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Abstract

Numerous studies have shown that air pollutants, including diesel exhaust (DE), reduce host defenses, resulting in
decreased resistance to respiratory infections. This study sought to determine if DE exposure could affect the sever-
ity of an ongoing influenza infection in mice, and examine if this could be modulated with antioxidants. BALB/c
mice were treated by oropharyngeal aspiration with 50 plaque forming units of influenza A/HongKong/8/68 and
immediately exposed to air or 0.5 mg/m3 DE (4 hrs/day, 14 days). Mice were necropsied on days 1, 4, 8 and 14
post-infection and lungs were assessed for virus titers, lung inflammation, immune cytokine expression and
pulmonary responsiveness (PR) to inhaled methacholine. Exposure to DE during the course of infection caused an
increase in viral titers at days 4 and 8 post-infection, which was associated with increased neutrophils and protein
in the BAL, and an early increase in PR. Increased virus load was not caused by decreased interferon levels, since
IFN-b levels were enhanced in these mice. Expression and production of IL-4 was significantly increased on day 1
and 4 p.i. while expression of the Th1 cytokines, IFN-g and IL-12p40 was decreased. Treatment with the antioxidant
N-acetylcysteine did not affect diesel-enhanced virus titers but blocked the DE-induced changes in cytokine profiles
and lung inflammation. We conclude that exposure to DE during an influenza infection polarizes the local immune
responses to an IL-4 dominated profile in association with increased viral disease, and some aspects of this effect
can be reversed with antioxidants.

Introduction
Viral infections are a major cause of pulmonary-related
illnesses in children, the elderly, and other susceptible
populations such as asthmatics [1-3]. Epidemiological
studies have noted an association between air pollution
exposure and an increased rate of pulmonary infections
[4,5]. Laboratory research has also shown that exposure
to airborne particulate matter (PM) increases suscept-
ibility to both bacterial and viral pathogens (reviewed in
[6]). Diesel exhaust (DE) is a significant contributor to
urban air pollution and has been shown to increase sus-
ceptibility to infections [7-13] although the mechanisms
that underlie this process are not fully understood. Sev-
eral laboratories have demonstrated that rodents
exposed to high concentrations of re-suspended diesel
exhaust particles (DEP) have impaired clearance of gram

negative and gram positive bacteria as a result of
reduced phagocytosis [14-16]. Exposure to lower con-
centrations of fresh DE has also been shown to increase
susceptibility to respiratory syncytial virus (RSV) and
influenza infection [10,11]. These reports only examined
how DE altered the pulmonary environment prior to
infection however, and did not consider the immuno-
modulatory effects of DE exposure during viral illness.
Influenza is a respiratory virus that accounts for

approximately 36,000 deaths and over 100,000 hospitali-
zations each year despite large-scale vaccination and
antiviral treatment [17,18]. Influenza replicates primarily
in the epithelial cells of the respiratory tract, but can
also infect macrophages and monocytes. The clearance
of influenza relies on the production by multiple cells of
anti-viral type I interferons and Th1 cytokines [19],
while the Th2 cytokine IL-4, delays the recovery from
viral infection [20-22].
Animal and human in vitro and in vivo studies have

shown that exposure to DE increases neutrophil recruit-
ment, nitric oxide production, and pro-inflammatory
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cytokines [23-29]. DE alone or in the context of antigen
exposure also increases expression of the Th2 cytokines
IL-4 and IL-13, while decreasing expression of the Th1
cytokine IFN-g [30-32]. Exposure to DE causes oxidative
stress in target cells [28,33] through development of
reactive oxygen species (ROS) that induce the transcrip-
tion of phase II enzymes including heme-oxygenase 1
(HO-1) and catalase [33,34]. ROS interfere with the
polarity of the immune response through depletion of
glutathione in DCs, which downregulates IL-12 produc-
tion and increases IL-4, favoring a Th2 phenotype [35].
Since most reports have examined the effect of DE on

subsequent immune responses to pathogens or antigens,
the present study was designed to address how DE
affected development of protective immune responses to
an ongoing infection in mice. Because DE is known
to promote Th2 cytokine production and, IL-4 is known
to delay viral clearance, we hypothesized that the DE
exposure would enhance the development of viral dis-
ease through IL-4 production and promotion of a Th2
phenotype while causing a concomitant dampening of
Th1 protective immunity. In addition it was of interest
to determine whether an antioxidant could mitigate this
effect thus providing potential strategies for reducing
the health impact of air pollution-enhanced respiratory
infections.

