
Learning from Geometry

by

Jiaji Huang

Department of Electrical and Computer Engineering
Duke University

Date:
Approved:

Robert Calderbank, Supervisor

Lawrence Carin

Ingrid Daubechies

Gallen Reeves

Guillermo Sapiro

Dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in the Department of Electrical and Computer Engineering

in the Graduate School of Duke University
2016

Abstract

Learning from Geometry

by

Jiaji Huang

Department of Electrical and Computer Engineering
Duke University

Date:
Approved:

Robert Calderbank, Supervisor

Lawrence Carin

Ingrid Daubechies

Gallen Reeves

Guillermo Sapiro

An abstract of a dissertation submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in the Department of Electrical and Computer

Engineering
in the Graduate School of Duke University

2016

Copyright c© 2016 by Jiaji Huang
All rights reserved except the rights granted by the

Creative Commons Attribution-Noncommercial Licence

http://creativecommons.org/licenses/by-nc/3.0/us/

Abstract

Subspaces and manifolds are two powerful models for high dimensional signals. Sub-

spaces model linear correlation and are a good fit to signals generated by physical

systems, such as frontal images of human faces and multiple sources impinging at an

antenna array. Manifolds model sources that are not linearly correlated, but where

signals are determined by a small number of parameters. Examples are images of

human faces under different poses or expressions, and handwritten digits with vary-

ing styles. However, there will always be some degree of model mismatch between

the subspace or manifold model and the true statistics of the source. This disser-

tation exploits subspace and manifold models as prior information in various signal

processing and machine learning tasks.

A near-low-rank Gaussian mixture model measures proximity to a union of linear

or affine subspaces. This simple model can effectively capture the signal distribu-

tion when each class is near a subspace. This dissertation studies how the pairwise

geometry between these subspaces affects classification performance. When model

mismatch is vanishingly small, the probability of misclassification is determined by

the product of the sines of the principal angles between subspaces. When the model

mismatch is more significant, the probability of misclassification is determined by the

sum of the squares of the sines of the principal angles. Reliability of classification is

derived in terms of the distribution of signal energy across principal vectors. Larger

principal angles lead to smaller classification error, motivating a linear transform

iv

that optimizes principal angles. This linear transformation, termed TRAIT, also

preserves some specific features in each class, being complementary to a recently de-

veloped Low Rank Transform (LRT). Moreover, when the model mismatch is more

significant, TRAIT shows superior performance compared to LRT.

The manifold model enforces a constraint on the freedom of data variation. Learn-

ing features that are robust to data variation is very important, especially when the

size of the training set is small. A learning machine with large numbers of parame-

ters, e.g., deep neural network, can well describe a very complicated data distribution.

However, it is also more likely to be sensitive to small perturbations of the data, and

to suffer from suffer from degraded performance when generalizing to unseen (test)

data. From the perspective of complexity of function classes, such a learning ma-

chine has a huge capacity (complexity), which tends to overfit. The manifold model

provides us with a way of regularizing the learning machine, so as to reduce the gen-

eralization error, therefore mitigate overfiting. Two different overfiting-preventing

approaches are proposed, one from the perspective of data variation, the other from

capacity/complexity control. In the first approach, the learning machine is encour-

aged to make decisions that vary smoothly for data points in local neighborhoods on

the manifold. In the second approach, a graph adjacency matrix is derived for the

manifold, and the learned features are encouraged to be aligned with the principal

components of this adjacency matrix. Experimental results on benchmark datasets

are demonstrated, showing an obvious advantage of the proposed approaches when

the training set is small.

Stochastic optimization makes it possible to track a slowly varying subspace un-

derlying streaming data. By approximating local neighborhoods using affine sub-

spaces, a slowly varying manifold can be efficiently tracked as well, even with cor-

rupted and noisy data. The more the local neighborhoods, the better the approxi-

mation, but the higher the computational complexity. A multiscale approximation

v

scheme is proposed, where the local approximating subspaces are organized in a tree

structure. Splitting and merging of the tree nodes then allows efficient control of the

number of neighborhoods. Deviation (of each datum) from the learned model is esti-

mated, yielding a series of statistics for anomaly detection. This framework extends

the classical changepoint detection technique, which only works for one dimensional

signals. Simulations and experiments highlight the robustness and efficacy of the

proposed approach in detecting an abrupt change in an otherwise slowly varying

low-dimensional manifold.

vi

vii

Contents

Abstract iv

List of Tables xii

List of Figures xiii

List of Abbreviations and Symbols xvi

Acknowledgements xvii

1 Introduction 1

2 Subspace Model and Linear Feature Learning 3

2.1 Near Low-rank Gaussian Mixture Model 4

2.2 Geometric Framework . 6

2.3 The MAP Classifier for a GMM . 7

2.3.1 The High SNR Regime . 8

2.3.2 The Low SNR Regime . 10

2.3.3 The Moderate SNR Regime 11

2.3.4 Numerical Analysis of Synthetic Data 13

2.4 Nearest Subspace Classifier: extending GMM 14

2.4.1 Derivation of the Upper Bound 15

2.4.2 Numerical Analysis of Synthetic Data 18

2.5 TRAIT: Tunable Recognition Adapted to Intra-class Target 19

2.5.1 Related Methods . 21

viii

2.5.2 Two Properties of the TRAIT Transform 22

2.5.3 Robustness to Model Mismatch 25

2.6 Conclusion . 28

3 Local Structure and Robust Feature Learning 30

3.1 Learning Robust Features from a Small Training Set 31

3.2 Problem Formulation . 32

3.2.1 Motivation . 32

3.2.2 Formulation . 33

3.3 Theoretical Analysis . 34

3.3.1 Theoretical Framework . 35

3.3.2 (K, ε)-robustness and Covering Number 36

3.4 An Illustrative Realization of DRT 39

3.4.1 Other Distance . 40

3.5 Experimental Results . 41

3.5.1 Toy Example . 41

3.5.2 MNIST Classfication Using a Very Small Training Set 42

3.5.3 Face Verification on LFW . 44

3.6 Conclusion . 46

4 GraphConnect : where Manifold Models Meet Deep Learning 47

4.1 Generalization Error of Deep Neural Networks 48

4.2 GraphConnect : A Motivating Example 50

4.3 A Theoretical Perspective . 52

4.3.1 Analysis: Regularizing a Linear Layer 54

4.3.2 Analysis: Regularizing Multiple Layers 57

4.4 Algorithmic Details . 58

ix

4.4.1 Choice of Bandwidth σ . 60

4.5 Experiments . 61

4.5.1 MNIST Revisited . 61

4.5.2 Comparison on SVHN and CIFAR-10 62

4.5.3 Face Verification on LFW . 63

4.6 Conclusion . 67

5 Connecting Subspace and Manifold 68

5.1 Motivating Application: Changepoint Detection 69

5.2 Problem Formulation . 70

5.3 Multiscale Online Union of Subspace Estimation (MOUSSE) 72

5.3.1 Multiscale union of subspaces model 73

5.3.2 MOUSSE Algorithm . 75

5.3.3 Distances for MOUSSE . 75

5.3.4 Update subset parameters . 78

5.3.5 Tree structure update . 82

5.3.6 Initialization . 83

5.3.7 Choice of parameters . 84

5.4 Changepoint detection . 84

5.4.1 CUSUM procedure . 84

5.4.2 Distribution of et . 85

5.5 Performance Analysis . 86

5.5.1 Optimality of estimator for c∗ 87

5.5.2 MOUSSE tracking error scaling with level 88

5.5.3 Choice of threshold for changepoint detection 88

5.6 Numerical Examples . 89

x

5.6.1 Tracking a static submanifold 89

5.6.2 Tracking a slowly time varying submanifold 90

5.6.3 Comparison of tracking algorithms 92

5.6.4 Changepoint detection example 93

5.6.5 Real data . 94

5.7 Conclusions . 98

A Supplementary Proofs for Chapter 2 99

A.1 Proof of high SNR case . 99

A.2 Proof of Low SNR case . 100

A.3 Proof of Moderate SNR Case . 104

A.4 Analysis of NSC . 106

A.5 Proof of Proposition 1 . 108

Bibliography 109

Biography 117

xi

List of Tables

2.1 NSC accuracy on original and 1000 dimensional (compressed) ex-
tracted features . 28

3.1 Varying λ on a toy dataset. 41

3.2 Implementation details of the neural network for MNIST classification. 43

3.3 Classification error on MNIST. 44

3.4 Verification accuracy and AUCs on LFW 45

4.1 Network architecture in the MNIST experiments, where layer 7 and 8
constitute the softmax classifier. 50

4.2 Network common to SVHN and CIFAR-10 experiments. 64

4.3 SVHN: test accuracy when individual regularizer is used. 64

4.4 CIFAR-10: test accuracy as size of the training set varies. 64

4.5 Fully connected network for face verification. 65

4.6 Verification accuracies and AUCs when using a training set of size 64,000 65

5.1 Average run length (ARL) E∞{T}. 94

5.2 Detection delay when jump of γt is ∆γ = 0.05. 95

5.3 Detection delay when jump of γt is ∆γ = 0.03. 95

xii

List of Figures

2.1 Error probability as a function of the degree of mismatch. Dashed lines
represent empirical estimates, and solid lines represent upper bounds.
In the low SNR regime the two upper bounds coincide. 14

2.2 Lines on which E is constant for the two case studies introduced in
section 2.3.4. 17

2.3 Comparison of empirical NSC classification error with the upper bound
obtained by numerical integration. (a) Larger principal angles reduce
classification error; (b) Disproportionate assignment of signal energy
to larger principal angles reduces classification error. 19

2.4 Embeddings of original and transformed data. 24

2.5 MAP classifier’s Pe on transformed data. Note that TRAIT (blue)
and LRT (red) almost overlap. 25

2.6 NSC’s Pe on original/transformed face images. Concatenation of TRAIT
and LRT features (TRAIT+LRT) provides superior results 25

2.7 Comparison of original images (top) with TRAIT transformed images
(middle) and LRT transformed images (bottom). Red circles indicate
structure that is present in both the original and the TRAIT trans-
formed image. 26

2.8 NSC performance on TRAIT and LRT features under different SNR . 27

2.9 From top to bottom row: subjects in PIE, UMIST and ORL database,
taken under different poses . 27

3.1 (K, ε)-robustness: Here d = ρ(x1,x2), d′ = ρ(x′1,x
′
2), e = ρ(fα(x1), fα(x2)),

and e′ = ρ(fα(x′1), fα(x′2)). The difference |e− e′| cannot deviate too
much from |d− d′|. 33

3.2 Proof without words. 38

xiii

3.3 Original and transformed training/testing samples embedded in 2-
dimensional space with different colors representing different classes. . 42

3.4 MNIST test: with only 30 training samples per class. We vary λ and
assess (a) Remp; (b) generalization error; and (c) 1-nn classification
accuracy. Peak accuracy is achieved at λ = 0.25. 43

3.5 Comparison of ROCs for all methods 45

3.6 Verification accuracy of Euc-DRT as λ varies 45

4.1 Comparing GraphConnect against weight decay on the MNIST dataset 51

4.2 Evaluation of the upper bound (Theorem 12) on the Rademacher com-
plexity for the MNIST benchmark. 51

4.3 (a) GraphConnect-One regularizes individual linear layers so that in-
dividual outputs align with a graph W; (b) GraphConnect-All regu-
larizes the final output features to align with a graph W. 59

4.4 Embedding of initial and transformed test samples with different col-
ors representing different classes. All networks are learned from the
same set of 500 training samples. In (d), we observe that numbers
with curly strokes are clustered on the left, whereas those with straight
strokes are on the right. 61

4.5 Comparing GraphConnect against weight decay on the MNIST dataset. 62

4.6 (a) Verification accuracy of GraphConnect and weight decay as a func-
tion of the size of the training set; (b) ROC curves when using 64,000
training samples. 66

5.1 Approximation of MOUSSE at t = 250 (upper) and t = 1150 (lower)
of a 100-dimensional submanifold. In this figure we project every-
thing into three-dimensional space. The blue curve corresponds to
true submanifold, the dots are noisy samples from the submanifold
(the lighter dots are more dated than the darker dots), and the red
line segments are the approximation with MOUSSE. As the curvature
of the submanifold increases, MOUSSE also adapts in the number of
line segments. 73

5.2 Illustration of tree structure for subspaces. The subspaces used in our
approximation are {S1,0,t ∪ S2,2,t ∪ S2,3,t}. 75

5.3 Q-Q plot of et, for a D = 100 submanifold. 86

5.4 MOUSSE tracking a static submanifold with D = 100 and d = 1. . . 90

xiv

5.5 MOUSSE tracking a slowly evolving submanifold with D = 100 and
d = 1. Dashed red line depicts CUSUM theoretical threshold calcu-
lated for ARL = 1000. 91

5.6 MOUSSE tracking a slowly varying submanifold using: (a) GROUSE,
(b) PETRELS-GS and (c) PETRELS-FO. Horizontal axis corresponds
to rate of submanifold’s change and vertical axis corresponds to frac-
tion of data missing. Brightness corresponds to E{et}. 92

5.7 Detection of solar flare at t = 227: (a) snapshot of original SDO
data at t = 227; (b) MOUSSE residual êt, which clearly identifies an
outburst of solar flare; (c) single subspace tracking residual êt, which
gives a poor indication of the flare; (d) e(t) for MOUSSE which peaks
near the flare around t = 227; (e) the CUSUM statistic for MOUSSE;
(f) e(t) for single subspace tracking; (g) the CUSUM statistic for single
subspace tracking. Using a single subspace gives much less reliable
estimates of significant changes in the statistics of the frames. 96

5.8 Credit card user data experiments. (a) Number of leaves used by
MOUSSE. (b) MOUSSE residual norm. (c) MOUSSE CUSUM statis-
tic (solid blue line) and CUSUM theoretical threshold calculated for
ARL = 1000 (dashed red line). (d) Ground truth transaction label
with changepoint near where CUSUM statistic starts increasing. . . . 97

xv

List of Abbreviations and Symbols

Symbols

R real number

X ,Y subspaces, or a space of data (will be clear in the context)

F feature space

x,y data vectors

U,V,X,Y basis matrices, or a set of vectors (will be clear in the context)

x>,X> transpose a vector or matrix

X† pseudo-inverse or matrix

A linear transform matrix

I identity matrix

Λ diagonal matrix whose diagonal are the eigenvalues

Σ covariance matrix

θi the i-th principal angle

xi the i-th datum

yi class label of the i-th datum

N normal distribution

H1, H2 two hypotheses

Pe classification error

Pr(·) probability of an event

E(·) expectation of an event

xvi

Acknowledgements

I deeply thank my advisor, Professor Robert Calderbank, who has created a fantastic

environment for me to learn and explore. Robert leads the Information Initiative at

Duke (IID), which is a very collaborative group of people and interaction between

them leads to lots of new ideas. During my PhD, I have collaborated with researchers

from several different backgrounds and there were lots of synergies. This could not

have been achieved without Robert’s help.

Robert is very encouraging. I remember once I got stuck in my research for a

long time. Making no progress, I was very worried at that point. In a meeting

with Robert, he made the metaphor that research is like flying from New York to

Boston with a stop at California. He said trials that have been made would not be

lost and would show their value in the long run. I felt much better after getting

his encouraging feedback and stopped unnecessary worry. When our papers got

accepted, Robert was always the first to congrat me about the good news. When

there were negative comments from reviewers, Robert often tried to discover the

positive side and motivated me to address the comments in a proper way.

Robert often provides me insights into a problem that I had not thought about

before. For example, interpreting the role of principal angles and interpreting the

complexity of function class, etc. He has the wisdom of refine complex math into

something intuitive yet highly explanatory. This deepens my understanding of the

problem.

xvii

Robert really cares for students’ career. Though occupied by all sorts of manage-

ment tasks, he made time to attend my rehearsal job talks. He gave me very useful

feedbacks, that improved the quality of my talk significantly. I feel very lucky to

have Robert as my advisor, who helped me develop a persistent interest in a wide

range of research problems.

I am also very grateful to professor Guillermo Sapiro and his postdoc, Dr. Qiang

Qiu. They have been very supportive during our collaboration. Guillermo often

had very sharp insight towards the research topics, and helped me a lot in writing

papers. On the other hand, the frequent discussion with Qiang has been a way of

avoiding unnecessary trials and errors. They helped me work in a more efficient

and effective way. More than research, they also gave me useful advice towards my

career. Guillermo referred me to a very nice research position in MSKCC. Qiang has

been encouraging me to work as a productive researcher even after graduation.

I also want to acknowledge Professor Lawrence Carin, Rebecca Willett, Miguel

Rodrigues, Yao Xie, Matthew Nokleby, Andrew Thompson, and postdocs Dr. Alireza

Vahid, Xin Yuan and Liming Wang. All of them are very brilliant, and I have learned

a lot from working with them. There are many more colleagues in IID that I would

like to thank. They are all very friendly and highly motivated researchers. I enjoyed

the lunches we had together, where we had lots of interesting conversations about

research.

Finally, I owe my highest gratitude to my parents. They are hardworking and

caring, serving as my role models in the past decades. Their emotional support

has been encouraging me to follow my interest and pursue a PhD degree. This

dissertation would not have been completed without their support.

xviii

1

Introduction

Signals that are nominally high dimensional often exhibit a low dimensional geomet-

ric structure. Subspaces provide a powerful way to model these signals. For example,

fixed-pose images of human faces are recorded using more than 1000 pixels, but can

be represented by a 9-dimensional harmonic subspace [9]. Motion trajectories of a

rigid body might be recorded by hundreds of sensors, but must intrinsically be rep-

resented by a 4-dimensional subspace [66]. There are many more examples where a

low-dimensional subspace model captures intrinsic geometric structure, ranging from

user ratings in a recommendation system [69] to signals emitted by multiple sources

impinging at an antenna array [55]. Subspace geometry has assisted tasks of interest

to both signal processing [88, 22] and machine learning communities[30, 63].

