints

Epλt | Dt´1, It´1q “ ft “ F1tat and Vpλt | Dt´1, It´1q “ qt “ F1tRtFt.

5. Forecasting yt 1´step ahead uses the conjugacy-induced predictive distribution

with p.d.f. ppyt | Dt´1, It´1q “ bpyt, φqcpαt, βtq{cpαt ` φyt, βt ` φq.

6. On observing yt, the posterior for ηt has the conjugate form of pηt | Dtq „

CP pαt ` φyt, βt ` φq.

7. Under this posterior, mapping back to the linear predictor λt “ gpηtq implies

posterior mean and variance gt “ Epλt | Dtq and pt “ Vpλt | Dtq.

8. Finally, linear Bayes updating implies posterior mean vector and variance ma-

trix of the state vector as pθt | Dtq „ pmt,Ctq given by

mt “ at `RtFtpgt ´ ftq{qt and Ct “ Rt ´RtFtF
1
tR

1
tp1´ pt{qtq{qt.

This completes the time t´ 1-to-t evolve-predict-update cycle.
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This sequential learning scheme, detailed in (West et al., 1985), utilizes conjugate

analysis and a variational Bayes concept for the state vector evolution, and linear

Bayes theory for the state vector updating. The result is a computationally simple

update similar to the Kalman filter which produces coherent forecast distributions

in a sequential manner. Triantafyllopoulos (2009) compared the forecasting per-

formance of this variational/linear Bayes approach to two alternative on-line DGLM

estimation methods. The first method follows Fahrmeir (1992) in using standard nor-

mal approximations based on numerical prior-to-posterior mode updates and Taylor

series expansion of the log posterior at each time point; this is one version of so-called

extended Kalman filtering (West and Harrison, 1997 chapter 13; West, 1981). The

second approach is a sequential Monte Carlo (SMC, or particle filtering) method.

The linear/variational Bayes approach is shown to improve forecasting performance

compared to the extended Kalman filter method, and to have a much lower com-

putational cost and fewer implementation barriers than the sequential Monte Carlo

method. Particle filters have several well-documented issues including weight de-

generacy, sample impoverishment, the choice of appropriate importance densities,

and on-line parameter learning (Arulampalam et al., 2002; Triantafyllopoulos, 2009).

Although specialized approaches attempt to address each of these concerns, the im-

plementation of particle filtering is not straightforward in a setting with thousands

of series. Additionally, as addressed in the discussion following Lopes et al. (2011),

weight degeneracy is unavoidable as the length of the data increases unless the corre-

sponding number of particles also increases exponentially. As the length of our data

increases, this quickly makes particle filtering a computationally infeasible approach

in our high-dimensional setting of high-frequency data requiring on-line inference.

Some of the structure and computations implied require comment and are high-

lighted in the key cases of interest for count data. In each case, the link function gp¨q

is the identity so that ηt “ λt.
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2.3 Key Examples of DGLMs

2.3.1 Bernoulli Logistic DGLM

Here the series yt is relabelled as zt “ 0{1 with zt „ Berpπtq and ηt “ logitpπtq. In

the exponential family p.d.f. form the terms are φ “ 1, bpyt, φq “ 1 and apηtq “

logp1 ` exppηtqq. The conjugate prior in part 4 above is Beta, πt „ Bepαt, βtq, with

the hyper-parameters defining ft “ ψpαtq´ψpβtq and qt “ ψ1pαtq`ψ
1pβtq, where ψp¨q

and ψ1p¨q are the digamma and trigamma functions, respectively. The values pαt, βtq

can be trivially computed from pft, qtq via iterative numerical solution based on

standard Newton-Raphson. The form of the 1´step ahead forecast is Beta-Bernoulli

with pzt | Dt´1, It´1q „ BBerp1, αt, βtq defined simply by Prpzt “ 1|Dt´1, It´1q “

αt{pαt ` βtq. The updated moments of the linear predictor in part 7 above are then

trivially computed via the equations gt “ ψpαt ` ztq ´ ψpβt ` 1 ´ ztq and pt “

ψ1pαt ` ztq ` ψ
1pβt ` 1´ ztq.

2.3.2 Poisson Loglinear DGLM

Here yt „ Popµtq with ηt “ logpµtq. In the exponential family p.d.f. form the terms

are φ “ 1, bpyt, φq “ 1{yt! and apηtq “ exppηtq. The conjugate prior in part 4 above is

Gamma, µt „ Gapαt, βtq, with the hyper-parameters defining ft “ ψpαtq´logpβtq and

qt “ ψ1pαtq. The values pαt, βtq can be trivially computed from pft, qtq via iterative

numerical solution based on standard Newton-Raphson. The 1´step ahead forecast

is negative binomial, pyt | Dt´1, It´1q „ Nbpαt, βt{p1 ` βtqq. The updated moments

of the linear predictor in part 7 above are trivially computed via the equations

gt “ ψpαt ` ytq ´ logpβt ` 1q and pt “ ψ1pαt ` ytq.

2.3.3 Normal DLM

We also note the special case of normal models when the DGLM reduces to a condi-

tionally normal DLM. This is of relevance to count time series in case of large counts

13



where a log transform—for example—of the count series can often be well-modeled

using a normal DLM as an approximation. This also allows for inclusion of volatility

via a time-varying conditional variance. With yt the logged values of the original

count series, a normal model has yt „ Npµt, vtq with ηt “ µt. In the exponential fam-

ily p.d.f. form the term φ becomes, generally, a time-dependent precision, φt “ 1{vt,

while bpyt, φtq “ pφt{2πq
1{2 expp´φty

2
t {2q and apηtq “ η2t {2.

The conjugate prior in part 4 above is normal, µt „ Npat, Atvtq which matches the

general conjugate form with αt “ at{At and βt “ 1{At. Prior to posterior updating

in part 8 reduces to a standard Kalman filter update. When embedded in the DLM,

the additional assumption that the evolution noise terms ωt in eqn. (2.2) are also

normal implies that DGLM evolution/updating equations are exact in this special

case. However, for most practical applications it is relevant to also estimate the

conditional variances vt “ 1{φt. The simplest and most widely-used extension is

that based on a standard Beta-Gamma stochastic volatility model for φt which, is

analytically tractable. The resulting theory is then based on normal/inverse gamma

prior and posterior distributions for pµt, vtq. Details of the resulting modifications

to forward filtering and forecasting analysis are very standard (West and Harrison,

1997 chapter 4 and section 10.8; Prado and West, 2010 section 4.3).

2.4 Traditional Component Discounting

Specification of the required evolution variance matrices Wt in eqn. (2.2) uses the

standard, parsimonious and effective discount method based on component discount-

ing (West and Harrison, 1997, chapter 6). In most practical models the state vector

is naturally partioned into components representing different explanatory effects,

such as trends (e.g., local level, local gradient), seasonality (time-varying seasonal

factors or Fourier coefficients) and effects of independent predictor variables. That

is, for some integer J we have θ1t “ pθ1t1, . . . ,θ
1
tJq. It is natural to define Wt to
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represent potentially differing degrees of stochastic variation in these components

and this is enabled using separate discount factors δ1, . . . , δJ , where each δj P p0, 1s.

A high discount factor implies a low level of stochastic change in the corresponding

elements of the state vector, and vice-versa (with δj “ 1 implying no stochastic noise

at all—obviously desirable but rarely practically relevant). The definition of Wt is

as follows.

From Section 2.2 part 2 above, the time t´ 1 prior variance matrix of Gtθt´1 is

Pt “ GtCt´1G
1
t; this represents information levels about the state vector following

the deterministic evolution via Gt but before the impact of the evolution noise that

then simply adds Wt. Write Ptj for the diagonal block of Pt corresponding to state

subvector θtj and set

Wt “ block diagrPt1p1´ δ1q{δ1, . . . ,PtJp1´ δJq{δJ s.

Then the implied prior variance matrix of θt following the evolution has correspond-

ing diagonal block elements Rtj “ Ptj{δj while maintaining off-diagonal blocks from

Pt. Thus, the stochastic part of the evolution increases uncertainties about state

vector elements in each subvector j by 100p1 ´ δjq{δj%, maintains the correlations

in Ptj for state elements within the subvector j, while reduces cross-correlations be-

tween state vector elements in differing subvectors. In practice, high values of the

δj are desirable and typical applications use values in the range 0.97 ´ 0.999 with,

generally, robustness in terms of forecasting performance with respect to values in

the range. Evaluation of forecast metrics on training data using different choices of

discount factors is a basic strategy in model building and tuning.

2.5 Variational Bayes Techniques for Conjugate Prior Specification

In Section 2.2, we discussed a variational Bayes concept in step 3 of the standard

DGLM analysis that has been in use in ranges of applications since the early 1980s
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since West et al. (1985). In this section, we provide additional details about this

method and introduce two alternative approaches. In Section 2.2 part 2 above, we

have 1-step ahead prior mean and variance pat,Rtq on the state vector θt. Given the

relationship λt “ F1tθt in eqn. (2.2), the prior moments of θt imply prior moments

of λt. Although this defines prior moments for λt, there is not a fully specified prior

distribution on λt since we do not specify the distribution of θt. In order to define a

closed form predictive distribution for yt, we must fully specify the prior for λt. We

could conceivably choose any prior distributions, and we specify conjugate priors for

several reasons. Since our likelihood is of exponential family form, a conjugate prior

will alway exist. Furthermore, with a conjugate prior, the resulting 1-step predictive

distribution of yt can be written in closed form as a function of the exponential family

normalizing constant. Finally, after yt is observed, the conjugate prior-to-posterior

update is mathematically and computationally simple.

We denote the conjugate prior on the linear predictor as λt „ CP pαt, βtq. The

specific form of the conjugate prior depends on the specified likelihood distribution.

Given our choice of conjugate prior, there are several ways we can select values

of hyperparameters αt and βt. Ideally, we would like to select pαt, βtq so that the

conjugate prior is, in some sense, “close” to the prior moments on θt. We describe

three methods for choosing hyperparameters in the following sections, and compare

the applied results of these three methods in Section 2.5.3.

2.5.1 Moment Matching

In this approach, as in the original methodology of DGLMs (West et al., 1985), and

following Section 2.2 part 4 above, we choose the conjugate hyperparameters so that

the mean and variance of the conjugate prior are the same as the mean and variance

implied on ηt by pθt | Dt´1, It´1q. The moment matching approach for Bernoulli

and Poisson distributions was briefly described in Sections 2.3.1 and 2.3.2, and we
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expand upon the details for the Poisson distribution here.

The conjugate prior for the Poisson distribution with mean µt is µt „ Gapαt, βtq.

The linear predictor λt is equal to the natural parameter of the Poisson distribution,

ηt “ logpµtq. Given that µt follows a Gamma distribution and logpµtq is a sufficient

statistic of the Gamma distribution, we can use the moment generating function of

the sufficient statistic to find the mean and variance of ηt. Using this method, we

find that Epηtq “ Eplogpµtqq “ ψpαtq ´ logpβtq and Vpηtq “ Vplogpµtqq “ ψ1pαtq.

The moment matching method selects pαt, βtq so that the mean of logpµtq under

the Gamma prior is equal to ft, and the variance of logpµtq under the Gamma prior is

equal to qt. Plugging in the previous formulas for the mean and variance of logpµtq,

we get the following system of equations: ft “ ψpαtq´ logpβtq and qt “ ψ1pαtq. Given

values of ft and qt, we can use an iterative method such as Newton’s method to find

the values of pαt, βtq that satisfy these equations.

2.5.2 KL Divergence Minimization

Through the relationship λt “ F1tθt, the state vector prior, pθt | Dt´1, It´1q, induces

prior moments on ηt such that ηt „ pft, qtq. We denote this implied prior as ppηtq.

As discussed above, we specify a conjugate prior form on ηt in this setting. The

conjugate prior density has the form

qpηtq “ ppηt | Dt´1, It´1q “ cpαt, βtq exp tαtηt ´ βtapηtqu (2.3)

for some parameters pαt, βtq to be chosen. In this approach, our objective is to

choose pαt, βtq so that qp¨q is “close” to pp¨q. We measure the “distance” between

two probability distributions with the Kullback-Liebler (KL) divergence. We select

pαt, βtq in order to minimize the KL divergence between priors pp¨q and qp¨q. Since KL

divergence is not symmetric, we consider both the forward and reverse KL divergence.

Minimizing the forward and reverse KL divergence will result in two unique Gamma
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priors, so we consider these different methods for the remainder of this section.

Forward KL Divergence

The forward KL divergence of qp¨q from pp¨q is

Kpp || qq “ Kf “

ż

log

ˆ

ppηtq

qpηtq

˙

ppηtqdηt

“

ż

logpppηtqqppηtqdηt ´

ż

logpqpηtqqppηtqdηt. (2.4)

Note that the first term is constant with respect to q. In order to minimize Kf , we

must maximize the second term. Using eqn. (2.3), we can write logpqpηtqq as

logpqpηtqq “ logpcpαt, βtqq ` αtηt ´ βtapηtq.

Plugging this into the second term of eqn. (2.4), we see that, as a function of pαt, βtq,

Kf “ C ´ logpcpαt, βtqq `

ż

tαtηt ´ βtapηtquppηtqdηt

where C is a constant. To find the minimum of Kf , we take the partial derivative of

Kf with respect to αt and βt and set it equal to zero. That is,

´
BKf

Bαt
“ 0 “

Bcpαt, βtq{Bαt
cpαt, βtq

`

ż

ηtppηtqdηt

ñ Eppηtq “ ´
Bcpαt, βtq{Bαt
cpαt, βtq

(2.5)

and

´
BKf

Bβt
“ 0 “

Bcpαt, βtq{Bβt
cpαt, βtq

´

ż

apηtqppηtqdηt

ñ Eppapηtqq “
Bcpαt, βtq{Bβt
cpαt, βtq

. (2.6)

The notation Epp¨q specifies that we are taking the expectation with respect to pp¨q

rather than qp¨q. Given the values of Eppηtq and Eppapηtqq, we can solve for the
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pαt, βtq that minimize Kf . Note that cpαt, βtq is a constant from the conjugate prior

for the exponential family when written in terms of the natural parameter. For

common conjugate priors (ex: Beta), we must reparameterize the exponential family

in terms of the natural parameter. These result applies generally to all natural

exponential family distributions. We present the specific results for Poisson and

Bernoulli sampling distributions below.

Poisson Forward KL Divergence

For details on the Poisson DGLM, see Section 2.3.2. Through a change of variables,

the conjugate prior µt „ Gapαt, βtq can be written in terms of ηt “ logpµtq as

qpηtq “
βαt
t

Γpαtq
exp tαtηt ´ βte

ηtu

where cpαt, βtq “ βαt
t {Γpαtq from eqn. (2.3). Before applying eqns. (2.5) and (2.6),

we compute the partial derivatives of cpαt, βtq and divide by cpαt, βtq to obtain

Bcpαt, βtq{Bαt
cpαt, βtq

“ logpβtq ´ ψpαtq

and

Bcpαt, βtq{Bβt
cpαt, βtq

“
αt
βt
.

Plugging these partial derivatives into eqns. (2.5) and (2.6), and solving for αt and

βt, we obtain the following result:

βt “ exp tψpαtq ´ Epplogpµtqqu, (2.7)

αt “ βtEppµtq “ Eppµtq exp tψpαtq ´ Epplogpµtqqu. (2.8)

To solve for pαt, βtq, we must know the expectation of µt and logpµtq with respect to

pp¨q. Under pp¨q, we know that Eplogpµtqq “ ft, but the mean of µt is unknown unless

we make additional assumptions about pp¨q. If we assume that pp¨q follows a normal
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distribution (logpµtq „ Npft, qtq), then the expectation of µt is exp tft ` qt{2u. Given

ft and qt, we can solve for pαt, βtq using an iterative solver like Newton’s method.

Bernoulli Forward KL Divergence

For details on the Bernoulli DGLM, see Section 2.3.1. The conjugate prior πt „

Bepat, btq can be written in terms of the natural parameter ηt “ logitpπtq as

qpηtq “
Γpat ` btq

ΓpatqΓpbtq
exp tatηt ´ pat ` btq logpeηt ` 1qu.

To write this prior in the same notation as eqn. (2.3), we substitute αt “ at and

βt “ at ` bt so that

qpηtq “
Γpβtq

ΓpαtqΓpβt ´ αtq
exp tαtηt ´ βt logpeηt ` 1qu.

Written in this form, we identify cpαt, βtq “ Γpβtq{pΓpαtqΓpβt´αtqq. We now compute

the partial derivatives of cpαt, βtq and divide by cpαt, βtq to obtain

Bcpαt, βtq{Bαt
cpαt, βtq

“ ψpβt ´ αtq ´ ψpαtq

“ ψpbtq ´ ψpatq,

and

Bcpαt, βtq{Bβt
cpαt, βtq

“ ψpβtq ´ ψpβt ´ αtq

“ ψpat ` btq ´ ψpbtq.

We now solve for the initial Beta prior hyper parameters at and bt by plugging these

partial derivatives into eqns. (2.5) and (2.6). This results in

Epplogitpπtqq “ ψpatq ´ ψpbtq,

Epplogp1´ πtqq “ ψpbtq ´ ψpat ` btq.
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Under pp¨q, we know that the expectation of logitpπtq is ft. However, we do not know

the expectation of logp1 ´ πtq unless we make further assumptions about pp¨q. In

order to solve these equations, we can assume that pp¨q follows a normal distribution,

so that logitpπtq „ Npft, qtq. Under this assumption, there is no analytical solution

for the expectation of logp1 ´ πtq, but we can find this expectation using numerical

integration.

Reverse KL Divergence

The reverse KL divergence of pp¨q from qp¨q is

Kpq || pq “ Kr “

ż

log

ˆ

qpηtq

ppηtq

˙

qpηtqdηt

“

ż

logpqpηtqqqpηtqdηt
looooooooooomooooooooooon

A

´

ż

logpppηtqqqpηtqdηt
looooooooooomooooooooooon

B

. (2.9)

First, we focus on term A, and plug in logpqpηtqq using eqn. (2.3). This term simplifies

to

A “ logpcpαt, βtqq ` αtEqpηtq ´ βtEqpapηtqq. (2.10)

Since the second term includes qpηtq, we must assume a distribution for ppηtq in order

to maximize the second integral. We assume that pp¨q is a normal distribution, so

that ηt „ Npft, qtq. Plugging in logpppηtqq, this term simplifies to

B “ ´
1

2q
Eqpη

2
t q `

f

q
Eqpηtq. (2.11)

Note that we are now taking expectations with respect to qp¨q, so the expectations

will depend on pαt, βtq. In order to take derivatives of these terms, we must write the

expectations in terms of αt and βt. We present these details below for both Poisson

and Bernoulli distributions.
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Poisson Reverse KL Divergence

In the Poisson setting, the conjugate prior qp¨q implies that µt „ Gapαt, βtq. For a

Gamma random variable, X „ Gapa, bq, the following are true:

EplogpXqq “ ψpaq ´ logpbq,

VplogpXqq “ ψ1paq.

We can simplify eqns. (2.10) and (2.11) by plugging in the expectations with respect

to qp¨q. Under qp¨q, these terms become

A “ logpcpαt, βtqq ` αtpψpαtq ´ logpβtqq ´ βtpαt{βtq

“ logpcpαt, βtqq ` αtpψpαtq ´ logpβtqq ´ αt,

and

B “ ´
1

2q

`

ψ1pαtq ` ψpαtq
2
´ 2 logpβtqψpαtq ` logpβtq

2
˘

`
f

q
pψpαtq ´ logpβtqq .

The expectation of η2t can be found by using the fact that Eqpη
2
t q “ Vqpηtq`Eqpηtq

2.

Plugging A and B back into eqn. (2.9), and taking derivatives with respect to αt and

βt, we can minimize the reverse KL divergence. After minimizing, we can solve the

following system of equation for αt and βt:

ft “ ψpαtq ´ logpβtq,

qtαtψ
1
pαtq “ qt ´

ψ2pαtq

2
.

We can use an iterative solver, such as the Newton-Raphson method, to solve for αt

and βt given values of ft and qt.
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Bernoulli Reverse KL Divergence

In the Bernoulli setting, the conjugate prior qp¨q implies that πt „ Bepat, btq. For a

beta distributed random variable, X „ Bepa, bq, the following are true:

EplogpXqq “ ψpaq ´ ψpa` bq,

Eplogp1´Xqq “ ψpbq ´ ψpa` bq,

EplogitpXqq “ E

ˆ

log

ˆ

X

1´X

˙˙

“ EplogpXqq ´ Eplogp1´Xqq

“ ψpaq ´ ψpbq,

VplogitpXqq “ ψ1paq ` ψ1pbq.

Using these formulas, we can simplify eqns. (2.10) and (2.11) by plugging in the

expectations with respect to qp¨q. Using the expectation and variance of logitpπtq,

we can solve for the expectation of logitpπtq
2. Under this Bernoulli setting, apηtq “

logp1 ` eηtq implies that apηtq “ ´ logp1 ´ πtq, and we can use the previous facts

about Beta random variables to find the expectation of apηtq. Under qp¨q, A and B

simplify to:

A “ logpcpat, btqq ` atpψpatq ´ ψpbtqq ´ pat ` btqpψpat ` btq ´ ψpbtqq,

B “ ´
1

2q

`

ψ1patq ` ψ
1
pbtq ` ψpatq

2
´ 2ψpatqψpbtq ` ψpbtq

2
˘

`
f

q
pψpatq ´ ψpbtqq.

Given ft and qt, we can use a numerical optimization method to select pat, btq which

maximize Kr.

2.5.3 Applied Comparison of Variational Methods

In this section, we present an example comparing the conjugate priors using the mo-

ment matching and forward/reverse KL divergence minimization procedures. We as-

sume a Poisson likelihood, yt „ Popµtq, and conjugate Gamma prior, µt „ Gapαt, βtq.

For the two KL divergence procedures, we assume that distribution ppηtq „ Npft, qtq.
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Figure 2.1: Comparison of conjugate Gamma priors under the moment match-
ing (MM) method (black), forward KL divergence method (red), and reverse KL
divergence method (green) when ft “ 0, and qt “ 0.5 (left) and 3 (right).
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Figure 2.2: KL divergence of conjugate Gamma priors versus qt. We compare
conjugate priors found using the moment matching (MM) method, forward KL di-
vergence method, and reverse KL divergence method.
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The moment matching method does not make any assumptions about pp¨q besides

the mean and variance. We assume ft “ 0, and consider values of qt between 0.2 and

10. We use the KL divergence to assess the “distance” between the resulting Gamma

priors. The KL divergence of “approximating” Gapaq, bqq from “true” Gapap, bpq is:

paq ´ apqψpαpq ´ logψpapq ` logψpaqq ` aqplogpbpq ´ logpbqqq ` appbq ´ bpq{bp.

Figure 2.1 plots the conjugate Gamma priors using the moment matching and for-

ward/reverse KL divergence methods with qt “ 0.5 (left) and 3 (right). The black

line is the moment matching prior, the red line is the forward KL divergence prior,

and the green line is the reverse KL divergence prior. Note that the x-axes on these

plots do not show the full support of the priors, and that we only plot the partial

support to illustrate the differences between the priors.

When qt “ 0.5, all three priors are similar in terms of location and shape. The

moment matching method results in a Gap2.46, 1.98q prior, the forward KL pro-

cedure results in Gap2.15, 1.68q, and the reverse KL divergence procedure returns

Gap2.59, 2.11q. The moment matching and reverse KL priors are most similar, al-

though the moment matching prior has a slightly longer tail than the reverse KL

prior. The forward KL prior has a slightly longer tail than the moment matching

prior. When qt “ 3, the density of all three priors is concentrated near zero. The

moment matching prior is Gap0.68, 0.27q, the forward KL prior is Gap0.43, 0.10q,

and the reverse KL prior is Gap0.74, 0.33q. Again, the moment matching and re-

verse KL priors are very similar, with the tail of the moment matching prior very

slightly longer. The forward KL prior has a longer tail than the moment matching

and reverse KL priors.

Figure 2.2 plots the KL divergence between the conjugate Gamma priors versus

qt under the moment matching, forward KL, and reverse KL methods. Since the

KL divergence is not symmetric, we consider the forward and reverse KL divergence
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between each combination of the three priors. From this plot, we can see that KL

divergence increases as qt increases. As we noticed in the previous plots, the moment

matching and reverse KL divergence priors are most similar and have the smallest

KL divergence across qt. Note that the KL divergence from the moment matching

to the reverse KL divergence prior (green line) is covered by the pink line. The

largest KL divergences occur when comparing the forward KL divergence prior to

the reverse KL divergence prior and the moment matching prior.

From this comparison, we can conclude that the moment matching and reverse KL

divergence methods result in very similar conjugate prior specifications. The moment

matching prior has a slightly longer tail than the reverse KL divergence prior. The

forward KL divergence prior results in the conjugate prior with the longest tail. This

result can be explained by the appearance of a logpqpηtq{ppηtqq term in the forward

KL divergence, and logpppηtq{qpηtqq in the reverse KL divergence. The forward KL

divergence will be large when qpηtq is close to zero where ppηtq is nonzero. This

behavior will result in an optimal q that is always greater than zero when pp¨q is

greater than zero. This explains the longer tail and higher variance of the forward

KL conjugate priors. The reverse KL divergence will be large when pp¨q is close to

zero where qp¨q is nonzero. This results in an optimal qp¨q that is zero when pp¨q is

zero. Therefore, the reverse KL divergence approach will result in a conjugate prior

with lower variance and a shorter tail than the forward KL divergence prior.