Materials and methods
Animals
Pathogen-free BALB/c female mice, 10-12 wk old,
weighing 17-20 g, were purchased from Charles River
(Raleigh, NC). Once at the U.S. EPA animal care facil-
ities (accredited by the Association for Assessment and
Accreditation of Laboratory Animal Care), animals were
housed in groups of five in polycarbonate cages with
hardwood chip bedding (Beta Chip, Northeastern Pro-
ducts, Warrensburg, NY), provided a 12-hour light
(0600 hours) to dark (1800 hours) cycle, maintained at
22.3 ± 1.1°C and 50 ± 10% humidity, and given access
to both food (5P00 Prolab RMH 3000, PMI Nutrition
International, Richmond, IN) and water ad libitum. Ani-
mals were acclimated for at least ten days before the
study began. Sentinel animals were housed in the same
location and found to be free of common rodent patho-
gens. The first study was repeated in its entirety and
then a third experiment was designed to reproduce
noted effects and examine how anti-oxidant treatment
affected the outcome. All procedures were approved by
the laboratory’s Institutional Animal Care and Welfare
Committee.

Influenza Virus
The influenza A/HongKong/8/68 (H3N2 serotype) used
in this study was obtained from Dr. Dori Germolec

(Laboratory of Respiratory Biology, NIEHS, NIH, RTP,
NC 27709). The virus was used to prepare dilutions in
sterile saline containing 50 PFUs in 50 μl. Virus titers
were determined using influenza infection of Madin-
Darby canine kidney cells. Stock virus was aliquoted and
stored at -80°C until use.

Oropharyngeal Aspiration of Virus
Immediately before the first DE inhalation exposure,
mice were anesthetized in a small plexiglass box using
vaporized isofluorane (Webster Veterinary Supply Inc.,
Sterling, MA). Anesthetized mice were suspended verti-
cally by their front incisors on a small wire attached to
a support. The tongue was extended with forceps and
50 μl of either sterile saline (Hospira Inc., Lake Forest,
IL) or 50 plague forming units (PFUs) (105.3 TCID50,
LD50 is 200 PFUs) of influenza A/Honkong/8/68 (H3N2
serotype) was instilled into the oro-pharynx using a 1
ml syringe fitted with a 24 gauge intragastric feeding
needle, with a 1.25 mm-diameter ball tip. The nose of
the mouse was then covered, causing the liquid to be
aspirated into the lungs.

Diesel Exhaust Exposure and Monitoring
Diesel exhaust for animal inhalation exposure experi-
ments was generated using a 134 kW (180 hp) 8-cylinder
6.5 liter displacement indirect injection Detroit Diesel
engine mounted in a 1994 Chevrolet Cheyenne 2500
pickup truck equipped with a manual transmission and
oxidation catalyst. The engine and transmission were
connected directly to a Land & Sea (model DYNOmite
300) eddy current dynamometer to provide a load. The
equipment was operated in an attempt to simulate
steady-state highway operation. The engine and trans-
mission were operated at 2500 rpm in third (1:1 ratio)
gear. The dynamometer was operated at 7 amps, pro-
viding approximately 100 ft/lbs of torque after a warm-
up period. The projected load was equivalent to
approximately 25% of the maximum engine load (at
2500 rpm). The truck speedometer (measuring drive
shaft rpm) indicated a steady speed of 55 miles/h. Road
taxed diesel fuel was purchased from a local (Research
Triangle Park, NC) service station and stored in 55 gal
drums. Replicate analysis (ultimate, elemental, heating
value, and specific gravity) of multiple batches of fuel
purchased over time indicated consistent fuel properties
and composition (data not shown). Engine lubrication
oil (Shell Rotella, 15W-40) was changed before each set
of exposure tests.
From the engine exhaust, a small portion of the flow

(14 L/min) was educted by an aspirator (3:1 dilution) to
a second cone diluter (10:1 dilution), and then through
approximately 10 meters of stainless steel tubing (7 cm
inside diameter) to a stainless steel Hazelton (model
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1000) exposure chamber housed in an isolated animal
exposure room. The dilution air used was drawn from
the animal exposure room through an activated carbon
bed and high efficiency particulate air (HEPA) filter.
The target diesel emission particle (DEP) concentration
in the chamber (500 μg/m3) was continuously moni-
tored using a tapered element oscillating microbalance
(TEOM, Rupprecht and Patashnick Co., series 1400,
Albany, NY). Dilution air was periodically adjusted to
control the DEP concentrations. Control animals were
housed in a separate chamber supplied with the same
activated carbon/HEPA filtered room air. The two diesel
chambers (one containing influenza infected mice and
the other sham saline controls) were operated at the
same flow rate (280 L/min), resulting in 16 full air
exchanges per hour.
Integrated 4 h filter samples (14.1 L/min) were col-