On the other hand, there are cases where a linear or affine subspace is not enough

to capture the distribution of the signal. Then one may consider the signal as lying

near a manifold [79, 70, 12, 24, 14, 81], which is nonlinearly determined by very few

parameters. For example, non-frontal human face images form a manifold that is

parameterized by different pitches and yaws [70]. Written digit images are parame-

terized by different styles of strokes [31]. As these underlying “semantic” information

1

evolves, the corresponding signal/data form a low dimensional manifold that is em-

bedded in a high dimensional ambient space.

Standard manifold learning methods often estimate pairwise affinity between

data samples, and use spectral decomposition to get a representation of the original

signal[79, 70, 12]. This type of learning technique is transductive, i.e., a new datum

has to be placed together with the training data in order to get its representation.

In other words, the training data has to be retained. In contrast, an inductive model

removes this burden by learning an explicit mapping from the original data/signal to

feature. A linear mapping [40] may be the simplest choice, but may not have enough

power. Instead, one could learn a union of subspaces [2, 88], each as a “local” ap-

proximation of the manifold. Then, the new datum is projected onto the “local” disk

to obtain a representation in the “local” coordinate. The other approach is by using

a parameterized nonlinear mapping, e.g., (deep) neural network [41, 37].

This dissertation addresses the inductive feature learning problem for classifica-

tion and anomaly detection tasks. We show how to leverage the low dimensional

geometry, via (union of) subspace(s) or manifold model, to help extract discrim-

inative and robust features. This dissertation is organized as follows. Chapter 2

considers feature extraction for classification, under the assumption that each class

lies near a subspace. Chapter 3 uses local distance preservation as a regularization of

supervised learning, leading to a feature transform that is discriminative and robust

to data variation. Chapter 4 further studies the overfitting problem within deep

neural networks and proposes a data dependent regularization by preserving mani-

fold structure. Chapter 5 proposes to approximate a manifold by a union of affine

subspaces, from which statistics are extracted for anomaly detection tasks.

2

2

Subspace Model and Linear Feature Learning

Subspace models play an important role in a wide range of signal processing tasks,

and this chapter explores how the pairwise geometry of subspaces influences the

probability of misclassification. When the mismatch between the signal and the

model is vanishingly small, the probability of misclassification is determined by the

product of the sines of the principal angles between subspaces. When the mismatch

is more significant, the probability of misclassification is determined by the sum

of the squares of the sines of the principal angles. Reliability of classification is

derived in terms of the distribution of signal energy across principal vectors. Larger

principal angles lead to smaller classification error, motivating a linear transform

that optimizes principal angles. The transform presented here (TRAIT) preserves

some specific characteristic of each individual class, and this approach is shown to be

complementary to a previously developed transform (LRT) that enlarges inter-class

distance while suppressing intra-class dispersion. Theoretical results are supported

by demonstration of superior classification accuracy on synthetic and measured data

even in the presence of significant model mismatch.

3

2.1 Near Low-rank Gaussian Mixture Model

A Gaussian Mixture Model (GMM) measures proximity to a union of linear or affine

subspaces, by imposing a low-rank structure on the covariance of each mixture com-

ponent. It can be used to approximate a nonlinear manifold by fitting mixture

components to local patches of the manifold [21, 88], hence providing a high fidelity

representation of a wide variety of signal geometries. The simplicity of the model

facilitates signal reconstruction [47, 93, 94, 68], making GMMs a very attractive

signal source model in compressed sensing. The value of low-rank GMMs extends

to classification, where each class is modeled as a low-rank mixture component, and

classes are identified by their projections onto linear features. Optimal feature design

is addressed in [20, 63].

The GMM is usually only an approximation to the truth. For example, the full

spectrum associated with a face image follows a power law distribution, and when

we truncate to the first 9 harmonic dimensions, the residual energy will be a source

of error in classification. Even if the true model were a GMM, we can only learn

an approximation to the true model from training data. The more data we see, the

better is the fit of our empirical model, but some degree of mismatch is unavoidable.

If we treat this mismatch as a form of noise, then we can use information theory to

derive fundamental limits on the number of classes that can be discerned (see [59]

for more details).

This chapter explores how the pairwise geometry of subspaces influences the

probability of misclassification. There are parallels with non-coherent wireless com-

munication [43], where information is encoded as a subspace drawn from a fixed

alphabet, and the function of the receiver is to distinguish the transmitted subspace.

When each component is perfectly modeled as a Gaussian, the performance of the

MAP classifier can be analyzed using the Chernoff Bound [28]. When fidelity is per-

4

fect, there is no mismatch, and fundamental limits on performance are determined

by the rank of the intersection of the classes [67, 59].

In this chapter, we further consider how best to discriminate classes, when the

alignment between the GMM model and the data is only approximate. We make

three main contributions in this chapter:

1. We express the probability of pairwise misclassification in terms of the principal

angles between the corresponding subspaces. This expression depends on the

mismatch between the signal and the model. Interpreting this mismatch as

noise, we provided analysis of the low, moderate, and high SNR regimes. This

improves upon [67], in the sense that we have a more explicit expression of the

“measurement gain” proposed in [67].

2. We characterize the probability of misclassification for more general distribu-

tions near subspaces. This is motivated by the case where training samples per

class are insufficient for a reliable estimate of covariance. In these cases, we

have very little knowledge about the signal distribution and a MAP classifier

is not good fit.

The Nearest Subspace Classifier (NSC) provides an alternative and we use the

NSC classifier rather than the MAP to bound the probability of misclassifica-

tion.

3. We develop a feature extraction method, TRAIT, that effectively enlarges prin-

cipal angles between different subspaces and preserves intra-class structure. We

demonstrate superior classification accuracy on synthetic and measured data,

particularly in the presence of significant model mismatch.

This chapter is organized as follows. Section 2.2 presents the subspace geometry

framework. Section 2.3 analyzes the Maximum a Posteriori (MAP) classifier under

5

the GMM assumption. Section 2.4 analyzes the performance of Nearest Subspace

Classifer (NSC), which relaxes the GMM assumption. Section 2.5 proposes a feature

extraction method, TRAIT, that exploits subspace geometry, and presents experi-

mental results for both synthetic and measured datasets. Section 2.6 provides a final

summary.

2.2 Geometric Framework

Consider two subspaces X and Y of Rn with dimensions ` and s respectively, where

` ≤ s. The principal angles between X and Y , denoted as θ1, . . . , θ`, are defined

recursively as follows

θ1 = minx1∈X ,y1∈Y arccos
(

x>1 y1

‖x1‖‖y1‖

)
,

...

θj = min xj∈X ,yj∈Y
xj⊥x1,...,xj−1

yj⊥y1,...,yj−1

arccos
(

x>j yj

‖xj‖‖yj‖

)
, j = 2, . . . , `.

The vectors x1, . . . ,x` and y1, . . . ,y`, are called principal vectors. The dimension of

X ∩Y is the multiplicity of zero as a principal angle. It is straightforward to compute

the principal angles by calculating the singular values of X>Y, where X and Y are

orthonormal bases for X and Y respectively. The singular values of X>Y are then

cos θ1, . . . , cos θ`.

Let ` = s. The principal angles induce several distance metrics on the Grass-

mann manifold, of which the most widely used is the (squared) chordal distance

D2
c (X ,Y) [29], given by

D2
c (X ,Y) =

s∑
i=1

sin2 θi.

The chordal distance is an aggregate, and in the following sections we will see how

probability of misclassification depends, not so much on this aggregate, but on the

individual principal angles.

6

2.3 The MAP Classifier for a GMM

We begin by considering the MAP classifier, which is optimal when the signal dis-

tribution is known. We focus on binary classification, where the two classes are

equiprobable, since the generalization from two to many classes is well understood

[86, 67].

We model each class as zero mean Gaussian distributed, where the covariance is

near low-rank. Classification can be formulated as the following binary hypothesis

testing problem

H1 : x ∼ N (0,Σ1)
H2 : x ∼ N (0,Σ2).

(2.1)

We justify the zero-mean assumption by observing that in applications such as face

recognition [87], or motion trajectory segmentation [66], the actual mean is con-

sidered as a nuisance parameter, and is removed prior to processing. Given the

near-subspace assumption, we model the two covariances as

Σ1 = U1Λ1U
>
1 + σ2I

Σ2 = U2Λ2U
>
2 + σ2I.

(2.2)

where U1,U2 ∈ Rn×d are the orthonormal bases for the two signal subspaces, denoted

by X1 and X2. Typically n� d. Λ1,Λ2 ∈ Rd×d are diagonal matrices of eigenvalues.

We assume that the two subspaces have the same dimension d, and that the diagonal

elements of Λ1, Λ2 are arranged in descending order. In the application to motion

trajectories we take d = 4, and in the application to face recognition we might take

d = 9. Denote the i-th largest eigenvalue of Λj by λj,i. Finally let σ2 be the variance

of the noise, which quantifies the degree of mismatch between the subspace model

and the data.

Denote the probability of mistaking hypothesis 2 for hypothesis 1 by Pr(H2|H1),

and define Pr(H1|H2) similarly. Under the assumption that the two hypotheses are

7

equiprobable, the error probability Pe of a MAP (optimal) classifier is

Pe =
1

2
[Pr(H2|H1) + Pr(H1|H2)]

=
1

2

∫
min(Pr(x|H1),Pr(x|H2))dx

(2.3)

Since this integral does not admit a closed form solution, we study the Bhattacharyya

upper bound [16] to Pe instead. This bound is a special case of the Chernoff

bound [28] derived using the observation min(a, b) ≤
√
ab. The Bhattacharyya bound

gives

Pe ≤
1

2
e−K , where K =

1

2
ln

det
(

Σ1+Σ2

2

)
√

det Σ1 · det Σ2

. (2.4)

The numerator inside the logarithm measures the volume of space occupied by both

subspaces together, and the denominator measures the volumes occupied separately.

These quantities depend on the principal angles, and we now study the performance

of the Bhattacharyya bound in the high, low and moderate SNR regimes.

2.3.1 The High SNR Regime

We first consider the case when σ2 → 0, which means that the mismatch between

the signal and the model becomes vanishingly small. Since the intersection X1 ∩ X2

between the two subspaces plays a special role, we write the two covariances as

Σ1 = U1,∩Λ1,∩U
>
1,∩ + U1,\Λ1,\U

>
1,\ + σ2I,

Σ2 = U2,∩Λ2,∩U
>
2,∩ + U2,\Λ2,\U

>
2,\ + σ2I

(2.5)

Here both U1,∩ ∈ Rn×r and U2,∩ ∈ Rn×r span X1 ∩ X2 with singular values Λ1,∩

and Λ2,∩ respectively. U1,\ ∈ Rn×(d−r) spans X1\X2 with singular values Λ1,\. And

U2,\ ∈ Rn×(d−r) spans X2\X1 with singular values Λ2,\.

The following theorem bounds the classification error in the high SNR regime.

8

Theorem 1. Assume n ≥ 2(d − r). As σ2 → 0, the classification error is upper

bounded as

Pe ≤ c1(σ2)
d−r
2

(
d∏

i=r+1

sin2 θi

)− 1
2

+ o
(

(σ2)
d−r
2

)

where “g(σ2) = o(f(σ2))” stands for limσ2→0
g(σ2)
f(σ2)

= 0. The constant c1 is given by,

c1 = 2
2d−r

2
−1

[
pdet(U1,∩Λ1,∩U

>
1,∩ + U2,∩Λ2,∩U

>
2,∩)√∏r

i=1 λ1,∩,i ·
∏r

i=1 λ2,∩,i
·
d−r∏
i=1

√
λ1,\,i · λ2,\,i

]− 1
2

,

where pdet denotes the pseudo-determinant.

Proof. The method is to expand the Bhattacharyya bound in terms of principal

angles, and the details are provided in Appendix A.1.

Remark 1. 1. Typically n� d for measured data, so the condition n ≥ 2(d− r)

is usually satisfied.

2. The classification error is upper bounded by (σ2)
d−r
2 ; the smaller the overlap

between subspaces, the easier it is to discriminate between classes. When two

subspaces overlap completely, there is an error floor.

There is a duality between the GMM classification problem and multiple antenna

communication [78]. In multiple antenna communications, a codeword is a d × n

array, where the rows are indexed by transmit antennas, the columns are indexed by

time slots in a data frame, and the entries are the symbols to be transmitted. The

probability of mistaking codeword Ci for codeword Cj, Pr(i→ j), satisfies

Pr(i→ j) ≤ (σ2/2)k(1/λ2
1 . . . λ

2
k),

where k is the rank of Ci − Cj, whose singular values are λ1, . . . , λk. The primary

objective in code design for multiple antenna wireless communication is to maximize

9

the minimum rank of the difference between distinct codewords. If the minimum

rank is k, the code is said to achieve a diversity gain of k.

An important secondary objective in code design for multiple antenna wireless

communication is to maximize the minimum product of the singular values of the

difference between distinct codewords. This minimum product determines the coding

gain.

The counterpart of coding gain in classification is the product of sines of the

principal angles. This quantity determines the intercept of the error exponent with

the vertical axis. The smaller the energy in the intersection of the subspaces, the

smaller is the classification error. The larger the principal angles, the smaller is the

classification error.

2.3.2 The Low SNR Regime

This is the case where the noise variance σ2 and the singular values are commen-

surable; in other words, the mismatch between the signal and the empirical model

cannot be neglected. The MAP classifier in this case is characterized by the following

theorem.

Theorem 2. When σ2 is sufficiently large, the Bhattacharyya upper bound is sand-

wiched between

Pe
UB =

1

2
exp

{
− 1

σ4

(
c2 −

1

16
λ1,1λ2,1

d∑
i=1

cos2 θi

)}

and

Pe
UB

=
1

2
exp

{
− 1

σ4

(
c3 −

1

8
λ1,1λ2,1

d∑
i=1

cos2 θi

)}
,

10

where Pe
UB

> Pe
UB. And the constants c2 and c3 are given by

c2 =
σ4

4

[
d∑
i=1

λ1,i

σ2
− 1

2

d∑
i=1

(
λ1,i

2σ2

)2

−
d∑
i=1

ln

(
1 +

λ1,i

σ2

)]

+
σ4

4

[
d∑
i=1

λ2,i

σ2
− 1

2

d∑
i=1

(
λ2,i

2σ2

)2

−
d∑
i=1

ln

(
1 +

λ2,i

σ2

)]

c3 =
σ4

4

[
d∑
i=1

λ1,i

σ2
−

d∑
i=1

(
λ1,i

2σ2

)2

−
d∑
i=1

ln

(
1 +

λ1,i

σ2

)]

+
σ4

4

[
d∑
i=1

λ2,i

σ2
−

d∑
i=1

(
λ2,i

2σ2

)2

−
d∑
i=1

ln

(
1 +

λ2,i

σ2

)]
.

Proof. The details are given in appendix A.2.

Remark 2. The dimension of the overlap between the two subspaces plays a less im-

portant role in the low SNR regime, and classification error is a function of chordal

distance. This gives rise to an interesting duality between GMM model based clas-

sification and the space-time decoding [4], where error probability is influenced by

product or sum diversity in high or low SNR regime respectively.

2.3.3 The Moderate SNR Regime

We now consider a moderate noise/mismatch regime, where p
c(p)
≤ λ1,j

σ2 ,
λ2,j
σ2 ≤ p for

j = 1, . . . , d and p > 1, c(p) > 1. Moderate SNR also implies that p is not very large.

The most important element in the analysis of classification error is to lower

bound the term ln det
(

Σ1+Σ2

2

)
in Eq. (2.4),

ln det

(
Σ1 + Σ2

2

)
= ln det

(
I +

U1Λ1U
>
1 + U2Λ2U

>
2

2σ2

)
+ n lnσ2.

Denote the non-zero singular values of D , 1
2σ2 (U1Λ1U

>
1 +U2Λ2U

>
2) by λ1, . . . , λ2d−r.

11

Then

ln det

(
Σ1 + Σ2

2

)
=

2d−r∑
i=1

ln(1 + λi) + n ln(σ2). (2.6)

The following lemma provides a lower bound on ln(1 + λi).

Lemma 3. There exists 0 ≤ L < p−1
2

such that for any λi ∈ [L, p],

ln(1 + λi) ≥ ln(1 + p) +
1

1 + p
(λi − p)−

1

(1 + p)2
(λi − p)2. (2.7)

Proof. See Appendix A.3.

Let L(p) be the smallest possible value of L, define c(p) = p
2L(p)

if L(p) > 0 and

c(p) = +∞ if L(p) = 0. Note that c(p) > 1 since L(p) < p−1
2

.

Theorem 4. If p
c(p)
≤ λ1,i

σ2 ,
λ2,i
σ2 ≤ p, then the classification error is upper bounded as

Pe ≤
1

2
exp

{
−c4(2d− r) +

λ1,1λ2,1

4σ4(1 + p)2

∑
i

cos2 θi + c5

}
,

where c4 = 1
2

[
ln(1 + p)− p

1+p
− p2

(1+p)2

]
and c5 depends on p and

λ1,i
σ2 ,

λ2,i
σ2 .

Proof. See Appendix A.3.

Remark 3. It is straightforward to show numerically that c(p) = 3.44, 2.79 for

p = 4, 5 respectively, that c(p) ≥ 2.02 for p ≤ 10, and that c(p) ≥ 1.61 for p ≤ 100.

The form of the upper bound suggests that in the moderate SNR regime, the role

of chordal distance is more important than the product of the sines of the principal

angles.

12

2.3.4 Numerical Analysis of Synthetic Data

We explore the difference between classification in the low and high SNR regimes

through a simple numerical example. Consider the following pairs of subspaces:

case 1:

U1 =

[
1 0 0 0
0 1 0 0

]>
U2 =

[
1 0 0 0
0 0 1 0

]>
.

case 2:

U1 =

[
1 0 0 0
0 1 0 0

]>
U2 =

1√
2

[
1 0 0 −1
0 1 1 0

]>
.

