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ABSTRACT 

Iodinated contrast agent is frequently used in computed tomography (CT) imaging to enhance organ contrast 

enhancement and improve diagnostic sensitivity. Despite this importance, there currently is a lack of 

standardization in contrast administration protocol across institutions, leading to many safety and clinical 

diagnostic risks. To solve this, we built three liver contrast enhancement/perfusion models: two using simple linear 

regression and another by combining a pre-existing pharmacokinetics mathematical model with clinical data with 

the eventual goal of individualizing contrast administration protocol to optimize contrast-enhanced CT imaging 

for each patient. These models primarily use patient attributes, such as height, weight, sex, age and contrast 

administration information, and bolus tracking information to make such predictions. 418 Chest/Abdomen/Pelvis 

CT scans were used in this study. 75% of cases were used to train these models and the rest were used to test the 

prediction accuracy. Pearson’s correlation coefficient test was used to find the correlations between the patient 

attributes and contrast enhancement in liver parenchyma. Weight, height, BMI, and lean body mass were found to 

be statistically significant predictors for contrast enhancement (P<0.05), with weight as the strongest predictor. Of 

the predictive models, we found that including bolus tracking information increases predictive accuracy (r2=0.75 

v. 0.42) and that in the absence of bolus tracking information, combining clinical data with pre-existing 

pharmacokinetics model may provide the needed enhancement curve. 
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1. INTRODUCTION 

More than half of clinical CT imaging in the United States involves the use of iodinated contrast materials [1]. The 

use of such contrast agent in CT imaging enhances tissue contrast, particularly in soft tissue organs such as the 

liver, pancreas, spleen, and kidneys, and thus improves the depiction of a variety of disorders. Despite the critical 

role of contrast media administration in clinical practice, there is a lack of standardization in contrast administration 

techniques across institutions; for instance, a common approach is to use the same dose and injection rate in every 

patient, unless they are at the extremes of weight, while others make slight adjustment based on patient weight 

thresholds [2, 3]. As a result, many studies have indicated inconsistencies in contrast enhancement across different 

patients, posing serious safety and clinical diagnostic risk in over- and under-enhanced patient cases [4]. Therefore, 

there is a need to devise optimal and standard contrast media administration procedures to target clinically adequate 

organ contrast enhancement towards consistent diagnostic performance. 
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This need will be achieved by building a model that prospectively characterizes contrast media perfusion and 

contrast enhancement in patients. Previous studies have indicated that contrast enhancement is correlated with 

patient weight and other body habitus metrics (i.e.: BMI and Lean Body Mass) [5-14]. The variability of such 

factors between patients may lead to significant variabilities in organ enhancements. However, the existing contrast 

perfusion models rely primarily on mathematical pharmacokinetics modeling and are not individualized to patient 

specific attributes, scanning parameters, and contrast media administration techniques. One of these models, the 

Physiology-based Pharmacokinetics (PBPK) model [15, 16] is a compartmentalized, differential-equation based 

model which predicts contrast enhancements in different organ as a function of injection time for an averaged 

population. While, the average result of the PBPK model has been shown to be in agreement with previously 

limited number of cases [15], we showed in a previous study that the result of the PBPK model is still clinically 

inaccurate due to its limited individualization to patient-specific attributes [17]. Therefore, to reduce 

inconsistencies in contrast enhancement in the clinic, there is a need to build a contrast perfusion model which 

primarily incorporates factors, such as patient attributes, scanning parameters, and contrast administration.  

This study had two purposes: (1) to investigate the correlations between known pre-scan patient attributes, such 

as weight, height, age, and contrast enhancement in liver over time in clinical patient populations, and (2) to 

develop a patient-informed, machine learning-based contrast enhancement prediction model over time based on 

these correlations. 