2.6 Forecast Evaluation for Count Data

The consumer sales/demand forecasting and other literatures cover a range of metrics

for forecast evaluation, with variants of traditional loss functions for point forecasts

customized to count data with concern, particularly, for cases of low counts (e.g.,

among recent contributions, see Kolassa, 2016; Snyder et al., 2012; Hyndman and

Koehler, 2006; Fildes and Goodwin, 2007; Yelland, 2009; Gneiting, 2011; Morlidge,
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2015; Czado et al., 2009). As noted in Hyndman and Koehler (2006), simply adopt-

ing common measures of forecast accuracy can produce “misleading results” when

applied to low valued count data. According to Kolassa (2016), retailers have many

considerations regarding store replenishment including logistical constraints (pack

sizes, delivery schedules, truck loads), complex cost functionals, and different ag-

gregation levels (store-level replenishment, ordering from manufacturer, promotion

planning). Given that consumer sales forecasts feed into so many different decisions,

they argue against focusing on single functionals like the mean, median, or quantiles

in favor of focusing on a correct predictive distribution.

Our view is that “a forecast” is the full predictive distribution rather than one

or more point summaries. For actionable decisions, understanding the potential

implications of uncertainty as reflected in the full distribution can be key, while

also adding significantly to evaluation and comparisons of forecast accuracy. Any

point forecast selected should be rationalized and understood as a decision made

on the basis of utility/loss considerations in the forecasting context, with implicit

or explicit derivation from a decision analysis perspective. The predictive mean is

optimal under squared error loss, the median for absolute error loss, and the mode

for the (typically not substantively relevant) 0-1 loss. If the loss function is an

asymmetric piecewise linear function, Lpf, yq “ p1py ă fq ´ αqpf ´ yq for outcome

y with point forecast f , then the α-quantile of the predictive distribution is the

optimal point forecast. Modifications of the absolute percentage error (APE) loss

function Lpf, yq “ |1 ´ f{y| are commonly used in consumer demand forecasting of

strictly positive counts y. Under this loss, the optimal f is the p´1q-median, i.e., the

median of the p.d.f. gpyq9 ppyq{y when ppyq is the forecast p.d.f., although typical

application is based on sub-optimal choices of f as full forecast distributions are

rarely developed. In Section 2.6.1, we provide additional details about APE and the

effects of using non-optimal point forecasts on the expected loss. It is also easy to
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explore novel modifications and extensions of loss functions from a decision analysis

perspective. For example, APE does not allow for zero outcomes, while practical

extensions—such as ZAPE, with Lpf, yq “ |1 ´ f{y|1py ą 0q ` lpfq1py “ 0q for

some increasing function lpfq ą 0—are amenable to simple optimization to define

relevant point forecasts if desired. We explore ZAPE further in Section 2.6.2. Specific

loss functions should be chosen in the context of resulting decisions to be made. In

inventory control, there are costs associated with missed sales due to stock-outs, as

well as the cost of overstocking items. The forecaster may be interested in a quantile

of the distribution to reflect these utilities.

2.6.1 Absolute Percentage Error

Consider a forecasting scenario where random variable y ą 0 has p.d.f. ppyq and c.d.f.

P pyq. We present a proof that the optimal point forecast under APE loss is the p´1q-

median. Gneiting (2011) presents the more general result that all loss functions of

the form Lpy, fq “ yβ|y ´ f | have the β-median as the optimal point forecast (the

median of the density proportional to yβppyq.) An alternative representation for

APE is the piecewise expression

Lpy, fq “
|y ´ f |

y
“

#

1´ f
y
, if y ě f,

f
y
´ 1, if y ă f.

(2.12)

Define the p.d.f. gpyq such that gpyq “ cppyq{y where c is a normalizing constant,

and let G be the corresponding c.d.f. By plugging in APE as written in eqn. (2.12),

we can express the implied risk function Rpfq in the following manner:
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Rpfq “

ż 8

0

Lpy, fqdP pyq “

ż 8

0

Lpy, fqppyqdy

“

ż f

0

Lpy, fqppyqdy `

ż 8

f

Lpy, fqppyqdy

“

ż f

0

ˆ

f

y
´ 1

˙

ppyqdy `

ż 8

f

ˆ

1´
f

y

˙

ppyqdy

“

ż f

0

f

c

cppyq

y
dy ´

ż f

0

ppyqdy `

ż 8

f

ppyqdy ´

ż 8

f

f

c

cppyq

y
dy

“
f

c
Gpfq ´ P pfq ` p1´ P pfqq ´

f

c
p1´Gpfqq

“
2f

c
Gpfq ´ 2P pfq ` 1´

f

c
.

Then, the APE optimal point forecast is the minimizer of Rpfq, defined by

BRpfq

Bf
“ 0 “

2

c
pGpfq ` cppfqq ´ 2ppfq ´

1

c

“
2

c
Gpfq ´

1

c

ñ Gpfq “
1

2
.

The optimal point forecast f under APE loss is the median of gpyq, or the so-called

p´1q-median of ppyq. If ppyq is a discrete distribution, then the 1{y term in gpyq

downweights mass on y ą 1, and, as a result, the median of gpyq is less than or

equal to the median of ppyq. For some distributions ppyq, there exist closed form ex-

pressions for the p´1q-median. For example, the lognormal distribution has a closed

form p´1q-median, and we discuss this specific example further below. In other cases,

closed form expressions do not exist, but sampling from ppyq allows estimation of the

p´1q-median using the following importance sampling scheme.
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Importance Sampling for the p´1q-median of ppyq:

1. Assume that we have n independent samples from ppyq, and denote the ordered

samples as y1, . . . , yn.

2. Compute the importance weights, w˚i “ ppyiq{yi

3. Normalize weights to sum to one, i.e. define wi “ w˚i {
ř

iw
˚
i .

4. Define a to be the maximum index such that
řa
i“1wi ď 0.5, and b the minimum

index such that
řb
i“1wi ě 0.5.

5. The p´1q-median lies in the range pya, ybq. If pp¨q is continuous, then the yi

will be distinct, a “ b, and this will produce a unique median of gp¨q. If pp¨q is

discrete, then a ‰ b, and the range pya, ybq may contain multiple values.

Since gp¨q has more mass towards zero and a lighter upper tail than pp¨q, we can

expect the importance sampling weights to be well-behaved. The effective sample

size (ESS) of this importance sampling scheme is ESS “ 100pn
řn
i“1w

2
i q
´1.

Example: Lognormal case

To illustrate the p´1q-median and the value of APE under different point forecasts,

we assume that pp¨q is a lognormal p.d.f. Let y be a lognormal random variable such

that y „ pp¨q ” LNpm, vq. In other words, x “ logpyq implies that x „ Npm, vq. The

corresponding c.d.f. is P pyq “ Φ
`

v´1{2plog y ´mq
˘

where Φ is the standard normal

c.d.f. Given this specification of pp¨q, then gpyq “ cppyq{y is a lognormal p.d.f. such

that gp¨q ” LNpm ´ v, vq. For random variable y „ pp¨q, the median is exppmq,

the expectation is exppm` v{2q, and the mode is exppm´ vq. For random variable

z „ gp¨q, the median is exppm´ vq, and the expectation is exppm´ v{2q. The p´1q-

median of lognormal y is equivalent to the mode of y, and has value exppm´ vq. For

low values of v, ppyq is less skewed, and the p´1q-median is close to the median of
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exppmq. As v increases, ppyq becomes more positively skewed, and the p´1q-median

approaches zero. Since the p´1q-median is the optimal point forecast under APE,

it will result in the lowest expected APE loss. Next, we compare the expected loss

under optimal and non-optimal point forecasts f . Plugging in eqn. (2.12), we can

simplify Rpfq as

Rpfq “

ż 8

0

Lpy, fqppyqdy

“

ż f

0

f ´ y

y
ppyqdy `

ż 8

f

y ´ f

y
ppyqdy

“

ż f

0

ˆ

f

y
´ 1

˙

ppyqdy `

ż 8

f

ˆ

1´
f

y

˙

ppyqdy

“ f

ż 8

0

ppyq

y
dy ´

ż f

0

ppyqdy `

ż 8

f

ppyqdy ´ f

ż 8

f

ppyq

y
dy

“
f

c

ż 8

0

gpyqdy ´

ż f

0

ppyqdy `

ˆ

1´

ż f

0

ppyqdy

˙

´
f

c

ˆ

1´

ż f

0

gpyqdy

˙

“
2f

c

ż f

0

gpyqdy ´ 2

ż f

0

ppyqdy ` 1´
f

c
.

In this expression, c is the normalizing constant for gp¨q which is equal to exppm´v{2q

in this lognormal example. We now simplify Rpfq under the assumption of the

lognormal p.d.f. ppyq and specific choices of f . We consider values of f equal to

the optimal p´1q-median point forecast and the non-optimal mean, median, and

p´1q-mean point forecasts. The p´1q-mean of y is defined as the mean of gpyq.

First, we find the expected APE loss for the optimal p´1q-median point forecast

f “ exppm´ vq.
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This is

EpLpy, fqq “ 2 exp
´

´
v

2

¯

exppm´vq
ż

0

gpyqdy ´ 2

exppm´vq
ż

0

ppyqdy ` 1´ exp
´

´
v

2

¯

“ 2 exp
´

´
v

2

¯

Φ p0q ´ 2Φ
`

´v1{2
˘

` 1´ exp
´

´
v

2

¯

“ 1´ 2Φp´v1{2q.

For the optimal f , the expected loss is between zero and one, and depends only on

v. As v gets close to zero, the expected loss approaches zero. As v increases, the

expected loss approaches one. Next, we find the expected APE loss when the point

forecast is the median of y. This is

EpLpy, exppmqqq “ 2 exp
´v

2

¯

exppmq
ż

0

gpyqdy ´ 2

exppmq
ż

0

ppyqdy ` 1´ exp
´v

2

¯

“ 2 exp
´v

2

¯

Φpv1{2q ´ 2Φp0q ` 1´ exp
´v

2

¯

“ exp
´v

2

¯

`

1´ 2Φp´v1{2q
˘

“ exp
´v

2

¯

EpLpy, fqq.

Using the non-optimal median of y as a point forecast, the expected loss varies

between zero and infinity. The expected loss under the median is higher than the

expected loss under the p´1q-median, and this difference increases as v increases.

Next, we find the expected loss with the mean of y as the point forecast. This is

EpLpy, exppm` v{2qqq “ 2 exppvqΦ

ˆ

3

2
v1{2

˙

´ 2Φ

ˆ

1

2
v1{2

˙

` 1´ exppvq

“ exppvq

ˆ

1´ 2Φ

ˆ

´
3

2
v1{2

˙˙

`

ˆ

1´ 2Φ

ˆ

1

2
v1{2

˙˙

.

The expected APE loss under the mean varies between zero and infinity. Due to the

exppvq term, this expected loss will increase much faster with v than the expected
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loss under the previous point forecasts. Finally, we find the expected loss when our

forecast is the p´1q-mean of y, i.e. the mean of gpyq. This is

EpLpy, exppm´ v{2qqq “ 2

ˆ

1´ 2Φ

ˆ

´
1

2
v1{2

˙˙

.

Under the p´1q-mean, the expected loss varies between zero and two. As v goes

to zero, the expected loss will approach zero. As v increases, the expected loss will

approach two. Table 2.1 displays the expected APE loss for each point forecast when

v “ 0.1, 1, 2, 5, 10. When v “ 0.1, the expected loss is very similar for each of the

point forecasts. However, as v increases, it is clear that the p´1q-median and p´1q-

mean have lower expected loss than the mean and median. From the expression for

each forecast f , we can see that APE increases as the forecast f increases. The APE

highly penalizes large point forecasts f . This example shows that improper usage

of point forecasts like the mean and median under APE can result in large forecast

errors.

In the previous derivations, we have used the standard decision analysis definition

of an optimal point forecast as the one which minimizes the expected loss. However,

the loss has an entire distribution, and we may be interested in other quantities

from this loss distribution like the median or an upper quantile. For example, we

can derive the point forecast f which minimizes the probability that the loss exceeds

some quantile q. In this section, we derive the point forecast which minimizes Qpfq “

PrpLpy, fq ą qq for the APE loss function. An alternative expression for Qpfq is

Qpfq “ 1´ PrpLpy, fq ď qq. Plugging in the APE loss, this simplifies to

Pr

ˆ
ˇ

ˇ

ˇ

ˇ

y ´ f

y

ˇ

ˇ

ˇ

ˇ

ď q

˙

“ Pr

ˆ

´q ď
y ´ f

y
ď q

˙

“ Pr p´q ´ 1 ď ´f{y ď q ´ 1q

“ Pr p1´ q ď f{y ď q ` 1q .

Now, we use the example with y „ LNpm, vq to further simplifyQpfq. Recall that the
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lognormal distribution on y implies that if x “ logpyq, then x „ Npm, vq. Using the

fact that linear transformations of normal random variables are normally distributed,

we can show that if z “ logp1{yq “ ´ logpyq, then z „ Np´m, vq. Additionally, if

w “ logpayq “ logpaq` logpyq for some constant a, then w „ Nplogpaq`m, vq. These

characteristics imply that f{y „ LNplogpfq ´ m, vq. Then, we can simplify Qpfq

using the lognormal c.d.f. as

Pr

ˆ
ˇ

ˇ

ˇ

ˇ

y ´ f

y

ˇ

ˇ

ˇ

ˇ

ď q

˙

“ Φ

ˆ

logpq ` 1q ´ log f `m

v1{2

˙

´ Φ

ˆ

logp1´ qq ´ log f `m

v1{2

˙

.

Consider q ě 1, and notice that if f “ 0, then the APE will be one with probability

one. Therefore, if q ě 1, then f “ 0 will always minimize Qpfq. Given this behavior,

we now find the f which minimizes Qpfq for q ă 1. In the following derivation, let

φ denote the standard normal p.d.f., i.e. φpxq “ p2πq´1{2 expp´x2{2q. We have

BQpfq

Bf
“ 0 “ φ

ˆ

logpq ` 1q ´ log f `m

v1{2

˙ˆ

´
1

fv1{2

˙

´

φ

ˆ

logp1´ qq ´ log f `m

v1{2

˙ˆ

´
1

fv1{2

˙

“ exp t´p1{2vqplogpq ` 1q ´ log f `mq2u´

exp t´p1{2vqplogp1´ qq ´ log f `mq2u

ñ plogpq ` 1q ´ log f `mq2 “ plogp1´ qq ´ log f `mq2

ñ logpq ` 1q ´ log f `m “ ´ logp1´ qq ` log f ´m

ñ f “ exp

„

m`

ˆ

logp1´ q2q

2

˙

.

The point forecast that minimizesQpfq depends on q andm, but not on v. Depending

on q, this point forecast will be between zero and exppmq, the median of ppyq. As q

approaches one, the optimal point forecast goes to zero. When q is zero, the optimal

point forecast is the median. Table 2.2 displays the Qpfq-minimizing point forecasts

for q “ 0.01, 0.1, 0.5, 0.9, 0.99 and several values of m and exppmq. We see that when

34



Table 2.1: Expected APE loss for different values of v and point forecasts f from
ppyq.

f Expression v “ 0.1 v “ 1 v “ 2 v “ 5 v “ 10
p´1q-median exppm´ vq 0.25 0.68 0.84 0.97 1.00
p´1q-mean exppm´ v{2q 0.25 0.76 1.04 1.47 1.77

median exppmq 0.26 1.13 2.29 11.87 148.18
mean exppm` v{2q 0.28 1.97 6.62 147.56 22025.53

Table 2.2: Optimal point forecasts that minimize the probability of APE exceeding
q for different values of m.

m exppmq q “ 0.01 q “ 0.1 q “ 0.5 q “ 0.9 q “ 0.99
-2 0.14 0.14 0.13 0.12 0.06 0.02
-1 0.37 0.37 0.37 0.32 0.16 0.05
0 1.00 1.00 0.99 0.87 0.44 0.14
1 2.72 2.72 2.70 2.35 1.18 0.38
2 7.39 7.39 7.35 6.40 3.22 1.04

q is low, the point forecast is very close to the median. As q approaches one, the

point forecast decreases. For higher values of m, the optimal point forecast decreases

more slowly to zero than for lower values of m. Using this table, we can see that

the optimal point forecast for minimizing expected loss versus minimizing Qpfq may

vary substantially for low values of q. For example, let m “ 2, v “ 1, and q “ 0.1.

The p´1q-median of 2.72 minimizes the expected loss, but f “ 7.35 minimizes Qpfq

for q “ 0.1. As v increases, the p´1q-median will decrease to zero while the f “ 7.35

will still minimize Qpfq.

In this section, we have assumed that y ą 0 since the APE is undefined when

y “ 0. However, in our application of forecasting daily sales, zeros are a common oc-

currence. In the next section, we discuss a simple extension of APE to accommodate

zero-valued observations.

2.6.2 Zero-Adjusted Absolute Percentage Error

In this section, we study a practical extension of APE that allows for zero outcomes.

We define the ZAPE as Lpy, fq “ |1 ´ f{y|1py ą 0q ` lpfq1py “ 0q where lpfq is
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a non-negative and non-decreasing function. Examples of lpfq include lpfq “ kf

for k ą 0 and lpfq “ minpf, 1q. We consider the context where y is a non-negative

integer, and ppyq is discrete probability distribution. Let π0 “ pp0q, and define gpyq “

cy´1ppyq1py ě 1q with the corresponding c.d.f. Gpyq and normalizing constant c ě 1.

Plugging in the expression for ZAPE, we can simplify the risk Rpfq as

Rpfq “
8
ÿ

y“0

Lpy, fqppyq “ lpfqπ0 `
8
ÿ

y“1

|y ´ f |y´1ppyq.

The risk is more dominated by the first term for items with higher probabilities of

observing a zero. As π0 increases, high point forecasts are increasingly penalized.

Consider lpfq “ kf as a first case to explore. Larger values of k increasingly penalize

large forecasts when a zero is observed. Using direct calculus, we can show that, for

this choice of lpfq, Rpfq is minimized at f given by

f “

#

0, if kcπ0 ě 1,

G´1pp1´ kcπ0q{2q, if kcπ0 ă 1.

Since k, c, and π0 are positive, the optimal point forecast under ZAPE is less than or

equal to the median of gpyq. When π0 is close to zero, then f is chose to the median

of gpyq, i.e. the p´1q-median of ppyq. For large values of π0, the value c increases as f

becomes smaller and eventually hits zero. In these cases, the optimal point forecast

is exactly zero. Next, we consider lpfq “ minp1, fq, and derive the optimal point

forecast f given by

f “

#

0, if cπ0 ě 1,

G´1p0.5q, if cπ0 ă 1.

As π0 increases, the value of c increases as f decreases to zero. As π0 decreases, the

optimal point forecast f is the p´1q-median which is the same as the optimal point

forecast under APE.
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Both of these ZAPE optimal point forecasts depend on the value of c, the nor-

malizing constant of gpyq. Given c, we can use importance sampling from pp¨q to

approximate the required quantiles of Gp¨q. In cases where the closed form expres-

sion of ppyq is known, we can estimate c through numerical integration. In other

cases, we can sample from pp¨q, but there is no closed form expression for the distri-

bution. In these cases, we can use direct or accept/reject Monte Carlo estimation to

estimate c.

Direct Monte Carlo

Given a random sample from pp¨q, we denote the non-zero samples as y1, . . . , yn, and

define sample frequencies, p̂pyq on each value of y. A direct Monte Carlo approxi-

mation to the probability gpyq at any y value is ĝpyq “ cp̂pyq{y. Define θ “ 1{c, and

observe that normalizing implies the estimated value θ̂ “ 1{ĉ “
ř8

y“1 p̂pyq{y. An

equivalent expression for this Monte Carlo estimate is θ̂ “ p1{nq
řn
i“1 1{yi and the

variance is Vpθ̂q “ p1{nqVp1{yq. Let x “ 1{y, and note that y ě 1 implies x P p0, 1s.

It follows directly that Epxq ď 1 and Epx2q ď Epxq. We can bound the variance of x

as follows

Vpxq “ Epx2q ´ Epxq2 ď Epxq ´ Epxq2 “ Epxqp1´ Epxqq ď 0.25.

Using this bound, we see that the variance of the Monte Carlo estimate of θ is finite

and bounded by 1{4n. Given that ĉ is a function of θ̂, we can apply the delta method

to approximate the variance of ĉ as n goes to infinity. First we note that θ̂ is an

unbiased, finite variance Monte Carlo estimator of θ and that
?
npθ̂´ θq Ñ Np0, σ2q

in distribution for some finite variance σ2 ď 1{4n. Given this assumption and the

fact that ĉ “ fpθ̂q “ 1{θ̂, the delta method implies that

?
npĉ´ cq Ñ N

ˆ

0,
σ2

θ4

˙

.
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Since θ P p0, 1s, the variance of ĉ will be larger than that of θ̂. For small values of

θ, the variance of ĉ could be large. The value of θ will be small either when pp0q is

large, or when ppyq has most of its mass on large integers rather than low integers.

Accept/Reject Monte Carlo

Alternatively, standard acceptance sampling applies to this setting as follows.

1. Since y ě 1, the quantity πpyq “ gpyq{pcppyqq “ 1{y lies in p0, 1s.

2. Generate a single Monte Carlo draw y „ pp¨q.

3. Evaluate the probability πpyq “ 1{y and then accept y with this probability.

If accepted, then record y as a draw from gpyq; otherwise reject it and redraw.

4. Equivalently, generate u „ Up0, 1q independently of y. Then, accept y as a

draw from gp¨q if u ď πpyq.

The key of the underlying theory is that the distribution of y conditional on having

been accepted is the correct distribution with p.d.f. gpyq. By Bayes’ theorem, the

p.d.f. of an accepted y is

ppyqPrpu ď πpyq | yq

Prpu ď πpyqq

where

• Prpu ď πpyq | yq “ πpyq since u „ Up0, 1q, and

• Prpu ď πpyqq “
ř

y Prpu ď πpyq | yqppyq “
ř

y πpyqppyq “
ř

y gpyq{c “ 1{c.

Thus, the resulting posterior p.d.f. of y conditional on acceptance is cppyqπpyq “

gpyq as required. If accepted, the realized value comes from the target distribution

gpyq. Repeat this for many independent trials to generate a Monte Carlo sample of

independent draws from gp¨q given by the accepted values.
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2.6.3 Decision Analysis for Multiple Series

We have discussed details of decision analysis in forecasting a univariate y. How-

ever, in the context of product sales forecasting, we may be interested in forecasting

multivariate y where each element represents a series or a different forecast horizon.

Let y “ y1:n “ py1, . . . , ynq
1 for n individual observations, and ppyq denote the multi-

variate forecast p.d.f. The corresponding point forecasts are f “ f1:n “ pf1, . . . , fnq
1.

For any series i, the outcomes and forecasts of all other n´ 1 series are denoted by

y´i and f´i.

Mean Absolute Percentage Error

We can extend the APE loss function for a set of n series via

Lpy, fq “
1

n

ÿ

i“1:n

|yi ´ fi|

yi
.

As we noted for APE, the MAPE is inappropriate for contexts with frequent zeros

since the loss is undefined if any yi “ 0. Even if MAPE is defined, when we aggregate

across series, forecast errors for low values of yi are over-penalized compared to the

same errors for high values of yi. For example, a forecast error of one results in

an APE of 1 when yi “ 1 and an APE of 0.1 when yi “ 10. In a context of

forecasting n individual items, MAPE will be dominated by low-selling items rather

than high-selling items. This quality is generally undesirable since high selling items

are generally more important than low selling items in an inventory control context.

The implied risk function for MAPE is

Rpfq “
ÿ

y

Lpy, fqppyq “
ÿ

i“1:n

Ripfiq

where

Ripfiq “
8
ÿ

yi“1

y´1i |yi ´ fi|pipyiq.
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For each series i, let pipyiq represent the implied univariate margin for yi. The MAPE

risk is the sum of n terms, and each term is the APE risk for the given series yi. The

MAPE risk is minimized by individually minimizing the APE risk for each series.

Thus, the MAPE optimal forecast is the vector of p´1q-medians of each marginal

pipyiq.

Weighted Absolute Percentage Error

Weighted absolute percentage error (WAPE) is a modification of MAPE aimed at

resolving the issues of division by zero. The denominator of yi in MAPE is replaced

by the average of all of the yi values in WAPE. WAPE is defined for the specific set

of n series via

Lpy, fq “ apyq
ÿ

i“1:n

|yi ´ fi| with apyq´1 “
ÿ

i“1:n

yi.