We set Λ1 = Λ2 = I for both cases. In case 1, the two principal angles are θ1 =

0, θ2 = π/2 and in case 2, the two principal angles are θ1 = π/4, θ2 = π/4. The

chordal distances in these two cases are the same, but in case 1 the product of sines

of non-zero principal angles is 1, whereas in case 2 it is 1/2. However, there is a

nontrivial intersection dimension in case 1. The product of nonzero sine principal

angles is 1 for case 1, and 1
2

for case 2.

We vary the degree of mismatch σ2, and evaluate the bounds developed in the

above three theorems. In the high SNR regime, we plot the empirical misclassification

probability Pe with the value c1(σ2)
d−r
2

(∏d
i=r+1 sin2 θi

)− 1
2

given in Theorem 1. In the

low SNR regime, we plot the upper bound Pe
UB

in Theorem 2. In the moderate SNR

regime, we take p = 6, and we vary σ2 between 1
p

and c(p)
p

, so that p
c(p)
≤ λ1,i

σ2 ,
λ2,i
σ2 ≤ p.

We then plot the upper bound in Theorem 4, against the empirical classification error.

In the high SNR regime (Fig. 2.1a), the classification error decays faster in Case 2

than in Case 1, consistent with Theorem 1. In the low SNR regime (Fig. 2.1b),

there is little difference in classification error between the two cases, consistent with

Theorem 2. In the moderate SNR regime (Fig. 2.1b), classification performance in

case 1 is inferior to that in case2, because there is a shared 1-dimensional subspace,

13

and this is predicted by Theorem 4.

2 2.5 3 3.5 4 4.5 5
−10

−8

−6

−4

−2

0

− log(σ2)

lo
g

of
 e

rr
or

 p
ro

ba
bi

lit
y

Upper bound
case 1:logPe

Upper bound
case 2:logPe

(a) high SNR regime

−2 −1.8 −1.6 −1.4 −1.2 −1
−0.31

−0.305

−0.3

−0.295

−0.29

− log(σ2)

lo
g

of
 e

rr
or

 p
ro

ba
bi

lit
y

Upper bound
case 1:logPe

Upper bound
case 2:logPe

(b) low SNR regime

0.4 0.5 0.6 0.7
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

− log(σ2)

lo
g

of
 e

rr
or

 p
ro

ba
bi

lit
y

case 1: Upper bound
case 1:logPe

case 2: Upper bound
case 2:logPe

(c) moderate SNR regime

Figure 2.1: Error probability as a function of the degree of mismatch. Dashed
lines represent empirical estimates, and solid lines represent upper bounds. In the
low SNR regime the two upper bounds coincide.

Concluding this section, we have characterized the pair-wise classification error

using the principal angles between a pair of subspaces. The union bound then makes

it possible to derive an upper bound on classification error for multiple classes.

2.4 Nearest Subspace Classifier: extending GMM

If the class distribution is known (for example through its covariance) then the MAP

classifier is optimal. If however we only know that each class is near a known low-

dimensional subspace (possibly inferred from less training data) then we can substi-

tute a Nearest Subspace Classifier (NSC) for the MAP. This Section connects perfor-

mance of the NSC with principal angles, and for simplicity we focus on discriminating

pairs of classes, given that the extension to multiple classes is straightforward.

Consider two classes, labeled C1 and C2, distributed near two subspaces with

orthonormal bases U1,U2 ∈ Rn×d. The NSC determines the class label of a test

sample x, Ĉ, by comparing the norms of the projections onto U1 and U2.

Ĉ =

{
C1 ‖U>1 x‖2 ≥ ‖U>2 x‖2

C2 otherwise
. (2.8)

The preferred class label has a basis that is better aligned to the signal.

14

2.4.1 Derivation of the Upper Bound

Starting from the projection onto each subspace, we model the distribution of these

two classes as

p(x|C1) =

∫
p(x|α, C1)p(α)dα =

∫
N (x; U1α, σ

2I)p(α)dα

p(x|C2) =

∫
p(x|α, C2)q(α)dα =

∫
N (x; U2α, σ

2I)q(α)dα.

(2.9)

The NSC knows U1 and U2, but is blind to p(α) and q(α), where α is the expansion

of the projection U>i x in the basis Ui. Note that since we are not assuming a GMM,

the vector α need not be multivariate normal.

Let V diag{cos θ1, . . . , cos θd}W> be the singular value decomposition of U>1 U2,

where V, W are unitary, and the principal angles {θ1, . . . , θd} are taken in ascending

order. We may, absorb V, W into U1, U2 at the cost of redefining p(α), q(α). Thus

we may without loss of generality assume V = W = I, i.e.,

U>1 U2 = diag{cos θ1, . . . , cos θd} , C. (2.10)

Define Pr(C2|C1) as the probability of mistaking C2 for C1 and define Pr(C1|C2)

similarly. Then the classification error is

Pe =
1

2
Pr(C2|C1) +

1

2
Pr(C1|C2). (2.11)

We bound Pr(C2|C1) using principal angles, and Pr(C1|C2) can be analyzed in the

same manner. We expand Pr(C2|C1) using Bayes rule as

Pr(C2|C1) =

∫
Pr(C2|C1,α)p(α)dα. (2.12)

We bound Pr(C2|C1,α) by writing x = U1α + n, where the noise n ∼ N (0, σ2I).

Pr(C2|C1,α) =Pr(‖U>1 (U1α + n)‖2 ≤ ‖U>2 (U1α + n)‖2)

=Pr(‖α + U>1 n‖2 ≤ ‖Cα + U>2 n‖2),
(2.13)

15

where the probability is taken w.r.t. n. Denote the i-th column in U1(U2) as

u1,i(u2,i), and the i-th element of α as αi. It follows from Eq. (2.13) that

Pr(‖α+U>1 n‖2 ≤ ‖Cα+U>2 n‖2) = Pr

(∑
i

(αi + u>1,in)2 ≤
∑
i

(cos θiαi + u>2,in)2

)
.

(2.14)

We now define ai , αi + u>1,in and bi , cos θiαi + u>2,in. Then Eq. (2.14) simplifies

to

Pr

(∑
i

(αi + u>1,in)2 ≤
∑
i

(cos θiαi + u>2,in)2

)
= Pr

(∑
i

(ai + bi)(ai − bi) ≤ 0

)
.

(2.15)

Lemma 5. Let ai, bi as defined as above. For any pair of i, j where i 6= j:

1. ai is independent from aj

2. bi is independent from bj

3. ai is independent from bj

4. ai + bi is independent from ai − bi

Proof. The proof is given in appendix A.4.

It follows from Lemma 5 that
∑

i(ai + bi)(ai − bi) is the sum of products of

independently distributed normal random variables. However the product of inde-

pendently distributed normal random variables need not be normal, and so we need

to show that (ai + bi)(ai − bi) is normally distributed.

Lemma 6 (product of normal random variable[3]). Let x ∼ N (µx, σ
2
x) and y ∼

N (µy, σ
2
y) be two independent normal variables. If µx/σx → ∞ and µy/σy → ∞ in

any manner, then the distribution of xy approaches normality with mean µxµy and

variance µ2
xσ

2
y + µ2

yσ
2
x + σ2

xσ
2
y.

16

Applying Lemma 6 and combining the independence stated in Lemma 5, we have

Lemma 7. As σ → 0,
∑

i(ai+bi)(ai−bi) ∼ N
(∑

i sin
2 θiα

2
i , 4σ

2
∑

i sin
2 θi(α

2
i + σ2)

)
Proof. The proof is given in appendix A.4.

It follows that Pr (
∑

i(ai + bi)(ai − bi) ≤ 0) is the tail probability of a normal

distribution. Applying the standard tail bound, we arrive at the following theorem.

Theorem 8. As σ2 → 0, the classification error is upper bounded as

Pe ≤
∫
E(θ,α, σ2)

p(α) + q(α)

2
dα

where E(θ,α, σ2) = 1
2

exp

[
− (

∑d
i=1 sin2 θiα

2
i)

2

8σ2
∑d
i=1 sin2 θi(α2

i+σ
2)

]
.

Proof. The proof is given in appendix A.4.

α
1
2

α 22 0.0862

0.16

0.297

0.5
0 1 2 3

0

1

2

3

(a) case 1

α
1
2

α 22

0.5

0.297

0.16

0.0862

0 1 2 3
0

1

2

3

(b) case 2

Figure 2.2: Lines on which E is constant for the two case studies introduced in
section 2.3.4.

We return to the two case studies introduced in Section 2.3.4 to provide some in-

tuition about the kernel E . The principal angles are [0, π/2] in Case 1, and [π/4, π/4]

in Case 2. In Case 1, the kernel is constant on horizontal lines, and in Case 2, it is

17

constant on lines of slope -1. These two cases are shown in Fig. 2.2, and we now

make a number of general observations.

Remark 4. 1. E(θ,α, σ2) is monotonically decreasing w.r.t.
∑

i sin
2 θiα

2
i , and

monotonically increasing w.r.t. σ2. Therefore, bigger principal angles or signal en-

ergy results in smaller classification error. Bigger noise results in bigger classification

error. 2. Ignoring the higher order term of σ2 in the denominator inside the exp(·),

we have

E(θ,α, σ2) ≈ 1

2
exp

(
−
∑

i sin
2 θiα

2
i

8σ2

)
which clearly indicates that classification performance is a function of discernibility

(the sine principal angles) weighted by signal energy (the α2
i ’s). 3. For fixed energy,

classification error is decreased by allocating larger α2
i to larger θi.

2.4.2 Numerical Analysis of Synthetic Data

We now examine the agreement between empirical error and the upper bound given

in Theorem 3. Set n = 6, d = 2,

U1 =
[
I2,04

]>
, U2 =

[
cos θ 0 0 0 sin θ 0

0 cos θ 0 0 0 sin θ

]>
,

so that the two principal angles between U1 and U2 are θ1 = θ2 = θ. Set p(α) =

q(α) = N (α; 0, I2), and vary σ2 in [0.01, 0.5]. Fig. 2.3a considers three values of θ

(π/6, π/4, and π/3), and shows that empirical NSC classification error tracks the

upper bound obtained by numerical integration.

Next we examine the dependence of classification error on distribution of signal

energy across the two modes. Set n = 6, d = 2, U1 =
[
I2,04

]>
and

U2 =

[
cos(π/6) 0 0 0 sin(π/6) 0

0 sin(π/6) 0 0 0 cos(π/6)

]>
,

18

0 0.5 1 1.5 2
−5

−4

−3

−2

−1

0

− log(σ2)

lo
g

of
 e

rr
or

 p
ro

ba
bi

lit
y

θ = π/6 empirical

θ = π/6 bound

θ = π/4 empirical

θ = π/4 bound

θ = π/3 empirical

θ = π/3 bound

(a)

0 0.2 0.4 0.6 0.8 1 1.2
−6

−5

−4

−3

−2

−1

0

− log(σ2)

lo
g

of
 e

rr
or

 p
ro

ba
bi

lit
y

case 3: empirical
case 3: bound
case 4: empirical
case 4: bound

(b)

Figure 2.3: Comparison of empirical NSC classification error with the upper bound
obtained by numerical integration. (a) Larger principal angles reduce classification
error; (b) Disproportionate assignment of signal energy to larger principal angles
reduces classification error.

so that the two principal angles are θ1 = π/6 and θ2 = π/3. Fix ‖α‖2 = 1, and

compare the case when α is distributed such that |α1| < |α2| (Case 3 in Fig. 2.3b),

with the case when α is distributed such that |α1| > |α2| (Case 4 in Fig. 2.3b).

Empirical error is calculated for a range of noise variances, by randomly drawing

10,000 sample per class. Empirical NSC classification error tracks the upper bound

given by numerical integration, with performance of Case 3 superior to that of Case

4.

2.5 TRAIT: Tunable Recognition Adapted to Intra-class Target

In the previous theorems, it is the principal angles that determine the performance

of the classifiers in different SNR regimes. This suggests that we might improve

classification by applying a linear transformation that optimizes principal angles,

even at the cost of reducing dimensionality.

We denote the collection of all labeled training samples as X = [X1, . . . ,XK] ∈

Rn×N , where columns in the submatrix Xk ∈ Rn×Nk are samples from the k-th

19

class. The signal subspace of Xk is spanned by the orthonormal basis Uk defined

above. The linear transform A ∈ Rm×n (m ≤ n) is designed to maximize separa-

tion of the subspaces AU1, . . . ,AUK . The maximal separation is achieved when

(AUj)
>(AUk) = 0 for all j 6= k. In this case, all the principal angles are π/2. One

approach is to use the SVD to compute the Uk and then to learn the linear trans-

formation A. However we may avoid pre-computing the Uk by simply encouraging

(AXj)
>(AXk) = 0 for all j 6= k.

We shall require that the transform A preserve some specific characteristic or trait

of each individual class. For example, we may target (AXk)
>(AXk) = X>k Xk for all

k, so that the original intra-class data structure (with noise) is preserved. Given ac-

cess to a denoised signal, X̂k, we might instead target (AXk)
>(AXk) = X̂>k X̂k again

for all k. In this case, the intra-class dispersion due to noise is suppressed. Thus,

the Gram matrix T of the transformed signal can be designed to target preservation

of particular intra-class structure. We formulate the optimization problem as

min
A∈Rm×n

1

N2
‖(AX)>(AX)−T‖2

F . (2.16)

The block diagonal structure of the target Gram matrix T promotes larger principal

angles between subspaces. At the same time the diagonal blocks can be tuned to

different characteristics of individual classes. For example, when side information is

available, we may consider incorporating it in diagonal blocks. Here we only consider

T = diag{X>1 X1, . . . ,X
>
KXK}, (2.17)

as a proof-of-concept. We refer to this approach as the TRAIT algorithm, where the

acronym denotes Tunable Recognition Adapted to Intra-class Targets.

It is possible to minimize the objective in E.q. (2.16) by first minimizing ‖X>PX−

T‖2 for P � 0 (as Proposition 9), and then factoring P as P = A>A where A ∈

Rm×n.

20

Proposition 9. The minimizer of ‖X>PX−T‖2
F where P � 0, is

P? = (XX>)−1XTX>(XX>)−1.

Proof. Proof is detailed in appendix A.5.

However when m < n, such a rank-m decomposition may not exist since this P

is not guaranteed to be rank deficient. An alternative is to learn a rank deficient P

by solving

min
P�0
‖X>PX−T‖2

F + λ‖P‖∗,

where the nuclear norm ‖P‖∗ regularizes the rank of P. However this approach

requires careful tuning of λ, and it is computationally more complex since we work

with a matrix P larger than A. Given these considerations, we choose to solve (2.16)

using gradient descent as described in Algorithm 1.

Algorithm 1 TRAIT for feature extraction

Input: labeled training samples X = [X1, . . . ,XK], target dimension m, (m ≤ n),
target Gram matrix T.

Output: feature extraction matrix (transform) A ∈ Rm×n.
1: Initialize A = [e1, . . . , em]>, where ei is the i-th standard basis.
2: while stopping criteria not met do
3: Compute gradient

G = A(XX>A>AXX> −XTX>).

4: Choose a positive step-size η and take a gradient step

A← A− ηG.

5: end while

2.5.1 Related Methods

Linear Discriminant Analysis (LDA) is a classical feature extraction method which

assumes each class to be Gaussian distributed. It achieves better performance on

face recognition tasks than does PCA [11]. LDA does not assume near low-rank

21

structure of the covariances, and therefore considers a different data geometry than

the one here studied.

Methods of feature extraction based on random projection have recently been

developed and successfully applied to face recognition [87]. Random projection is

designed to preserve pairwise distances between all data points uniformly across

class labels [48].

More recently, the Low-Rank Transform (LRT) has been proposed as a method of

extracting features [63]. It enlarges inter-class distance while suppressing intra-class

dispersion. LRT uses the nuclear norm, ‖AXi‖∗, to measure the dispersion of the

(transformed) data. The transform A is

arg min
A∈Rm×n:‖A‖2≤c

K∑
i=1

‖AXi‖∗ − ‖AX‖∗.

What motivates the choice of the nuclear norm is that it is the convex relaxation

of rank [63]. In the high SNR regime, Theorem 1 suggests that classification error

decreases when the union of subspaces has large rank. LRT encourages the rank of

the union to be large, and it works well in a regime where model mismatch is small.

Experiments presented in Section 2.5.3 suggest that TRAIT may be more robust to

model mismatch (Fig. 2.8).

2.5.2 Two Properties of the TRAIT Transform

On synthetic and measured data, we show that TRAIT effectively enlarges the an-

gles between different subspaces and preserves intra-class structure. We also compare

the classification accuracy of features extracted by TRAIT and the methods in Sec-

tion 2.5.1. For synthetic data, the class distribution is known exactly, and the MAP

classifier is used to measure classification accuracy. For measured data, the class

distribution is unknown a priori, and the NSC classifier is employed instead.

22

Enlargement of the Principal angles

The synthetic dataset has parameters n = 10, d = 1 and K = 3.

Σk = UkU
>
k + 10−2I(k = 1, 2, 3),

where Uk is a normalized n-vector with i.i.d. Gaussian random entries. Samples of

the k-th class are i.i.d drawn from N (0,Σk). For each class, 100 samples are used

for learning the transform and 10000 are used for testing. On the training data, we

learn the transform respectively via LDA, LRT, and TRAIT with target dimension

m = 3, . . . , 10. Then on each test datum, we apply the learned transforms as well

as random projection (each entry drawn from N (0, 1)) and classify using a MAP

classifier.