lected daily from each chamber and analyzed gravimetri-
cally to determine particle concentrations. In addition,
20-min quartz filter samples (14.1 L/min) were collected
from the DEP exposure chamber each day and analyzed
using a thermal/optical carbon analyzer (Sunset Labora-
tory Inc., model 107, Tigard, OR) to determine organic
carbon/elemental carbon (OC/EC) partitioning of the
collected DEP. TEOM measurements, continuous emis-
sion monitors (CEMs) were used to measure chamber
concentrations of oxygen (O2, Beckman Corp., model
755, La Habra, CA), carbon monoxide (CO, Thermo
Electron Corp, model 48, Franklin, MA), nitrogen oxides
(NOx, Teledyne Technology Co., model 200A4, San
Diego, CA), and sulfur dioxide (SO2, Thermo Electron
Corp, model 43 c, Franklin, MA). Samples were
extracted through fixed stainless steel probes in the
exposure chambers. Gas samples were passed through a
particulate filter prior to the individual gas analyzers.
Particle size distributions were characterized during
each exposure using a scanning mobility particle sizer
(SMPS, TSI Inc., model 3080/3022a, St. Paul, MN) and
an aerodynamic particle sizer (APS, TSI Inc., model
3321, St. Paul, MN). Chamber temperatures, relative
humidity, and noise were also monitored, and main-
tained within acceptable ranges. Mice were exposed to
DEP or filtered air for 4 h/day for 13 consecutive days.
The study was repeated in full and the experimental
data were combined.

Bronchoalveolar Lavage
On day 1, 4, 8, and 14 post-infection (p.i.) mice from
each treatment group were euthanized with sodium
pentobarbital and the trachea was exposed, cannulated,
and secured with suture thread. The left mainstem
bronchus was then isolated, clamped with microhaemo-
stats after the trachea was cannulated. The right lung
lobes were lavaged 3 times with a single volume of

warmed Hanks balanced salt solution (HBSS) (Invitro-
gen, Grand Island, NY) at a rate of 35 ml/kg. The
resulting lavage was centrifuged (717 × g, 15 min, 4°C)
and stored at -80°C for cytokine measurement or at 4°C
for protein measurement. The pelleted cells were resus-
pended in 1 ml of RPMI 1640 (Gibco, Carlsbad, CA)
containing 2.5% fetal bovine serum (FBS; Gibco,
Carlsbad, CA). Total cell counts in the lavage fluid of
the right lobe were obtained with a Coulter Counter
(Beckman Dickson, Fullerton, CA). Each sample (200 μl)
was centrifuged in duplicate onto slides using a Cytos-
pin (Shandon, Pittsburgh, PA) and subsequently stained
with Diff Quik solution (American Scientific, McGraw
Park, PA) for differential cell counts, with at least 200
cells counted from each slide. The left lobe was snap
frozen in liquid nitrogen and subsequently stored at -80°
C for isolation of RNA and protein or homogenized in
250 μl of DMEM containing 1 μg/ml of TPCK treated
trypsin and 1% BSA for viral titers.

BAL fluid Constituents
A total protein assay was modified for use on a Konelab 30
clinical chemistry analyzer (Thermo Clinical Labsystems
Espoo, Finland). Total protein concentrations were deter-
mined with the Coomassie Plus Protein Reagent (Pierce
Chemical, Rockford, IL) with a standard curve prepared
with bovine serum albumin from Sigma-Aldrich (St.
Louis, MO.). IL-4 protein was measured in BAL by ELISA
using a-mouse IL-4 Biosource ELISA (Invitrogen, Carls-
bad, California). Samples were run in duplicate and were
read at 450 nm. IL-4 concentrations were determined by
standard curve using the quadratic fit (R2 = 0.998).

Pulmonary Function Measurements
Pulmonary function changes to increasing concentra-
tions of inhaled methacholine (Mch) were measured in
mice using a 12-chamber whole-body plethysmograph
system (Buxco Electronics, Troy, NY) on day 1, 4, 8,
and 14 after influenza infection. Pressure signals were
analyzed with BioSystem XA software (SFT3812, version
2.0.2.4, Buxco Electronics) to derive whole-body flow
parameters that were used to calculate enhanced pause
(Penh). Penh was used as an index of airflow obstruc-
tion, which has been correlated with changes in airway
resistance [36]. After measuring baseline parameters for
7 min, an aerosol of saline or Mch in increasing concen-
trations (6.25, 12.5, and 25 mg/ml) was nebulized
through an inlet of the chamber and mice were exposed
for 10 minutes to each concentration. The recorded
Penh values were averaged during the baseline periods
and the 10 minute Mch challenges to obtain mean
values for each event and were represented as change
from the mean during the baseline period to the mean
during each Mch challenge.
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Pulmonary Virus Quantification
Virus titers were expressed as the TCID50 per ml of
lung homogenate. Briefly, the left lung was homogenized
in 250 μl of DMEM containing 1 μg/ml of TPCK trea-
ted trypsin and 1% BSA. The homogenates were spun at
1000 × g to remove cellular debris and supernatants
were used to determine tissue culture infectious dose
that kills 50 percent of the cells (TCID50). Supernatants
were plated on confluent MDCK cells in 96 well plates
in log10 dilutions. After 3-5 days of incubation at 37°C,
the cytopathic effect was observed and TCID50 was cal-
culated using Reed-Muench method [37].

