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Abstract

In this dissertation, we study the dynamics and steady-states of thin liquid films on

solid substrates using lubrication equations. Steady-states and bifurcation of thin

films on chemically patterned substrates have been previously studied for thin films

on infinite domains with periodic boundary conditions. Inspired by previous work,

we study the steady-state thin film on a chemically heterogeneous 1-D domain of

finite length, subject to no-flux boundary conditions. Based on the structure of

the bifurcation diagram, we classify the 1-D steady-state solutions that could exist

on such substrates into six different branches and develop asymptotic approxima-

tion of steady-states on each branch. We show that using perturbation expansions,

the leading order solutions provide a good prediction of steady-state thin film on a

stepwise-patterned substrate. We also show that all of the analysis in 1-D can be

easily extended to axisymmetric solutions in 2-D, which leads to qualitatively the

same results.

Subject to long-wave instability, thin films break up and form droplets. In pres-

ence of small fluxes, these droplets move and exchange mass. In 2002, Glasner and

Witelski proposed a simplified model that predicts the pressure and position evo-

lution of droplets in 1-D on homogeneous substrates when fluxes are small. While

the model is capable of giving accurate prediction of the dynamics of droplets in

presence of small fluxes, the model becomes less accurate as fluxes increase. We

present a refined model that computes the pressure and position of a single droplet
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on a finite domain. Through numerical simulations, we show that the refined model

captures single-droplet dynamics with higher accuracy than the previous model.
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1

Introduction

Thin liquid films on solid substrates are often seen in nature and technology, for ex-

ample, as tear film on the eye, lubricating coating and functional layers in microfluidic

devices [66]. Microfluidics refers to systems that manipulate small amounts of flu-

ids, using channels with dimensions at scale of micrometers [69]. Microfluidics has

found many applications in cell biology and chemical synthesis [47, 69]. In biology,

microfluidic system is used to manipulate cells, such as separation of motile and non-

motile cells, observing and growing cells. Compared to conventional tissue culture

dish methods, analysis of stem cells can be done in a much more systematic way us-

ing microfluidics devices [74]. The development of practical microanalytical systems

has also advanced the technology in the analysis of biological samples such as blood,

faeces and soil [69]. In chemistry, microfluidic devices have been recently used as a

powerful tool for process intensification because of their low fabrication costs, safe

operation, and capability of integrating multiple basic steps onto one chip [47].

Thin liquid films on solid surfaces experience liquid-solid intermolecular forces,

which are forces that mediate interaction between liquid film and its supporting solid

substrate. Early studies showed that the consideration of interactions between two
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surfaces approaching each other is equivalent to the consideration of the disjoining

pressure, which is a pressure due to attractive molecular forces and dependent on

film thickness [10]. At the surface of the liquid film, the liquid molecules do not have

neighboring molecules in all directions to provide a balanced net force. Unbalanced

forces cause the liquid-gas interface to behave like a stretched membrane under sur-

face tension [73]. In scenarios where thin films flow on inclined planes, gravity is

dominant, causing changes in the shape of the free surface and dynamics of the fluid

front. These forces could all drive the motion of liquid films, leading to complex

patterns and phenomena such as formation of droplets, rupture and viscous fingers,

which have attracted great research interests.

Films are considered to be thin if their thickness is much smaller than the length

in the direction of their flow. With the small aspect ratio of thin films, the Navier-

Stokes equation describing the motion of an incompressible Newtonian liquid film

can be approximated by a single nonlinear partial differential equation (PDE). The

simplified PDE, which is also known as a lubrication equation, describes the evolution

of the free surface over time. Once the solution to the free surface is known, the

velocity, pressure and energy of the fluid film can all be computed from the film

thickness. This approximation, which has provided a means for understanding thin

film flows, has been shown to be robust and capable of producing results that agree

with experiments in previous studies [44]. This chapter briefly reviews the literature

of lubrication theory applied to different physical contexts and concludes with the

plan of the dissertation.

1.1 Thin films on homogeneous substrates

It has been shown that under the influence of surface tension, film droplets are spher-

ical in shape so that the surface area exposed is minimized given a fixed volume [17].
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However, classical solutions given by spherical shapes are inadequate in capturing

the profiles of thin films in all physics phenomena [49]. The equilibrium shape of a

liquid droplet resting on a horizontal solid surface is determined by a combination of

surface tension and other external forces. A droplet forms an angle with the surface

at the intersection of the liquid-solid interface. This angle, which is also known as

the contact angle, is characteristic of a property of a solid surface. This property is

often referred to as wettability and determines the tendency of a fluid to spread on

a solid surface. The wetting property of the supporting solid substrates is typically

modeled and incorporated into the framework of lubrication theory through disjoin-

ing pressure. This property of the solid substrates plays a key role in determining

the equilibrium shape of a liquid droplet and has attracted increasing research at-

tention due to its wide application in oil recovery, liquid coating and inkjet printing

[8, 23, 59, 64, 73, 75]. As a consequence, more thorough analysis and modeling are

needed to deepen the understanding of the influence of wettability on thin films.

Understanding the equilibrium of thin films is particularly important for un-

derstanding features of thin films such as contact angle, pressure, and position

of the droplets [49]. The steady-states of thin films have been previously studied

through the approach of numerical methods, asymptotic approximations and ellip-

soidal droplet modeling [26, 27, 48, 49]. The different forms of disjoining pressure

considered directly affects the complexity of the steady-state formulation and com-

putations. Profiles of steady-state solutions under the action of different forms of

intermolecular potentials have been investigated and described [7, 26, 27]. In one

study, Glasner and Witelski considered the steady-state thin film parameterized by

uniform pressure on an infinite domain. Through asymptotic matching, they showed

that at leading order, large film droplets could be well approximated by parabolas

[26]. In another study, Bertozzi et al. performed similar analysis and computa-
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tions for steady-state thin films on finite domains. Asymptotic analysis on both the

bifurcation structure and solution profile of such thin films were presented [7].

The presence of intermolecular interaction between the film and solid substrate

can also cause instabilities that lead to the formation of droplets. This process is

also known as dewetting. In the late stages of dewetting, droplets evolve slowly

by means of translation and mass change [25]. The decrease in the total number of

droplets as a result of the droplet movement and mass change is known as coarsening.

One technique to study the coarsening dynamics is through Coarsening Dynamical

System (CDS) [68]. The characterization of coarsening process using CDS allows for

an understanding of both the associated scaling laws and statistical properties of the

coarsening behavior [16]. In 2002, by introducing a slow time scale and employing

solvability conditions given by Fredholm alternative, Glasner and Witelski derived a

finite dimensional system of ODEs from the full evolution equation of thin films in

1-D that is capable of predicting the coarsening dynamics of droplets. The reduced

ODE system is similar to that derived from Cahn-Hilliard equation, which describes

the evolution of the position of kinks [2, 4]. Glasner and Witelski demonstrated

the success of their ODE approximation in giving good predictions of large droplets

behavior in presence of small imposed fluxes at the boundary of large finite domains

[26].

1.2 Thin films on heterogeneous substrates

Much theoretical understanding of thin films has been limited to films on homoge-

neous substrates. However, most of the naturally occurring surfaces are chemically

heterogeneous due to contamination, cavities, etc. Tailored chemically heterogenous

substrates are also increasingly used for the engineering of micropatterns of thin films

[76]. Liquid flow on chemically patterned substrate has been studied extensively due
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to its various applications in microfluidics that require accurate dispensing and distri-

bution of liquids on solid surfaces. One example of such applications is in the design

of the chemical patterns of the nozzle plate in inkjet print heads [9, 42]. Inkjet

technology makes use of tiny ink drops to recreate digital image. Due to its non-

contacting nature, it can be used to print on various media. It is also widely used

to print electronics. Several types of important components have been fabricated by

inkjet printing technique [39]. Designing suitable chemical patterns to control the

motion of the ink and quantifying the characteristics of wetting layer on the nozzle

plate are critical to improving the printing quality and resolution [9, 42]. Another

application can be found in microcontact printing where a stamp is used to transfer

the material onto a substrate to create a desired pattern. The pattern is generated

through contact between the stamp and the surface [20]. Understanding the shape

of liquids at equilibrium on chemically patterned substrate is essential to optimizing

the printing process [20]. Chemically patterned substrates also have applications

in electronic industry. Wang et al. developed a dewetting process for fabricating

polymer field effect transistors where conducting polymer is used as electrodes [67].

A patterned substrate with a hydrophobic stripe in the middle is used to separate

a liquid droplet into two parts where the two dewetted parts are used as the source

and drain electrodes. Controlling the chemical patterning is crucial for fabricating

film transistors with short-channel that has length at micro/nanometer scale [67].

Previously, Kargupta et al. [35, 36, 37] studied the instability and pattern forma-

tion in thin film on chemically heterogeneous substrates with a stepwise pattern. On

such substrates, they identified a mode of surface instability caused by the spatial

gradient of intermolecular force across the solid substrate. By performing a linear

stability analysis of the thin film equation, they computed the characteristic time

scale for the growth of instability and verified that the time scale is inversely pro-
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portional to the potential difference caused by heterogeneity. They showed that the

introduction of heterogeneity could destabilize spinodally stable films and reduce

the time of rupture for thicker films [35, 37]. Lenz and Lipowsky investigated the

morphologies of different equilibrium states of liquids on a surface that consists of

hydrophilic domains in a hydrophobic matrix. By minimizing the interfacial free

energy subject to constant liquid volume, they found that the different morphologies

are determined by the liquid volume and the area fraction of the hydrophilic do-

mains. They also identified the transition among three different regimes using liquid

volume as a parameter [45]. On a chemically heterogeneous substrate, the contact

angle may no longer be described by Young’s equation. Kooij et al. showed that

on a stripe-patterned surface, the contact angle formed can be well approximated

in terms of the width ratio of the two different stripes using Cassie’s law [42]. Kas-

par et al. explored the effect of alternating hydrophobic and hydrophilic area of a

rectangular micro-arrayed surface on the overall confinement and spillover of water

droplets. They derived the contact angle as an arctan function of droplet height,

using the assumption of a spherical cap geometry and a coefficient that accounts for

the properties of the confining surface [38].

In the framework of lubrication approximation, Thiele et al. [66] studied the ef-

fect of a smoothly patterned substrate on stationary droplet profiles using wettability

as a control parameter. Their work considered heterogeneous substrate modeled by a

small-amplitude sinusoidal modulation. By varying the amplitude and periodicity of

the chemical pattern, they identified the parameter range where the pinning mecha-

nism emerges from coarsening. Kao et al. [34] also studied the effect of introducing a

small sinusoidal wettability contrast on the steady-state thin film with and without

rupture. In addition, Kao et al. [34] also considered substrates with small-amplitude

square-wave patterning. Imperfect bifurcation was observed in solutions on hetero-
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geneous substrates. By using weakly nonlinear analysis, they derived predictions for

steady-state profile, stability and rupture time of thin films on square-wave patterned

substrates in the limit of small wettability contrast. By using both experiments and

numerical simulations, Brasjen and Kondic [11, 41] studied the dynamics of fluid

fronts of films on chemically patterned heterogeneous substrate.

1.3 Plan of the dissertation

This dissertation focuses on the mathematical models of dynamics and steady-states

of thin liquid films on chemically homogeneous and heterogeneous substrates. The

plan of this dissertation is shown as follows.

• In Chapter 2, we show the derivation of the lubrication equation from the

Navier-Stokes equation, which describes the flow of thin liquid film of viscous

fluid. In particular, we consider the lubrication approximation for thin films

driven by intermolecular forces and surface tension.

• In Chapter 3, we present the formulation and asymptotic analysis of 1-D and

axisymmetric steady-state solutions on chemically homogeneous substrates.

We review previous analysis on large homoclinic droplets and derive a new

analytical approximation for small homoclinic droplets in 1-D. We also exam-

ine and discuss the stability and bifurcation of both 1-D and axisymmetric

solutions on finite homogeneous substrates.

• In Chapter 4, we study the 1-D steady-state solutions of thin films on chemically

heterogeneous substrates. We consider the thin film flow on stepwise patterned

substrates of finite length. Based on the structure of the bifurcation diagram,

we classify all the steady-state solutions that could exist on such substrates

into six different categories, which correspond to the six different branches of
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the bifurcation curve. For each branch, we derive the asymptotic prediction of

the steady-state profile and study the asymptotic behavior of the solution in

the limit of large heterogeneity contrast. We show that the analysis for 1-D

solutions can be easily extended to axisymmetric solutions.

• In Chapter 5, we first review and examine the reduced finite-dimensional ODE

model proposed by Glasner and Witelski, which predicts the dynamics of

droplets on large finite domains. Through numerical simulations, we illus-

trate the limitation of the model in presence of increased fluxes. By modifying

the asymptotic expansion used in the original ODE model, we propose a re-

fined model that predicts the single-droplet behavior on finite domains subject

to fluxes. We show the refined model produces predictions that improve the

accuracy of the previous model.

• In Chapter 6, we conclude the dissertation with a summary and discuss future

directions of research that could arise from our current studies, including the

steady-states and dynamics of thin films on two-dimensional surfaces, efficient

computational methods for solving thin films on two-dimensional domains and

the dewetting and coarsening process of thin films on chemically heterogeneous

substrates.
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2

Lubrication equation

2.1 Derivation

We follow the approach of O’Brien et al. [52] and Oron et al. [55], which exploits the

small aspect ratio and the method of asymptotic expansion to show the derivation of

the lubrication approximation. The Navier-Stokes equation describing incompress-

ible Newtonian flow in two dimensions is given by

ρput ` uux ` wuzq “ ´px ` µpuxx ` uzzq ´ φx (2.1a)

ρpwt ` uwx ` wwzq “ ´pz ` µpwxx ` wzzq ´ φz (2.1b)

ux ` wz “ 0 (2.1c)

where u “ pu,wq is the velocity vector, p is the pressure, ρ is the density, µ is the

viscosity and φ represents the potential of other body forces. A schematic diagram

illustrating a layer of a thin film resting on a flat horizontal solid surface is shown in

Figure 2.1.

We nondimensionalize the system by writing x “ Lx̃, z “ Hz̃, u “ Uũ, w “ Ww̃,

t “
L

U
t̃, p “ P p̃ and φ “ Φφ̃. Assume

H

L
“ ε ! 1. The incompressibility condition

(2.1c) gives W “ εU . To balance ´px and µuzz on the right hand side of (2.1a), let
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Figure 2.1: Schematic diagram of thin films on a flat horizontal solid surface

P “
µU

ε2L
. The scaled equations become

ε2Repũt̃ ` ũũx̃ ` w̃ũz̃q “ ´p̃x̃ ` µpε
2ũx̃x̃ ` ũz̃z̃q ´ φ̃x̃ (2.2a)

ε4Repw̃t̃ ` ũw̃x̃ ` w̃w̃z̃q “ ´p̃z̃ ` µpε
4w̃x̃x̃ ` ε

2w̃z̃z̃q ´ φ̃z̃ (2.2b)

ũx̃ ` w̃z̃ “ 0 (2.2c)

where Re “
ρLU

µ
. Here, we assume Re “ Op1q and consider thin film driven by

surface tension, so surface tension dominates. Let σ represent surface tension and T

denote the stress tensor. Since for Newtonian fluids, Tij “ ´pδij ` µp Bui
Bxj
`
Buj
Bxi
q, we

nondimensionalize T using the scale of P , i.e.

T “ T̃
µU

ε2L
(2.3)

In non-dimensional form, we have

T̃11 “ ´p̃` 2ε2ũx̃ (2.4a)

T̃12 “ T̃21 “ εũz̃ ` ε
3w̃x̃ (2.4b)

T̃22 “ ´p̃` 2ε2w̃z̃ (2.4c)

This shows to leading order, T̃ij “ ´p̃δij ` Opεq, regardless of the scale of U . Let

h̃px̃, t̃q be the nondimensionalized free surface. The normal stress balance at the

surface is given by

n ¨T ¨ n “ σp∇ ¨ nq (2.5)
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At the free surface z “ h̃px̃, t̃q, the normal vector is given by n “ p´εh̃x̃, 1qp1 `

ε2h̃2
x̃q
´ 1

2 . To leading order, the jump in normal stress across the interface must

balance the curvature force. This leads to the velocity scale U “
σε3

µ
. It follows that

the normal stress balance condition then yields

p̃ “ ´h̃x̃x̃ (2.6)

The surface tension σ is a constant. The shear stress on the surface is zero due to

the stress balance in the tangential direction, given by

n ¨T ¨ t “ ∇σ ¨ t (2.7)

For convenience, we now remove „ in the variables in (2.2a)-(2.2c) to denote the

non-dimensional form of (2.1a)-(2.1c). Ignoring terms of higher order, (2.2a)-(2.2b)

become

uzz “ px ` φx (2.8a)

0 “ pz ` φz (2.8b)

Integrating (2.8b) with respect to z, we obtain

p` φ “ p̄pxq (2.9)

where p̄pxq denotes the variable of integration. Using (2.6) at z “ hpx, tq, we get

p “ ´φ´ hxx ` φ

ˇ

ˇ

ˇ

ˇ

z“h

(2.10)

The supporting solid substrates exert intermolecular forces on thin films. This inter-

molecular interaction is described by disjoining pressure, which is the excess pressure

required to evaporate liquid molecules due to the presence of solid-liquid intermolec-

ular forces [33]. Classic theory predicts that the disjoining pressure is a function of
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film thickness h so φ “ φphq [31]. It is obtained by a pairwise summation of interac-

tions among molecules of the thin films and the substrates [62]. This implies φx “ 0

and px is independent of z. Now we integrate (2.8a) in the z direction and apply the

shear stress condition uzphq “ 0. Since px is independent of z, we have

pxph´ zq “ ´uz (2.11)

Next, we integrate (2.11) in the z direction again and apply the no-slip boundary

condition up0q “ 0. This gives

u “ px

ˆ

1

2
z2
´ hz

˙

(2.12)

If we use the no-slip boundary condition wp0q “ 0 to rewrite the incompressibility

condition (2.2c) as

w “ wp0q ´

ż h

0

uxdz “ ´

ż h

0

uxdz (2.13)

then by combining (2.13) with the kinematic boundary condition ht ` uhx “ w, we

have

Bh

Bt
“

1

3

B

Bx

ˆ

h3 Bp

Bx

˙

(2.14)

where p “ ´φ ´ hxx ` φ

ˇ

ˇ

ˇ

ˇ

z“h

. In the problem of our interest, we primarily consider

external force given by the intermolecular interaction between fluid film and solid

substrate, which is described by disjoining pressure. Here we denote the disjoining

pressure by Πphq so the pressure p is given by

p “ Πphq ´ hxx (2.15)

The form of the disjoining pressure Πphq is discussed in more detail in Section 2.2.
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2.2 Disjoining pressure

The disjoining pressure Πphq describes the interaction between the liquid film and

the supporting solid substrate. As the distance between two interfaces decreases, the

two interfaces experience increasingly repulsive intermolecular force. In this study,

we consider a disjoining pressure of the form

Πphq “ Aε´1
´ ε

h

¯n
„

1´
´ ε

h

¯m´n


(2.16)

Specifically, we consider pn,mq “ p3, 4q, which is a 3-4 power law potential used in

[26, 53, 54]. For pn,mq “ p3, 4q, the disjoining pressure can also be conveniently

written as

Πphq “ A

ˆ

ε2

h3
´
ε3

h4

˙

(2.17)

The constant A is called Hamaker constant, which measures the strength of inter-

molecular interaction between the thin liquid film and solid substrate. It determines

the equilibrium contact angle of the droplets formed on the substrates. It is made

spatially dependent to model striped chemical patterning of solid substrates in Chap-

ter 4. ε ą 0 is a small positive parameter that sets the scale of the minimum film

thickness. Note that this ε is not the same ε introduced in the nondimensionalization

of the Navier-Stokes equation described in Section 2.1.

The interaction between two interfaces can also be discussed in terms of the

energy potential Uphq where
dU

dh
“ Πphq. A sketch of the disjoining pressure given

by (2.17) with parameters A “ 1 and ε “ 0.1 and its corresponding potential is

shown in Figure 2.2. Note that Πpεq “ 0 and Πphq attains a maximum at h “
4

3
ε.

The potential Uphq has a global minimum at h “ ε.

The dewetting of thin films is the process of destabilization of films that leads

to the formation of connected droplets. Two main dewetting processes have been
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Figure 2.2: Disjoining pressure of the form (2.17) and its corresponding potential,
with A “ 1 and ε “ 0.1.

identified, i.e. nucleation of holes and the amplification of perturbations at the

free surface. The latter is a consequence of destabilizing intermolecular force and

is also known as spinodal dewetting. The dynamics and instability of thin films

are controlled by both surface tension and intermolecular force [28]. It has been

shown that unstable modes exist for U2phq ă 0 [32]. The inclusion of intermolecular

force in lubrication approximation is important for capturing dewetting mechanisms

observed in experiments.

2.3 Summary

In this chapter, we presented the derivation of lubrication equation that describes

the motion of thin liquid films driven by surface tension and intermolecular force

on 1-D solid surfaces. More specifically, we discussed the form of the disjoining

pressure of our consideration and its potential influence on the overall dynamics of

thin liquid films. Previous studies have shown that if the disjoining pressure only

models the attractive force without the repulsive force, i.e. Πphq “
A

h3
, then rupture

of thin films can occur when solutions cease to exist in finite time, i.e. when film

thickness hpx, tq Ñ 0 for some x [15, 18, 22, 34, 46, 58, 70]. However, if we assume
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disjoining pressure of the form (2.16) which includes both attractive and repulsive

forces, then for ε ą 0, the lubrication equation (2.14) has solutions that exist for all

time [7]. Lubrication equation has been an effective approach for the investigation of

the evolution and pattern formation of thin liquid films under the action of different

forms of intermolecular forces [25, 26, 53, 54, 57, 62]. The growth of instabilities

caused by intermolecular forces eventually results in the formation of quasi-stable

array of droplets separated by ultra-thin films. A more detailed description of the

mechanisms of the evolution is discussed in Chapter 5.
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3

Steady-states and bifurcations

In this chapter, we study the steady-state solutions of the evolution equation of thin

films on r´L,Ls given by (2.14), which, after rescaling, is given below.

Bh

Bt
“
B

Bx

ˆ

h3 Bp

Bx

˙

(3.1)

where

p “ Πphq ´
B2h

Bx2
(3.2)

It is convenient to write (3.1) as

Bh

Bt
“
BJ

Bx
(3.3)

where J is the flux given by

J “ h3 Bp

Bx
(3.4)

The energy associated with (3.1) is given by

Ephq “

ż L

´L

Uphq `
1

2
h2
x dx (3.5)
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The mass of the fluid film on r´L,Ls is given by

m “

ż L

´L

hpx, tq dx (3.6)

If we consider (3.1) subject to no-flux boundary conditions, i.e.

Jp˘Lq “ 0,
Bh

Bx
p˘Lq “ 0 (3.7)

then
dm

dt
“ 0 and the total fluid mass is conserved in time. The condition

Bh

Bx
p˘Lq “

0 means that the vertical wall at the boundary is non-wetting and that there is

no meniscus formed at the boundary. Moreover, this condition allows for an even

extension of the solution to obtain a periodic array of droplets. If we use product

rule to expand the flux J , we have

J “ h3

ˆ

Π1phq
Bh

Bx
´
B3h

Bx3

˙

(3.8)

It follows that the boundary condition (3.7) then reduces to

Bh

Bx
p˘Lq “ 0,

B3h

Bx3
p˘Lq “ 0 (3.9)

Subject to no-flux boundary conditions, the rate of energy dissipation is given by

dE

dt
“ ´

ż L

´L

h3p2
x dx ď 0 (3.10)

In Section 3.1, we present the nontrivial steady-state solutions subject to no-flux

boundary conditions, which are governed by a second order ODE and parametrized

by uniform pressure p ” p̄. We briefly review the phase plane analysis of the steady-

state ODE and illustrate the existence of a homoclinic orbit in the phase plane

that encloses all of the periodic solutions. To provide an analytical description of

17



the steady-state profiles, we first review the asymptotic approximations previously

derived for homoclinic droplets in the limit of large mass. Then we develop a new

approximation for homoclinic droplets in the limit of small mass by introducing an

approximate steady-state equation through a minimization approach.

In Section 3.3, we study the stability of steady-states on finite domains through

linear stability analysis. By investigating the bifurcation diagram of steady-states

on finite domains, we illustrate the stability change of steady-states as pressure p̄

and period L cross critical values. We show through numerical computations of

bifurcation diagrams that in the limit of small mass and p Ñ pmax, the stability of

the periodic steady-states has a dependence on L. For a small droplet with p̄ near

pmax, there exists a critical period L˚, at which the droplet changes from being stable

to unstable. We also show that as the period L increases, the bifurcation diagram

goes through a structural change near the bifurcation point where small-mass droplet

bifurcates from flat film.

3.1 Steady-state solutions in 1-D

To study the steady-states of (3.1), let
Bh

Bt
“ 0. Subject to no-flux boundary condi-

tions Jp˘Lq “ 0, we have J “ h3 Bp

Bx
” 0. It follows that

Bp

Bx
” 0 and consequently

p ” p̄ uniformly for some constant p̄ on r´L,Ls. Hence, the steady-states of (3.1)

subject to no-flux boundary conditions have uniform constant pressure p ” p̄ and

are governed by

d2h

dx2
“ Πphq ´ p̄ (3.11)

The solutions hpx; p̄q are a class of solutions parametrized by uniform pressure p ” p̄.

Let hc be the local maximum of Πphq so Π1phcq “ 0. Considering a disjoining pressure
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Πphq of the form (2.17), i.e.

Πphq “ A

ˆ

ε2

h3
´
ε3

h4

˙

(3.12)

with Hamaker constant A “ 1, we have hc “
4

3
ε. pmax “ Π

ˆ

4

3
ε

˙

“
27

256ε
is the

maximum of the pressure for all nontrivial steady-state solutions.

To do a phase plane analysis for the steady-state solutions, we rewrite the second

order ODE (3.11) as a system of first order ODEs, given by

#

h1 “ y

y1 “ Πphq ´ p̄
(3.13)

Πphq “ p̄ has two roots for 0 ă p̄ ă pmax, with one root smaller than hc “
4

3
ε and

the other root larger than hc “
4

3
ε. Denote the smaller root by hmin and the larger

root by hcen. The Jacobian of the system (3.13) is given by

J “
„

0 1
Π1phq 0



(3.14)

The eigenvalues of the Jacobian are given by λ2 “ Π1phq. At h “ hmin, λ2 “

Π1phminq ą 0 so λ “ ˘
a

Π1phminq and hmin is a saddle point. At h “ hcen, λ2 “

Π1phcenq ă 0 so hcen is a center. There is a homoclinic orbit that passes through the

saddle point phmin, 0q in the phase plane h vs. hx. Note that hmin is the minimum

film thickness of the homoclinic solution. This homoclinic orbit encloses all of the

periodic solutions that orbit around the center phcen, 0q. Figure 3.1 (a) illustrates the

phase plane trajectory of the homoclinic orbit where hx Ñ 0 as hÑ hmin (solid black

curve), a periodic solution bounded inside the homoclinic orbit (red dotted curve),

and a solution that lies entirely outside of the homoclinic orbit with hx Ñ ˘8 as
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(a) (b)

Figure 3.1: (a) Phase plane trajectory of the homoclinic orbit (solid black curve), a
periodic solution (red dotted curve) and a solution that lies outside of the homoclinic
orbit (dashed blue curve). (b) Profile of the three solutions corresponding to the three
trajectories shown in (a), with parameter values p̄ “ 0.2, ε “ 0.1.

hÑ 0 (dashed blue curve). Note that if a steady-state lies outside of the homoclinic

orbit, then hx Ñ 8 as h Ñ 0`. This type of steady-state solutions will not be

attained from the time-dependent PDE [7]. As a result, we will focus primarily on

the periodic steady-state and homoclinic steady-state solutions. Figure 3.1 (b) shows

the three droplet profiles that correspond to the three different trajectories plotted

in Figure 3.1 (a).

3.1.1 Large homoclinic droplets

Multiplying both sides of (3.11) by
dh

dx
and integrating, we can write (3.11) as a first

order ODE given by

1

2

ˆ

dh

dx

˙2

“ Uphq ´ p̄h` C (3.15)
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where Uphq is the potential such that
dU

dh
“ Πphq and C is some constant. Corre-

sponding to the disjoining pressure given by (3.12), Uphq is given by

Uphq “ ´
1

2

ε2

h2
`

1

3

ε3

h3
(3.16)

Now we determine the constant C for the homoclinic solution. In the phase plane,

we know h Ñ hmin as hx Ñ 0. This suggests (3.15) for the homoclinic solution is

given by

1

2

ˆ

dh

dx

˙2

“ Rphq (3.17)

where

Rphq “ Uphq ´ p̄h´ Uphminq ` p̄hmin (3.18)

Let hmax denote the maximum film thickness of the homoclinic solution. At the

maximum of the film droplet, hx “ 0, so we can compute hmax by solving Rphmaxq “

0.

Asymptotic analysis for large droplets has been previously studied [7, 25, 26]. A

droplet is considered large if hmax " ε and consequently droplet width and droplet

mass are also large compared to ε. This also means the droplet pressure is small.

Specifically, analysis has been performed for large-mass droplets in the limit ε Ñ 0

[26]. The structure of a large-mass droplet has been classified into three different

regimes, (i) droplet core, (ii) contact line and (iii) ultra-thin film [26], as illustrated

in Figure 3.2. The droplet core is a region where the majority of the fluid film

concentrates and h “ Op1q. The ultra-thin film region is a region where the solution

is characterized by a uniform and flat film with h „ ε. The contact line region is

an intermediate region that connects the droplet core and ultra-thin film where the

matching between the two regions occurs.
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Figure 3.2: Classification of a large homoclinic droplet into three regions.