We visualize original and transformed data via projection (PCA basis) into 3-

dimensional Euclidean space. When the target feature dimension m = 3, the results

are shown in Fig. 2.4. Each class is represented by a different color. After transform-

ing the data, we use the SVD to calculate the basis vector (d = 1) that best describes

each class, and we calculate the pairwise angles between basis vectors. The pairwise

angles are significantly increased by both LRT and TRAIT. By contrast, neither

LDA nor random projection increase separation between one-dimensional subspaces.

We now vary the feature dimension m, and compare the error probability of the

MAP classifier across the different methods of extracting features. Fig. 2.5 shows

that the performance of TRAIT and LRT are similar, and that both are superior to

LDA and random projection. Note that after dimension reduction. TRAIT is still

able to match error probabilities achieved with the original data.

Preservation of Intra-class Structure

When a convex body, e.g., human face, is illuminated, the resulting image is effec-

tively represented by spherical harmonics. It has been shown that a 9-dimensional

23

−1

0

1

−1

0

1
−1

0

1

(a) Original, angles:
66.1◦, 21.8◦, 70.0◦

−1
0

1

−1
0

1
−1

−0.5

0

0.5

1

(b) TRAIT, angles:
87.8◦, 72.9◦, 88.7◦

−1
0

1
−1

0
1

−1

−0.5

0

0.5

1

(c) LRT, angles:
86.0◦, 77.1◦, 83.0◦

−1
0

1

−1

0

1
−1

−0.5

0

0.5

1

(d) LDA, angles:
47.0◦, 86.4◦, 87.8◦

−1

0

1

−1

0

1
−1

0

1

(e) Random, angles:
72.4◦, 2.5◦, 73.0◦

Figure 2.4: Embeddings of original and transformed data.

subspace is sufficient to capture the geometry of an individual subject [9]. The ex-

tended Yale B face database includes 38 subjects, each with 64 images taken under

different illumination conditions. We use a cropped version of this data set1, where

each image is of size 32× 32 = 1024.

For each subject, we randomly select half of the 64 images for training, and

retain the other half for testing. For all feature extraction methods, we vary the

target dimension m, and apply the NSC to the transformed data. The NSC achieves

much higher accuracy on features extracted by TRAIT and LRT (Fig. 2.6).

We also observe in Fig. 2.7 that the features extracted by TRAIT and LRT

are quite different, suggesting that information present in one view is somewhat

independent of information present in the other. This is confirmed by applying NSC

to the concatenation of the two views (TRAIT+LRT in Fig. 2.6), and observing that

1 http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html

24

3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

m

P
e

TRAIT
LRT
LDA
random
original

Figure 2.5: MAP classifier’s Pe on
transformed data. Note that TRAIT
(blue) and LRT (red) almost overlap.

200 400 600 800 1000
0

0.05

0.1

0.15

0.2

m

P
e

TRAIT
LRT
TRAIT+LRT
LDA
random
original

Figure 2.6: NSC’s Pe on origi-
nal/transformed face images. Con-
catenation of TRAIT and LRT fea-
tures (TRAIT+LRT) provides supe-
rior results

classification accuracy is increased.

The intra-class structure preserving property of TRAIT is evident in Fig. 2.7

where we view transformed classes as faces in the original image domain. The orig-

inal images of subject 10 are displayed together with their TRAIT and LRT trans-

forms. TRAIT preserves a diversity of illumination conditions, whereas LRT blurs

the differences between images. Classification performance is improved by using LRT

and TRAIT features in combination.

2.5.3 Robustness to Model Mismatch

In the previous sections, we have demonstrated the effectiveness of TRAIT and LRT

on both synthetic and real data. In this section, we present experiments showing

that TRAIT is more robust with respect to model mismatch than is LRT. In many

real world problems, data may not be exactly GMM distributed. Even if they are,

there may not be sufficient training data to learn the covariances. Therefore, we use

NSC throughout this section to assess the discriminability of the extracted features.

Moreover, having seen the effectiveness of dimension reduction in previous sections,

we turn to learning dimension reduced features, thereby saving computational cost

25

Figure 2.7: Comparison of original images (top) with TRAIT transformed images
(middle) and LRT transformed images (bottom). Red circles indicate structure that
is present in both the original and the TRAIT transformed image.

on measured datasets.

Synthetic Data

The synthetic data is a three-class dataset, where datum x ∈ R100 in the k-th (k =

1, 2, 3) class is generated as

x = Ukα + n,

with Uk ∈ R100×5 and U>k Uk = I. α ∼ Uniform[−2, 2] and n ∼ N (0, σ2I100). Note

the data is not GMM distributed. Each class has 100 training samples and 10000

testing samples. We vary σ2 and use NSC to classify TRAIT and LRT extracted

features. Here we fix the extracted feature dimension to be 30.

Fig. 2.8 shows the NSC classification accuracy as a function of σ. Both TRAIT

and LRT significantly improves classification performance compared with no trans-

form. However, with increasing noise, TRAIT features outperform LRT features,

showing greater robustness to model mismatch.

26

0.05 0.1 0.15 0.2 0.25 0.3 0.35

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

N
S

C
 a

cc
u

ra
cy

TRAIT
LRT
no transform

Figure 2.8: NSC performance on
TRAIT and LRT features under dif-
ferent SNR

Figure 2.9: From top to bottom row:
subjects in PIE, UMIST and ORL
database, taken under different poses

Face Images with non-frontal Poses

It is known that human frontal face images are well modeled by subspaces. For exam-

ple, the Yale-B face in section 2.5.2, where LRT slightly outperforms TRAIT. Now

we further compare the performance of TRAIT and LRT in more mismatched cases

by introducing non-frontal face images. We validate performance on three publicly

available datasets, PIE [73], UMIST2 and ORL3. All of them have a considerable

number of non-frontal face images. Fig. 2.9 shows one subject from each database

with different poses.

The PIE dataset includes 18562 64 × 48 images of 68 subjects. Each image is

labeled with one of 13 different pose tags. We randomly select 7 pose tags and

the images of these tags are used as training samples. The rest are used in testing.

UMIST comprises 575 112×92 images of 20 subjects, and ORL comprises 400 112×92

images of 40 subjects. These two datasets have no pose tags. We split the UMIST

and ORL datasets using the strategy followed for the Yale-B dataset in Section 2.5.2.

We derive 1000-dimensional features for each of random projection, LDA, LRT and

TRAIT. Table 2.1 lists accuracies of NSC classification for the different algorithms.

2 http://www.sheffield.ac.uk/eee/research/iel/research/face

3 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

27

Table 2.1: NSC accuracy on original and 1000 dimensional (compressed) extracted
features

PIE UMIST ORL
Original 74.57% 96.14% 95.50%
random 72.14% 95.44% 94.50%

LDA 40.10% 84.91% 92.00%
LRT 70.80% 96.84% 95.00%

TRAIT 76.11% 97.90% 97.00%

In all cases, TRAIT has the highest classification accuracy and outperforms LRT.

LRT optimizes the rank (its convex relaxation), which is critical for reducing clas-

sification error in the high SNR regime. However, in this low SNR regime, TRAIT

gains more discrimination via explicitly “orthogonalizing” between the classes. The

criteria employed by TRAIT do not depend on the specific SNR regime and therefore

are more robust.

2.6 Conclusion

In a low-rank Gaussian Mixture Model, we have explored how the probability of

misclassification is governed by principal angles between subspaces. In the low-

noise regime, the Bhattacharyya upper bound on misclassification is determined

by the product of the sines of the principal angles. In the high/moderate-noise

regime it is determined by the sum of the squares of the sines of the principal angles.

Analysis of the Nearest Subspace Classifier connected reliability of classification to

the distribution of signal energy across principal vectors. Classification was shown

to be more reliable when more signal energy is associated with principal vectors

corresponding to large principal angles. This observation motivated the design of

a transform, TRAIT, that achieves superior classification performance by enlarging

principal angles and preserving intra-class structure. Finally we showed that TRAIT

complements a prior approach that enlarge inter-class distance while suppressing

28

intra-class dispersion, and that it is more robust to model mismatch.

29

3

Local Structure and Robust Feature Learning

The last section studies the linear subspace model, and proposes a linear feature ex-

traction method, where angle preservation within classes introduces robustness with

respect to model mismatch. In fact, the gain of structure preserving is more appar-

ent for problems where only a small amount of labeled training data is available. A

learned model with large number of parameters can well describe a very complicated

data distribution. However, it is also more likely to overfit to noise, to be sensitive

to small perturbation on the data, and to suffer from degraded performance when

generalizing to unseen (test) data. This overfitting problem is especially prominent

when training a “big” model while only a small training set is available.

This chapter proposes a framework for learning features that are robust to data

variation. To be specific, we regularize the learning process by preserving local dis-

tances. The framework makes it possible to tradeoff the discriminative value of

learned features against the generalization error of the learning algorithm. Robust-

ness is achieved by encouraging the transform that maps data to features to be a local

isometry. This geometric property is shown to improve (K, ε)-robustness, thereby

providing theoretical justification for reductions in generalization error observed in

30

experiments. The proposed optimization framework is used to train standard learn-

ing algorithms such as deep neural networks. Experimental results obtained on

benchmark datasets, such as labeled faces in the wild, demonstrate the value of

being able to balance discrimination and robustness.

3.1 Learning Robust Features from a Small Training Set

Learning features that are able to discriminate is a classical problem in data analysis.

The basic idea is to reduce the variance within a class while increasing it between

classes. One way to implement this is by regularizing a certain measure of the

variance, while assuming some prior knowledge about the data. For example, Linear

Discriminant Analysis (LDA) [33] measures sample covariance and implicitly assumes

that each class is Gaussian distributed. The Low Rank Transform (LRT) [63], instead

uses nuclear norm to measure the variance and assumes that each class is near a low-

rank subspace. A different approach is to regularize the pairwise distances between

data points. Examples include the seminal work on metric learning [91] and its

extensions [35, 34, 83].

While great attention has been paid to designing objectives to encourage dis-

crimination, less effort has been made in understanding and encouraging robustness

to data variation, which is especially important when a limited number of training

samples are available. One exception is [96], which promotes robustness by regulariz-

ing the traditional metric learning objective using prior knowledge from an auxiliary

unlabeled dataset.

In this chapter we develop a general framework for balancing discrimination

and robustness. Robustness is achieved by encouraging the learned data-to-features

transform to be locally an isometry within each class. We theoretically justify this

approach using (K, ε)-robustness [92, 15] and give a concrete example of the proposed

formulation, incorporating them in deep neural networks. Experiments validate the

31

capability to trade-off discrimination against robustness. Our main contributions

are the following: 1) we prove that local near-isometry leads to robustness; 2) we

propose a practical framework that allows to robustify a wide class of learned trans-

forms, both linear and nonlinear; 3) we provide an explicit realization of the proposed

framework, achieving competitive results on difficult face verification tasks.

3.2 Problem Formulation

Consider an L-way classification problem. The training set is denoted by T =

{(xi, yi)}, where xi ∈ Rn is the data and yi ∈ {1, . . . , L} is the class label. We want

to learn a feature transform fα(·) such that a datum x becomes more discriminative

when it is transformed to feature fα(x).

The transform fα is parametrized by a vector α, a framework that includes

linear transforms and neural networks where the entries of α are the learned network

parameters.

3.2.1 Motivation

The transform fα promotes discriminability by reducing intra-class variance and

enlarging inter-class variance. This aim is expressed in the design of objective func-

tions [34, 63] or the structure of the transform fα [74, 45]. However the robustness of

the learned transform is an important issue that is often overlooked. When training

samples are scarce, statistical learning theory [80] predicts overfitting to the training

data. The result of overfitting is that discrimination achieved on test data will be

significantly worse than that on training data. Our aim in this chapter is the design

of robust transforms fα for which the training-to-testing degradation is small [92].

We formally measure robustness of the learned transform fα in terms of (K, ε)-

robustness [15]. Given a distance metric ρ, a learning algorithm is said to be (K, ε)-

robust if the input data space can be partitioned into K disjoint sets Sk, k = 1, ..., K,

32

such that for all training sets T , the learned parameter αT determines a loss for which

the value on pairs of training samples taken from different sets Sj and Sk is very close

to the value of any pair of data samples taken from Sj and Sk.

(K, ε)-robustness is illustrated in Fig. 3.1, where S1 and S2 are both of diameter

γ and

|e− e′| = |ρ(fα(x1), fα(x2))− ρ(fα(x′1), fα(x′2))|.

If the transform fα preserves all distances within S1 and S2, then |e − e′| cannot

deviate much from |d− d′| ≤ 2γ.

Figure 3.1: (K, ε)-robustness: Here d = ρ(x1,x2), d′ = ρ(x′1,x
′
2), e =

ρ(fα(x1), fα(x2)), and e′ = ρ(fα(x′1), fα(x′2)). The difference |e− e′| cannot deviate
too much from |d− d′|.

3.2.2 Formulation

Motivated by the above reasoning, we now present our proposed framework. First we

define a pair label `i,j ,

{
1 if yi = yj
−1 otherwise

. Given a metric ρ, we use the following

hinge loss to encourage high inter-class distance and small intra-class distance.

1

|P|
∑
i,j∈P

max {0, `i,j [ρ (fα(xi), fα(xj))− t(`i,j)]} , (3.1)

Here P = {(i, j|i 6= j)} is the set of all data pairs. t(`i,j) ≥ 0 is a function of `i,j and

t(1) < t(−1). Similar to metric learning [91], this loss function connects pairwise

distance to discrimination. However traditional metric learning typically assumes

squared Euclidean distance and here the metric ρ can be arbitrary.

33

For robustness, as discussed above, we may want fα(·) to be distance-preserving

within each small local region. In particular, we define the set of all local neighbor-

hoods as

NB , {(i, j)|`i,j = 1, ρ(xi,xj) ≤ γ} .

Therefore, we minimize the following objective function

1

|NB|
∑

(i,j)∈NB

|ρ(fα(xi), fα(xj))− ρ(xi,xj)| . (3.2)

Note that we do not need to have the same metric in both the input and the feature

space, they do not even have in general the same dimension. With a slight abuse of

notation we use the same symbol to denote both metrics.

To achieve discrimination and robustness simultaneously, we formulate the ob-

jective function as a weighted linear combination of the two extreme cases in (3.1)

and (3.2)

λ

|P|
∑
i,j∈P

max {0, `i,j [ρ (fα(xi), fα(xj))− t(`i,j)]}+
1− λ
|NB|

∑
(i,j)∈NB

|ρ(fα(xi), fα(xj))− ρ(xi,xj)|

(3.3)

where λ ∈ [0, 1].

The formulation (3.3) balances discrimination and robustness. When λ = 1 it

seeks discrimination, and as λ decreases it starts to encourage robustness. We shall

refer to a transform that is learned by solving (3.3) as a Discriminative Robust

Transform (DRT). The DRT framework provides opportunity to select both the

distance measure and the transform family.

3.3 Theoretical Analysis

In this section, we provide a theoretical explanation for robustness. In particular, we

show that if the solution to (3.1) yields a transform fα that is locally a near isometry,

34

then fα is robust.

3.3.1 Theoretical Framework

Let X denote the original data, let Y = {1, ..., L} denote the set of class labels, and

let Z = X × Y . The training samples are pairs zi = (xi, yi), i = 1, . . . , n drawn

from some unknown distribution D defined on Z. The indicator function is defined

as `i,j = 1 if yi = yj and −1 otherwise. Let fα be a transform that maps a low-

level feature x to a more discriminative feature fα(x), and let F denote the space of

transformed features.

For simplicity we consider an arbitrary metric ρ defined on both X and F (the

general case of different metrics is a straightforward extension), and a loss function

g(ρ(fα(xi), fα(xj)), `i,j) that encourages ρ(fα(xi), fα(xj)) to be small (big) if `i,j = 1

(−1). We shall require the Lipschtiz constant of g(·, 1) and g(·,−1) to be upper

bounded by A > 0. Note that the loss function in Eq. (3.1) has a Lipschtiz constant

of 1. We abbreviate

g(ρ(fα(xi), fα(xj)), `i,j) , hα(zi, zj).

The empirical loss on the training set is a function of α given by

Remp(α) , 2
n(n−1)

∑n
i,j=1

i 6=j
hα(zi, zj), (3.4)

and the expected loss on the test data is given by

R(α) , Ez′1,z
′
2∼D [hα(z′1, z

′
2)] . (3.5)

The algorithm operates on pairs of training samples and finds parameters

αT , arg min
α

Remp(α), (3.6)

that minimize the empirical loss on the training set T . The difference Remp − R

between expected loss on the test data and empirical loss on the training data is the

generalization error of the algorithm.

35

3.3.2 (K, ε)-robustness and Covering Number

We work with the following definition of (K, ε)-robustness [15].

Definition 1. A learning algorithm is (K, ε)-robust if Z = X ×Y can be partitioned

into K disjoint sets Zk, k = 1, . . . , K such that for all training sets T ∈ Zn, the

learned parameter αT determines a loss function where the value on pairs of training

samples taken from sets Zp and Zq is “very close” to the value of any pair of data

samples taken from Zp and Zq. Formally,

assume zi, zj ∈ T , with zi ∈ Zp and zj ∈ Zq, if z′i ∈ Zp and z′j ∈ Zq, then∣∣hαT (zi, zj)− hαT (z′i, z
′
j)
∣∣ ≤ ε.

Remark 5. (K, ε)-robustness means that the loss incurred by a testing pair (z′i, z
′
j)

in Zp ×Zq is very close to the loss incurred by any training pair (zi, zj) in Zp ×Zq.

It is shown in [15] that the generalization error of (K, ε)-robust algorithms is bounded

as

R(αT)−Remp(αT) ≤ ε+O

(√
K

n

)
. (3.7)

Therefore the smaller ε, the smaller is the generalization error, and the more robust

is the learning algorithm.

Given a metric space, the covering number specifies how many balls of a given

radius are needed to cover the space. The more complex the metric space, the more

balls are needed to cover it. Covering number is formally defined as follows.