Histopathology
Lung tissue samples were fixed in 4% paraformaldehyde
and embedded in paraffin. Five μm thick sections were
placed on Superfrost/plus slides (Fisher Scientific) and
stained with H&E. The slides were evaluated by light
microscopy at 10× and 40× objective by a veterinary
pathologist (Dr. Mac Law) from NCSU College of Veter-
inary Medicine. Five to ten fields of at least 2 sections
per animal and 2 animals per experimental group were
evaluated. Tissue sections were photographed using an
Olympus DP25 digital camera.

Real Time PCR
Total RNA was extracted from lung tissue with TRIzol
(Invitrogen, Grand Island, NY) as per the supplier’s
instructions. First strand cDNA synthesis and real-time
RT-PCR were performed as previously described [38,39].
Genbank mRNA primers were IFN-g NM_008337.1;
IL-12p40 NM_008353.1; IL-4 NM_021283.1; IFN-b
NM_008336.2; HO-1 NM_010442.1 purchased from
Applied Biosystems (Foster City, CA). Expression
changes were calculated using the relative quantification
method. The housekeeping gene b actin was used as an
endogenous reference to normalize target gene Ct
values. Gene transcription was expressed as an n-fold
difference relative to the control.

Antioxidant Administration
A third experiment was designed to assess the effect of
N-acetylcysteine (NAC) on the diesel enhanced influ-
enza infection. Animals were treated with 320 mg/kg of
NAC (Sigma-Aldrich, St. Louis, MO) in sterile saline
intraperitoneally (i.p.) immediately before each inhala-
tion exposure for the first four days as previously
described [40].

Glutathione levels
Perchloric acid (PCA, 60% solution) was added to lung
homogenates to a final concentration of 3% and samples
were stored at -80bC. Reduced glutathione (GSH) in the
PCA supernatants were labeled with dansyl chloride by

the method of [41] and analyzed by HPLC as described
previously [42].

Statistical Analysis
Data were pooled from the two initial exposure studies/
experiments and were analyzed separately for the third
anti-oxidant experiment, and were expressed as means
± SEM. Data generated from experiments were analyzed
using nonparametric one-way ANOVA (Kruskal-Wallis
test), followed by the Student Newman Kuehls compari-
son post hoc test. A value of P < 0.05 was considered to
be significant.

Results
DE Chamber Concentrations
Table 1 shows a summary of the 13-day average exposure
data for the control and (0.5 mg/m3) DE concentration.
These target chamber concentrations, determined and
adjusted based on continuous TEOM measurements, were
achieved with relatively low variability either within a par-
ticular 4 hour exposure or between different days. Cham-
ber particle concentrations determined gravimetrically
from integrated filter samples (one 4 h sample per expo-
sure day), agreed with the TEOM measurements within
15%. CO and NOx concentrations in the chambers aver-
aged 12 and 17.6 ppm, respectively. SO2 concentrations

Table 1 Summary of concentrations and characteristics of
the diesel exhaust particles and gases within the animal
exposure chambers.a

Constituent Units Exposure

Particle mass concentration (TEOM) μg/m3 500 ± 9

Particle mass concentration (filter)b μg/m3 701 ± 16

Particle number concentrationc #/cm3 1.0 × 108

± 4.7 × 106

Oxygen (O2) % 19.7 ± 0.5

Carbon monoxide (CO) ppm 12.0 ± 1.0

Nitrogen oxides (NOx) ppm 17.6 ± 0.7

Sulfur dioxide (SO2) ppm >3.0

Number median Dp
d nm 53 ± 2

Volume median Dp
d nm 194 ± 2

OC/ECe wt ratio 1.1 ± 0.1
aThese data represent averaged results from the two repeat studies
performed from 8/1-13/06 (13 days), 10/2-14/07 (13 days), and NAC study 2/
11-19/08 (9 days). Tapered element oscillating microbalance (TEOM), O2, CO,
and NOx data represent mean values from continuous measurements taken
over all 35 exposure days ± SE.
bFilter data represent mean values from one measurement per day taken over
34 days of exposure ± SE.
cParticle number concentration data represent a mean value from 13 days of
exposure ± SE.
dDp indicates particle geometric number and volume median diameters for 13
days of particle size distribution measurements ± geometric standard
deviation. Note that volume information is calculated from number based
mobility diameters and assume spherical particles.
eOC/EC (organic carbon to elemental carbon ratio) data represent mean
values from one measurement per day taken over 13 days of exposure ± SE.
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were very low and below detection levels for the DE cham-
ber. Particle number concentrations were relatively high
and corresponded to particle size distributions (PSDs)
with a well-established accumulation mode and little evi-
dence of notable nuclei or coarse modes. Geometric med-
ian number and volume (assuming spherical particles)
diameters were approximately 53 and 194 nm, respec-
tively. It should be noted that the SMPS system (with long
column) limited measurements to particles greater than
approximately 15 nm, and a small increase in the number
counts in channels less than 25 nm may indicate the pre-
sence of a small nuclei mode below the instrument’s
range. OC/EC wt ratios of 1.1 from both chambers indi-
cated that approximately 52.4% of the DEP was comprised
of organic carbon.