This definition assumes that at least one yi ą 0 so that apyq is defined and thus

0 ă apyq ď 1. Often, WAPE is defined as the ratio of the MAD to the mean of

the yi. The intuition underlying WAPE is that the error for each series is weighed

relative to the sum of the yi. Conditional on the sum of yi, the impact of a forecast

error of one on WAPE is the same if yi “ 1 or yi “ 10. The implied risk function is

Rpfq ”
ÿ

y

Lpy, fqppyqdy “
ÿ

i“1:n

Ripfiq

where

Ripfiq “
8
ÿ

yi“0

|yi ´ fi|hipyiq with hipyiq “
ÿ

y´i

apyqppyq.

This is always defined and non-negative. The risk function is the sum of n non-

negative terms and, in terms of dependence on f , the term for each item i depends

only on fi. As a result, the minimum overall risk is achieved by separately minimizing
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each of the terms in the sum with respect to that item-specific forecast. Define the

joint p.d.f. gpyq “ capyqppyq where c is the implied normalizing constant. Note that

c depends on n and the selected items, as well as pp¨q, but not on f . For each series

i, write gipyiq for the implied univariate margin for yi.

The WAPE-optimal forecast vector f is the vector of medians of the n marginal

p.d.f.s under the joint p.d.f. gpyq “ capyqppyq where apyq´1 “
ř

i“1:n yi. The special

case of APE when n “ 1 and pp0q “ 0 gives the well-known optimal f1 as the p´1q-

median, i.e., the median of gpy1q9 ppy1q{y1. In other cases, this is an extension of

the p´1q-median concept to a joint distribution. Note that this result applies for any

weighting function apyq that depends only on y and not f .

Weighted Absolute Forecast Error

The weighted absolute forecast error (WAFE) is defined for n series via

Lpy, fq “ apy, fq
ÿ

i“1:n

|yi ´ fi| with apy, fq´1 “
ÿ

i“1:n

pyi ` fiq{2.

The implied risk function again has the form of a sum of n terms, with the term for

series i given by

Ripfiq “
8
ÿ

yi“0

|yi ´ fi|hipyi | fq with hipyi | fq “
ÿ

y´i

apy, fqppyq.

This is not amenable to the same analysis as WAPE since the full forecast vector f

appears in the function hipyi | fq.

2.6.4 Evaluating Predictive Count Distributions

In addition to point forecasts, it is also important to report predictive uncertainty

intervals. Let pp¨q denote a forecast p.d.f., and P p¨q the corresponding c.d.f. For

continuous P p¨q, the quantile function is defined as P´1puq “ tx : P pxq “ uu. The
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100p1´ αq% central interval is defined as the interval pa, bq such that a “ P´1pα{2q

and b “ P´1p1 ´ α{2q. The resulting interval has exactly 100α{2% of the density

below a and above b. For discrete P p¨q, the quantile function is defined as P´puq “

mintx : P pxq ě uu. For discrete distributions, it is not always possible to construct

central intervals with exactly 100p1´αq% density. The discrete 100p1´αq% central

interval is defined as pa, bq where a “ P´pα{2q and b “ P´p1 ´ α{2q. The resulting

interval pa, bq will include greater than or equal to 100p1 ´ αq% of the predictive

density.

An alternative uncertainty region is the highest posterior/predictive density (HPD)

region. The 100p1 ´ αq% HPD region is defined as the set of values that con-

tain 100p1 ´ αq% of the density such that the density of values inside the region

is higher than all values outside of the region. For discrete distributions, we define

the 100p1´ αq% HPD interval to be the values that contain at least 100p1´ αq% of

the density, where values within the region have higher mass than those excluded.

For unimodal and symmetric distributions, the central interval and HPD intervals

are the same. For bimodal distributions, the HPD region will often include multiple

disjoint regions whereas the central interval is, by definition, a single interval. Except

for distributions of high counts, count distributions are often neither symmetric nor

unimodal. Being bounded by zero and the frequency of extreme high values often

cause positive skew in the distribution. Additionally, the common zero inflation of

count data can lead to multiple modes in forecast distributions. As a result, we rec-

ommend using HPD predictive regions rather than central predictive intervals. Given

simulations from a discrete distribution, we can easily approximate a 100p1 ´ αq%

HPD region as the smallest region corresponding to at least 100p1´αq% of the sorted

empirical p.m.f. values.

Figure 2.3 displays a simulated count distribution and the corresponding 50%

central interval and 50% HPD region. Due to the discrete nature of the data, the
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central interval includes 55% of the density, and the HPD region includes 56% of the

density. Despite both being 50% regions, these two regions provide very different

summaries of the underlying distribution. The central interval omits the two values

with the highest density, and includes values 3–5 with relatively low density. The

HPD region is composed of two separate intervals: 0–1 and 8–11. The HPD region

includes fewer values than the central interval, and yet it includes all of the values

with the largest predictive density.

In this dissertation, we summarize predictive uncertainty through HPD regions

rather than central predictive intervals. With a single outcome, we only know

whether the observed value falls into the corresponding 50% HPD region, but this

does not indicate whether our 50% predictive region was accurate. However, with

repeat outcomes, we expect about 50% of the observed values to be included in the

corresponding 50% HPD regions. The observed coverage of our 100p1´αq% predic-

tive regions over time is the percentage of observed values that are included within

the 100p1 ´ αq% HPD regions. Nominal coverage indicates that our intervals are,

on average, well calibrated to the observed values. Under coverage indicates that,

on average, our predictive intervals are too narrow. Over coverage indicates that, on

average, our predictive intervals are too wide. We recommend assessing the coverage

of many widths of intervals ranging from 0 : 100% probability.

Probability Integral Transform

An additional tool for evaluating entire forecast distributions is the probability inte-

gral transform (PIT) (Rosenblatt, 1952). Assume that at time t, we forecast based

on a p.d.f. ppt with corresponding c.d.f. pPt, and that the data actually follows a true

c.d.f. Pt. After observing the outcome yt, we define the PIT as

ut “ pPtpytq “

ż yt

´8

pptpyqdy.
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Figure 2.3: Histograms of a simulated count distribution and the shaded 50%
central interval (left) and 50% highest predictive density region (right).

Suppose first that all distributions are continuous. Then, if pPt “ Pt, the ut „

Up0, 1q since Prput ď uq “ PrpPtpytq ď uq “ Prpyt ď P´1t puqq “ P pP´1puqq “ u.

Given ut values defined over a period of time, we can assess the uniformity of the

PIT values using histograms or probability plots. Any deviations from uniformity

can diagnose misspecification of the forecast distributions. However, the previously

defined ut values are not uniform when Pt is discrete since the c.d.f. and quantile

function take on discrete values. For cases of discrete predictive distributions, we

apply the randomized PIT described in Kolassa (2016). For discrete pPt, we draw the

randomized PIT values as

ut „ Up pPtpyt ´ 1q, pPtpytqq

where we define pPtp´1q “ 0. If pPt “ Pt, then the ut are again uniformly distributed

on p0, 1q. Figure 2.4 displays the PIT and rPIT plots for simulated Negative Binomial

observations and a Poisson predictive distribution. The left plot displays the PIT

values for the count data, and we see that the PIT values are discrete and clearly

not uniformly distributed. The right plot displays the randomized PIT values for

count data, and there is a slight S-shape to the rPIT values. This shape indicates

that the assumed Poisson predictive distribution is narrower than the true Negative

Binomial distribution of the observations.
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Figure 2.4: Probability plots of probability integral transform values versus uni-
form quantiles for simulated count data. (a): Left, application of the standard PIT
to simulated Negative Binomial data. (b): Right, the rPIT applied to simulated
Negative Binomial observations with assumed Poisson forecast distribution.

Discrete Ranked Probability Score

The PIT q-q plots are useful tools when evaluating probabilistic forecasts for individ-

ual series, but it is difficult to use PIT plots to assess forecasting across many series.

In those contexts, it is useful to have a numerical summary/metric for evaluating

probabilistic forecasts. The discrete ranked probability score (DRPS) is a proper

scoring rule to assesses the location and width of probability distributions (Kolassa,

2016; Snyder et al., 2012). For observation yt and forecast c.d.f. pPt, the discrete

ranked probability score is defined as

DRPSp pPt, ytq “
8
ÿ

k“0

p pPtpkq ´ 1py ď kqq2.

The DRPS is ideal in our DGLM framework since, unlike other scoring rules, it

can be calculated when forecasts are based on simulation. Long-term forecasting

performance can be summarized by averaging DRPS over time. Comparing DRPS

of multiple models can models can tell us which has better performance, however it
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does not give any information on where the two models differ. In contrast, the rPIT

values can shed light on differences in predictive distributions.

Binary Calibration

We are also concerned with the long-run performance of forecasts on binary outcomes

(specifically zero/non-zero sales). Ideal calibration of binary forecasts means that,

of the days binary outcomes are forecast with probability near p, the binary out-

comes will occur on approximately 100p% of days. We assess the accuracy of binary

predictions over time using binary calibration plots (or reliability diagrams). Relia-

bility diagrams are frequently used in evaluating long-term weather forecasts such as

precipitation forecasts (Weisheimer and Palmer, 2014; Hartmann et al., 2002). In a

binary calibration plot, we bin the forecast probabilities either into equal width bins

or into bins of equal sample size. Then, for the days within each bin, we evaluate the

realized frequency of binary outcomes. We use shading to display the width of each

bin, and approximate 95% binomial confidence intervals to indicate the uncertainty

around the observed proportion in each bin. The binary calibration plot has the

predicted probability on the x-axis, and the observed frequency on the y-axis. Reli-

able or well-calibrated predictions would lead the observed frequency or confidence

interval in each bin to fall within the shaded region of probabilities.

46



3

Dynamic Count Mixture Models

3.1 Flexible Mixtures of DGLMs: Dynamic Count Mixture Models

A DCMM combines binary and conditionally Poisson DGLMs in a format similar to

various existing models for time series of non-negative counts. It is often practically

imperative to treat zero versus non-zero outcomes separately from forecasting the

integer outcomes conditional on them being non-zero. The novelty here is to use the

flexible classes of DGLMs for the two components in an overall model, with dynamic

predictor components in each that can be customized to context. With non-negative

count time series yt, define the binary series zt “ 1pyt ą 0q where 1p¨q is the indicator

function. A DCMM for outcomes yt is defined by observation distributions in which

zt „ Berpπtq and yt | zt “

#

0, if zt “ 0,

1` xt, xt „ Popµtq, if zt “ 1,

over all time t. The parameters πt and µt are time-varying according to binary and

Poisson DGLMs, respectively, i.e.,

logitpπtq “ F0
t
1
ξt and logpµtq “ F`t

1
θt (3.1)
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with latent state vectors ξt and θt and known dynamic regression vectors F0
t and

F`t , in an obvious notation. The DCMM independently models πt, the probability

of a non-zero count, and µt, the expected size of the non-zero count. The regression

vectors can include distinct model components if we expect different factors to impact

πt and µt. The conditional model for pyt | zt “ 1q is a shifted Poisson DGLM. In

sequential learning, the positive count model component will be updated only when

zt “ 1. When a zero count is observed, the positive count value is implicitly treated

as missing. This combination of DGLMs allows for a range of applications with a

substantial probability of zeros over time. If, on the other hand, a time series has few

or no zeros, the binary model will play a relatively limited role in forecasting. In our

motivating application, this flexibility is essential due to the varying frequency of zero

sales across items (low versus high sellers) and over time (e.g. seasonal products).

The forward filtering and forecast analysis evolves and updates prior moments

of the state vectors in each of the binary and shifted Poisson models at each step

separately. Then, each forecasts one or more steps ahead by evolving state vector

moments into the future, and applying the variational Bayes constraint to condi-

tional conjugacy. Thus, the marginal predictive distribution for yt`k at any k ą 0

steps ahead from time t is the implied mixture of a Bernoulli and shifted Poisson,

with the conjugate gamma prior predictive for the Poisson rate µt`k defining a con-

ditional shifted negative binomial forecast distribution for that component. In most

applications, however, we are interested in full joint forecasts of paths yt`1:t`k over

a sequence of future times 1:k from the current time t. Looking at these joint pre-

dictive distributions provides information on dependencies between time points, and

allows for calculation of other forecast quantities. For example, in forecasting daily

sales of a supermarket item over each of the next k “ 14 days we may also be inter-

ested in quantities such as such the cumulative sales up to each day in that period,

the number of those 14 days with zero sales, the probability that cumulative sales
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exceed some specified level, and so forth. To adequately (or at all) address such

broader practical forecasting questions, we forward-simulate the predictive distribu-

tions. That is, generate large Monte Carlo samples of the full predictive distribution

ppyt`1:t`k|Dt, Itq from the current time t. This is easily implemented as noted and

detailed in Section 3.3, and such Monte Carlo samples can be trivially manipulated

and interrogated to quantify forecast distributions for any function of the series of

future outcomes of interest.

3.2 DCMM Random Effects Extension

Due to the binary DGLM component, DCMMs can flexibly model time series of

counts with many or few zero counts. Another common characteristic of non-negative

count data– especially at higher levels of counts– is over-dispersion relative to condi-

tional Poisson models. The primary contextual development of the shifted Poisson

DGLM will aim to customize the choice of F`t and associated evolution equation to

best predict non-zero sales. While resulting forecast distributions may be generally

accurate in terms of location, they may still turn out to under-estimate uncertainties

and, in particular, fail to adequately capture infrequent extremes (typically higher,

though sometimes also lower values of yt). Various approaches to this appear in the

literature, but all essentially come down to adding a representation of this excess and

purely unpredictable variation. This is best addressed directly via random effects,

and this is easily done in the DCMM using a novel random effects extension in the

Poisson DGLM component.

Start with the shifted Poisson DGLM with regression vector, Ft,0, state vector,

θt,0, and linear predictor F1t,0θt,0. Call this the baseline model, i.e., the DGLM with

no random effects. The random effects extension generalizes to the linear predic-

tor F1t,0θt,0 ` ζt where the ζt are time t-specific, independent, zero-mean random

effects. This is trivially implemented as an extended DGLM. That is, redefine the
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state vector as θt “ pζt,θ
1
t,0q

1 and the corresponding dynamic regression vector as

Ft “ p1,F1t,0q
1, so that the new model has logpµtq “ F1tθt “ F1t,0θt,0 ` ζt as re-

quired. This defines a different, more general DGLM that admits time t individual

and unpredictable variation over and above the baseline. The state evolution equa-

tion will be modified to add a first row and column to the state evolution matrix

with zero elements representing lack of dependence of random effects time-to-time

as well as independence of other state vector elements. It remains to specify levels

of expected contributions of random effects, and this is done using a random effects

discount factor ρ, building on the standard use of discount factors for DGLM evo-

lution variance matrices as a routine (Section 2.4 here; see also West and Harrison,

1997 chapter 6). In particular, at each time t ´ 1 suppose that prior uncertainty

about the core state vector elements θt,0 at time t is reflected in the prior variance

matrix Rt,0, so that the uncertainty about the baseline linear predictor is represented

by qt,0 ” VrF1t,0θt,0|Dt´1, It´1s “ F1t,0Rt,0Ft,0. Then, a random effects discount factor

ρ P p0, 1s defines the conditional variance of ζt by vt ” Vrζt|Dt´1, It´1s “ qt,0p1´ρq{ρ.

If ρ is set to one, then this model is simply the Poisson DGLM without the random

effect. As ρ gets closer to zero, the variance of the random effect increases. Here ρ

becomes a model hyper-parameter to be explored along with others. For ρ ă 1, the

additional variance injected into the time t prior is now relative to the variance of

the underlying baseline models, so we have access to interpretation of ρ as defining

a relative or percentage contribution to predictive uncertainty, as with standard dis-

counting in state-space models. The impact is seen in increased dispersion of forecast

distributions; some aspects of this on increased variance of the predictive negative

binomials for future non-zero counts are highlighted in further technical details in

Section 3.2.1.
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3.2.1 Discount Factor Specifications for Random Effect

We use the random effects extension of Section 3.2 for the shifted Poisson case in

evaluating forecasts of non-zero count series. As detailed in that section, this is

enabled by extension of the state vector to include time-specific zero mean elements

defining these random effects. Practically, this is defined using a random effects

discount factor ρ P p0, 1s whose net impact on the DGLM analysis summarized in

Section 2.2 is simply to inflate the prior variance of the linear predictor λt “ logpµtq.

That is, qt “ Vrλt | Dt´1, It´1s in Section 2.2 part 4 is modified to qt ` vt where

vt “ qtp1´ ρq{ρ, resulting in qt{ρ. As with the standard discounting on state vectors

above, evaluation of forecast metrics on training data using different choices of ρ is

a basic strategy for choosing values, and these will be specific to each time series.

More theoretical insight can be gained by considering the impact on the implied

1´step forecast distributions. In the standard DGLM with no random effects, recall

that the conditional prior for the Poisson mean µt is Gapαt, βtq where the parameters

are chosen to be consistent with the prior mean ft and variance qt of λt “ logpµtq,

namely ft “ ψpαtq ´ logpβtq and qt “ ψ1pαtq. Suppose we have a relatively pre-

cise prior– with qt modestly high– so that the approximations ψpαtq « logpαtq and

ψ1pαtq « 1{αt are valid (these are in fact very accurate approximations in many

applications). Then ft « logpαt{βtq and qt « 1{αt, resulting in αt “ 1{qt and

βt “ αt expp´ftq. The implied 1´step forecast distribution for yt is negative bino-

mial with mean αt{βt “ exppftq and variance αt{βt`αt{β
2
t “ exppftqp1` exppftqqtq.

3.2.2 Discount Factor Effect on Forecast Variance

Now consider the impact of the random effects model extension. As noted above, the

practical impact of the discount factor ρ is that qt is inflated to qt{ρ. The resulting

negative binomial forecast distribution then has the same mean exppftq– not im-

pacted at all by ρ– but now has variance exppftqp1` exppftqqt{ρq. This has the same
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base component exppftq (the “Poisson” component) but the second term (considered

the “extra-Poisson” variation in the negative binomial) increases by a factor of 1{ρ.

Note that the impact of the random effects extension is then to increase forecast

variances more at higher levels of the series (higher ft), consistent with the aim of

improving forecasts for infrequent higher events.

3.3 Forecasting in DCMMs

The compositional nature of the DCMM yields access to a full predictive distribution

at a future time point that is a mixture of the forecast distributions implied for each of

the independent Bernoulli and shifted Poisson DGLMs. Forecasting k´steps ahead

from time t, the forward evolution of DGLM state vectors over times t` 1:t` k and

variational Bayes’ constraint to conjugate forms for implied Bernoulli and Poisson

parameters yields analytic tractability and trivial computation. That is, at time t,

the k´step ahead forecast distribution has a p.d.f. of the compositional form

ppyt`k | Dt, It, πt`kq “ p1´ πt`kqδ0pyt`kq ` πt`kht,t`kpyt`kq

where:

• pπt`k | Dt, Itq „ Bepα0
t pkq, β

0
t pkqq and δ0pyq is the Dirac delta function at zero.

• ht,t`kpyt`kq is the density function of yt`k “ 1`xt`k where xt`k has the negative

binomial distribution

pxt`k | Dt, Itq „ Nb
´

α`t pkq,
β`0 pkq

1` β`t pkq

¯

.

• The defining parameters α0
t pkq, β

0
t pkq, α

`
t pkq, β

`
t pkq are computed from the

binary and positive count DGLMs, respectively.

That is, the mixture places probability 1´πt`k on yt`k “ 0, and probability πt`k on

the implied shifted negative binomial distribution.
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Depending on the forecasting context, we may be interested in marginal or joint

forecasting. The above details define the relevant marginal forecast distributions

at any time. However, we are generally much more interested joint forecasts for

yt`1, . . . , yt`k and, as discussed in Section 3.1, in forecasting paths with an opportu-

nity to explore dependencies in outcomes over time as well as to predict functions

of them. This is trivially– and computationally efficiently– enabled using forward

simulation, as follows.

• At time t, propagate the posterior pθt | Dtq to the implied 1´step ahead prior

pθt`1 | Dt, Itq.

• Apply the variational Bayes’ constraint to the implied conjugate prior on ηt`1,

so that the implied 1´step ahead forecast distribution is of the form given in

part 5 of Section 2.2; that is, Beta-Bernoulli or negative binomial depending

on the chosen DGLM.

• Simulate an outcome y˚t`1 from this 1´step forecast distribution.

• Treating this synthetic outcome as “data”, perform the time t` 1 update step

to revise the prior to posterior for the state vector, now based on modified

information Dt`1 in which the unknown yt`1 is substituted by its synthetic

value y˚t`1.

• Evolve to time t ` 2 and repeat the process to simulate a synthetic y˚t`2 and

then update based the model.

• Continue this process over lead-times t ` 3, . . . , t ` k to the chosen forecast

horizon.

This results in one synthetic path y˚t`1, . . . , y
˚
t`k defining a single Monte Carlo sample

from the joint distribution of yt`1, . . . , yt`k conditional on tDt, Itu. Repeat this pro-

cess many times to generate a large Monte Carlo sample from this joint predictive

distribution. At each marginal time point t ` j, the corresponding samples give a
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Monte Carlo representation of the predictive distribution at that lead-time, while the

full sample provides the required opportunities for inference on paths, dependencies

of outcomes between time points, and functions (cumulative outcomes, exceedance

over some specific level, etc) of the path into the future.

3.4 Aspects of Product Sales Forecasting with DCMMs

3.4.1 Context and Data

Our case study concerns multi-step forecasting of many individual items in each of

a large number of US supermarkets (or stores). An item is defined as a unique stock

keeping unit (SKU) and sales forecasts for the following 1:14 days are updated daily.

For our examples here, we extract a very small number of items at one chosen store

to provide illustrations and insights into the utility of DCMMs. The selected data

set records daily sales of 179 SKUs in one particular store over the 2,192 days from

July 1st 2009 to July 1st 2015. Each of these products is in the pasta category,

in one of 14 subtypes of pasta. By percentage of unit sales, the primary pasta

types are spaghetti (25%), macaroni (13%), wholewheat (10%), and penne (9%).

The products comprise 20 brands, and the majority of unit sales (44%) come from

the supermarket’s in-house brand. Additional information includes the price paid

per transaction, and whether or not each SKU was on promotion on the date of

the transaction. In the contexts of analyses to follow, the data for several items

are summarized in Table 3.1 and shown in Figures 3.1 and 4.2; these provide some

insights into heterogeneity of daily sales patterns.

Table 3.1: Some summaries of daily pasta sales data by item

Item Mean Median Variance % 0 sales
A 1.0 0 1.8 51.8
B 9.9 9 29.4 1.3
C 4.7 4 15.6 5.9
D 3.4 2 10.6 14.4
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Figure 3.1: Data and aspects of 1´step ahead forecast distributions for items A
(upper) and B (lower). Shading: 80% predictive credible intervals; full line: predic-
tive mean.

3.4.2 Example Univariate DCMMs

As example series, data in Figure 3.1 show daily sales of two selected spaghetti items

in one store over the two year period from July 2009 to October 2011. Item A has

relatively low daily sales with a mean of 1.0, a median of 0, and zero sales occurring on

52% of days. Based on the prevalence of days with zero sales, the binary component

of the DCMM will play an important role in forecasting item A. Item B is a high
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selling spaghetti product in this store, with a median of 9 sales per day and zero

sales occurring on only 1.3% of days. The daily sales of item B appear to have high

variance, and on some days we see sales spike to above 30 units.

The same form of DCMM is applied to each item. Each of the Bernoulli and

shifted Poisson components has a local level, a regression component with log price

as predictor, and a full Fourier seasonal component of period 7 to reflect the day-of-

week effects. All components are dynamic, allowing for variation over time in local

level, regression coefficient, and Fourier coefficients. Thus each of the binary and

Poisson DGLMs have regression vector and evolution matrix defined by

F1t “
`

1, logppricetq, 1, 0, 1, 0, 1, 0
˘

and Gt “ blockdiagr1, 1, H1, H2, H3s

with

Hj “

ˆ

cosp2πj{7q sinp2πj{7q
´ sinp2πj{7q cosp2πj{7q

˙

, j “ 1:3.

Exploratory analysis of an initial three weeks of data was used to specify prior mo-

ments on the state vector at t “ 1 representing day 22 of the full data set. For

the Poisson component, this used standard reference Bayesian analysis assuming no

time variation in parameters to define “ballpark” initial priors. For the Bernoulli

component, we specify the prior mean of the level to be logitppq, where p is the

proportion of the first 21 days on which positive sales occurred. Thus, p represents

an empirical estimate of πt, the probability of non-zero sales occurring on day t. All

other prior means are set to zero, and the prior variance matrix set as the identity.

Fixed discount factors of 0.999 (Bernoulli), 0.99 (item B Poisson), and 0.995 (item

A Poisson) are used on each of the level, regression and seasonal components; these

values were chosen based on the results of previous analyses of daily sales data. The

lower discount factor for item B reflects the need for more adaptability to the non-

stationarities present in Figure 3.1. The DCMM analyses were run through the first
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100 days of data before forecasting. Starting at time t “ 101, full forecast distri-

butions for 1:14 days ahead were computed at each day, and updated recursively

over the next two years. These define Monte Carlo samples of size 5,000 of synthetic

future sales over rolling 14 day periods. Some illustration of these forecasts appears

in Figure 3.1.