For large-mass droplets, inside the droplet core, hmax “ Op1q. As εÑ 0, Πphq “

Opε2q ! p̄. At Op1q, (3.11) can be described by

d2h

dx2
„ ´p̄ (3.19)

The profile of a large droplet for 0 ă x ! w, where w is a measure for the droplet

width to be discussed shortly, can thus be described by the parabola

hpxq „ ´
1

2
p̄x2

` hmax (3.20)

For a large droplet, in the limit εÑ 0, an effective width estimate can be computed

using (3.20) by solving hpwq „ 0, which gives

hmax „
1

2
p̄w2 (3.21)

Homoclinic solution exists on the infinite domain p´8,8q. Outside of p´w,wq,

hpxq ´ hmin is exponentially small.

In the ultra-thin film region, hpxq „ ε so hmin “ ε. To find an asymptotic

prediction of hmin, we seek solution Πphminq “ p̄ for hmin near ε. Writing out the
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Taylor expansion of Πphq near h “ hmin, we have

Πpεq ` Π1pεqphmin ´ εq „ p̄ (3.22)

Hence, to next order, hmin is given by

hmin „ ε`
ε2

p̄
(3.23)

By (3.23) and Uphq given in (3.16), we know Uphminq “ Op1q and phmin “ Opεq.

Hence, at Op1q, the equation Rphmaxq “ 0 is given by

p̄hmax „ ´Uphminq „ ´Upεq (3.24)

which yields

hmax „ ´
Upεq

p̄
“

1

6p̄
(3.25)

Equating (3.25) and (3.21) yields an estimate for width, given by

w „
1
?

3p̄
(3.26)

Besides the droplet width, Glasner and Witelski have also derived the equilibrium

contact angle formed by the droplet in the limit of small ε [26]. To derive the contact

angle, they focused on the solution in the contact line region. To match the droplet

core and ultra-thin film region, they rescaled the solution by writing hpxq “ εHpZq

for Z “
w ´ x

ε
. At Op1q, the steady-state equation (3.17)-(3.18) can then be written

in terms of HpZq as

1

2

ˆ

dH

dZ

˙2

“ UpεHq ´ Upεq (3.27)

As Z Ñ ´8, solution extends to the ultra-thin film region where HpZq Ñ 1 and

H 1pZq Ñ 0. As Z Ñ 8, the solution extends to the droplet core region where
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H Ñ O

ˆ

1

ε

˙

and thus UpεHq ! 1, yielding

1

2

ˆ

dH

dZ

˙2

“ ´Upεq (3.28)

Hence,

dh

dx

ˇ

ˇ

ˇ

ˇ

ˇ

w

“ ´
a

´2Upεq “ ´
1
?

3
(3.29)

The contact angle θ is thus
1
?

3
, which suggests that the equilibrium contact angle

of the homoclinic droplet is independent of the droplet pressure p̄.

3.1.2 Small homoclinic droplets

The analysis presented in Section 3.1.1 is valid for large drops where hmax “ Op1q.

As the droplet pressure p̄ increases and approaches pmax, hmax decreases and hmin

increases. The assumption Πphq ! 1 is no longer valid. The profile of the small

droplets can no longer be described by a parabola. Analytical solutions of small

droplets for disjoining pressure Πphq of power law pn,mq “ p2, 3q and pn,mq “ p3, 4q

have been previously studied [27, 49]. For pn,mq “ p2, 3q, Gomba et al. presented an

analytical solution of small droplets using arctanh function. However, the solution

hpx; p̄q was expressed implicitly [27]. Intyre et al. later derived an asymptotic expres-

sion for small steady-state droplets for disjoining pressure of the form pn,mq “ p3, 4q.

The solution was given in an implicit form and expressed in terms of elliptic inte-

grals. In this section, we study the profile of droplets in the limit of small mass and

present a new analytical description of these small droplets using an explicit hyper-

bolic trigonometric function. The new solution is attained by introducing and solving

an approximate steady-state equation. This new approximation can be conveniently

used to describe small homoclinic droplet profiles.
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In the limit p̄Ñ pmax, hmaxpp̄q ´ hminpp̄q “ Opεq. If we consider the Taylor series

expansion of Rphq at h “ hmin, then for h near hmin, we have

Rphq “
1

2
Π1phminqph´ hminq

2
`Op|h´ hmin|

3
q (3.30)

Similarly, using a Taylor series expansion for Rphq at h “ hmax, for h near hmax, we

have

Rphq “ Πphmaxqph´ hmaxq `Op|h´ hmax|
2
q (3.31)

In the limit p̄ Ñ pmax, hminpp̄q ă hpxq ă hmaxpp̄q. Suggested by (3.30)-(3.31), we

consider an approximation of Rphq, given by R̃phq of the form

R̃phq “ a2
ph´ hminq

2
phmax ´ hq (3.32)

for some constant a. We choose a ą 0 so that ‖
a

Rphq ´
b

R̃phq‖2 is minimized,

which yields

a “

şhmax

hmin

a

Rphqph´ hminq
?
hmax ´ hdh

şhmax

hmin
ph´ hminq

2phmax ´ hqdh
(3.33)

Figure 3.3 shows a comparison of the exact Rphq and its approximated version

R̃phq for p̄ “ 1.03. To obtain an approximate description of droplets in the limit of

small mass, we solve the approximate steady-state equation

dh

dx
“ ´

b

2R̃phq (3.34a)

hp0q “ hmax (3.34b)

The solution to (3.34a) subject to the condition (3.34b) is given by

h̃px; p̄q “ phmax ´ hminqsech2

˜

c

hmax ´ hmin

2
ax

¸

` hmin (3.35)

25



Figure 3.3: Exact Rphq compared with its approximate version R̃phq for p̄ “ 1.03

where hmin still denotes the minimum film thickness of the homoclinic droplet. The

approximate solution (3.35) captures the property that the solution exists on an in-

finite domain with a long tail that extends to ˘8 and hpx; p̄q Ñ hmin as x Ñ ˘8.

Figure 3.4 shows a comparison between the numerically solved steady-state homo-

clinic solution for p̄ “ 1.03 and the solution to the approximate equation (3.34a),

given by (3.35). The solid blue curve represents the numerical solution. The dashed

red curve represents the approximate solution. The numerical simulation results

suggest that (3.35) produces a good prediction of the droplet profile in the limit

pÑ pmax.

As can be observed from the solution computed both numerically and using (3.35),

droplets in the small mass limit are characterized by longer tails, compared to large

parabolic droplets. The width estimate for large droplets, given by (3.26), will no

longer be accurate for small droplets. To measure the width of small droplets more

effectively, we need a new width measure. By (3.17), we know for a full droplet on

r´L,Ls, the droplet attains a maximum at x “ 0 and is decreasing on r0, Ls.

dh

dx
“ ´

a

2Rphq (3.36)

Rearranging terms and integrating from hcen to hmax, we obtain the distance incre-
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Figure 3.4: Numerical solution of the droplet profile compared with the analyt-
ical solution to the approximate steady-state equation (3.34a) for p̄ “ 1.03. The
approximate solution is given by (3.35).

ment in x for hpxq to decrease from hmax to hcen. We denote this distance by w1.

Integration yields

w1 “

ż hmax

hcen

1
a

2Rphq
dh (3.37)

Note that where hpxq “ hcen, hpxq has an inflection point. To estimate the distance

in x for hpxq to decay from hcen to hmin, we use the tangent line of hpxq at x “ w1.

The slope of the tangent line is given by h1pw1q “ ´
a

2Rphcenq. The estimate of w2,

the distance in x for hpxq to decay from hcen to hmin computed using the tangent line

at x “ w1 is thus given by

w2 “
hcen ´ hmin
a

2Rphcenq
(3.38)

We measure the width w of small droplets by w “ w1 ` w2, i.e.

wppq “

ż hmax

hcen

1
a

2Rphq
dh`

hcen ´ hmin
a

2Rphcenq
(3.39)

Substituting R̃phq for Rphq in wppq gives

w „

?
2

a
?
hmax ´ hmin

arctanh

˜

c

1´
hcen ´ hmin

hmax ´ hmin

¸

`
hcen ´ hmin
a

2Rphcenq
(3.40)
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Homoclinic solutions have a tail that extends to ˘8. Numerically, we could

estimate the width of the droplet by introducing a small cut-off parameter δ and

integrating (3.36) from hmin ` δ to hmax, i.e.

w “

ż hmax

hmin`δ

1
a

2Rphq
dh (3.41)

Figure 3.5 (a) shows the droplet width vs. droplet pressure computed for large

droplets. The solid blue curve denotes the width estimate calculated by (3.41) for

δ “ 10´3, ε “ 0.1. The dotted black curve denotes the width estimate given by

(3.26). Figure 3.5 (b) shows the droplet width vs. droplet pressure computed for

small droplets. The solid blue curve denotes the width calculated using (3.41) for

δ “ 10´3, ε “ 0.1. The cross-dotted curve denotes the width estimate calculated by

(3.40). The square-dotted curve denotes the estimate given by (3.26). Since small

droplets are characterized by longer tails, the width approximation given by (3.26)

underestimates the true width of small droplets. The numerical simulation results

suggest that as p̄Ñ pmax, (3.40) produces a better width estimate for small droplets.

3.2 Steady-state axisymmetric solutions

If we assume the film on a 2-D domain to be axisymmetric around a point, the

thickness of the axisymmetric film hpr, tq on r P r0, Ls, subject to no-flux boundary

conditions, is described by

Bh

Bt
“

1

r

B

Br
prqq , q “ h3 B

Br

ˆ

Πphq ´
1

r

B

Br

ˆ

r
Bh

Br

˙˙

(3.42a)

Bh

Br
p0q “

Bh

Br
pLq “ 0, lim

rÑ0`
rqprq “ qpLq “ 0 (3.42b)
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(a) (b)

Figure 3.5: (a) Droplet width vs. p plotted for large droplets. The solid blue curve
denotes the width estimate calculated by (3.41) for δ “ 10´3, ε “ 0.1. The dotted
black curve denotes the width estimate given by (3.26). (b) Droplet width vs. p
plotted for small droplets. The solid blue curve denotes the width calculated using
(3.41) for δ “ 10´3, ε “ 0.1. The cross-dotted curve denotes the width estimate
calculated by (3.40). The square-dotted curve denotes the estimate given by (3.26).

Note that qprq has a singularity at r “ 0, so the condition
Bh

Br
p0q “ 0 is required to

ensure regularity of the solution at r “ 0. The steady-states for this problem can

still be parametrized by uniform pressure p ” p̄. It follows from (3.42a)-(3.42b) that

the steady-states for axisymmetric solution are described by

1

r

d

dr

ˆ

r
dh

dr

˙

“ Πphq ´ p̄ (3.43)

Using product rule to expand the derivative and multiplying both sides of (3.43) by

r, we have

rh2 ` h1 ´ rΠphq ` p̄r “ 0 (3.44a)

h1p0q “ h1pLq “ 0 (3.44b)

The mass of the axisymmetric solutions hpr; p̄q is given by m “ 2π

ż L

0

hpr; p̄qrdr.

For simplicity, we omit the factor of 2π in the rest of our studies on axisymmetric
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solutions so m is given by

m “

ż L

0

hpr; p̄qrdr (3.45)

In this section, we present asymptotic analysis for steady-state axisymmetric solu-

tions governed by (3.44a)-(3.44b) for Πphq of the form (2.17) in the limit εÑ 0. Note

that the ODE given by (3.44a) is no longer autonomous as in the 1-D scenario. For

each given p̄, there exists a droplet-type solution with its center and maximum film

thickness at r “ 0 as well as a ring-type solution with its maximum film thickness at

r “ L. In this section, we focus on the former, i.e. the droplet-type solution which

is monotonically decreasing on r0, Ls.

Assume the Hamaker constant A “ 1. In the limit ε Ñ 0, in the droplet core,

h “ Op1q so Πphq “ Opε2q ! 1. At Op1q, (3.44a) can be approximated by

rh2 ` h1 ` p̄r “ 0 (3.46)

The general solution to the ODE (3.46) has the form

hprq “ C1 lnprq ` C2 ´
1

4
p̄r2 (3.47)

where C1 and C2 are some constants. Applying the boundary conditions h1p0q “ 0

and hp0q “ hmax, we have

hprq „ ´
1

4
p̄r2

` hmax (3.48)

which suggests that in the limit εÑ 0, the leading order profile of a large axisymmet-

ric droplet can still be approximated by a parabola, but with a modified coefficient.

Let w denote the width of the droplet, which is the edge of support of the droplet.

Then an estimate of w could be obtained accordingly by setting hpwq „ 0, which

yields

hmax „
1

4
p̄w2 (3.49)
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Similar to 1-D steady-state solutions, by multiplying both sides of (3.46) by h1

and integrating, we could rewrite (3.46) as a first order ODE given by

1

2
h1prq2 ´ Uphq ` p̄h` Uphmaxq ´ p̄hmax “ ´

ż r

0

h1pzq2

z
dz (3.50)

where we used the boundary conditions hp0q “ hmax, h
1p0q “ 0. Note that the

integral

ż r

0

h1pzq2

z
dz is not singular for z Ñ 0 because in the droplet core,

h1prq2

r
„

1

4
p̄2r. Next, we apply the boundary conditions hpLq “ hmin, h

1pLq “ 0 to (3.50),

yielding

´ Uphminq ` p̄hmin ` Uphmaxq ´ p̄hmax “ ´

ż L

0

h1prq2

r
dr (3.51)

at r “ L. In the droplet core, hmax “ Op1q. In the outer region, for r " w, h1prq „ 0

and h2prq „ 0. It follows that

ż L

0

h1prq2

r
dr „

ż w

0

h1prq2

r
dr. By (3.44a), in the outer

region, Πphminq “ p̄ at leading order, so hmin „ ε. Hence, as ε Ñ 0, at Op1q, (3.51)

is given by

´ Upεq ´ p̄hmax “ ´

ż w

0

h1prq2

r
dr (3.52)

Substituting the leading order asymptotic prediction of the droplet core given by

(3.48) and (3.49) into (3.52), we obtain the leading order asymptotic prediction for

hmax and w in the limit εÑ 0, which is given by

hmax „ ´
2Upεq

p̄
, (3.53a)

w „
2
?

3p̄
. (3.53b)
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To derive the equilibrium contact angle of axisymmetric droplets in the limit εÑ 0,

we use a similar argument as illustrated in (3.27)-(3.29) for 1-D solutions. In the

contact line region, we rescale the solution by writing hprq “ εHpZq for Z “
w ´ r

ε

so at leading order, (3.50) reduces to

1

2
H 1
pZq2 “ UpεHq `

1

2
p̄hmax “ UpεHq ´ Upεq (3.54)

As Z Ñ ´8, H Ñ 1 and H 1pZq Ñ 0. As Z Ñ 8, UpεHq is negligible, so we have

H 1
pZq “

1
?

3
(3.55)

which shows that the equilibrium contact angle of the axisymmetric droplets is the

same as that of the 1-D droplets.

3.3 Stability and bifurcation

3.3.1 Bifurcation of 1-D solutions

In this section, we study the bifurcation of 1-D steady-state solutions on x P r0, Ls by

investigating the stability of various steady-states that could exist on r0, Ls. Specifi-

cally, we focus on droplet-type solutions that are monotonically decreasing on r0, Ls.

Each of these solutions is also the right half of a full droplet with period 2L that can be

extended periodically outside of r´L,Ls. To determine the stability of these steady-

state droplets, we use linear stability analysis. We write hpx, tq “ h̄px, p̄q ` σh1px, tq

for σ ! 1 to represent a solution slightly perturbed from the steady-state h̄px, p̄q.

Substituting hpx, tq “ h̄px, p̄q ` σh1px, tq into the evolution equation subject to no-

flux boundary conditions and neglecting terms of Opσ2q, we obtain a linear PDE

problem for h1px, tq given by

Bh1

Bt
“ Lh1 (3.56a)
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h1xp0q “ h1xpLq “ 0, h1xxxp0q “ h1xxxpLq “ 0 (3.56b)

where L is a linear operator defined by

Lg “ B

Bx

ˆ

h̄3 B

Bx

ˆ

Π1ph̄qg ´
B2g

Bx2

˙˙

(3.57)

The adjoint of L is given by

L˚g “
ˆ

Π1ph̄q ´
B2

Bx2

˙ˆ

B

Bx

ˆ

h̄3 Bg

Bx

˙˙

(3.58)

Using separation of variables, we could write the solution h1px, tq as

h1px, tq “
ÿ

n

cne
λntfnpxq (3.59)

where λn is the eigenvalue of the fourth order differential operator L, fnpxq is the

corresponding eigenfunction and cn “

ż L

0

h1px, 0qqnpxqdx for qn such that L˚qn “

λnqn.

Analyzing the stability of various steady-state solutions amounts to solving the

eigenvalue problem Lf “ λf . First, we start by analyzing the stability of flat film

solutions h̄pxq ” h̄. In this case, the eigenvalue problem Lf “ λf reduces to a fourth

order linear constant coefficient ODE given by

Π1ph̄qfxx ´ fxxxx “ λ̃f (3.60)

fxp0q “ fxpLq “ 0, fxxxp0q “ fxxxpLq “ 0 (3.61)

where λ̃ “
λ

h̄3
. Substituting fpxq “ cos

´nπx

L

¯

into the ODE yields

λn “ h̄3

ˆ

´
n4π4

L4
´
n2π2

L2
Π1ph̄q

˙

(3.62)
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for n “ 0,˘1,˘2, . . . . From (3.62), we know that if Π1ph̄q ą ´
n2π2

L2
, then λn ď 0.

If Π1ph̄q ă ´
n2π2

L2
, then λn ě 0, which makes the trivial steady-state unstable. For

h̄ ă
4

3
ε, Π1ph̄q ą 0 so h̄ is stable. For h ą

4

3
ε, Π1phq ă 0 and has a minimum

at h “
5

3
ε. If L ă

π
b

|Π1p5
3
εq|

, then Π1
ˆ

5

3
ε

˙

ą ´
π2

L2
and λn ă 0 for all n ě 1.

This suggests that for sufficiently small domain L, all eigenmodes are stable. For

L ą
π

b

|Π1p5
3
εq|

, there exists a range pha, hbq such that for ha ă h̄ ă hb, Π1ph̄q ă ´
π2

L2

and λ1 ą 0 where ha and hb are the positive roots of Π1phq “ ´
π2

L2
. For large domain

LÑ 8, ha Ñ
4

3
ε and hb Ñ

ˆ

3ε2L2

π2

˙
1
4

. This suggests that if we fix L ą
π

b

|Π1p5
3
εq|

,

then for extremely small and large film mass, the solution is stable. There exists an

intermediate film thickness range ha ă h̄ ă hb such that the solution is unstable.

Our goal is to study the stability of a nontrivial solution with pressure p ” p̄

and period 2L. To calculate the eigenvalues of Lf “ λf for a nontrivial steady-

state droplet h̄px, p̄q numerically, we discretize the linear operator L using a second

order central finite difference method, which leads to the eigenvalue problem for a

penta-diagonal matrix A. We use MATLAB’s built-in eigenvalue solver to find the

eigenvalues of A. To validate the numerical computation results given by MATLAB,

we first compare the numerical results with the analytical results for flat film so-

lutions. The exact eigenvalues of flat film solutions are given by (3.62). Let Repλq

denote the real part of an eigenvalue λ. Figure 3.6 shows max
n

Repλnq vs. p computed

for flat film solutions numerically in MATLAB and analytically using (3.62). The

numerical simulation results in Figure 3.6 suggest that the eigenvalues calculated by
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MATLAB agree very well with the exact eigenvalues for flat films.

Figure 3.6: Largest nonzero Repλq computed numerically in MATLAB and ana-
lytically using (3.62). L “ 3.5.

Next, we validate MATLAB’s eigenvalue calculation for nontrivial steady-states

h̄pxq. To this end, we initialize the full evolution PDE by hpx, 0q “ h̄pxq ` δg1pxq

where g1pxq is the normalized eigenfunction in L2 norm that corresponds to the

most unstable eigenmode. δ ! 1 is a small positive parameter. Let λ1 denote the

most unstable eigenvalue. If we evolve the PDE forward in time, then for short

time, we expect ‖hpx, tq ´ h̄pxq‖2 „ δeλ1t. Therefore, we compare ‖hpx, tq ´ h̄pxq‖2

computed numerically from the time-dependent PDE with δeλ1t for λ1 computed

using the eigenvalue solver in MATLAB. Figure 3.7 shows the rate at which hpx, tq

moves away from h̄pxq plotted in semi-log scale for short time. This further confirms

the numerical accuracy of the eigenvalue calculations for nontrivial steady-states in

MATLAB. In all of our calculations, all eigenvalues are real with no imaginary part.

Now we employ MATLAB’s eigenvalue solvers to investigate the stability of

steady-states on r0, Ls. First, we fix L and study the stability of solutions as the
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δeλ1t
‖h(x, t) − h̄(x)‖2
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Figure 3.7: Growth rate of ‖hpx, tq´h̄pxq‖2 plotted in semi-log scale for short time.
Results of time-dependent PDE simulations compared with eigenvalue predictions
with parameter values L “ 5, p̄ “ 0.92, δ “ 10´5.

droplet pressure p changes. As we vary the pressure p̄, the droplet mass m changes.

For a fixed L, for extremely large mass, there is no droplet-type solution. Only triv-

ial flat film solutions h̄pxq ” h̄ exist. Figure 3.8 (a) shows the mass m vs. pressure

p of droplets with L “ 2.5 for large m. Figure 3.8 (b) shows the eigenvalue com-

puted by continuation in droplet mass. Figure 3.8 (c) shows the eigenvalue plotted

against the droplet pressure as the droplet mass changes. In Figure 3.8 (a)-(c), The

blue solid curve represents nontrivial steady-states. The red curve represents flat

film solutions. As can be observed from Figure 3.8 (a), as film mass decreases from

large mass, nontrivial steady-states first start to exist as the mass passes through

some critical m “ ma. Besides ma, there also exists a mass mb ă ma such that

for m P pmb,maq, there exist two distinct steady-state solutions both with mass m.

The eigenvalue computation results in Figure 3.8 (b) show that one of these two

steady-states is stable and the other one is unstable. Figure 3.8 (c) shows that of

the two steady-state droplets with m P pmb,maq, the solution with smaller pressure

is unstable. The solution with larger pressure is stable. The eigenvalue results in

Figure 3.8 (b) also show that the flat film solution has a stability change at m “ mb.

For m ą mb, flat film is stable. As m passes through mb, flat film becomes unstable.
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Note that mb is also the mass at which nontrivial solutions start to bifurcate from

trivial solutions, as shown in Figure 3.8 (a). The unstable solutions cease to exist

for m ă mb.

(a) (b)

(c)

Figure 3.8: (a) Mass m vs. pressure p of droplets of large mass. (b) Plot of
max
n

Repλnq vs. mass m for large-mass droplets. (c) Plot of max
n

Reλn vs. droplet

pressure p for large-mass droplets. In (a)-(c), L “ 2.5.

When m ă mb, as m continues to decrease, only the branch of stable droplets

discussed above remains to exist. As m decreases, the pressure of this branch of sta-

ble solutions increases, as shown in Figure 3.8 (a). This branch of solutions remains

stable until p̄ approaches pmax. Figure 3.9 (a) shows mass m vs. pressure p̄ for p̄

near pmax for L “ 2.5. We found that there exists another mass interval pmd,mcq
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such that for m P pmd,mcq, there are two distinct nontrivial steady-states both with

mass m. Compared to pmb,maq, the mass in the range pmd,mcq is smaller in value.

The corresponding droplet pressure is larger. Figure 3.9 (b) shows the eigenvalue

max
n

Repλnq computed for each steady-state for a range of film mass m. The eigen-

value results suggest that the two nontrivial steady-states with m P pmd,mcq have

different stability. Figure 3.9 (c) shows the plot of eigenvalue max
n

Repλnq for a range

of droplet pressure p. This figure suggests that of the two nontrivial solutions with

the same mass m P pmd,mcq, the solution with smaller p is stable. The solution with

larger p is unstable. In Figure 3.9 (a)-(c), the blue solid curve represents the nontriv-

ial solutions. The red curve represents the trivial flat film solutions. We also observe

that at m “ mc, the flat film solution has a stability change. For m P pmc,mbq, the

flat film solutions are stable. As m falls below m “ mc, the flat film solutions lose

stability to become unstable.

As illustrated above, if we fix period L “ 2.5, then we observe two mass ranges,

pmb,maq and pmd,mcq such that for any m in these two mass intervals, there are

two distinct steady-states with mass m. One of the steady-states is stable, while the

other steady-state is unstable. The co-existence of two solutions and their difference

in stability can also be observed in the bifurcation diagram for m vs. hmin, hmax.

Figure 3.10 (a) and (b) show the change in droplet size, represented by mass m vs.

hmax, hmin. Figure 3.10 (a) zooms into a range of small mass, near pmd,mcq. Figure

3.10 (b) zooms into a range of large mass, near pmb,maq. In both cases, when two

different nontrivial steady-states with the same mass co-exist, the larger-amplitude

solution is always stable. The smaller-amplitude solution is always unstable.

Next, we study the stability of steady-state solutions by fixing p ” p̄ and varying

L. We fix the pressure to be some p̄ near pmax and increase L. Figure 3.12 (a) shows
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(a) (b)

(c)

Figure 3.9: (a) Droplet mass m vs. droplet pressure p for p near pmax. (b) Plot
of max

n
Repλnq vs. droplet mass m. (c) Plot of eigenvalue max

n
Repλnq vs. droplet

pressure p. L “ 2.5.

max
n

Reλn of the steady-state solution with pressure p̄ “ 1 on r0, Ls as L increases.

We observe that max
n

Repλnq changes from negative to positive at some p˚ near pmax,

implying that the steady-state solution with p̄ “ 1 loses stability as L increases.

Figure 3.12 (b) shows the plot of max
n

Repλnq vs. m for steady-state droplet with

p̄ “ 1. If we fix p̄, as L increases, the droplet mass also increases. It follows that

there also exists a critical m˚ at which the solution changes stability. The simulation

results in Figure 3.12 (a)-(b) suggest that the stability of small-mass droplets has

a dependence on L. Specifically, increasingly L has the effect of destabilizing small
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(a) (b)

Figure 3.10: (a) Plot of m vs. hmax, hmin for small m (b) Plot of m vs. hmax, hmin

for large m. In (a)-(c), L “ 2.5.

mass droplets.

(a) (b)

Figure 3.11: (a) max
n

Reλn vs. L (b) max
n

Reλn vs. mass m. In (a)-(b), pressure

p̄ “ 1 is fixed.

To further illustrate this destabilizing effect, we compare the stability of the

continuous family of nontrivial steady-state solutions that could exist on r0, Ls for

L “ 1.5 and L “ 2.5. Figure 3.12 (a) shows max
n

Repλnq vs. p computed for the

continuous family of nontrivial steady-states on r0, Ls for both L “ 1.5 and L “ 2.5.
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From the figure, we observe that for both L “ 1.5 and L “ 2.5, there exists a range

of small pressure such that the steady-state is unstable. This corresponds to the

branch of unstable solutions with mass m P pmb,maq as discussed above. Figure

3.12 (b) shows the same plot zoomed into p̄ near pmax. As p̄ Ñ pmax, for L “ 1.5,

all of the eigenvalues have negative real part, suggesting that the branch of stable

solutions that arises from m “ mb remains stable as p̄ Ñ pmax. For this branch of

solutions, as p̄ increases, the droplet mass m decreases. The results in Figure 3.12

(b) suggest that for L “ 2.5, however, we observe a critical p˚ such that for p̄ ą p˚,

the nontrivial steady-states change from being stable to unstable. This corresponds

to the unstable solution in the mass range pmd,mcq as discussed above. For L “ 2.5,

droplets are unstable in the limit of small mass.

The difference in stability of small droplets between L “ 1.5 and L “ 2.5 can be

further illustrated by the change in structure of the bifurcation diagram for m vs.

hmax, hmin for these two L values. Figure 3.13 (a) and (b) show the plot of m vs.

hmax, hmin for a continuous family of solutions for L “ 1.5 and L “ 2.5 respectively.

Figure 3.13 (c)-(d) show exactly the same plot zoomed into small mass for L “ 1.5

and L “ 2.5, which highlights the difference in the structure of the bifurcation curve

for films with small mass. In both figures, nontrivial solution bifurcates from flat

film. This bifurcation is a pitchfork bifurcation, which has been previously studied

[7]. Specifically, Bertozzi et al. studied the local structure of the bifurcation of

steady-states on a fixed domain r0, 1s with varying droplet mass [7]. All branches

of nontrivial steady-states including those that characterize more than one droplet

in the domain were considered. By using perturbation methods, they developed an

asymptotic approximation for the local structure of the bifurcation, showing that

near the kth bifurcation point ūk, the structure is given by

pup0q ´ ūkq
2
“

24k2π2Π2pūkq

Π2pūkq2 ´ 3k2π2Π3pūkq
pū´ ūkq (3.63)
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for ū “

ż 1

0

upxqdx where upxq denotes the thin film profile. From the analysis, they

determined that the pitchfork could be either supercritical or subcritical [7]. The

bifurcation at the kth bifurcation point on a fixed domain for different k is related

to the bifurcation of one fixed branch of solutions on r0, Ls with different L. As can

be observed from Figure 3.13 (c), for L “ 1.5, nontrivial solution bifurcates from

flat film at a supercritical pitchfork bifurcation. In Figure 3.13 (d), for L “ 2.5,

nontrivial solution bifurcates from the trivial branch at m “ mc, a subcritical pitch-

fork bifurcation, which leads to unstable nontrivial steady-states near the bifurcation

point. The increase in L leads to a change in structure of the local bifurcation of

small-mass films, which ultimately results in the destabilization of some small-mass

droplets.