Viral Quantification and Type I Interferon Production
The purpose of the study was to determine how DE
affected the normal course of a sublethal viral infection,
which is characterized by peak viral titers between day 4
and 8 p.i. accompanied by significant lung inflammation.
Exposure to 0.5 mg/m3 of DE during infection resulted
in significantly greater levels of virus compared to air
exposed mice at day 4 and 8 post infection while both
the exposed and control animals essentially cleared the
virus by 14 days (Figure 1A). Body weights were not sig-
nificantly different between any of the treatment groups
at any time point (data not shown).
Previous studies have demonstrated that chronic expo-

sure of mice to DE resulted in increased viral titer in
association with decreased lung IFN levels [10]. DE
exposure alone did not affect IFN-b mRNA expression
(data not shown), and although this cytokine was upre-
gulated with virus infection with a peak at day 8 p.i, DE
did not significantly affect the expression level (Figure
1B). Similarly, IFN-b mRNA was upregulated by the
viral infection but the expression was not affected by
exposure to DE either alone or in combination with
virus (data not shown).

Neutrophil Recruitment and Pulmonary Inflammation
Differential cell counts from air or DE exposed mice
with or without influenza infection were assessed in the
BAL (Figure 2A). DE exposure alone caused a small but
significant increase in PMNs at day 4, 8, and 14 (data
not shown). The number of PMNs increased orders of
magnitude more in the influenza infected animals, and
at days 4 and day 8 p.i. these values were significantly
higher in the DE exposed and infected animals at the
day 4 timepoint and persisted at day 8 (p = 0.06) (Figure
2A). No residual PMNs were seen in the BAL at day 14
in any of the treatment groups.
The amount of protein in the BAL was also assessed

as a marker of pulmonary edema. Influenza infection

alone increased the amount of protein on day 4 and 8 p.
i. with a return to baseline by day 14 p.i. (Figure 2B).
Exposure to DE during infection caused an increase in
the amount of protein in the BAL on day 4, which per-
sisted to day 8, compared to air exposure (Figure 2B).
DE alone did not significantly increase protein in the
BAL at any time point (data not shown).
Histopathological examination showed patchy areas of

mild interstitial inflammation in the lungs from influ-
enza infected mice, and these lesions were judged to be
more severe in the DE/flu animals as early as day 1, and
even more prominently at day 4 p.i. (Figure 2C). Inflam-
mation was characterized by presence of multifocal
alveolar spaces that were thickened by edema and capil-
lary congestion, and infiltrated with mild to moderate
numbers of neutrophils, histiocytes, lymphocytes, and
plasma cells. In the more severely affected areas of the
influenza infected lungs, small amounts of lumenal exu-
date comprised of proteinaceous fluid with fibrin, cell
debris, and often large (activated) foamy macrophages
were present. In the diesel exposed groups (DE or DE/
flu) the macrophages also contained multiple phagocy-
tosed particles.

Pulmonary Function
Previous studies have shown that DE exposure [43] and
influenza infection in mice [44] can independently
increase pulmonary responsiveness (PR) to a methacho-
line challenge. Therefore it was of interest to examine
the PR in the DE enhanced influenza infected mice as
an indicator of altered pulmonary function and lung dis-
ease. DE exposure did not increase PR at any time point
compared to air controls (Figure 3). Influenza infection
alone significantly increased PR on day 4 and 8 p.i (Fig-
ure 3B and 3C). Mice exposed to DE during influenza
infection had a significant increase in PR only at day 1
p.i. compared to influenza alone or DE exposure (Figure
3A). At day 4 and 8 p.i., the PR of DE/flu exposed mice
was not significantly different from air/flu controls
although both groups were significantly higher than
responses in the air or DE alone exposed animals (Fig-
ure 3B and 3C). By 14 days all response curves returned
to baseline levels with no differences between any of the
groups (Figure 3D).