3.4.3 Point Forecasts and Metrics

Section 2.6 discusses relevant aspects of forecast evaluation for count data within

consumer sales forecasting. Based on this discussion, our main focus in this appli-

cation is on evaluating the entire forecast distribution rather than specific choices of

loss functions. However, to connect with common practice and recent literature, we

explore various point forecast metrics in Section 4.5. First, we broaden perspective

to evaluation of the full forecast distributions using the practically relevant issues of

coverage and calibration of predictive distributions.

3.4.4 Probabilistic Forecast Evaluation

Figure 3.1 gives the overall impression that the DCMM forecasts relatively well in

the short-term for both items A and B, clearly picking-up the seasonal patterns and

responding to changes over time. Then, the infrequent higher sales levels are better

forecast for item A than apparently for item B, the latter being a higher-selling item.

To explore forecast performance in more detail, Figures 3.2, 3.3 and 3.4 summarize

aspects of the full predictive distributions generated by the DCMMs for item A (left

frames) and B (right frames).

Figure 3.2 displays coverage of forecast distributions for each of 1, 7, and 14´days

ahead. These graph the empirical coverage obtained over the full year of forecasting

for predictive credible (highest predictive density– HPD) intervals in each case. An

ideal model would lead to coverage plots close to the 45´degree line. For item A,
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Figure 3.2: Coverage plots for items A (left) and B (right) from 1´, 7´ and 14´day
ahead forecasts.
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Figure 3.3: Randomized PIT plots from 1´day ahead forecasting of items A (left)
and B (right). Full line: ordered randomized PIT values; dashed: 45´degree line.
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Figure 3.4: Binary calibration plots from 1´day ahead forecasting of non-zero
sales of items A (left) and B (right). Crosses mark observed frequencies in each bin,
horizontal grey shading indicates variation of forecasts in each bin, and vertical bars
indicate binomial variation based on the number of days in each bin.
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forecast distributions have slight over-coverage. For example, empirical coverage of

the 1´day ahead 50% predictive intervals is about 57%. In contrast, for item B

we see evidence of under-coverage at all horizons, related mainly to the apparent

inability of the model to adequately forecast the infrequent higher sales values.

A second probabilistic evaluation uses the probabilistic integral transform (PIT),

i.e., a general residual plot based on the predictive c.d.f. for each outcome. Since pre-

dictive distributions are discrete, this involves the randomized PIT (Kolassa, 2016).

If sales counts y are forecast with predictive c.d.f. P p¨q, define P p´1q “ 0 and draw a

random quantity py „ UpP py´ 1q, P pyqq given the observed value of y. Over the se-

quence of repeat forecasting events an ideal model would generate realizations py that

are approximately uniform. For each item, Figure 3.3 plots the ordered randomized

PIT values from the 1´day ahead forecasts distributions versus uniform quantiles.

The concordance of the outcomes with uniformity is apparently strong for item A.

For item B, however, we see significant non-uniformity and a shape consistent with

forecast distributions that are just too light-tailed; that is, the outcome sales data

on item B exhibit higher levels of variation than the DCMM predictive distributions

capture.

The third probabilistic evaluation focuses on frequency calibration properties of

forecasts of zero/non-zero sales. Ideal calibration means that, of the days non-zero

sales are forecast with probability near p, approximately 100p% actually have non-

zero sales. In practice, we bin the probability scale according to variability in forecast

probabilities of non-zero sales across the year, and evaluate the realized frequency of

non-zero sales on the days within each bin. Figure 3.4 displays the results for 1´step

ahead binary predictions. For item A, the predicted probabilities of non-zero sales

range in 30:80%; these are allocated into ten bins of equal width. The figure displays

the observed frequency of non-zero sales within each bin and an approximate 95%

binomial confidence interval based on the number of days within each bin. Horizontal
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shading displays the width of the predicted probability bins. Ideal predictions would

lead the observed frequency in each bin to fall within the shaded area, while the

vertical bars indicate limits based on sample size in each bin. For item A, the

performance is apparently very good indeed. For item B, a relatively high-selling

item, predicted probabilities of non-zero daily sales range in 90:100% over time. As

with item A, the vertical calibration intervals intersect the 45´degree line and the

horizontal shading, indicating that there are no obvious issues with forecasting the

zero/non-zero outcome. In terms of the full DCMM, the binary component is less

important for item B than for item A. Then, as noted above, the under-dispersion

of forecasts of item B is a clear negative; this is addressed with the random effects

extension below.

3.4.5 Random Effects Extensions

We illustrate the potential of the random effects extension of DCMMs introduced in

Section 3.2 to adapt to the over-dispersion issues in the basic analysis of item B in the

last section. The main details of the analysis remain the same, but now the model

is modified to include day-specific random effects. The summarized analysis uses a

random effects discount factor ρ “ 0.2, chosen following exploration of the impact

of different values over the first 100 days of data. We considered values between

0.1 and 1, and selected ρ based on a combination of metrics including the 1-step

negative binomial predictive log-likelihood, rPIT uniformity, and coverage of 1-step

predictions in the Poisson DGLM.

Figure 3.5 displays the updated 1´step forecast means and 80% credible intervals

over time, to be compared to Figure 3.1. Note the wider forecast intervals that

are to be expected. Figure 3.6 displays the resulting coverage of the 1, 7, and

14´day ahead forecast credible intervals over time, and the calibration plot of the

randomized PIT values from 1´day ahead forecasts. Coverage has increased and
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substantially improved to conform with the 45´degree line, while PIT values are

in much closer concordance with uniformity. Overall, the addition of the random

effect has accounted for some of the under-dispersion of forecast distributions in the

baseline DCMM, and these aspects of forecast evaluation indicate clear and practical

improvements as well as overall accuracy.
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Figure 3.5: Daily sales of item B, and the 1´day ahead forecast from the DCMM
with random effects. The blue line indicates the forecast mean, and the gray shading
indicates the forecast distribution 80% credible interval.
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Figure 3.6: Empirical coverage plot (left) and randomized PIT plot (right) for
1´day ahead forecasting of item B using the DCMM with random effects exten-
sion. Compare with the results under the basic DCMM in the right-hand frames of
Figures 3.2 and 3.3.

61



4

Multi-scale DCMM

4.1 Decouple/Recouple and Shared Features Across Series

We now turn to recoupling sets of univariate DCMMs in contexts where there may be

opportunity to improve multi-step forecasts via more accurate assessment of effects

and patterns shared across the series. That is, we aim to exploit traditional ideas

of hierarchical random effects models where common features over time are “seen

differently” by each univariate series, and where both series-specific effects and noise

obscure the patterns at the individual series level. This is particularly relevant in

sales and demand forecasting when items are sporadic, i.e., in our DCMMs in cases

of non-negligible zero sales and otherwise low count levels. Products can often be

grouped hierarchically based on characteristics like product family, brand, and store

location. Sales and demand patterns within such groups may have similar trends or

seasonal patterns due to external factors such as marketing, economy, weather, and

so forth. Our main example here focuses on the daily seasonal pattern over each

week, a pattern that is heavily driven by customer traffic through the stores related

to weekly behavioral factors. This general pattern is naturally shared by many
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individual series, but at low levels of sales it is substantially obscured by inherent

noise so that using information from other series through a multivariate approach is of

interest. If products are grouped, then we may expect estimates of seasonality at the

aggregate level to be more accurate and less noisy than at the individual level. Using

aggregated seasonality in a model rather than individual item seasonality may then

improve forecasting for individual items. On the other hand, seasonality exhibited

by items that sell at higher levels may be much more evident and the potential to

gain forecast accuracy there less obvious. Part of our interest is to explore these

potential gains across a range of items and demand levels.

Our desiderata include maintaining flexibility in customizing DCMMs to indi-

vidual time series along with the ability to run fast, sequential Bayesian analysis of

inherently decoupled univariate analyses of many series. In product demand fore-

casting, retailers are generally interested in many thousands of items simultaneously.

Due to time and computational constraints, the conventional approach is to rely on

univariate methods which forecast independently across SKUs, and, therefore, this

is a central consideration. We avoid large-scale and complex multivariate modeling

that would otherwise necessitate the use of intense MCMC (or other) computations

that would obviate the use of efficient sequential analysis while most seriously limit-

ing the ability to scale in the number of time series. To do this, we maximally exploit

the univariate framework of Section 6.1 with series decoupled conditional on factors

shared in common across series, and then we recouple by utilizing a separate model

to analyze and forecast these common factors.

4.1.1 Examples of Learning Shared Feature

In this section, we present an example based on West and Harrison, 1997, example

16.1. Consider a company selling N products, where yi is the daily sales of the ith
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product, i “ 1, . . . , N . Suppose yi can be expressed as

yi “ fi ` βiφ` εi, εi „ Np0, vεq

where fi is the known expected value of yi, and φ and εi are zero-mean, uncorrelated

random variables. Here, φ represents a common latent factor affecting each item yi,

and εi represents item-specific variation. Each item can “adjust” the shared latent

factor φ through the item-specific coefficient βi. Our interest in this example is in

inferring the latent factor φ, and whether conditioning on aggregate data can lead

to more precise estimates of φ. We set a prior of φ „ Np0, vφq. Let T “
ř

i yi be the

total sales of all products. We can write T as

T “
N
ÿ

i“1

pfi ` βiφ` εiq “ f ` βφ` ε,

where

ε “
N
ÿ

i“1

εi, β “
N
ÿ

i“1

βi, f “
N
ÿ

i“1

fi.

The joint distribution of pyi, φq is

ˆ

yi
φ

˙

„ N

ˆˆ

fi
0

˙

,

ˆ

β2
i vφ ` vε βivφ
βivφ vφ

˙˙

.

Conditional on yi, the posterior distribution of φ becomes

φ | yi „ Npmφ|y, vφ|yq

where

mφ|y “
βivφ

β2
i vφ ` vε

pyi ´ fiq and vφ|y “ vφ ´
βiv

2
φ

β2
i vφ ` vε

.

The joint distribution of pT, φq is

ˆ

T
φ

˙

„ N

ˆˆ

f
0

˙

,

ˆ

β2vφ `Nvε βvφ
βvφ vφ

˙˙

.
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Conditional on T , the posterior for φ is

φ | T „ Npmφ|T , vφ|T q

where

mφ|T “
βvφ

β2vφ `Nvε
pT ´ fq and vφ|T “ vφ ´

β2v2φ
β2vφ `Nvε

.

The values of vφ|y and vφ|T summarize posterior uncertainty about φ conditional on

one series, yi, and the aggregate series T . For simplicity, if we assume that each

βi “ 1, then these terms simplify to:

vφ|y “ vφ

ˆ

1´
vφ

vφ ` vε

˙

,

vφ|T “ vφ

ˆ

1´
Nvφ

Nvφ ` vε

˙

.

If we assume that N “ 1,000, vφ “ 1, and vε “ 99, then these terms become

vφ|y “ 0.99 and vφ|T “ 0.09.

Under these assumptions, the posterior uncertainty about φ is much lower if we

condition on the total sales T rather than individual sales yi. This supports the

hypothesis that learning latent factors in aggregate models can lead to more precise

estimates.

The previous example studies the posterior variance of a common factor that acts

additively on an item’s sales. However, in some models, such as a Poisson DGLM, a

common factor φ may act additively on the log mean, so the common factor θ “ eφ

acts multiplicatively on the mean. Here we discuss an additional example for a

multiplicative common factor. Again, assume that a company sells N products, and

that we can represent the item-level sales yi as

yi „ Popµtq where logpµiq “ m` φ,
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and where the log Poisson mean is the linear predictor, m is the known mean of all

items, and φ is a latent factor common to all items. This model implies that

µi “ emeφ “ emθ

where θ is a latent factor that acts multiplicatively on the mean µi. Again, our goal

is on inferring the latent factor θ. We assume a conjugate prior on the latent factor,

θ „ Gapa, bq. Since µi “ emθ, this prior induces a conjugate prior on µi such that

µi „ Gapa, b{emq. If we observe yi, computing the posterior of µi involves simple

conjugate analysis and thus

pµi | yiq „ Gapa` yi,
b

em
` 1q

ñ pθ | yiq „ Gapa` yi, b` e
m
q.

Now, let T “
ř

i yi be the total sales of all products. Due to the additivity of

independent Poissons, we can represent T as T „ Popµq with

µ “
ÿ

i

µi “ Nemeφ “ Nemθ

where

log µ “ logN `m` φ,

so the common factor θ again acts multiplicatively on the aggregated Poisson mean

µ. Now, our prior on θ again implies a prior on µ such that µ „ Gapa, b{pNemqq.

Conditional on T , the conjugate posterior for µ and the implied posterior on θ are

pµ | T q „ Gapa` T,
b

Nem
` 1q

ñ pθ | T q „ Gapa` T, b` nemq.
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The values of Vpθ | yiq and Vpθ | T q summarize posterior uncertainty about mul-

tiplicative latent factor θ conditional on the sales of a single series versus the total

sales of all products. These variances are

Vpθ | yiq “
a` yi
pb` emq2

and

Vpθ | T q “
a` T

pb`Nemq2
.

If we assume a prior with a “ b “ 0.1, and values N “ 100, m “ 0.5, and that yi “ 1

and T “ 50, then these values become

Vpθ | yiq “ 0.36 and Vpθ | T q “ 0.002.

In most cases, the posterior uncertainty about θ will be lower when we condition on

T rather than yi. These two examples support the idea that if we believe there is

a common factor acting multiplicatively on N items, it is worthwhile to learn this

common factor using an aggregate model rather than individually at the item level.

4.2 Multi-Scale Models and Top-Down Recoupling

The essential structure is that of a set of decoupled dynamic latent factor models

as relates to traditional Bayesian multivariate approaches for conditionally normal

data (e.g. Aguilar et al., 1999; Aguilar and West, 2000; Carvalho and West, 2007),

but with the major novelty of inferring latent factors externally. The latter draws

conceptually on prior work in multi-scale models in time series (e.g. Ferreira et al.,

2003, 2006) and on “bottom-up/top-down” ideas in Bayesian forecasting (West and

Harrison, 1997, section 16.3). The basic idea of top-down forecasting is to forecasting

patterns at a highly aggregate level and then somehow disaggregate down to the

individual series. Practical methods using point forecasts of aggregate sales over
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a set of items typically use some kind of weighting to disaggregate. While our

framework is general, we focus on the key example of seasonal patterns, where our

work contributes to an existing literature. For example, the method of group seasonal

indices (GSI: Withycombe, 1989; Chen and Boylan, 2007) aggregates series in a

defined group and then estimates seasonal factors from the aggregate series. We

follow this concept, but with an holistic class of Bayesian state-space models– with

time-varying patterns and full probabilistic specifications– rather than direct data

adjustments assuming constant seasonal patterns. The full Bayesian approach was

rooted in conditional linear, normal examples in (West and Harrison, 1997, section

16.3), and the developments here extend that to a full class of multivariate DCMMs

for count series. Importantly, we use full simulation of posterior distributions of

common factor patterns to send to the set of univariate DCMMs, so that all relevant

uncertainties are quantified and reflected in the resulting forecast distributions of the

univariate series.

4.3 Model Structure and Notation

A set of N series yi,t, pi “ 1:Nq, follow individual DCMMs sharing some common

factors of interest. Denote these individual models by Mi for i “ 1:N. In each of

the binary and shifted Poisson DGLM components, Mi has both series-specific and

common state-space components with latent factor predictors shared across the N

series. In Mi, the time t state and regression vectors for each DGLM component

have partitioned forms with individual and common predictors. For example, the

shifted Poisson component has state and regression vectors defined by

Mi : θi,t “

ˆ

γi,t
βi,t

˙

, F`i,t “

ˆ

fi,t
φt

˙

, i “ 1:N, (4.1)
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with subvectors of conformable dimensions; the linear predictor is then

λi,t “ γ
1
i,tfi,t ` β

1
i,tφt.

Here fi,t contains constants and series-specific predictors– such as item-specific prices

and promotions in the sales forecasting context. The latent factor vector φt is com-

mon to all series– such as seasonal or brand effects in the sales forecasting context.

Each series has its own state component βi,t so that the impacts of common factors

are series-specific as well as time-varying.

In parallel, a separate model of some form– in our case, a DLM– also depends

on φt and possibly other factors. Denote this model by M0. Forward sequential

analysis of data relevant to M0 defines posterior distributions for φt at any time t

that can be used to infer and forecast the φt process as desired. These inferences on

the common factors are then forwarded to each model Mi to use in forecasting the

individual series.

Generally, in standard updating and forecasting of Bayesian state space models,

the regression vector Ft is known at each time point t. However, in this multi-scale

context, our knowledge about φt is summarized at each time point by a posterior dis-

tribution from an external model. Therefore, we propose a procedure for forecasting

and updating the DCMM which accounts for the fact that there is now uncertainty

about Ft. The following steps, based on simulating from the posterior of φt, enable

forecasting and updating while accounting for all uncertainty about φt.

4.4 Summary Analysis

Consider now multi-step forecasting and then 1´step updates and evolution from

times t´ 1 to t. Extend the notation for information sets Dt, It to be model specific

with model indices i “ 0:N.

69



Forecasting: This is a direct and full probabilistic extension– enabled by simulation–

of the simple theoretical examples of “conditioning on external forecast information”

in conditionally linear, normal models in examples of West and Harrison, 1997, (sec-

tion 16.3).

1. At t ´ 1 we have conditionally independent prior summaries for the series-

specific states i, namely pθi,t|Di,t´1, Ii,t´1q for each i “ 1:N, having evolved

independently from the θi,t´1.

2. Independently, model M0 simulates the trajectory of the latent factor process

into the future, i.e., generates independent samples φst:t`k „ pφt:t`k|D0,t´1, I0,t´1q

at time t´1 and for any k ě 0, where s “ 1:S indexes S Monte Carlo samples.

3. Send these synthetic latent factors to each individual model. In Mi, use S

parallel DCMM analyses to forecast over times t:t`k. Each analysis conditions

on one sampled φst:t`k. One Monte Carlo draw from the implied predictive

distribution of yi,t:t`k|φ
s
t:t`k,Di,t´1, Ii,t´1 yields a sampled trajectory ysi,t:t`k, so

we create a Monte Carlo sample of size S accounting for the inferences on, and

uncertainty about, the latent factor process as defined under M0.

The last step builds on the fact that the DCMM analysis detailed earlier applies to

each series– independently across series– conditional on a value of φt. Note also the

use of parallelization.

Updating: Observing the yi,t we now update in each model Mi separately.

4. For each s, compute the value of the 1´step ahead predictive p.d.f

ppyi,t|φ
s
t ,Di,t´1, Ii,t´1q from the conditionally conjugate DGLM analysis. Use

these as marginal likelihoods to evaluate implied posterior probabilities over

the s “ 1:S latent factor values relative to uniform p1{Sq prior probabilities.

5. Apply the standard DGLM updating to compute Monte Carlo sample s´specific

posterior mean vectors and variance matrices for θi,t|φ
s
t , yi,t,Di,t´1, Ii,t´1.
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Marginalize over the φst with respect to the probabilities from 4 above to deduce

implied Monte Carlo approximations to the posterior mean vector and variance

matrix of θi,t|Di,t, where Di,t now implicitly includes information from D0 as

well as tyi,t,Di,t´1, Ii,t´1u.

Evolution to time t` 1 now completes the cycle.

yt pµt, νtqoo

φt

OO

{{ $$
y1,t . . . yN,t

pβ1,t, ¨q

OO

. . . pβN,t, ¨q

OO

Figure 4.1: Directed graph representing multiscale framework

Figure 4.1 shows a representation of the multi-scale framework as a directed

acyclic graph (DAG). In this DAG, the latent factor φt affects each individual series

yi,t as well as a separate series yt. For this DAG, we assume that the modelM0 is a

DLM fit to data yt. One example of a relevant yt would be a series of aggregated daily

sales, such as yt “
řN
i“1 yi,t. Beyond φt, each yi,t also depends on coefficient βi,t and

other factors. In this representation, yt also depends on µt and νt, the observation

mean and variance in a DLM. A key assumption in the multi-scale framework is that,

conditional on all data up to time t´ 1, all of the information about φt is contained

in yt. We are adopting the view that—although there is information about φt in each

yi,t—it is to be ignored as M0 already captures most of the relevant information.

This point of view is supported by the conclusion of examples in Section 4.1.1 that

φt is more precisely estimated conditional on the total sales than a single series yi,t.

This view allows us to maintain our parallel analysis by independently updating each
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Mi conditional on φt simulated from M0.

The model provides opportunity to explore differences across series, and over

time, in effects of latent factors. If the effects on series yi,t are similar to those under

M0, then βi,t will be close to one. Inferred trajectories of βi,t over time will capture

relevant deviations and allow comparisons across series in how strongly they relate

to the latent factors. Further discussion and an applied exampled of inference on

multi-scale latent factors is given in Section 4.6.

4.5 An Example in Multi-Scale Sales Forecasting

4.5.1 Context, Data and Models

Our case study involves a number of multi-scale features that offer potential for

improved forecasting using the multivariate/multi-scale strategy. Items are related in

product type categories, by brand, and by consumer behavior as evidenced in several

ways including, simply, the day-of-week seasonality related to “store traffic”. We give

one example here focused on this latter feature, comparing forecasting performance

of a multi-scale model– based on one specific common pattern model M0– to a set

of individual DCMMs. In one selected store, we identify N “ 17 spaghetti items for

the example. Figure 4.2 plots the daily sales of four of these items over the period

July 2009 to October 2011, giving some indication of the ranges of demand levels and

patterns over time. We take modelsMi in which the individual DCMMs of eqn. (4.1)

have f 1i,t “ p1, logppricei,tqq and a 7-dimensional φt with one non-zero element for the

“current day-of-week” seasonal factor and zeros for each other element. Further,

the state evolution matrix in all cases is Gt ” G “ I. We use the same DGLM

specification– but with component-specific state vectors– for each of the binary and

shifted Poisson components of these DCMMs.

In principle, model M0 could be any external model used to map and predict

patterns of traffic in the store impacting spaghetti purchases. Our example uses
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a simple model based on aggregate sales that highlights the relevance of the term

multi-scale. This could obviously be modified to incorporate additional predictors of

day-of-week effects, but serves well to illustrate the analysis here. Since pasta sells

at high levels, aggregate-level sales of types of pasta such as spaghetti are typically

high and more clearly reveal the weekly demand patterns as they change day-to-

day. So a relevant aggregate series would be a natural candidate for M0. We take

yt to be the log of total spaghetti sales in this store on day t as our example, and

specifyM0 as a flexible dynamic linear model incorporating time-varying effects and

stochastic volatility as in Section 2.2. This DLM M0 has a local linear trend, a

regression component with the log average spaghetti price as a predictor, the full

Fourier seasonal component for the 7´day seasonal pattern over the week, and a

yearly seasonal effect with the first two harmonics of period 365. Discount factors

in this DLM were chosen based on previous analyses of aggregate sales, resulting

in δ “ 0.995 for each of the trend and regression components, δ “ 0.999 for each

of the seasonals, and β “ 0.999 for the residual stochastic variance process. Note

that, at each time, the full posterior for the implied “current day effect” element

in φt can be trivially simulated from this model as it is simply one element of a

linear transformation of the Fourier coefficients to the 7´dimensional seasonal factor

vector (West and Harrison, 1997, section 8.6.5). In all analyses we used an initial

three weeks of training data to specify initial priors for DCMM state vectors at the

time index t “ 1 representing the start of the 830 day modeling period. Analysis was

then run over the first period of 100 days, prior to then forecasting 1:14 days ahead

on each day of the following two years. Predictive performance is assessed across a

range of random effect discount factors ρ P t0.2, 0.4, 0.6, 0.8, 1.0u in each Mi. Initial

priors for the benchmark and multi-scale DCMMs are matched, adjusting for the

use of the latent seasonal factor φt in the latter compared to the individual Fourier

models in the former. We use fixed discount factors of δ “ 0.999 (Bernoulli), 0.99

73



(item B Poisson), and 0.995 (item A, C, D Poisson) for each of the local level,

price regression state elements, and the state elements corresponding to the seasonal

effects (the vector of time-varying Fourier coefficients in the benchmark DCMMs,

and φt in the multi-scale model, respectively). The lower discount factor in the

Poisson component for item B reflects the more apparent non-stationarities in sales

compared to lower-selling items.

4.5.2 Forecast Metrics

We have discussed general issues of forecast evaluation and comparison in Sec-

tions 2.6, 3.4.3 and 3.4.4, stressing the applied need for global probabilistic metrics

in general, and particularly in contexts of low count time series. That said, for some

basic comparisons of the benchmark with multi-scale DCMMs, it is also of interest

to relate to traditional point forecast accuracy measures. We do that here with three

empirical loss functions from the count forecasting literature (e.g. Fildes and Good-

win, 2007), namely mean absolute deviation (MAD), mean ranked probability score

(MRPS), and scaled mean squared error (sMSE) metrics. Metrics are specific to a

chosen lead-time k ą 0. For any series yt, denote by ft,k a point forecast of yt`k made

at time t. The MAD metric is standard, simply the time average of |yt`k ´ ft,t`k|,

and the optimal point forecast is the k´step ahead predictive median. The RPS

metric is a scoring rule related to earlier discussed and utilized PIT measures (Sny-

der et al., 2012; Kolassa, 2016). If the time t forecast distribution for yt`k has c.d.f.

