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Abstract

This paper studies common intraday jumps and relative contribution of these common jumps in realized

correlation between individual stocks and market index, using high-frequency price data. In introducing

stochastic models for stock price returns, we show that discrete time model (binomial tree) converges to

geometric brownian motion in continuous time. We find that the common jumps significantly contribute

in realized correlation at different threshold cut-offs and both common jumps and realized correlation

are relatively consistent across time period including financial crisis. However, we observe a statistically

significant difference in realized correlation and suggestive difference in contribution of common jumps

between financial and food industry. In addition, we find a weak, positive relationship between relative

contribution of common jumps and realized correlation, when we further sample high-frequency data into

a year. We also observe that the volatility index and market index reveal the strongest relationship.
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1 Introduction

Volatility is a central field of study in financial economics; it plays a vital role in a number of applications

such as asset pricing, asset allocation and diversification, risk management, and risk forecasting. For

instance, estimates of volatility are considered as inputs to the Black-Scholes option pricing model (Black

and Scholes 1973), an important model in finance. Since Merton (1976) observed discontinuities in asset

prices, various studies have supported the claim and discussed the importance of discontinuities or jumps

that contribute toward the volatility of assets. Drost, Nijman, and Werker (1998) found that a continuous

time diffusion model cannot explain the time series of dollar exchange rates clearly. Similarly, Andersen,

Benzoni, and Lund (2002) noted that it is critical to include discrete jump components in any equity

return continuous time model.

As several studies proposed, jumps play an essential role in financial economics. Maheu and McCurdy

(2004) showed that a model incorporating jumps improves volatility forecast. Tauchen and Zhou (2011)

and Lee and Mykland (2008) explained that characterizing the distribution and causes of jumps can

improve asset pricing models. Then, where do these jumps come from? The most common cause of the

presence of jumps is a sudden availability of new information (Merton 1976). Jumps occur in an efficient

market where very significant, unanticipated, new information is instantaneously incorporated into the

price.

Given the theoretical significance of jumps, it is important to be able to detect them in data. In recent

year, the availability of high-frequency data has resulted in a significant improvement in the accuracy of

jumps detection. Since high-frequency data enables statistical inference on discontinuous components

and jump components separately, it has facilitated the research on jumps in securities. In fact, several

authors have proposed nonparametric statistical tests to determine whether an individual price movement

over a given time interval is likely to reflect a jump. Barndorff-Nielsen and Shephard (2004, 2006)

introduced two measures of volatility that are jump robust and non-jump robust and employed these

two estimates to determine whether a data series contains jumps. Ait-Sahalia and Jacod (2007) observed

the difference between higher-order moments computed at two different frequencies. Lee and Mykland

(2008) compared the magnitude of each price change with a sliding-window measure of local volatility to

identify whether individual price changes are jumps. However, recent work suggests that the jump tests

produce inconsistent results due to an intraday pattern in volatility. Thus, for this study, we employ the

Bollerslev, Todorov, Li (2011) jump test that takes into account of the effect of U-shaped intraday pattern
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in volatility.

Further, Huang and Tauchen (2005) performed theoretical and Monte Carlo analysis of high frequency

returns on the S&P cash and futures index and noted the empirical importance of jumps as a source

of stock market price variance. They defined the relative jump (RJ) measure as an indicator of the

distribution of jumps to within day total variance of the process. The relative jump (RJ) is the ratio of

difference between jump-robust and non-jumps robust measures of variances to non-jump robust measure.

As a result, 100 ∗ RJ is a direct measure of the percentage contribution of jumps to total price variance

(Huang and Tauchen, 2005). This study finds evidence of jumps which account for about 4.5 percent to

7.0 percent of the total daily variance of the S&P cash or futures index. This relative average contribution

of 4.5 percent to 7.0 percent of total daily price variance motivates the study in a bivariate setting, where

we can study common jumps between two securities, instead of jumps in one security.

Bivariate volatility modeling, where we study the interaction between two securities, is important

in the area of risk management, portfolio allocation, and others, since many issues in financial market

depend on covariance risk. In fact, it is possible to extend several concepts in an univariate setting to the

similar concepts in a bivariate setting. First, non-jump robust estimator of daily volatility in a univariate

setting is extended to the covariance estimator that includes both diffusive components and common jump

components. This non-jump robust estimator for daily covariance is obtained by summing up the intraday

cross products of high-frequency vectors of returns within a day. As the number of cross products between

high-frequency returns in a day goes to infinity, the estimator is consistent to the daily covariance of the

underlying assets (Barndorff-Nielsen, Shephard, 2004). Similarly, it is possible to expand the concept of

jumps in individual security into common jumps between two securities. In bivariate setting, common

jumps between two assets are classified, when jumps for two assets are identified to occur in the same

direction during the same time interval. However, it is not so simple to extend jump robust estimator

of daily volatility in a univariate setting to the corresponding concept in a bivariate setting. Instead, we

employ a different approach to obtain common jump robust estimator of daily covariance.

Obtaining the covariation estimator and common jumps in a bivariate setting motivates to question

the relative average contribution of the common jumps in total covariance between two securities. In

fact, disentangling diffusive covariation and common jumps has important applications in finance such

as model selection, forecasting, option pricing, and risk management. The paper therefore studies the

relative contribution of common jumps by separating the two components: diffusive covariation and the

common jumps. Here, the common intraday jumps are classified using the Bollerslev, Todorov and Li

5



test (2011) and they are removed from the daily covariance estimator that contains both diffusive and

common jump components. Excluding common jumps results in the covariance estimator that is consisted

of diffusive components and idiosyncratic jumps only. The relative difference between them enables to

study relative contribution of common jumps.

In particular, the paper studies common jumps between the proxy for the market 1 and individual

securities. Employing a proxy for the market portfolio enables us to observe the common jumps that

are concerned with a measurement of the overall market. It is also possible to explore the central issues

such as how markets process information, since jumps are an important mechanism for incorporating

systematic news into prices. The contribution of this paper is to empirically investigate the importance

of common jumps in an equity and the market using an intraday nonparametric jump test. The study

also briefly discusses the general differences observed between food and finance industry. In addition, the

paper looks at the the relative contribution of common jumps across different sub-periods to determine

whether the contributions of jumps are significantly higher during financial crisis and to observe how

closely relative contribution of common jumps are related to realized correlation.

The remaining of the paper is structured as follows. In section 2, we introduce the mathematical

background; in particular, we study both continuous and discrete stochastic processes. In section 3, we

discuss the underlying asset pricing model, jump-robust and non-jump-robust estimators of variance, and

the covariance in bivariate setting. In section 4, we examine the statistical methods employed throughout

the paper. The methods include intraday jump test proposed by Bollerslev, Todorov and Li (2011), and

the relative contribution of common intraday jumps detected from the test. Then, section 5 discusses

the data source and the market friction called “microstructure noise” that contaminates the estimators

of variance at the very high frequency data. Here, we select the appropriate sampling frequency interval

that maximizes the usage of the data and minimizes the market noise. In section 5, we introduce the

empirical results and carry out analysis by industry and year. Finally, section 6 ends the paper with the

conclusion drawn from the study.