Cytokine Expression in Lung
DE exposure has been reported to induce the produc-
tion of Th2 cytokines [31] and since IL-4 decreases
clearance of influenza [20], we hypothesized that the DE
enhanced influenza infection was caused by an increase
in IL-4. DE alone significantly increased IL-4 mRNA
expression after 4, 8, and 14 days of exposure compared
to the air controls (data not shown). Influenza infection
alone also significantly increased IL-4 mRNA levels at
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day 8 and 14 p.i., while the DE exposure during influ-
enza infection resulted in significantly higher IL-4
mRNA expression at days 1 and 4 p.i. compared to air
exposed infected mice (Figure 4A). This was also
reflected in protein expression of IL-4 in BAL (Figure
4B). IL-13 message was also measured in the lung tissue
of all treatment groups and no differences were
observed indicating that this response maybe specific to
IL-4 (data not shown).

Th1 cytokines including IL-12 and IFN-g are required
to clear influenza infection in mice [45]. DE exposure
alone did not alter expression of either cytokine at any
necropsy time point compared to air control (data not
shown). Influenza infection significantly increased IFN-g
and IL-12p40 at day 1, 4, and 8 p.i before returning to
baseline at day 14 (Figure 4C and 3D) and these
increases were significantly reduced with concomitant
exposure to DE at the day 4 and 8 timepoints
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Figure 1 Exposure to DE enhances influenza titers and IFN-b expression. A) Viral titers were quantified in lung homogenates as TCID50 on
day 1, 4, 8, and 14 p.i. B) IFN-b mRNA expression was quantified in lung RNA by RT-PCR. Values are normalized to b-actin and expressed as
relative quantification. *significantly different from air exposed influenza infected mice (p < 0.05, n = 11).
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Effects of NAC on Glutathione and Hemeoxygenase-1(HO-1)
To determine if the increase in viral disease parameters
associated with DE exposure was a result of oxidative
stress, mice were injected i.p. with 320 mg/kg NAC or
vehicle 2 hours before each exposure as previously
described [40]. One of the mechanisms for NAC-
mediated decrease in oxidative stress is to upregulate
the amount of reduced glutathione (GSH) available for
detoxifying reactive species [46]. Mice given NAC before
all treatments had an increase in lung GSH levels and
this was significant in mice exposed to DE or DE/flu at
day 1 and 4 p.i. (Day 4 represented in Figure 5A). HO-1
mRNA expression after 1 or 4 days of DE exposure was
also elevated in the mice exposed to DE during influ-
enza infection and this was ameliorated with NAC treat-
ment. (Day 4 represented in Figure 5B).

Effect of NAC on Viral Titers
Our previous studies have shown that an increase in
GSH in an in vitro DE/flu model decreased the amount
of influenza virus attaching to the epithelium [12].
Whole lung homogenates were evaluated for TCID50

titers to determine if NAC decreased the DE enhanced
viral titers at day 4 p.i. As before, DE exposure increased

viral titers on day 4 p.i. compared to air/flu mice (Figure
6A), however unlike the GSH and HO-1 results, this
effect was not abrogated by NAC treatment (Figure 6A).

Effect of NAC on Inflammation and Pulmonary Function
To determine if NAC treatment decreased pulmonary
inflammation, the biomarkers that were previously mea-
sured were assessed. Neutrophil counts that were signifi-
cantly increased with influenza infection and DE
exposure were decreased at day 4 p.i. in mice treated
with NAC (Figure 6B) and a similar pattern was seen
for BAL protein (data not shown). As before, DE expo-
sure increased PR in mice infected with influenza on
day 1 p.i. (Figure 6) and this was decreased PR to base-
line levels in the NAC treated animals (Figure 6C).

Effect of NAC on Cytokine Expression
As noted in figure 4A, the DE exposure augmented
expression of IL-4, at day 4 p.i., and this effect was abro-
gated by pre-treatment with NAC (Figure 7A). A NAC-
related reduction in IL-4 was also seen with mice
exposed to DE alone. No differences in IL-4 expression
were seen between NAC treated and untreated mice
infected with influenza but not exposed to DE, while
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Figure 2 Exposure to DE enhances influenza induced pulmonary inflammation. BAL was obtained day 1, 4, 8, and 14 p.i. A) Neutrophil
counts per ml of BAL. B) Protein concentration (μg/ml) in BAL. C) Pathology scores of mouse lung sections were stained with H & E and
visualized and scored using light microscopy in tissues collected on day 4 p.i. Left column is representative of 100× magnification and right
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NAC alone increased IL-4 expression in untreated mice
(air alone) as has been previously reported [47]. NAC
did not alter IL-13 expression in lung tissue of mice at
day 1 or 4 p.i. in any of the treatment groups (data not
shown).
No difference was seen in IFN-g mRNA with NAC in

mice exposed to air or influenza alone (Figure 7B).
However, on day 1 p.i., (and 4 p.i., data not shown) the
NAC-treated mice exposed to DE or DE/flu had
increased expression of IFN-g compared to saline con-
trols (Figure 7B). No differences were seen with IL-
12p40 expression at these early time points although no
effect would have been expected until day 8 when a late
DE- related reduction occurred (Figure 4C).