(a) (b)

Figure 3.12: max
n

Reλn vs. p for (a) L “ 1.5 (b) L “ 2.5

3.3.2 Bifurcation of axisymmetric solutions

In this section, we study the bifurcation of steady-state axisymmetric thin films. An

asymptotic analysis of the local bifurcation structure of axisymmetric solutions on

r0, 1s has been previously presented by Witelski and Bernoff [71]. They considered

a disjoining pressure of the form Πphq “
1

3h3
. By writing out the solution near the
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(a) (b)

(c) (d)

Figure 3.13: m vs. hmin, hmax for (a) L “ 1.5 (b) L “ 2.5 (c) L “ 1.5 zoomed into
the bifurcation for small mass film (d) L “ 2.5 zoomed into the bifurcation for small
mass films.

bifurcation point as a perturbation expansion, they showed that the bifurcation near

the primary bifurcation point k “ 1 is a transverse bifurcation given by

hp0q “ h̄1 ` C1ph̄´ h̄1q (3.64)

where h̄1 is the film mass at the primary bifurcation point k “ 1, h̄ “
1

2

ż 1

0

hprqrdr

and C1 “ 1 ´ 2

ş1

0
J2

0 pΛ1rqrdr
ş1

0
J3

0 pΛ1rqrdr
« ´4.6773. J0prq denotes Bessel function of the first

kind. Note that the leading order approximation given in (3.64) is independent of

the disjoining pressure Πphq. In this section, we expand their work by considering a
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higher-order description of the bifurcation of steady-states on r0, Ls. We still focus on

the primary bifurcation point k “ 1. We show that the higher-order term depends on

both the form of disjoining pressure and the domain length L. The higher-order term

derived reflects the local concavity of the bifurcation and the change in bifurcation

structure as the form of Πphq and L vary.

We consider the steady-state axisymmetric problem given by (3.44a)-(3.44b), i.e.

rh2 ` h1 ´ rΠphq ` p̄r “ 0 (3.65a)

h1p0q “ h1pLq “ 0 (3.65b)

where Πphq “
ε2

h3
´
ε3

h4
. To derive a local approximation of the bifurcation near

h1, we write the nontrivial steady-state solution near the bifurcation point h̄ as

hprq “ h̄` δh1prq ` δ
2h2prq, m “ m̄` δ, p “ p0 ` δp1 ` δ

2p2 where m is the mass of

the nontrivial steady-state solution near the flat film hpxq ” h̄, m̄ “
1

2
h̄L2 is the mass

of the flat film hpxq ” h̄ and p0 “ Πph̄q is the pressure of the flat film. Substituting

the asymptotic expansion into (3.65a) and linearizing, at Opδq, we obtain

rh21 ` h
1
1 ` a

2rh1 “ ´p1r (3.66a)

h11p0q “ h11pLq “ 0 (3.66b)

where a “
a

´Π1ph̄q. The bifurcation occurs at h̄ when aL “ Λn for J1pΛkq “ 0 with

k “ 1, 2, 3, ¨ ¨ ¨ . We focus on the thin film solution with no interior extremum, i.e.

the primary bifurcation point k “ 1. The branch of solutions that bifurcates from

this point is given by h1prq “ h̃1parq where

h̃1prq “ CJ0prq `
p1

Π1ph̄q
(3.67)
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for h̄ such that
a

´Π1ph̄qL “ aL “ Λ1 with Λ1 « 3.8317 and some constant C to be

determined by the solvability condition.

Applying the mass condition m “ m̄ ` δ, i.e.

ż L

0

hprqrdr “ m̄ ` δ

ż L

0

h1prqrdr,

we obtain
ż L

0

h1prqrdr “ 1 (3.68)

Since

ż L

0

J0parqrdr “

ż Λ1

0

J0pzqzdz “ 0, (3.68) reduces to

p1

Π1ph̄q
“

2

L2
(3.69)

At Opδ2q, (3.65a) is given by

rh22 ` h
1
2 ` a

2rh2 “
1

2
Π2ph̄qh2

1r ´ p2r (3.70a)

h12p0q “ h12pLq “ 0 (3.70b)

Let T be a linear operator defined by T g “ x
d2g

dx2
`
dg

dx
` a2xg. Then (3.70a) can be

written as T h2 “
1

2
Π2ph̄qh1prq

2r´ p2r. Subject to the boundary conditions (3.70b),

T is self-adjoint. The nullspace of T is spanned by J0parq. If we apply the solvability

condition given by Fredholm alternative to (3.70a), we obtain

ż L

0

h1prq
2rJ0parqdr “ 0 (3.71)

This determines the coefficient C in (3.67). The coefficient C in h1prq is therefore

given by

C “ C̃
p1

Π1ph̄q
“

2C̃

L2
(3.72)
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where

C̃ “ ´2

şL

0
J0parq

2rdr
şL

0
J0parq3rdr

“ ´2

şΛ1

0
J0puq

2udu
şΛ1

0
J0puq3udu

« ´5.6773 (3.73)

Hence, the nontrivial solution with mass m “ m̄` δ can be approximated by

hprq „ h̄` δ

«

2

L2

ˆ

C̃J0

ˆ

Λ1

L
r

˙

` 1

˙

ff

(3.74)

If we describe the bifurcation using hp0q and m, we have

hp0q „ h̄`
2pC̃ ` 1q

L2
pm´ m̄q (3.75)

If we substitute m̄ “
1

2
h̄L2 in (3.75) and let L “ 1, we recover (3.64), the leading

order approximation of the bifurcation structure derived by Witelski and Bernoff.

Similarly, to leading order, hpLq is given by

hpLq „ h̄`
2pC̃J0pΛ1q ` 1q

L2
pm´ m̄q (3.76)

If we focus on the primary branch k “ 1, which characterizes solutions with no

interior extremum and describes a single droplet on the domain 0 ď r ď L, hp0q and

hpLq correspond to the maximum and minimum of the droplet respectively.

We consider disjoining pressure function given by Πphq “
ε2

h3
´
ε3

h4
. For this

disjoining pressure, Π1phq ă 0 for all h ą
4

3
ε and Π1phq has a minimum at h “

5

3
ε.

The bifurcation points occur at h̄ when Π1ph̄q “ ´
Λ2
k

L2
. For the primary branch

k “ 1, we require L ě
Λ1

b

´Π1p5
3
εq

. L “
Λ1

b

´Π1p5
3
εq
« 1.374 is the minimum domain

size that allows for the bifurcation of nontrivial solutions from the trivial branch.
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For L ą
Λ1

b

´Π1p5
3
εq

, Π1ph̄q “ ´
Λ2

1

L2
has two roots, h̄1

ă
5

3
ε and h̄2

ą
5

3
ε, which

correspond to the two nontrivial steady-states with maximum at r “ 0 and r “ L

respectively. (3.75) shows at leading order, the slope of the bifurcation curve at each

h̄i is independent of Πphq and only depends on L.

To estimate the local concavity of the bifurcation curve, we seek for a higher-order

asymptotic expansion. At Opδ3q, (3.44a) is given by

rh23 ` h
1
3 ` a

2rh3 “ r

«

Π2ph̄qh1h2 `
1

6
Π3ph̄qh3

1

ff

´ p3r (3.77a)

h13p0q “ h13pLq “ 0 (3.77b)

where h2prq is the solution to (3.70a). Specifically, h2prq is given by

h2prq “ DJ0parq ` qprq `
p2

Π1ph̄q
(3.78)

where D is a constant and qprq is the particular solution to rh22 ` h12 ` a2rh2 “

1
2
Π2ph̄qh2

1r. Applying the solvability condition given by Fredholm alternative like

(3.71) determines the coefficient D, yielding

D “
´1

6
Π3ph̄q

Π2ph̄q

şΛ1

0
h̃1puq

3J0puqudu´
şΛ1

0
h̃1puqqpuqJ0puqrdr ´

p2
Π1ph̄q

şΛ1

0
h̃1puqJ0puqudu

şΛ1

0
h̃1puqJ0puq2udu

(3.79)

Applying the mass condition m “ m̄` δ, we have

0 “

ż L

0

h2prqrdr “
1

Π1ph̄q

ˆ
ż L

0

´
1

2
Π2ph̄qh2

1rdr `
1

2
p2L

2

˙

(3.80)

This determines p2, which yields

p2 “
Π2ph̄q

L2

ż L

0

h2
1rdr (3.81)
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Together, we obtain an asymptotic expansion for hp0q and hpLq near h̄ up to

Oppm´ m̄q2q, given by

hp0q „ h̄` b0
1pm´ m̄q ` b

0
2pm´ m̄q

2 (3.82)

hpLq „ h̄` bL1 pm´ m̄q ` b
L
2 pm´ m̄q

2 (3.83)

where b0
1 “

2pÃ` 1q

L2
, bL2 “ D ` qp0q `

p2

Π1ph̄q
, bL1 “

2pÃ` 1q

L2
and bL2 “ DJ0pΛ1q `

qpΛ1q `
p2

Π1ph̄q
. The concavity of hp0q is determined by the sign of b2 “ D ` qp0q `

p2

Π1ph̄q
. The bifurcation occurs at h̄ for Π1ph̄q “ ´

Λ2
1

L2
. The slope of the bifurcation

curve of hp0q vs. h̄ is the same for h̄i for i “ 1, 2 since Π1ph̄1q “ Π1ph̄2q. However,

because Π2ph̄q and Π3ph̄q are different at h̄1 and h̄2, the concavity of the bifurcation

curve hp0q vs. h̄ at h̄1 and h̄2 are different.

To determine D, we first need to solve for qprq, which is the particular solution

to

T h2 “
1

2
Π2ph̄qh2

1r (3.84)

Solution exists by solvability condition imposed by (3.71). Since T has a nontrivial

nullspace spanned by J0parq, we find qprq by constructing a modified Green’s function

Gpx, x0q [30] which solves

LGpx, x0q “ δpx´ x0q ` cxJ0paxq (3.85)

We choose c so that the solvability condition is satisfied, i.e.

ż L

0

„

δpx´ x0q ` cxJ0paxq



J0paxqdx “ 0 (3.86)

This gives

c “ ´
J0pax0q

şL

0
J0paxq2xdx

“ ´
a2J0pax0q

M
(3.87)
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where M “

ż Λ1

0

J0puq
2udu.

For x ‰ x0, LG “ cxJ0paxq. The particular solution yp can be found by applying

variation of parameters to

q2pxq `
1

x
qpxq ` a2qpxq “ J0paxq (3.88)

The homogeneous solution to (3.88) is spanned by J0paxq and Y0paxq. The Wronskian

of the two fundamental solutions is given by

W pJ0paxq, Y0paxqq “
2

πx
(3.89)

By variation of parameters, we have

yp “ ´J0paxq

ż

πx

2
Y0paxqcJ0paxqdx` Y0paxq

ż

πx

2
J0paxqcJ0paxqdx (3.90)

After simplification, we obtain

yp “ ´
aJ0pax0q

2M
xJ1paxq (3.91)

Note that this particular solution satisfies the boundary condition required at x “ 0

since
d

dx
pxJ1paxqq “ axJ0paxq. Thus, the modified Green’s function Gpx, x0q is

given by

Gpx, x0q “

#

cpx0qJ0paxq ´
aJ0pax0q

2M1
xJ1paxq x ă x0

dpx0qY0paxq ` epx0qJ0paxq ´
aJ0pax0q

2M
xJ1paxq x ą x0

(3.92)

for some coefficient cpx0q, dpx0q and epx0q to be determined by the continuity of

Gpx, x0q, the right boundary condition and the symmetry of Gpx, x0q respectively.

For the boundary condition to hold at x “ L, we need

´ aY1paLqdpx0q `
aJ0pax0q

2M
aLJ0paLq “ 0 (3.93)
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which gives dpx0q “ ´
J0pax0qγ

2
where γ “

Λ1J0pΛ1q

MY1pΛ1q
. In addition, we require conti-

nuity of Gpx, x0q at x “ x0, which gives cpx0q ´ epx0q “ ´
γ

2
Y0pax0q. Together, the

modified Green’s function is given by

Gpx, x0q “

#

´
γ
2
Y0pax0qJ0paxq ´

aJ0pax0q
2M

xJ1paxq ` epx0qJ0paxq x ă x0

´
γ
2
J0pax0qY0paxq ´

aJ0pax0q
2M

xJ1paxq ` epx0qJ0paxq x ą x0

(3.94)

We choose epx0q “ ´
ax0J1pax0q

2M
so that Gpx, x0q is symmetric, i.e. Gpx, x0q “

Gpx0, xq as required by theory. Note that the choice of epx0q will not change the

particular solution qpxq since it will only change the coefficient of J0paxq, which is

the homogeneous solution. Using the modified Green’s function constructed above,

we can represent qpxq by

qpxq “
1

2
Π2ph̄q

ż L

0

Gpx, sqh1psq
2sds (3.95)

We know h1psq “ BJ0pasq ` C where B “
2

L2
Ã and C “

2

L2
. This gives

qpxq “
1

2
Π2ph̄q

ż L

0

Gpx, sq

ˆ

BJ0pasq ` C

˙2

sds (3.96)

Ignoring the homogeneous solution in qpxq and using the solvability condition given

by (3.71), we can simplify the particular solution to qpxq “
1

2
Π2ph̄qq̃pxq where

q̃pxq “ ´
γ

2a2

«

Y0paxq

ż ax

0

J0puq

ˆ

BJ0puq`C

˙2

udu`J0paxq

ż Λ1

ax

Y0puq

ˆ

BJ0puq`C

˙2

udu

ff

(3.97)

It follows that at r “ 0,

qp0q “ ´
γ

4a2
Π2ph̄q

ż Λ1

0

Y0puq

ˆ

BJ0puq ` C

˙2

udu (3.98)
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At r “ L, we have

qpLq “ ´
γ

4a2
Π2ph̄qY0pΛ1q

ż Λ1

0

J0puq

ˆ

BJ0puq ` C

˙2

udu “ 0 (3.99)

by the solvability condition imposed by (3.71). Substituting qp0q, qpLq and D into

b0
2 and bL2 , after simplification, we obtain

b0
2 “ c0

1

Π3ph̄q

Π2ph̄q

1

L4
` c0

2

Π2ph̄q

L2
(3.100)

bL2 “ cL1
Π3ph̄q

Π2ph̄q

1

L4
` cL2

Π2ph̄q

L2
(3.101)

where c0
1 « ´39.1384, c0

2 « 0.4525, cL1 « 15.7634, cL2 « ´0.8116 and h̄ is the solution

to Π1ph̄q “ ´
Λ1

L2
.

At h̄1, b0
2 changes from positive to negative at approximately L « 3.2906; bL2

changes from negative to positive at approximately L « 1.9486. At h̄2, b0
2 changes

from negative to positive at approximately L « 1.5172; bL2 changes from positive to

negative at approximately L « 1.4819. As LÑ 8, h̄1
Ñ

4

3
ε and Π2ph̄1

q Ñ ´
729

1024ε3
.

At h̄1, b2 is dominated by c2
Π2ph̄1q

L2
ă 0 as L Ñ 8. Hence, for large L, b0

2 will

remain negative and bL2 will remain positive. Both b0
2 and bL2 approach 0 at a rate

proportional to
1

L2
at h̄1. As L Ñ 8, h̄2 Ñ 8, Π2ph̄q Ñ 0 and

Π3ph̄q

Π2ph̄q
Ñ 0. As

L Ñ 8, Π2ph̄2q Ñ 0 is positive. Hence, b0
2 is positive and bL2 is negative. Both

b0
2 and bL2 approach 0 at a rate proportional to

Π2ph̄q

L2
as L Ñ 8. Figure 3.14 (a)

and (b) show b2 computed using (3.100) and (3.101) respectively. The solid blue

curve represents b2 calculated at h̄1. The dotted red curve represents b2 calculated

at h̄2. The solid black curve represents 0. We observe in the figure that at both
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h̄i, b2 approaches 0 as L Ñ 8. Specifically, b2 approaches 0 faster at h̄2, which is

consistent with our analysis above. Figure 3.15 (a) and (b) show the bifurcation

(a) (b)

Figure 3.14: Concavity b computed at h̄1 and h̄2 (a) b0
2 vs. m (b) bL2 vs. m

diagram of steady-states for L “ 1.4 and L “ 3 respectively. For both L “ 1.4

and L “ 3, there exists three distinct types of steady-states, a droplet-type solution

with maximum at r “ 0, a ring-type solution with maximum at r “ L and a flat

film solution. The solid blue curve represents hp0q. The solid red curve represents

hpLq. The solid black curve is the flat film solution. hp0q ą
2m

L2
and hpLq ą

2m

L2

represent the maximum film thickness centered at r “ 0 and r “ L respectively. For

hp0q ą hpLq, the nontrivial solution has a maximum at r “ 0. The solution has a

maximum at r “ L otherwise.

Figure 3.16 (a) and (b) show the linear and quadratic approximation of the bi-

furcation structure for L “ 1.4 at h̄1 and h̄2 respectively. The linear approximation

is given by (3.64). The quadratic approximation at h̄1 and h̄2 is given by (3.82) and

(3.83) respectively. At h̄1, b2 ą 0. At h̄2, b2 ă 0. We observe that the quadratic

approximation captures the concavity of the bifurcation curve and provides a better
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(a) (b)

Figure 3.15: Bifurcation diagram of hp0q and hpLq vs. m for (a) L “ 1.4 and (b)
L “ 3. The blue curve represents hp0q. The red curve represents hpLq. The black
curve represents the flat film solution.

prediction of the bifurcation structure. Similarly, Figure 3.16 (c) and (d) show the

linear and quadratic approximation computed at h̄1 and h̄2 for L “ 3. At h̄1, b2 ą 0.

At h̄2, b2 ą 0. Compared to Figure 3.16 (a)-(b), we observe a change in concavity

of the bifurcation structure near h̄2, which is reflected only through the quadratic

approximation.

3.4 Summary

In this chapter, we presented the formulation and analysis of 1-D steady-state solu-

tions and axisymmetric solutions subject to no-flux boundary conditions. In Section

3.1, we first reviewed the phase-plane analysis for 1-D steady-states and classified

the steady-state solutions into three types, i.e. periodic solution, homoclinic solution

and solution whose derivative diverges to infinity. We then reviewed the asymptotic

analysis previously derived for large homoclinic droplets in the limit of small ε. Next,

we illustrated the difference between a large and small droplet, based on which, we

developed by an approximation for the profiles of small-mass droplets by introducing
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(a) (b)

(c) (d)

Figure 3.16: Bifurcation of hp0q, hpLq vs. m at (a) h̄1 for L “ 1.4 (b) h̄2 for L “ 1.4
(c) h̄1 for L “ 3 (d) h̄2 for L “ 3. The solid curves represent the numerical solution.
The dashed curves represent the linear and quadratic approximations.

an approximate steady-state equation. Through numerical simulations, we showed

that the homoclinic droplet profile can be well described by hyperbolic functions in

the limit of small mass.

In Section 3.2, we extended the asymptotic analysis for large 1-D droplets to

large axisymmetric droplets in the limit of small ε. Through asymptotic analysis, we

showed that the large axisymmetric droplets could be described a parabola similar

to the large 1-D droplets, with a modified coefficient. In Section 3.3, we discussed
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the stability and bifurcation of 1-D steady-state solutions on a finite domain r0, Ls.

Through numerical simulations, we demonstrated the dependence of solution stability

on droplet pressure and domain size L. We also illustrated the change in local

bifurcation structure near the small-mass droplets as L increases and the destabilizing

effect of increasing L on these small-mass droplets.

For the bifurcation of axisymmetric droplets, we first reviewed the leading order

asymptotic results derived previously for axisymmetric droplets with only attractive

van der Waals forces. To develop a further understanding of the local structure

of the bifurcation, we expanded the previous work by computing a higher-order

approximation and considering droplets with both attractive and repulsive van der

Waals forces. We showed that the higher-order term depends on both the form of the

disjoining pressure and the domain size L and that it captures the local concavity of

the bifurcation structure, which has not been captured by the leading order term in

previous studies.
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4

Thin films on heterogeneous substrates

Chemically structured substrates have been used extensively in applications where

accurate dispensing and distribution of fluids on a substrate is required. Classic

theory states that the disjoining pressure of a thin film on chemically homogeneous

substrate is given by AΠphq where A is a constant is called Hamaker constant,

which measures the strength of van der Waals interactions. To study the dynamics

and steady-states of thin films on chemically heterogeneous substrates, Thiele and

Kao have both considered thin film flow on a chemically patterned substrates by

incorporating a spatially dependent disjoining pressure [34, 66]. Specifically, they

introduced a spatially dependent Hamaker constant Apxq into the van der Waals

potential. They considered a van der Waals potential of the form

Π̃ph, xq “ ApxqΠphq (4.1)

on a domain with periodic boundary conditions where Apxq “ 1 ` ε cos

ˆ

2π

Phet

x

˙

.

Here, Phet represents the imposed heterogeneity period and ε ! 1 characterizes the

amplitude of heterogeneity. The smooth spatial variation and the assumption that
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ε ! 1 allow for the analysis of the solutions on heterogeneous substrates through an

asymptotic expansion in terms of ε.

However, for an engineered patterned substrate, a piecewise-constant Apxq would

be a better description than a sinusoidal pattern. For example, micro-patterned

surfaces with alternate hydrophilic and hydrophobic rectangular areas are extensively

used in digital microfluidics and high-throughput screening nanoarrays [38]. In such

applications, a stepwise Hamaker constant is needed to model the chemical properties

of the surfaces. Kao et al. studied the stationary states of thin films on substrates

with square-wave patterning in both 1-D and 2-D [34]. Specifically, they considered

a stepwise Apxq with periodic boundary conditions, which is given by

Apξq “

$

’

&

’

%

1` ε3, 0 ď ξ ď π
2

1, π
2
ď ξ ď 3π

2

1` ε3, 3π
2
ď ξ ď 2π

(4.2)

for some ξ “ kpx that is scaled by the patterning wavenumber kp. To study the bi-

furcation of stationary states on substrates with such patterning, they wrote Apxq as

a Fourier series. In particular, they performed asymptotic analysis for solutions near

the bifurcation point. Imperfect bifurcations were observed for chemical patterning

of the form (4.2). They found that the bifurcation and steady-states resemble those

of sinusoidally patterned substrates.

In this chapter, we explore the steady-state profile and bifurcation diagram of

thin film on a stepwise-patterned substrate. Unlike the work presented in [34, 66],

we consider thin film on a finite domain subject to no-flux boundary conditions so

that the total fluid mass is conserved. Instead of considering a spatial modulation

with small amplitude, we extend our study to a more generalized step function Apxq

57



of the form given by (4.3) where the amplitude of Apxq need not be small.

Apxq “

#

A1 0 ď x ď s

A2 s ă x ď L
(4.3)

Here, L is the size of the domain and Ai is a constant. The disjoining pressure we

will consider in this chapter is given by

Π̃ph, xq “ Apxq

ˆ

ε2

h3
´
ε3

h4

˙

(4.4)

for Apxq of the form (4.3).

4.1 Introduction of chemical heterogeneity into substrates

The evolution of thin liquid films, subject to no-flux boundary conditions, on a finite

heterogeneous substrate with patterning Apxq is governed by

Bh

Bt
“
B

Bx

ˆ

h3 B

Bx

ˆ

ApxqΠphq ´
B2h

Bx2

˙˙

(4.5a)

Jp0q “ JpLq “ 0,
Bh

Bx
p0q “

Bh

Bx
pLq “ 0 (4.5b)

For the same reason stated previously for homogeneous case in Chapter 3, the bound-

ary condition (4.5b) reduces to

Bh

Bx
p0q “

Bh

Bx
pLq “ 0,

B3h

Bx3
p0q “

B3h

Bx3
pLq (4.6)

It follows that the steady-state solution is parametrized by uniform pressure p ” p̄

just like in the 1-D case described in Chapter 3. The steady-state equation on

a heterogeneous substrate with patterning described by Apxq, subject to no-flux

boundary conditions in 1-D is thus given by

hxx “ ApxqΠphq ´ p̄ (4.7a)
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hxp0q “ hxpLq “ 0 (4.7b)

In the following sections of this chapter, we consider a stepwise Apxq of the form

(4.3). We seek solution that is continuous and whose derivative is continuous at

x “ s, i.e.

lim
xÑs´

hpxq “ lim
xÑs`

hpxq (4.8a)

lim
xÑs´

h1pxq “ lim
xÑs`

h1pxq (4.8b)
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Figure 4.1: Bifurcation diagram for m vs. hmin, hmax for steady-state solutions (a)
on homogeneous substrate Apxq ” 1 for L “ 3. (b) on heterogeneous substrate with
patterning of the form (4.3) where L “ 3, s “ 1.5, A1 “ 1, and A2 “ 1.1. In both
(a) and (b), the solid blue curve represents the maximum film thickness. The red
curve represents the minimum film thickness. In both (a) and (b), ε “ 0.1.

Since Apxq is a step function with A1 ‰ A2, for a steady-state solution to be

a flat film, i.e. hpxq ” h̄, the only option is to have Πph̄q “ 0, yielding h̄ “ ε.

Hence, hpxq ” ε is the only possible flat film solution with pressure p ” 0. Figure

4.1 (a) and (b) show the film mass plotted against the maximum and minimum

film thickness denoted by hmax and hmin respectively on homogeneous and stepwise-

patterned substrate on r0, Ls for L “ 3. In Figure 4.1 (a), the solid black curve

represents the flat film solution. On a stepwise-patterned substrate with A2 “ 1.1

and s “ 1.5, there is no more flat film solution except for the solution hpxq ” ε,
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as shown in Figure 4.1 (b). In presence of spatially modulated disjoining pressure,

the steady-state solutions centered at x “ 0 and x “ L are no longer symmetric

with respect to the center of the domain since A1 ‰ A2. As a consequence, in the

bifurcation diagram, there are two distinct branches representing droplets centered

at two different sides of the domain with the same mass. For thin liquid films on a

homogeneous substrate with L “ 3, there are two branches in total. As we introduce

chemical heterogeneity by choosing s “ 1.5 and A2 “ 1.1, we observe two loops,

an outer loop and an inner loop. The number of loops is related to the number of

bifurcation points, which is determined by the domain size L. The bifurcation points

hk of the steady-state solutions on a finite homogeneous substrates subject to no-flux

boundary conditions were previously given in [7], i.e.

Π1phkq “ ´
´k2π2

L2
(4.9)

Compared to the homogeneous case, two new branches arise in the bifurcation dia-

gram for the heterogeneous case, which leads to a total of four branches of solutions,

as shown in Figure 4.1 (b). Figure 4.2 (a) shows two distinct droplets centered at

the two different sides of the domain with the same mass m “ 0.6. Due to the

nheterogeneity of the substrates (A1 ‰ A2), the two droplets are asymmetric, as can

be observed from the two different black dashed lines which denote the maximum

height of the two droplets. Figure 4.2 (b) shows three distinct steady-state solutions

on the inner loop with the same mass m “ 0.6. The blue solid curve and the red

square-dotted curve represent two smaller-amplitude solutions. The solid blue curve

describes two droplets in the domain. However, these droplets are not identical, as

can be seen from the two black dashed lines, which denote the respective maximum

thickness of each solution. The purple triangle-dotted curve represents a solution

slightly perturbed from a constant, which is analogous to the flat film solution on a

homogeneous substrate.
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(a) (b)

Figure 4.2: (a) Asymmetric steady-state droplets centered at x “ 0 and x “ L
with the same mass m “ 0.6. The difference in droplet height is highlighted by two
black dashed lines. (b) Profiles of three distinct steady-state solutions on the inner
loop, all with the same mass m “ 0.6. Compared to the two solutions in (a), these
solutions have smaller amplitude. In both (a) and (b), A1 “ 1, A2 “ 1.1, m “ 0.6,
ε “ 0.1.

In Figure 4.1 (b), A2 ´ A1 is relatively small so the structure of the bifurcation

diagram is only slightly perturbed from that of the homogeneous case. As we keep

increasing A2 with A1 “ 1 fixed, the structure of the bifurcation diagram changes

more drastically. Figure 4.5 (a)-(i) illustrate the evolution of the structure of the

inner loop as A2 increases from A2 “ 1.1 to A2 “ 7.

Figure 4.3: Maximum film mass mmax and mmax ´ mmin computed for the inner
loop, like those shown in Figure 4.5 (a)-(i), plotted against a set of increasing A2

values, for L “ 3, s “ 1.5.

61



Figure 4.3 shows the change in structure of the bifurcation diagram measured by

mmax and mmax ´mmin where mmax and mmin denote the maximum and minimum

film mass of the loops in Figure 4.5 (a)-(i) as A2 changes. For A2 between 1.1 and

5.5, as A2 increases, mmax ´ mmin decreases steadily. For A2 between 5.5 and 7,

mmax ´ mmin first increases and then decreases slightly. For A2 ą 7, mmax ´ mmin

decreases rapidly to zero, implying that the inner loop solutions representing droplets

centered at x “ L exist on an increasingly small parameter range as A2 grows. As the

A2 region becomes more hydrophobic, it is less likely for the film to concentrate its

mass on the A2 region with droplets centered at x “ L. When A2 “ 7, the structure

of the bifurcation diagram degenerates into a closed loop with no self-intersections as

shown in Figure 4.5 (i). As A2 continues to increase, the loop shrinks and eventually

vanishes in the limit of large A2. Similarly, we study the structure of the outer loop

which characterizes droplets centered at x “ 0 as A2 increases. We define mmax to

be the maximum mass for which a droplet-type steady-state centered at x “ 0 could

exist, as labeled by the black dashed line in Figure 4.4 for the outer loop in the

bifurcation diagram presented earlier in Figure 4.1 (b).

Figure 4.4: Definition of mmax for the outer loop structure in the bifurcation
diagram.

We will show later in Section 4.2.5 that in the limit A2 Ñ 8 or ε Ñ 0, mmax „

?
A2L

2

3
?

3
, suggesting that unlike the inner loop which shrinks in size as A2 increases,
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the outer loop characterizing droplets centered at x “ 0 grows in size as A2 increases.