Definition 2 (Covering number). Given a metric space (S, ρ), we say that a subset

Ŝ of S is a γ-cover of S, if for every element s ∈ S, there exists ŝ ∈ Ŝ such that

ρ(s, ŝ) ≤ γ. The γ-covering number of S is

Nγ(S, ρ) = min{|Ŝ| : Ŝ is a γ-cover of S}.

36

Remark 6. The covering number is a measure of the geometric complexity of (S, ρ).

A set S with covering number Nγ/2(S, ρ) can be partitioned into Nγ/2(S, ρ) disjoint

subsets, such that any two points within the same subset are separated by no more

than γ.

Lemma 10. The metric space Z = X × Y can be partitioned into LNγ/2(X , ρ)

subsets, denoted as Z1, . . . ,ZLNγ/2(X ,ρ), such that any two points z1 , (x1, y1), z2 ,

(x2, y2) in the same subset satisfy y1 = y2 and ρ(x1,x2) ≤ γ.

Proof. Assuming the metric space (X , ρ) is compact, we can partition X intoNγ/2(X , ρ)

subsets, each with diameter at most γ. Since Y is a finite set of size L, we can par-

tition Z = X × Y into LNγ/2(X , ρ) subsets with the property that two samples

(x1, y1), (x2, y2) in the same subset satisfy y1 = y2 and ρ(x1,x2) ≤ γ.

It follows from Lemma 10 that we may partition X into subsets X1, . . . ,XLNγ/2(X ,ρ),

such that pairs of points x1,x2 from the same subset have the same label and satisfy

ρ(xi,xj) ≤ γ. Before we connect local geometry to robustness we need one more def-

inition. We say that a learned transform fα is a δ-isometry if the metric is distorted

by at most δ:

Definition 3 (δ-isometry). Let A,B be metric spaces with metrics ρA and ρB. A map

f : A 7→ B is a δ-isometry if for any a1, a2 ∈ A, |ρA(f(a1), f(a2))− ρB(a1, a2)| ≤ δ.

Theorem 11. Let fα be a transform derived via Eq. (3.6) and let X1, . . . ,XLNγ/2(X ,ρ)

be a cover of X as described above. If fα is a δ-isometry, then it is (LNγ/2(X , ρ), 2A(γ+

δ))-robust.

Proof sketch. Consider training samples zi, zj and testing samples z′i, z
′
j such

that zi, z
′
i ∈ Zp and zj, z

′
j ∈ Zq for some p, q ∈ {1, . . . , LNγ/2(X , ρ)}. Then by

Lemma 10,

ρ(xi,x
′
i) ≤ γ and ρ(xj,x

′
j) ≤ γ, yi = y′i and yj = y′j,

37

and xi,x
′
i ∈ Xp and xj,x

′
j ∈ Xq. By definition of δ-isometry,

|ρ(fαT (xi), fαT (x′i))− ρ(xi,x
′
i)| ≤ δ and |ρ(fαT (xj), fαT (x′j))− ρ(xj,x

′
j)| ≤ δ.

Rearranging the terms gives

ρ(fαT (xi), fαT (x′i)) ≤ ρ(xi,x
′
i)+δ ≤ γ+δ and ρ(fαT (xj), fαT (x′j)) ≤ ρ(xj,x

′
j)+δ ≤ γ+δ.

Figure 3.2: Proof without words.

In order to bound the generalization error, we need to bound the difference be-

tween ρ(fαT (xi), fαT (xj)) and ρ(fαT (x′i), fαT (x′j)). The details can be found in [46];

here we appeal to the proof schematic in Fig. 3.2. We need to bound |e− e′| and it

cannot exceed twice the diameter of a local region in the transformed domain.

Robustness of the learning algorithm depends on the granularity of the cover

and the degree to which the learned transform fα distorts distances between pairs

of points in the same covering subset. The subsets in the cover constitute regions

where the local geometry makes it possible to bound generalization error. It now

follows from [15] that the generalization error satisfies R(αT)−Remp(αT) ≤ 2A(γ+

δ) +O
(√

K
n

)
.

The DRT proposed here is a particular example of a local isometry, and The-

orem 11 explains why the generalization error is smaller than that of pure metric

learning.

The transform described in [46] partitions the metric space X into exactly L

subsets, one for each class. The experiments reported in Section 3.5 demonstrate

38

that the performance improvements derived from working with a finer partition can

be worth the cost of learning finer grained local regions.

3.4 An Illustrative Realization of DRT

Having justified robustness, we now provide a realization of the proposed general

DRT where the metric ρ is Euclidean distance. We use Gaussian random variables

to initialize α, then, on the randomly transformed data, we set t(1) (t(−1)) to be

the average intra-class (inter-class) pairwise distance. In all our experiments, the

solution satisfied the condition t(1) < t(−1) required in Eq. (3.1). We calculate the

diameter γ of the local regions NB indirectly, using the κ-nearest neighbors of each

training sample to define a local neighborhood. We leave the question of how best

to initialize the indicator t and the diameter γ for future research.

We denote this particular example as Euc-DRT and use gradient descent to solve

for α. Denoting the objective by J , we define yi , fα(xi), δi,j , fα(xi) − fα(xj),

and ρ0
i.j , ‖xi − xj‖. Then

∂J

∂yi
=

∑
(i,j)∈P

`i,j(‖δi,j‖−t(`i,j))>0

λ

|P|
·`i,j ·

δi,j
‖δi,j‖

+
∑

(i,j)∈NB

1− λ
|NB|

·sgn(‖δi,j‖−ρ0
i,j) ·

δi,j
‖δi,j‖

. (3.8)

In general, fα defines a D-layer neural network (when D = 1 it defines a linear

transform). Let α(d) be the linear weights at the d-th layer, and let x(d) be the

output of the d-th layer, so that yi = x
(D)
i . Then the gradients are computed as,

∂J

∂α(D)
=
∑
i

∂J

∂yi
· ∂yi
∂α(D)

, and
∂J

∂α(d)
=
∑
i

∂J

∂x
(d+1)
i

·∂x
(d+1)
i

∂x
(d)
i

· ∂x
(d)
i

∂α(d)
for 1 ≤ d ≤ D−1.

(3.9)

Algorithm 2 provides a summary, and we note that the extension to stochastic train-

ing using min-batches is straightforward.

39

Algorithm 2 Gradient descent solver for Euc-DRT

Input: λ ∈ [0, 1], training pairs {(xi,xj, `i,j)}, a pre-defined D-layer network (D = 1
as linear transform), stepsize η, neighborhood size κ.

Output: α
1: Randomly initialize α, compute yi = fα(xi).
2: On the yi, compute the average intra and inter-class pairwise distances, assign

to t(1), t(−1)
3: For each training datum, find its κ nearest neighbor and define the set NB.
4: while stable objective not achieved do
5: Compute yi = fα(xi) by a forward pass.
6: Compute objective J .
7: Compute ∂J

∂yi
as Eq. (3.8).

8: for l = D down to 1 do
9: Compute ∂J

∂α(d) as Eq. (3.9).

10: α(d) ← α(d) − η ∂J
∂α(d) .

11: end for
12: end while

3.4.1 Other Distance

In the above we use the Euclidean distance metric; we have also explored a cosine

distance [46] based formulation, which takes the following form

min
α

1

2

∑
i 6=j

(
fα(xi)

>fα(xj)

‖fα(xi)‖ · ‖fα(xj)‖
− ti,j

)2

, (3.10)

where the indicator is

ti,j =

{
λ+ (1− λ)

x>i xj
‖xi‖‖xj‖ if xi,xj ∈ same class,

−1 otherwise.

and λ ∈ [0, 1]. The rationale is as follows: with cosine distance, the most discrimi-

native case is to make any two inter-class samples span an angle of π, and any two

intra-class samples span an angle of zero. Meanwhile, preservation of intra-class an-

gles is encouraged due to the robustness constraint. Cosine distance is not a metric,

which does not fit gracefully into the theory. In later sections, we will focus on the

Euclidean metric based method.

40

Table 3.1: Varying λ on a toy dataset.

λ 1 0.5 0.25
Remp 1.5983 1.6025 1.9439

generalization error 10.5855 9.5071 8.8040
1-nn accuracy

92.20% 98.30% 91.55%
(original data 93.35%)

3.5 Experimental Results

In this section we report on experiments that confirm robustness of Euc-DRT. Recall

that empirical loss is given by Eq. (3.4) where α is learned as αT from the training

set T , and |T | = N . The generalization error is R − Remp where the expected loss

R is estimated using a large test set.

3.5.1 Toy Example

This illustrative example is motivated by the discussion in Section 3.2.1. We first

generate a 2D dataset consisting of two noisy half-moons, then use a random 100×2

matrix to embed the data in a 100-dimensional space. We learn a linear transform

fα that maps the 100 dimensional data to 2 dimensional features, and we use κ = 5

nearest neighbors to construct the set NB. We consider λ = 1, 0.5, 0.25, representing

the most discriminative, balanced, and more robust scenarios.

When λ = 1 the transformed training samples are rather discriminative (Fig. 3.3a),

but when the transform is applied to testing data, the two classes are more mixed

(Fig. 3.3d). When λ = 0.5, the transformed training data are more dispersed within

each class (Fig. 3.3b), hence less easily separated than when λ = 1. However Fig. 3.3e

shows that it is easier to separate the two classes on the test data. When λ = 0.25,

robustness is preferred to discriminative power as shown in Figs. 3.3c and 3.3f.

Tab. 3.1 quantifies empirical loss Remp, generalization error, and classification

performance (by 1-nn) for λ = 1, 0.5 and 0.25. As λ decreases, Remp increases,

41

-20 0 20
-30

-20

-10

0

10

20

30

(a) λ = 1 Transformed train-
ing samples. (discriminative
case)

-20 0 20
-30

-20

-10

0

10

20

30

(b) λ = 0.5 transformed
training samples. (balanced
case)

-20 0 20
-30

-20

-10

0

10

20

30

(c) λ = 0.25 Transformed
training samples. (robust
case)

-20 0 20
-30

-20

-10

0

10

20

30

(d) λ = 1 Transformed test-
ing samples. (discriminative
case)

-20 0 20
-30

-20

-10

0

10

20

30

(e) λ = 0.5 transformed test-
ing samples. (balanced case)

-20 0 20
-30

-20

-10

0

10

20

30

(f) λ = 0.25 Transformed
testing samples. (robust case)

Figure 3.3: Original and transformed training/testing samples embedded in 2-
dimensional space with different colors representing different classes.

indicating loss of discrimination on the training set. However, generalization error

decreases, implying more robustness. We conclude that by varying λ, we can balance

discrimination and robustness.

3.5.2 MNIST Classfication Using a Very Small Training Set

The transform fα learned in the previous section was linear, and we now apply a

more sophisticated convolutional neural network to the MNIST dataset. The network

structure is similar to LeNet, and is made up of alternating convolutional layers and

pooling layers, with parameters detailed in Table 3.2. We map the original 784-

dimensional pixel values (28x28 image) to 128-dimensional features.

While state-of-art results often use the full training set (6,000 training samples

per class), here we are interested in small training sets. We use only 30 training

42

samples per class, and we use κ = 7 nearest neighbors to define local regions in Euc-

DRT. We vary λ and study empirical error, generalization error, and classification

accuracy (1-nn). We observe in Fig. 3.4 that when λ decreases, the empirical error

also decreases, but that the generalization error actually increases. By balancing

between these two factors, a peak classification accuracy is achieved at λ = 0.25.

λ

0 0.25 0.5 0.75 1

R
e
m
p

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(a)

λ

0 0.25 0.5 0.75 1

R
-R

e
m
p

1.5

2

2.5

3

3.5

4

4.5

(b)

λ

0 0.25 0.5 0.75 1

1
-n

n
 a

c
c
u

ra
c
y
(%

)

92

92.5

93

93.5

94

94.5

(c)

Figure 3.4: MNIST test: with only 30 training samples per class. We vary λ and
assess (a) Remp; (b) generalization error; and (c) 1-nn classification accuracy. Peak
accuracy is achieved at λ = 0.25.

Table 3.2: Implementation details of the neural network for MNIST classification.

name parameters

conv1
size: 5× 5× 1× 20

stride: 1, pad: 0
pool1 size: 2× 2

conv2
size: 5× 5× 20× 50

stride: 1, pad: 0
pool2 size: 2× 2

conv3
size: 4× 4× 50× 128

stride: 1, pad: 0

Next, we use 30, 50, 70, 100 training samples per class and compare the per-

formance of Euc-DRT with LeNet and Deep Metric Learning (DML) [45]. DML

minimizes a hinge loss on the squared Euclidean distances. It shares the same spirit

with our Euc-DRT using λ = 1. All methods use the same network structure,

Tab. 3.2, to map to the features. For classification, LeNet uses a linear softmax

43

Table 3.3: Classification error on MNIST.

Training/class 30 50 70 100
original pixels 81.91% 86.18% 86.86% 88.49%

LeNet 87.51% 89.89% 91.24% 92.75%
DML 92.32% 94.45% 95.67% 96.19%

Euc-DRT 94.14% 95.20% 96.05% 96.21%

classifier on top of the “conv3” layer and minimizes the standard cross-entropy loss

during training. DML and Euc-DRT both use a 1-nn classifier on the learned fea-

tures. Classification accuracies are reported in Tab. 3.3. In Tab. 3.3, we see that all

the learned features improve upon the original ones. DML is very discriminative and

achieves higher accuracy than LeNet. However, when the training set is very small,

robustness becomes more important and Euc-DRT significantly outperforms DML.

3.5.3 Face Verification on LFW

We now present face verification on the more challenging Labeled Faces in the Wild

(LFW) benchmark, where our experiments will show that there is an advantage to

balancing disciminability and robustness. Our goal is not to reproduce the success

of deep learning in face verification [77, 45], but to stress the importance of robust

training and to compare the proposed Euc-DRT objective with popular alternatives.

Note also that it is difficult to compare with deep learning methods when training

sets are proprietary [75, 76, 77].

We adopt the experimental framework used in [18], and train a deep network

on the WDRef dataset, where each face is described using a high dimensional LBP

feature [19] (available at 1) that is reduced to a 5000-dimensional feature using PCA.

The WDRef dataset is significantly smaller than the proprietary datasets typical of

deep learning, such as the 4.4 million labeled faces from 4030 individuals in [77], or

the 202,599 labeled faces from 10,177 individuals in [75]. It contains 2,995 subjects

1 http://home.ustc.edu.cn/chendong/

44

Table 3.4: Verification accuracy and AUCs on LFW

Method
Accuracy AUC

(%) (×10−2)
HD-LBP 74.73 82.22±1.00
deepFace 88.72 95.50± 0.29

DML 90.28 96.74±0.33
Euc-DRT 92.33 97.77± 0.25

with about 20 samples per subject.

We compare the Euc-DRT objective with DeepFace (DF) [77] and Deep Metric

Learning (DML) [45], two state-of-the-art deep learning objectives. For a fair com-

parison, we employ the same network structure and train on the same input data.

DeepFace feeds the output of the last network layer to an L-way soft-max to generate

a probability distribution over L classes, then minimizes a cross entropy loss. The

Euc-DRT feature fα is implemented as a two-layer fully connected network with tanh

as the squash function. Weight decay (conventional Frobenius norm regularization)

is employed in both DF and DML, and results are only reported for the best weight

decay factor. After a network is trained on WDRef, it is tested on the LFW bench-

mark. Verification simply consists of comparing the cosine distance between a given

pair of faces to a threshold.

0 0.5 1
0.5

0.6

0.7

0.8

0.9

1

HD-LBP

deepFace

DML

Euc-DRT

Figure 3.5: Comparison of ROCs for
all methods

λ

0.4 0.6 0.8 1v
e

ri
fi

c
a

ti
o

n
 a

c
c

u
ra

c
y

 (
%

)

91.4

91.6

91.8

92

92.2

92.4

Figure 3.6: Verification accuracy of
Euc-DRT as λ varies

45

Fig. 3.5 displays ROC curves and Table 3.4 reports area under the ROC curve

(AUC) and verification accuracy. High-Dim LBP refers to verification using the

initial LBP features. DeepFace (DF) optimizes for a classification objective by min-

imizing a softmax loss, and it successfully separates samples from different classes.

However the constraint that assigns similar representations to the same class is weak,

and this is reflected in the true positive rate displayed in Fig. 3.5. In Deep Metric

Learning (DML) this same constraint is strong, but robustness is a concern when the

training set is small. The proposed Euc-DRT improves upon both DF and DML by

balancing disciminability and robustness. It is less conservative than DF for better

discriminability, and more responsive to local geometry than DML for smaller gener-

alization error. Face verification accuracy for Euc-DRT was obtained by varying the

regularization parameter λ between 0.4 and 1 (as shown in Fig 3.6), then reporting

the peak accuracy observed at λ = 0.9.

3.6 Conclusion

We have proposed an optimization framework within which it is possible to tradeoff

the discriminative value of learned features with robustness of the learning algorithm.

Improvements to generalization error predicted by theory are observed in experiments

on benchmark datasets. Future work will investigate how to initialize and tune the

optimization, also how the Euc-DRT algorithm compares with other methods that

reduce generalization error.

46

4

GraphConnect : where Manifold Models Meet
Deep Learning

This chapter continues to study the overfitting problem addressed in the last section.

But now we restrict ourself to “deep” feature extractors. Deep neural networks have

proved very successful in domains where large training sets are available, but when

the number of training samples is small, their performance suffers from overfitting.