2. MATERIAL AND METHODS 
2.1. Patient Library and Data Sources 

This IRB-approved retrospective study included 418 adult patients (210 female) who underwent “Chest Abdomen 

Pelvis” CT exams with iodinated contrast performed with tube current modulation in 2018 at Duke University 

Medical Center. For each exam, patient’s attributes (height, weight, age, and biological sex), scanner parameters 

(CT vendor/type, tube potential, slice thickness, scan times), as well contrast administration protocol (bolus 

volume, concentration, flow rate, injection duration) were collected using METIS patient information system 

(METIS, Duke University) and NEXO contrast management system (Bracco Diagnostic inc. Monroe Township, 

NJ). Considering a previous study which shows correlation between lean body mass and contrast enhancement 

[10], the lean body mass of each patient was calculated using the Boer formula based on patients’ height and 

weight [18]. Contrast media was injected with uniphasic injection protocol using iodine-based contrast agent with 

concentration of 300 mgI/mL. In addition, the CT scanning exam included a bolus tracking contrast monitoring 

series to determine the appropriate scan start time; these images were repetitively acquired every 3 seconds, starting 

from 45 seconds post injection, to monitor whether the organ of interest has received proper contrast enhancement 

before the diagnostic scan commences. The summary of this dataset is reported in Table 1 and Table 2.  

Table 1. Summary of Patient Attributes and Contrast Administration 

  Mean Median Range [min, max] Std. Dev. 

Height (cm) 170.1 170.2 [135.9, 195.8] 10.2 

Weight (kg) 84.9 83.9 [49.0, 137.9] 17.9 

BMI (kg/m2) 29.5 28.8 [18.0, 52.8] 6.4 

LBM (kg) 48.2 44.6 [27.6, 72.9] 10.8 

Age (y) 59.1 61.0 [19.0, 94.0] 15.0 

Contrast Bolus Volume (mL) 145.6 146.0 [136.0, 154.0] 2.5 

Average Injection Rate (mL/s) 2.9 2.9 [2.0, 3.0] 0.1 

Start-of-Injection to Scan Duration interval 

(s) 69.2 69.0 [54.0, 98.0] 7.6 
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Table 2. Summary of examinations included in the study by clinical protocols, scanners and scan parameters; 

Noise Index (NI) for GE Healthcare; Reference Effective mAs (Q) for Siemens Healthineers. 

Institution Vendor Models 
Slice 

Thickness 
NI, Q  kV Pitch 

Duke 

University 

Medical 

Center 

Siemens 

Healthineers 

SOMATOM Definition 

Flash, Force 
0.6 mm 150, 200 120 0.8 

GE Healthcare 
Discovery CT750HD, 

Revolution, VCT 
0.625 mm 

19,2, 

22,0 
120 1.38 

2.2. Image Segmentation 

Each patient case included 3 types of data: 1) Pre-monitoring image, taken before contrast injection starts, 2) 

Monitoring images, taken as contrast is being injected during the bolus tracking period, 3) Diagnostic image series. 

The livers were automatically segmented in the CT images using a deep learning-based algorithm [19]. This 

segmentation tool was previously trained on 200 expert manually segmented CT images. It is able to identify major 

body organs, including liver, with dice similarity coefficient values of > 0.85. The median HU value of the 

segmented livers was used to represent the enhancement value. 

2.3. Algorithm/Model Development 

In this study we explored and developed 3 models: two using simple linear regression method and one using a 

combination of pre-existing pharmacokinetics model (PBPK) with clinical data. We randomly selected 75% of the 

patient cases as the training set (in which we used 15% for validation) and the remaining 25% as testing set. The 

output label is taken from the median of the HU reading from each patient’s liver as segmented by our segmenter 

tool. The goodness of fit was evaluated in terms of R2, Mean Absolute Error, and Mean Squared Error. We also 

compared our result to the result of the PBPK model. 

2.3.1 Linear Regression Models 

The first model (model A) predicts liver contrast enhancement at a particular time using input features such as: 

height, weight, sex, age, BMI, calculated lean body mass, contrast bolus volume, contrast injections rate, and scan 

time. Similarly, the second model (model B) is a simple linear regression model which predicts liver contrast 

enhancement at a particular time using all the input features used in model A, with the addition of the 

monitoring/bolus tracking data.  

2.3.2 Hybrid Model 

The hybrid model combines the input features used in model A with prediction curve from the PBPK model for 

each patient. We do this by first parameterizing these curves into two phases; the first phase as a Gaussian function, 

while the second phase as a linear function: 

• 𝐴𝑒
−𝐵(𝑥−𝐶)

𝐷

2

 Phase 1: Gaussian function  

• 𝐺 𝑒𝐻𝑥        Phase 2: Linear function  

We then adjusted these curve parameters according to the clinical data of each patient before training them with 

patient features to predict an output curve for liver contrast enhancement.  
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Figure 1a (Left) Illustration of the parameterization of the PBPK prediction curve for the hybrid method 

Figure 1b (Right) An example of predicted curve using the hybrid method 

 

to the model (model A), whereas the second model predict contrast enhancement at diagnostic time without the 

monitoring data (model B). The training outcome was set to be the contrast enhancement in Hounsfield Unit (HU). 