Pt,kp¨q, then RPStpkq “
ř8

j“0pPt,kpjq ´ 1pyt`k ď jqq2, and we calculate the MRPS

for forecast horizon k by averaging RPStpkq across all days t. The scaled squared

error (sSE) based on outcome yt`k is sSEtpkq “ pyt`k ´ ft,t`kq
2{pȳtq

2 where ȳt is the

mean of y1:t. Then the sMSE for forecast horizon k is calculated as the average of

the sSEtpkq over all days t. This has become of interest in evaluating point forecast

accuracy of count data as it is well defined (unless all observed values are zero), and
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it is not as sensitive to high forecast errors as the MSE (Kolassa, 2016). The optimal

point forecast under sMSE is the k´step ahead predictive mean.

4.5.3 Forecasting Analysis and Comparisons

Items from the analyses are shown in Figure 4.2. These items represent the different

levels of demand present in this store: low demand (item A), moderate demand (items

C, D), and high demand (item B). For each of the three metrics, we evaluate forecasts

across 1:14 days ahead at each day. The benchmark and multi-scale models are

evaluated across a range of random effects discount factors ρ P t0.2, 0.4, 0.6, 0.8, 1.0u.

Since different values of ρ may provide better forecasts across the forecasting horizon,

we display only the minimum results across each of the five models. That is, for

illustration here we only present the results from the best benchmark and multi-

scale model for each item, error metric, and forecast horizon.
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Figure 4.2: Daily unit sales (in counts per day) of four spaghetti items A – D in
one store from July 22nd 2009 to October 29th 2011.

Comparisons under MAD: Figure 4.3 shows the mean absolute deviations (MAD)

versus forecasting horizon for each item from the best performing multi-scale and

benchmark DCMMs. For each item, the multi-scale DCMM has lower MAD than

the benchmark DCMM for all 14 forecast horizons. The greatest decreases in MAD

75



●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●
●

● ●
●

● ●
● ●

●
● ● ●

● ●

●

●

●
●

●

● ●
●

● ●

●
●

●
●

●

A B C D

5 10 5 10 5 10 5 10

1.95

2.00

2.05

2.10

2.25

2.28

2.31

2.34

2.37

3.90

3.95

4.00

0.90

0.91

0.92

0.93

Forecast horizon (days)

Figure 4.3: Mean absolute deviation (MAD) vs forecast horizon (days) for items
A – D from the multi-scale (orange circles) and benchmark (blue triangles) models.
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Figure 4.4: Mean rank probability score (MRPS) vs forecast horizon (days) for
items A – D from the multi-scale (orange circles) and benchmark (blue triangles)
models.
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Figure 4.5: Scaled mean squared error (sMSE) vs forecast horizon (days) for items
A – D from the multi-scale (orange circles) and benchmark (blue triangles) models.

76



occur for the moderate selling items. Decreases in MAD are small for low-selling

items since the predictive median is typically zero or one. For high-selling items, the

seasonal pattern may be more evident in the item-level data compared to lower-selling

items, thus reducing the potential benefit of the proposed multi-scale approach. In

the following comparisons, we present the raw differences in MAD as well as the

difference in total absolute deviation. The total absolute deviation may be more

interpretable in this context because it represents the error in terms of total number

of units over the two-year period. Item specific differences are now noted.

A: The decreases in MAD are small (between 0.004 and 0.024) across the forecast

horizons. The largest decreases occur when forecasting 6-14 days ahead. Across

the two year period, this corresponds with between 3 to 18 units of accuracy

gained from using the multi-scale over the benchmark DCMM.

B: The decreases in MAD range between 0.016 and 0.066 across the forecast hori-

zons. Compared to the benchmark DCMM over this two year period, the

multi-scale DCMM is 48, 38, and 32 units more accurate when forecasting 1,

7, and 2´days ahead, respectively.

C: The decreases in MAD range between 0.09 to 0.11 across the forecast horizons.

Across this two year period, this corresponds with the multi-scale DCMM being

between 64 and 83 units more accurate than the benchmark DCMM.

D: The decrease in MAD ranges between 0.11 to 0.14 across the forecast horizons.

Across this two year period, the multi-scale DCMM is between 82 and 104

units more accurate than the benchmark DCMM.

Comparisons under RPS: Figure 4.4 shows the ranked probability score (RPS) ver-

sus the forecasting horizon for each item from the best performing multi-scale and

benchmark DCMMs. Item specific differences are as follows.
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A: The multi-scale DCMMs have lower RPS than the benchmark DCMMs for

all 14 forecast horizons. Across the forecast horizons, the average percentage

decrease in RPS is about 1.5% for the multi-scale versus benchmark DCMM.

B: The multi-scale DCMMs have lower RPS than the benchmark DCMMs for 12

of 14 forecast horizons. The largest percentage decrease in RPS of 2.7% occurs

for 1´day ahead forecasts.

C: The multi-scale DCMMs have lower RPS than the benchmark DCMMs for all

14 forecast horizons. In general, the decreases in RPS are larger for mid-to-long

range forecasting. Across the forecast horizon, the average percentage decrease

in RPS is 5.4%.

D: The multi-scale DCMMs have lower RPS than the benchmark DCMMs for all

14 forecast horizons. The decreases in RPS are between 0.67 and 0.89 and

consistent across the forecast horizons. The average percentage decrease in

RPS across the forecast horizons is 9.7%.

Comparisons under sMSE: Figure 4.5 shows the sMSE versus forecast horizon for

each item from the best performing multi-scale and benchmark DCMMs. For each

item, the multi-scale DCMM has lower sMSE across all of the forecast horizons.

Comments by specific items are as follows.

A: The decreases in sMSE are similar across the forecast horizons for the multi-

scale versus benchmark DCMM. Averaging across the forecast horizons, the

overall percentage decrease in sMSE of the multi-scale DCMM versus the

benchmark DCMM is 1.4%.

B: The decreases in sMSE are largest when forecasting 1 ´ 7 days ahead. When

forecasting 1´3 days ahead, the percentage decrease in sMSE of the multi-scale

DCMM versus the benchmark DCMM is greater than 3%. Averaged across all
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of the forecast horizons, the percentage decrease in sMSE is 1.8%.

C: The decreases in sMSE are similar across the forecast horizons. Across the

forecast horizons, the average percentage decrease in sMSE of the multi-scale

versus benchmark DCMM is 6.3%.

D: The decreases in sMSE are consistent across the forecast horizons. Compared to

the benchmark DCMM, the multi-scale DCMM has an average 10.3% decrease

in sMSE across the forecast horizons.

Comparisons with Alternate Methods: We did an extensive search for alternative meth-

ods that are appropriate for our applied framework. Here we briefly describe the

results of three models: the integer valued autoregressive (INAR) model (Al-Osh

and Alzaid, 1987; McKenzie, 1988), autoregressive conditional Poisson (ACP) model

(also known as the integer valued GARCH model) (Heinen, 2003; Ferland et al.,

2006; Fokianos et al., 2009), and the generalized linear ARMA (GLARMA) model

(Dunsmuir, 2015; Dunsmuir and Scott, 2015). In this application, we believe the

state space modeling framework is more appealing than observation driven modeling

due to the adaptability over time, interpretability of model components, and flex-

ibility in modeling aspects of time series of counts. A detailed description of our

comparisons with these models is discussed in Section 5. For the INAR model, we

were unable to produce comparable forecasts for items A–D in the application. Com-

pared to the ACP/INGARCH model, the multi-scale DCMM had much lower MAD

across the forecast horizons for items A–D. The forecast intervals for high-selling

item B showed significant undercoverage. Compared to the GLARMA models, the

multi-scale DCMM had lower MAD for items A–D across the forecast horizons. For

item A, the rPIT plots showed the GLARMA model produced too narrow of forecast

distributions, and the binary calibration plots showed miscalibration of zero-versus-

nonzero forecasts. Finally, a major concern was that the GLARMA model could
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not estimate the model for some items with intermittent demand characterized by

high sales mixed with periods of zero sales. The GLARMA model performs well in

point forecasts for some items, but had poor performance of probabilistic forecasts

on high-demand and intermittent-demand items when compared to the DCMM.

4.6 An Example in Multi-Scale Model Inference

In this section, we discuss aspects of model inference in the multi-scale DCMM

framework. When updating the multi-scale DCMM, in step 2 of Section 4.4, we take

S Monte Carlo samples from pφt:t`k | D0,t´1, I0,t´1q. Ideally, S is large enough to

sufficiently explore the posterior of φt:t`k. However, as S increases, the computation

burden rises as we must compute S DGLM model updates. Conditional on the

Monte Carlo samples, these updates can be done in parallel, but the computational

burden may still be too large if we have many individual series. We briefly discuss

the practical effects that different values of S have on model estimation. We consider

S P p2, 10, 50, 100, 500, 1000q, and fit the multi-scale DCMM for each value of S. In

step 5 of Section 4.4, S posterior means and covariance matrices are combined to

approximate pθi,t | Di,tq „ pmt,Ctq. For each candidate value of S, we compare the

resulting elements of mt and Ct. When S is 50 or less, the resulting elements of mt

differ noticeably from posteriors for larger values of S. When S was 100 or higher,

the elements of resulting posterior means and covariance matrices were practically

indistinguishable. Based on these results, we conclude that S “ 100 is sufficient for

model estimation, and ideal from a computational standpoint.

In the multi-scale DCMM, we are able to explore the effects of latent factors over

time for different series yi,t. If a latent factor has a weak effect on yi,t, then βi,t will be

close to zero. If the latent factor has an effect similar toM0, then βi,t will be close to

one. Trajectories of βi,t can capture time-variation in the effect of latent factors. In

this section, we compare trajectories of βi,t across two series to identify the strength
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latent factors have on each series. This example includes two items, E and F, which

are sold in the same store. Figure 4.6 plots the daily sales of these two items from

June 22nd 2015 to July 1st 2017. Item E has consistently high demand, and item

F has low to medium demand with a strong seasonal pattern over the year. In this

analysis, we take models Mi, i “ 1, 2 in which the individual DCMMs of eqn. (4.1)

have f 1i,t “ p1, logppricei,tq, promoi,tq and φt represents the weekly seasonal effect. The

predictor promoi,t is a binary indicator for whether or not a promotion is occurring

for item i on day t. Note that the state evolution matrix is Gt “ G “ I. Discount

factors in each Mi were set to δ “ 0.995 in the Poisson DGLM component, and

δ “ 0.999 in the binary DGLM component.

For M0, we use a model based on aggregate sales, similar to Section 4.5. We

take yt to be the log of the total sales of all pasta products in this store on day t. We

specifyM0 to be a DLM incorporating time-varying effects and stochastic volatility

as in Section 2.2. This DLM M0 has a local linear trend, a regression component

with the log average pasta price as a predictor, the full Fourier seasonal component

for the 7-day seasonal pattern over the week, and a yearly seasonal effect with the

first two harmonics of period 365. Discount factors in this DLM were chosen to

be δ “ 0.995 for the trend and regression components, δ “ 0.999 for the seasonal

components, and β “ 0.999 for the residual stochastic variance process.

Figure 4.7(i) plots the seasonal factors of the weekly seasonal effect over time from

modelM0. Each color in this plot represents a day of the week, and the effect can be

interpreted as the additive increase in log sales, relative to the average, occurring on

the specified day of the week. In Figure 4.7, seasonal factors for Tuesdays, Wednes-

days, and Thursdays are negative indicating that demand on these days is below

average. Similarly, demand on Saturdays and Sundays is above average. Since the

seasonal factors are very close to zero, demand on Mondays and Fridays is average.

This figure summarizes the weekly seasonality in total daily sales of pasta products
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within this store. Next, we study whether item E and F have similar weekly seasonal

effects.

We denote item E with index i “ 1 and item F with index i “ 2. Each element of

βi,t corresponds to the coefficient on the latent factor representing a particular day of

the week. For each item, βi,t,1 represents the coefficient on the Monday latent factor,

βi,t,2 the coefficient for Tuesday, etc. Figure 4.8 plots the mean and ˘2 standard

deviations for each element of β1,t over time for item E. Over the first few weeks,

the coefficients vary quite a bit, and then appear to stabilize. After stabilizing, the

coefficients for latent factors representing Wednesday through Sunday are close to

one over time. The coefficient on the latent factor representing Monday is between

2 and 3, and has higher variance than the other coefficients. The coefficient for the

Tuesday latent factor is about 0.5 over time. These coefficients indicate that the

latent factor φt affects yi,t similarly to how it affects the aggregate sales in M0.

Figure 4.7(ii) plots the implied seasonal factors of the weekly seasonality of item E.

Comparing this plot to Figure 4.7(i), we can understand the differences in the weekly

seasonality of M0 and item E. As in M0, the demand on Tuesdays, Wednesdays,

and Thursdays is below average. However, compared to M0, demand for item E

on Tuesdays is higher than in the aggregated data. Just as in M0, the demand on

Fridays is average, and the demand on the weekends is above average. In M0, the

demand on Mondays was average, but for item E, we see that there is very slightly

above average demand on Mondays.

Figure 4.9 plots the mean and ˘2 standard deviations for each element of β2,t

over time for item F . For item E, after an initial learning period, the coefficients did

not seem to vary over time. For item F , there is more variation in the coefficients for

Monday, Wednesday, Thursday, and Friday over time. The coefficient on the latent

factor representing Monday is centered around zero for the first year, and then begins

to steadily decrease in mid-2016 to about ´3. The coefficient on Tuesday is close to
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one for the entire time period. The coefficient on Wednesdays begins around zero,

and then increases in mid-2016 to around one for the remainder of the time period.

The coefficient on Thursdays begins around one, and then decreases to zero over

time. The coefficient on Fridays increases from about three to five. The coefficient

on Saturdays varies between two and three over time. The coefficient on Sundays

is between zero and one during this time period. Figure 4.7(iii) plots the implied

seasonal factor representation of the weekly seasonality of item F . Compared to item

E andM0, there is more uncertainty about the seasonal factors for item F . Similar

to M0, demand on Fridays, Saturdays, and Sundays appears to be above average

over time. Demand on Mondays, Wednesdays, and Thursdays is average. Demand

on Tuesdays is slightly below average.

The multi-scale DCMM allows us to compare dependence on shared latent effects

φt through examination of item-specific coefficients βi,t. As showcased by these

two items, incorporation of item-specific coefficients allows each item to “modify”

the dependence on φt. For example, the weekly seasonality of item E appears to

be very similar to the seasonality of the store traffic. In general, the item-specific

coefficients are close to one over time. The weekly seasonality of item F, however,

has some slight differences from the seasonality of item E and the overall store traffic.

Notably, item F has higher average sales on Fridays and Saturdays relative to the

overall store traffic seasonality. Time-varying coefficients βi,t allow each model to

capture dynamic dependence on φt. Item E has a stable weekly seasonality over

time while the weekly seasonality of item F appears to change over time. In product

sales forecasting, identification of patterns and inference of this nature can tie into

decisions regarding marketing and production. The straightforward interpretation

of the multi-scale coefficients allows easy comparison of patterns across items and

provides an added benefit of the multi-scale framework in addition to improving

forecasting performance.
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Figure 4.6: Daily sales of items E (left) and F (right) from June 22 2015 to July 1
2017.
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Figure 4.7: Trajectories of weekly seasonal factors over time for the daily sales of
(i) all pasta in the selected store, (ii) item E, and (iii) item F.
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Figure 4.8: Trajectories of multi-scale coefficients βi,t, i P 1:7 over time for item E.
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Figure 4.9: Trajectories of multi-scale coefficients βi,t, i P 1:7 over time for item F.
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4.7 Multi-Scale Aggregate Model Exploration

Section 4.5 details an application of the multi-scale DCMM, and the results suggest

the potential of this framework to improve 1 ´ 14 day ahead forecasting at the

item level compared to DCMMs with item specific seasonality. This application

focused on items of one type (spaghetti) in a single store, amd M0 was specified as

a lognormal DLM on the total daily spaghetti sales within the chosen store. This

choice ofM0 acted as a proxy for store traffic, and the common factor φt represented

the store-spaghetti-level weekly seasonality. In this section, we compare item-level

forecasting performance under different choices ofM0. Specifically, we compare 1–14

day ahead point forecast performance of univariate DCMMs and multi-scale DCMMs

with various choices of M0. This example includes 22 items of four pasta types

(spaghetti, lasagna, egg, macaroni) within one store. For the multi-scale DCMMs,

we specifyM0 to be a lognormal DLM on the daily sales of various levels of aggregate

data. For an item with UPC u, pasta type p, in store s, we consider multi-scale

DCMMs with the following levels of aggregate data:

• All-pasta: Total pasta sales across all stores.

• All-type: Total sales of pasta type p across all stores.

• All-UPC: Total sales of UPC u across all stores.

• Store-pasta: Total pasta sales within store s.

• Store-type: Total sales of pasta type p within store s.

For each of the multi-scale DCMMs, the binary and conditionally Poisson DGLMs

have a local level, regression component with log price as a predictor, and they inherit

the weekly seasonal effect fromM0. For both binary and Poisson DGLMs, the prior

mean is set using 21 days of initial training data. The prior mean of the multi-scale
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seasonal coefficients is set to one, and the prior mean of the regression component

is set to zero. The prior covariance matrix of the state vector is set to 0.1I. In

the univariate DCMM, the binary and conditionally Poisson DGLMs have a local

level, regression component with log price as a predictor, and a full Fourier form

seasonal component with period 7. We use 21 days of initial training data to set the

prior means of the state vector elements corresponding to the level and the seasonal

component. We set the prior mean of the regression coefficient to zero. The prior

covariance matrix of that state vector is set to 0.1I. For independent and multi-

scale DCMMs, we fix discount factors in the binary DGLM to 0.999 on each model

component, and to 0.99 in each component of the conditionally Poisson DGLM. In

this analysis, we train the models on 100 days of data before we begin forecast 1–14

days ahead over the next 100 days. We use the MAD and RMSE to evaluate point

forecast accuracy. For all models, we display error metrics averaged across the 100

day period for each forecast horizon. Results are shown in Figures 4.10, 4.11, 4.14,

4.12, 4.13, and 4.15. We now detail the results for each pasta type.

Results for spaghetti items: Figures 4.10 and 4.11 display the MAD and RMSE for the

eight spaghetti items in this analysis. The black line corresponds to the univariate

DCMM, and the colored lines correspond to the various multi-scale DCMMs. In

general, most of the spaghetti items see some improvement in item-level forecasting

under one of the multi-scale DCMMs compared to univariate DCMMs. For the

highest selling spaghetti items 1–4, the Store-pasta and Store-spaghetti multi-scale

model improves point forecasting performance compared to the independent DCMM.

Results are varied for the lower selling spaghetti items 5–8, but in general it seems

that the best choice of M0 for spaghetti items is a lognormal DLM fit to the total

daily sales of all pasta items in the specific store. We now discuss additional item

specific results.
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1: The multi-scale DCMMs with the lowest MAD and RMSE are the Store-pasta

and Store-spaghetti models. This suggests that this item’s weekly seasonality

is well represented by the store traffic weekly seasonality.

2: The multi-scale DCMMs with the lowest MAD and RMSE are the Store-pasta

and All-pasta models. This suggests that this item’s weekly seasonality is more

similar to the overall Pasta category sales rather than the total spaghetti sales.

3: MAD for 1´ 14 day ahead forecasts and RMSE for 6´ 14 day ahead forecasts

is lower for all multi-scale DCMMs compared to the univariate DCMM. There

does not appear to be a significant difference in forecast error between the

multi-scale models.

4: All of the multi-scale DCMMs have lower MAD and RMSE than the univariate

DCMM. In general, the model with the lowest errors is the All-UPC model.

This suggests that the weekly seasonality of this item’s sales is very similar to

the weekly seasonality of the total sales of this UPC across stores.

5,7,8: Results for MAD and RMSE are mixed for these items with one showing better

performance of the multi-scale models and the other showing better perfor-

mance of the univariate model.

6: MAD and RMSE is lower for the multi-scale models, although there is no

discernible difference between the multi-scale forecast errors.

Results for macaroni items: Figures 4.12 and 4.13 show the MAD and RMSE versus

forecast horizon for the five macaroni pasta items in this analysis. For four of these

items, the multi-scale models have generally lower forecast errors than the univariate

DCMM. However, for one item, the univariate DCMM has substantially lower RMSE

and MAD than all of the multi-scale models. We now discuss item specific results.

1: The univariate DCMM and Store-macaroni multi-scale DCMM have the largest
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MAD and RMSE. The multi-scale model with the lowest RMSE is the All-pasta

model. For MAD, the All-pasta model has the lowest error for short to mid

range forecasting, and for mid to long range forecasting, the All-UPC model has

the lowest MAD. These results indicate that forecasting performance improves

when the weekly seasonlity of this item is estimated using data aggregated to

higher levels than the individual item or store-macaroni.

2: The MAD and RMSE of the multi-scale DCMMs is much lower than the error

of the univariate DCMM. Relative to the independent DCMM, MAD decreases

between 10–40% across the forecast horizon with the greatest improvements oc-

curring for long term forecasting. Similarly, for RMSE, the multi-scale DCMMs

decrease the error by more than 40% for long-term forecasting from 12–14

steps ahead. The forecasting performance of each of the multi-scale models

is relatively similar, so it appears that any choice of aggregate data in M0 is

beneficial.

3: In general, the multi-scale models have lower MAD and RMSE than the uni-

variate DCMM.

4: Forecast performance of all of the models is similar, although the RMSE of the

univariate DCMM is slightly higher than the multi-scale models for low-to-mid

range forecasts.

5: The MAD and RMSE of the univariate DCMM is much lower than the multi-

scale DCMMs. Each of the multi-scale DCMMs has the same MAD across

the forecast horizons, suggesting that this is a low-selling item for which the

multi-scale models predict all zeros.

Results for lasagna items: The lower three rows of figure 4.13 show the MAD and

RMSE versus forecast horizon for the three lasagna items in this analysis. In general,

the multi-scale models have lower forecast errors than the univariate DCMM.
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1,2: The MAD and RMSE of the univariate DCMM is higher than that of the

multi-scale DCMMs. The errors of the multi-scale DCMMS are all relatively

similar.

3: The MAD of the univariate DCMM is higher than the MAD of the multi-scale

models. The RMSE of the univariate DCMM is lower for short-range forecasts,

and larger for longer-range forecast horizons.

Results for egg-based pasta items: MAD and RMSE versus forecast horizon for egg-

based pasta items are shown in Figures 4.14 and 4.15. In general, the error of

multi-scale DCMMs is lower than the error of the univariate DCMM. Item specific

details are now discussed.

1: The multi-scale DCMMs have lower MAD and RMSE than the univariate

DCMM. The model with the lowest forecast errors is the All-UPC model,

suggesting that the weekly seasonality of the sales of this item are similar to

the sales of the same UPC at other stores.

2: The MAD of the multi-scale and univariate DCMMs is similar across the fore-

cast horizons. The multi-scale DCMMs have lower RMSE than the univariate

DCMM across the forecast horizon.

3,4,6: The multi-scale DCMMs have lower MAD and RMSE than the univariate

DCMM. The performance of all of the multi-scale DCMMs is relatively similar

for both metrics.

5: Compared to the multi-scale DCMMs, the univariate DCMM has similar MAD

for short-range forecasts and lower MAD for longer-range forecasts. The multi-

scale DCMMs have lower RMSE than the univariate DCMM. The multi-scale

models with the lowest RMSE are the All-pasta and All-egg models, although

the forecasts across all models are similar.
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In this section, we have explored different choices ofM0 in the multi-scale DCMM

framework. We have compared the point forecast accuracy of univariate DCMMs

and five choices of multi-scale DCMM across a set of twenty-two items of differing

demand levels and pasta types. Although there are a few exceptions, it appears

that the multi-scale DCMM improves point forecast accuracy for most items. The

performance of the five multi-scale DCMMs was similar for most items indicating that

any aggregate series is appropriate forM0. For a few items, point forecast accuracy

improved when the data modeled in M0 was aggregated to a higher level than the

Store-type data. These results suggest that a good choice ofM0 is a lognormal DLM

fit to data aggregated to the level of total store-pasta sales or higher.