Prior methods of reducing overfitting such as weight decay [7], DropOut [42] and

DropConnect [82] are data-independent. Complementary to the above, this chap-

ter proposes a new method for regularzing deep networks, GraphConnect , that is

data-dependent, and is motivated by the observation that data of interest typically

lie close to a manifold. This proposed method encourages the relationships between

the learned decisions to resemble a graph representing the original manifold struc-

ture. Essentially GraphConnect is designed to learn attributes that are present in

data samples in contrast to weight decay and DropOut which are simply designed

to make it more difficult to fit to random error or noise. Analysis of empirical

Rademacher complexity suggests that GraphConnect is stronger than weight decay

47

as a regularization. Experimental results on several benchmark datasets validate the

theoretical analysis, and show that when the number of training samples is small,

GraphConnect is able to significantly improve performance over weight decay, and

competitive with DropOut .

4.1 Generalization Error of Deep Neural Networks

Neural networks have proved very successful in domains where large training sets are

available; since their capacity can be increased by adding layers or by increasing the

number of units in a layer [39]. When the number of training samples is small their

performance suffers from overfitting. The degree of overfitting is measured by the

generalization error, which is the difference between the loss on the training set and

the loss on the test set. The best known bounds on the generalization error arise

from the Vapnik-Chervonenkis (VC) dimension [80], which captures the inherent

complexity of a family of classifiers. However, VC dimension is distribution agnostic,

leading to a loose and often pessimistic upper bound [23].

In the last decade, distribution dependent measures of complexity have been

developed, such as the Rademacher complexity [8], which can lead to tighter bounds

on the generalization error. Rademacher complexity has been used to show that the

generalization error of a neural network depends more on the size of the weights than

on the size of the network [7]. This theoretical result supports a form of regularization

called weight decay that simply encourages the `-2 norm of all parameters to be

small. A unified theoretical treatment of norm-based capacity control of deep neural

networks is given in [58], and this theory is used to provide insights into max-out

networks in [36].

DropOut is a new form of regularization, where for each training example, forward

propagation involves randomly deleting some of the activations in each layer [42].

DropConnect is a recent generalization of DropOut , where a randomly selected subset

48

of weights within the network is set to zero [82]. Both methods introduce randomness

into training so that the learned network is in some sense a statistical average of an

ensemble of realizations. Adding a DropConnect layer to a neural network can reduce

the Rademacher complexity by a factor of the DropConnect rate [82].

In this chapter, we propose a fundamentally different approach to control the

complexity of a neural network, thereby preventing overfitting. Our approach differs

from the aforementioned methods in that it is data dependent. It is motivated by

the empirical observation that data of interest, such as images and audio, typically

lie close to a manifold, an assumption that has previously assisted machine learning

tasks such as nonlinear embedding [13], semi-supervised labeling [14], and multi-

task classification [32]. The underlying idea in these works is to encourage the

relationships between the learned decisions to resemble a graph representing the

data manifold structure.

Graph/kernel regularized deep learning has been experimentally studied in [84,

95], where unlabeled testing samples are used to regularize training (semi-supervised).

However, they did not explain how the approach might control capacity. In particu-

lar, it is not clear in these works whether graph-based regularization provides better

generalization ability than standard data-independent approaches such as weight

decay. In contrast, our work provides theoretical foundations and addresses a super-

vised learning problem. We first observe that the GraphConnect regularized network

can achieve significantly better performance on the test data than the classical weight

decay regularized network. Theoretical arguments are then provided to support the

observation. Finally, extensive experiments are presented to further validate the

effectiveness of GraphConnect .

49

4.2 GraphConnect : A Motivating Example

The MNIST dataset contains approximately 60,000 training images (28 × 28) and

10,000 test images. While state-of-the-art methods often use the entire training set,

we are interested in quantifying what is possible with much smaller training sets.

Table 4.1 describes the network architecture that we use to extract features and

classify data. We begin by using 500 training samples (50 per class) to train the

neural networks. The image mean is estimated from the training set and subtracted

as a preprocessing step.

Table 4.1: Network architecture in the MNIST experiments, where layer 7 and 8
constitute the softmax classifier.

Layer Type Parameters

1 conv
size: 5× 5× 1× 20

stride: 1, pad: 0
2 max pool size: 2× 2, stride: 2, pad: 0

3 conv
size: 5× 5× 20× 50

stride: 1, pad: 0
4 max pool size: 2× 2, stride: 2, pad: 0

5 conv
size: 4× 4× 50× 500

stride: 1, pad: 0
6 reLu N/A
7 fully connected 500× 10
8 softmaxloss N/A

To prevent overfitting to the small training set, we may employ standard weight

decay, i.e., adding the `2 norm of all the weights to the softmax loss as a regularizer.

Note that this regularizer does not exploit any “geometry” of the training data,

therefore it is basically data-independent. On the other hand, in many applications,

data from the same class tends to “concentrate” near a sub-manifold. Preserving

the manifold structure is also a way of regularizing. An example is the success of

unsupervised pre-training [41].

Motivated by this fact, we derive a graph that encodes the similarity of the

50

epoch

0 100 200 300

lo
s
s

0

0.5

1

1.5

2

2.5
weight decay train loss

weight decay test loss

 GraphConnect-One train loss

 GraphConnect-One test loss

 GraphConnect-All train loss

 GraphConnect-All test loss

(a) Evolution of softmax
loss on training and test
set

epoch

0 100 200 300

a
c
c
u
ra

c
y
 (

%
)

0

20

40

60

80

100

weight decay train accuracy

weight decay test accuracy

 GraphConnect-One train accuracy

 GraphConnect-One test accuracy

 GraphConnect-All train accuracy

 GraphConnect-All test accuracy

(b) Evolution of classifica-
tion accuracy on training
and test set

Figure 4.1: Comparing GraphConnect against
weight decay on the MNIST dataset

η

0 0.5 1

u
p

p
e

r
b

o
u

n
d

10
-4

10
-2

10
0

10
2

10
4

N=500

N=1000

N=4000

N=7000

N=10000

Figure 4.2: Evalua-
tion of the upper bound
(Theorem 12) on the
Rademacher complexity
for the MNIST bench-
mark.

training samples, and use it to regularize the intermediate or final learned features.

The graph edge weights are

Wi,j =

{
exp

(
−‖xi−xj‖2

σ2

)
if xi,xj ∈ same class

0 otherwise
, (4.1)

where xi denotes the i-th training sample, and i, j = 1 . . . ,m, where m is the number

of training samples. The choice of bandwidth σ will be discussed in Section 4.4.1.

In particular, denote by fi the feature that we want to regularize (corresponding to

datum xi). Then we may add the following term as a regularizer to the softmax loss:

J =
∑
i,j

Wi,j‖fi − fj‖2. (4.2)

This encourages neighboring pairs of data to remain close in the feature space. This

general framework is termed GraphConnect regularization.

We now apply the GraphConnect regularizer to the architecture in Tab. 4.1. In

particular, we study regularizing the linear layers (layers 3 and 5 in this case, denoted

as GraphConnect-One), and regularizing the final learned feature (layer 6, denoted

as GraphConnect-All). Mini-batch based stochastic gradient descent is adopted to

train the network. After each training epoch, we calculate the softmax loss on the

500 training samples and the test set, as illustrated in Fig. 4.1a.

51

The gap between testing loss and training loss is called the generalization er-

ror. The bigger the generalization error, the more overfitting the model suffers. In

Fig. 4.1a we observe that all the methods have near-zero loss on the training set.

However, the two variants of GraphConnect have approximately the same gener-

alization error and both are smaller than weight decay. Fig. 4.1b shows that all

methods achieve 100% classification accuracy on the training set. However on the

test set, GraphConnect-One and GraphConnect-All are superior to weight decay by

a significant margin.

4.3 A Theoretical Perspective

The previous section suggests that GraphConnect better prevents overfitting than

does weight decay. In this section, we give more theoretical insights into this phe-

nomenon. We consider L-way classification using a deep neural network. Given a

datum x with class label y ∈ {1, . . . , L}, the network first learns a D-dimensional

feature g(x) = [g1(x), . . . , gd(x), . . . , gD(x)]>, and then applies a softmax classifier to

generate a probability distribution over the L classes. Thereafter the softmax loss is

calculated as the negative log-probability of class y. Essentially, the entire deep net-

work can be viewed as a function, mapping (x, y) to the softmax loss `(g(x), y). Note

that `(·, ·) and gd(·) are parameterized by the weights in the network. Therefore, we

let L denote a class of `(·, ·) defined by different network weights, and similarly, G

denotes a class of gd(·).

The average loss achieved on the training set {(xi, yi)}Ni=1 is the empirical loss

`emp, given by

`emp =
1

N

N∑
i=1

`(g(xi), yi).

52

The expected loss E[`] is estimated from a large test set and is given by

E[`] = E(x,y)[`(g(x), y)].

The difference E[`]− `emp between the expected loss on the test data and the empir-

ical loss on the training data is the generalization error. When training samples are

scarce, statistical learning theory predicts overfitting to the training data [80]. The

larger the generalization error, the more severe is the problem of overfitting. Ana-

lyzing the generalization error involves the Rademacher complexity of the function

class L and G.

Definition 4 (Empirical Rademacher Complexity). Let D be a probability distribu-

tion on a set A and assume that a1, . . . , aN are independent samples from D. Let ϕ

be a class of functions mapping from A to R. The empirical Rademacher complexity

of ϕ is

R̂N(ϕ) = Eσi

[
2

N
sup
φ∈ϕ

∣∣∣∣∣
N∑
i=1

σiφ(ai)

∣∣∣∣∣ : a1, . . . , aN

]
,

where the σi’s are independent uniform {±1}-valued random variables.

Remark 7. Over-fitting occurs when a statistical model describes random error or

noise instead of the underlying signal. We seek to minimize the empirical Rademacher

complexity because it measures correlation with random errors. However we need

to keep the objective of classification in mind, since we can reduce the empirical

Rademacher complexity to zero by simply mapping every datum x to 0 without any

discriminability. Therefore minimization of Rademacher complexity needs to be per-

formed over a class of functions ϕ that is able to discriminate between classes.

We recall from [52] that assuming `(g(x), y) is bounded, the generalization error

is with high probability bounded by the empirical Rademacher complexity [8] of

function class L, which is no more than the empirical Rademacher complexity of

53

G multiplied by some constant related to the softmax classifier [82]. Hence we can

reduce the degree of overfitting by controlling the empirical Rademacher complexity

of G.

4.3.1 Analysis: Regularizing a Linear Layer

Since each gd(x) is a composition of linear layers and nonlinear activations, we con-

sider regularizing the linear layers with GraphConnect first. Given an input z to a

linear layer, we consider the linear map f(z) = v>z, where the linear weights v are

from a set V specified by GraphConnect regularization. More formally we consider

the function family,

F =
{
f(z)|f(z) = v>z,v ∈ V

}
. (4.3)

Suppose now that we have learned a graph where symmetric edge weights W

encode the relationships between N input samples Z
def
= [z1, . . . , zN]. The set V that

defines the function family F is given by{
v :

(1− η)
∑N

i,j=1Wi,j[f(zi)− f(zj)]
2 + η‖v‖2

N
≤ B2

4

}
, (4.4)

for some positive constant B, and for some η ∈ (0, 1], and Wi,j being as before the

weights on the graph edges. When η = 1, this condition enforces conventional weight

decay, and as η approaches 0, it enforces graph regularization.

Let 1 be the all-one vector, let D be the diagonal matrix with entries W1, and

let L = D−W be the graph Laplacian. It can be shown that

N∑
i,j=1

Wi,j[f(zi)− f(zj)]
2 = v>(ZLZ>)v, (4.5)

Therefore by introducing the identity matrix I, we can describe the set V very simply

as

V =

{
v

∣∣∣∣v> ((1− η)ZLZ> + ηI
)

v ≤ NB2

4

}
. (4.6)

54

Since the Laplacian is positive semidefinite and η > 0, the matrix (1− η)ZLZ>+ ηI

is positive definite. With these definitions, we now bound R̂N(F).

Theorem 12 (Empirical Rademacher Complexity of Regularizing a Linear Layer).

Let F be the class of linear functions defined in Eq. (4.3), where V is the set defined

in Eq. (4.6), and let Z
def
= [z1, . . . , zN] ∈ Rn×N be the sample set on which the

Rademacher complexity R̂N(F) is evaluated. Then

R̂N(F) ≤ B

√√√√tr
[
Z>
(
(1− η)ZLZ> + ηI

)−1
Z
]

N

Proof. Denote (M)
def
= (1 − η)ZLZ> + ηIn and σ

def
= [σ1, . . . , σN]>. Following the

definition of empirical Rademacher complexity, we have

R̂N(F) = Eσ

[
2

N
sup
v∈V

∣∣∣∣∣
N∑
i=1

σiv
>zi

∣∣∣∣∣
∣∣∣∣∣ z1, . . . , zN

]

= Eσ

[
2

N
sup
v∈V

∣∣∣∣∣v>
(

N∑
i=1

σizi

)∣∣∣∣∣
∣∣∣∣∣ z1, . . . , zN

]
.

By Cauchy-Schwarz inequality, the right hand side (RHS)

≤ Eσ

[
2

N
sup
v∈V
‖(M)

1
2 v‖ ·

∥∥∥∥∥(M)−
1
2

(
N∑
i=1

σizi

)∥∥∥∥∥
∣∣∣∣∣ z1, . . . , zN

]

=

(
sup
v∈V

2

N
‖(M)

1
2 v‖
)
· Eσ

∥∥∥∥∥(M)−
1
2

(
N∑
i=1

σizi

)∥∥∥∥∥
≤
(

sup
v∈V

2

N
‖(M)

1
2 v‖
)
·

Eσ

∥∥∥∥∥(M)−
1
2

(
N∑
i=1

σizi

)∥∥∥∥∥
2
 1

2

=

(
sup
v∈V

2

N
‖(M)

1
2 v‖
)
·
[
tr
(
(M)−1ZE[σσ>]Z>

)] 1
2

=

(
sup
v∈V

2

N
‖(M)

1
2 v‖
)
·
[
tr
(
(M)−1ZZ>

)] 1
2

55

By the constraint that v>(M)v ≤ NB2

4
, we have 2

N
‖(M)

1
2 v‖ ≤

√
1
N
B. Therefore,

R̂N(F) ≤ B

√
tr (Z>(M)−1Z)

N
.

In the definition of V and Theorem 12, we have excluded the value η = 0 so that

the inverse [(1 − η)ZLZ> + ηI]−1 exists. However, in our experiments (sections 4.2

and 4.5), with no weight decay(η = 0), we have also observed strong generalization

performance.

Reducing the Rademacher complexity of a single linear layer is an important step

in reducing the Rademacher complexity of a multi-layer network, since adding one

more layer just multiplies the empirical Rademacher complexity by some constant

related to the new layer [82]. The bound in Theorem 12 depends on the eigenvalues

of the Laplacian L, which in turn depends on the edge weights W of the graph. We

now show that the bound becomes lower as η goes to 0, suggesting GraphConnect is

a more effective regularizer.

Example. Consider the MNIST dataset. There are 10 classes in the dataset,

and samples are 784-dimensional (28 × 28 images). We randomly select N samples

(N/10 samples per class), remove the sample mean, and form the 784 × N matrix

Z. The edge weights W are given by Wi,j = exp
(
−‖zi−zj‖2

γ2

)
, where γ is the average

of all pairwise distances. We form the Laplacian L and evaluate the bound given in

Theorem 12 for several values of N . We observe in Fig. 4.2 that the upper bound

decreases significantly as η moves away from 1 (weight decay), showing the added

value of graph regularization. As the sample size N increases, the bound decreases

steadily, consistent with our intuition about the generalization error.

56

4.3.2 Analysis: Regularizing Multiple Layers

We now extend our analysis to include the effects in intermediate layers of pooling

and of activation functions such as rectifiers. We consider a K-layer network that

maps an input x onto a multidimensional feature g(x), and then restricts to a single

dimension to obtain a scalar g(x) given by

g(x) = v>KsK−1(· · · s2(V2s1(V1x))), where vK ,Vi ∈ V , (4.7)

where the nonlinear mapping sk(·) represents activation and pooling. V1, . . . ,VK−1

are matrices representing linear layers, and vk is a vector that maps the input to a

single coordinate in the final output feature. The V1, . . . ,VK−1 and vK are taken

from a set V that is defined by the property

1

N

N∑
i,j=1

Wi,j[g(xi)− g(xj)]
2 ≤ B2

4
. (4.8)

As before, the symmetric edge weights W encode the relationships between the N

input samples samples [x1, . . . ,xN].

Set g(X) = [g(x1), . . . , g(xN)]> and recall that

N∑
i,j=1

Wi,j[g(xi)− g(xj)]
2 = g(X)Lg(X)>,

where L is as before the Lapacian of W. As before, we want to work with a positive

definite matrix so we add a small multiple of the identity matrix In. We now derive

an upper bound on the empirical Rademacher complexity for the function class G

defined by

G =

{
g(x)|g(x) = v>Ks(· · · s(V2s(V1x)))}, where g(X)(L + εI)g(X)> ≤ NB2

4

}
.

(4.9)

57

Theorem 13. R̂N(G) ≤ B
√

tr[(L+εIn)−1]
N

Proof. Denote σ = [σ1, . . . , σN]>, where σi’s are i.i.d. uniformly distributed in {±1}.

We have

R̂N(G) = Eσi
[

sup
vK ,Vi

2

N
|g(X)σ|

]

= Eσi
[

sup
vK ,Vi

2

N

∣∣∣g(X)(L + εI)
1
2 (L + εI)−

1
2σ
∣∣∣]

≤ sup
vK ,Vi

2

N

∥∥∥(L + εI)
1
2 g(X)>

∥∥∥ · Eσi [∥∥∥(L + εI)−
1
2σ
∥∥∥]

≤ B√
N
·
(
Eσi
[∥∥∥(L + εI)−

1
2σ
∥∥∥2
]) 1

2

= B

√
tr [(L + εI)−1]

N

Remark 8. Theorem 13 provides an upper bound on complexity that is not very

sensitive to the number of layers in the network, in contrast to weight decay where

complexity is exponential in the number of layers [92].