1The Standard and Poor Futures Market Index (SPFU) is used as a proxy for the market. The index will be discussed in
detail later in the data section.
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2 Mathematical Background

It is necessary to study mathematical theories and equations before we understand the economic models.

In particular, stochastic process of probability theory is closely related to the stock price model. Variables

that change over time in an unpredictable way are assumed to follow a stochastic process. The process

may be discrete or continuous in time. In a discrete-time, variables change only at certain fixed point

in time, while they can change at any time in continuous-time stochastic processes. Further, the process

may take discrete or continuous variables. Only discrete values are possible in a discrete variable process,

while variables can take any value in a certain range in continuous-variable process. We model stock

price using continuous-variable, continuous-time stochastic process. We further study discrete-variable,

discrete-time process with binomial tree.

2.1 Wiener Process (Brownian Motion)

Markov process is a stochastic process in which only the present value of a variable is relevant for predicting

the future. The past history of the variables is irrelevant. Wiener process is a particular type of Markov

stochastic process with a mean change of zero and a variance rate of 1 per year. It is sometimes referred

to as a Brownian motion. Formally stated, a variable W is said to follow Wiener process (Brownian

motion), if the variable satisfies two properties below.

Property 1. The change, ∆W during a small period of time ∆t is

∆W = �
√
∆t,

where � has a standardized normal distribution φ(0, 1). φ(m, v) indicates a normal distribution with mean

m and variance v2.

Property 2. For t0 < t1 < · · · < tk, change ∆W of any two different short intervals of time,

Wt1 −Wt0 , · · · ,Wtk −Wtk−1

are independent.

The first property suggests that ∆W has a normal distribution with mean 0, and variance ∆t. The second

property confirms that W follows a Markov process.
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2.1.1 Generalized Wiener Process

Mean change per unit time for a stochastic process is known as the drift rate and the variance per unit

time is known as the variance rate. The basic Wiener process, previously introduced ∆W has a drift rate

of zero and a variance rate of 1. From here, we use dx corresponding to the process during infinitely small

time interval, dt, instead of ∆x and ∆t. A generalized Wiener process for a variable x is defined as

dx = adt+ bdW = adt+ b�dt,

where a and b are constants. In form of stochastic integral, it is

x = x0 + a

� t

0
ds+ b

� t

0
dW.

The term, adt implies that x has an expected drift rate of a per unit of time. The second term, bdW

can be interpereted as adding noise or variability to the path followed by x. The amount of this noise or

variability is b times a Wiener process. Thus, it appears that dx has a normal distribution is with mean

adt and variance b2dt. In general, Itô Process is a Wiener process in which the parameters a and b are

functions of the values of the underlying variable x and time t. Algebraically,

dx = a(x, t)dt+ b(x, t)dW

in which both expected drift rate and variance rate of an Itô process depend on change over time.

2.2 Continuous-time Model: Geometric Brownian Motion

Stock price is assumed to follow a Geometric Brownian motion

S(t) = S0e
(r−σ2

2 )t+σW (t)
,

which is a solution of stochastic differential equation below,

dS

S
= (r − σ2

2
)dt+ σdW.

S0 > 0 is the initial value of stock. (r− σ2

2 ) is a drift (with interest rate r), and σ is volatility of stock or

standard deviation of stock. Finally, W (t) is a Brownian motion. The variability of the stock price occurs

8



from the randomness of the underlying Brownian motion. The stock price from this Geometric Brownian

Motion is always non-negative. The model is also reasonable, using economic principles for stock prices in

an ideal non-arbitrage world, in which it is not possible to make a profit with certainty by observing the

past values S(u) : 0 ≤ u ≤ t of the stock. Geometric Brownian Motion is a Markov process: the future

given the present state is independent of the past. Given S(t), present state at time t, S(t + h), h time

units after time t, is independent of S(u) : 0 ≤ u < t, the past before time t.

S(t+ h) = S0e
X(t+h)

= S0e
X(t)+X(t+h)−X(t)

= S0e
X(t)

e
X(t+h)−X(t)

= S(t)eX(t+h)−X(t)

Thus, given S(t), the future S(t + h) only depends on the future increment of the Brownian Motion,

X(t + h) − X(t). Since increments of Brownian Motion are independent as stated in property 2, the

future value is independent of the past.

2.3 Discrete-time Model: Binomial tree

This subsection introduces binomial model of stock price, which assumes discrete states and discrete

time. The number of possible stock prices and time steps are both finite. We start with the set-up of

binomial tree model and finally show that this binomial tree converges to the distribution of the geometric

Brownian motion as the time step becomes smaller.

2.3.1 Binomial Tree Set-up

We suppose that an initial stock price is S0 > 0. The fixed time horizon [0 t] is divided into large positive

integer, n equal intervals with small duration ∆t. At each step ∆t, stock price either moves up or down

by a factor of u > 1 or 0 ≤ d < 1 respectively. Underlying volatility is assumed to be σ > 0 and interest

rate r ≥ 0. At time ∆t, the stock price, S∆t is determined as follows.

S∆t =






S0u with probability p,

S0d with probability 1-p.
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We now observe expectation and variance of the variable, S∆t
S0

.

E

�
S∆t

S0

�
≡ pu+ (1− p)d = e

r∆t

E

��
S∆t

S0

�2�
≡ pu

2 + (1− p)d2

V ar

�
S∆t

S0

�
≡ E

��
S∆t

S0

�2�
−
�
E

�
S∆t

S0

��2

= pu
2 + (1− p)d2 − e

2r∆t = σ
2∆t

Rearranging the terms in expectation of S∆t
S0

, we find

p =
er∆t − d

u− d
, 1− p =

u− er∆t

u− d
.

Replacing p and (1− p) with above values into the variance of S∆t
S0

results in the equation below.

σ
2∆t =

�
er∆t − d

u− d

�
u
2 +

�
u− er∆t

u− d

�
d
2 − e

2r∆t

=
er∆t(u2 − d2)− du2 + ud2

u− d
− e

2r∆t

=
(u− d)[er∆t(u+ d)− ud]

u− d
− e

2r∆t

= e
r∆t(u+ d)− ud− e

2r∆t
.

In order to find u and d, one more assumption is necessary. We employ the general binomial tree, Cox,

Ross, Rubinstein (1979) model, which assumes that ud = 1. Replacing ud with 1 and d with 1
u yields

σ
2∆t = e

r∆t

�
u+

1

u

�
− 1− e

2r∆t
.
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For further derivation, we employ perturbation analysis of 1 + σ2∆t ≈ eσ
2∆t, since ∆t ≈ 0.2

ue
σ2∆t = e

r∆t(u2 + 1)− ue
2r∆t

u
2 − (er∆t + e

σ2∆t−r∆t)u+ 1 = 0

u
2 − (1 + r∆t+ 1 + σ

2∆− r∆t)u+ 1 = 0

u
2 − (1 + e

σ2∆t)u+ 1 = 0

We solve the quadratic equation of u.

u =
1

2

�
(1 + e

σ2∆t)±
�
(1 + eσ

2∆t)2 − 4

�

≈ 1

2

�
(1 + e

σ2∆t)±
�
(1 + 1 + σ2∆t)2 − 4

�

≈ 1

2

�
(1 + e

σ2∆t)±
�
4σ2∆t+ (σ2∆t)2

�

≈ 1

2
(1 + 1 + σ

2∆t± 2σ
√
∆t)

= 1± σ
√
∆t+

σ2∆t

2
≈ e

±σ
√
∆t

Since u > 1, we have u = eσ
√
∆t and d = e−σ

√
∆t.