4.8 Summary Comments

In the context of a motivating case study and application in consumer sales and

demand forecasting, we have introduced a novel class of dynamic state-space models

for time series of non-negative counts, and a formal multivariate extension for many

related series. The univariate DCMM framework builds on and extends prior ap-

proaches to univariate count time series, contributing a flexible, customizable class

of models. The ability to explore and include covariates as potential predictors of

both binary and positive count series is of interest in many areas, and the coupling

of DGLMs for these two components addresses a very common need with count

data. Motivated by problems in consumer demand and sales forecasting, the oppor-

tunity to apply these models and extend their use in commercial and socio-scientific

forecasting is evident. In addition to the dynamic regression components, the time-

varying state-space framework allows evaluation of changes over time in regressions,

trends, seasonal patterns and other forms of predictor information, and adaptability

to any such changes. The Bayesian framework defines probabilistic forecasts that,

accessed trivially computationally through direct, forward simulation of predictive
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distributions, enables evaluation of various summary measures of uncertainty about

forecast paths of time series into the future and arbitrary functions of sets of fu-

ture outcomes. This is important in applications as a general matter of properly

communicating forecast information, and also provides the basis for formal decision

analysis in decision contexts reliant on forecasts. Our examples developed in con-

sumer sales forecasting highlight the machinery of model fitting and forecasting, and

demonstrate the utility of DCMMs with series exhibiting quite differing patterns and

levels of outcome intensity. This is important in applications involving many series

where it is desirable to have a single model class that is flexible and adaptable to

individual series characteristics. A number of traditional point forecast metrics are

also discussed, along with the point that they should always be considered so long as

the background context supports the role of the implicit loss function underlying any

specific point forecast. More broadly on forecast assessment and evaluation, we have

stressed and exemplified the use of analyses addressing the full forecast distributions,

to include frequency calibration of both binary and positive count models, empirical

coverage of nominal forecast intervals.

The embedding of sets of DCMMs into a multivariate system defines a novel

class of state-space models for many related time series of counts. Importantly, this

maintains the flexibility of modeling at the univariate series level, using individual

DCMMs that are linked across series via common latent factors. The linkages are

series-specific, potentially time-varying random effects, so defining an overall, flexible

hierarchical dynamic model framework. Also, critically, the new multivariate/multi-

scale approach maintains the ability to run fast, sequential Bayesian analysis of

decoupled univariate analyses of many series, with recoupling across series based on

information about common factors flowing from an external model. This strategy

enables analytic computations and trivial forward simulation for sequential analysis

and forecasting, and by design is scalable to many series (computations grow only
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linear with the number of series). Our example in the motivating consumer sales

case study involves a common factor process related to shared seasonal patterns and

in which the external model generating inferences on the factor process is a dynamic

model applied to aggregate data in which the pattern is more precisely identified.

Other implementations of the multi-scale approach, beyond purely seasonality, of-

fer the possibility of learning additional relevant shared features across products,

stores, or brands. For example, we could use this approach to learn the elasticity to

promotions which are run in many stores. In future applications, the shared latent

factor process will be multivariate, with dimensions reflecting different ways in which

series are conceptually related. In product demand forecasting, for example, prod-

ucts can be grouped by product family, brand, store location and other factors, and

both aggregate-level and external economic or business models may provide inputs to

forecast several common factors representing the relevant cross-series linkages. Our

examples illustrate the ability of the multivariate/multi-scale approach to improve

forecasts at the individual series level, in both short and longer-term forecasting, and

across series with intermittent, moderate, and high demand patterns. While forecast

accuracy improvements cannot be expected for all series all of the time, even small

increases in forecast accuracy on a number of items can have a profound impact on

retail decision-making and costs. One important factor that plays a role here is the

length of historical data available for each item. It is to be expected that series with

shorter histories will most immediately benefit from the multivariate approach, as

common features impacting demand on similar items will feed information relevant

to forecasting the newer items, a context of clear interest in commercial settings

when new or modified products are introduced.
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Figure 4.10: Forecast comparison in terms of MAD (left) and RMSE (right) for
spaghetti items 1–4 using following DCMMs: independent (black), All-pasta (red),
All-spaghetti (green), Store-pasta (dark blue), Store-spaghetti (light blue), and All-
UPC (pink).
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Figure 4.11: Forecast comparison in terms of MAD (left) and RMSE (right) for
spaghetti items 5–8 using following DCMMs: independent (black), All-pasta (red),
All-spaghetti (green), Store-pasta (dark blue), Store-spaghetti (light blue), and All-
UPC (pink).
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Figure 4.12: Forecast comparison in terms of MAD (left) and RMSE (right) for
macaroni items 1–4 using following DCMMs: independent (black), All-pasta (red),
All-spaghetti (green), Store-pasta (dark blue), Store-spaghetti (light blue), and All-
UPC (pink).
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Figure 4.13: Forecast comparison in terms of MAD (left) and RMSE (right) for
macaroni item 5 and lasagna items 1–3 using following DCMMs: independent (black),
All-pasta (red), All-spaghetti (green), Store-pasta (dark blue), Store-spaghetti (light
blue), and All-UPC (pink).
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Figure 4.14: Forecast comparison in terms of MAD (left) and RMSE (right) for
egg items 1–4 using following DCMMs: independent (black), All-pasta (red), All-
spaghetti (green), Store-pasta (dark blue), Store-spaghetti (light blue), and All-UPC
(pink).
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Figure 4.15: Forecast comparison in terms of MAD (left) and RMSE (right) for
egg items 5–6 using following DCMMs: independent (black), All-pasta (red), All-
spaghetti (green), Store-pasta (dark blue), Store-spaghetti (light blue), and All-UPC
(pink).
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5

Comparison of DCMM with Alternate Forecasting
Methods

In this section, we discuss several existing models that could be used in the context

of product demand forecasting. For each comparison method, we briefly describe

the model, detail the availability of code/packages, and (if possible) summarize the

performance of each model on items in our dataset. Given our focus on forecast-

ing low-valued count data, we limit the scope of models considered here to those

which produce coherent forecasts over the non-negative integers. To compare fore-

cast results, we present various point forecast metrics as well as probabilistic forecast

evaluation.

Each of the models considered here fall in the framework of observation-driven

models with some flavor of autoregressive dependence structure between observa-

tions. Before describing model specific details, we detail a few key differences between

DCMMs and the following methods:

• All of the following models are univariate, and we have proposed an efficient

multi-scale framework for incorporating cross series dependence.
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• In the following models, the ARMA, regression, and seasonal components are

static while the DCMM can incorporate dynamic versions of these model com-

ponents.

• Some of the models mentioned below account for overdispersion – typically

through an extension from a Poisson to Negative Binomial distribution. How-

ever, in our applied framework with potentially millions of individual series, it

is not realistic to individually specify the appropriate model for each individual

item. Additionally, the appropriate model may change over time if the demand

for an item changes (e.g. seasonal products). The DCMM random effects ex-

tension we have proposed can automatically account for overdispersion in time

series of counts.

• In the following models, there is no way to account for data with more/fewer

zeros than expected under Poisson/Negative Binomial models. In the DCMM,

the binary component is automatic and flexible enough to model any time series

of counts (with fewer/excess zeros) without the need for individual item model

customization.

5.1 Integer Valued Autoregressive Model

Details of the integer valued autoregressive (INAR) model are given in Al-Osh and

Alzaid (1987) and McKenzie (1988). An alternate name for the same model is the

Poisson Autoregressive (PAR) model. Let yt denote a non-negative count valued

time series observed over time t “ 1, . . . , T . The INAR model is defined by

yt “ α ˝ yt´1 ` εt

where y0 has a Poisson distribution with mean λ0, and εt „ Popλq, with εt K yk

for all t, k. The binomial thinning operator ˝ is defined as follows: given Xt´1,

102



αXt´1 “
řXt´1

i“1 Bit, where B1t, . . . , BXt´1,t are iid Bernoulli random variables with

success probability α.

The intuition underlying the INAR model is that the count at time t is the sum

of “survivors” from time t ´ 1 and new arrivals between time t ´ 1 and t. The

survivors are represented by the binomial thinning, α ˝ yt´1, and the new arrivals

are represented by εt, generally a Poisson random variable. This simple intuition is

appealing in many applications, and could be relevant when modeling the number

of customers waiting in line at a store. However, when modeling the daily sales of a

supermarket product, the birth-death concept does not seem to be a natural way of

understanding the data.

Additionally, it is not trivial to extend this model to incorporate covariate effects.

Incorporating item level price, promotions, and holiday effects is a very important

part of product sales forecasting. Finally, it is unclear how this model would incor-

porate negative dependence between observations. Both of these tasks are possible

in the DCMM framework.

We spent many hours searching, but we were unable to find any code/packages

to implement the INAR model. It is possible for us to code up the estimation

procedure to produce MLE estimates of the model parameters ourselves. Given

these MLEs, we could write code to produce k´step mean forecasts for the INAR

model. However, given that our time series are low-valued counts, the mean forecast

is not especially interesting, and our main interest is in entire forecast distributions.

It is unclear if k´step predictive distributions are available in this model, and would

be a separate research project to implement this ourselves. Given these experiences,

we have focused on other comparison models which have similarities to the INAR

model in that they are observation-driven and have an autoregressive dependence

structure.
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5.2 Generalized Linear ARMA Model

The Generalized Linear ARMA model (GLARMA) is described in Dunsmuir (2015)

and Dunsmuir and Scott (2015). Let yt denote a non-negative count valued time

series observed over time t “ 1, . . . , T . Here we detail the Poisson GLARMA model,

however there is also a Negative Binomial GLARMA for modeling overdispersed

counts. The model is

yt | Dt´1 „ Popµtq, (5.1)

logpµtq “ Wt “ x1tβ ` Zt, (5.2)

where

Zt “
p
ÿ

i“1

φipZt´i ` et´iq `
q
ÿ

i“1

θiet´i (5.3)

and

et “
Yt ´ µt
νt

for some scaling factor νt. For the models considered here, we set et to be Pearson

residuals with νt “
?
µt.

The GLARMA model is implemented in the glarma R package. This package

allows incorporation of static regression effects and static ARMA dependence struc-

ture. Multi-step forecasting is available through a simulation based approach – allow-

ing access to the full predictive distribution k-steps ahead. Unlike the DCMM, the

GLARMA model does not account for excess zeros. To account for overdispersion,

this package allows both conditionally Poisson and Negative Binomial response dis-

tributions. Another important detail is that the GLARMA package does not handle

time series with missing data which is straightforward in the DCMM framework.

To compare with the DCMM, we implement the GLARMA models with both

Poisson and Negative Binomial response distributions. Each model includes the log
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price as a predictor and six dummy variables for the day of the week to incorpo-

rate the weekly seasonal effect. We also include a lag-1 autoregressive structure to

incorporate time dependence in the model.

As in our DCMM analysis, we fit the model on the first 100 days of data, and then

began forecasting 1 ´ 14 days ahead on each day during the next two years. In the

GLARMA framework, this requires re-estimating the model on all of the observed

data at each time t, and then forecasting over the next 1-14 days using the built in

GLARMA simulation method. We run this analysis across the same 4 items (A –

D) in the multiscale forecasting application in Section 4.5. Figure 4.2 plots the daily

sales of items A – D over this time period. Figure 5.1 displays the MAD of forecasts

under each model for items A – D. Figures 5.2 and 5.3 display probabilistic forecast

metrics for the GLARMA models. We now discuss the specifics of the forecasting

results for each item.

Item A. Here we only present results for the Poisson GLARMA model since the

Negative Binomial GLARMA model encountered an error during estimation for item

A. Figure 5.1 (top, left) shows the MAD over this two-year period versus the forecast

horizon. The multi-scale DCMM has the lowest MAD for 12 of the 14 forecast

horizons; however, the MAD of all three models are fairly similar. This similarity

is most likely due to the fact that this low-selling item will have a median of zero

or one sales on most days, so the average absolute deviation of the median will be

very small on average. The rPIT plot and coverage plots for the Poisson GLARMA

model are shown in Figure 5.2. In the rPIT plot, there is a slight S-shape to the

rPIT values, indicating that the forecast distribution is slightly too narrow.

Figure 5.4 shows binary calibration plots for 1´day forecasts of non-zero sales of

item A in the Poisson GLARMA model. Well calibrated binary forecasts means that

the crosses or red bars should fall within the shaded gray region. For item A, we see
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that there are three bars that all fall below the gray shaded region. Furthermore,

although the other bars fall within the gray regions, we do notice a trend of the crosses

falling under the diagonal line. This plot indicates that the Poisson GLARMA model

overpredicted the probability of zero sales occurring.

Item B. Item B is a relatively high-selling item. Figure 5.1 (top, right) displays the

MAD for each of the four models. We see that the DCMM models both have lower

MAD than the GLARMA models. The decrease in MAD of the multi-scale DCMM

versus the Negative Binomial GLARMA model ranges from 0.11 to 0.20. Over this

two year period, this corresponds to between 86 and 144 units more accurate when

using the multi-scale DCMM.

The rPIT plot and coverage plots for the Poisson GLARMA model are shown

in the 1st row of Figure 5.3. In the rPIT plot, we see that the Poisson rPIT values

deviate from uniformity. This indicates that the forecast distribution is too narrow in

the Poisson GLARMA model. The Negative Binomial rPIT values appear to conform

to uniformity. In the Poisson coverage plot, we see that there is undercoverage of

forecast intervals. Overall, it appears that the Poisson GLARMA model does not

sufficiently account for the overdispersion apparent in the data. In the Negative

Binomial coverage plot, we see that the coverage lies along the 45-degree line. The

Negative Binomial GLARMA model appears to perform well in terms of probabilistic

forecasting.

Item C. The multi-scale DCMM has the lowest MAD for 13 of the 14 forecast

horizons. When forecasting 14-days ahead, the multi-scale DCMM and Negative Bi-

nomial GLARMA model actually have the exact same MAD. The GLARMA models

have lower MAD than the univariate DCMM across the forecast horizon. The largest

differences in MAD occur for short term forecasting. For 1, 2, and 5´step forecast-
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ing, the differences in MAD correspond to between 25 and 30 units more accurate

for the multi-scale DCMM versus the Negative Binomial GLARMA model.

The rPIT plot and coverage plots for the Poisson GLARMA model are shown

in the 2nd row of Figure 5.3. In the rPIT plot, the Poisson rPIT values deviate

from uniformity slightly. Based on the rPIT values, it appears that the predictive

distribution is too light on the lower end, and slightly too narrow on the higher

end. The Negative Binomial rPIT values are closer to uniformity, however there

is a slight deviation on the upper end. This may indicate that the upper tail of

the predictive distribution is too long. The Poisson coverage plot shows very slight

undercoverage for intervals above 80%. The Negative Binomial coverage plot shows

slight overcoverage for the forecast intervals.

Item D. The multi-scale DCMM has the lowest MAD for all of the forecast horizons.

However, the GLARMA models have lower MAD than the univariate DCMM. The

differences in MAD are consistent across forecast horizons. Across the two-year

period, this corresponds with between 46 and 64 units of accuracy gained by using

the multi-scale DCMM versus the Negative Binomial GLARMA model. Similarly,

this corresponds with between 23 and 43 units of accuracy gained by using the multi-

scale DCMM versus the Poisson GLARMA model.

The rPIT plot and coverage plots for the Poisson GLARMA model are shown in

the 3rd row of Figure 5.3. In the rPIT plot, we see that the Poisson rPIT values

slightly deviate from uniformity. These values indicate that the forecast distribution

in the Poisson GLARMA model is too narrow on the upper and lower tail. The

Negative Binomial rPIT values are closer to uniformity, but do not conform exactly

to the 45´degree line. The Poisson coverage plot shows very slight undercoverage.

The Negative Binomial coverage plot is very close to the 45´degree line.
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Item E. The daily sales of item E are shown in Figure 5.5. We attempted to run the

forecasting analysis on this item for the Poisson and Negative Binomial GLARMA

models. However, both of these models encountered errors during the time period

we were evaluating. This item has a high probability of zero sales, but also frequent

bursts of large sales. It appears that the GLARMA models are not appropriate for

this time series.

Discussion of results

Overall, the performance of the GLARMA models is good for the items discussed

here. The performance of the GLARMA models under MAD is quite competitive

with the DCMMs for items A, C, and D. However, both of the DCMMs outperform

the GLARMA models for item B. We believe one of the underlying reasons for this

is that the daily sales of item B are more nonstationary and more variable over time

than the other three items. This theory is supported by the fact that the GLARMA

models encountered errors for item E, which displays quite non-stationary demand.

For probabilistic forecasting, the Poisson GLARMA model consistently produces

forecast distributions that are just too narrow. The performance of the Negative

Binomial GLARMA model was often improved.

One important consideration for the GLARMA models is that there is no sep-

arate model for zero sales like in the DCMM. One result of this is that the binary

forecasting of zero-versus-non-zero sales appears to be miscalibrated for item A.

While the GLARMA models performed well in these comparisons, we believe that

the multi-scale DCMM is the more appropriate choice for our application to product

sales forecasting. The main reason for this is that the DCMM is more automatically

flexible and robust to handling the common characteristics of time series of counts.

The DCMM can automatically handle time series with excess zeros, overdispersion,

and non-stationary model components. The GLARMA models require individual
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item customization by fitting either a Poisson or Negative Binomial model, do not

have a separate binary component, and appear to struggle with time series with ap-

parent non-stationarities. Another key issue with the GLARMA framework is that

it cannot be used to model and forecast for every item. This would require further

customization for individual items which is not realistic in our context.

5.3 Autoregressive Conditional Poisson Model

An alternate name for this model is the integer-valued GARCH model (INGARCH)

of order p and q. Details about these models are available in Heinen (2003), Ferland

et al. (2006), and Fokianos et al. (2009). Let yt denote a non-negative count valued

time series observed over time t “ 1, . . . , T . The ACP model has counts following a

Poisson distribution with an autoregressive mean, namely

yt | Dt´1 „ Popµtq, (5.4)

Eryt | Dt´1s “ µt “ ω `
p
ÿ

j“1

αjyt´j `
q
ÿ

j“1

βjµt´j, (5.5)

for positive αj, βj, ω. Here, Dt´1 “ ty1, . . . , yt´1u. In this model, the order p describes

the number of lagged observations that affect the mean at time t. The order q

represents the number of lagged values of Poisson mean that appear in the model.

Since the Poisson mean µt is positive, the values of αj, βj, ω are constrained to positive

values. The most commonly used form of this model is the ACP(1,1).

The ACPpp, qq model is implemented in the acp R package. Built-in functions

in this package estimate the ACPpp, qq model with covariates, and provide static

forecast means. In the ACPpp, qq model, time dependence is achieved through the

latent ARMA structure, but the ARMA coefficients and the covariate effects are

static in time. This model accounts for overdispersion through the autoregressive

Poisson mean. There is no simple way to account for excess/fewer zeroes, and there
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is no multivariate extension implemented. To apply this model in an on-line setting,

we refit the model to all of the observed data at each time t “ 1, . . . , T .

For this comparison with the DCMM, we attempt to implement the ACP(1,0)

and ACP(1,1) models. Each time we tried to run the ACP(1,0) model, the code

returned an error – it appears that this model form is not supported by the current

software. We focused our comparison on the ACP(1,1) model instead.

The built-in function predict.acp produces a static forecast over the next k days.

At time t, when forecasting time t`k, this function will use the parameter estimates

at time t, and requires the observed data yt`1, . . . , yt`k´1. In our application, we are

interested in multi-step ahead predictive distributions. In order to compare results

with the DCMM, we have written our own function to produce simulations from the

k-step joint forecast distribution. After fitting the ACP(1,1) model on data from

time 1 to t, we use the predict.acp function to forecast the 1´step forecast mean

for time t ` 1. Conditioning on the mean, we simulate a Poisson valued prediction

y˚t`1 from the implied forecast distribution for yt`1. Treating this simulated y˚t`1 as

synthetic data, we use the predict.acp function to forecast the mean at time t` 2,

and then draw a value of y˚t`2. We repeat this procedure up to time t`14 to produce

a single joint draw form the 1:14 step forecast distribution.

After developing this forecasting procedure, we refit the ACP(1,1) model at each

day in the two year time period of interest. On each day, we use the described

procedure to forecast k-steps ahead. However, for each of the four items A – D in

the analysis, the ACP package encountered an error at some point during this two

year period.

Another R package tscount implements the INGARCH model. We were able

to implement the INGARCH model for some items with this package. The built-in

function predict.tsglm produces 1:k step forecast means, medians, and prediction

intervals. It is only possible to extract prediction intervals rather than the entire
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forecast distributions. Here, we focus on the coverage of 95% prediction intervals.

Item A. The MAD for the INGARCH model for item A is shown in Figure 5.6.

The multi-scale DCMM has lower MAD across all forecast horizons. The decrease

in MAD varies between 0.06 and 0.10. Across the two-year period, these decreases

correspond with between 48 and 70 units of accuracy gained under the multi-scale

DCMM.

The 95% prediction intervals for each forecast horizon show slight overcoverage

of the observed data. Across the forecast horizons, the 95% intervals contain over

98% of the observed data.

Item B. The MAD for item B is shown in Figure 5.6. The multi-scale DCMM has

lower MAD across all 14 forecast horizons. The decrease in MAD varies from 0.11 to

0.20 for the multi-scale DCMM versus the INGARCH model. Across the two-year

period, these decreases in MAD corresponded to between 84-119 units more accurate

under the multi-scale DCMM.

The 95% prediction intervals at each forecast horizon showed undercoverage of

the observed data. The empirical coverage across the forecast horizon varied from

79:81%.

Item C. The MAD results for item C are shown in Figure 5.6. The multi-scale

DCMM has lower MAD across all 14 forecast horizons. The decrease in MAD ranges

from 0.37 to 0.52 for the multi-scale DCMM versus the INGARCH model. Across the

two-year period, these decreases correspond to between 271 to 382 units of accuracy

gained by using the multi-scale DCMM versus the INGARCH model.

The 95% prediction intervals at each forecast horizon are very close to the nominal

coverage. Empirical coverage varies from 95% to 98% across the forecast horizons.
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Item D. The MAD results for item D are shown in Figure 5.6. The multi-scale

DCMM has lower MAD across all 14 forecast horizons. The decrease in MAD ranges

from 0.28 to 0.40 for the multi-scale DCMM versus the INGARCH model. Across

the two-year period, these decreases correspond to between 206 and 295 units of

accuracy gained by using the multi-scale DCMM versus the INGARCH model.

The 95% prediction intervals at each forecast horizon are very close to the nominal

coverage.
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Figure 5.1: Forecast comparison in terms of MAD of items A – D of multi-scale
(black) and univariate (red) DCMMs to the Poisson (green) and Negative Binomial
(blue) GLARMAs.
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Figure 5.2: Probabilistic forecast evaluations for item A. The left column shows
the rPIT plots for the Poisson (green) GLARMA model. The right column shows
the coverage of HPD regions for the Poisson GLARMA model.
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Figure 5.3: Probabilistic forecast evaluations for items B (1st row), C (2nd row),
and D (3rd row). The left column shows the rPIT plots for the Poisson (green)
and Negative Binomial (blue) GLARMA models. The middle column shows the
coverage of HPD intervals for the Poisson GLARMA model. The 3rd column shows
the coverage of HPD regions for the Negative Binomial GLARMA model.
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vertical bars indicate binomial variation based on the number of days in each bin.
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Figure 5.5: Daily sales of item E from mid 2009 to early 2012.
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Figure 5.6: Forecast comparison in terms of MAD for item A,B,C,D for the multi-
scale DCMM versus the INGARCH(1,0) model.
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6

Dynamic Binary Cascade Model

6.1 Context and Models

6.1.1 Setting

The modeling advances in this work capitalize on availability of detailed point of sale

data on transactions and sales-per-transaction information on supermarket items.

Consider one specific item in a given store. Data are observed daily with day t

records of (a) the number of transactions involving this item, i.e., of customers pur-

chasing some number of the item, and (b) for each transaction, the number of units

sold. Many items sell sporadically with no or few transactions per day, and with a

high probability of only one unit sold per transaction. Many other items sell more

frequently but again generally at 1 or perhaps 2 units per transaction. Then other

items can sell at higher levels per transaction, though again generally small numbers.

Infrequent bursts of item sales occur, often in the context of known promotions or

pricing changes. Some items experience rare events in terms of larger numbers of

sales in rare batch purchases.

Standing at the end of day t, the forecasting goal is to predict future sales over
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the coming period of k days; our applied context requires 2-week forecasts, so k “ 14.

We aim to do this in terms of a full probability forecast distribution for that coming

period, and this process is repeated each day. The new model developed dissects and

models item sales by transaction, with the following notation all indexed by day t:

• yt is the total number of units sold.

• bt is the number of transactions– or baskets– involving at least one unit sale.

• zt “ 1pbt ą 0q where 1p¨q is the indicator function; thus zt “ 0 implies zero

transactions, while zt “ 1 indicates some transactions.

• nr,t is the number of transactions with more than r units, where r “ 0:d for

some specified (small) positive integer d. By definition, n0,t ” bt. Evidently

also, if nr,t “ 0 for some r ď d then nr`1,t “ ¨ ¨ ¨ “ nd,t “ 0.

• et ě 0 is the count of excess sales from any and all transactions that have more

than d items. Evidently, et “ 0 unless nd,t ą 0.

• With the above definitions, it follows that

yt “

#

0, if zt “ 0,
ř

r“1:d rpnr´1,t ´ nr,tq ` et, if zt “ 1.
(6.1)

The new dynamic models for forecasting the yt series are built from coupled compo-

nents separately modeling transactions bt “ n0,t and the sequence of values n1:d,t, et,

as now detailed.