As A2 becomes larger, the A2 region becomes more hydrophobic, in which case, the

fluid mass will become increasingly concentrated on the A1 region. For large A2, the

solid substrate is capable of supporting droplets of mass that scales with
?
A2. For

this reason, in the remaining sections of this chapter, we will focus on the branch

of solutions on the outer loop of the bifurcation diagram, which primarily describes

one single droplet whose maximum film thickness occurs at x “ 0.
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Figure 4.5: Bifurcation diagram for m vs. hmax for steady-state solutions on a
heterogeneous substrate for A1 “ 1 and a range of A2 values. In (a)-(i), L “ 3,
s “ 1.5, ε “ 0.1.
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Figure 4.6 (a)-(b) show the bifurcation diagram p vs. hmax for steady-states

on homogeneous and heterogeneous substrates on a domain of length L “ 6 with

ε “ 0.001. On the heterogeneous substrate, we let A2 “ 1.5, s “ 3. In Figure 4.6 (a),

the solid blue curve represents nontrivial steady-state solutions. The dashed black

curve represents two branches of flat film solutions that merge with the nontrivial

branch at p̄ “ pmax “
27

256ε
. Figure 4.6 (b) shows the same bifurcation diagram

plotted for thin films on heterogeneous substrates with parameter values A1 “ 1,

A2 “ 1.5, and s “ 3. In the limit of small ε, we observe a clear division of segments

of the bifurcation curve. Based on these divided segments, we classify all the steady-

state solutions that could exist on such substrates into six different branches, each

of which corresponds to a segment of the bifurcation curve labeled in Figure 4.6 (b).

Although there is no more flat film solution except for hpxq ” ε for A1 ‰ A2, as we will

show later in Section 4.2.1 and Section 4.2.2, branch 1 and branch 6 are two branches

that are analogous to the flat film solutions in Figure 4.6 (a). Branch 3 is an entirely

new branch of solutions characterizing a class of “pinned” droplets that emerges

due to the presence of chemical heterogeneity. In the following subsections, we will

present our analysis and computation of these steady-state solutions by branch. For

each branch, we develop an asymptotic prediction for the steady-state profile and

show that the leading order solution for each branch depends on different parameters

in pL, s, A1, A2q, which describe the chemical heterogeneity of the substrates.

4.2 Classification of branches of bifurcation diagram in 1-D

Based on the structure of the diagram shown in Figure 4.6 (b), we divide the steady-

state solutions that could exist on a heterogeneous substrate for Apxq of the form

(4.3) into six different categories, as follows.

• Branch 1: small-thickness films
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Figure 4.6: Bifurcation diagram p vs. hmax for steady-states on (a) a homogeneous
substrate Apxq ” 1. (b) on a heterogeneous substrate with A1 “ 1, A2 “ 1.5, s “ 3.
In both (a) and (b), ε “ 0.001 and L “ 6.

• Branch 2: small-width droplets

• Branch 3: pinned droplets

• Branch 4: large-width droplets

• Branch 5: large confined droplets

• Branch 6: large-thickness films

For each class of solutions, we present asymptotic analysis of the profile and

the bifurcation diagram of steady-state solutions. Through asymptotic analysis and

numerical simulations, we illustrate the leading order dependence of solutions on

parameters such as mass, pressure and domain length. Instead of employing a Fourier

series approach, we use the piecewise-constant definition of Apxq through a phase-

plane approach, which allows us to perform asymptotic analysis in the limit of large

heterogeneity contrast. In the limit of large A2, the A2 region becomes increasingly

hydrophobic and has an increasingly confining effect on the fluid in the A1 region.
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As a consequence, there is less fluid leaking from the A1 region onto the A2 region as

A2 increases. To quantify this phenomenon, we present an effective measure of the

fluid leakage. We show that this leakage is inversely proportional to A2 in the limit

of large A2. Finally, we show that the results derived in 1-D can be easily extended

to axisymmetric solutions.

4.2.1 Small-thickness films

First, we study branch 1, which characterizes steady-state solutions with small mass,

specifically with m “ OpεLq or smaller. Two examples of steady-state profiles on

branch 1 are given in Figure 4.7 (a) and (b). Figure 4.7 (a) shows an example

of a steady-state on branch 1 with mass m ą εL and pressure p̄ ą 0. For such

solutions, the maximum of the film thickness occurs at x “ 0. Figure 4.7 (b) shows

an example of a steady-state on branch 1 with mass m ă εL and pressure p̄ ă 0.

For such solutions, the maximum film thickness occurs at x “ L. Both solutions are

characterized by nearly flat film away from the interface x “ s and a rapid change

in the profile in a small neighborhood of x “ s.

x

h
(x

)

6543210

0.10024

0.10022

0.1002

0.10018

0.10016

0.10014

0.10012

0.1001

(a)

x

h
(x

)

6543210

0.099

0.0988

0.0986

0.0984

0.0982

0.098

0.0978

(b)

Figure 4.7: A steady-state profile on branch 1 with (a) pressure p̄ ą 0, m “ 0.601 ą
εL (b) p̄ ă 0, m “ 0.59 ă εL. In both (a) and (b), A1 “ 1, A2 “ 2, L “ 6, s “ 3,
ε “ 0.1.

The rapid change in the steady-state profile hpxq near the interface is due to the
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change in disjoining pressure for films of thickness h “ Opεq. For films of thickness

h “ Opεq, the disjoining pressure Πphq increases rapidly on the thickness range

0 ă h ă 4
3
ε in the limit ε Ñ 0. For solutions on branch 1, the film thickness hpxq

falls within this range. To describe the solution on this branch, we seek a rescaled

solution for h. We rescale h by writing h “ εaH for some a ą 0. In the rescaled

variable H, the steady-state equation given by (4.7a) can thus be written as

εaH2
“ ApxqΠpεaHq ´ p̄ (4.10)

We seek an outer solution of the form H “ H0 ` εH1 ` H.O.T. and will construct

solutions using matched asymptotic expansion. The leading order equation is then

given by

ApxqΠpεaH0q ´ p̄ “ 0 (4.11)

Using the piecewise definition of Apxq, we know that for 0 ď x ! s, Apxq “ A1 and

for s ! x ď L, Apxq “ A2. Hence, H0 satisfies

A1ΠpεaH0q “ p̄, 0 ď x ! s (4.12a)

A2ΠpεaH0q “ p̄, s ! x ď s (4.12b)

Let hmin i be the saddle point on a homogeneous substrate with A ” Ai for a given

pressure p̄, as described previously in Chapter 3. Then we have εaH0 “ hmin 1 for

0 ď x ! s and εaH0 “ hmin 2 for s ! x ď L.

For h ! ε and p̄ Ñ ´8, ΠpεaH0q “ ε3´4aH´4
0

ˆ

´1`
εaH

ε

˙

„ ´ε3´4aH´4
0 “

p̄

Ai
.

We choose a “
3

4
. This gives

H0 “
A

1
4
i

p´p̄q
1
4

(4.13)

Hence, hmin i “ εaH0 „
ε
3
4A

1
4
i

p´p̄q
1
4

! ε for p̄ " ε´1.
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For h „ ε and p̄ Ñ 0, since we know Πpεq “ 0, we choose a “ 1. To see the

dependence of H0 on p̄, we write H0 “ 1` εh1 and expand ΠpεH0q near H0 “ 1. We

get

Π1pεqε2h1 “
p̄

Ai
(4.14)

This gives h1 “
p̄

Ai
and therefore hmin i “ εH0 „ ε`

ε2p̄

Ai
for p̄Ñ 0.

To compute the next order solution H1, we use Taylor expansion of Πphq around

h “ εaH0 “ hmin i. At Opεa`1q,

H2
1 “ ApxqΠ1pεaH0qH1 (4.15)

We have shown that hmin i „
ε
3
4A

1
4
i

p´p̄q
1
4

as p̄ Ñ ´8 and hmin i „ ε `
ε2p̄

Ai
as p̄ Ñ 0. It

follows that Π1phmin iq “ O

ˆ

1

ε

˙

as p̄ Ñ ´8 and Π1phmin iq “ O

ˆ

1

ε2

˙

as p̄ Ñ 0. As

εÑ 0, Π1pεaH0q " 1. Now we introduce another small positive parameter σi so that

Π1pεaH0q “ Π1phmin iq “
1

σi
on the Ai region. Then the equation for H1 on the Ai

region can be rewritten as

σiH
2
1 “ AiH1 (4.16)

We observe that (4.16) also has a boundary layer. The outer solution at leading

order is given by Hout
1 ” 0. For H0, we use the piecewise constant property of Apxq

for x away from x “ s. For x near x “ s, we expect a boundary layer so we rescale

x by letting X “
x´ s

σbi
on the Ai region for some b ą 0. This gives

σ1´2b
i H2

1 “ AiH1 (4.17)

Choose b “
1

2
. Solving for H1, we have

H1 “ Bie
?
AiX `Die

´
?
AiX (4.18)
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where Bi and Di are two constants for the solution on the Ai region. For 0 ď x ď s

(A1 region), we need H 1
1pXq Ñ 0 as X Ñ ´8 so D1 “ 0. For s ď x ď L (A2 region),

we need H 1
1pXq Ñ 0 as X Ñ 8 so B2 “ 0. This gives

H1 “ B1e

?
A1px´sq
?
σ1 0 ď x ď s (4.19a)

H1 “ D2e
´

?
A2px´sq
?
σ2 s ď x ď L (4.19b)

Hence, at leading order, the profile of the solution with mass m “ OpεLq on

branch 1 can be described by

hpxq „

#

hmin 1 ` C1e
?
A1Π1phmin 1qpx´sq 0 ď x ď s

hmin 2 ` C2e
´
?
A2Π1phmin 2qpx´sq s ă x ď L

(4.20)

for some constant C1, C2 to be determined by the continuity of hpxq and h1pxq. To

determine C1 and C2, we use the continuity of hpxq and h1pxq at x “ s, given by

(4.8a) and (4.8b), which is restated below.

lim
xÑs´

hpxq “ lim
xÑs`

hpxq (4.21a)

lim
xÑs´

h1pxq “ lim
xÑs`

h1pxq (4.21b)

This gives

C1 “ ´
phmin 1 ´ hmin 2q

a

A2Π1phmin 2q
a

A1Π1phmin 1q `
a

A2Π1phmin 2q
(4.22a)

C2 “
phmin 1 ´ hmin 2q

a

A1Π1phmin 1q
a

A1Π1phmin 1q `
a

A2Π1phmin 2q
(4.22b)

Hence,

hp0q „ hmin 1 ` C1e
´
?
A1Π1phmin 1qs (4.23a)

hpLq „ hmin 2 ` C2e
´
?
A2Π1phmin 2qpL´sq (4.23b)
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We have shown that hmin i „
ε
3
4A

1
4
i

p´p̄q
1
4

as p̄ Ñ ´8 and hmin i „ ε `
ε2p̄

Ai
as p̄ Ñ 0. It

follows that Π1phmin iq “ O

ˆ

1

ε

˙

as p̄ Ñ ´8 and Π1phmin iq “ O

ˆ

1

ε2

˙

as p̄ Ñ 0.

Hence, as p̄Ñ ´8,

C1 „
ε3{4

p´p̄q1{4
pA

1{4
2 ´ A

1{4
1 q

A
1{8
1

A
1{8
1 ` A

1{8
2

(4.24a)

C2 „
ε3{4

p´p̄q1{4
pA

1{4
1 ´ A

1{4
2 q

A
1{8
2

A
1{8
1 ` A

1{8
2

(4.24b)

For p̄Ñ 0,

C1 „ ´
hmin 1 ´ hmin 2
b

A1

A2
` 1

(4.25a)

C2 „
hmin 1 ´ hmin 2
b

A2

A1
` 1

(4.25b)

For A1, A2 “ Op1q, Ci “ Opε2p̄q so Ci ! hmin i for as long as p̄ ! ε´1. For A1 “ Op1q

and A2 Ñ 8, C1 “ Opε2p̄q ! hmin 1 and C2 “ O

ˆ

ε2p̄
?
A2

˙

! hmin 2 for p̄ ! ε´1.

In the limit p̄ Ñ ´8, in order for the linearization of hpxq around hmin i to be

valid, we need A1 ´ A2 ! 1 so that Ci ! hmin i near x „ s. Hence, (4.24a)-(4.24b)

are valid for A1 ´ A2 ! 1. To capture the solution profile near x “ s as p̄ Ñ ´8,

we seek an alternative scaling by letting δ “ ´
1

p̄
for δ ! 1. Since hmin i „

ε
3
4A

1
4
i

p´p̄q
1
4

, we

scale h by h “ δ1{4H and we have AiΠphq „ ´Ai
ε3

h4
. This gives

δ1{4Hxx “ ´
Aε3

δH4
`

1

δ
(4.26)

70



To describe the boundary layer as xÑ s, we let X “
x´ s

δa
. Hence,

δ1{4´2aHxx “ ´
Aε3

δH4
`

1

δ
(4.27)

By dominant balance, we get a “
5

8
, which suggests that the boundary layer scales

like X9p´p̄q5{8 and the solution profile satisfies Hxx “ ´
ε3

H4
` 1 to leading order.

Note that the scale of the boundary layer a “
5

8
can also be obtained by using a

linearization approach, which gives X “
x´ s

A
1{4
i ε3{4δ5{8

. In all cases, hp0q ´ hmin 1 and

hpLq ´ hmin 2 are both exponentially small as ε Ñ 0. Hence, in the limit ε Ñ 0,

hp0q „ hmin 1 and hpLq „ hmin 2 to leading order.

Figure 4.8 (a) and Figure 4.8 (b) show the numerical solution of hp0q and hpLq

compared with hmin i, which is the leading order outer solution in both the limit

p̄ Ñ ´8 and p̄ Ñ 0. Figure 4.8 (c) and Figure 4.8 (d) show the leading order

asymptotic approximation for hmin i in the limit p̄ Ñ ´8 and p̄ Ñ 0 respectively.

Because this type of small-mass solutions has a boundary layer near x “ s, the

steady-state profile for this class of solutions approaches the step function given by

(4.28) in the limit εÑ 0.

hsteppxq “

#

hmin 1, 0 ď x ď s

hmin 2, s ă x ď L
(4.28)

71



(a) (b)

(c)

hmin 2

Numerical h(L)
hmin 1

Numerical h(0)

p

h
(0

),
h
(L

)

20151050−5−10−15−20

0.00103

0.00102

0.00101

0.00100

0.00099

0.00098

(d)

Figure 4.8: (a) Comparison of numerically computed hp0q, hpLq and hmin i for
i “ 1, 2 for ε “ 0.001. (b) Same plot as (a) for ε “ 0.1. (c) Comparison of numerically
computed hp0q, hpLq and their further asymptotic reduction in the limit p Ñ ´8

where hp0q and hpLq are asymptotically given by
ε
3
4A

1
4
i

p
1
4

for i “ 1 and i “ 2 respectively

with ε “ 0.001. (d) Comparison of numerically computed hp0q, hpLq and their
respective further asymptotic reduction in the limit pÑ 0 where hp0q and hpLq are

asymptotically given by ε `
ε2p

Ai
for i “ 1 and i “ 2 respectively with ε “ 0.001. In

(a)-(d), L “ 6, s “ 3, A1 “ 1, A2 “ 1.5.

Figure 4.9 (a) shows a small-thickness thin film with m “ 0.31 for ε “ 0.1, L “ 3,

when m is slightly greater than εL “ 0.3. The red and black dashed curves represent

the approximation on r0, ss and rs, Ls given by (4.20) respectively. The two curves

intersect at the interface x “ s, as a result of the condition imposed by (4.8a) and

(4.8b) . Figure 4.9 (b) shows the thin film profile for m “ 0.2 ă εL and p̄ ă 0. When
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(a) (b)

Figure 4.9: (a) A steady-state solution on heterogeneous substrate with mass
slightly larger than εL, compared with its asymptotic prediction derived above on
both the A1 and A2 region with parameter values m “ 0.31, p ” p̄ “ 0.3498. (b)
A steady-state solution on the same heterogeneous substrate with large negative p,
compared with its asymptotic prediction in both the A1 and A2 region with param-
eter values m “ 0.2, p ” p̄ “ ´23.8727. In both (a) and (b), A1 “ 1, A2 “ 2,
s “ 1.5

(a) (b)

Figure 4.10: (a) Bifurcation diagram for m vs. hmax, hmin zoomed into the mass
range m ! εL. The solid curves represent numerically calculated bifurcation. The
dotted curves represent the bifurcation calculated using asymptotic approximations
given by hmin 1 and hmin 2. The dashed line represents m “ εL “ 0.3. (b) Same
bifurcation diagram as (a), but zoomed into the mass range where m is slightly
above εL. In both (a) and (b), L “ 3, A1 “ 1, A2 “ 2, s “ 1.5
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mass falls below εL and continues to decrease, hmin 1 ă hmin 2. More fluid mass starts

to concentrate on the A2 region. In both Figure 4.9 (a) and (b), the boundary layer

near x “ s can be well approximated by (4.20).

Figure 4.10 (a) shows the bifurcation diagram for mass vs. the corresponding

maximum and minimum film thickness, zoomed into the mass range m “ OpεLq.

The solid blue curve and solid red curve represent the maximum and minimum

film thickness determined from the numerical solution respectively. The triangle-

dotted curve and square-dotted curve represent hmin 1 and hmin 2 calculated by solving

AiΠphmin iq “ p̄ respectively. Note that when m “ ε, hpxq ” ε is a flat film solution

with hmax “ hmin. For h ą ε, p̄ ą 0. If A1 ă A2, then hmin 1 ą hmin 2 so the maximum

of the film thickness occurs at x “ 0, i.e. the A1 region. For h ă ε, p̄ ă 0. If

A1 ă A2, then hmin 1 ă hmin 2, in which case the maximum film thickness occurs

at x “ L. Figure 4.10 (b) zooms in to the mass m ą εL. As mass continues to

increase, the leading order approximation becomes less accurate, which is expected

from the derivation of (4.20), which assumes the solution is a small perturbation

from h “ hmin i.

4.2.2 Large-thickness films

In Section 4.2.1, we studied small-mass small-thickness solutions for p Ñ 0. In the

limit p̄Ñ 0`, there exists another class of solutions, characterized by large mean film

thickness and large mass, which corresponds to branch 6 labeled in Figure 4.6 (b).

Unlike small-thickness solution characterized by a boundary layer near x “ s, whose

profile approaches a step function in the limit ε Ñ 0, this class of thick solutions

has small amplitude deviations from the mean film thickness and slowly-varying

derivative. An example of a steady-state profile on this branch is shown in Figure

4.11.

Specifically, for this type of solutions, as p̄Ñ 0`, mÑ 8 and hmax ´ hmin !
m

L
.
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Figure 4.11: An example of a steady-state profile on branch 6 with parameter
values A1 “ 1, A2 “ 1.5, L “ 6, s “ 3, ε “ 0.1. m “ 5.5, and p “ 0.014564.

It follows that in the limit p̄ Ñ 0, Π
´m

L

¯

Ñ 0. Compared to the small-thickness

solutions, films with large mass is influenced by weaker intermolecular force and thus

weaker impact of the heterogeneity contrast across x “ s. To approximate this class

of solutions, we choose δ “ Π
´m

L

¯

! 1 to be a small parameter in our asymptotic

expansion. We write the solution as hpxq “ h̄ ` δh1pxq for h̄ “
m

L
. Substituting

this expansion into the full steady-state equation and linearizing around hpxq “ h̄,

at Opδq, on the Ai region, we have

δh1xx “ A1δ ´ p̄` δA1Π1ph̄qh1, h1xp0q “ 0, 0 ă x ď s (4.29a)

δh1xx “ A2δ ´ p̄` δA2Π1ph̄qh1, h1xpLq “ 0, s ă x ă L (4.29b)

To balance the equation at Opδq, we choose p̄ “ Opδq by writing p̄ “ δp0 for some

p0 “ Op1q. As m Ñ 8, Π1ph̄q ă 0. Solving for h1pxq on 0 ď x ď s and s ă x ď L

respectively, we obtain

hpxq „

#

h̄` C1 cosp
a

´A1Π1ph̄qxq ´ A1´p0
A1Π1ph̄q

Πph̄q 0 ď x ď s

h̄` C2 cosp
a

´A2Π1ph̄qp´x` Lqq ´ A2´p0
A2Π1ph̄q

Πph̄q s ă x ď L
(4.30)

for some constant C1 and C2. To determine C1 and C2, we use the same condition

given by (4.8a) and (4.8b). C1 and C2 are both linear in p with C1 “ p0C̃1 and
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C2 “ p0C̃2 where

C̃1 “
pA1 ´ A2q r2 sin pr2 p´s` Lqq

A1A2 Π1ph̄q psin pr1 sq cos pr2 p´s` Lqq r1 ` sin pr2 p´s` Lqq cos pr1 sq r2q

(4.31)

C̃2 “
´ sin pr1 sq r1 pA1 ´ A2q

A1A2 Π1ph̄q psin pr1 sq cos pr2 p´s` Lqq r1 ` sin pr2 p´s` Lqq cos pr1 sq r2q

(4.32)

Here, ri “
b

´AiΠ1ph̄q. Note that an alternative choice of small parameter in writing

out the asymptotic expansion is p̄ “ δ ! 1. However, if we use p̄ “ δ ! 1 as the

small parameter in our expansion, we would need to solve the nonlinear equation

Πph̄q “ p̄ for h̄ to obtain the leading order term to calculate mass m. The advantage

of using δ “ Π
´m

L

¯

as our small parameter is that given a film mass m, we can use

the mass condition

ż L

0

h1pxqdx “ 0 to directly solve for the corresponding pressure

p̄ “ δp0 through a linear equation since Ci’s are both linear in p0. Direct analytical

calculations show that the pressure p̄ is given by

p̄ „
Πph̄qL

s
A1
` L´s

A2
`

C̃1Π1ph̄q
r1

sinpr1sq `
C̃2Π1ph̄q

r2
sinpr2pL´ sqq

(4.33)

Figure 4.12 shows an example of a thick steady-state film with small pressure.

The pressure of the film is given by p̄ “ 0.0192. The solid blue curve represents

the numerical solution. The dotted red curve and the dotted black curve represent

the solution computed asymptotically using (4.30) on r0, ss and rs, Ls respectively.

Specifically, the constant C1 and C2 are computed using (4.31), (4.32) and (4.33).

The numerical simulation results indicate that (4.30) agrees very well with the nu-

merical solution. To simplify (4.33) further, we derive an asymptotic expansion for
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Figure 4.12: A steady-state solution on branch 6 computed numerically and asymp-
totically as described above, with parameter values p̄ “ 0.0192, A1 “ 1, A2 “ 1.5,
L “ 6,s “ 3, ε “ 0.1

p̄ in the limit of large mass. In the limit of large h̄, we have

p̄ “
A1s` A2pL´ sq

Lh̄3
Πph̄q `O

ˆ

ε3

h̄4

˙

“
ε2pA1s` A2pL´ sqq

Lh̄3
`O

ˆ

ε3

h̄4

˙

“
ε2pA1s` A2pL´ sqqL

2

m3
`O

ˆ

ε3

m4

˙

(4.34)

This suggests that p̄ is inversely proportional to m3 for large mass. For fixed large

mass, p̄ scales linearly with both A1 and A2. From (4.30), we can also derive an

asymptotic expansion of hp0q and hpLq, which are the maximum and minimum

thickness of the film. Note that in the limit of large h̄, hp0q ´ h̄ and hpLq ´ h̄

are asymptotically given by (4.35a) and (4.35b).

hp0q´h̄ „ C1´
A1 ´ p0

A1Π1ph̄q
Πph̄q “ ´

1

6

spL´ sqp2L´ sqpA1 ´ A2qε
2

Lh̄3
`O

ˆ

ε3

h̄4

˙

(4.35a)

hpLq ´ h̄ „ C2 ´
A2 ´ p0

A2Π1ph̄q
Πph̄q “

1

6

spL´ sqpL` sqpA1 ´ A2qε
2

Lh̄3
`O

ˆ

ε3

h̄4

˙

(4.35b)
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Figure 4.13 shows m as a function of p̄ for ε “ 0.001, 0.01, 0.1 computed numerically

and asymptotically using (4.34), which is a further reduced asymptotic prediction

from the full asymptotic prediction given by (4.33). The solid curves represent the

numerically computed bifurcation curves. The blue, red and black curve correspond

to ε “ 0.001, ε “ 0.01 and ε “ 0.1 respectively. The orange dotted curve with filled

squares, the green dotted curve with empty circles and the purple dotted curve with

empty squares represent the asymptotic predictions given by (4.34) for ε “ 0.001,

ε “ 0.01 and ε “ 0.1 respectively. This figure shows that the large m asymptotic

results given by (4.34) agree well with the numerical results for ε “ 0.001 and ε “

0.01. For ε “ 0.1, the further reduced asymptotic approximation (4.34), denoted by

dashed and dotted curve with empty squares, is slightly less accurate. This can be

explained by the dependence of the remainder term on ε. Note that the remainder

term in (4.34) is O

ˆ

ε3

L4

˙

. However, for ε “ 0.1, the full asymptotic description given

by (4.33), denoted in the figure as “full asymptotic”, is still capable of producing a

good approximation of the numerical results.

Figure 4.13: Bifurcation diagram for p vs. hmax computed numerically and asymp-
totically for ε “ 0.001, 0.01, 0.1. In all our simulations, we set A1 “ 1, A2 “ 1.5,
L “ 6, s “ 3.
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4.2.3 Small-width droplets

In this subsection, we study the solutions on branch 2, which is a branch that folds

back from branch 1. These solutions are of droplet-type where the droplet core

completely resides in the A1 region x P r0, ss. Compared to the solutions on branch 1

which are thin, nearly flat film in the outer A1 and A2 regions with a boundary layer

near x “ s, solutions on branch 2 are characterized by larger mass so that droplets

could form on the A1 region, but are not so large as to form large droplets with

widths w ě s. This class of solutions have the smallest possible mass that allows

droplets centered at x “ 0 to form.

For a droplet with its core completely inside of r0, ss, the profile decays to an

ultra-thin film region with film thickness h “ Opεq for x ă s. The tail of the droplet

on the A1 region extends to the interface of the A1 and A2 region, where a boundary

layer occurs near x “ s, similar to that observed in the small-thickness solutions on

branch 1. An example of this type of solutions is shown below in Figure 4.14.

x

h
(x

)

6543210

0.4

0.35

0.3

0.25

0.2

0.15

0.1

Figure 4.14: Profile of a steady-state on branch 2, characterized by a droplet on
r0, ss and ultra-thin film on rs, Ls. A boundary layer where thickness changes rapidly
is observed near the interface of the A1 and A2 region.

Here, we discuss the asymptotic approximation of such solutions in two limits,

in the limit A2 Ñ 8 and ε Ñ 0 respectively. We will show that in both limits, the
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droplet profile on the A1 region falls below hpxq “ hmin 1 at some x ď s, where hmin 1

is the saddle point given by A1Πphmin 1q “ p̄. Specifically, we use a width formulation

similar to that presented in (3.15) in Section 3.1.1 to study the properties of branch

2 solutions. For Apxq “ A1, (3.15) is given by

1

2

ˆ

dh

dx

˙2

“ A1Uphq ´ p̄h` C (4.36)

To determine C, we apply the boundary condition hp0q “ hmax, which yields

C “ ´A1Uphmaxq ` p̄hmax (4.37)

Together, the steady-state equation for a monotone decreasing profile on r0, ss can

be described by

dh

dx
“ ´

a

2Rphq (4.38)

where

Rphq “ A1Uphq ´ p̄h´ pA1Uphmaxq ´ p̄hmaxq (4.39)

If hpx1q “ h1 and hpx2q “ h2, then by (4.38), we have

x2 ´ x1 “

ż h2

h1

dh
a

2Rphq
dh (4.40)

Since hpxq falls below hmin 1 for some x ď s, then using (4.40), we can describe

solutions on branch 2 by the property

ż hmax

hmin 1

1
a

2Rphq
dh ă s (4.41)

Figure 4.15 (a) shows the homoclinic orbit for Apxq ” A1 “ 1 and Apxq ” A2 “ 2

respectively and h vs. hx plotted for a chosen steady-state solution on branch 2.

The blue dotted curve denotes the homoclinic orbit on Apxq ” A1 “ 1. The red
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dotted curve denotes the homoclinic orbit on Apxq ” A2 “ 2. The black solid curve

denotes the orbit for the chosen steady-state solution on branch 2. Figure 4.15 (b) is

the same plot shown in (a) zoomed into the range h P phmin 2, hmin 1q. For A2 ą A1,

we have hmin 1 ą hmin 2, hcen2 ą hcen1 and hmax 2 ą hmax 1 where hceni denotes the

center-fixed point for Apxq ” Ai. Since the steady-state solution exists on a finite

domain r0, Ls, the minimum film thickness satisfies hmin ą hmin 2. We will show that

in the limit A2 Ñ 8 and ε Ñ 0, hmin Ñ ε to leading order. Hence, in these two

limits, the steady-state solution on the A1 region must lie outside of the homoclinic

orbit for Apxq ” A1 and inside the homoclinic orbit for Apxq ” A2.