During n steps, let U be the total number of times that stock price goes up, and D be the total

number of times that stock price goes down. Then, n = U +D. Further, suppose that X1, X2, . . . Xn are

independent identically distributed random variables whose probability of Xi = 1 is p and Xi = −1 is

1− p. By defining Mn ≡
i=n�
i=1

Xi, we have Mn = U −D. Thus,

U =
1

2
(n+Mn), and D =

1

2
(n−Mn).

2Note that the taylor series expansion of exponential function is

e
x =

∞�

n=0

x
n

n!
= 1 + x+

x
2

2!
+

x
3

3!
+ · · · for all x

= 1 + x+O(x2) ≈ 1 + x for x → 0.
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2.3.2 Convergence to Geometric Brownian Motion

With the expressions derived in previous subsection, we finally have stock price at the time t as

St = S0u
U
d
D

= S0u
1
2 (n+Mn)d

1
2 (n−Mn)

= S0e
σ
√
∆t
2 (n+Mn)e

−σ
√
∆t

2 (n−Mn)

= S0e
σ
√
∆tMn

The goal is to show that the stock price at time t, S0e
σ
√
∆tMn under the n-step binomial model converges

to the Geometric Brownian motion, S0e
(r−σ2

2 )t+σW (t) at time t, as n → ∞, that is ∆t → 0.

E

�
e
uσ

√
∆tMn

�
= E

�
n�

i=1

e
uσ

√
∆tXi

�
=

n�

i=1

E

�
e
uσ

√
∆tXi

�

=
n�

i=1

(euσ
√
∆t
p+ e

−uσ
√
∆t(1− p)) = (euσ

√
∆t
p+ e

−uσ
√
∆t(1− p))n

=

�
e
uσ

√
∆t

�
er∆t − d

u− d

�
+ e

−uσ
√
∆t

�
u− er∆t

u− d

��n

=

�
e
uσ

√
∆t

�
er∆t − e−σ

√
∆t

eσ
√
∆t − e−σ

√
∆t

�
+ e

−uσ
√
∆t

�
eσ

√
∆t − er∆t

eσ
√
∆t − e−σ

√
∆t

��n

Taking logarithm on both sides of equation lead to,

log
�
E

�
e
uσ

√
∆tMn

��
= n log

�
e
uσ

√
∆t

�
er∆t − e−σ

√
∆t

eσ
√
∆t − e−σ

√
∆t

�
+ e

−uσ
√
∆t

�
eσ

√
∆t − er∆t

eσ
√
∆t − e−σ

√
∆t

��

=
t

∆t
log

�
euσ

√
∆t(er∆t − e−σ

√
∆t) + e−uσ

√
∆t(eσ

√
∆t − er∆t)

eσ
√
∆t − e−σ

√
∆t

�

=
t

∆t
log

�
euσ

√
∆t(er∆t − e−σ

√
∆t) + e−uσ

√
∆t(eσ

√
∆t − er∆t)

2 sinh(σ
√
∆t)

�

=
t

∆t
log

�
er∆t(euσ

√
∆t − e−uσ

√
∆t)− (euσ

√
∆t−σ

√
∆t − e−uσ

√
∆t+σ

√
∆t)

2 sinh(σ
√
∆t)

�

=
t

∆t
log

�
er∆t sinh(uσ

√
∆t)− sinh(uσ

√
∆t− σ

√
∆t)

sinh(σ
√
∆t)

�
.
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Note that we have used the fact that sinh(x) = ex−e−x

2 . We can further proceed it using sinh(x − y) =

sinh(x) cosh(y)− cosh(x) sinh(y).

log
�
E

�
e
uσ

√
∆tMn

��
=

t

∆t
log

�
er∆t sinh(uσ

√
∆t)− sinh(uσ

√
∆t) cosh(σ

√
∆t) + cosh(uσ

√
∆t) sinh(σ

√
∆t)

sinh(σ
√
∆t)

�

=
t

∆t
log

�
cosh(uσ

√
∆t) +

sinh(uσ
√
∆t)(er∆t − cosh(σ

√
∆t))

sinh(σ
√
∆t)

�

Finally, we employ the perturbation technique that we have previously used. 3 Therefore, as ∆t → 0,

log
�
E

�
e
uσ

√
∆tMn

��
=

t

∆t
log

�
1 +

1

2
u
2
σ
2∆t+

uσ
√
∆t(1 + r∆t− 1− 1

2σ
2∆t)

σ
√
∆t

+O((∆t)2)

�

=
t

∆t
log

�
1 +

1

2
u
2
σ
2∆t+ ru∆t− 1

2
σ
2
u∆t+O((∆t)2)

�

≈ t

∆t

�
1

2
u
2
σ
2∆t+ ru∆t− 1

2
σ
2
u∆t+O((∆t)2)

�

≈ 1

2
u
2
σ
2
t+ rut− 1

2
σ
2
ut+O(∆t)

≈ tσ2u2

2
+

�
r − σ2

2

�
tu

The result shows the function that generates the moment for a normal random variable with mean
�
r − σ2u

2

�
t and variance σ2ut. Therefore, we have shown that distribution of eσ

√
∆tMn converges to a

distribution of geometric Brownian motion e
(r−σ2

2 )t+σW (t) at time t.

3Note that the taylor series expansions of sinh(x) and cosh(x) are

sinh(x) =
∞�

n=0

x
2n+1

(2n+ 1)!
= x+

x
3

3!
+

x
5

5!
+ · · · for all x

= x+O(x3) ≈ x for x → 0.

cosh(x) =
∞�

n=0

x
2n

(2n)!
= 1 +

x
2

2!
+

x
4

4!
+ · · · for all x

= 1 +
1
2
x
2 +O(x3) ≈ 1 +

1
2
x
2 for x → 0.
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3 Theoretical Background

3.1 Stochastic Models for Returns

The section begins with the theoretical process that describes an asset price. The following differential

equation for logarithmic price p(t) is a standard stochastic model for asset price movements

dp(t) = µ(t)dt+ σ(t)dw(t), (1)

where µ(t) corresponds to the time-varying drift component of prices and σ(t)dw(t) corresponds to the

time-varying volatility components. σ(t) is the volatility level and w(t) indicates a standard Brownian

motion. The model assumes that all sample path of logarithmic stock prices are continuous in nature and

follows a diffusion motion with mean µ(t) and standard deviation σ(t). This standard Brownian motion

model enables us to study the Black-Scholes equations and derive the value of call and put options easily.