6.1.2 Transaction Forecasting using Dynamic Count Mixture Models (DCMMs)

First, we utilize a dynamic count mixture model to represent and forecast the item-

specific transaction process bt over time. This class of DCMMs provide a flexible

framework for modeling non-negative counts that is customized to dealing with zero

counts together with potentially diverse patterns of variation of non-zero counts. Two
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state-space model components are involved. The first is a dynamic binary/logistic

regression model for zero/non-zero transactions; the second is a dynamic, shifted

Poisson log-linear model for transaction levels conditional on there being some trans-

actions. Each model component may involve covariates– such as price and promotion

predictors, seasonal effect variables, holiday effects, and so forth– that may partly

explain and hence predict variation over time in transaction outcomes. An initiat-

ing application for the development of DCMMs was in forecasting item sales, and

one important aspect of these models is that they naturally integrate time-specific

random effects–e.g., daily random effects in the supermarket forecasting context.

This anticipates and adapts to unpredictable levels of variation in outcomes over

and above that explained by the conditional Bernoulli and Poisson dynamic mod-

els. In sales forecasting, this is particularly key in dealing with relatively common

“extra-Poisson” variation and occasional bursts in sales levels.

The key point here is to adapt DCMMs to model transactions, not sales. The

heterogeneity and over-dispersion seen in sales data is, in part, due to the compound-

ing effect of varying sizes of transactions per customer throughout the day. When

modeling transactions alone, this level of complexity and diversity in outcomes is

diminished; the opportunity for improved forecasting accuracy at the level of trans-

actions is then clear.

A DCMM for transaction outcomes bt is defined by a coupled pair of observation

distributions in which

zt „ Berpπtq and bt|zt “

#

0, if zt “ 0,

1` xt, xt „ Popµtq, if zt “ 1,
(6.2)

over all time t. Here Berpπq denotes the Bernoulli distribution with success probabil-

ity π, while Popµq denotes the Poisson distribution with mean µ. The parameters πt

and µt are time-varying according to binary and Poisson dynamic generalized linear

119



models (DGLMs: West and Harrison, 1997 chapter 15; Prado and West, 2010 sec-

tion 4.4), respectively; that is,

logitpπtq “ F0
tξt and logpµtq “ F`t θt (6.3)

with latent state vectors ξt and θt and known dynamic regression vectors F`t and F0
t ,

in an obvious notation. The regression vectors can include different covariates and

dummy variables, and the choices can be customized to item. Some aspects of varia-

tion over time– in both zero/non-zero transaction probabilities and in the conditional

levels of non-zero transactions– comes through the specification of covariates in the

regression vectors. Additional aspects of variation can be captured and adjusted for

through time variation in the latent state vectors defining time-varying regression

coefficients, in the usual state-space mode.

6.1.3 Dynamic Binary Cascade Models for Sales-per-Transaction

A central modeling and methodological innovation here is a new dynamic binary

cascade model (DBCM) that directly addresses the interests in precision in dissect-

ing heterogeneity in sales outcomes by focusing on an hierarchical decomposition of

numbers of units per transaction. Many items sell just once per transaction, many

others sell at perhaps 2 or 3 items, with higher numbers becoming increasingly rare.

The multi-scale formulation of a DBCM is motivated by the reality that predicting

rare events of any kind– here, larger numbers of units per transaction– is only and

properly addressed using hierarchical sequences of conditional probabilities to define

chances of outcomes.

The DCMM defines forecast distributions for transactions bt into the future,

and is used to compute predictive probabilities of transaction outcomes as well

as– critically– to simulate representative future outcomes. Given a chosen or sim-

ulated/synthetic value of bt, we then condition to model and forecast the daily
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sales conditional on that level of transactions using the DBCM defined below. In a

Bayesian Monte Carlo analysis, repeatedly simulating many representative values of

bt and then sales coupled to each value defines formal computation from the required

predictive distribution of sales. As we move across Monte Carlo samples, uncertainty

about transaction levels is represented, and then the conditional uncertainty about

sales per transaction factors in.

Consider then a given a value of bt ” n0,t. The DBCM defines a probability model

for yt|bt. First, if bt “ 0 then sales yt “ 0, the trivial case. Consider now cases when

bt ą 0 and refer to eqn. (6.2) to focus on uncertainty about the resulting sales count

yt. The model is structured as follows:

• For each r “ 1:d, denote by πr,t the probability that the number of items sold

per transaction exceeds r given that it exceeds r´ 1, and assume the numbers

of units per transaction are conditionally independent across baskets.

• For any number r “ 1:d, the (increasingly small) probability of more than r

sales per basket is then implied as π1,tπ2,t ¨ ¨ ¨ πr,t.

This is a key to the strategy and utility of the binary cascade concept: it

models and hence forecasts rare events– unusually high levels sales for any

one transaction– via a sequence of conditional probabilities, each of which is

estimable from the data while their product can be very small.

• For each r “ 1:d, the hierarchy of sales levels nr,t then follow a sequence of

conditional binomial distributions, namely nr,t|nr´1,t „ Binpnr´1,t, πr,tq based

on these probabilities. As we sequence through r “ 0, 1, . . . , if we experience

a level r with nr,t “ 0 this implies, of course, that nj,t “ 0 for all j ě r.

• The excess sales et are computed by summing over possible transactions with

more than d sales each. If nd,t “ 0, then et “ 0. If, on the other hand, if nd,t ą 0

then et ě pd` 1qnd,t.
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Given that the probability of more than d`1 per basket is generally expected to

be quite small, the analysis will be quite robust to the conditional distribution

of et. Hence we consider two strategies to quantifying the excess. One strategy

is to leave the distribution of the excess completely unspecified and simply re-

port the probability of nd,t ą 0 along with the forecast distribution of sales yt

conditional on nd,t “ 0. A second strategy is to simply use a bootstrap anal-

ysis in which a simulated forecast with nd,t ą 0 results in randomly sampling

the corresponding forecast excess from the empirical distribution of past ob-

served excess values. This is further discussed and developed in Sections 6.1.4

and 6.3.2, and exemplified in the application.

As with the Bernoulli model for zero/non-zero transactions zt, we have access to the

flexible class of dynamic logistic state-space models for each of the elements of the

cascade across levels of sales per transaction. That is, the conditional model of nr,t

has the dynamic binomial logistic form

nr,t|nr´1,t „ Binpnr´1,t, πr,tq where logitpπr,tq “ F0
r,tξr,t (6.4)

with latent state vectors ξr,t and known dynamic regression vectors F0
r,t in an ob-

vious extension of the earlier notation. The regression vectors can include different

covariates and dummy variables for each level r, and can be customized to level.

The πr,t may be relatively stable over time, but impacted by price and promotion

effects that increase relative probabilities of higher levels of sales per item, so that

such information is candidate for inclusion in regression terms. As with the trans-

action events, aspects of variation over time comes through the covariates included,

but is also potentially represented via time variation in the latent state vectors ξr,t

of time-varying regression coefficients. Additional details of model specification and

Bayesian filtering/forecasting analyses are summarized in Section 2.2.
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6.1.4 Multi-Step Ahead Forecasting

Bayesian forecasting is based on full predictive distributions. In most applications, it

is of interest to use direct/forward simulation of multi-step ahead predictive distribu-

tions. Among other things, this allows trivial computation of probabilistic forecast

summaries for arbitrary functions of the future data over multiple steps ahead. In

transactions and sale forecasting, generating Monte Carlo samples of synthetic fu-

tures over a series of days provides forecast summaries for sales each day, the patterns

of variation and dependence day-to-day, and other aspects of applied relevance such

as cumulative forecasts over a period of days. Thus, by “forecast” we now mean sim-

ulation – i.e., the generation of multiple random samples of transactions and sales

outcomes over multiple days, defining “synthetic” futures that can be summarized

to compute a range of point forecasts of interest under various utility functions,

as well as full probabilistic summaries that formally capture and reflect predictive

uncertainties.

Multi-step forecasting via simulation in dynamic transaction-sales models builds

on basic simulations from the sets of DGLMs that define model components. On

any day t looking ahead over the next k days based on current information tDt, Itu,

the requirement is to generate a large Monte Carlo sample from the full Bayesian

predictive distribution for transactions and sales of the item over days t ` 1:t ` k.

Denote by superscript ˚ a single Monte Carlo sample of relevant quantities, referred

to as a “synthetic” outcome. We generate large Monte Carlo samples of outcomes

by independently and repeatedly generating single synthetic outcomes as follows.

Forecast Transactions Indicators: Over coming days j “ 1:k, generate the set

of k synthetic transactions/no transactions indicators z˚t`j from the binary DGLM

component of the DCMM transaction model. This is a representative draw from the

current k´dimensional predictive distribution of pzt`1:t`k|Dt, Itq.
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Technically, this uses direct compositional sampling applying, at each day into

the future, the forward filtering and updating analysis of the binary DGLMs. This

exploits the representation

ppzt`1:t`k|Dt, Itq “ ppzt`1|Dt, Itq ppzt`2|zt`1,Dt, Itq ¨ ¨ ¨ ppzt`k|zt`1:t`k´1,Dt, Itq.

Outcomes are simulated by sequencing through the composition here. Sample z˚t`1

from the first component, simply the 1´step ahead distribution implied in the binary

DGLM at time t. Condition on this value z˚t`1 to update the summary information

in the DGLM, evolve one day and then predict zt`2 using ppzt`2|z
˚
t`1,Dt, Itq; this

is again just the 1´step ahead distribution in the binary DGLM moved along one

day and conditional on the synthetic value z˚t`1. This is recursively applied over the

following days up to k´steps ahead to produce the full synthetic path z˚t`1:t`k.

Forecast Non-Zero Transaction Levels: For each day ahead j such that

z˚t`j “ 1, generate number of transactions n˚0,t`j “ b˚t`j from the shifted Poisson

DGLM component of the DCMM transaction model. This gives a representative

draw from the current conditional predictive distribution of pbt`1:t`k|z
˚
t`1:t`k,Dt, Itq

with the implicit zero values implied on days such that z˚t`j “ 0.

Technically, this again uses direct compositional sampling, now based on the

forward filtering and updating analysis of the Poisson DGLMs. The concept and

format is just as in the above details for the binary DGLM, simply differing in the

distributional forms involved.

Forecast Sales per Transaction: For each day ahead j for which z˚t`j “ 1,

generate a set of basket sizes n˚1:d,t from the dynamic binary cascade model conditional

on the number of transactions n˚0,t`j “ b˚t`j. This gives a representative draw from

the current conditional predictive distribution of the full sequence of baskets sizes

pn1:d,t`1:t`k|b
˚
t`1:t`k, z

˚
t`1:t`k,Dt, Itq with the implicit zero values implied on days such

that z˚t`j “ 0. Technically, this is done by sequencing through the cascade on each
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day, generating the number of baskets with a single item, and conditional on that

number simulating the number with two items, and so on up to d items. In cases when

the total number of items simulated with fewer than d` 1 items in any transaction

reaches b˚t`j, the implied synthetic number of items sold is established. Otherwise,

the (generally few) remaining transactions involve more than d items each. If the

excess distribution is unspecified, then the DBCM outputs the current synthetic

probability of the excess sales event et`j ě pd` 1qn˚d,t.

If the excess distribution in the DBCM has been specified, we can proceed by

simulating from this excess distribution. One specific excess distribution that fits

nicely in the compositional forecasting framework is simulating the excess sales from

the empirical excess distribution up to time t. For example, prior to time t, assume

we have observed excess sales-per-transactions of pd ` 1, . . . , Dq with frequencies

pwd`1, . . . , wDq, where
řD
i“d`1wi is the total number of transactions with nd,t ą 0.

Given nd,t`k ą 0, we can forecast the future excess sales et`k by sampling nd,t`k values

with replacement from pd` 1, . . . , Dq with weight proportional to pwd`1, . . . , wDq.

As with the transactions simulations above, moving ahead over days involves

direct compositional sampling, now based on the forward filtering and updating

analysis of the sets of conditional binomial DGLMs. The concept and format is just

as in the above details for the binary DGLM, simply differing in the distributional

forms involved.

Uncertainty about the underlying DGLM model components are fully accounted

for in forward simulation of each of the state vectors. Critically also, each such syn-

thetic outcome inherently reflects day-to-day dependencies as well as uncertainties

about the underlying DGLM model state vectors; that is, we generate full predictive

samples from the joint distribution of the binary, Poisson and binomial latent trans-

actions and sales variables over the k´step ahead path. This means that summary

inferences on aggregates and other functions of transactions indicators, transactions

125



levels, basket sizes and sales can be directly deduced by simple numerical summaries

of the set of Monte Carlo samples.

6.2 Cross-Series Linkages and Multi-Scale Extensions

In forecasting multiple items with potentially related patterns over time, the oppor-

tunity to improve forecast accuracy by integrating information across series arises.

Introduced in Chapter 3 in DCMMs for sales forecasting, an approach using dynamic

predictors related to cross-series relationships is relevant to potentially both DCMM

and DBCM components of the new transaction-sales models here. The basic idea

is to define one or more factors to be used as common predictors in the dynamic

regression models for each item. This is summarized here in the context of a single

DGLM component for each of a collection of (possibly many) time series. Let N be

the number of time series and denote by Mi a DGLM component for series i. In

the transactions-sales applications, this can be any one or each of the component bi-

nary, binomial and (shifted) Poisson DGLM components. One particularly relevant

context is to share information about related patterns of daily variation withing the

week, i.e., weekly seasonal patterns, in which case the DGLM component Mi is the

shifted Poisson for non-zero transactions for item i at the daily level.

A multivariate dynamic factor model incorporating cross-series linkages has state

and regression vectors defined by

Mi : θi,t “

ˆ

γi,t
βi,t

˙

, Fi,t “

ˆ

fi,t
φt

˙

, i “ 1:N, (6.5)

with subvectors of conformable dimensions; the linear predictor is then λi,t “ γ
1
i,tfi,t`

β1i,tφt. Here fi,t contains constants and series-specific predictors– such as item-specific

prices and promotions in the sales forecasting context. The latent factor vector φt

is common to all series– such as seasonal or brand effects in the sales forecasting
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context. Each series has its own state component βi,t so that the impacts of common

factors are series-specific as well as time-varying.

A separate model depends on φt and possibly other factors. Denote this model

by M0. Forward sequential analysis of data relevant to M0 defines posterior distri-

butions for φt at any time t that can be used to infer and forecast the φt process as

desired. These inferences on the common factors are then forwarded to each model

Mi to use in forecasting the individual series. Technically, this is done via direct sim-

ulation, so that current and future values φ˚ are simulated from the current posterior

and predictive distributions under M0, and then forwarded to each Mi. At each

simulated value, each single posterior and forecast simulation in Mi conditions on

one sampled φ˚, so that inferences under Mi are then available using the standard

computations for individual models. Critically, the updates and forecasting compu-

tations in each Mi are performed separately and in parallel, conditional on values

of the common factors φ˚; this decoupling of series for core computations enables

scaling in the number N of items, while maintaining the information sharing across

items.

ModelM0 can be any external model generating information on common factors.

Key special cases relevant to DCMMs for transactions are referred to as multi-scale

models. This is highlighted in cases of collections of items within a store that natu-

rally share common patterns of weekly seasonality based on customer traffic through

the store. In such cases, φt may be a scalar factor representing the current day-

of-week based on an external model of traffic. The multi-scale special case arises

when using aggregate transaction data– such as the total number of transactions on

all products, or on some specific subgroup of products– to define M0. Each item-

level model is then built on the predictions about daily variation from the aggregate

model, while the elements βi,t provide for item-specific, idiosyncratic deviations from

the imputed aggregate values.
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6.3 An Example in Forecasting with the DBCM

6.3.1 Data

The goal of our case study is to predict future sales of individual supermarket items

1:14´days ahead. We compare the forecasting performance of the binary cascade

framework to a benchmark model; the latter is a DCMM for daily sales as in Chap-

ters 3 and 4. This benchmark meets key desiderata of defining full predictive fore-

casts, flexibility in modeling diverse patterns in series of counts, incorporation of

potentially time-varying dynamic seasonal and regression effects, and adaptability

to heterogeneous patterns of otherwise unpredictable variability.

The data set records transaction-level purchases of supermarket items in one store

of a major retail chain during the 762 day period from June 1st 2015 to July 1st

2017. Each row in the transaction-level data set represents one consumer’s purchase

of one or more units of a single item. Items are identified by a unique base universal

product code (UPC) in the “Dry Noodles and Pasta” category. For each transaction

event, the data includes item UPC, the purchase date, the effective price per unit,

whether or not the item was purchased on promotion, and the unit sales in the given

transaction. The daily transactions count for an item is the number of rows on a

given day with the item’s UPC; the total daily sales is then the sum of unit sales

across transactions.

We explore forecasting of three spaghetti items to illustrate the potential im-

provements offered by decomposing heterogeneity into transactions and sales-per-

transaction. These items represent a range of transactions-sales patterns and typify

the features of data across many items. Table 6.1 reports summaries of the daily

transactions and sales-per-transaction for item A,B and C. Figure 6.1 displays the

daily transactions and sales for each item to illustrate the diminished diversity of

item-level daily transactions in comparison to daily sales. Within this chosen cat-

128



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●●●●

●

●

●

●
●
●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●●
●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

20

40

60

80

2015−07 2016−01 2016−07 2017−01
Date

D
ai

ly
 S

al
es

●

●●●

●

●
●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●●●
●

●

●
●

●

●

●
●

●●
●

●
●

●●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●
●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●
●
●

●
●●

●

●

●

●

●

●

●●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●●

●

●
●

●

●
●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

S
et

 p
rio

rs Train model Forecast

0

20

40

60

80

2015−07 2016−01 2016−07 2017−01
Date

D
ai

ly
 T

ra
ns

ac
tio

ns

(i) Item A

●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

0

20

40

60

80

2015−07 2016−01 2016−07 2017−01
Date

D
ai

ly
 S

al
es

●

●
●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

S
et

 p
rio

rs Train model Forecast

0

20

40

60

80

2015−07 2016−01 2016−07 2017−01
Date

D
ai

ly
 T

ra
ns

ac
tio

ns

(ii) Item B

●

●

●●●

●●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●●●

●

●

●●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

0

10

20

30

40

2015−07 2016−01 2016−07 2017−01
Date

D
ai

ly
 S

al
es

●

●

●●●

●

●

●●●

●

●

●●●

●

●●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●●

●

●

●

●●●

●●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●●●

●●

●

●●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●●

●●●

●●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●●●●

●●

●

●

●

●●●

●

●

●

●●●

●●

●●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

S
et

 p
rio

rs

Train model Forecast

0

10

20

30

40

2015−07 2016−01 2016−07 2017−01
Date

D
ai

ly
 T

ra
ns

ac
tio

ns

(iii) Item C
Figure 6.1: Daily sales and transactions of three spaghetti items (A-C) sold in one
store from June 1st 2015 to July 1st 2017.
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egory and store, items A and B are moderate to high selling items, and item C is

a relatively low-selling item. Each item’s daily sales and transactions share similar

features such as the overall level and trends over time, and the evident day-of-week

effect. Both series also share the feature of somewhat rare extreme values, although

the diminished variability of the transaction data is evident.

Table 6.1: Some summaries of daily transactions and sales-per-transaction data for
3 spaghetti items.

Daily transactions Sales-per-transaction
Item Mean Median Variance Mean Median % ă 5
A 22.84 21 100.52 1.46 1 98.9
B 19.75 18 101.15 1.44 1 99.0
C 4.66 3 18.70 1.53 1 98.4

6.3.2 Model Specification

Transactions DCMM Specification

As described in Section 6.1.2, the DBCM framework utilizes a DCMM to forecast

daily transactions. In this analysis, we consider two DCMMs for forecasting transac-

tions: independent DCMMs with item-specific weekly seasonal effects, and a multi-

scale DCMM that shares information on the weekly seasonal effect across all spaghetti

items. The same form of DCMM is specified in the independent DBCM framework

and the benchmark DCMMs on daily sales. In these independent DCMMs, each

Bernoulli and conditionally Poisson component includes a local level, a full Fourier

form seasonal component with period 7, and a regression component with log price

and a binary indicator of promotions as predictors. Each binary and conditionally

Poisson DGLM can be defined through regression vectors and state evolution matri-

ces of the form

F1t “
`

1, logppricetq, promot, 1, 0, 1, 0, 1, 0
˘

,

Gt “ blockdiagr1, 1, 1, H1, H2, H3s,
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with

Hj “

ˆ

cosp2πj{7q sinp2πj{7q
´ sinp2πj{7q cosp2πj{7q

˙

, j “ 1:3.

where pricet is the item-specific price on day t, and promot is equal to 1 if the

item is on promotion on day t, and 0 if not. Through the standard use of discount

factors, each component is dynamic, allowing for time variation in the level, weekly

seasonality, and price and promotion effects. Based on previous analyses of item-

level sales and transactions, we set fixed discount factors of 0.99 (Poisson) and 0.999

(Bernoulli) on each component.

For the multi-scale DBCM framework, we specify item-level models Mi with

f 1i,t “
`

1, logppricei,tq, promoi,t
˘

, and a 7´dimensional φt with one non-zero element

representing the current day-of-week effect. In this multi-scale analysis, M0 is a

dynamic linear model (DLM) on the aggregate log daily transactions of all spaghetti

items in the chosen store. This aggregate DLM includes a local linear trend, the

scaled log average spaghetti price as a predictor, and full Fourier form seasonal

components of periods 7 and 365 representing the weekly and yearly seasonal effects.

We allow for dynamic level, trend, regression effects, and seasonality with discount

factors of δ “ 0.995 for the trend and regression components, δ “ 0.999 for each of

the seasonal components, and β “ 0.999 for the residual stochastic variance process.

Predictive performance in all sales/transactions DCMMs is evaluated across a range

of random effects discount factors, ρ P p.2, .4, .6, .8, 1q.

The shading in Figure 6.1 indicates analysis set-up. For each DCMM and the

aggregate DLM, initial priors using three weeks of training data (yellow shading).

For the aggregate lognormal DLM and the conditionally Poisson DGLMs, we de-

fine approximate prior moments for the state vectors based on the posterior mo-

ments in a standard reference analysis of a Bayesian linear model of the log daily

sales/transactions. For the binary DGLMs, we estimate the prior mean of the level
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to be logpp{p1´ pqq, where p is the observed proportion of the first 21 days with at

least one transaction. All other prior means in the binary DGLM are set to zero,

with the prior covariance matrix as the identity. The green shaded region in Fig-

ure 6.1 denotes the one year period beginning on day 22 (denoted t “ 1) in which our

models are trained. After this one year period, in the blue shaded region, forecasting

1:14-days ahead is performed on each of the 332 days.

Binary Cascade Model Specification

Based on an exploratory analysis of typical sales-per-transaction, we set d “ 4 for

all items in this analysis. As seen in Table 6.1, around 99% of all transactions of

the chosen items include four or fewer unit sales. The form of the binomial logistic

DGLMs is the same across items and for all r “ 1:d. Each conditional model of

nr,t includes a dynamic local level, and a static regression component with a binary

indicator of promotion as a predictor. Each binomial DGLM allows for slow time

variation in the level through a discount factor of δ “ 0.999. In previous analyses,

we found a static promotional effect, with δ “ 1, to be sufficient. For each binomial

logistic DGLM, we specify

F0
r,t “

`

1, promot
˘1

and Gr,t “ I

where the promot is an item-specific indicator of a promotion at time t. Again, we

use three weeks of training data to specify the prior mean of the level. In a logistic

model of πr,t, we set the prior mean of the level to be logpp{p1 ´ pqq where p is the

proportion of transactions with exactly r unit sales out of all transactions with at

least r unit sales. We set the prior mean of the promotion coefficient to be zero, and

the prior covariance matrix for the state vector to 0.1I.
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Excess Distribution

We consider two perspectives: leaving the excess distribution completely unspecified,

or bootstrapping from the empirical excess distribution. In this context of daily

sales forecasting, unpredictable and relatively rare situations may arise where, for

example, a consumer purchases dozens or hundreds of units in a single bulk order.

Due to lack of relevant data and predictors that would make modeling these rare

outcomes possible, it is often preferable to leave the tail of the sale-per-transaction

distribution unspecified. However, without constraints or assumptions on the excess

distribution, we are limited in the conclusions we can make about the predictive

distribution. At time t´ 1, the 1-step forecast density of yt is

ppyt | Dt´1, It´1q “ qtfpytq ` p1´ qtqpdpytq

where: (i) qt “ Prpnd,t ą 0q is the probability that nd,t ą 0, i.e., that some of the

transactions have more than d units; (ii) fpytq is the p.d.f. of the sales distribution

given that nd,t ą 0; and pdpytq is the p.d.f. of the (specified) distribution given

that nd,t “ 0. The forecast p.d.f.s for multi-steps ahead have similar forms. If fp¨q is

unspecified, we cannot exactly identify the mean or quantiles of the distribution. It is

possible to identify lower/upper bounds for any quantile of the forecast distribution,

including the median, but without additional assumptions about f , bounds on the

mean of the forecast distribution are not available.

The second perspective is to utilize the empirical distribution of excess sales over

a past period of time. Simulating excess sales-per-transaction from the empirical

excess distribution results in access to the entire predictive distribution through

Monte Carlo samples. With this approach, we can report any quantity of interest

from the forecast distribution. Since forecasters are often interested in the accuracy

of many different error metrics (and the corresponding optimal point forecasts), we

present the results of the DBCM models using the empirical excess distribution. A
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potential downside of this approach is that the only possible values of sales-per-

transaction are those that have previously been observed; that excesses are very rare

ameliorates this concern. Other specifications that may be of utility are noted in the

concluding section.