(a) (b)

Figure 4.15: (a) Homoclinic orbit for Apxq ” A1 and Apxq ” A2 respectively
and the orbit of a branch 2 solution. (b) Same phase plane plot zoomed into h P
phmin 2, hmin 1q, for parameter values A1 “ 1, A2 “ 2, L “ 6, s “ 3, p̄ “ 0.493, ε “ 0.1

First, we study the steady-state in the limit A2 Ñ 8 for A1 “ 1 fixed. On the

A2 region, the steady-state equation is given by

d2h

dx2
“ A2Πphq ´ p̄ (4.42)

To study the limit A2 Ñ 8, write A2 “
1

δ
for some δ ! 1. Then we have

δ
d2h

dx2
“ Πphq ´ δp̄ (4.43)
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(4.43) is a problem with a boundary layer near x „ s. We write the outer solution

as houtpxq “ hout0 pxq ` δhout1 pxq `H.O.T. At Op1q, Πphout0 q “ 0, so hout0 “ ε. At Opδq,

we have

d2hout0

dx2
` p̄ “ Π1pεqh1 (4.44)

so hout1 “ ε2p̄. Hence, the outer solution houtpxq is given by

houtpxq „ ε` δε2p̄ “ ε`
1

A2

ε2p̄ (4.45)

Next, we seek the inner solution of the form hinpXq “ hin0 pXq`σh
in
1 pXq`σ

2hin2 pXq`

H.O.T. for X “
x´ s

δa
for some a ą 0 and σ ! 1. In the rescaled variable, the steady-

state equation for hpxq on rs, Ls is given by

δ1´2ad
2hin

dX2
“ Πphinq ´ p̄δ (4.46)

Choose a “
1

2
. Then at leading order, we obtain

d2hin0
dX2

“ Πphin0 q (4.47)

We can write (4.47) as a first order equation by multiplying both sides by
dhin0
dx

and

integrating with respect to x. For a monotonically decreasing solution, we have

dhin0
dX

“ ´

b

2Uphin0 q ` C (4.48)

for some constant C. To match hin0 with hout0 , we need hin0 pXq Ñ ε as X Ñ 8. This

determines C “ ´2Upεq. Since we expect lim
xÑs´

hpxq Ñ ε in the limit A2 Ñ 8, we

would like hin0 p0q “ ε. This pins the solution hin0 pXq down to the constant solution

hin0 pXq ” ε.
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Now if we write hpxq in terms of the original variable x, then for xÑ s`, h1pxq „

σh11pxq „
σ
?
δ
hin

1

1 pXq „ O

ˆ

σ
?
δ

˙

since h0pxq ” ε is a constant. For 0 ď x ă s, the

solution is characterized by a droplet structure. We expect lim
xÑs´

h1pxq “ Op1q. It

follows from the balance lim
xÑs´

h1pxq “ lim
xÑs`

h1pxq that σ “
?
δ. Hence, at Op

?
δq, we

obtain the equation for hin1 pXq given by

d2hin1
dX2

“ Π1phin0 qh
in
1 pXq “

1

ε2
h1 (4.49)

This gives

hin1 pXq “ Ee
X
ε ` Fe´

X
ε (4.50)

To match hinpXq with houtpxq at Op
?
δq, we need hin1 Ñ 0 as X Ñ 8 since houtpxq

does not have a Op
?
δq term in the expansion, so E “ 0.

Next, at Opδq, the equation for hin2 pXq is given by

d2hin2
dx2

“ Π1phin0 qh
in
2 `

1

2
Π2phin0 qph

in
1 q

2
´ p̄ (4.51)

The solution hin2 pXq is therefore given by

hin2 pXq “ C2e
X
ε ` C1e

´X
ε `

1

6
ε2
´

6p` F 2Π2ph0qe
´ 2X

ε

¯

(4.52)

To match the inner solution with the outer solution at Opδq, we require h2 Ñ ε2p̄ as

X Ñ 8. This gives C2 “ 0. Together, on the A2 region s ď x ď L, in the limit of

large A2,

hpxq „ ε`
?
δFe

´
px´sq

ε
?
δ ` δ

ˆ

ε2p̄` C1e
´x´s

ε
?
δ `

1

6
ε2F 2Π2pεqe

´ 2
ε
px´sq
?
δ

˙

(4.53)
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Up to Op
?
δq, hpsq „ ε`

?
δF`Opδq. For a given pressure p̄, in the limit A2 Ñ 8,

hpsq Ñ ε ă hmin 1. By continuity of hpxq, lim
xÑs´

hpxq Ñ ε ă hmin 1. It follows that in

the phase plane, the steady-state solution on the A1 region must be a solution that

lies outside of the homoclinic orbit that corresponds to Apxq ” A1.

To determine F , we consider the solution on the A1 region. In the limit A2 Ñ 8,

hpsq Ñ ε. To leading order, the steady-state problem on A1 region is given by the

Dirichlet problem

d2h

dx2
“ A1Πphq ´ p̄ (4.54a)

h1p0q “ 0, hpsq “ ε (4.54b)

Since the solution on A1 region lies outside of the homoclinic orbit, there exists

xf ă s such that hpxf q “ hmin 1, at which h1pxq has a local extremum, implying that

hpxq has a concavity change. Since hmin 1 “ ε ` Opε2q, we approximate the solution

in the region where ε`
?
δF ă hpxq ă hmin 1 by

hpxq “ hmin 1 ` δ̃h1pxq

for some δ̃ ! hmin 1, to be determined later. Substituting the expansion into (4.54a)

and linearizing, at Opδ̃q, we have

d2h1

dx2
“ A1Π1phmin 1qh1 (4.55)

Solving (4.55) for h1, we obtain the asymptotic expansion for hpxq, given by

hpxq „ hmin 1 `Ge
?
A1Π1phmin 1qpx´sq `He´

?
A1Π1phmin 1qpx´sq (4.56)

for some constant G and H to be determined. Note that
a

Π1phmin 1q “ O

ˆ

1

ε

˙

. hpxq

has a boundary layer as xÑ s. For the inner solution to match the outer solution as
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xÑ ´8, H “ 0. To determine F , we apply the condition (4.8a)-(4.8b). This gives

G “
ε´ hmin 1

ε
?
δ
a

A1Π1phmin 1q ` 1
(4.57a)

F “
ε
a

A1Π1phmin 1qphmin 1 ´ εq

ε
?
δ
a

A1Π1phmin 1q ` 1
(4.57b)

Hence, G “ Opε2q ! hmin 1. It follows that h1psq „ G
a

A1Π1phmin 1q „ ´εp̄. The

steady-state equation on A1 region can be written as a first order equation given by

1

2

ˆ

dh

dx

˙2

“ A1Uphq ´ p̄h`K (4.58)

for some constant K. Plugging h1psq „ ´εp̄ and hpsq „ ε`
?
δF into (4.58), we find

K “
1

2
G2A1Π1phmin 1q ´ A1Upε`

?
δF q ` p̄pε`

?
δF q (4.59)

If we take εÑ 0, to leading order, we have

F „
ε2p̄
?
A1

(4.60)

and thus,

hpsq „ ε`
?
δ
ε2p̄
?
A1

(4.61)

In the same limit, at hpxf q “ hmin 1,

1

2
h1pxf q

2
“ A1Uphmin 1q ´ p̄hmin 1 `

1

2
G2A1Π1phmin 1q ´ A1Upε`

?
δF q ` p̄pε`

?
δF q

(4.62a)

„
ε2p̄2

?
A1

?
δ ´

1

2
ε2p̄2δ (4.62b)

Hence, as A2 Ñ 8, h1pxf q Ñ 0, suggesting that the droplet formed on r0, ss

approaches the homoclinic orbit corresponding to Apxq ” A1 and therefore can be
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approximated by the homoclinic solution in the limit of large A2 to leading order.

Figure 4.16 (a)-(b) shows the profile of one steady-state solution that belongs to

branch 2 for A2 “ 50. Figure 4.16 (a) shows a comparison of the homoclinic droplet

on Apxq ” A1 and the steady-state solution on heterogeneous Apxq with the same

pressure. This shows that the droplet core of branch 2 solutions can be well ap-

proximated by the homoclinic solution on the region with Apxq ” A1 of the same

pressure. Figure 4.16 (b) shows the boundary layer approximation compared to the

numerical solution for the same branch 2 solution zoomed into the interface of A1 and

A2 region. We conclude that the droplet portion of the branch 2 solutions depends

on A1 to leading order.

Homogeneous A(x) ≡ 1
Heterogeneous A1 = 1, A2 = 50

x

h
(x

)
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h
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(b)

Figure 4.16: (a) Comparison of a branch 2 steady-state on a heterogeneous sub-
strate with the homoclinic solution on Apxq ” A1 for the same pressure. The solid
blue curve represents the numerically computed steady-state. The dotted red curve
represents the homoclinic solution with the same pressure on a homogeneous sub-
strate Apxq ” A1. (b) Comparison of the numerically computed steady-state and
the boundary layer approximation near the interface x “ s. The solid blue curve
represents the numerically computed solution. The dotted red curve represents the
asymptotic approximation near the interface. In both (a) and (b), L “ 6, s “ 3,
A1 “ 1, A2 “ 50, ε “ 0.1, p̄ “ 0.467332.

Now, instead of taking A2 Ñ 8 for fixed A1 and ε, we consider the same steady-

state equation in the limit εÑ 0 for fixed A1, A2 “ Op1q. For the same droplet-type

solution where the droplet resides completely in the A1 region with width w ă s, the
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film thickness decays to Opεq as x Ñ s. Since the solution should be monotonically

decreasing, the film thickness on rs, Ls is Opεq. In the limit ε Ñ 0, Πphq changes

rapidly near h “ Opεq. It follows that the solution for s ď x ď L and w ! x ă s

can be asymptotically approximated by (4.20) where C1 and C2 are given by (4.22a)-

(4.22b), as derived in Section 4.2.1 for small-thickness films. This gives

hpsq „ hmin 2 `
phmin 1 ´ hmin 2q

a

A1Π1phmin 1q
a

A1Π1phmin 1q `
a

A2Π1phmin 2q
(4.63)

In the limit εÑ 0, we can further reduce C2 asymptotically so

C2 „
hmin 1 ´ hmin 2
b

A2

A1
` 1

which has been described in (4.25a)-(4.25b) for small-thickness solution in the same

limit. Using hmin 2 “ ε`
ε2p̄

A2

`Opε3q, we have

hpsq „ ε` ε2
p̄

?
A1A2

(4.64)

Note that that in the limit A2 Ñ 8, (4.64) is the same as (4.61) derived earlier by

first taking A2 Ñ 8 and then εÑ 0.

To get an estimate of the maximum film thickness of this class of solutions in

the limit εÑ 0, we first write the steady-state equation as a first order equation on

r0, ss, given by

1

2

ˆ

dh

dx

˙2

“ A1Uphq ´ p̄h`M (4.65)

for some constant M . By applying the boundary condition hxp0q “ 0 and hp0q “

hmax, we have

M “ ´A1Uphmaxq ` p̄hmax (4.66)
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Writing the steady-state equation on s ă x ď L as a first order equation, we have

1

2
h2
x “ A2Uphq ´ p̄h` P (4.67)

for some constant P . Applying the boundary condition hxpLq “ 0 and hpLq “ hmin,

we get

P “ ´A2Uphminq ` p̄hmin (4.68)

Since h1pxq is continuous at x “ s, we have lim
xÑs´

h1pxq “ lim
xÑs`

h1pxq. This gives

pA1 ´ A2qUphpsqq ` p̄phmax ´ hminq “ A1Uphmaxq ´ A2Uphminq (4.69)

As ε Ñ 0, hpsq “ ε ` Opε2q, hmin “ ε ` Opε2q and Uphmaxq “ Opε2q. At Op1q, we

have

A1Uphpsqq ` p̄phmax ´ hminq “ 0 (4.70)

It follows that the maximum film thickness is given by

hmax „ ´
A1Upεq

p̄
` ε „

A1

6p̄
(4.71)

in the limit ε Ñ 0. Note that hmax „
A1

6p̄
is the leading order asymptotic approxi-

mation of the maximum film thickness of the homoclinic solution on A ” A1 with

pressure p̄. This is consistent with our earlier results on the steady-state solution in

the limit A2 Ñ 8. Hence, the homoclinic solution on the homogeneous substrate

Apxq ” A1 can be used to describe the droplet portion of the branch 2 solution in

both the limit A2 Ñ 8 and ε Ñ 0. Specifically, as ε Ñ 0, we can approximate the

droplet core using the parabola hpxq „ ´
1

2
p̄x2

` hmax. With hmax „
A1

6p̄
, we have

w „

?
A1
?

3p̄
. On branch 2, the maximum film thickness hmax and droplet width w in-

crease as p̄ decreases. It follows that in the limit εÑ 0, branch 2 solutions terminate
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at pressure p˚2,3 when wpp˚2,3q „ s. Note that p˚2,3 is also the pressure where branch 2

intersects with branch 3, to be discussed in Section 4.2.4 shortly. Asymptotically,

?
A1

?
3p˚2,3

„ s (4.72)

which gives p˚2,3 „

?
A1
?

3s
. Figure 4.17 shows the bifurcation diagram for hmax vs.

p zoomed into a portion of branch 2, computed numerically and asymptotically in

the limit of small ε. The asymptotic prediction is computed using (4.71), which is

represented by the red dotted curve. The simulation results show that the leading

order asymptotic prediction agrees well with the numerical solution.

A1

6p

Numerical

p

h
m

a
x

21.81.61.41.210.80.60.40.2
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2

1.5

1

0.5

0

Figure 4.17: Bifurcation diagram for p vs. hmax of steady-states on branch 2. The
solid blue curve represents the numerical solution. The red dotted curve represents
the asymptotic prediction of hmax in the limit ε Ñ 0, with parameters A1 “ 1,
A2 “ 1.5, L “ 6, s “ 3, and ε “ 0.001.

4.2.4 Pinned droplets

On branch 2, the droplets formed have width w ă s. Now we describe a new class

of solutions, which corresponds to branch 3 labeled in Figure 4.6 (b), a branch that

connects with branch 2 at pressure p˚ where wpp˚q „ s. As εÑ 0, we have shown in

Section 4.2.3 that p˚ „

?
A1
?

3s
. This branch of solutions is characterized by droplets
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with width w „ s. An example of such a solution is shown in Figure 4.18. In

other words, this is a class of droplets where the droplet width does not change with

droplet mass and size at leading order. The motion of the droplet is constrained

by the strength of chemical heterogeneity at the interface of the solid substrate.

This branch arises as a consequence of the heterogeneity introduced in the chemical

properties of the substrate. To study and develop an asymptotic prediction for this

type of solutions, we consider the steady-state in two separate limits, namely the

limit εÑ 0 and the limit A2 Ñ 8 respectively.

x

h
(x

)

6543210

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Figure 4.18: An example of a pinned droplet on branch 3, with parameters A1 “ 1,
A2 “ 50, L “ 6, s “ 3, ε “ 0.1.

First, we study the solution in the limit εÑ 0 for fixed A1, A2 “ Op1q. As εÑ 0,

solutions on this branch are characterized by a droplet on r0, ss with width w „ s,

hmax “ Op1q, hpsq “ Opεq and hmin “ Opεq. Hence, in the droplet core region, for

0 ď x ! s, A1Πphq ! 1. At leading order, the steady-state equation can be described

by h2 „ ´p̄. It follows that the steady-state profile on r0, ss is described by

hpxq „ ´
1

2
p̄x2

` hmax

in the limit εÑ 0. Since the droplet has width w „ s, to leading order, the maximum
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film thickness of the solution is given by

hmax „
1

2
p̄s2 (4.73)

Now we follow the equation (4.69) derived in Section 4.2.3, which is exact for all

steady-states, given by

pA1 ´ A2qUphpsqq ` p̄phmax ´ hminq “ A1Uphmaxq ´ A2Uphminq

In the limit ε Ñ 0, hmax “ Op1q, hpsq “ Opεq and hmin “ Opεq. At Op1q, this

equation reduces to

pA1 ´ A2qUphpsqq ` p̄hmax “ ´A2Uphminq (4.74)

This produces a leading order asymptotic approximation for hpsq, given by

Uphpsqq “
A2

6
´ 1

2
p̄2s2

A1 ´ A2

(4.75)

Note that (4.75) reduces to a cubic polynomial. We choose hpsq to be the real

positive root larger than ε so hpsq ą ε. Figure 4.19 shows a comparison between hpsq

computed numerically and hpsq computed by solving the asymptotically reduced

equation (4.75) for A2 “ Op1q. The simulation results show that the asymptotic

prediction agrees well with the numerical results.

Next, we study the solution on branch 3 in the limit A2 Ñ 8. Let δ “
1

A2

! 1.

We follow the same derivation presented in (4.43)-(4.53) in Section 4.2.3. On the A2

region, the solution can be asymptotically described by

hpxq „ ε`
?
δFe

´
px´sq

ε
?
δ `Opδq (4.76)

for some constant F , which would be different from that in Section 4.2.3 since the

solution on the A1 region changes. We determine F so that lim
xÑs´

hpxq “ lim
xÑs`

hpxq.
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Figure 4.19: Comparison of hpsq computed numerically and hpsq computed using
the asymptotic approximation (4.75) for a droplet on branch 3 with fixed pressure
p̄ as A2 “ Op1q increases. The solid blue curve denotes the numerical result. The
red dashed curve represents the solution to the asymptotic prediction (4.75), with
parameters A1 “ 1, p̄ “ 0.2075, L “ 6, s “ 3, ε “ 0.01.

To determine hpsq in the limit of large A2, we divide both sides of (4.69) by A2. We

can rewrite (4.69) in terms of δ as

pδA1 ´ 1qUphpsqq ` δp̄phmax ´ hminq “ δA1Uphmaxq ´ Uphminq (4.77)

At Op1q, we have

Uphpsqq “ Uphminq (4.78)

In (4.43)-(4.53), we have derived that hpsq “ ε`Op
?
δq in the limit A2 Ñ 8 where

the higher-order term in the expansion depends on the solution on x P r0, sq. To

obtain a higher-order prediction for hpsq for branch 3 in the limit A2 Ñ 8, we write

hpsq “ h0 ` δah1 for some a ą 0. Here, the leading order term h0 is given by ε by

(4.78). The Taylor expansion of Upε` δah1q at h “ ε yields

Uphpsqq “ Upε` δah1q „ Upεq `
1

2
δ2aΠ1pεqh2

1 (4.79)

At Opδq, we have

1

2
Π1pεqh2

1δ
2a
“ δpA1Upεq `

1

2
p̄2s2

q (4.80)
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This suggests a “
1

2
. Solving (4.80), we have

h1 “
?

2ε

c

A1Upεq `
1

2
p̄2s2 “ ε

c

´
A1

3
` p̄2s2 (4.81)

Together, in the limit A2 Ñ 8, we have

hpsq „ ε` δh1 “ ε`
ε

?
A2

c

´
A1

3
` p̄2s2 (4.82)

It follows that for lim
xÑs´

hpxq “ lim
xÑs`

hpxq to hold, F is given by

F “ ε

c

´
A1

3
` p̄2s2 (4.83)

Figure 4.20 shows hpsq ´ ε calculated numerically and asymptotically plotted in log

scale. The asymptotic approximation used is given by (4.82). In the limit of large

A2, the asymptotic prediction agrees well with the numerical solution.

Asymptotic
Numerical

A2

h
(s
)
−

ǫ

1000100

0.01

0.001

Figure 4.20: Comparison of hpsq ´ ε computed numerically and hpsq from the
asymptotic approximation (4.82) for large A2 plotted in log scale. The solid blue
curve denotes the numerical result. The red dashed curve denotes the solution to the
asymptotic prediction given by (4.82), with parameters A1 “ 1, p̄ “ 0.29159, L “ 6,
s “ 3, and ε “ 0.1.

Using the asymptotic prediction hpsq „ ε`
ε

?
A2

c

´
A1

3
` p̄2s2, we can also derive

h1psq, which represents the contact angle of this class of pinned droplets since the
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droplet width w „ s. On the A1 region r0, ss, as xÑ s´, we have

1

2
h1psq2 “ A1Uphpsqq ´ p̄hpsq ` p̄hmax ´ A1Uphmaxq (4.84)

Substituting hpsq „ ε`
ε

?
A2

c

´
A1

3
` p̄2s2 and hmax „

1

2
p̄s2 into (4.84) and using a

Taylor expansion of Uphq at h “ ε, we obtain

1

2
h1psq2 “ A1Upεq `

1

2
δΠ1pεqε2

ˆ

´
A1

3
` p̄2s2

˙

`
1

2
p̄s2

´ p̄ε´ A1U

ˆ

1

2
p̄s2

˙

`Opδq

(4.85)

which simplifies to

h1psq2 “

ˆ

´
A1

3
` p̄2s2

˙

p1` δq `O
`

δ2
˘

(4.86)

for ε ! 1. It follows from the Taylor expansion of
?

1` δ that

h1psq “ ´

c

´
A1

3
` p̄2s2 `

1

2
δ `O

`

δ2
˘

(4.87)

This suggests that for fixed pressure p and s, as A2 Ñ 8, the contact angle of the

droplet formed on branch 3 approaches a fixed angle θ “

c

´
A1

3
` p̄2s2. Specifically,

the contact angle approaches θ at a rate |h1psq| ´ θ9
1

2A2

. (4.87) also shows that for

fixed large A2, as the droplet pressure increases on branch 3, the contact angle also

increases, at a rate

c

´
A1

3
` p̄2s2. In Chapter 3, by asymptotic matching, we showed

that the droplets formed on a chemically homogeneous substrate with Apxq ” 1 have

contact angle θ “
1
?

3
in the limit εÑ 0, which is independent of the droplet pressure

p̄. With the introduction of heterogeneity, the contact angle of the “pinned” droplet

on branch 3 is now modified to have a dependence on s and p̄. As will be discussed
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shortly in Section 4.2.5, on branch 3, the pressure range for branch 3 is asymptotically

given by

?
A1
?

3s
ď p̄ ď

?
A2
?

3s
. As A2 increases, the pressure range and the length of

branch 3 both increase. It follows that the contact angle of the droplets on branch 3 is

ultimately determined by both s and A2, the length and strength of the heterogeneity

contrast of the chemical patterning.

By (4.82), we have also shown that for each fixed pressure p̄ and s, hpsq´ε9A
´1{2
2

in the limit of large A2. This provides a measure for how well the film droplet on

branch 3 is confined within the A1 region in the limit A2 Ñ 8. In the limit A2 Ñ 8

and εÑ 0, we have derived for s ď x ď L, the solution decays like

hpxq „ ε`
ε

?
A2

c

´
A1

3
` p̄2s2e´

?
A2px´sq

ε

We have determined F “ ε

c

´
A1

3
` p̄2s2 so that lim

xÑs´
hpxq “ lim

xÑs`
hpxq. Note that

besides the continuity of hpxq at x “ s, to leading order, this asymptotic prediction

also satisfies the continuity of h1pxq at x “ s, i.e. lim
xÑs´

h1pxq “ lim
xÑs`

h1pxq with

lim
xÑs`

h1pxq “

c

´
A1

3
` p̄2s2 “ lim

xÑs´
h1pxq (4.88)

Compared to the solutions on branch 2 which depends on A1 to leading order,

the leading order steady-states on branch 3 depend on s. Figure 4.21 shows the

bifurcation diagram p vs. hmax zoomed into branch 3. The blue solid curve represents

the numerically computed solution. The red dotted curve denotes the asymptotic

prediction hmax „
1

2
ps2 in the limit of small ε. We observe that the leading order

asymptotic prediction agrees well the numerical results.
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Figure 4.21: Bifurcation diagram for p vs. hmax computed numerically and asymp-

totically using
1

2
ps2, with parameters L “ 6, s “ 3, A1 “ 1, A2 “ 1.5, and ε “ 0.001.

4.2.5 Large-width droplets

Branch 4 is also a branch of droplet-type solutions. Compared to the small-width

droplets described in Section 4.2.3 and the pinned droplets described in Section 4.2.4,

which consists of droplets with width w ď s and w „ ε respectively, branch 4 is a class

of solutions that describes droplets with s ď w ď L. For w ď x ď L, the solution

is characterized by an ultra-thin film region with thickness h “ Opεq. One example

of such a steady-state solution is shown in Figure 4.22. For solutions on branch

2 and branch 3, we have previously shown that hpsq “ Opεq. Compared to these

solutions, droplets on branch 4 have larger mass, width and hmax, and consequently

hpsq “ Op1q " ε. In this subsection, we study the steady-states on branch 4 in two

separate limits, in the limit ε Ñ 0 and the limit A2 Ñ 8. We show that in either

limit, the solution depends on A2 at leading order.

First, we consider the solution in the limit ε Ñ 0 for A1, A2 “ Op1q. We first

assume hpsq “ Op1q " ε. We will show that the asymptotic analysis results produced

under this assumption are self-consistent. If hpsq “ Op1q and the droplet profile is

monotonically decreasing on r0, Ls, hmax “ Op1q " ε. For A1, A2 “ Op1q, we have

AiUphpsqq “ Opε2q and AiUphmaxq “ Opε2q. In Section 4.2.3, we derived (4.69),
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Figure 4.22: Profile of a steady-state solution on branch 4, with parameters A1 “ 1,
A2 “ 50, p̄ “ 0.835619, L “ 6, s “ 3, and ε “ 0.1.

which is exact for all steady-state solutions. We use the same equation to study

branch 4. For solutions on branch 4, as εÑ 0, at Op1q, (4.69) is given by

p̄hmax “ ´A2Uphminq `Opεq “ ´A2Upεq `Opεq (4.89)

This gives

hmax “
A2

6p̄
`Opεq (4.90)

Note that this is the maximum film thickness of the homoclinic droplet on a homo-

geneous substrate with Apxq ” A2 in the limit ε Ñ 0. Since hmax “ Op1q " ε, it

follows that in the A1 region 0 ď x ď s, A1Πphq ! ε. The steady-state equation on

the A1 region can be described by

d2h

dx2
„ ´p̄ (4.91)

To leading order, the profile of the droplet core is described by

hpxq “ ´
1

2
p̄x2

` hmax `Opεq “ ´
1

2
p̄x2

`
A2

6p̄
`Opεq (4.92)

If we evaluate (4.92) at x “ s, we have

hpsq „ ´
1

2
p̄s2

`
A2

6p̄
“ Op1q (4.93)
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which justifies our earlier assumption that hpsq “ Op1q in the limit ε Ñ 0. Since

hpsq “ Op1q " ε for ε Ñ 0 and A2 “ Op1q, for s ď x ! w, A2Πphq “ Opε2q ! 1,

which suggests that the portion of droplet core residing on the A2 region could still

be approximated by
d2h

dx2
„ ´p̄, yielding (4.92) for 0 ď x ! w. At leading order, the

maximum droplet height is determined by A2 in the limit εÑ 0.

Since the solution exists on a finite domain r0, Ls, we must have hmin ą hmin 2 “

Opεq. In the phase plane, this means that the solution on branch 4 must be bounded

inside the homoclinic orbit that corresponds to Apxq ” A2 with hmax ă hmax 2 where

hmax i is the maximum film thickness of the homoclinic solution for Apxq ” Ai. Figure

4.23 (a) shows the phase plane trajectory of the homoclinic orbit corresponding to

Apxq ” A1 and Apxq ” A2 and the orbit of a chosen steady-state solution on branch

4. The blue dotted curve and the red dotted curve represent the two homoclinic orbits

for Apxq ” A1 and Apxq ” A2 respectively. The solid black curve represents the orbit

of the chosen steady-state on branch 4. As can be observed from the figure, the orbit

of the branch 4 solution lies inside of the homoclinic orbit for Apxq ” A2. Figure

4.23 (b) shows the same plot zoomed into hmin 2 ă hmin ă hmin 1. The minimum film

thickness of the branch 4 solution is very close to hmin 2. Our asymptotic analysis

above suggests that as ε Ñ 0, the solution approaches the homoclinic orbit for the

same pressure with Apxq ” A2.

Using (4.92), we can calculate an estimate of the droplet width by solving the

leading order equation hpwq „ 0, i.e.

´
1

2
p̄w2

`
A2

6p̄
„ 0 (4.94)

It follows that the width of the droplet w at leading order is given by

w „

?
A2
?

3p̄
(4.95)
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(a) (b)

Figure 4.23: (a) Phase plane plot of the homoclinic orbit for Apxq ” A1 and
Apxq ” A2 respectively and the plot of h vs. hx of a steady-state solution on branch
4 (b) Same plot as (a), zoomed into hmin 2 ă h ă hmin 1. In both (a) and (b), A1 “ 1,
A2 “ 2, L “ 6, s “ 3, ε “ 0.1, p̄ “ 0.210987.

Since w ď L, the solution is characterized by an ultra-thin film region with h „ ε for

w ! x ď L. Together, in the limit ε Ñ 0, the steady-state on the whole domain is

given by

hpxq „

#

´1
2
px2 ` A2

6p
0 ď x ď

?
A2?
3p

ε
?
A2?
3p
! x ď L

(4.96)

We described in Section 4.2.4 that the “pinned” droplets on branch 3 have width

w „ s. Since branch 4 is connected to branch 3, the intersection of branch 3 and

branch 4 occurs at pressure p˚3,4 where

s „

?
A2

?
3p˚3,4

(4.97)

This gives

p˚3,4 „

?
A2
?

3s
(4.98)

As pressure p̄ decreases on branch 4, the droplet width increases. Branch 4 terminates

at pressure p˚4,5 where branch 4 intersects with branch 5, to be described in the next
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section. The point of intersection occurs when wpp˚4,5q „ L, i.e.

L „

?
A2

?
3p˚4,5

(4.99)

which yields

p˚4,5 „

?
A2

?
3L

(4.100)

Next, we study the steady-state on branch 4 in the limit A2 Ñ 8 for A1 “ Op1q.

We show that in the limit of large A2, the asymptotic results given by (4.90) still

hold as in the limit ε Ñ 0 for fixed A2 “ Op1q. Since (4.69) is exact for all A1, A2,

and ε, we use (4.69) by first dividing both sides of (4.69) by A2. Let δ “
1

A2

! 1. We

arrive at (4.77), which is the same equation previously derived for pinned droplets

in the same limit, i.e.

pδA1 ´ 1qUphpsqq ` δp̄phmax ´ hminq “ δA1Uphmaxq ´ Uphminq (4.101)

By (4.43)-(4.53) in Section 4.2.3, we have derived that as A2 Ñ 8, for s ! x ď L,

the solution is characterized by an ultra-thin film region which can be described by

the outer solution hpxq “ ε to leading order. While the length of the ultra-thin film

region of the branch 4 solutions has changed, the ultra-thin film near x “ L can still

be described by this outer solution, which means hmin “ Opεq.