Although the continuous-time model has some advantages, Merton (1976) pointed out that this model

is inconsistent with discontinuities that have been observed in various asset classes. The modern literature

on stock price movement further suggests that discontinuities in prices are an essential process in asset

pricing, portfolio management, risk management and others. Drost, Nijman, and Werker (1998) discussed

that a continuous time diffusion model alone was not enough to clearly explain the time series of dollar

exchange rates. Liu et al (2003) explained that including jump components into the price movement results

in different optimal portfolio strategies. These discontinuities or “jumps” are observed, when the new,

unanticipated information becomes available and is instantaneously reflected into the price. Incorporating

the discontinuities components of the price into the model therefore results in the continuous-time jump

diffusion model that includes both continuous and jump processes

dp(t) = µ(t)dt+ σ(t)dw(t) + k(t)dq(t). (2)

Here, k(t) indicates the magnitude of jump at time t and q(t) is a Possion counting process. dq(t) is a

binary indicator of jumps in the infinitesimal interval dt. In order to separate these jump components

from continuous variations, researchers have developed various statistical estimators.
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3.2 Estimators of Variance

The price model in equation (2) indicates that the volatility of price results from two processes: diffusive

volatility process, σ(t) and jumps process, k(t). The quadratic variation (QV ) is a measure that aggregates

both components

QVt ≡
� t

t−1
σ
2(τ)dτ +

M�

j=1

k
2(tj), (3)

while the integrated variance (IV ) measures diffusive volatility component only

IVt ≡
� t

t−1
σ
2(τ)dτ. (4)

Since only the prices are observed discretely, it is not possible to obtain the QV and IV in equation (3)

and (4). Instead, researchers have tried to approximate the measures. Barndorff-Nielsen and Shephard

(2004, 2006) proposed two estimators of variance. The first estimator is the realized variance (RV )

RVt =
M�

j=1

r
2
t,j , (5)

where rt,j is the intraday geometric return between the (j − 1)th and jth price observations in a day,

defined as rt,j ≡ pt,j − pt,j−1 and M is the total number of price returns in one day. Summing up these

intraday squared returns results in RVt. As the number of observations or sampling frequency approaches

infinity, the realized variance converges to the quadratic variance in equation (3). Intuitively, each squared

intraday geometric return is an estimator of the true variance of the particular interval. Summing up all

the squared geometric returns for infinitely small intervals therefore results in an asymptotically consistent

estimator of the daily quadratic variance.

The second measure is a “jump-robust” estimator called bipower variation (BV ). For a day t, BV is

defined as

BVt = µ
−2
1

M

(M − 1)

M�

j=2

|rt,j−1||rt,j |, (6)

where µ−2
1 = π

2 . As the time interval between observations approaches zero, the bipower variance converges

to the integrated variance in equation (4). Intuitively, when the magnitude of the price return rt,j is

considerably larger than other returns in the same day, it is likely to be a jump. The bipower estimator

reduces the effect of large price change by multiplying the price return with a neighboring return value

that tends to be smaller. Thus, the bipower variation is an asymptotically consistent estimator of the
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integrated variance.

Based on the realized variance and bipower variance estimators, it is possible to estimate the volatility

due to jump process. The relative contribution of jumps for a day t (RJt) is therefore defined as

RJt ≡
RVt −BVt

RVt
. (7)

In words, the relative contribution of jump is the ratio of difference between realized variation and bipower

variance to realized variation. It is an asymptotically consistent estimator for QVt−IVt
QVt

, which indicates a

ratio of jumps to total within day variance of the process. As Huang and Tauchen (2005) pointed out,

100 ∗RJ is a direct measure of the percentage contribution of jumps to total price variance.

3.3 Realized Correlation

Assets in the financial market are not independent of each other; their returns may move together in the

same direction or in the opposite direction. The multivariate volatility modeling is particularly important

in pricing financial instruments, risk management, portfolio allocations, managerial decision making and

many others. In particular, the covariance risk is important in studying interactions between assets. The

concept of realized variance is extended to as realized covariance (RCov) in bivariate setting. The realized

covariance for a day t of assets A and B is obtained in a similar manner to the realized variance which

is resulted from summing over the squared intraday returns in equation (5). Instead of squared intraday

returns on one security, the cross products of intraday returns for two assets A and B are summed over

within a day t

RCov
AB
t =

M�

j=1

r
A
t,jr

B
t,j . (8)

As previously introduced, rkt,j is an intraday geometric return for security k defined as rkt,j ≡ pkt,j − pkt,j−1

andM is the total number of price returns in one day. Intuitively, each cross product of intraday geometric

returns is an estimator of the true covariance between two securities of the particular interval. The realized

covariance converges to quadratic covariation that aggregate both integrated covariation and co-jumps

as the sampling frequency goes to infinity. It is a consistent estimator of the daily quadratic covariation

containing the co-jumps.
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Then, the realized correlation (RCorrt) for stock A and stock B naturally follows as:

RCorr
AB
t =

RCovAB
t�

RV A
t RV B

t

. (9)

Realized correlation is the ratio of realized covariances and product of realized standard deviations. The

realized correlation is a Pearson correlation, which is only sensitive to linear relations between the returns

of two assets. As Barndorff-Nielsen and Shephard (2004) pointed out, the correlation in equation (9) is

susceptible to jumps in underlying prices.

4 Statistical Methods

4.1 Bollerslev, Todorov, Li Jump Test (2011)

Researchers have proposed various nonparametric statistical tests that determine whether an individual

price change in a particular interval is a jump or a diffusive movement. For example, test developed by Lee

and Mykland (2008) compares the magnitude of each price change with a measure of local volatility based

on sliding window of returns. Ait-Sahalia and Jacod (2007) observed the difference between higher-order

moments computed at two different frequencies to identify jumps. However, recent work suggests that the

jump tests produce inconsistent results. Schwert (2009) found that different tests identify different days

with jumps. He also found that tests are even inconsistent with themselves, detecting different jumps

depending on the sampling frequency. In particular, Van Tassel (2008) showed that the test proposed by

Lee and Mykland (2008) exaggerates the number of statistically significant jumps in the early morning

and understates jumps in the middle of the day, yielding incoherent results. Rognlie (2010) discussed that

the inconsistencies can be explained by dramatic intraday changes in volatility. In fact, he proved that a

significant number of detected jumps occurs due to this behavior.

The intraday pattern in volatility have widely been studied in the literature. Wood, McInish, and Ord

(1985) introduced U-shaped intraday volatility pattern and Andersen and Bollerslev (1997) confirmed

this pattern. The intraday volatility is generally the greatest at the beginning of the trading day and

declines until a minimum is reached in the early afternoon. The volatility rises again during the rest of

the day. In fact, it is found that the average volatility at the peak is twice or more than the minimum

average volatility. In addition to the work by Van Tassel (2008), Rognlie (2010) also suggested that these

dramatic changes in volatility pattern throughout the day are directly responsible for detecting biased
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number of jumps. The U-shaped volatility pattern distorts the classification of jumps, since the same

price movement may or may not be identified as a jump, depending on the local volatility. The price

movement is more likely to be detected as a jump in the morning and in the end of the trading day, when

the volatility is high. Thus, the intraday volatility exaggerates the number of statistically significant

jumps during the beginning and the end of the day. However, the same price movement is less likely to be

identified as a jump in the middle of the day, when the volatility is low. Thus, it underrepresents jumps in

the middle of the day. The typical U-shaped volatility pattern is illustrated in Figure 1 computed based

on the data which will be introduced later in the section.