6.3.3 Examples and Evaluations

Joint Forecast Trajectories and Probabilistic Evaluation

Example forecast trajectories from this analysis are shown in Figure 6.2. These plots

illustrate 1:14-day ahead joint forecasts on two days, Mar 20th 2017 (left column)

and Apr 25th 2017 (right column). For each item, these forecasts were generated

from the multi-scale binary cascade model, and the excess sales was drawn from

empirical excess distribution. The displayed forecasts from the DBCM model are

based on transaction forecasts from a DCMM with a random effects discount factor

of ρ “ 1. These plots provide insight into the spread of the forecast distribution

(50, 90% credible intervals in gray shading), as well as the location of common point

forecasts (mean, median, and p´1q-median). Observed daily sales are shown as black

circles.

In general, forecasts made on Mar 20th were accurate in terms of location and

spread. For item A, 7{14 days are contained in the 50% credible intervals, and 14{14

in the 90% intervals. For item B, the 50% intervals contain 11{14 days, and the 90%

intervals contain 14{14 days. For item C, the 50% intervals contain 8{14 days, and

the 90% intervals contain 14{14 days. On Apr 25th, the point forecasts are somewhat

over-estimates, while 50% intervals show some under-coverage. For items A, B, and

C, the 50% intervals contain only 2{14, 4{14, and 5{14 days, respectively. However,

90% intervals for each item are more accurate, containing 13{14, 13{14, and 14{14

observations, respectively. These trajectories simply provide snapshots of forecasts

on two single days, to highlight the underlying forecasting process; coupled with this,
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we now evaluated aspects of longer-term forecasting performance.

Figure 6.3 (left column) displays coverage of the forecast distributions for 1, 7,

and 14-day ahead forecasts for each item. These plots show the empirical coverage

obtained over the 322-day forecast period for predictive credible intervals (HPD -

highest posterior density) of different percentages. Ideally, the empirical coverage of

our credible intervals is close to the nominal level, resulting in coverage close to the

45´degree line. For item A, the empirical coverage of credible intervals is close to

the nominal coverage, although there is some evidence of slight under-coverage. For

example, empirical coverage of 1-step ahead 65% credible intervals is about 60%. For

item B, the empirical coverage of credible intervals is close to the nominal coverage.

For 5% and 20% credible intervals, there is of slight over-coverage and for 65% and

80% intervals, there is slight under-coverage. For item C, forecast intervals have slight

over-coverage. For example, the empirical coverage of 1-day ahead 65% intervals is

about 71%.

Figure 6.3 (right column) displays randomized probabilistic integral transform

(PIT; Kolassa, 2016) values. If count valued data y is forecast with predictive c.d.f.,

P p¨q, define P p´1q “ 0 and draw a random quantity py „ UpP py ´ 1q, P pyqq given

the observed value of y. Over repeat forecasts, an ideal model would generate values

of py that are approximately uniformly distributed. Figure 6.3 plots ordered ran-

domized PIT values for 1:14-day ahead forecasts versus uniform quantiles. For item

A, the values appear relatively uniform. Slight dips below the 45-degree line could

be random variation, or may indicate that the lower tail of the forecast distribution

is too light. For item B, randomized PIT values appear to closely reflect uniform

quantiles. For item C, randomized PIT values are close to uniformity; there are

small dips below the 45´degree line that could reflect random variability, or slightly

underweight lower tails of forecast distributions.
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Figure 6.2: 1-14 day joint forecast trajectories on Mar 20th 2017 (left) and Apr
25 2017 (right). Observed daily sales shown as a circle, forecast median as an x,
forecast mean as a diamond, and forecast p´1q-median as a triangle. Light and dark
shading indicate the forecast 50 and 90% credible intervals, respectively.

136



Coverage PIT

●

●

●

●

●

●

●●
●●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Interval %

C
ov

er
ag

e

●

Forecast horizon

1
7
14

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Uniform

E
m

pi
ric

al
 C

D
F

(i) Item A

●

●

●

●

●

●

●●
●
●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Interval %

C
ov

er
ag

e

●

Forecast horizon

1
7
14

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Uniform

E
m

pi
ric

al
 C

D
F

(ii) Item B

●

●

●

●

●

●

●
●●●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Interval %

C
ov

er
ag

e

●

Forecast horizon

1
7
14

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Uniform

E
m

pi
ric

al
 C

D
F
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Figure 6.3: Empirical coverage plots (left) for 1, 7, 14-step forecasts and randomized
PIT plot (right) for 1-14 step forecasts of items A (top), B (middle), and C (bottom)
using the multi-scale DBCM with empirical excess distribution and random effect
discount factor of ρ “ 1.
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Figure 6.4: Mean absolute deviation (MAD: left) and mean absolute percentage
error (MAPE: right) vs forecast horizon (days) for items A (top), B (middle), and
C (bottom) from the multi-scale DBCM (black circles), independent DBCM (red
squares), and independent DCMM (green triangles).
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Point Forecasts

Error metrics for selected point forecasts are shown in Figure 6.4. We focus on

two standard point forecast metrics, the mean absolute deviation (MAD) and the

mean absolute percentage error (MAPE). Metrics are specific to a chosen lead-time

k ą 0. For a series yt, denote by ft`k a forecast of yt`k made at time t. MAD is the

time average of the absolute deviation, |yt`k ´ ft`k|, and the optimal point forecast

is the k-step ahead predictive median. MAPE, a common error metric in demand

forecasting, is simply the time average of |yt`k ´ ft`k|{yt`k, and the optimal point

forecast is the k-step predictive p´1q-median. The p´1q-median of a distribution

fpyq is the median of gpyq where g9fpyq{y. When evaluating the chosen error

metrics, we use the corresponding optimal point forecast from each model. For each

metric, we evaluate the error across 1:14 days ahead on each day. The benchmark

DCMM and both DBCM models (multi-scale and independent) are evaluated across

a range of DCMM random effect discount factors, ρ P t.2, .4, .6, .8, 1u. The accuracy

of forecasting under each random effect may depend on the forecasting horizon, so

we report only the lowest error across each of the five discount factors. Figure 6.4

displays the error from the best baseline DCMM, independent DBCM, and multi-

scale DBCM across item, forecasting horizon, and metric.

Comparisons under MAD:

A: The multi-scale DBCM has the lowest MAD across the entire forecast hori-

zon. Across the forecast horizon, the multi-scale DBCM has an average 1.4%

decrease in MAD compared to the DCMM. The multi-scale DBCM results in

the largest percentage decreases in MAD for short- and mid-range forecasts of

1´ 3 and 6´ 9 days ahead. The independent DBCM and DCMM have similar

MAD performance.
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B: The multi-scale DBCM has the lowest MAD across the entire forecast horizon.

Across the forecast horizon, the multi-scale DBCM has a average of a 2.6%

decrease in MAD compared to the DCMM. The largest percentage decreases

in MAD occur for mid- to long-range forecasts of 7 ´ 14 days ahead. The

independent DBCM and DCMM have similar MAD performance.

C: The multi-scale DBCM has the lowest MAD across the entire forecast horizon.

Across the forecast horizon, the multi-scale DBCM has a average of a 1.6%

decrease in MAD compared to the DCMM. The multi-scale DBCM has the

largest percentage decrease in MAD in mid-range forecasts of 3, 4, 5, 7, 8, and

10-days ahead. The DCMM has lower MAD than the independent DBCM

across the entire forecasting horizon.

Comparisons under MAPE:

A: The multi-scale and independent DBCMs have lower MAPE across the en-

tire forecast horizon. Across the forecast horizon, the multi-scale DBCM had

an average decrease in MAPE of 3.4% compared to the DCMM. The largest

percentage drops in MAPE occurred for shorter-term forests from 1 ´ 6 days

ahead.

B: The multi-scale and independent DBCMs have lower MAPE across the entire

forecast horizon. Across the forecast horizon, the multi-scale DBCM had an

average decrease in MAPE of 4.3% compared to the DCMM. The largest per-

centage drops in MAPE occurred sporadically when forecasting 1, 2, 8, 11, 13,

and 14-days ahead.

C: The multi-scale DBCM has the lowest MAPE for 10 of 14 forecast horizons.

Across the entire forecast horizon, the multi-scale DBCM had an average de-

crease in of 1.6% compared to the DCMM. The largest improvements in MAPE
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occurred sporadically when forecasting 3, 4, 9, and 14-days ahead. The DCMM

has lower MAPE than the independent DBCM for 11 out of 14 forecast hori-

zons.

Forecasting and Impact of Excess

It is also of interest to exemplify the dissection of forecasts based on the binary cas-

cade excess distribution, and explore the impact on forecast uncertainties in partic-

ular. From the simulation-based DBCM joint forecast distributions we can trivially

extract predicted probabilities of no excess on a future day– the probability than

none of the transactions on that day sell more than the specified d items. At the

store level, this is potentially useful additional summary information in its own right.

Further, looking at the sales forecast distributions conditional on no excess baskets

on a particular day provides insights into the impact– on both forecast level and

uncertainties– of the excess component of the model.

One selected example is summarized in Figure 6.5 using 1-14 day forecasts for

each item made at the earlier selected date of Mar 20th 2017. The figure shows the

trajectories of joint forecast distributions over the next 14 days now conditional on

no excess (i.e., conditional on predicted nd,t`k “ 0 for k “ 1 : 14 where t indexes Mar

20th 2017). These figures have the same format as those for the full unconditional

forecasts shown in Figure 6.2. Small differences can be seen, with the conditional

forecast distributions naturally favoring slightly lower values while being less diffuse;

this is also naturally more pronounced for higher levels of sales such as for item A.

Figure 6.5 also displays trajectories of the predictive probabilities of no excess over

the next 14 days, naturally indicating higher probabilities for the lower levels of sales

exhibited by item C.
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Figure 6.5: 1-14 day forecasts made on on Mar 20th 2017. Joint forecast tra-
jectories conditional on no excess baskets (left), with details as in unconditional
trajectories in Figure 6.2, and of corresponding probabilities of no excess (right).
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of days with zero sales across the 96 items in DBCM comparison.

6.4 DBCM Multi-Item Comparison

Section 6.3.3 provides a detailed understanding of the point and probabilistic forecast

performance of the DBCM for three supermarket items of varying demand levels.

However, we are also interested in the performance of the DCBM approach across

a larger number of items and retail outlets. In this section, we apply the multi-

scale DBCM approach to 96 items sold across different store locations. We consider

products sold at three store locations—denoted A, B, and C—which represent outlets

of high, medium, and low sales levels, respectively. Then, we consider 32 UPCs sold

at each of the three chosen stores for a total of 96 unique store-UPC combinations.

Histograms in Figure 6.6 summarize aspects of the demand of the chosen items. We

categorize items into three groups based on the average daily sales in a training data

set: low-sellers (0–2), medium-sellers (2–15), and high-sellers (ą15). In our selected

group of items, there are 31 low-sellers, 61 medium-sellers, and 4 high-sellers.

In this analysis, we implement a multi-scale DCMM to forecast daily transactions

of each item. The multi-scale DCMM shares information on the weekly seasonal

effect across all pasta products within each store. The item-level models Mi have

f 1i,t “ p1, logppricetq, promoi,tq where pricei,t is the item-level modal price and promoi,t

indicates whether item i was on promotion on day t. Each Mi also includes a
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7´dimensional φsi,t with one non-zero element representing the current day-of-week

effect where si indicates the store of item i. That is, each item in store A, with

si “ A, inherits the weekly seasonality estimated from an external M0 fit to the

total daily transaction of pasta products in store A. We set fixed discount factors

of δ “ 0.99 on the Poisson trend and δ “ 0.995 for all other binary and Poisson

model components. In this multi-scale analysis, M0 is a DLM on the aggregate

log daily transactions of all pasta items in the chosen store si P tA,B,Cu. Each

of these aggregate DLMs includes a local linear trend, the scaled log average pasta

price as a predictor, and full Fourier form seasonal components of periods 7 and

365 representing the weekly and yearly seasonal effects. We allow for dynamic level,

trend, regression effects, and seasonal with discount factors of δ “ 0.995 for the

trend/regression components, δ “ 0.999 for each of the seasonal components, and

β “ 0.999 for the residual stochastic variance process. As in previous examples, priors

for the model components of M0 are specified using the reference posteriors from a

static Bayesian linear model fit to 21 days of training data. Predictive performance

in each DCMM is evaluated and compared using models based on ρ “ t0.2, 1u.

As in our previous example, we set d “ 4 for all items in this analysis. The

form of the binomial logistic DGLM is the same across all items and r “ 1:d. Each

conditional model of nr,t includes a dynamic local level and a static regression com-

ponent with promoi,t as a predictor. To allow for very slow variation in the level over

time, we specify a fixed discount factor of δ “ 0.999 on the trend component. We

specify priors using the same approach detailed in Section 6.3.3. For this approach,

we present results using the empirical approach to the DBCM excess distribution.

For each item, we train our models for one year before forecasting 1:14´days

ahead on each of the next 332 days. An initial motivation for this comparison

was comparing the large-scale forecasting performance of the multi-scale DBCM to

a current industry standard forecasting model. Due to confidentiality issues, we
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provide only summaries of the results for the industry standard. On each day, the

industry standard model produces a predictive mean over the next 1:14´days.

Figures 6.7(i)-(iii) show the weighted absolute percentage error (WAPE) versus

forecast horizon for each category of items using several DBCM point forecasts. In

Section 2.6.3, we showed that the optimal point forecast under WAPE is an extension

of the p´1q-median to a joint distribution. For each category of items, we compute the

joint p´1q-median at each time by importance sampling the simulated joint forecasts

across each item. The resulting WAPE under the optimal joint p´1q-median is

shown in black, along with the WAPE when using the non-optimal mean, median,

and p´1q-median point forecasts. For each product category, we see that, with a few

exceptions, the WAPE is minimized by the joint p´1q-median. Theoretically, the

joint p´1q-median is the optimal point forecast under WAPE, but realized values

of WAPE losses are dependent on the outcomes and may, in some cases not be

lowest across the set of outcomes being compared. In these examples, the theoretical

optimal forecasts generally lead to the lowest realized losses.

For low-sellers, the WAPE under the median is very similar to the optimal WAPE,

and there is a slight increase in WAPE for the p´1q-median. The largest values of

WAPE occur when forecasting with the predictive mean, and, averaged across the

forecast horizons, WAPE decreases by 5.2% under the joint p´1q-median versus the

mean. For medium-sellers, the WAPE is again minimized by the joint p´1q-median

although WAPE under the median is nearly indistinguishable. In this category,

we see that the WAPE under the mean is lower than the WAPE under the p´1q-

median. This occurs because the p´1q-median is the furthest point forecast from

the joint p´1q-median in terms of absolute distance. Compared to the p´1q-median,

the WAPE under the joint p´1q-median decreases by 3.9% on average across the

forecast horizon. Compared to the mean, the WAPE under the joint p´1q-median

decreases by 1.8% averaged across the forecast horizon. Finally, for high-sellers, we
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again see that the WAPE is minimized by the joint p´1q median followed closely by

the p´1q-median, the median, and then the mean. The WAPE is decreased by 1.5%

averaged across the forecast horizon. These results show, in terms of minimizing

WAPE, the use of optimal point forecasts is clearly advantageous, especially for low-

selling items. Additionally, we see that the WAPE under the median point forecast

is very similar to the optimal WAPE. This suggests that the median, which does not

require importance sampling to compute, is a reasonable alternative to the optimal

point forecast of WAPE. A key takeaway from these results is that the mean is not an

appropriate point forecast if our goal is to minimize WAPE. Many models, including

many industry standard models, that simply output a predictive mean will be at a

disadvantage if minimizing WAPE is a business objective.

Other error metrics we considered for this comparison are RMSE, MAD, and

ZAPE. In this analysis, we define ZAPEpy, fq “ f1py “ 0q ` |y ´ f |{y1py ą 0q. For

each of these error metrics, we compare each item’s average error over time under the

industry standard and the DBCM optimal point forecast. Since the optimal point

forecast for RMSE is the mean, both the DBCM and the industry standard produce

optimal point forecasts. In our comparison, we found that the DBCM reduces the

RMSE for about 50% of the items across the forecast horizon. This result suggests

that, for RMSE, neither model is evidently dominant across all items, and that

both the industry standard and the DBCM perform similarly on the large-scale with

regards to the mean point forecast. For the MAD, minimized by the median, we found

that the DBCM reduced the MAD for about 75% of items across the forecast horizon.

This reduction in MAD is likely due, in part, to the fact that the DBCM produces

the optimal median forecast. Finally, we found that the DBCM reduces ZAPE for

close to 100% of the selected items. The ability to compute the ZAPE-optimal point

forecast through the DBCM forecast distribution is clearly advantageous in terms of

minimizing ZAPE compared to using a predictive mean.
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Figure 6.7: Weighted absolute percentage error (WAPE) vs forecast horizon (days)
for (i) low-sellers, (ii) medium-sellers, and (iii) high-sellers from the multi-scale
DBCM joint (-1)-median (black), (-1)-median (light blue), mean (green), and median
(dark blue).
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6.5 Summary Comments

Motivated by an application to product demand forecasting, and enabled by the

availability of rich point-of-sale data, we have introduced a novel framework for

Bayesian state space modeling of heterogeneous transactions-sales time series. This

work stems from the recognition that variability seen in high frequency sales arises

from the compounding effect of variability in the number of transactions as well as

the number of sales-per-transaction. The dynamic binary cascade model builds upon

earlier chapters by adapting the DCMM to model transactions rather than sales.

Given the reduced variability of transactions relative to sales, this is a promising

application in which the DCMM may improve forecasting accuracy.

Application of the DCMM to transactions of related items offers an opportunity

to integrate information across series through a multi-scale, multivariate dynamic

factor model. Coupled with the DCMM on transactions, the binary cascade concept

involves a sequence of Bayesian models to predict the number of units sold per trans-

action. The motivation behind this binary cascade is that the appropriate way to

forecast rare events is through a sequence of conditional probabilities which define

chances of outcomes of increasingly higher– and rarer– sales per transaction. The

final stage of the DBCM framework is the choice of excess distribution – leaving it

unspecified or choosing a specific form. Leaving the excess distribution unspecified

avoids the difficult task of fitting the long tail of the sales-per-transaction distribu-

tion, however, this approach limits the conclusions we can present about the forecast

distribution. We also present a logical nonparametric choice for the excess distribu-

tion which involves bootstrapping from the empirical excess distribution.

In addition to the incorporation of covariates into the binary and Poisson DGLM

components of the DCMM, the DBCM framework extends the hierarchical decom-

position further by incorporating covariates into the cascade of binomial logistic
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DGLMs. This allows incorporation of complex price/promotion effects which may

impact the overall traffic in the store, the probability that a customer makes a pur-

chase, and the number of units purchased given that a transaction occurs. The

Bayesian framework used for the DBCM allows direct/forward simulation of multi-

step ahead predictions, enabling trivial computation of forecast summaries of interest.

Selected examples of sales forecasting show the promise for forecast improvement of

the DBCM across demand sizes, error metrics, and forecast horizon, emphasizing

assessment of probabilistic forecasting accuracy in multiple metrics as well as via

standard point forecast summaries.
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7

Conclusion

The research presented in this dissertation has focused on modeling and forecasting

time series of counts, with a particular focus on high-dimensional settings. Chapter 2

gave details of sequential learning and forecasting in DGLMs and a discussion of the

benefits of Bayesian state-space modeling in this applied setting. One section of this

chapter describes three variational Bayes methods for conjugate prior specification in

DGLMs. The chapter concluded with a discussion of appropriate evaluation of both

point and probabilistic forecasts for count data. Chapter 3 presented the DCMM

which involves dynamic generalized linear models for binary and conditionally Pois-

son time series, with dynamic random effects for over-dispersion, allowing use of

dynamic covariates in both binary and non-zero count components. In Chapter 4,

we extend this framework to an efficient multivariate model that allows borrowing

of information across related series. A novel decouple/recouple strategy incorporates

cross series linkages while assuring parallelization is possible, resulting in a scalable

multi-scale framework as the number of series increases. We present a case study

in multi-step forecasting of sales of a number of related items that showcases fore-

casting of multiple series, with discussion of forecast accuracy metrics and broader
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questions of probabilistic forecast accuracy assessment. The chapter concluded with

an exploration of inference in the multi-scale framework and of the effect of different

choices ofM0. Chapter 5 extended the previous examples to compare the proposed

DCMM with alternative count forecasting models. Examples demonstrate improved

forecasts under the DCMM for a range of point forecast metrics, and illustrate the

general improvement in probabilistic forecasting across various items. Chapter 6 in-

troduced a framework which extends the DCMM to apply to forecasting individual

customer transactions, coupled with a novel probabilistic model for predicting counts

of items per transaction. A central modeling innovation is the new DBCM that ad-

dresses interests dissecting heterogeneity in sales outcomes by decomposing sales into

transaction counts and units per transaction. A key idea underlying this strategy is

modeling and forecasting rare events via a sequence of conditional probabilities, each

of which are estimable but their product can be very small. A second case study

of multi-step forecasting across several supermarket items shows the improvement

of the DBCM compared to the DCMM. I now present some areas of possible future

work.

Data sparsity may cause issues in the binary DGLM component of the DCMM

for items with very high/low daily sales. Items with very high sales will have sparse

binary series zt which are almost always equal to 1 (equivalently, for low selling

items, zt is almost always zero). When there is sparsity in the data, we do not want

to discount the little information we may learn about the success probability over

time. Instead of our current approach of fixing a constant discount factor, we may

want to consider either a static binary DGLM or a time-varying discount factor.

In the context of modeling sparse network flows, Chen et al. (2019) presented an

approach for a dynamic discount factor which converges to one when there is limited

information in the data. A promising strategy may be to modify their proposed

approach to our context of a binary DGLM with conjugate Beta priors.
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One specific applied component of the models open to further development is

the integration of additional, feed-forward information about promotions at the item

level. This of particular interest in connection with forecasting infrequent higher

basket sizes based on, for example, “buy 1, get 1 free” types of promotion. Such

information can be incorporated in modified models of the excess distribution in a

number of ways that should yield practical forecast improvements in such cases.

Another applied topic of interest is the potential forecasting improvement from in-

corporating additional levels of hierarchy or multiple latent factors. We have focused

on latent factors which represent aggregate weekly seasonality, but the proposed

framework is generalizable to any other shared factor including, but not limited to,

promotions, pricing, weather, brand name, or aggregate trends. Additionally, the

multi-scale framework offers additional promise of a method of incorporating effects

that otherwise would be too difficult to estimate with limited historical data. For

example, yearly seasonality is evident for many supermarket items when modeling

daily sales, however, it is difficult to estimate yearly seasonality without many years

of historical data. With this multi-scale approach, item-level models could inherit

the yearly seasonality learned from aggregate store-level models of similar products.

Similarly, it can be difficult to learn the effects of promotions on sales given relative

rarity of promotions occurring for individual items. However, if we grouped together

similar items and estimated an overall promotion effect, the multi-scale framework

offers a way to share information and more precisely estimate shared promotional

effects. Future studies will explore the effects of incorporating multiple latent factors

on forecasting performance.

In addition to contributing advances in dynamic model-based forecasting for con-

sumer sales, the proposed classes of models (DCMM, DBCMs) should be of interest

in other areas involving multiple heterogeneous time series of non-negative integers.

Some possible areas of application of the DCMM to count time series include crime
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forecasting, infectious disease epidemiology, and forecasting demand for emergency

services. In each of these applications, forecasts may be required across many indi-

vidual series, and we may expect the series to share some underlying features based

on location or seasonality. The DBCM can be applied to other areas where counts

arise from underlying compound processes. One example includes forecasting visi-

tors to different tourist sites by first forecasting number of vehicles, and then number

of passengers per vehicle. Similarly, the DBCM could be used to forecast counts of

animal species by forecasting the number of herds of animals, and then number of

animals per herd.

The proposed DBCM framework offers a general approach to modeling and fore-

casting compound count processes. Beyond the proposed cascade of binomial models,

we could use a shifted Poisson/Negative Binomial or a multinomial distribution for

units-per-transaction if we are not concerned with rare events. Another method-

ological advance would be considering a continuous distribution for the value-per-

transaction. For example, in supermarket sales forecasting, goods such as produce

and meat are often sold by weight rather than by unit. An extension of our pro-

posed work could be to first forecast the number of transactions which include any

positive weight, and then forecast the total weight per day conditional on the num-

ber of transactions. For example, consider forecasting the number of transactions

bt through a DCMM, and recall that if bt “ 0, then the total weight sold on day

t is also zero. There are many possible models for the weight sold per transac-

tion including a log Normal DLM. Additionally, for each individual transaction, we

could consider independently modeling the weight-per-transaction with an exponen-

tial DGLM with rate λt. Conditional on bt, this implies the total weight can be

modeled as yt | bt „ Gapbt, λtq. This extension would allow modeling of non-negative

real-valued outcomes with potentially many days of exactly zero sales.
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