Under the assumption that hpsq " ε, hmin “ Opεq and A1 “ Op1q, we know

δA1Uphpsqq “ Opδq, Uphpsqq ! 1, δA1Uphmaxq “ Opδq, δp̄hmin “ Opδq and Uphminq “

Op1q. The only term that remains to balance Uphminq is δp̄hmax. We know that the

pressure range for branch 4 is asymptotically given by p˚3,4 ă p̄ ă p˚4,5. We have also

shown in (4.98) and (4.100) that p˚3,4, p
˚
4,5 “ Op

a

A2q “ O

ˆ

1
?
δ

˙

, which both grow

as A2 Ñ 8. As a consequence, we scale p̄ by writing p̄ “
a

A2p̃ for some p̃ “ Op1q.
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This suggests hmax “ O

ˆ

1

δ

˙

“ Op
a

A2q. We will show that Uphpsqq in (4.77) is

Opδq as a result of this dominant balance, which is consistent with all our earlier

assumptions. The dominant balance at leading order for (4.101) is given by

δp̄hmax “
?
δp̃hmax “ ´Uphminq (4.102)

which yields

hmax „
A2

6p̄
(4.103)

Note that (4.103) is the same asymptotic estimate for hmax in the limit ε Ñ 0 for

A1, A2 “ Op1q. Although it appears that hmax „
A2

6p̄
“ OpA2q, hmax is, in fact,

Op
?
A2q because p̄ “ Op

?
A2q, as reasoned above. It follows from this estimate that

on r0, ss,

A1Πphmaxq “ A1Π

ˆ
?
A2

6p̃

˙

“ O

˜

1

A
3{2
2

¸

so A1Πphq ! p̄ for p̄ “ Op
?
A2q on r0, ss. The droplet core on r0, ss can still be

described by
dh2

dx2
„ ´p̄, which leads to the parabolic profile

hpxq „ ´
1

2
p̄x2

` hmax „ ´
1

2
p̄x2

`
A2

6p̄
(4.104)

Using the estimate (4.104), we get hpsq „ ´
1

2
p̄s2

`
A2

6p̄
. Even on the A2 region for

s ď x ! w, we have

A2Πphpsqq “ A2Π

ˆ

1

2
p̄s2

`
A2

6p̄

˙

“ A2Π

ˆ

´

?
A2

2
p̃s2

`

?
A2

6p̃

˙

“ O

ˆ

1
?
A2

˙

which makes A2Πphq ! p̄ for p̄ “ Op
?
A2q and thus the parabolic profile (4.104) still

a valid prediction of the steady-state inside the droplet across the interface of the A1

and A2 region.
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To show that Uphpsqq “ Opδq, we substitute hpsq into Uphpsqq, in the limit

A2 Ñ 8, we get

Uphpsqq “ ´
18ε2p̃2

p3p̃2s2 ´ 1q2A2

`O

˜

1

A
3{2
2

¸

(4.105)

which confirms that Uphpsqq “ Opδq in (4.101) and is negligible at Op1q. Together,

in the limit A2 Ñ 8, the leading order steady-state on the whole domain can be

described by

hpxq „

#

´1
2
p̄x2 ` A2

6p̄
0 ď x ď

?
A2?
3p̄

ε
?
A2?
3p̄
! x ď L

(4.106)

which has the same form as the solution in the limit ε Ñ 0 for fixed A2 “ Op1q, as

shown in (4.96).

Figure 4.24 (a) shows the bifurcation diagram for p vs. hmax computed numer-

ically and asymptotically for branch 4 for A1, A2 “ Op1q in the limit of small ε.

Figure 4.24 (b) shows the bifurcation diagram for p vs. hmax computed numerically

and asymptotically for branch 4 in the limit of large A2. In both Figure 4.24 (a) and

Figure 4.24 (b), the blue solid curve represents the numerically computed bifurcation

curve. The red dashed and dotted curve represents the asymptotic prediction given

by
A2

6p̄
. We observe from both figures that the asymptotic prediction

A2

6p̄
agrees well

with the numerical results in both limits. p˚3,4, the pressure at which branch 3 and

branch 4 intersect is labeled in both figures. Similarly, p˚4,5, the pressure at which

branch 4 and branch 5 intersect is also labeled. Note that the film mass m˚
4,5 corre-

sponding to p˚4,5 is the maximum film mass for which a droplet-type solution could

exist. The only solution that exists with mass m ą m˚
4,5 belongs to branch 6, which

is characterized by a small perturbation from a thick layer of flat film. In both the
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limits εÑ 0 and A2 Ñ 8, we can estimate m˚
4,5 by

m˚
4,5 „

?
3

9

a

A2L
2 (4.107)

Note that this is also the maximum mass mmax defined for the outer loop solution

shown in Figure 4.4 in Section 4.1. This shows for fixed domain size L, the maximum

mass for which a droplet could exist on this domain scales with
?
A2. Through

asymptotic analysis, we have shown that branch 4 is a class of solutions that can be

described by the homoclinic droplets corresponding to Apxq ” A2 at leading order.

(a) (b)

Figure 4.24: Bifurcation diagram for p vs. hmax computed numerically and asymp-
totically for branch 4 (a) in the limit εÑ 0, with parameters A1 “ 1, A2 “ 1.5, and
ε “ 0.001. (b) in the limit A2 Ñ 8, with paramters A1 “ 1, A2 “ 1000, ε “ 0.1. In
both (a) and (b), L “ 6, s “ 3.

4.2.6 Large confined droplets

In Section 4.2.5, we have shown that for branch 4 solutions, both the maximum film

thickness hmax and droplet width w increase with pressure p̄. Branch 4 terminates at

p˚4,5 when the droplet on branch 4 attains a maximum mass m˚
4,5. For p̄ ă p˚4,5, there

is another branch that connects branch 4 and branch 6. We call it branch 5. Branch

5 is a class of solutions that continues to exist for p̄ ă p˚4,5 and is characterized by a

large droplet with width w „ L. As the fluid mass grows on branch 5, the droplets
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formed grow in size but are confined by the domain size so the droplet width remains

L regardless of fluid mass and pressure. An example of a solution on branch 5 is

shown in Figure 4.25. This type of solutions has a similar structure with that of the

finite-amplitude solutions on homogeneous substrates studied by Bertozzi et al. in

[7]. In this subsection, we focus on the steady-state solutions on branch 5.

x

h
(x

)

6543210

9

8

7

6

5

4

3

2

1

0

Figure 4.25: An example of a solution on branch 5, with parameters A1 “ 1,
A2 “ 50, L “ 6, s “ 3, ε “ 0.1, and p̄ “ 0.488638.

On branch 5, the droplets formed all have width w „ L. For p̄ near p˚4,5, the

solution is still characterized by large mass and large hmax so hpsq " ε still holds as

in branch 4. However, branch 5 is distinct from branch 4 in that given the same mass,

a solution on branch 5 has smaller amplitude hmax´hmin. Since the droplets occupy

the whole domain r0, Ls, there is no more ultra-thin film region. The minimum film

thickness for branch 4 is hmin „ ε, but for branch 5, we will get hmin „ Cε for some

C that depends on p, L and A2. We study the solutions on branch 5 in two limits,

in the limit εÑ 0 with A1, A2 “ Op1q and A2 Ñ 8 with A1 “ Op1q.

We first investigate the solution in the limit εÑ 0 for A1, A2 “ Op1q. For p̄ ă p˚4,5

and near p˚4,5, the solution is still characterized by a large droplet with hpsq “ Op1q,

like branch 4. Assume hpsq “ Op1q. The profile of the droplet core can still be

described by the parabola hpxq „ ´
1

2
p̄x2

` hmax. Since the droplets now have width
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w „ L, to leading order, the maximum film thickness of the droplets on branch 5 is

given in terms of L by

hmax “
1

2
p̄L2

`Opεq (4.108)

This implies hpsq “ ´
1

2
p̄s2

`
1

2
p̄L2, which validates our assumption that hpsq “

Op1q. Since there is no longer an ultra-thin film region, the minimum film thickness

of this branch of solutions is different from that of branch 4. To obtain an asymptotic

estimate of the minimum film thickness hmin of branch 5, we use (4.69), which holds

for all branches and has been used to derive asymptotic predictions for previous

branches. Following (4.69), we have

pA1 ´ A2qUphpsqq ` p̄phmax ´ hminq “ A1Uphmaxq ´ A2Uphminq

Under our current assumptions, A1, A2 “ Op1q, p̄ “ Op1q, hpsq „ ´
1

2
p̄s2

`
1

2
p̄L2

“

Op1q, and hmax “
1

2
p̄L2

“ Op1q. For now, we assume hmin “ Opεq. We will later

show that our choice of dominant balance at Op1q is consistent with this assumption.

In the limit εÑ 0, the dominant balance at Op1q is then given by

´ A2Uphminq “ p̄hmax „
1

2
p̄2L2 (4.109)

(4.109) reduces to a cubic polynomial. The positive real root hmin, expressed in terms

of p̄, is given by

hmin „
1

9

ˆ

32{3
´

´A2

´

3 p̄L´
a

9L2p̄2 ´ 3A2

¯¯2{3

` 3A2

˙

ε 32{3

pL 3

c

´A2

´

3 p̄L´
a

9L2p̄2 ´ 3A2

¯

(4.110)

which is Opεq for A2 “ Op1q and thus consistent with our earlier assumption. Note

that the potential function Uphq has a global minimum at h “ ε and Upεq “ ´
1

6
.
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For (4.109) to have a solution, we need

1

2A2

p̄2L2
ď

1

6
(4.111)

We know this is true for all solutions on branch 5 since p ă p˚4,5 „

?
A2

?
3L

on branch

5. Figure 4.26 (a) and (b) show the diagram for p vs. hmax and p vs. hmin computed

numerically and asymptotically in the limit of small ε for A1, A2 “ Op1q. The solid

blue curve represents the numerically computed curve. The dotted dashed red curve

represents the asymptotic prediction of hmax and hmax computed using (4.108) and

(4.109). In both Figure 4.26 (a) and (b), A1 “ 1, A2 “ 1.5, ε “ 0.001. The results

suggest that the asymptotic approximation derived in the small ε limit agrees well

with the numerical calculations.

Using a similar asymptotic matching argument presented for homoclinic droplets

on homogeneous substrates in Section 3.1.1, specifically (3.27)-(3.29), we can derive

the contact angle formed by the branch 5 droplets in the limit ε Ñ 0. Since the

droplets have w „ L, in the contact line region, we rescale hpxq by hpxq “ εHpZq for

Z “
L´ x

ε
. Then at leading order, the steady-state equation in this region is given

by

1

2
H 1
pZq2 “ A2UpεHq ´ A2Uphminq “ A2UpεHq `

1

2
p̄2L2 (4.112)

As Z Ñ ´8, h “ εH Ñ hmin so H 1pZq Ñ 0. As Z Ñ 8, h “ εH Ñ Op1q, so

A2UpεHq ! 1 for A2 “ Op1q. It follows that as Z Ñ 8,

H 1
pZq “ p̄L (4.113)

so the contact angle of the droplets on branch 5 is given by θ „ p̄L to leading order.
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Figure 4.26: (a) Bifurcation diagram for p vs. hmax computed numerically (blue
solid curve) and asymptotically (red dotted curve) in the limit of small ε. The

asymptotic prediction is given by hmax “
1

2
pL2. (b) p vs. hmin computed numerically

(blue solid curve) and asymptotically (red dotted curve) in the limit of small ε where
the asymptotic prediction of hmin is given by (4.110). In both (a) and (b), A1, A2 “

1.5, L “ 6, s “ 3, ε “ 0.001.

Next, we investigate the solutions on branch 5 in the limit A2 Ñ 8 for A1 “ Op1q

fixed. We show that the leading order asymptotic prediction in this limit is the same

as that in the limit ε Ñ 0 with A2 “ Op1q, as discussed above. Let δ “
1

A2

for

δ ! 1. To study this limit, we employ (4.77), which is the same equation used to

study branch 3 and branch 4 in the limit of large A2. Writing out (4.77), we have

pδA1 ´ 1qUphpsqq ` δpphmax ´ hminq “ δA1Uphmaxq ´ Uphminq (4.114)

We know that the pressure p˚4,5 „

?
A2

?
3L

at which branch 5 intersects with branch

4 grows as A2 grows. Hence, for p̄ near p˚4,5 on branch 5, p̄ “ Op
a

A2q “ O

ˆ

1
?
δ

˙

.

As a result, we scale p̄ by writing p̄ “
1
?
δ
p̃ for some p̃ “ Op1q, as in the choice of

dominant balance for branch 4 in Section 4.2.5. To determine the order of δp̄hmax, for

now, we assume that hmax “ Op1q. We will come back to this assumption and show
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that it is consistent with the dominant balance chosen in our asymptotic analysis.

Suppose hmax “ Op1q. Inside the droplet core, we have A1Πphq ! p̄ for p̄ “

Op
?
A2q in the limit A2 Ñ 8. It follows that inside the droplet core, we can approx-

imate the steady-state by the parabola

hpxq „ ´
1

2
p̄x2

` hmax

Since w „ L, we have hmax “
1

2
p̄L2

“ Op1q, which is consistent with our earlier

assumption. Since p̄ “ Op
a

A2q “ O

ˆ

1
?
δ

˙

, using the estimate hmax „
1

2
p̄L2, we

have

δp̄hmax „ δ
1

2
p̄2L2

“
1

2
p̃2L2

“ Op1q

and

Uphpsqq „ U

ˆ

´
1

2
p̄s2

`
1

2
p̄L2

˙

“ U

ˆ

1

2

a

A2p̃p´s
2
` L2

q

˙

“ ´
2ε2

p̃2pL2 ´ s2q2A2

`O

˜

1

A
3{2
2

¸

It follows that the dominant balance of (4.114) at Op1q is given by

1

2
p̃2L2

“ ´Uphminq (4.115)

Written in the original pressure p̄, (4.115) is exactly the same asymptotic prediction

for hmin in the limit ε Ñ 0 with A2 “ Op1q, as shown in (4.109). However, (4.115),

written in the scaled variable p̃ “ Op1q suggests that hmin does not depend on A2

at leading order and that hmin “ Opεq in the limit A2 Ñ 8. Figure 4.27 (a) and

(b) show the diagram for p vs. hmax and p vs. hmin computed numerically and

asymptotically for branch 5 in the limit of large A2. The solid blue curve represents

the numerically computed hmax and hmin for each p̄. The dashed dotted red curve

represents the asymptotic prediction. The asymptotic approximation for hmax is
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given by hmax „
1

2
p̄L2. The asymptotic approximation for hmin is given by (4.115).

In both Figure 4.27 (a) and (b), A1 “ 1 and A2 “ 1000. The results suggest that

the asymptotic predictions derived for the large A2 limit agree well the numerical

calculations.
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Figure 4.27: (a) Bifurcation diagram for p vs. hmax computed numerically (blue
solid curve) and asymptotically (red dotted curve) in the limit of large A2. The

asymptotic prediction is given by hmax „
1

2
pL2. (b) p vs. hmin computed numerically

(blue solid curve) and asymptotically (red dotted curve) in the limit of large A2

where the asymptotic prediction of hmin is given by (4.115). In both (a) and (b),
A1, A2 “ 1000, L “ 6, s “ 3, ε “ 0.1.

4.3 Stability of steady-state solutions

We use linear stability analysis to determine the stability of the different steady-

states on heterogeneous susbtrates. The evolution of thin films on heterogeneous

substrates, subject to no-flux boundary conditions, is governed by

Bh

Bt
“
B

Bx

ˆ

h3 B

Bx

ˆ

ApxqΠphq ´
B2h

Bx2

˙˙

(4.116a)

Jp0q “ JpLq “ 0,
dh

dx
p0q “

dh

dx
pLq “ 0 (4.116b)
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To determine the stability of a given steady-state droplet h̄px; p̄q, we write the so-

lution as hpx, tq “ h̄px; p̄q ` δh1px, tq for some δ ! 1. For simplicity of notation,

we denote the steady-state solution h̄px; p̄q with a given fixed pressure p̄ by h̄pxq.

Substituting hpx, tq “ h̄pxq ` δh1px, tq into the full evolution equation (4.116a) and

linearizing, at Opδq, we obtain

Bh1

Bt
“ Lh1 (4.117a)

Bh1

Bx
p0q “

Bh1

Bx
pLq “ 0,

B3h1

Bx3
p0q “

B3h1

Bx3
pLq “ 0 (4.117b)

where L is given by

Lg “ ph̄3
pApxqΠ1ph̄qg ´ gxxqxqx (4.118)

By separation of variables, the solution h1px, tq can be written as h1px, tq “
ÿ

n

cngnpxqe
λnt

where λn is the eigenvalue of L whose corresponding eigenfunction is gnpxq and cn is

some constant determined by the initial condition. Determining the stability of the

steady-state h̄pxq amounts to solving the eigenvalue problem for L, i.e.

Lg “ λg (4.119)

In this section, we investigate the stability of the six different branches of solutions

on heterogeneous substrates discussed above by applying linear stability analysis to

a chosen parameter set Apxq and L. Specifically, we solve the eigenvalue problem

(4.119) for the parameter choice A1 “ 1, A2 “ 50, L “ 6, s “ 3, ε “ 0.1 by using

the eigenvalue solver in MATLAB. By continuation in pressure p̄, we find that of

all the six different branches discussed above, branch 5 is the only unstable branch,

while other branches all characterize stable steady-state solutions.

We validate the results of our eigenvalue calculations in MATLAB by numerically

solving the evolution equation (4.116a) with the initial condition hpx, 0q “ h̄pxq `

δg1pxq where g1pxq is the normalized eigenfunction in L2 norm corresponding to
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the most unstable mode eigenmode of the steady-state h̄pxq. Now we illustrate this

process for a typical solution on branch 5. We pick the unstable branch 5 steady-state

h̄pxq with uniform pressure p̄ “ 0.171423 on the substrate A1 “ 1, A2 “ 50, L “

6, s “ 3, ε “ 0.1. The largest eigenvalue is λ1 “ 2.0875. If we initialize the PDE by

hpx, 0q “ h̄pxq`δg1pxq, then for short time, we expect ‖hpx, tq´h̄pxq‖ « δeλ1t. Figure

4.28 (a) shows the plot of g1pxq, which is the normalized eigenfunction corresponding

to λ1. Figure 4.28 (b) shows the semi-log plot of ‖hpx, tq ´ h̄pxq‖2 compared with

δeλ1t for δ “ 10´7 for short time. The numerical simulation results confirm that the

solution evolves away from the unstable steady-state h̄pxq at rate λ1 for short time,

which validates the results of our eigenvalue computation.
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Figure 4.28: (a) Normalized eigenfunction g1pxq corresponding to the most unsta-
ble eigenmode with λ1 “ 2.0875 for p̄ “ 0.171423. (b) Semi-log plot of the norm
‖hpx, tq ´ h̄pxq‖2 computed by numerically solving the evolution PDE and by lin-
earization δeλ1t where δ “ 10´7.

Letm be the mass of the unstable branch 5 droplet chosen above. Then there exist

three distinct steady-state solutions with the same mass m. The solution on branch

5 is the only unstable solution. If we initialize the PDE with hpx, 0q “ h̄pxq ` δg̃pxq

for some g̃pxq with ‖g̃pxq‖2 “ 1, then the solution hpx, tq moves away from h̄pxq and

evolves towards the stable solution on branch 6 or the stable solution on branch 4

with the same mass, subject to no-flux boundary conditions. Figure 4.29 (a) and (b)
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show the two different stable equilibria attained by the solution at large time with

two different initial conditions. Figure 4.29 (a) shows when the initial condition is

given by hpx, 0q “ h̄pxq`δg1pxq, the stable equilibrium attained is a branch 6 solution

with the same mass. Figure 4.29 (b) shows when the initial condition is given by

hpx, 0q “ h̄pxq ´ δg1pxq, the stable equilibrium attained is a branch 4 solution with

the same mass. In both Figure 4.29 (a) and (b), the solid blue curve represents

the stable solution attained. The dotted and dashed curve represents the unstable

branch 5 solution with p̄ “ 0.171 as described above.
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Figure 4.29: (a) The stable solution (branch 6) attained when hpx, 0q “ h̄pxq `
δg1pxq. (b) The stable solution (branch 4) attained when hpx, 0q “ h̄pxq ´ δg1pxq.

In Section 4.1, we showed the structure of the inner loop of the bifurcation di-

agram for m vs. hmax for a set of increasing A2 values, as demonstrated in Figure

4.5 (a)-(i). Here, we illustrate the stability of solutions on these inner loops by com-

puting the stability of some chosen solutions for the case A2 “ 1.1 and A2 “ 7.

First, we determine the stability of four solutions, all with the same chosen mass

m “ 0.6 on the inner loop for the case of a relatively small wettability contrast

L “ 3, s “ 1.5, A1 “ 1 and A2 “ 1.1, which is shown in Figure 4.5 (a). We compute

the eigenvalues for these four solutions, all with mass m “ 0.6, as labeled by aster-

isks in the bifurcation diagram shown in Figure 4.30 (a). Figure 4.30 (b) shows the

corresponding profile of the four solutions. Linear stability analysis suggests that of
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the four steady-states with the same mass, only solution 4 is a stable steady-state.

Solution 1-3 are all unstable steady-states. Note that solution 4 is on a larger loop

that is analogous to the outer loop. This loop arises due to the heterogeneity of the

substrate, resulting in the asymmetry of the droplets centered at x “ 0 and x “ L.
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Figure 4.30: (a) Four distinct steady-states on the inner loop, all with massm “ 0.6
labeled in the bifurcation diagram. (b) Corresponding profile of the four solutions.
In (a)-(b), L “ 3, s “ 1.5, A1 “ 1, A2 “ 1.1, ε “ 0.1.

Now we determine the stability of two solutions both with the same chosen mass

m “ 1.13 on the inner loop for the case of a relatively large wettability contrast

L “ 3, s “ 1.5, A1 “ 1 and A2 “ 7, which is shown in Figure 4.5 (i). These two

solutions are labeled by asterisks in the bifurcation diagram shown in Figure 4.31 (a).

The corresponding profile of the two solutions is shown in Figure 4.31 (b). As can

be observed from the figure, for A2 “ 7, the inner loop is already small in size and

degenerates to a closed loop with no self-intersections. Computation results suggest

that both of the two solutions are unstable. Our overall linear stability analysis

results indicate that as A2 increases and the inner loop degenerates, the solutions on

the inner loop become increasingly unstable. Even for small A2, only the solution

with the largest amplitude is stable. Compared to the inner loop, the outer loop is

characterized by more stable steady-states, which is also one of the reasons why we
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focused on the studies of outer loop in this chapter.
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Figure 4.31: (a) Two distinct steady-states on the inner loop, both with mass
m “ 1.13 labeled in the bifurcation diagram. (b) Corresponding profile of the two
solutions. In (a)-(b), L “ 3, s “ 1.5, A1 “ 1, A2 “ 7, ε “ 0.1.

4.4 Leak and spillover in the limit of large A2

By studying the six different types of solutions which correspond to the six different

branches in Section 4.2.1-4.2.6, we find that branch 2 through branch 5 are all char-

acterized by droplet-type solutions. Of these four branches, branch 2 and branch

3 are two branches, for which the droplet core completely resides inside of the A1

region. As the A2 region becomes increasingly hydrophobic, i.e. in the limit of large

A2, the fluid mass becomes increasingly concentrated on the A1 region. In other

words, in the limit of large A2, the A2 region has an increasingly confining effect on

the fluid droplets formed on the A1 region. In applications where accurate dispensing

and distribution of fluid on solid surfaces are required, it is important to develop a

quantitative understanding of the degree of leaking and spillover of the fluid from the

A1 region into the A2 region. In this subsection, we present a measure for the degree

of this leakage for branch 2 and branch 3 and show by using the results derived in

Section 4.2.3 and Section 4.2.4 that in accordance with this measure, the leakage is
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inversely proportional to A2 in the large A2 limit.

In both Section 4.2.3 and Section 4.2.4, we showed that the film thickness at the

interface hpsq Ñ ε as A2 Ñ 8. We also showed that in the outer A2 region, as

xÑ L, hpxq „ ε in the limit A2 Ñ 8. To measure the fluid leakage, we use the fluid

mass above hpxq “ ε on x P rs, Ls, as illustrated by the colored region in Figure 4.32.

Figure 4.32: Illustration of the measure of fluid leakage

We define the mass of leakage as

Leakage “

ż L

s

„

hpxq ´ ε



dx (4.120)

As discussed in Section 4.2.3, there is a boundary layer in the solutions on branch

2 near the interface of the A1 and A2 region. In Section 4.2.3, we concluded that

this boundary layer can be described by in a similar way as the way in which the

boundary layer of branch 1 solutions are constructed. The asymptotic expansion of

hpxq for s ď x ď L is given by (4.20) in Section 4.2.1, which is restated below.

hpxq „ hmin 2 ` C2e
´
?
A2Π1phmin 2qpx´sq, s ď x ď L (4.121)
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The coefficient C2 is also given previously by (4.22b), i.e.

C2 “
phmin 1 ´ hmin 2q

a

A1Π1phmin 1q
a

A1Π1phmin 1q `
a

A2Π1phmin 2q
(4.122)

In Section 4.2.3, we showed that in the limit of large A2,

C2 „ ε2
p̄

?
A1A2

(4.123)

and

hmin 2 „ ε`
ε2p̄

A2

(4.124)

Using (4.121) and (4.122), we calculate the mass of the fluid leakage of solutions

given by (4.120). This yields

Leakage „

ż L

s

hmin 2 ´ ε` C2e
´
?
A2Π1phmin 2qpx´sq dx (4.125)

In the limit A2 Ñ 8, we use the asymptotic results (4.123)-(4.124) to derive a leading

order asymptotic prediction of the leakage given by (4.125). This gives

Leakage „

„

ε3p̄
?
A1

` ε2p̄pL´ sq



1

A2

(4.126)

in the limit A2 Ñ 8, which suggests that at leading order, the fluid leakage of so-

lutions on branch 2 is inversely proportional to A2 for large A2. Figure 4.33 shows

the fluid leakage computed numerically and asymptotically for a solution on branch

2 plotted in log scale. We fix the droplet pressure p and increase A2. The numerical

result is obtained by first numerically solving for hpxq and then numerically integrat-

ing (4.120) using the trapezoid rule. The asymptotic approximation is calculated by

(4.126). The results in Figure 4.33 suggest that the asymptotic description given by

(4.126) produces a good prediction of fluid leakage defined by (4.120).
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Figure 4.33: Mass of leakage computed numerically and asymptotically for a so-
lution on branch 2 plotted in log scale. The asymptotic prediction is given by
(4.126).The pressure p̄ is fixed as A2 increases, for paramters p̄ “ 0.465737, L “ 6,
s “ 3, A1 “ 1, ε “ 0.1.

Similarly, we calculate the fluid leakage of solutions on branch 3, which is a class

of droplets pinned at x “ s. We have shown in Section 4.2.4 that in the limit

A2 Ñ 8, the profile of a branch 3 solution on rs, Ls can be described asymptotically

by (4.76), i.e.

hpxq „ ε`
1
?
A2

Fe´
?
A2px´sq

ε `O

ˆ

1

A2

˙

(4.127)

where F is given by (4.83), i.e.

F “ ε

c

´
A1

3
` p̄2s2 (4.128)

As is stated in Section 4.2.4, (4.130) is a result of the derivation shown by (4.42)-

(4.53) in Section 4.2.3 where we constructed an asymptotic approximation of the

boundary layer in the limit A2 Ñ 8 by matching the outer solution with the inner

solution. In particular, up to O

ˆ

1

A2

˙

, the outer solution describing the film profile

away from the interface x “ s is given by (4.45), i.e.

houtpxq „ ε`
ε2

A2

(4.129)
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In the derivation of branch 3 solutions, specifically (4.82), we left out the term
ε2

A2

since it is a higher-order term in the expansion hpsq “ ε `
εF
?
A2

` O

ˆ

1

A2

˙

. In

the following calculations, we will show that the leakage of solutions on branch 3 at

leading order scales like
1

A2

. Therefore, it is necessary that we keep the higher-order

term
ε2

A2

in our asymptotic expansion to obtain the full leading order approximation

of the fluid leakage. To derive the asymptotic behavior of the leakage on branch 3,

we use the expansion

hpxq „ ε`
?
δFe

´
px´sq

ε
?
δ `

ε2p̄

A2

(4.130)

for F given by (4.128). Now we evaluate (4.120) using (4.130) in the limit of large

A2, which yields

Leakage „

ż L

s

„

ε2p̄

A2

` F
1
?
A2

e´
?
A2px´sq

ε



dx

„

„

ε2
c

´
A1

3
` p̄2s2 ` ε2p̄pL´ sq



1

A2

(4.131)

This suggests that the leakage of branch 3 solutions is also inversely proportional to

A2 in the limit of large A2, like branch 2. Figure 4.34 shows the mass of leakage

computed numerically and asymptotically for a steady-state on branch 3 plotted in

log scale. Similar to the calculations shown in Figure 4.33, we consider a pinned

droplet with fixed pressure and increasing A2. The numerical result is obtained in a

way similar to that described for Figure 4.33 above. The asymptotic approximation

is calculated by (4.131). From Figure 4.34, we observe that the formulation given by

(4.131) provides a good analytical description of the numerical results.
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Figure 4.34: Mass of leakage computed numerically and asymptotically for a solu-
tion on branch 3 plotted in log scale. The asymptotic prediction is given by (4.131).
The pressure p̄ is fixed as A2 increases, with parameters p̄ “ 0.29159, L “ 6, s “ 3,
A1 “ 1, ε “ 0.1.

4.5 Axisymmetric solution

We can easily extend our results for thin films on 1-D heterogeneous substrates

presented in Section 4.2 to axisymmetric solutions on a 2-D heterogeneous substrates.