Therefore, it is essential to consider the effect of intraday volatility in evaluating jump tests. To

obtain correct results, Rognlie (2010) proposed that the morning should be adjusted by a higher volatility

measure than returns in the afternoon. Therefore, the jump test by Bollerslev, Todorov, Li (2011) is a

reliable test that takes into account of this U-shaped intraday pattern in volatility. The test estimates

Time-of-Day (TOD) volatility pattern for each asset, based on the daily variation measures of RV and

BV introduced in equation (5) and (6)

TODi =
n
�T

t=1 r
2
it,nI(|rit,n| ≤ τ

√
BVt ∧RVtn

−0.49)
�nT

s=1 r
2
s,nI(|rs,n| ≤ τ

�
BVs/n ∧RVs/nn

−0.49)
. it = (t− 1)n+ i, i = 1, ..., n (10)

I is the binary indicator function that equals 1, when the absolute geometric intraday return is less than

τ standard deviation of a local estimator and 0, otherwise. TODi measures the ratio of the diffusive

variation over different parts of the day relative to its average value for the day. The truncation level

introduced in below equation takes the TOD volatility pattern into account

αi = τ

�
(BVi/n ∧RVi/n) ∗ TODi−[i/n]n, i = 1, .., nT (11)

and it is used to separate the realized jumps from diffusive price movement. Finally, the high-frequency

intraday geometric return for each stock is identified as a realized jump, if

|ri,n| ≥ αin
−0.49

. (12)

In words, the particular interval are said to contain a realized jump, if the magnitude of the intraday

geometric return previously defined as rt,j ≡ pt,j − pt,j−1 is greater than or equal to the adjusted TODi

threshold.
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4.2 Intervals with Co-Jumps

Prior to study common jumps and realized correlation simultaneously, this subsection elaborates on

intraday time intervals that are detected to contain jumps. In order to determine whether each intraday

time interval contains a jump, we first implement the Bollerslev, Todorov and Li jump test (2011) in

previous subsection. The jump test identifies the time intervals that are determined to include a realized

jump, if the magnitude of the intraday geometric return for the particular time interval is greater than

or equal to the adjusted TODi threshold as discussed in equation (10). After classifying the intraday

time intervals with realized jumps for individual security, these detected time intervals of individual asset

are compared with the corresponding time intervals of proxy for market index. If the particular time

interval of individual stock is identified to contain a realized jump and the corresponding time interval of

market index is also detected to contain a realized jump occurring in the same direction, that particular

time interval is considered to be the “interval with co-jump”. However, one exception remains for market

volatility index; 4 the volatility index is the market’s expectation of the volatility that moves in the

opposite direction with the market index. Since greater volatility index indicates a higher expectation

of volatility and the fear in the market, it leads to the decline in stock prices and market index. Thus,

“intervals with co-jumps” between market index and volatility index are defined, when two realized jumps

for the same intraday time interval are classified to occur in the opposite directions.

4.3 Relative Contribution of Co-Jumps in Realized Correlation

This subsection finally combines realized correlation and intervals with co-jumps that have previously

been studied. In order to observe the effect of co-jumps in the realized correlation, we would like to

observe the realized correlation that excludes the intervals with co-jumps. The first step goes back to the

Bollerslev, Todorov, and Li jump test which identifies intervals that include intraday realized jumps of

asset A and B. For these identified intervals with co-jumps, the cross products between intraday returns,

rAt,j and rBt,j in equation(8) are set to zero. However, the cross products of intraday returns for any other

intraday time intervals remain the same as before. The below summarizes the first step

�
rAt,jr

B
t,j =






0 if interval [ j−1
M ,

j
M ] detected to contain a co-jump,

rAt,jr
B
t,j otherwise.

(13)

4The Standard and Poor Futures Volatility Index (VIX) is used as a market volatility index.
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Using the cross products of returns in equation (13), it is then possible to obtain a new realized covariance

measure that excludes intervals with co-jumps. This new realized covariance estimate would be different

from the previous realized covariance in equation (8), if the day contains at least one interval with co-jump.

The realized covariance that excludes intervals with co-jumps is denoted as �
RCovAB

t and is obtained in

following way

�
RCovAB

t =
M�

j=1

�
rAt,jr

B
t,j . (14)

Using the new realized covariance results in a modified realized correlation denoted as �
RCorrAB

t that

also excludes intervals with co-jumps

�
RCorrAB

t =
�

RCovAB
t�

RV A
t RV B

t

. (15)

The asymptotic difference between realized correlation measure in equation (9) and the modified realized

correlation measure without co-jumps in equation (15) indicates the co-jump components. The ratio

of the asymptotic difference and RCorrAB
t therefore represents the relative contribution of co-jumps in

realized correlation (RCCJ) of two stocks

RCCJ
AB
t =

RCorrAB
t − �

RCorrAB
t

RCorrAB
t

. (16)

In fact, denominators of two realized correlations remain the same: the denominators are simply the

product of realized standard deviation of each asset. Thus, relative contribution of co-jumps in realized

correlation (RCCJ) of two stocks is the same as

RCCJ
AB
t =

RCovAB
t − �

RCovAB
t

RCovAB
t

. (17)

The equation (17) helps better understand the arithmetic behind the idea. If the intraday time interval

is classified to contain a common jump that occurs in the same direction, the product of two returns is

always greater than zero. However, equation (13) sets the product of two returns as zero for �
rAt,jr

B
t,j , when

the time interval is detected to contain a common jump. Therefore, it follows that

r
A
t,jr

B
t,j ≥ �

rAt,jr
B
t,j , (18)
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RCov
AB
t ≥ �

RCovAB
t .

The numerator of equation (17) is always non-negative and depending on the realized covariance between

two securities - whether covariance between them is positive or negative - the sign of RCCJAB
t is de-

termined. However, it is important to note one exception we defined in section 3.2: the common jump

between volatility index and market index is defined to occur in the opposite direction. That is, the cross

product of two returns is always less than zero for the interval with co-jumps. Thus, the inequality signs

in equation (18) should be reversed.

5 Data

5.1 Background

We used a set of minute-by-minute price data for 8 commonly traded stocks (BAC, C, CPB, HNZ, JPM,

PEP, SLE, WPC) along with the S&P500 Futures market index (SPFU) and the S&P500 Futures volatility

index (VIX) for this study. Although no particular quantitative criteria was used to divide stocks into

different industry, we regard CPB, HNZ, PEP, SLE stocks to be part of food industry and BAC, C, JPM,

WFC to be part of finance industry. The price data is obtained from the commercial data vendor called

‘price-data.com’. The data for individuals stocks and the S&P500 Futures market index begins from

January, 1998, ends on December, 2010 and includes 3219 trading days. However, the S&P500 Futures

volatility index is only available from January, 2004 to December, 2008 that corresponds to 1169 trading

days. Each trading day includes every minute price data from 9:30AM to 4:00PM. However, the first five

minutes price data and overnight returns are excluded, since the price data during these periods behave

differently from other intraday price data. Prior to the study, the data is adjusted for stock splits based

on Yahoo! Finance and other abnormalities such as missing price values are corrected. Further, the data

is aligned so that all the series include the same set of data. Table 1 shows the list of all the stock indexes,

tickers, date ranges and number of trading days.