To conclude, we have proposed bounds on the empirical Rademacher complexity

of linear layers and the entire network, suggesting that GraphConnect may lead to

smaller complexity than weight decay. The implication is that, GraphConnect may

prevent overfitting better than weight decay.

4.4 Algorithmic Details

Following the theoretical analysis in the last section, we now describe two flavors of

GraphConnect in Fig. 4.3, two different ways of using a graph to regularize a neural

network. The first, GraphConnect-One, uses the graph to regularize individual layers,

58

and this method can be applied to all layers or to some layers but not others. The

second, GraphConnect-All, uses the graph to regularize the final learned features.

Implementation requires multiplying the GraphConnect regularizer by some λ > 0,

then adding this quantity to the original objective function used to train the neural

network. We show that both GraphConnect regularization schemes require only

minor changes to the standard back-propagation algorithm.

Figure 4.3: (a) GraphConnect-One regularizes individual linear layers so that in-
dividual outputs align with a graph W; (b) GraphConnect-All regularizes the final
output features to align with a graph W.

Gradient Descent Solver for GraphConnect-One. Without loss of generality,

we assume that the regularizer is imposed on the k-th linear layer with weights Vk

and layer input Z(k−1) = [z
(k−1)
1 , . . . , z

(k−1)
N]. We seek to minimize

`emp + λJ,

59

where J is the GraphConnect regularization on the linear transform given by

J =
N∑

i,j=1

Wi,j‖Vkz
(k−1)
i −Vkz

(k−1)
j ‖2

= tr[VkZ
(k−1)L(VkZ

(k−1))>].

The gradient of J w.r.t. Vk is

∂J

∂Vk

= 2VkZ
(k−1)LZ(k−1)>. (4.10)

The optimization then runs as normal back propagation, except that the gradient of

Vk takes an additional term, Eq. (4.10).

Gradient Descent Solver for GraphConnect-All. The objective function now

takes an extra term J = λ tr(g(X)Lg(X)>). The gradient of J w.r.t. g(X) is

∂J

∂g(X)
= 2λg(X)L.

So we just need to add an extra term 2λg(X)L to the original gradient with respect to

g(X). Then the gradient is back propagated as usual. GraphConnect regularization

requires only minor modifications to standard back propagation algorithms and is

very efficient in practice.

4.4.1 Choice of Bandwidth σ

Choice of the bandwidth in the matrix W is an open question. The graph matrix W

implicitly defines a map, ψ(x), from the data to a feature space, where ψ(xi)
>ψ(xj) =

Wi,j. In the extreme, when σ approaches zero, Wi,j → 0, ‖ψ(xi) − ψ(xj)‖2 → 2,

meaning that all points are equally separated and no local geometrical informa-

tion is preserved. In the extreme when σ approaches infinity, ‖ψ(xi) − ψ(xj)‖2 =

2 − 2 exp(−‖xi − xj‖2/σ2) → 2
σ2‖xi − xj‖2, and the feature space preserves all the

60

(a) 1000 test samples
from MNIST

(b) Transformed test
samples when the
learned network is
regularized by weight
decay

(c) Transformed
test samples when
the learned network
is regularized by
GraphConnect-One

3

2

0

6

4

1
9

7

(d) Transformed
test samples when
the learned network
is regularized by
GraphConnect-All

Figure 4.4: Embedding of initial and transformed test samples with different colors
representing different classes. All networks are learned from the same set of 500
training samples. In (d), we observe that numbers with curly strokes are clustered
on the left, whereas those with straight strokes are on the right.

pairwise distances (up to a scale 2
σ2). However, since 2

σ2 approaches zero, the differ-

ence between points vanishes. The above reasoning suggests an intermediate choice

of σ.

Essentially, the regularizer J is encouraging the learned features to “resemble” the

implicitly defined feature space. In this work we use kernel alignment [25] to compute

the bandwidth of the RBF kernel. Kernel alignment requires the computed RBF to

resemble the pairwise label matrix. For further separation, after σ is computed, we

enforce Wi,j = 0 if xi and xj are from different classes.

4.5 Experiments

In this section, we revisit the MNIST example in Section 4.2 to confirm the effective-

ness of GraphConnect . Then, experiments on more challenging datasets are carried

out to compare GraphConnect with weight decay and DropOut .

4.5.1 MNIST Revisited

We vary the size of the training set from 500 to 6,000, and repeat the experiment in

Section 4.2. All hyper-parameters are optimized so that those reported are the best

performance of each method. When the number of training samples is small, Fig.

61

4.5a shows GraphConnect yields a generalization error that is significantly smaller

than that yielded by weight decay. Performance becomes broadly similar as the size

of the training set increases. The same trend is evident in Fig. 4.5b, which compares

the classification accuracy of the three methods.

size of training set × 10
3

0.5 1 4 7 10 30 60

g
e

n
e

ra
liz

a
ti
o

n
 e

rr
o

r

0

0.05

0.1

0.15

0.2

0.25

0.3
weight decay

 GraphConnect-One

 GraphConnect-All

(a) Dependence of generalization error on the
size of the training set (after 100 iterations).

size of training set × 10
3

0.5 1 4 7 10 30 60

te
s
t

e
rr

o
r

(%
)

0

2

4

6

8

10
weight decay

 GraphConnect-One

 GraphConnect-All

(b) Dependence of classification error on the
size of the training set (after 100 iterations).

Figure 4.5: Comparing GraphConnect against weight decay on the MNIST dataset.

Fig. 4.4 shows the embedding of the learned features for 1,000 testing samples

(network trained with 500 samples), the two variants of GraphConnect both yield

more discriminative features than weight decay. Since performance of the two vari-

ants of GraphConnect is broadly similar, and since GraphConnect-One involves tun-

ing multiple regularizers, we focus on GraphConnect-All in the sequel.

4.5.2 Comparison on SVHN and CIFAR-10

SVHN and CIFAR-10 are benchmark RGB image datasets, each containing 10 classes,

that are more challenging than the MNIST benchmark because of more significant

intra-class variation. On these two datasets, we compare different regularization tech-

niques (GraphConnect , weight decay and DropOut). Table 4.2 specifies the network

architecture (similar to [42]). When enabled, the DropOut layer is with a drop rate of

0.5, and applied to layers 11 and 13 as in table 4.2. All images are mean-subtracted

62

in a preprocessing step, and the graph weights W used in GraphConnect-All are com-

puted in the same fashion as for the MNIST experiment. The network transforms

sample images into 2,048-dimensional features that are input to a softmax classifier.

First, we compare each individual regularizer on SVHN, i.e., DropOut , weight de-

cay and GraphConnect . The number of training samples is varied from 50 to 700 per

class, and the testing accuracies of all methods are evaluated as in Tab. 4.3. Graph-

Connect outperforms weight decay in all cases and is competitive with DropOut .

Since DropOut is widely adopted, it is important for a regularizer to be compatible

with it. Next, we look at the compatibility of GraphConnect with DropOut . We

apply weight decay and DropOut respectively to the network (Tab. 4.2) with the

dropout layers enabled or disabled. The experiment is conducted on CIFAR-10

with 50 to 700 training samples per class, and testing accuracies are reported in

Tab. 4.4. We observe that the performance is boosted when DropOut is adopted.

However, either with or without DropOut , GraphConnect outperforms weight decay

significantly.

4.5.3 Face Verification on LFW

We now evaluate GraphConnect on face verification, using the Labeled Faces in

the Wild (LFW) benchmark dataset. The face verification task is to decide, when

presented with a pair of facial images, whether the two images represent the same

subject. Impressive verification accuracies are possible when deep neural networks

are able to train on extremely large labeled training sets [75, 77]. The training sets

are often proprietary, making it difficult to reproduce these successes, but that is not

our aim in this work. Given the same network architecture, we seek to compare the

performance of different regularizers.

We adopt the experimental framework used in [18], and train a deep network

on the WDRef dataset, where each face is described using a high dimensional LBP

63

Table 4.2: Network common to SVHN and CIFAR-10 experiments.

Layer Type Parameters

1 conv
size: 5× 5× 3× 96

stride: 1, pad: 2
2 ReLu N/A
3 maxPool size: 3× 3, stride: 2, pad: 0

4 conv
size: 5× 5× 96× 128

stride: 1, pad: 2
5 ReLu N/A
6 maxPool size: 3× 3, stride: 2, pad: 0

7 conv
size: 4× 4× 50× 500

stride: 1, pad: 0
8 ReLu N/A
9 maxPool size: 3× 3, stride: 2, pad: 0
10 fully connected #output: 2048
11 ReLu (w/ dropout) N/A
12 fully connected #output: 2048
13 ReLu (w/ dropout) N/A

Table 4.3: SVHN: test accuracy when individual regularizer is used.

training weight
DropOut GraphConnect

per class decay

50 72.58% 73.54% 73.13%
100 78.45% 79.39% 79.39%
400 87.20% 87.39% 87.66%
700 89.84% 89.77% 90.13%

Table 4.4: CIFAR-10: test accuracy as size of the training set varies.

without DropOut with DropOut
training weight

GraphConnect
weight

GraphConnect
per class decay decay

50 34.78% 38.65% 37.31% 40.47%
100 42.17% 45.07% 44.99% 46.11%
400 56.14% 57.39% 58.81% 59.48%
700 61.83% 62.17% 64.03% 64.26%

feature (available at http://home.ustc.edu.cn/chendong/) that is reduced to a 5,000-

dimensional feature using PCA. The WDRef dataset is significantly smaller than the

64

proprietary datasets in [75, 76, 77]. For example, [77] uses 4.4 million labeled faces

from 4,030 individuals. [75] and [76] use 202,599 labeled faces from 10,177 individ-

uals, while WDRef contains 2,995 subjects with only about 30 samples per subject,

clearly a much more challenging task. We consider the two-layer fully connected net-

Table 4.5: Fully connected network for face verification.

Layer Type Parameters
1 fully connected #output: 2000
2 ReLu N/A
3 fully connected #output: 2000
4 ReLu N/A

work described in Tab. 4.5, where the activation function is a rectifier. The network

transforms a 5,000-dimensional input vector to a 2,000-dimensional feature vector,

which is then input to a softmax classifier. The network parameters are learned

using WDRef and the testing is carried out on the LFW dataset. Our focus is the

expressiveness of the learned feature, so we do not employ advanced verification

methods such as those used in [18] (those will make the study of the network itself

very obscure). Instead, we simply compute the Euclidean distance between a pair of

(learned) face features and compare it with a threshold to make a decision.

Table 4.6: Verification accuracies and AUCs when using a training set of size 64,000

Method
Accuracy AUC

(%) (×10−2)
HD-LBP 74.73 82.22± 1.00

weight decay 90.00 96.14± 0.61
GraphConnect 94.02 98.48± 0.21

We vary the number of training samples per class and evaluate verification perfor-

mance. We report results for the value of the regularization parameter that optimizes

verification accuracy. Fig. 4.6a compares verification accuracies for GraphConnect

65

size of training set × 10
3

15 28 49 64v
e

ri
fi

c
a

ti
o

n
 a

c
c

u
ra

c
y

 (
%

)

80

85

90

95

weight decay

 GraphConnect

(a)

false alarm rate

0 0.5 1

c
o

rr
e

c
t

d
e

te
c

ti
o

n
 r

a
te

0

0.2

0.4

0.6

0.8

1

HD-LBP

weight decay

 GraphConnect

(b)

Figure 4.6: (a) Verification accuracy of GraphConnect and weight decay as a
function of the size of the training set; (b) ROC curves when using 64,000 training
samples.

and weight decay as a function of the size of the training set. GraphConnect con-

sistently outperforms weight decay. We also tried to apply DropOut to layers 2 and

4, but did not observe any gain. For example, when 15K training samples are used,

weight decay+DropOut only gives a verification accuracy of 78.00% (significantly

lower than the accuracy of weight decay without DropOut , 82.00%). This may due

to the fact that the number of training samples here is too small such that the net-

work overfits even with the noise introduced by DropOut . This phenomenon has

been noticed in [42]. Therefore we leave out the experiment with DropOut here.

Fig. 4.6b compares the ROCs curves when a training set of size 64K is used.

Corresponding Area Under Curves (AUCs) are reported in Tab. 4.6. As a baseline,

we also evaluate the verification performance on the initial LBP features (without

any learning). We observe from Fig. 4.6b and Tab. 4.6 that the learned features sig-

nificantly outperform the initial LBP features, while GraphConnect further improves

upon weight decay, validating the effectiveness of GraphConnect regularization when

training set is small.

66

4.6 Conclusion

We have proposed GraphConnect, a data-dependent framework for regularizing deep

neural networks, and we have compared performance against data-independent meth-

ods of regularization that are in widespread use. We observed that GraphConnect is

superior to the classical weight decay and provided theoretical justification using the

empirical Rademacher Complexity. We presented experimental results that validate

our theoretical claims, showing that when the training set is small the improvement

over weight decay is significant.

67

5

Connecting Subspace and Manifold

In the previous chapters, we have exploited the subspace and manifold model in

various feature extraction tasks. In this chapter, we connect these two models by

using affine subspaces to approximate a nonlinear manifold. More specifically, we

assume streaming data lies near a low dimensional manifold evolving in a high di-

mensional ambient space. We learn the manifold structure by tracking a collection

of affine subspaces that approximate the manifold. The proposed method can ac-

commodate missing data, and has an efficient “online” updating scheme. Deviation

(of each datum) from the learned model is estimated, yielding a series of statistics

for anomaly detection. The proposed approach leverages several recent results in

the field of high-dimensional data analysis, including subspace tracking with miss-

ing data, multiscale analysis techniques for point clouds, online optimization, and

changepoint detection performance analysis. Simulations and experiments highlight

the robustness and efficacy of the proposed approach in detecting an abrupt change

in an otherwise slowly varying low-dimensional manifold.

68

5.1 Motivating Application: Changepoint Detection

Changepoint detection is a form of anomaly detection where the anomalies of in-

terest are abrupt temporal changes in a stochastic process. In many applications,

the stochastic process is non-stationary away from the changepoints and very high

dimensional, resulting in significant statistical and computational challenges. For

instance, we may wish to quickly identify changes in network traffic patterns [53], a

timeseries of spectral images, social network interactions [65], surveillance video [54],

or solar flare imagery collected by solar observatories [50, 64]. Classical methods for

changepoint detection date back to the 1950s and are closely coupled with anomaly

detection [10, 62]. A good changepoint detection algorithm will accept a sequence of

random variables whose distribution may change abruptly at one time, detect such

a change as soon as possible, and also have long period between false detections.

Traditional changepoint detection methods typically deal with a sequence of low-

dimensional, often scalar, random variables. Naively applying these approaches to

high-dimensional data is impractical because the underlying high-dimensional distri-

bution cannot be accurately estimated and used for developing test statistics. This

results in detection delays and false alarm rates that scale poorly with the dimension-

ality of the problem. Thus the primary challenge here is to develop a rigorous method

for extracting meaningful low-dimensional statistics from the high-dimensional data

stream without making restrictive modeling assumptions.

Our method addresses these challenges by using multiscale online manifold learn-

ing to extract univariate changepoint detection test statistics from high-dimensional

data. We model the dynamic distribution underlying the data as lying close to a

time-varying, low-dimensional submanifold embedded within the ambient observa-

tion space. This submanifold model, while non-parametric, allows us to generate

meaningful test statistics for robust and reliable changepoint detection, and the mul-

69

tiscale structure allows for fast, memory-efficient computations. Furthermore, these

statistics can be calculated even when elements are missing from the observation

vector. The approach described in this chapter leverages several recent results in

the field of high-dimensional data analysis, including subspace tracking with missing

data, multiscale analysis techniques for point clouds, and online optimization.

While manifold learning has received significant attention in the machine learning

literature [79, 70, 12, 14], online learning of a dynamic manifold remains a significant

challenge, both algorithmically and statistically. Most existing methods are “batch”,

in that they are designed to process a collection of independent observations all lying

near the same static submanifold, and all data is available for processing simultane-

ously.

In contrast, our interest lies with “online” algorithms, which accept streaming

data and sequentially update an estimate of the underlying dynamic submanifold

structure, and changepoint detection methods which identify significant changes in

the submanifold structure rapidly and reliably. Recent progress towards this direction

for a very special case of submanifolds appears in the context of subspace tracking.

For example, the Grassmannian Rank-One Update Subspace Estimation (GROUSE)

[5] and Parallel Estimation and Tracking by REcursive Least Squares (PETRELS)

[22] effectively track a single subspace using incomplete data vectors. The subspace

model used in these methods, however, provides a poor fit to data sampled from a

manifold with non-negligible curvature.

5.2 Problem Formulation

Suppose we are given a sequence of data x1,x2, . . . ,, and for t = 1, 2, . . ., xt ∈ RD,

where D denotes the ambient dimension. The data are noisy measurements of points

70

lying on a submanifold vt ∈Mt:

xt = vt + wt. (5.1)

The intrinsic dimension of the submanifold Mt is d. We assume d� D. The noise

wt is a zero mean white Gaussian random vector with covariance matrix σ2I. The

underlying submanifold Mt may vary slowly with time. At each time t, we only

observe a partial vector xt at locations Ωt ∈ {1, . . . , D}. Let PΩt represent the

|Ωt| ×D matrix that selects the axes of RD indexed by Ωt; we observe PΩtxt.

Our goal is to design an online algorithm that generates a sequence of approxi-

mations M̂t which tracks Mt when it varies slowly, and detects anomalies as soon

as possible when the submanifold changes abruptly. The premise is that the statis-

tical properties of the tracking error will be different when the submanifold varies

slowly versus when it changes abruptly. In the following, we will present a new

online submanifold learning algorithm that can effectively generate a sequence of

tracking errors which are stationary when the submanifold is changing slowly, and

then develop a changepoint detection method using the errors.