In this section, we study the steady-state axisymmetric solutions on a chemically

patterned substrate where the disjoining pressure is given by Π̃ph, rq “ AprqΠphq

with

Aprq “

#

A1 0 ď r ď s

A2 s ă r ď L
(4.132)

If we assume the thin film is axisymmetric, then the evolution of such films

on chemically homogeneous substrates with Aprq ” 1, subject to no-flux boundary

condition is governed by (3.42a), as stated in Section 3.2. Here, we consider the

steady-states of axisymmetric thin films on substrates with patterning of the form

(4.132). Subject to no-flux boundary conditions given by (3.42b), for each p̄, the

steady-state equation for hpr; p̄q is given by

1

r

d

dr

ˆ

r
dh

dr

˙

´ AprqΠphq ` p̄ “ 0 (4.133)
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Using product rule to expand (4.133) and multiplying both sides of the equation by

r, we obtain

rh2 ` h1 ´ rAprqΠphq ` p̄r “ 0 (4.134a)

h1p0q “ h1pLq “ 0 (4.134b)

For simplicity of notation, we use hprq to denote hpr; p̄q for a given pressure p̄. The

mass of the axisymmetric solutions hprq is previously given in Section 3.2 by

m “

ż L

0

hprqrdr (4.135)

In this section, we show that we can classify the solutions to (4.134a)-(4.134b)

into six different branches (branch 1-branch 6), which are similar to the six types

of 1-D solutions described in Section 4.2. For each of the six branches, we present

results of asymptotic analysis, which are qualitatively the same as those derived for

the 1-D steady-states on heterogeneous substrates discussed in Section 4.2.

4.5.1 Small-thickness films

Like in 1-D, branch 1 consists of steady-state solutions with small mass m for m “

OpεLq. We consider branch 1 of axisymmetric solutions in the limit εÑ 0 and show

that the results of asymptotic analysis are the same as those of branch 1 solutions

derived in Section 4.2.1. Since the disjoining pressure Πphq changes rapidly for h

near h “ ε, to seek solution with thickness hpxq “ Opεq, we still rescale h by writing

h “ εaH for some a ą 0. We seek solution of the form H “ H0 ` εH1 ` Opε2q.

Substituting h “ εaH into (4.134a), we obtain

εarH2
` εaH 1

´ rAprqΠpεaHq ` p̄r “ 0 (4.136)

At leading order, we obtain AprqΠpεaH0q “ p̄, which is exactly the same leading

order equation as (4.12a)-(4.12b) for branch 1 solutions in 1-D. It follows that to
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leading order, away from the interface of the A1 and A2 region, hprq “ hmin 1 for

0 ď r ! s and hprq “ hmin 2 for s ! r ď s. At order Opεaq, by applying a Taylor

expansion of (4.136) near H “ H0, we get

rH2
1 `H

1
1 ´ rAprqΠ

1
phmin iqH1 “ 0 (4.137)

Since Πphq changes rapidly on

ˆ

0,
4ε

3

˙

, Π1phmin iq “ O

ˆ

1

ε2

˙

" 1 in the limit εÑ 0.

We introduce a small positive parameter σi for σi “
1

Π1phmin iq
! 1. It follows that

(4.137) becomes a boundary layer equation. On the Ai region, (4.137) is given by

σirH
2
1 ` σiH

1
1 ´ rAiH1 “ 0 (4.138)

At Op1q, the outer solution of the problem is given by H1 ” 0. To obtain the inner

solution which characterizes a boundary layer near x “ s, we rescale the variable r

by letting R “
r ´ s

σbi
for some b ą 0. Then (4.138) can be written in terms of R as

σ1´2b
i ps`Rσbi qH

2
1 ` σ

1´b
i H 1

1 ´ ps`Rσ
b
i qAiH1 “ 0 (4.139)

This suggests b “
1

2
. For the Ai region, we arrive at the same leading order equation

for H1 as in the 1-D scenario.

H2
1 ´ AiH1 “ 0 (4.140)

As a result, the asymptotic analysis results derived for branch 1, specifically (4.18),

(4.20), and (4.22a)-(4.22b) in 1-D all follow. To leading order, hp0q „ hmin 1 and

hpLq „ hmin 2. For axisymmetric solution, the mass of solution on branch 1 is asymp-

totically given by

m “

ż L

0

hprqrdr

“
1

2
hmin 1s

2
`

1

2
hmin 2pL

2
´ s2

q `Opε2q

(4.141)
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Figure 4.35 (a) and (b) show the film mass and hp0q, hpLq plotted as a function of

pressure for branch 1 of axisymmetric solutions. In both figures, the solid curves

represent the numerically computed solution. The dashed and dotted curves rep-

resent the asymptotically computed solutions. Specifically, in Figure 4.35 (a), the

asymptotic prediction of mass is calculated using (4.141). In Figure 4.35 (b), the

asymptotic predictions for hp0q and hpLq are calculated using the outer solution

hp0q „ hmin 1 and hpLq „ hmin 2. The numerical results show that the asymptotic

predictions give good approximations of the true branch 1 solutions.

(a) (b)

Figure 4.35: (a) Bifurcation diagram for m vs. p computed numerically and asymp-
totically for branch 1 of axisymmetric solutions in the limit of small ε. The asymp-
totic prediction of mass m for each given p is computed using (4.141). (b) Bifurcation
diagram for hp0q, hpLq vs. p computed numerically and asymptotically for branch
1 of axisymmetric solutions in the limit of small ε. The asymptotic predictions are
given by hp0q „ hmin 1 and hpLq „ hmin 2 respectively. In both (a) and (b), L “ 6,
s “ 3, A1 “ 1, A2 “ 1.5, ε “ 0.001.

4.5.2 Large-thickness films

Similar to 1-D solutions, the steady-state axisymmetric solutions also have a branch

of solutions analogous to branch 6 in 1-D as described in Section 4.2.2. This branch

of solutions is characterized by large mean film thickness, large mass and small

amplitude. As the film mass increases on this branch, the profile of the solution
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can be described as an increasingly small-amplitude perturbation from flat film. To

derive an asymptotic prediction for the steady-state profiles of this branch, we seek

solution of the form hprq “ h̄ ` δh1prq for h̄ “
2m

L2
, δ “ Π

ˆ

2m

L2

˙

! 1 in the limit

m Ñ 8. Substituting the expansion hprq “ h̄ ` δh1prq into (4.134a), at Opδq, for

each Ai region, we obtain

δrh21 ` δh
1
1 ´ δrAi ´ δrAiΠ

1
ph̄qh1 ` p̄r “ 0 (4.142)

To balance the equation at Opδq, we assume p “ Opδq and show that this is consistent

with the asymptotic analysis as a result of this dominance balance. We scale p̄ by

writing p̄ “ δp0 for some p0 “ Op1q. At Opδq, (4.142) can be written as

rh21 ` h
1
1 ´ rAi ´ rAiΠ

1
ph̄qh1 ` p0r “ 0 (4.143)

Solving (4.143) on the A1 region r0, sq, we get

h1prq “ B1J0p

b

´A1Π1ph̄qrq `B2Y0p

b

´A1Π1ph̄qrq `
´A1 ` p0

A1Π1ph̄q
(4.144)

where J0prq and Y0prq are Bessel function of the first and second kind of order 0 and

B1, B2 are constants. Due to the boundary condition h1p0q “ 0 which is required to

ensure regularity of the solution, we need h11p0q “ 0 so B2 “ 0.

Solving (4.143) on the A2 region ps, Ls, we get

h1prq “ B3J0p

b

´A2Π1ph̄qrq `B4Y0p

b

´A2Π1ph̄qrq `
´A2 ` p0

A2Π1ph̄q
(4.145)

for some constant B3 and B4. Together, this suggests hprq “ h̄ ` δh1prq, which

written in terms of p̄ is given by

hprq „

#

h̄` C1J0p
a

´A1Π1ph̄qrq ´ A1Πph̄q´p̄

A1Π1ph̄q
0 ď x ď s

h̄` C2J0p
a

´A2Π1ph̄qrq ` C3Y0p
a

´A2Π1ph̄qrq ´ A2Πph̄q´p̄

A2Π1ph̄q
s ă x ď L

(4.146)
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for some constant C1, C2, and C3. To determine these three constants, we use the

continuity and differentiability condition given by (4.8a) and (4.8b). In addition, we

also require h11pLq “ 0. These three conditions allow us to solve C1, C2 and C3 in

terms of pressure p̄. To determine p̄, we use the mass condition

ż L

0

hprqrdr “

ż L

0

`

h̄` δh1

˘

rdr “ m “
1

2
h̄L2 (4.147)

which, at Opδq, reduces to

ż L

0

h1prqr “ 0 (4.148)

In the limit of large mass, we obtain

p̄ „
ε2 pA1 s

2 ` A2 L
2 ´ A2 s

2q

L2h̄3
`O

ˆ

ε3

L2h̄4

˙

„
ε2 pA1 s

2 ` A2 L
2 ´ A2 s

2qL4

8m3
`O

ˆ

ε3L6

m4

˙

(4.149)

Note that (4.149) suggests that p̄ “ O

ˆ

1

m3

˙

“ Opδq in the limit of large

m, which is consistent with our earlier assumption that p̄ “ Opδq. Plugging the

asymptotic prediction (4.149) into (4.146), we obtain an asymptotic estimate for

hmax “ hp0q and hmin “ hpLq. We have

hp0q ´ h̄ „ ´
1

8

p4L2 lnpL
s
q ´ L2 ` s2qpA1 ´ A2qε

2s2

L2h̄3
(4.150a)

hpLq ´ h̄ „
1

8

ε2s2pL2 ´ s2qpA1 ´ A2q

L2h̄3
(4.150b)

Figure 4.36 shows mass vs. pressure computed numerically and asymptotically for

branch 6 plotted in log scale in the limit of large mass. The solid blue curve represents

the numerically computed solution. The dashed dotted red curve represents the

asymptotic prediction given by (4.149). The numerical simulation results suggest
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that the asymptotic analysis in the limit of large m produces predictions that agree

well with the numerical results.

Asymptotic
Numerical

p

m

10−110−210−310−4

10

1

Figure 4.36: Bifurcation diagram m vs. p computed numerically and asymptot-
ically for branch 6 for large m in log scale, with parameters L “ 6, s “ 3, A1 “

1, A2 “ 1.5, ε “ 0.001

4.5.3 Small-radii droplets

Similar to branch 2 of the 1-D steady-state solutions, branch 2 of axisymmetric

solutions is a also class of droplet-type solutions with width w ď s. To study the

steady-state solutions on branch 2, we first multiply both sides of the steady-state

equation (4.134a) by h1prq. After multiplication, we can rewrite (4.134a) as

d

dr

„

1

2
h12 ´ AiUphq ` ph



“ ´
h12

r
(4.151)

Now we integrate (4.151) on r0, ss and rs, Ls respectively. We have

1

2
h1psq2 ´ A1Uphpsqq ` p̄hpsq ` A1Uphmaxq ´ p̄hmax “

ż s

0

´
h1prq2

r
dr (4.152a)

´
1

2
h1psq2 ` A2Uphpsqq ´ p̄hpsq ´ A2Uphminq ` p̄hmin “

ż L

s

´
h1prq2

r
dr (4.152b)

Combining (4.152a)-(4.152b) and rearranging terms, we obtain

pA2´A1qUphpsqq “ A2Uphminq ´A1Uphmaxq ` p̄phmax´ hminq `

ż L

0

´
h12

r
dr (4.153)
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(4.153) is analogous to (4.69) in Section 4.2.3 and exact for all steady-state ax-

isymmetric solutions. Now we present asymptotic analysis for this branch of solutions

in the limit εÑ 0. For a droplet-type solutions with A1 “ Op1q, hp0q “ hmax “ Op1q.

In the limit ε Ñ 0, we have Πphq ! 1. At Op1q, for 0 ď r ! w, (4.134a) can be

described by

rh2 ` h1 ` p̄r „ 0 (4.154)

Note that this is the same equation obtained for steady-state axisymmetric droplets

on homogeneous substrates discussed in Section 3.2. The solution to (4.154) is given

by

hprq „ C1 lnprq ` C2 ´
1

4
p̄r2 (4.155)

for some constant C1 and C2. For 0 ď r ! w, apply the boundary condition h1p0q “ 0

and hp0q “ hmax, we have C1 “ 0 and C2 “ hmax. This shows in the limit εÑ 0, the

droplet core of a branch 2 solution can be described by

hprq “ ´
1

4
p̄r2

` hmax `Opεq (4.156)

which is still a parabola as in the 1-D scenario, but with a modified coefficient. In

particular, this suggests that
h1prq2

r
„

1

4
p̄2r near r “ 0 and that

ż s

0

´
h1prq2

r
dr is not

a singular integral. We estimate the width of the droplet w from (4.156) by solving

hpwq „ 0, which means

hmax „
1

4
p̄w2 (4.157)

If the droplet width w ď s, then hpxq decays to hpxq „ ε for w ! x ď L, an

ultra-thin film region. This suggests for w ! x ď L, hpsq „ ε, hmin „ ε, h1prq „ 0

and as a consequence,
ż L

0

h12

r
dr „

ż w

0

h12

r
dr (4.158)
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It follows that at Op1q, (4.153) is given by

´ A1Upεq “ ´A1Uphmaxq ` p̄hmax `

ż w

0

´
h1prq2

r
dr (4.159)

Substituting the leading order prediction of the droplet profile hprq given by (4.156)

into the right hand side of (4.159), we have

hmax „
A1

6p̄
`

1

8
p̄w2 (4.160)

Combining (4.157) with (4.160), we obtain a width estimate for the droplet in terms

of p̄, given by

w „
2
?
A1

?
3p̄

(4.161)

Accordingly, the maximum film thickness of branch 2 is given by

hmax „
A1

3p̄
(4.162)

At leading order, the steady-state solutions depend on A1 just like branch 2 solutions

in 1-D. Note that in 1-D, in the limit εÑ 0, we showed the maximum film thickness

of branch 2 solutions is given by hmax “
A1

6p̄
. Branch 2 of the axisymmetric solutions

are characterized by qualitatively the same features as branch 2 of the 1-D solutions.

4.5.4 Pinned droplets

Branch 3 of axisymmetric solutions is a branch of solutions characterized by droplets

“pinned” at x “ s. This class of droplets has width w „ s. We first study this

class of solutions in the limit ε Ñ 0 for A1, A2 “ Op1q. For a droplet-type solution,

hmax “ Op1q " ε. In the droplet core, A1Πphq “ Opε2q Ñ 0. At Op1q, the steady-

state equation for droplet core is described by (4.154). It follows that the droplet
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profile can still be described by (4.156). For this class of “pinned” droplets, droplet

width is given by w „ s. Hence, at leading order,

hmax „
1

4
p̄s2 (4.163)

In the droplet core, the droplet profile is described by

hprq „
1

4
p̄ps2

´ r2
q (4.164)

To compute an estimate of hpsq for this branch of solutions for A1, A2 “ Op1q as

ε Ñ 0, we use (4.153). Since for s ď r ď L, the droplet has width w „ s, hprq „ ε

and h1prq „ 0, it follows that

ż L

0

´
h12

r
dr „

ż s

0

´
h12

r
dr. For 0 ď r ! s, we use the

leading order prediction given by hprq “
1

4
p̄ps2

´ r2
q, so h1prq „ ´

1

2
p̄r. At Op1q,

(4.153) for branch 3 is given by

pA2 ´ A1qUphpsqq “ A2Upεq `
1

8
p̄2s2 (4.165)

Hence, an estimate of hpsq can be computed by solving

Uphpsqq „
´A2

6
` 1

8
p̄2s2

A2 ´ A1

(4.166)

Since on branch 2, the droplets have width w ď s and on branch 3, the droplets

have width w „ s, branch 2 terminates at p˚2,3 when wpp˚2,3q „ s, which indicates

branch 2 ends at

p˚2,3 „
2
?
A1

?
3s

(4.167)

It follows that branch 2 intersects with branch 3 when w „
2
?
A1

?
3p̄

„ s, i.e. at

p̄ „
2
?
A1

?
3s

. Branch 4 intersects with branch 3 when w „
2
?
A2

?
3p̄

„ s, i.e. at
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p̄ „
2
?
A2

?
3s

.

If we investigate the axisymmetric steady-state solutions in the limit A2 Ñ 8 as

we did in Section 4.2.3, we divide both sides of (4.153) by A2 and write δ “
1

A2

for

δ ! 1. (4.153) can be written as

p1´δA1qUphpsqq “ Uphminq´p̄hmin´δA1Uphmaxq`δp̄hmax`δ

ż L

0

´
h1prq2

r
dr (4.168)

(4.168) is analogous to (4.77) in 1-D. Following the derivation similar to (4.77)-(4.87)

in Section 4.2.4, in the limit of large A2, we obtain

hpsq „ ε` ε
?
δ

c

´
A1

3
`

1

4
p̄2s2 (4.169)

Substituting (4.169) into (4.152a) and following a similar process as illustrated in

(4.84)-(4.87), we obtain

h1psq “ ´

c

´
A1

3
`

1

2
p̄2s2 `Opδq (4.170)

This shows the pinned droplet on branch 3 of axisymmetric films for each given

pressure p̄ has a contact angle that approaches θ “
b

´A1

3
` 1

2
p̄2s2 in the limit of

large A2. Note that in 1-D, the leading order prediction of the contact angle for

branch 3 is θ “
b

´A1

3
` p̄2s2. The results of asymptotic analysis for branch 3 of

axisymmetric solutions are qualitatively the same as those of the 1-D solutions.

4.5.5 Large-radii droplets

Branch 4 of axisymmetric solutions is a class of droplet-type solutions with large

droplet width s ď w ď L. First, we study the solutions in the limit ε Ñ 0 for

A1, A2 “ Op1q. For this class of large-width droplets, since w ď s, hpsq “ Op1q. In
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the limit ε Ñ 0, in the droplet core, h “ Op1q and thus Πphq “ Opε2q ! 1. Hence,

at Op1q, the steady-state axisymmetric equation (4.134a) is given by

rh2 ` h1 ` p̄r „ 0 (4.171)

which is the same leading order steady-state equation as (4.154). It follows that the

profile of the droplet core is described by (4.156), i.e.

hprq „ ´
1

4
pr2

` hmax (4.172)

Similarly, a width estimate of the droplet can be computed by setting hpwq „ 0,

which yields

hmax „
1

4
p̄w2 (4.173)

To compute hmax for branch 4, we use (4.153), derived previously in Section 4.5.1,

i.e.

pA2 ´ A1qUphpsqq “ A2Uphminq ´ A1Uphmaxq ` p̄phmax ´ hminq ´

ż L

0

h12

r
dr (4.174)

Since the droplets have width s ď w ď L, the solutions hprq decay to h „ ε for

w ď r ď L so hmin „ ε. Under the additional assumption that A1, A2 “ Op1q,

hpsq, hmax “ Op1q, at leading order, (4.174) is given by

A2Upεq ` p̄hmax ´

ż L

0

h12

r
dr “ 0 (4.175)

Using the leading order profile (4.172) and (4.173) derived in the limit ε Ñ 0 and

ż L

0

´
h12

r
dr „

ż w

0

´
h12

r
dr, we can further reduce (4.175) to

hmax „
A2

3p̄
(4.176)
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It follows that the width of the droplet is given by

w „ 2

d

hmax

p̄
„

2
?
A2

?
3p̄

(4.177)

To study the steady-states in the limit A2 Ñ 8 for fixed A1 “ Op1q, we use the

same equation (4.168). Using a similar argument as presented by (4.101)-(4.106) for

branch 4 in the 1-D case, we obtain qualitatively the same results for axisymmetric

solutions. At leading order, the maximum film thickness hmax and the droplet profile

are still described by (4.176) and (4.172) respectively in the large A2 limit.

4.5.6 Large confined droplets

Similar to branch 5 of the 1-D solutions, branch 5 of axisymmetric solutions is also

characterized by large confined droplets where all of the droplets on this branch have

width w „ L regardless of pressure and mass to leading order. Now we study the

properties of this class of axisymmetric solutions in the limit εÑ 0 for A1, A2 “ Op1q.

In the droplet core, h “ Op1q so Πphq “ Opε2q ! 1. At leading order, the steady-state

equation (4.134a) is given by

rh2 ` h1 ` p̄r „ 0 (4.178)

It follows that the profile of the droplet core is given by the parabola

hprq „ ´
1

4
p̄r2

` hmax (4.179)

Since all of the droplets on branch 5 have width w „ L, at leading order, the

maximum film thickness hmax is described in terms of L by

hmax „
1

4
p̄L2 (4.180)
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To compute hmin, we use (4.153). For branch 5, hpsq “ Op1q and hmin “ Opεq. At

leading order, (4.153) is given by

A2Uphminq ` p̄hmax `

ż L

0

´
h1prq2

r
dr “ 0 (4.181)

Substituting (4.179) and (4.180) into (4.181), we have

A2Uphminq “
1

8
p̄2L2 (4.182)

Note this is extremely similar to branch 5 of 1-D solutions discussed in Section 4.2.6,

only with the coefficient modified. By using a similar argument presented by (4.114)-

(4.115) for 1-D solutions, we can show that in the limit of large A2, hmax and hmin

are still described by (4.180) and (4.182).

4.5.7 Numerical simulation results

To validate the results of the asymptotic analysis derived in Section 4.5.1-4.5.6, we

compare the asymptotic prediction with the numerical solution of the bifurcation

diagram for p vs. hmax. Figure 4.37 (a) and (b) show the bifurcation diagram

hp0q “ hmax vs. p̄ computed for small and large p̄ respectively. The solid curve

represents the numerically computed bifurcation curve. The dashed and dotted curve

represents the asymptotic prediction of hmax derived for each branch in the limit of

small ε. The simulation results show that our asymptotic predictions agree well with

the numerical solutions.

4.6 Summary

In this chapter, we first presented the formulation of the steady-state equation for

thin films on a finite chemically heterogeneous substrate with stepwise patterning. In

Section 4.1, through numerical simulations, we compared the bifurcation diagrams
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(a) (b)

Figure 4.37: Bifurcation diagram for hp0q “ hmax vs. p for (a) small p (b) large p.
In both (a) and (b), A1 “ 1, A2 “ 1.5, L “ 6, s “ 3, ε “ 0.001.

for m vs. hmax, hmin for the heterogeneous substrate and the homogeneous substrate

in 1-D. We identified the existence of two loops, namely an outer loop and an inner

loop, in the bifurcation diagram. We showed through numerical simulations that the

inner loop degenerates and vanishes in the limit of large A2.

In Section 4.2, we classified the 1-D steady-state solutions that could exist on a

finite stepwise-patterned substrate subject to no-flux boundary conditions into six

different branches, which correspond to the six different segments in the bifurcation

diagram for p vs. hmax. For each branch, we presented asymptotic analysis for the

droplet profile in two limits, i.e. small ε limit in the presence of small fixed wettability

contrast and large A2 limit describing a large wettability contrast. In particular, we

discussed an entirely new branch of solutions that arises from the heterogeneity of

the substrate. We showed that depending on the branch, the leading order droplet

profile depends on the different parameters of the model.

In Section 4.3, we presented the linear stability analysis for 1-D steady-state

solutions on heterogeneous substrates discussed in Section 4.2. By computing the

stability for one chosen set of parameters, we demonstrated that branch 5 is the only
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unstable branch. Through time-dependent PDE simulations, we also showed that

depending on the initial perturbation, a branch 5 solution with small perturbation

could either converge to a branch 6 or branch 4 solution with the same mass, as

illustrated in Figure 4.29 (a) and (b). In Section 4.4, we discussed the confining

effect of large A2 on some steady-state branches. To quantify the leakage of fluid

film from the A1 into the A2 region, we present a measure for the leakage and show

that the leakage is inversely proportional to A2 in the limit of large A2.

Finally, in Section 4.5, we investigated the axisymmetric solutions on a hetero-

geneous substrate with a stepwise axisymmetric patterning. We showed that the

results of the asymptotic analysis derived for 1-D solutions can be easily extended

to the axisymmetric solutions and that the profiles of the axisymmetric solutions are

qualitatively the same as those of 1-D solutions studied in Section 4.2.
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5

Dynamics of thin film droplets

A layer of thin liquid film on a solid substrate can become unstable due to the

presence of intermolecular forces [25, 29, 56]. The instabilities lead to the dewetting of

thin film and formation of droplets [5, 7]. These droplets evolve by two means, namely

spatial translation and mass exchange between droplets. The spatial translation of

droplets leads to collision followed by merging of droplets. Mass exchange between

neighboring droplets leads to mass loss and collapse of individual droplets. As a result

of these mechanisms, the number of droplets decreases over time [25]. This process is

known as coarsening. Glasner and Witelski first showed how the lubrication equation

modeling the evolution of thin liquid film could be reduced to a finite-dimensional

ODE system, which describes the dynamics of droplets through the droplet pressure

and position [26, 40]. The reduced ODE model gives rise to a further simplified

model for the coarsening dynamical system, which allows for the statistical analysis

of the dynamics of a large array of droplets. The accuracy of the reduced model for

a single droplet is important for providing an accurate basis for the description of

the dynamics of a large system of droplets.
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In this chapter, we first review the reduced ODE approximation proposed by

Glasner and Witelski. We show that the original ODE model, which was derived by

introducing a slow time scale and using an asymptotic expansion in terms of fluxes,

becomes less accurate as the imposed fluxes increase. We then present a refined

model by making a modification to the original asymptotic expansion proposed by

Glasner and Witelski. Through analysis and numerical simulations, we compare the

refined model with both the full PDE and the original ODE model. We illustrate

the improvement in the prediction accuracy of a single-droplet dynamics given by

the refined model compared to the original ODE model subject to the same fluxes

at the boundary.

5.1 Review of the finite-dimensional ODE approximation

In the long-time evolution of thin films, the droplets formed will move and change

mass in response to the fluxes imposed at the boundary. Glasner and Witelski have

previously studied the thin film evolution on a finite domain r´L,Ls for some large

L with small fluxes imposed at the boundary [26]. Let σ ą 0 be a small parameter

representing the order of magnitude of flux. They considered the thin film equation

(3.1) on r´L,Ls, i.e.

Bh

Bt
“
B

Bx

ˆ

h3 Bp

Bx

˙

(5.1)

subject to small flux at the boundary described by (5.2) and (5.3).

Jp´Lq “ σJ´, JpLq “ σJ` (5.2)

B3h

Bx3
p˘Lq “ 0 (5.3)

Note that this is a different choice of boundary conditions from that presented in

Chapter 3 where
Bh

Bx
p˘Lq “ 0. They considered initial conditions given by a homo-
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clinic steady-state droplet h̄px; p̄q truncated at x “ ˘L, i.e.

hpx, 0q “ h̄px; p̄q (5.4)

When flux is small, the thin film evolves slowly. Since the evolution is slow, they

introduced a slow time scale τ “ σt. In presence of small fluxes, the thin film profile

hpx, tq on r´L,Ls describing the evolution of a single droplet is close to the steady-

state solution h̄px´Xpτq, P pτqq where Xpτq denotes the position of the droplet and

P pτq denotes the pressure of the droplet. The position of the droplet is defined as

the maximum of the thin film thickness. Specifically, for each steady-state, they

considered the homoclinic solution for each p̄ “ P pτq, which connects the saddle

point ph, hxq “ phmin, 0q with the maximum film thickness ph, hxq “ phmax, 0q in the

phase plane. As described in Chapter 3, the homoclinic droplet exists on an infinite

domain where in the ultra-thin film region, h̄px; p̄q´hmin is exponentially small. For

sufficiently large L, the influence of the approximation at the boundary is negligible.

To fit the droplet on a finite domain r´L,Ls, Glasner and Witelski used a homoclinic

solution whose tail is cut off at x “ ˘L. Assuming that the flux is Opσq, they wrote

the thin film profile hpx, tq as a small perturbation from the steady-state droplet

with position Xpτq and pressure P pτq, given by

hpx, tq “ h̄px´Xpτq;P pτqq ` σh1px, τq `Opσ
2
q (5.5)

Substituting the asymptotic expansion (5.5) into the full PDE (5.1), at Opσq, they

obtained a linear equation of h1 given by

´
Bh̄

Bx

dX

dτ
`
Bh̄

Bp̄

dP

dτ
“ Lh1 (5.6)

where L is a linear operator defined by

Lg “ ph̄3
pΠ1ph̄qg ´ gxxqxqx (5.7)
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Note that the adjoint operator of L is given by

L˚g “
ˆ

Π1ph̄q ´
B2

Bx2

˙ˆ

B

Bx

ˆ

h̄3 Bg

Bx

˙˙

(5.8)

They found that the null space of L˚ is spanned by two functions, ψ1pxq and ψ2pxq,

given by

ψ1pxq “ 1, ψ2pxq “

ż x

0

h̄psq ´ hmin

h̄psq3
ds (5.9)

Applying the solvability condition given by the application of Fredholm alternative

to (5.6), they arrived at a system of ODEs, which describes the rate of change of

P pτq and Xpτq, given by (5.10a) and (5.10b) respectively.

dP

dτ
“ CP pX,P qpJ` ´ J´q (5.10a)

dX

dτ
“ ´CXpX,P qpJ` ` J´q (5.10b)

Here, CP and CX are two coefficients that depend on both X and P given by

CP “

ˆ
ż L

´L

Bh̄

Bp̄
px´X,P qdx

˙´1

(5.11a)

CX “

ż L

´L

h̄´ hmin

h̄3
dx

N

2

ż L

´L

ph̄´ hminq
2

h̄3
dx (5.11b)

For each droplet, h̄px, p̄q decays to hmin exponentially for |x| " w where w represents

a measure of the droplet width. By truncating the integrals at droplet widths and

using the odd and even symmetry of
Bh̄

Bx
and

Bh̄

Bp
, at leading order, they obtained

CP „

ˆ
ż w

´w

Bh̄

Bp̄
px, P qdx

˙´1

(5.12a)

CX „

ż ´w

w

h̄´ hmin

h̄3
dx

N

2

ż w

´w

ph̄´ hminq
2

h̄3
dx (5.12b)
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where h̄ “ h̄px, P q in the integrals denotes a droplet centered at x “ 0. We observe

from (5.12a)-(5.12b) that if J` “ J´, then
dP

dt
“ 0. This is a pure translation

mode where the mass of the droplet is constant at leading order. If J` “ ´J´, then

dX

dt
“ 0. This is a pure mass change mode where the position of the droplet remains

fixed for all time. The governing equation for thin film is given by
Bh

Bt
“
BJ

Bx
. It

follows that the total mass change is given by
dm

dt
“ J` ´ J´.