The goodness of fit was evaluated in terms of R2, adjusted R2, mean absolute error, and mean squared error. We 

also compared our result to the result of the PBPK model. 

3. RESULTS 

 
3.1. Correlations of Different Attributes to Contrast Enhancement 

The Pearson correlation coefficients between different patient attributes are shown in Table 3. We found that 

patient weight has the strongest correlation, while age does not seem to have statistically meaningful correlation 

with contrast enhancement over time. In addition, we observed that correlation between these patient attributes 

and contrast enhancement varies over time. 
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Table 3. Correlation table between patient attribute features with contrast enhancement. P-values below 0.05 are 

highlighted in bold. 

  45-50 seconds 50-55 seconds 55-60 seconds 

Features r P value 

95% 

LL 

95% 

UL r P value 

95% 

LL 

95% 

UL r P value 

95% 

LL 

95% 

UL 

Weight -0.19 3.20E-03 -0.31 -0.07 -0.23 4.22E-04 -0.35 -0.11 -0.31 1.55E-06 -0.42 -0.19 

BMI -0.11 8.85E-02 -0.24 0.02 -0.13 4.93E-02 -0.26 -4E-04 -0.20 1.90E-03 -0.33 -0.08 

LBM -0.22 6.90E-04 -0.34 -0.10 -0.24 2.22E-04 -0.36 -0.12 -0.31 1.45E-06 -0.43 -0.19 

Height -0.17 1.19E-02 -0.29 0.04 -0.19 4.30E-03 -0.31 -0.06 -0.19 3.60E-03 -0.31 -0.06 

Age 0.01 8.21E-01 -0.11 0.14 -0.07 3.09E-01 -0.20 0.06 -0.12 6.19E-02 -0.25 0.01 

 

  60-65 seconds 65-70 seconds 70-80 seconds 

Features r P value 

95% 

LL 

95% 

UL r P value 

95% 

LL 

95% 

UL r P value 

95% 

LL 

95% 

UL 

Weight -0.33 8.65E-06 -0.46 -0.19 -0.42 2.01E-06 -0.56 -0.26 -0.43 5.88E-06 -0.58 -0.26 

BMI -0.20 8.70E-03 -0.34 -0.05 -0.34 1.56E-04 -0.49 -0.17 -0.40 4.21E-05 -0.55 -0.22 

LBM -0.36 2.00E-06 -0.48 -0.22 -0.32 3.41E-04 -0.47 -0.15 -0.30 2.50E-03 -0.47 -0.11 

Height -0.22 3.50E-03 -0.36 -0.08 -0.12 1.80E-01 -0.30 0.06 -0.08 4.42E-01 -0.27 0.12 

Age -0.04 6.36E-01 -0.19 0.11 0.05 5.78E-01 -0.13 0.23 0.13 1.80E-01 -0.06 0.32 

3.2. Prediction Models 

Figures 2 shows the plot of predicted v. actual contrast enhancement along with the 1:1 line and the error 

probability density function for Model A, while Figures 3 refers to Model B, Figures 4 refers to the Hybrid model, 

and Figure 5 refers to the PBPK model result. Table 4 reports the comparison summary of the four models’ 

goodness of fit.  
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Figure 2 Scatter plot of the Predictions v. Actual HU values of test set for Model A (includes monitoring data). The red line 

shows the perfect prediction, 1:1 line 

 

 

 

 

 

 

 

 

 

 

Figure 3 Scatter plot of the Predictions v. Actual HU values of test set for Model B (excludes monitoring data). The red line 

shows the perfect prediction, 1:1 line 
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Figure 4 Scatter plot of the Predictions v. Actual HU values of test set for the Hybrid model. The red line shows the perfect 

prediction, 1:1 line 

 

 

 

 

 

 

 

Figure 5 Scatter plot of the Predictions v. Actual HU values of test set for the PBPK model. The red line shows the perfect 

prediction, 1:1 line  
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Table 4. Summary of the goodness-of-fit of the predictions 