Discussion
Air pollution exposure has been linked to exacerbation
of multiple pulmonary diseases as well as increased

severity of viral infections. In many cases, these effects
have been associated with concomitant increases in sus-
ceptibility to respiratory infection (reviewed in [6]).
Numerous experimental studies have demonstrated a
decrease in a broad range of innate and adaptive host
defenses following inhalation exposure to both single
agents or complex mixtures such as cigarette smoke and
car exhaust [48]. While most reports were designed to
assess how pollutant exposure affected a subsequent
pathogenic challenge, the present study followed the
course of viral proliferation during an ongoing exposure
to diluted diesel exhaust. The results show that inhala-
tion exposure to DE promoted viral proliferation in the
lung in association with altered immune signaling and
increased markers of lung disease. Administration of the
antioxidant NAC reduced many of the DE-enhanced
signaling and pathological changes but did not affect the
course of virus infection.
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There are myriad mechanisms by which DE can
potentiate a respiratory infection. The toxic particles
and gases may singly or in combination have a multi-
tude of effects including reducing mucociliary clearance
[49], decreasing alveolar macrophage function [50],
diminishing production of antiviral defenses [13] as well
as having more broad systemic immuntoxicity affecting
both the myeloid and lymphatic systems [10]. Recently
we demonstrated that exposure to DE decreased expres-
sion and production of host defense molecules including
surfactant protein A (SP-A), SP-D, and clara cell secre-
tory protein (CCSP) [51], and this was associated with
increased proliferation of influenza virus in both in vitro
[52] and vivo systems [13,53-55]. In addition to these
first line defenses, a delicate balance between Th1 and
Th2 immunity is required for optimum recovery from
influenza virus infection. The data presented here clearly

demonstrate that the DE caused significant increases in
IL-4 and a concomitant decrease in IFN-g and IL-12 in
association with increased viral-induced disease. How-
ever, it is unclear whether increased viral-induced dis-
ease (PMNs, inflammation) in DE enhanced influenza
infection is responsible for adequate clearance, since
viral persistence was not seen. Previous studies have
noted that the presence of pulmonary infiltrates such as
PMNs are essential for viral clearance [56,57], however
excessive neutrophilia and inflammation has been cited
to be detrimental to the host during an influenza infec-
tion [58].
It is generally understood that both Th1 and Th2

cytokines are needed at specific times during viral infec-
tion to stimulate both cell-mediated and antibody
mediated immune responses, as well as immunological
memory [59,60]. Despite this dual requirement,
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Figure 4 Exposure to DE during an influenza infection increases the message of Interleukin 4 (IL-4) and decreases the expression of
IFN-g and IL-12p40 cytokines. IL-4, IFN-g and IL-12p40 gene expression was analyzed in lung RNA on day 1, 4, 8, and 14 p.i. IL-4 protein
production was measured in BAL by ELISA at day 1, 4, 8, and 14 p.i. A) Levels of IL-4 mRNA were quantified in lung homogenates by real-time
RT-PCR and normalized to levels of b-actin in mice exposed to air or DE during an influenza infection. B) Levels of IL-4 protein were measured
in BAL. C) IFN-g mRNA; D) IL-12p40 subunit mRNA. *significantly different from air or air/flu exposed mice (p < 0.05; n = 11 for influenza
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inappropriate production of Th2 cytokine IL-4 has been
reported to increase severity of lung disease during
influenza infection [20,61], and IL-4 production during
viral infections diminishes the number of MHC class
I-restricted T cells and polarizes CD4+ T cells away
from an IFN-g dominated response [21]. Moreover,
mice that lack functional IL-4 genes clear sub-lethal
doses of influenza more efficiently [62] while IL-12 or
IFN-g deficient mice do not [19,63]. IFN-g not only sti-
mulates antiviral mediator expression and increases anti-
gen presentation to T lymphocytes, but also activates

NK cells, which facilitate viral clearance particularly dur-
ing the early stages of an influenza infection [64]. In the
present study, DE exposure either alone, or during influ-
enza infection significantly increased the expression of
IL-4 in association with a later decrease in IFN-g and
IL-12p40 expression. However, despite the polarization
towards a Th2 phenotype, IL-13 levels were not differ-
ent in this model (data not shown) suggesting that DE
enhanced influenza infection may specifically increase
Th2 cytokines induced in influenza such as IL-4. Thus,
early polarization towards an increased IL-4/IFN-g ratio
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tissue. Graph is representative of day 4 p.i. B) Levels of HO-1 mRNA were quantified in lung homogenates by real-time RT-PCR and normalized
to levels of b-actin in mice exposed to air on day 4 p.i. (p < 0.05, n = 6).
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could be a mechanism behind air pollution-enhanced
influenza virus levels and the observed increase in lung
disease. Further studies are needed to characterize how
air pollutants can induce IL-4 during respiratory
infections.
Viral infections in the lung are normally associated