For the purpose of this study, the S&P500 Futures market index (SPFU) is used as a proxy for the

market. The Standard and Poor’s 500 index (S&P 500) contains a number of large companies, so the

movement in the direction of the S&P Futures can serve as an indicator of overall short-term market

direction. If the S&P Futures are up, it is an indication that there is upward pressure on the market

and the stock market will rise. On the other hand, if the S&P Futures are down, it is a sign that there

is downward pressure on the market and it will likely fall. Therefore, the S&P Futures index is a good
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proxy to market price movements, as it effectively trades the basket of 500 stocks in the S&P500 index

in a single bundle. Similarly, the S&P500 Futures volatility index (VIX) is used as an indication of the

market volatility. The index reflects market’s expectation of the volatility.

5.2 Microstructure Noise

It is important to choose an appropriate sampling interval of the data, since the sampling frequency affects

the estimators of variance introduced in section 2.2. Although asymptotic consistency of the estimators

suggest that the prices should be sampled as frequently as possible, the estimators are contaminated with

“microstructure noise” or market frictions at very high frequency. The microstructure noise is a short-term

deviation between the market efficient price and observed price, which usually occurs due to bid-ask spread

and discretization error. To determine the appropriate sampling interval that maintains a balance between

maximizing the use of available information and limiting the impact of microstructure noise, Andersen,

Bollerslev, Diebold and Labys (2000) proposed a “volatility signature plot”. The graph plots average

realized variance against sampling intervals. Figure 2 represents volatility signature plot for S&P500

Futures market index. As shown, microstructure noise contributes to the high average realized variance

at higher frequencies (1-, 2-minutes). The average realized variance starts to flatten out, approaching a

constant value for longer intervals (10-minutes). The constant value at lower frequencies (longer intervals)

indicates that disregarding any more information would no longer compensate for microstructure noise.

For the purpose of this study, a 5-minute time interval is selected as an appropriate trade off between the

use of additional information and the microstructure noise.

6 Results and Analysis

6.1 Empirical Results

The daily realized correlation between the first eight equities, the S&P500 Futures volatility index (VIX)

in Table 1 and the S&P500 Futures market index (SPFU) is calculated, and Table 2 reports the mean daily

realized correlation over the entire sample period. In order to better understand what the correlation

numbers indicate and how they vary, we plot the daily realized correlation over the sample period in

Figure 3. As expected, the eight individual equities reveal the positive correlation with the S&P500

Futures market index. The prices of individual stocks move in the same direction as the overall market.

However, the volatility index (VIX) at the right bottom indicates the negative correlation, since VIX is
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the market’s expectation of the volatility that moves in the opposite direction with the market index.

The range of mean realized correlation of eight equities is between 0.30 to 0.50. It is noteworthy to

recognize that correlation between stocks from food industry (CPB, HNZ, PEP, SLE) and the market

index is around 0.33, while the stocks from finance industry (BAC, C, JPM, WFC) have correlation value

around 0.47. The finance industry has a stronger correlation with market. The volatility index reveals the

strong negative correlation, −0.70 with the S&P500 Futures market index, because the volatility index

implies the fear in the market, therefore being closely related to S&P500 Futures market index than other

individual stocks.

Next, we observe the results obtained from intraday intervals that are classified to contain common

jumps. Since there are 76 number of 5-minute intervals per day and the data spans for 3219 days, the total

244, 644 number of 5-minute intervals are present for the study between individual stocks and the market.

The Bollerslev, Todorov and Li jump test (2011) has been implemented at τ = 2.0 and τ = 2.5. That

is, the time interval is considered to contain a realized jump, if the magnitude of the intraday geometric

return is greater than or equal to 2.0 or 2.5 standard deviations of adjusted threshold respectively. Table

4 shows the number of intervals that are classified to contain realized co-jumps with S&P500 Futures

market index. For each stock, there are about 2100 to 3000 intervals with co-jumps at τ = 2.0, and

about 700 to 1050 at τ = 2.5. The larger the value of τ is, the less the number of intervals is identified

to include realized jumps. Accordingly, the number of intervals with co-jumps decreases for greater τ .

Once again, it is interesting to note that stocks from food industry (CPB, HNZ, PEP, SLE) have around

2300 intervals with co-jumps when τ = 2.0, while equities in finance industry (BAC, C, JPM, WFC) have

about 2900 number of intervals with co-jumps for the same τ value. Similar results hold for τ = 2.5.

Further, it is critical to note that the total number of intervals for the volatility index is only 88, 844 due

to shorter data length that only spans 1169 trading days. However, the number of intervals detected to

include co-jumps for the volatility index is still similar to the number intervals with co-jumps for other

individual stocks. Therefore, the volatility index has the highest percentage of intervals with co-jumps

with the market index compared to the percentage of intervals for other individual stocks.

Finally, we incorporate the concept of intervals with common jumps into the realized correlation. This

practice results in the relative contribution of common jumps in realized correlations as represented in

Table 5. Figure 4 plots the daily relative contribution common jumps at adjusted threshold τ = 2.0. Table

5 suggests that the intervals with common jumps contribute about 17 percent to 19 percent of realized

correlation when τ = 2.0, while intervals with common jumps account for about 7 percent to 8 percent
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of realized correlation when τ = 2.5. One half of the increase in τ , a standard deviation of adjusted

threshold in identifying the intraday realized jumps, decreases the percentage in the relative contribution

of co-jumps into more than half. Relative contribution of common jumps seem to be fairly consistent

across eight individual equities. However, intervals that are classified to contain common jumps between

the volatility index and S&P500 Futures market index account for large percentage in realized correlation.

The co-jumps contribute to about 25 percent and 13 percent of realized correlation for τ = 2.0 and τ = 2.5

respectively.

6.2 Analysis by Industry

The previous section suggests that stocks from finance industry (BAC, C, JPM, WFC) have a higher

association with the overall market than stocks from food industry (CPB, HNZ, PEP, SLE). Also, finance

related stocks appear to have a greater number of intervals that include common jumps with the market

than food related stocks. The first suggestion is based on mean realized correlation of stocks over thirteen

years period in Table 2; four mean values of finance related stocks are compared with four mean values

of food related stocks. Similarly, the second suggestion comes from the total number of common jumps

in Table 4; four contribution values of each industry are compared with each other. We now sub-sample

the price data into thirteen time periods, each corresponding to one year and calculate mean realized

correlation and mean relative contribution of common jumps of individual stock for each year. This results

in thirteen mean values for each stock and fifty-two mean values for each industry. With the numbers

reported in Table 7 and Table 8, we implement the statistical analysis that compares two industries.

As a simple two-group comparison statistical test, we use the ‘t-test’ based on the t-distribution.

Figure 5 summarizes the test results. Assuming equal variances, the mean of fifty-two realized correlation

values of finance industry is 0.4725, while the mean of correlation values of food industry is 0.3389. Under

the null hypothesis that there is no difference in the realized correlations between two industries, the p-

value (p < 0.0001) based on t-distribution suggests an evidence against the null hypothesis. Therefore, we

conclude that the difference between two means is statistically significant; financial stocks are more closely

related to overall market than the stocks from food industry. We further carry out the same analysis with

the values of relative contribution of common jumps at τ = 2.5. Figure 6 shows that the mean of fifty-two

common jumps contributions of finance industry is 0.0807 and the mean of common jumps contributions

of food industry is 0.0714 with the same standard error of 0.00398. It is hard to conclude whether we

should reject the null hypothesis that assumes no difference in contributions of common jumps or not,
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because the p-values from the test are on the verge of statistical significance. While the one-sided p-value

from the test is 0.0508, two-sided p-value is 0.1016. Instead of clear conclusion, in this case, we get an

idea that the difference in relative contributions of common jumps between two industries is present, yet

it is not as statistically significant as the difference in realized correlations between two industries.