  Model A Model B Hybrid PBPK 

Test R2 0.75 0.42 0.43 0.04 

Train R2 0.96 0.61 0.49 N/A 

Mean Absolute Error 4.79 7.6 12.1 16.2 

Root Mean Squared Error 6.58 9.64 14.5 21.4 

 

4. DISCUSSION 

In this study, we show that a patient’s weight is inversely correlated and is the strongest predictor for contrast 

enhancement among the attributes we evaluated, while age does not seem to show any statistically meaningful 

correlation and other attributes we investigated showing weaker correlation than weight. We also build two 

preliminary models to predict contrast enhancement over time, one using the bolus tracking contrast monitoring 

data (model A) and the other one without (model B). Understanding these correlations and having a robust 

contrast model is an essential step in our attempt to individualize contrast-enhanced CT imaging protocol for 

every patient. Previous studies have shown the potential benefit of individualizing such protocol in reducing 

safety risk, such as increased-risk of contrast-induced nephrotoxicity, heart failure, dehydration, or unnecessary 

additional dose from repeated scans for under-enhanced patients [20-22]. However, we would like to 

additionally highlight that individualizing contrast administration and scanning protocol can reduce 

inconsistencies in contrast enhancement and image quality across patients. 

Our results in Table 3 suggest that weight serves as the strongest predictor of liver parenchyma contrast 

enhancement compared to other features. In general, patient weight is inversely correlated with the contrast 

enhancement; greater weight implies lower enhancement. This observation is supported by previous studies which 

suggests similar conclusion regarding weight features [5-9]. Despite this concurrence, it is important to note that 

our data do not show stronger correlations between weight derivative features (calculated BMI and Lean Body 

Mass) or age and contrast enhancement, unlike other studies have shown previously [9, 10].  

Between the models demonstrated in this study, we found that including bolus tracking monitoring data 

increases the accuracy of the model. This was expected as monitoring data can inform the model about the early 

dynamics of the liver contrast enhancement. Clinically, this supports the importance of acquiring bolus-tracking 

monitoring data before the diagnostic scan. While having such model can assist the administrator in determining 

the optimal time to conduct the diagnostic scan, relying on monitoring data limits the possibility of having a truly 

personalized contrast administration protocol for each patient (e.g. impossible to adjust bolus volume, injection 

rate, contrast media concentration). Thus, in the absence of monitoring data, our hybrid model can deliver the 

needed liver enhancement prediction curve. We also found that our models showed higher predictive accuracy 

than the regular PBPK model (r2 of 0.42, 0.75, and 0.43 for our models and 0.04 for PBPK) when tested on our 

patient library test set as shown as in Figure 5.  

This study had several limitations. First, we used Chest/Abdomen/Pelvis related protocols which restrict the 

variability in the contrast media administration and scanning protocols, two important factors in this study. We 

also need to make the library institution-agnostic by including data from other institutions. Future studies will 

include clinical dataset from different clinical protocols and institutions. Second, although we have demonstrated 

that weight is an important feature to predict contrast enhancement, there are other factors, such as heart rate, 

hydration level, and other cardiac function indicators, which theoretically thought as important factors that we 
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did not consider due to unavailability of data. Furthermore, we mostly included patients with no known liver 

problems in this study. Liver abnormalities (e.g. Hepatic cirrhosis) may influence contrast perfusion both in 

livers and other organs of interest, making it challenging to truly predict the dynamics of contrast enhancement. 

The described model can be extended to include also vital signs and other patient specific features. Lastly, while 

the model predicts enhancement of liver parenchyma at a certain time point, the model’s predictive capability 

will always be constrained within a short time window (approximately from 60 to 75 seconds after injection 

starts), preventing us from modeling a complete contrast enhancement curve. To solve this shortcoming, future 

studies should include perfusion imaging data to provide additional data points to train the model, especially 

during early arterial and delayed phases. When this is not possible, another alternate solution may be to combine 

existing mathematical model to help inform the missing sections of the enhancement curve of an organ.  

 

5. CONCLUSION 

Patient attributes, especially a patient’s weight, can be used to predict contrast enhancement over time. The 

performance of the prediction model can be further improved when bolus tracking contrast monitoring data are 

included. In the absence of monitoring data, a combination of pharmacokinetics method with clinical data can 

provide such prediction. 
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