(a) (b)

Figure 5.1: (a) Pressure evolution of a single droplet computed using the full
lubrication PDE numerically and the reduced ODE model. (b) The corresponding
profile of the droplet over time. The droplet is in a mass decrease mode with P p0q “
0.6, J` “ ´J´ “ ´0.1, σ “ 10´4 and L “ 3.

When σ is small, the ODE model gives a good prediction of pressure and position

of a single droplet. Figure 5.1 (a) shows the evolution of pressure of a single droplet

in mass change mode predicted using the full PDE and the simplified ODE model on

r´L,Ls with J` “ ´J´ “ ´0.1, σ “ 10´4, L “ 3. Figure 5.1 (b) shows the evolution

of the corresponding droplet profile over time. As the droplet loses mass, the droplet

shrinks in size. The ODE is solved using forward Euler’s method. The exact full

PDE for hpx, tq is solved with initial condition hpx, 0q “ h̄px ´ Xp0q, P p0qq using

backward Euler time-stepping scheme and a second order central finite difference
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spatial discretization. For the PDE solution, the pressure pptq is calculated at the

maximum of the droplet by

pptq “ Pphpx, tqq

ˇ

ˇ

ˇ

ˇ

x“argmaxx hpx,tq

“ Πphpx, tqq ´ hxxpx, tq

ˇ

ˇ

ˇ

ˇ

x“argmaxx hpx,tq

(5.13)

where P is an operator that calculates the pressure of a droplet with profile hpx, tq

when applied to hpx, tq. It is given by the definition of pressure in (2.15). The droplet

position is determined by the maximum of the droplet height, which is numerically

estimated by first interpolating the discretized PDE solution near its maximum using

a parabola and then computing the maximum of the parabola.

Figure 5.2 shows the pressure and position of a droplet in translation mode pre-

dicted using both the full PDE and the simplified ODE model on r´L,Ls with

J` “ J´ “ 0.1, σ “ 10´4, L “ 3. Figure 5.2 (a) shows the pressure evolution of the

droplet. According to (5.10a) in the simplified ODE model, the pressure given by

the ODE model is constant in time. However, a slow decrease in pressure has been

observed from the numerical solution to the PDE over time. When J` “ J´, the

total fluid mass is conserved in time. Truncating the homoclinic solution at x “ ˘L

has an influence on the droplet profile that can slowly accumulate, leading to inaccu-

racies of the ODE prediction. Despite the decrease in pressure observed in the PDE

solution over time, the decrease occurs at an extremely slow time scale, which can

still confirm the overall accuracy of the prediction given by the ODE model. Figure

5.2 (b) shows the position of the droplet calculated from the full PDE and the simpli-

fied ODE. In Figure 5.2 (b), the position of the droplet is well approximated by the

simplified ODE model for small fluxes. Figure 5.2 (c) illustrates the droplet motion

over time. As time increases, the droplet translates towards the right boundary of

the domain.

However, as the magnitude of flux increases, the simplified ODE model becomes
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(a) (b)

(c)

Figure 5.2: Pressure and position prediction of a single droplet in translation mode
computed from the full lubrication PDE and reduced ODE system. (a) pressure
evolution (b) position evolution. (c) droplet profile evolution. P p0q “ 0.6, Xp0q “ 0,
J` “ J´ “ 0.1, σ “ 10´4, L “ 3.

ODE
PDE

t

P

5004003002001000

0.72

0.68

0.64

0.6

Figure 5.3: Pressure of a single droplet in a mass change mode computed from
the lubrication PDE and the reduced ODE model, with increased fluxes compared
to Figure (5.1). P p0q “ 0.6, J` “ ´J´ “ ´1, σ “ 10´4, L “ 3.
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Figure 5.4: Pressure and position of a single droplet in translation mode computed
from the lubrication PDE and the reduced ODE model, with increased flux compared
to Figure (5.2). (a) pressure evolution (b) position evolution. P p0q “ 0.6, Xp0q “ 0,
J` “ J´ “ 1, σ “ 10´4, L “ 3.

less accurate. Figure 5.3 shows the pressure of a droplet in mass decrease mode

calculated using both the full PDE and the simplified ODE with the same parameters

as in Figure 5.1 except that the magnitude of the flux has been increased to J` “

´J´ “ ´1. In Figure 5.3, we observe a discrepancy between the pressure predicted

by the ODE model and the pressure calculated from the full PDE. Specifically, the

ODE model produces a pressure that slightly overestimates the real pressure. This

discrepancy grows as time increases.

Similarly, we set the flux J` “ J´ “ 1 so that the droplet is now in a translation

mode with increased fluxes compared to Figure 5.2. Figure 5.4 (a) shows the pressure

of the translating drop predicted by the PDE and ODE model. The ODE model

predicts the pressure to be constant. Like in Figure 5.2 (a), a decrease in pressure is

also observed in Figure 5.4 (a). Compared to Figure 5.2 where fluxes are one order of

magnitude smaller, the droplet pressure decreases more rapidly in presence of larger

fluxes, making the ODE model a less accurate description. Figure 5.4 (b) shows

the position evolution of the droplet. Compared to Figure 5.2 (b), thin film evolves

faster in Figure 5.4 (b). The error of the simplified model increases as a consequence
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of larger fluxes. Hence, when fluxes are large, a more accurate model is needed to

capture the pressure and position change of a single droplet in response to imposed

fluxes.

5.2 Refined model

To improve the pressure and position prediction given by the simplified ODE model,

we propose a refined model by modifying the asymptotic expansion (5.5) given by

Glasner and Witelski. We consider a solution of the form (5.14). By writing (5.14),

we assume h1 “ h1px, tq evolves at the fast time scale t, instead of τ “ σt as in (5.5).

hpx, tq “ h̄px´Xpτq, P pτqq ` σh1px, tq `Opσ
2
q (5.14)

If we substitute the modified expansion (5.14) into the evolution equation and lin-

earize, we obtain a linear PDE for h1px, tq at Opσq, given by

Bh1

Bt
´ Lh1 “ qpx;Xpτq, P pτqq (5.15)

where

qpx;Xpτq, P pτqq “
Bh̄

Bx

dX

dτ
´
Bh̄

Bp̄

dP

dτ
(5.16)

and L is the same linear operator in (5.6), which is given by (5.7). The adjoint

operator L˚ and its nullspace are given in Section 5.1. The solution to (5.15) depends

on
dX

dτ
and

dP

dτ
on the right hand side of the equation. We have the freedom to choose

dX

dτ
and

dP

dτ
. We choose

dX

dτ
and

dP

dτ
so that ´Lh1 “ q has a solution. This means

that we choose
dX

dτ
and

dP

dτ
so that the pressure and position at leading order are still

governed by (5.10a)-(5.10b) as in the original simplified ODE model. The corrections

for X and P will be incorporated by the influences of h1px, tq.
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To derive the boundary conditions for h1, we use the boundary condition of the

exact PDE given by (5.2) and
Bh

Bx
p˘Lq “ 0. Substituting h “ h̄` σh1 into (5.2) and

(5.3), at Opσq, we let
Bh1

Bx
p˘Lq “ 0 and thus have

Bh1

Bx
p˘Lq “ 0 (5.17)

B3h1

Bx3
p˘Lq “ ´

J˘
h3

min

(5.18)

The PDE for h1 is coupled with P pτq and Xpτq through h̄px ´ Xpτq, P pτqq in

(5.15). P pτq and Xpτq given by the ODE system (5.10a)-(5.10b) are solved using

forward Euler’s method in τ . The PDE for h1, (5.15) is numerically solved using

backward Euler time-stepping scheme in t. The outline of the numerical scheme

used at a given time step is described below.

P n
“ P n´1

` σ∆tCn´1
P pJ` ´ J´q (5.19a)

Xn
“ Xn´1

` σ∆tCn´1
X pJ` ` J´q (5.19b)

hn1 ´ h
n´1
1

∆t
´ Lnδhn1 “ qpx,Xn, P n

q (5.19c)

where Lnδ is L discretized using a second order central finite difference method at

t “ tn.

We determine the new position of the droplet by

x1ptq “ argmax
x

ph̄px´Xpτq, P pτqq ` σh1px, tqq (5.20)

We calculate the new pressure of the droplet by

p1ptq “ Pph̄px´Xpτq, P pτqq ` σh1q

ˇ

ˇ

ˇ

ˇ

x“x1

(5.21)

where P is the pressure operator defined as in (5.13), i.e. Pg “ Πpgq ´ gxx.
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To express x1ptq as a function of Xpτq, we write x1ptq “ Xpτq ` δX1ptq for some

δ ! 1. Since x “ x1ptq is where hpx, tq “ h̄px ´ Xpτq, P pτqq ` σh1px, tq attains a

maximum, we have

Bh

Bx
px1ptq, tq “

Bh̄

Bx
px1ptq ´Xpτq, P pτqq ` σ

Bh1

Bx
px1ptq, tq “ 0 (5.22)

Substituting the expansion x1ptq “ Xpτq ` δX1ptq into (5.22), we have

Bh̄

Bx
pδX1ptq, P pτqq ` σ

Bh1

Bx
pXpτq ` δX1ptq, tq “ 0 (5.23)

Writing out the Taylor expansion of (5.23) at x “ Xpτq yields

δX1ptq
B2h̄

Bx2
p0, P pτqq ` σ

Bh1

Bx
pXpτq, tq “ 0 (5.24)

This suggests δ “ σ and

x1ptq „ X̃ptq “ Xpτq ` σX1ptq (5.25)

where

X1ptq “ ´
Bh1
Bx
pXpτq, tq

B2h̄
Bx2
p0, P pτqq

(5.26)

To express p1ptq as a function of P pτq, we first find the Taylor expansion of

Pph̄px´Xpτq, P pτqq ` σh1q at h “ h̄. To leading order,

Ph̄px´Xpτq, P pτqq “ P pτq

so the pressure at leading order is P pτq. At next order, we obtain a linearization of

Pph̄` σh1q at h̄. Hence, p1ptq “ P̃ ptq `Opσ2q where P̃ ptq is given by

P̃ ptq “ P pτq ` σL0h1

ˇ

ˇ

ˇ

ˇ

ˇ

x“Xpτq

(5.27)
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for L0 defined as L0g “ Π1ph̄qg ´ gxx.

We first solve (5.15) using the numerical scheme described above for a droplet

in pure mass change mode with J` “ ´J´ “ ´1, L “ 3. The full PDE for hpx, tq

is solved with initial condition hpx, 0q “ h̄px ´ Xp0q, P p0qq. Therefore, the initial

condition of h1 is given by h1px, 0q ” 0. In the case of pure mass change mode,

dx1

dt
“ 0 and x1ptq “ Xp0q for all time. Figure 5.5 shows the pressure calculated

from the full PDE, the original ODE model and the refined model when the droplet

is in a pure mass decrease mode with x1ptq “ 0. The pressure of the full PDE is

calculated by (5.13). We observe that the refined pressure p1ptq calculated using h1

and the new coupled ODE system agrees well with pptq calculated from the full PDE.

This shows the improvement of p1ptq compared to the original ODE model. We also

computed the pressure using P̃ given by (5.27). The numerical simulations validate

the analysis given by (5.27) and confirm p1ptq as an Opσq correction to P ptq. The

numerical results suggest that keeping the first two terms of the Taylor expansion of

p1ptq are sufficient to produce a good approximation of p1ptq.
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Figure 5.5: Pressure evolution a single droplet in a mass change mode, computed
by the full lubrication PDE, the original ODE model, and the refined model. p1 and
P̃ are both calculations from the refined model. p1 is calculated using (5.21). P̃ is
calculated using (5.27). P p0q “ 0.6, J` “ J´ “ 1, σ “ 10´4, L “ 3.

Next, we solve (5.15) for a droplet in a pure translation mode with J` “ J´ “
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1, L “ 3. Figure (5.6) (a) shows the pressure of the droplet computed from the

full PDE, the original ODE model and the refined model. As mentioned in Section

5.1, when the droplet is in a translation mode on a finite domain, there is a slow

decrease in pressure observed from the real PDE solution while the original ODE

model predicts the pressure to be constant. We observe from Figure 5.6 (a) that

the refined pressure p1ptq calculated using h1 by (5.21) and P̃ calculated using (5.27)

both capture this feature of the real PDE solution. The pressure given by the refined

model steadily decreases at approximately the same rate as the solution to the full

PDE over time. The small difference between the refined model and the full PDE

solution may be a consequence of some initial transients due to the truncation of

homoclinic solution. Figure 5.6 (b) shows the position computed from the full PDE,

the original ODE model and the refined model. The position x1ptq given by the new

coupled system involving h1 agrees well with the position calculated from the full

PDE solution. Compared to the original ODE model, the refined model improves the

accuracy of the position prediction. In addition, we also computed X̃ “ X ` σX1,

which is represented by the triangle-dotted curve in Figure 5.6 (b). This validates

our previous analysis that x1 „ X̃ can be considered as an Opσq correction to the

original ODE model.

5.3 Summary

In this chapter, we studied the dynamics of thin film evolution on homogeneous

substrates in 1-D. In Section 5.1, we reviewed a simplified model first proposed by

Glasner and Witelski, which predicts the pressure and position evolution of droplets

subject to fluxes through a finite-dimensional ODE system. By testing the model on

a single droplet, we showed that the accuracy of the simplified ODE model could be

limited by the magnitude of imposed fluxes at the boundary. To improve the accuracy

of the previous model, in Section 5.2, we proposed a refined linear PDE model by
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Figure 5.6: Pressure and position evolution of a single droplet in translation mode
computed using the full lubrication PDE, the original ODE model and the refined
model. Both x1 and X̃ are given by the refined model. x1 is calculated using (5.20).
X̃ is calculated using (5.25)-(5.26). (a) pressure evolution (b) position evolution.
P p0q “ 0.6, Xp0q “ 0.6, J` “ J´ “ 1, σ “ 10´4, L “ 3.

modifying the asymptotic expansion used in the previous model and solving for a

higher-order approximation. The improvement in the pressure and position accuracy

of the modified model was demonstrated through numerical simulations of droplets

in both mass change and translation mode. It was shown through analysis that the

refined model provides an Opσq correction to the original model for fluxes of Opσq.

A future direction of this work is to extend the refined model to multiple interacting

droplets.
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6

Conclusions

In this dissertation, we have studied both the steady-states and dynamics of thin liq-

uid films using lubrication equations. In the first part of the dissertation, we focused

on the steady-state thin liquid films. We reviewed the asymptotic analysis and bifur-

cation results previously derived for steady-states on homogeneous substrates. With

increasing applications of chemically patterned substrates in manufacturing and tech-

nology industry, we then identified the need for a comprehensive understanding of

wetting properties of chemically heterogeneous substrates. To study such problems,

thin liquid films on a finite-length substrate with two regions of different wettability

properties were considered. The wettability contrast across regions was modeled and

incorporated into the lubrication approximations by a stepwise Hamaker constant in

disjoining pressure. Asymptotic analysis of equilibrium solutions on such substrates

was presented and discussed.

The second part of our work concerns the dynamics of thin films on homogeneous

substrates. The high computational cost of solving the full lubrication equation to

understand the long time evolution of thin films motivates the development of simpli-

fied models that capture the same phenomenon. A previous model developed for this
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purpose was reviewed and examined. Specifically, through numerical simulations, the

accuracy limitations of the model were identified. To improve the prediction of the

previous model, we proposed a refined model that captures the single-droplet behav-

ior with a higher accuracy. Both the derivation and validation of the model were

demonstrated.

6.1 Steady-states of thin films in 1-D

In Chapter 4, we found that the bifurcation diagram of 1-D steady-state solutions

on a stepwise-patterned substrate consists of two loops, namely an outer loop and

an inner loop. We divided the outer loop equilibrium solutions into six categories,

each of which corresponds to a segment in the bifurcation curve for p vs. hmax. For

equilibrium solutions on the outer loop, except when the film mass m ă εL, the

maximum film thickness always occurs at x “ 0, where the Hamaker constant is

smaller. Of the six different classes of solutions, there exist three kinds of stable

droplet-type solutions, i.e. small-width droplets with width w ď s, pinned droplets

with w „ s and large-width droplets with s ď w ď L.

At leading order, the core of the small-width droplets resembles those of the

homoclinic droplets formed on a homogeneous substrate with the same Hamaker

constant, i.e. Apxq ” A1 on r0, ss. The core of the large-width droplets resembles

those of the homoclinic droplets formed on a homogeneous substrate with Apxq ” A2

on r0, Ls. In this regard, the pinned droplets are the only new steady-state droplets

that arise from the wettability gradient and are characterized by properties that

cannot be obtained from thin films on homogeneous substrates. The motion of

the contact line of these droplets is restrained by the heterogeneity imposed at the

interface x “ s. Our asymptotic analysis in Section 4.2.4 shows that the pinned

droplets exist only in the mass range

?
A1

3
?

3
s2
ă m ă

?
A2

3
?

3
s2. In this parameter

150



regime, the droplet mass and maximum thickness both grow linearly with pressure

at a rate that is solely determined by s, regardless of A2 at leading order. Compared

to the previous studies on heterogeneous substrates where only small wettability

contrast was considered, we examined the profiles of droplets formed in the limit

of large wettability contrast. As the A2 region becomes more hydrophobic, the

pinned droplet becomes increasingly confined in the A1 region with width w Ñ s

and hpsq Ñ ε. This suggests that a stepwise patterned substrate with jump at x “ s

could be effectively used to obtain droplets with width w „ s. The width of the

droplets obtained by depositing films on such substrates can be made more precise

by increasing A2. The desired droplet height can be obtained by tuning the fluid

mass according to hmax „
3m

2s
. In the limit of large A2, the contact angle of this

class of droplets is given by θ „
b

´A1

3
` p2s2 „

b

´A1

3
` 9m2

s4
. Therefore, the same

substrate could also be used to obtain droplets of certain desired contact angle by

tuning A1 and the film mass accordingly. The analysis in 1-D can be easily extended

to axisymmetric solutions to yield similar results.

6.2 Dynamics of thin films in 1-D

In Chapter 5, we presented a refined model based on a previous model that predicts

the pressure and position evolution of a single droplet on a finite 1-D domain. Com-

pared to the previous model, the refined model consists of two new features. First,

we modified the time scale used in the asymptotic expansion of the previous model,

which changed the nature of the model from a finite-dimensional ODE system to a

system of ODEs coupled with a linear PDE. Second, we sought for a higher-order

solution that improves the overall prediction accuracy of the model in presence of

increasing fluxes and larger initial perturbations. Numerical simulation results show

that the refined model is particularly important for capturing the pressure evolution
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of a translating droplet. For a droplet in translation mode, the change in droplet

pressure can only be reflected through the higher-order term given by the refined

model. Despite the fact that the new system requires numerically solving a linear

PDE, the model still has a much lower computational cost compared to the full

nonlinear lubrication equation, which involves an iterative algorithm at each time

step. In addition, our analysis of the improved pressure and position formulation

also provides an understanding of the error propagation of the previous model.

6.3 Future directions

While the equilibrium and flow of thin films have been extensively investigated in

the past, the steady-states and dynamics of thin films on solid substrates remain a

complicated nonlinear problem with many open questions. In this section, we discuss

two primary future research topics that arise from our current work. First, thin films

exist on two-dimensional surfaces in the real world. In this dissertation, we have

mainly focused on one-dimensional and axisymmetric steady-state solutions. Many

interesting phenomena and properties of the general non-axisymmetric steady-state

thin films on two-dimensional surfaces remain unexplored. Second, it has been found

that on one-dimensional chemically heterogeneous substrates, pinning is favored over

coarsening in certain parameter regimes [14]. In Chapter 4 of this dissertation, we

showed that the stepwise-patterned heterogeneity of the solid substrate introduces a

branch of pinned droplets. As a consequence, the dynamics of thin film evolution on

such heterogeneous substrates is modified and remains to be studied systematically.

6.3.1 Thin films on two-dimensional surfaces

Understanding of the wetting of micro/nano-structured surfaces is important for the

operation of many biomedical microdevices. Both theories and experiments have

been used to study the behavior of small volumes of liquid on chemically heteroge-
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neous surfaces [38]. Using both experimental and simulation approaches, Kaspar et

al. explored the shape of confined water droplets on rectangular micro/nano-arrayed

structures with chessboard-like alternating hydrophilic and hydrophobic rectangular

areas. By using an energy minimization approach, they presented the dependence of

contact angle on the droplet volume for different chessboard sizes. However, similar

analysis for such droplets on a rectangular domain from the perspective of lubrication

equation has not been fully studied. It would be interesting if we could derive asymp-

totic predictions that reproduce the experimental and simulation results presented

in previous studies [38].

Figure 6.1 (a) shows the profile an equilibrium droplet on a square chemically

heterogeneous substrate r0, Ls ˆ r0, Ls where Apx, yq is given by

Apx, yq “

#

A1, if maxp|x´ 1
2
L|, |y ´ 1

2
L|q ď s

A2, otherwise
(6.1)

for A2 “ 5, L “ 5, s “
1

2
L and ε “ 0.1. The corresponding level sets of the

equilibrium solution is shown in Figure 6.1 (b). From the contour plot, we observe

that as hpx, yq decreases and approaches the ultra-thin film region, the level set of the

droplet is characterized by a shape intermediate between a circle and a square. This is

due to the competing effect between the prescribed heterogeneity and the tendency

of the fluid film to form a spherical cap. Considering non-axisymmetric films on

two-dimensional surfaces allows for the studies of more diverse chemical patterning

that better describes real-world applications and phenomena not captured by 1-D or

axisymmetric models.

Another related research topic that has been considered is the stability and mor-

phology of thin films on chemically heterogeneous substrates with alternating hy-

drophilic and hydrophobic stripes [1, 12, 21, 36, 42, 45, 63, 66]. Periodic striped

surfaces have been used extensively in manufacturing and engineering applications.
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Figure 6.1: (a) Equilibrium of thin films on substrates with Apxq described by
(6.1). (b) Level sets of the equilibrium solution shown in (a).

Striped chemical patterning leads to more complex and interesting features such as

formation of droplet arrays, confinement and droplet shape distortion [61]. In Chap-

ter 4, we have mainly focused on the heterogeneous substrates consisting of only

two regions of different wettability, subject to no-flux boundary conditions. As an

extension of our current work, it would be interesting to consider disjoining pressure

of the form ApxqΠphq where A1 and A2 are alternating periodically on r0, Ls and

on rectangular domains to model periodically striped patterning. Periodic boundary

conditions could also be considered to describe thin films on infinite domains.

Lubrication equations in two dimensions are numerically difficult to solve. The

presence of nonlinearity and mixed derivatives makes studying the thin film problems

on two-dimensional surfaces computationally challenging. The Alternating Direction

Implicit (ADI) scheme has been used to solve nonlinear thin film equations and sim-

ilar diffusion equations on two-dimensional domains [19, 24, 50, 60, 65, 72]. While

ADI schemes for numerically solving parabolic equations have a long history, their

use in higher-order problems is more recent and not all that well-studied [50]. Wi-

telski and Bowen have developed an ADI scheme combined with Newton’s method

to solve nonlinear parabolic PDEs where approximate matrix factorization is used to
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handle mixed derivative terms [72]. Specifically, at each Newton’s iteration, they ap-

proximate the Jacobian matrix J by a matrix A which can be factored as A “ LxLy

with ‖J ´ A‖ “ Op∆t2q for some Lx and Ly that are linear operators in x and y

direction respectively. The operator splitting simplifies the equation that needs to

be solved at each Newton’s iteration and allows for the use of banded matrix algo-

rithms. The approximate Newton ADI scheme allows for an easy adaptation of the

finite difference and Newton’s method in one dimension to two dimensions and could

be employed to study the thin film problems on two-dimensional domains described

above. While the effectiveness of this ADI scheme has been demonstrated through

simulations of thin film equations on rectangular domains, the error propagation in-

troduced in approximating the Jacobian has not been fully understood. An efficient

and reliable computational method is imperative for studying both the steady-states

and dynamics of thin films on two-dimensional surfaces. It would be valuable to de-

velop fast and effective computational methods, including but not limited to parallel

computational approach, for large-scale thin film problems in two-dimensions [6, 43].

6.3.2 Dynamics of thin films on heterogeneous substrates

Thiele et al. studied the dynamics of thin film evolution on a chemically heteroge-

neous substrate with Apxq described by small-amplitude sinusoidal modulation [66].

Specifically, they studied the dynamics of thin film evolution on such heterogeneous

substrates and identified the parameter ranges where pinning is favored over coars-

ening. In their studies, they considered an infinite domain and varied the period of

heterogeneity patterning. In Chapter 4, we focused on the steady-states of droplets

on a finite stepwise-patterned heterogeneous substrate and analyzed the properties

of the solution in the limit of large A2. In particular, we have shown that in the

limit of large heterogeneity contrast A2 Ñ 8, the A2 region has a confining effect

on the fluid in the A1 region and is capable of producing droplets that are pinned
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at the interface. A question that arises from our studies on steady-state thin films

is the effect of chemical heterogeneity on the evolution of thin films. In Chapter

5, we reviewed and proposed models that predict the dynamics of a single droplet

on finite-length homogeneous substrates. An interesting extension of these current

models would be a model that predicts the dynamics of droplets on finite-length

chemically heterogeneous substrates.

Figure 6.2 (a) and (b) show the evolution of thin film profile and its corresponding

energy on homogeneous substrates Apxq ” A1, subject to no-flux boundary condi-

tions. The initial condition of the thin film is given by hpx, 0q “
m

L

„

1`ε cos

ˆ

2πx

L

˙

.

The mass of the film is given by m “ 0.35. As can be observed from the two figures,

the thin film quickly breaks up to form two symmetric droplets centered at x “ 0

and x “ L. Figure 6.2 (c) shows the evolution of thin film with the same mass on a

stepwise-patterned substrate for L “ 10, s “ 5, A1 “ 1, A2 “ 2, ε “ 0.1, subject to

the same initial condition. Figure 6.2 (d) shows the corresponding energy evolution.

In the heterogeneous case, while the film breaks up to form two asymmetric droplets

at the two boundaries of the domain initially, as time increases, the droplet formed

on the A2 region loses mass while the droplet on the A1 region gains mass, eventu-

ally leading to one single equilibrium droplet centered at x “ 0. In this process, the

energy of the thin film has an initial rapid decrease, followed by a relatively slow

decrease for a long time until an equilibrium is approached, as shown in Figure 6.2

(d).

Figure 6.2 (e) shows the evolution of thin film profile on a similar stepwise-

patterned substrate with A2 “ 50. We also initialize the thin film by the same initial

condition. Figure 6.2 (f) shows the corresponding energy evolution. The evolution of

the thin films goes through a similar dewetting process. However, the droplet formed

at the right boundary has a smaller width compared to Figure 6.2 (c). Compared
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to the case when A2 “ 2, the equilibrium is attained in a shorter time. The energy

has a few more distinct decreasing stages compared to Figure 6.2 (d). This further

illustrates the significant influence of heterogeneity on the overall dynamics of thin

film evolution and leads to interesting questions on the analytical description of such

phenomena.

While the dynamics of a single nanodroplet on wettability gradient surfaces has

been previously investigated using lubrication approximation and microscopic anal-

ysis [13, 51], only sinusoidal wettability pattern was considered and the disjoining

pressure used was different. Thorough analysis and description of droplet motion

and pressure on heterogeneous substrate remain to be shown. It would be interest-

ing to extend our work in Chapter 4 and Chapter 5 by developing an analogous ODE

model that describes the position and pressure evolution of one ore more droplets on

a finite-length stepwise-patterned substrate. Quantifying the dependence of various

parameters of the chemical heterogeneity such as s, A2, and L on the evolution of

a single droplet is critical to understanding the dewetting and coarsening process of

thin films on heterogeneous substrates.

To understand the scaling law and the long time statistics of a system of droplets,

coarsening dynamical systems (CDS), which are dynamical systems reduced from the

multi-scale nonlinear lubrication equations, have been used extensively [16, 25, 29].

For example, the simplified ODE model reviewed in Section 5.1 has been rescaled

in the dilute limit to understand the coarsening law of a large system of droplets on

homogeneous substrates [25]. However, the coarsening law and statistical properties

of a large system of droplets on chemically heterogeneous substrates have not been

well studied. Asgari and Moosavi have studied the coarsening dynamics of two inter-

acting nanodroplets on chemically patterned substrates by using a modified version

of boundary integral method [3]. The long time dynamics of a large array of droplets

157



t = 210
t = 90
t = 30
t = 0

x

h
(x

)

1086420

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

(a)

t

E
(t
)

300250200150100500

−0.3

−0.35

−0.4

−0.45

−0.5

−0.55

−0.6

−0.65

−0.7

(b)

t = 15000
t = 10000
t = 5000

t = 0

x

h
(x

)

1086420

1.2

1

0.8

0.6

0.4

0.2

0

(c)

t

E
(t
)

14000120001000080006000400020000

−0.4

−0.6

−0.8

−1

−1.2

−1.4

−1.6

−1.8

(d)

t = 800
t = 600
t = 400

t = 0

x

h
(x

)

1086420

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

(e)

t

E
(t
)

7006005004003002001000

0

−5

−10

−15

−20

−25

−30

−35

−40

−45

(f)

Figure 6.2: (a), (c) and (e) show the evolution of thin film profile over time on
homogeneous and heterogeneous substrates for film mass m “ 0.35, ε “ 0.1, L “ 10.
In (a), Apxq ” A1. In (c) and (e), s “ 5, A1 “ 1. In (c), A2 “ 2. In (d), A2 “ 50.
(b), (d) and (f) show the evolution of energy corresponding to (a), (c) and (e).
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on chemically patterned substrates modeled by lubrication theory has not been fully

investigated. It is hoped that the analysis of the steady-state solutions presented in

Chapter 4 could provide some insights into the development of a coarsening dynam-

ical system that describes the coarsening on chemically heterogeneous substrates.

In the future, it would be helpful to develop a reduced ODE model that is capable

of predicting the underlying scaling laws of coarsening on chemically heterogeneous

substrates.
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