6.3 Analysis by Year

In addition to the comparison between two industries, we study the realized correlation and contribution

of common jumps values among thirteen years. We exclude S&P500 Futures volatility index due to its

relatively short data length compared to other individual stocks. Table 3 shows the mean values of realized

correlation across eight individual stocks for each year. On average, the eight individual stocks have the

lowest mean correlation of 0.2532 with the market on year 2000, while they are much more strongly

related to the market, with mean correlation 0.4968 during year 2003. Realized correlation values stay in

these ranges and show small variations across different years. Similarly, Table 6 reveals that the average

contribution of common jumps between eight individual stock and the market at τ=2.5, two and a half

standard deviations of adjusted threshold for each year. The average contribution of common jumps

is the smallest, around 5.35 percent in year 2000. The common jumps between the stocks and market

contribute the most about 9.25 percent in realized correlation on year 2004. In an attempt to look for a

particular pattern or difference in the correlations and contributions during the thirteen-year period, we

carry out ‘F-test’, analysis of variance test (ANOVA) among thirteen years using the realized correlation

and contribution of common jumps values in Table 7 and Table 8. Figure 7 and 8 present F-statistics;

they indicate that their means are not the same across years. Despite of their statistically significant

differences, we do not see the particular pattern or significant outlier (peak or trough) in the correlation

and contribution of common jumps values. In fact, while we expected to observe significant fluctuations

in these values, especially during the 2008 financial crisis, they are relatively stable with numbers from

other years. The mean correlation of realized correlation with the market in 2008 is 0.4709, a little bit

higher among other years, and the common jumps contribute 6.27 percent in realized correlation.

6.4 Relationship between Realized Correlation and RCCJ

Having analyzed realized correlation and relative contribution of common jumps by industry and year,

we finally question the presence of a relationship between correlation and contribution of common jumps.

Figure 9 plots relative contribution of common jumps at τ = 2.5 against realized correlation of fifty-two
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points that are based on individual stock in every year. The graph seems to suggest a possibility of a weak

positive linear relationship: the larger the realized correlation value, the greater contribution the common

jumps is. The linear regression in Figure 9 proposes an estimated correlation coefficient of 0.0989 with

standard error 0.0266. P-value of 0.0003 implies that there is an evidence against the null hypothesis of

no association between realized correlation and relative contribution of common jumps.

7 Conclusion

Prior to introducing economic models of the study, we briefly study stochastic processes that are both

continuous and discrete. In particular, geometric brownian motion and discrete time binomial tree are

introduced as stock price models. We also show the convergence of binomial tree distribution to geometric

brownian motion. The study then extends the concept of relative contribution of jumps in realized variance

of a single security to a bivariate setting. We first study realized covariance between two securities, as

analogous to realized variance in a univariate setting. We also observe common jumps that occur during

the same intraday time interval, by comparing the presence of jumps in two corresponding intraday

intervals. By considering realized covariances and common jumps together, we introduce a new covariance

measure that is designed to exclude the intervals with common jumps. The ratio of the difference between

the new covariance estimate and the previous covariance measure to the previous realized covariance

is defined as relative contribution of common jumps in realized covariance or realized correlation. In

particular, the study focuses on the relation between the S&P Futures market index, a proxy for market

and individual equities in addition to S&P Futures volatility index. We implement the Bollerslev, Todorov,

Li jump test (2011) that effectively takes into account of intraday volatility pattern, which otherwise

distorts the number of jumps. Using this jump test, 5-minute intervals that are considered to contain

market proxy realized jumps are successfully identified; similarly, the test also detects 5-minute intervals

that are identified to contain realized jumps of individual stock and volatility index. We compare these

intervals with realized jumps and exclude intraday intervals that are classified to contain common jumps in

calculating new realized covariance, so that the effect of these realized common jumps is better examined.

As previously stated, Huang and Tauchen (2005) found that relative jump in the S&P Futures market

index is around 7 percent. This study finds that the common jumps between the S&P Futures market

index and individual equity account for about 17 to 19 percent, when the magnitude of price change is

greater than or equal to two standard deviations of adjusted threshold. Even when the jump threshold
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increases to two and a half standard deviations of adjusted threshold, the relative contribution of co-

jumps still accounts for 7 to 9 percent. These findings lead us to conclude that the common jumps play

a significant role in studying correlation between the market and the stock.

By comparing realized correlation and the relative contribution of common jumps between stocks

from food and financial industry, we find that financial stocks have higher correlation with the overall

market than stocks from food industry. It also seems that common jumps in correlation between financial

stocks and market are greater than those between food stocks and market, although the statistical sig-

nificance remains inconclusive from the t-test. We further study the realized correlation and the relative

contribution of common jumps on yearly basis by dividing samples into the sub-periods. Although they

are different from each year, we do not observe significant outliers that particularly stand out from the

data, even in times of financial crisis. The realized correlation and the relative contribution of co-jumps

remain quite stable throughout the sample period. Through this further analysis, we come to a conclusion

that the relative contribution of common jumps tend to be higher for the equities that also have higher

realized correlation with the market. Even though the pattern between realized correlation and relative

contribution of common jumps is weak, the relationship between them still reveals positive slope.
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8 Figures and Tables

Figure 1: Intraday Volatility Pattern for S&P Futures Market Index. The figure shows minute-
by-minute pattern in average absolute returns. The pattern is consistent with the widespread intraday
volatility pattern in literature. Average volatility starts high at the beginning of the day, falls to a midday
trough and gradually rises until the close.
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Figure 2: Volatility Signature Plot for S&P Futures Market Index. The graph indicates the
average realized variance for every minute sampling frequency. As shown in the graph, the smaller the
sampling interval (the higher the sampling frequency), the higher the average RV , since more microstruc-
ture noise contributes to RV measurement. The plot flattens out as the sampling interval becomes longer.
Since 5-minute interval seems to capture enough variation and limits microstructure noise, the 5-minute
interval is selected for this study.
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Figure 3: Daily Realized Correlation The realized correlation between S&P Futures market index
and individuals stocks ranges from January, 1998 to December, 2010. It compares the individual stock
performance to overall market performance over 13 years period. The last graph indicates the daily
realized correlation between the market index and S&P Futures volatility index from January, 2004 to
December, 2008 .
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Figure 4: Relative Contribution of Co-Jumps at Adjusted Threshold τ = 2. We select 5-minute
interval for the Bollerslev, Todorov and Li (2011) jump test, and classify whether an interval contains a
jump. Common jumps between the market and individual stocks as well as volatility index are further
detected and relative contribution of co-jumps are obtained
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Figure 5: Analysis of Mean Realized Correlation by Industry. The figure plots yearly average
realized correlation values of eight individual stocks by industry. The green line in the middle is the mean
realized correlation of each industry. Upper and lower intervals together form a diamond shape.
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Figure 6: Analysis of Mean Relative Contribution of Common Jumps by Industry. The figure
plots yearly average relative contribution of common jump values of eight individual stocks by industry.
The green line in the middle is the mean relative contribution of common jumps of each industry. Upper
and lower intervals together form a diamond shape.
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Figure 7: Analysis of Mean Realized Correlation by Year. The figure plots realized correlation
values of eight individual stocks by year. The green line in the middle is the mean realized correlation of
each year. Upper and lower intervals together form a diamond shape.
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Figure 8: Analysis of Mean Relative Contribution of Common Jumps by Year. The figure
plots relative contribution of common jumps values of eight individual stocks by year. The green line in
the middle is the mean relative contribution of common jumps of each year. Upper and lower intervals
together form a diamond shape.
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Figure 9: Realized Correlation and its Relative Contribution of Common Jumps. The figure
plots all corresponding realized correlation and relative contribution of common jumps for eight each stock
in every year (in table 5 and 6). Best linear fit is introduced and the line appears to have a weak positive
slope.
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Table 1: Ticker, Data Range and Number of Trading Days.
Ticker Full Name Industry Data Range Number of Trading Days