with epithelial injury, inflammation, increased mucus
production and sometimes airway hyperreactivity in
response to inhaled agonists [44,65,66]. In order to mea-
sure these pathophysiological processes we first tested
the animals’ responsiveness to methacholine aerosol in a
whole body plethysmograph prior to assessing pulmon-
ary inflammation in the lung fluid, as well as by stan-
dard histopathology. The results showed that the
pulmonary responsiveness mirrored the inflammatory
wave to the virus as expected. Interestingly however,
higher PR was only observed at 1 day in the DE/flu ani-
mals in the absence of significant inflammation and
increased PR was not observed at later timepoints. Since
whole body plethysmography is a rather crude indicator
of pulmonary function with the unitless enhanced pause
(PenH) value being derived from thoracic expansion and
air flow through the nose [67], other more traditional

measures of airway resistance are needed to confirm
this results. It is known that influenza infection causes
airway hyperreactivity [44,66] and also, that this may
also be found in the absence of inflammation through
for example neurogenic pathways [68]. Furthermore, the
infection was performed by oropharyngeal aspiration
and likely did not cause significant alterations in nasal
architecture and the DE exposure alone did not result in
significant PR changes. Taken together the results sug-
gest that altered pulmonary function occurred early on
as a result of synergism between virus and DE, although
as the effect progressed through day 4 and day 8 the
enhanced responsiveness was just as strong with virus
alone.
It has been hypothesized that the increase in Th2 phe-

notype by DE is a result of ROS and oxidative stress
releasing nuclear factor-erythoid 2 (NF-E2) - related fac-
tor 2 (Nrf2) which initiates expression of phase II
enzymes such as HO-1 [69]. The expression of these
enzymes drives the immune system to produce more of
a Th2 cytokine profile [70] that can be blocked by the
administration of the thiol specific antioxidant NAC
[40,43] that is converted into GSH [33,41]. This was
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reflected in the present study by significantly elevated
concentrations of GSH in mice treated with NAC and
exposed to either DE or DE/flu along with a corre-
sponding decrease in HO-1 expression. Although,
administration of NAC blocked the DE-enhanced pul-
monary inflammation and PR to levels comparable to
the air/flu control, the treatment did not affect viral
titers or associated pathology. This would indicate that
oxidative stress is not the only mechanism by which DE
exposure enhances the influenza virus replication
although it clearly contributed to the resulting pathol-
ogy. Administration of NAC also reversed the

polarization from an IL-4 dominated response at day 1
and 4 p.i. in DE/flu mice to a more IFN-g dominated
profile on day 4 p.i. This re-polarization could be
explained by increasing GSH concentrations, which have
previously been shown to interfere with IL-4 production
and favor a Th1 phenotype [71]. Likewise, GSH deple-
tion has been reported to shift the immune system
towards an IL-4 dominated response [70] by changing
dendritic cell (DC) characteristics through pulmonary
inflammation and oxidative stress [72]. Previous studies
have shown that DEP co-incubated with DCs induce
pro-oxidative responses that inhibit stimulation of Th1

air air/flu DE DE/flu
0.0

0.5

1.0

1.5

2.0

2.5

3.0

* *

saline
NAC

IL
-4

/
-a

ct
in

 m
R

N
A

A)

air air/flu DE DE/flu
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

*

Treatment

IF
N

-
/

-a
ct

in
 m

R
N

A

B)

Figure 7 Antioxidants decrease Interleukin 4 (IL-4) and increase the expression of IFN-g during a DE-enhanced influenza infection. IL-4
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CD4+ T cells [69]. All of this taken together indicates
that DE-induced oxidative stress during an influenza
infection polarizes the immune system, possibly by alter-
ing the phenotype and maturation of DCs.
In summary we have shown that oxidative stress

induced by DE exposure during an influenza infection
resulted in increased viral titers and markers of lung dis-
ease. The DE exposure promoted an IL-4 dominated
response that could be reversed by thiol antioxidants,
which may provide therapeutic strategies for at risk
populations. While the temporary reduction in protec-
tive immunity did not affect eventual clearance of the
virus, the increased severity of infection and duration of
symptoms would be associated with greater morbidity as
well as potentially increased susceptibility to secondary
bacterial infections. In addition, viral infections are the
major cause for exacerbation of allergic airway disease.
We have previously reported that exposure to DEP
increases virus-induced allergic inflammation in mice
[73]. Based on the data shown here, it is plausible that
the increased production of IL-4 served to both reduce
anti-viral immunity while promoting the development of
allergic airway disease. Given the significant influenza-
related morbidity and mortality worldwide and the
growing incidence of allergic asthma, it is important to
further understand the interactions between pollution
exposure and pulmonary immunity associated with
respiratory virus infections, and the interplay with other
forms of lung disease.
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