BAC Bank of America Corp Finance 1/2/98 to 12/30/10 3219
C Citigroup Inc Finance 1/2/98 to 12/30/10 3219
CPB Campbell Soup Co Food 1/2/98 to 12/30/10 3219
HNZ Heinz, H.J. Co Food 1/2/98 to 12/30/10 3219
JPM JP Morgan Chase Co Finance 1/2/98 to 12/30/10 3219
PEP PepsiCo Inc Food 1/2/98 to 12/30/10 3219
SLE Sara Lee Corp Food 1/2/98 to 12/30/10 3219
WFC Wells Fargo Co Finance 1/2/98 to 12/30/10 3219
VIX S&P500 Futures Volatility Index Market 1/5/04 to 12/31/08 1169
SPFU S&P500 Futures Market Index Market 1/2/98 to 12/30/10 3219
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Table 2: Mean Daily Realized Correlation. Table shows the average daily realized correlation
between individual stocks and the market index. The correlation is positive, while volatility index (VIX)
is negatively correlated to market.

Stock Mean

BAC 0.4716
C 0.4819
CPB 0.3512
HNZ 0.3437
JPM 0.4850
PEP 0.3497
SLE 0.3109
WFC 0.4514
VIX -0.7001

Table 3: Mean Realized Correlation. Table shows the average realized correlation between eight
stocks and the overall market for each year. Due to shorter data length, VIX is excluded in calculating
the mean value.

Year Mean

1998 0.3945
1999 0.3399
2000 0.2532
2001 0.3756
2002 0.4822
2003 0.4968
2004 0.4262
2005 0.4381
2006 0.3561
2007 0.4111
2008 0.4709
2009 0.4252
2010 0.4039
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Table 4: Number of Co-Jump Intervals for τ =2 and τ=2.5. Table indicates the number of common
jumps between individual stocks and the market index at two different threshold cut-offs, detected from
Bollerslev, Todorov, and Li jump test.

Stock τ = 2 τ = 2.5

BAC 2901 1003
C 2903 970
CPB 2511 833
HNZ 2385 823
JPM 2980 1040
PEP 2249 737
SLE 2125 715
WFC 2853 1014
VIX 2180 857
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Table 5: Mean Relative Contribution of Co-Jumps. Table indicates the relative contribution of
common jumps between individual stocks and the market. The larger the threshold cut-off (τ = 2.5), the
less the contribution of common jumps is.

Stock τ = 2.0 τ = 2.5

BAC 0.1828 0.0853
C 0.1723 0.0755
CPB 0.1853 0.0751
HNZ 0.1779 0.0791
JPM 0.1764 0.0808
PEP 0.1923 0.0745
SLE 0.1669 0.0567
WFC 0.1769 0.0809
VIX 0.2500 0.1298

Table 6: Mean Daily Relative Contribution at τ = 2.5. Table shows the average relative contribution
of common jumps between eight stocks and the overall market for each year. Due to shorter data length,
VIX is excluded in calculating the mean value.

Year Mean

1998 0.0698
1999 0.0919
2000 0.0535
2001 0.0645
2002 0.0700
2003 0.0915
2004 0.0925
2005 0.0888
2006 0.0624
2007 0.0899
2008 0.0627
2009 0.0719
2010 0.0787
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Table 7: Mean Realized Correlation
BAC C JPM WPC CPB HNZ PEP SLE

1998 0.5079 0.5260 0.4927 0.4119 0.3189 0.2684 0.3168 0.3138
1999 0.4503 0.4767 0.4464 0.3426 0.2894 0.2356 0.2676 0.2109
2000 0.3147 0.3955 0.4058 0.2900 0.1738 0.1411 0.1833 0.1214
2001 0.4272 0.5292 0.4577 0.4356 0.3251 0.2594 0.3189 0.2517
2002 0.5475 0.6088 0.5287 0.5238 0.4282 0.4176 0.4281 0.3749
2003 0.5280 0.6037 0.5432 0.5258 0.4715 0.4435 0.4469 0.4115
2004 0.4247 0.4969 0.4897 0.4709 0.4044 0.3824 0.3768 0.3641
2005 0.5130 0.4885 0.4602 0.4957 0.4029 0.4130 0.4247 0.3073
2006 0.4439 0.4463 0.4447 0.4293 0.3091 0.2397 0.3059 0.2297
2007 0.4760 0.4739 0.5042 0.4589 0.3382 0.3929 0.3574 0.2876
2008 0.5404 0.5365 0.5363 0.5083 0.4097 0.4172 0.3837 0.4352
2009 0.4805 0.3465 0.5069 0.4916 0.3490 0.4482 0.3768 0.4024
2010 0.4776 0.3367 0.4883 0.4840 0.3457 0.4085 0.3589 0.3312

Table 8: Mean Relative Contribution of co-jumps at τ=2.5
BAC C JPM WPC CPB HNZ PEP SLE

1998 0.0821 0.0538 0.0751 0.0663 0.0689 0.0731 0.0818 0.0571
1999 0.1939 0.0845 0.0863 0.0859 0.0792 0.0632 0.0672 0.0748
2000 0.0582 0.0716 0.0776 0.0503 0.0616 0.0383 0.0294 0.0409
2001 0.0649 0.0775 0.0620 0.0878 0.0682 0.0568 0.0567 0.0420
2002 0.0551 0.0637 0.0821 0.0800 0.0735 0.0707 0.0554 0.0800
2003 0.0759 0.0941 0.0875 0.0935 0.1177 0.1043 0.0816 0.0777
2004 0.0942 0.0876 0.1007 0.1040 0.1125 0.0776 0.0877 0.0756
2005 0.0980 0.0838 0.0845 0.0985 0.0735 0.0972 0.0831 0.0921
2006 0.0949 0.0957 0.0921 0.0770 0.0598 0.0515 0.1266 -0.0987
2007 0.0889 0.0807 0.0930 0.1021 0.0718 0.1173 0.0448 0.1206
2008 0.0667 0.0581 0.0659 0.0686 0.0564 0.0587 0.0581 0.0694
2009 0.0592 0.0655 0.0688 0.0665 0.0328 0.1086 0.0876 0.0860
2010 0.0781 0.0649 0.0748 0.0718 0.1003 0.1118 0.1091 0.0190

.
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