Define the operator

PMxt = arg min
x∈M
‖x− xt‖2 (5.2)

as the projection of observation xt on to M. If we had access to all the data

simultaneously without any memory constraints, we might solve the following batch

optimization problem using all data up to time t for an approximation:

M̂◦
t , arg min

M

{ t∑
i=1

αt−i‖PΩi
(xi − PMxi)‖2 + µpen(M)

}
, (5.3)

where ‖x‖ denotes the Euclidean norm of a vector x, pen(M) denotes a regularization

term which penalizes the complexity of M, α ∈ (0, 1] is a discounting factor on the

71

approximation error at each time t, and µ is a user-determined constant that specifies

the relative weights of the data fit and regularization terms.

Note that (5.3) cannot be solved without retaining all previous data in memory,

which is impractical for the applications of interest. To address this, we instead con-

sider an approximation to the cost function in (5.3) of the form F (M) + µpen(M).

To develop an online algorithm, instead of solving (5.3), we find a sequence of approx-

imations M̂1, . . . ,M̂t (without storing historic data), such that M̂t+1 is computed

using F (M) by updating the previous approximation M̂t using the current datum

xt+1. In Section 5.3, we will present several forms of F (M) that lead to recur-

sive updates and efficient tracking algorithms. One example of an approximation is

illustrated in Figure 5.1; the context is described in more detail in Section 5.6.2.

Given the sequence of submanifold estimates M̂1, . . . ,M̂t, we can compute the

distance of each xt to M̂t, which we denote {et}. We then apply changepoint de-

tection methods to the sequence of tracking errors {et}. In particular, we assume

that when there is no anomaly, et are i.i.d. with distribution ν0. When there is

an anomaly, there exists an unknown time κ < t such that before the changepoint

e1, . . . , eκ are i.i.d. with distribution ν0, and after the changepoint, eκ+1, . . . are i.i.d.

with distribution ν1. Our goal is to detect the anomaly as quickly as possible after

it occurs, and make as few false alarms as possible.

5.3 Multiscale Online Union of Subspace Estimation (MOUSSE)

In the following we describe the Multiscale Online Union of SubSpaces Estimation

(MOUSSE) method, including the underlying multiscale model and online update

approaches.

72

0

0.5

1

0 0.5 1

0

0.5

1

0

0.5

1

0 0.5 1

0

0.5

1

Figure 5.1: Approximation of MOUSSE at t = 250 (upper) and t = 1150 (lower)
of a 100-dimensional submanifold. In this figure we project everything into three-
dimensional space. The blue curve corresponds to true submanifold, the dots are
noisy samples from the submanifold (the lighter dots are more dated than the darker
dots), and the red line segments are the approximation with MOUSSE. As the cur-
vature of the submanifold increases, MOUSSE also adapts in the number of line
segments.

5.3.1 Multiscale union of subspaces model

MOUSSE uses a union of low-dimensional subsets M̂t to approximate Mt, and

organizes these subsets using a tree structure. The idea for a multiscale tree structure

is drawn from the multiscale harmonic analysis literature [27]. The leaves of the

tree are subsets that are currently used for approximation. Each node in the tree

represents a local approximation to the submanifold at one scale. The parent nodes

are subspaces that contain coarser approximations to the submanifold than their

children. The subset of the parent node roughly covers the subsets of its two children.

More specifically, our approximation at each time t consists of a union of sub-

spaces Sj,k,t that is organized using a tree structure. Here j ∈ {1, . . . , Jt} denotes

the scale or level of the subset in the tree, where Jt is the tree depth at time t, and

k ∈ {1, . . . , 2j} denotes the index of the subset for that level. The approximation

M̂t at time t is given by:

M̂t =
⋃

(j,k)∈At

Sj,k,t,

73

where At contains the indices of all leaf nodes used for approximation at time t. Also

define Tt to be the set of indices of all nodes in the tree at time t, with

At ⊂ Tt.

Each of these subsets lies on a low-dimensional hyperplane with dimension d and is

parameterized as

Sj,k,t = {v ∈ RD : v = Uj,k,tz + cj,k,t(z
>Λ−1

j,k,tz) ≤ 1, z ∈ Rd}. (5.4)

The matrix Uj,k,t ∈ RD×d is the subspace basis, and cj,k,t ∈ RD is the offset of the

hyperplane from the origin. The diagonal matrix

Λj,k,t , diag{λ(1)
j,k,t, . . . , λ

(d)
j,k,t} ∈ Rd×d,

with λ
(1)
j,k,t ≥ . . . ≥ λ

(d)
j,k,t ≥ 0, contains eigenvalues of the covariance matrix of the

projected data onto each subspace. This parameter specifies the shape of the ellipsoid

by capturing the spread of the data within the subset. In summary, the parameters

for Sj,k,t are

{Uj,k,t, cj,k,t,Λj,k,t}(j,k)∈Tt ,

and these parameters will be updated online.

In our tree structure, the leaf nodes of the tree also have two virtual children

nodes that keep necessary information for when further partitioning is needed. The

complexity of the approximation is defined to be the total number of subsets used

for approximation at time t:

Kt , |At|, (5.5)

which is used as the complexity regularization term in (5.3)

pen(M̂t) , log(Kt). (5.6)

The tree structure is illustrated in Figure 5.2.

74

S0,0,t

S1,0,t S1,1,t

S2,0,t S2,1,t S2,2,t S2,3,t

S3,4,t S3,5,tS3,6,t S3,7,t
Virtual nodes keep
track of statistics
used for tree splitting

Leaf nodes form cur-
rent aproximation

Ancestor nodes give
coarser approxima-
tion and facilitate
merging leaf nodes

Figure 5.2: Illustration of tree structure for subspaces. The subspaces used in our
approximation are {S1,0,t ∪ S2,2,t ∪ S2,3,t}.

5.3.2 MOUSSE Algorithm

When a new sample xt+1 becomes available, MOUSSE updates M̂t to obtain M̂t+1.

The update steps are presented in Algorithm 3; there are three main steps, detailed

in the below subsections: (a) find the subset in the M̂t which is closest to xt+1, (b)

update a tracking estimate of that closest subset and its ancestors, and (c) grow or

prune the tree structure to preserve a balance between fit to data and complexity.

We use [z]m to denote the m-th element of a vector z.

5.3.3 Distances for MOUSSE

To update the submanifold approximation, we first determine the affinity of xt+1 to

each subset. We may use Euclidean distance, though this distance is problematic

since in our approximation each subspace is local with boundary defined by an el-

lipsoid. Hence, a point can be close to a hyperplane but far away from the center

of the ellipsoid. An alternative choice is Mahalanobis distance, though this distance

does not reflect the notion of low-dimensional subspaces since it does not depend

on Uj,k,t. Moreover, evaluating the Mahalanobis distance requires storing the entire

covariance matrix and computing its inverse, which is computationally expensive for

high-dimensional data.

75

Algorithm 3 MOUSSE

1: Input:
error tolerance ε, step size α, relative weight µ

2: Initialize tree structure, set ε0 = 0
3: for t = 0, 1, . . . do
4: Given new data xt+1 and its support Ωt+1, find the minimum distance set

Sj∗,k∗,t according to (j∗, k∗) = arg min(j,k)∈At ρδj,k,t(xt+1,Sj,k,t) using (5.12)
5: Update all ancestor nodes and closest virtual child node of (j∗, k∗) using Al-

gorithm 4
6: Calculate:

et+1 = ρδj∗,k∗,t(xt+1,Sj∗,k∗,t) using (5.12)
εt+1 = αεt + (1− α)et+1

7: Denote parent node of (j∗, k∗) as (j∗ − 1, kp) and virtual child node closest to
xt+1 as (j∗ + 1, kv)

8: if εt+1 > ε and
d(xt+1,Sj∗+1,kv ,t) + µ log(Kt + 1) < et+1 + µ log(Kt) then

9: Split (j∗, k∗) using Algorithm 5, recalculate et+1 and εt+1

10: end if
11: if εt+1 < ε and

d(xt+1,Sj∗−1,kp,t) + µ log(Kt − 1) < et+1 + µ log(Kt) then
12: Merge (j∗, k∗) and its sibling using Algorithm 6, recalculate et+1 and εt+1

13: end if
14: Update At and Tt
15: end for

Algorithm 4 Update node

1: Input: node index (j, k), α and subspace parameters
2: Calculate: β and β⊥ using (5.8) and (5.9)
3: Update: [cj,k,t+1]m = α[cj,k,t]m + (1− α)[xt+1]m, m ∈ Ωt+1

4: Update: λ
(m)
j,k,t+1 = αλ

(m)
j,k,t + (1− α)[β]2m,m = 1, . . . , d

5: Update: δj,k,t+1 = αδj,k,t + (1− α)‖β⊥‖2/(D − d)
6: Update basis Uj,k,t using (modified) subspace tracking algorithm

Algorithm 5 Split node (j, k)

1: Turn two virtual children nodes (j + 1, 2k) and (j + 1, 2k+ 1) of node (j, k) into
leaf nodes

2: Initialize virtual nodes (j + 1, 2k) and (j + 1, 2k + 1):

k1 = 2k, k2 = 2k + 1

cj+1,k1,t+1 = cj,k,t +

√
λ

(1)
j,k,tu

(1)
j,k,t/2, cj+1,k2,t+1 = cj,k,t −

√
λ

(1)
j,k,tu

(1)
j,k,t/2

Uj+1,ki,t+1 = Uj,k,t, i = 1, 2

λ
(1)
j+1,ki,t+1 = λ

(1)
j,k,t/2, i = 1, 2, λ

(m)
j+1,ki,t+1 = λ

(m)
j,k,t, m = 2, . . . , d, i = 1, 2

76

Algorithm 6 Merge (j, k) and its sibling

1: Make the parent node of (j, k) into a leaf node
2: Make (j, k) and its sibling into virtual children nodes of the newly created leaf
3: Delete all four virtual children nodes of (j, k) and its sibling

To address these challenges, we introduce the approximate Mahalanobis distance

of a point x to a subspace S. Assume x with support Ω, parameter δ, and the

parameters for a set S is given by {U, c,Λ}. Define

UΩ , PΩU ∈ R|Ω|×d, cΩ , PΩc ∈ R|Ω|, xΩ = PΩx ∈ R|Ω|.

Define the pseudoinverse operator that computes the coefficience a vector the sub-

space spanned by V as

V† , (V>V)−1V>. (5.7)

Since U is an orthogonal matrix, we have U† ≡ U>, but in general U†Ω 6= U>Ω. Let

β = U†Ω(xΩ − cΩ), (5.8)

and

β⊥ = (I−UΩU†Ω)(xΩ − cΩ). (5.9)

In this definition, β is the projection of x on U, and ‖β⊥‖ captures the energy of

the projection residual. We denote Euclidean distance between x with support Ω

and the subspace where S lies on as

d(x,S) , ‖xΩ −UΩU†Ω(xΩ − cΩ)‖2 = ‖β⊥‖2. (5.10)

Next we introduce the approximate Mahalanobis distance, which is a hybrid of

Euclidean distance and Mahalanobis distance. Mahalanobis distance is commonly

used for data classification, which measures the quadratic distance of x to a set S of

data with mean c = E{x} and covariance Σ = E{(x− c)(x− c)>}. Specifically, the

Mahalanobis distance is defined as

%(x,S) = (x− c)>Σ−1(x− c).

77

Assuming the covariance matrix has a low-rank structure with d large eigenvalues

and D− d small eigenvalues, we can write the eigendecomposition of the covariance

matrix Σ as

Σ ,
[
U U⊥

]
Λ
[
U U⊥

]>
= UΛ1U

> + U⊥Λ2U
>
⊥,

where Λ = diag{λ1, . . . , λD}, λ1 ≥ . . . ≥ λD, Λ1 = diag{λ1, . . . , λd}, and Λ2 =

diag{λd+1, . . . , λD}. If we further assume that the D − d small eigenvalues are all

approximately equal to δ, i.e. Λ2 ≈ δI, then

%(x,S) ≈ (x− c)>UΛ−1
1 U>(x− c) + δ−1‖U>⊥(x− c)‖2. (5.11)

This motivates us to introduce the approximate Mahalanobis distance when the data

is low-dimensional:

ρδ(x,S) , β>Λ−1β + δ−1‖β⊥‖2. (5.12)

Note that when the data is complete, ρδ(x,S) is equal to the right-hand-side of

(5.11). With missing data, ρδ(x,S) is an approximation to %(x,S).

5.3.4 Update subset parameters

When updating subspaces, we can update all subspaces in our multiscale representa-

tion and make the update step-size to be inversely proportional to the approximate

Mahalanobis distance between the new sample and each subspace, which we refer

to as the “update-all” approach. Alternatively, we can just update the subspace

closest to xt+1, its virtual children, and all its ancestor nodes, which we refer to as

the “update-nearest” approach. The update-all approach is computationally more

expensive, especially for high dimensional problems, so we focus our attention on

the greedy update-nearest approach. The below approaches extend readily to the

update-all approach, however.

78

With the approximate Mahalanobis distance defined above, we can find the subset

with minimum distance to the new datum xt:

(j∗, k∗) = arg min
(j,k)

ρδj,k,t(xt,Sj,k,t),

and then update the parameters of that subset (and all its ancestors in the tree).

The update algorithm is summarized in Algorithm 4 which denotes the parameters

associated with Sj∗,k∗,t as (c,U,Λ, δ), and drops the j∗, k∗, and t indices for simplicity

of presentation. The update of the center c, Λ and δ are straightforward.

Using the definition in (5.2), we have

PM̂t
x = P>ΩUΩU†Ω(xΩ − cΩ) + c; (5.13)

that is, the projection onto the submanifold approximation is the projection onto

the nearest subset. We further define the instantaneous approximation error of the

submanifold at time t as:

et , ‖PΩt(xt − PM̂t
xt)‖2, (5.14)

and note that this is equivalent to the squared norm of the orthogonal projection of

xt onto Sj∗,k∗,t, denoted βt,⊥; i.e.

et ≡ ‖βt,⊥‖2. (5.15)

Next we will focus on three approaches to updating U.

GROUSE

To use GROUSE subspace tracking in this context, we approximate the first term in

(Eq. (5.3)) as

F (M) =
t∑
i=1

αt+1−i‖PΩi
(xi − PM̂i

xi)‖2 + ‖PΩt+1(xt+1 − PMxt+1)‖2. (5.16)

79

Note the first term is a constant with respect toM, so we need only to consider the

second term in computing an update. The basic idea is now to take a step in the

direction of the instantaneous gradient of this cost function. SinceM is constrained

to be a union of subsets and the projection operator maps to the closest subset, this

task corresponds to the basis update of GROUSE [5] with the cost function

f(U) , min
a
‖PΩt+1(xt+1 −Ua− c)‖2 (5.17)

(assuming U is orthonormal and including the offset vector c). Following the same

derivation as in [5], we have that

df

dU
= −2PΩt+1(xt+1 − c−Uβ)β> , −2rβ>, (5.18)

where β is defined in (5.8), and

r = PΩt+1(xt+1 − c−Uβ).

Hence the gradient on the Grassmannian is given by

∇f = (I−UU>)
df

dU
= −2(I−UU>)rβ> = −2rβ>,

since U>r = 0. We obtain that the update of Ut using the Grassmannian gradient

is given by

Ut+1 = Ut +
cos(ξη)− 1

‖β‖2
Utββ

> + sin(ξη)
r

‖r‖
β>

‖β‖
. (5.19)

where η > 0 is the step-size, and ξ = ‖r‖‖Utβ‖. The step-size η is chosen to be

η = η0/‖xt+1‖, for a constant η0 > 0.

PETRELS

Let x(1),x(2),x(3), . . . denote a subsequence of the data such that each x(i) was drawn

from the (j∗, k∗) node in our multiscale approximation, and let nt denote the length

80

of this subsequence. Then we can approximate F (M) as

F (M) =
nt∑
i=1

αnt−imin
z
‖PΩ(i)

(x(i) − c−Uz)‖2. (5.20)

The minimization of F (M) in (5.20) can be accomplished using the PETRELS

algorithm [22], yielding a solution which can be expressed recursively as follows.

Denote by [U]m the m-th column of U, we have the update of U given by

[Ut+1]m = [Ut]m + Im∈Ωt([Utat+1]m − a>t+1[Ut]m)(Rm,t+1)†at+1, (5.21)

for m = 1, . . . , D, where IA is the indicator function for event A, and

at+1 = (U>t PΩt+1Ut)
†U>t xt+1.

The second-order information in Rm,t+1 can be computed recursively as

(Rm,t+1)† = α−1(Rm,t)
† +

α−2pm,t+1

1 + α−1a>t+1(Rm,t)†at+1

(Rm,t)
†ata

>
t (Rm,t)

†. (5.22)

Note that PETRELS does not guarantee the orthogonality of Ut+1, which is

important for quickly computing projections onto our submanifold approximation.

To obtain orthonormal Ut+1, we may apply Gram-Schmidt orthonormalization after

each update. We refer to this modification of PETRELS as PETRELS-GS. This

orthogonalization requires an extra computational cost on the order of O(Dd2) and

may compromise the continuity of Ut, i.e. ‖Ut+1 −Ut‖ after the orthogonalization

may not be “small” [1]. As a result, this orthogonalization may change the optimality

of Ut. A faster orthonormalization (FO) strategy with less computation which also

preserves the continuity of Ut is given in [1]. We refer to this FO strategy combined

with PETRELS as PETRELS-FO.

81

Computational complexity

For each update with complete data (the maximum computational complexity), the

computational complexity of GROUSE is on the order of O(Dd), PETRELS-GS is

O(Dd2), and PETRELS-FO is O(Dd). More details about the relative performance

of these three subspace update methods can be found in Section 5.6.

5.3.5 Tree structure update

When the curvature of the submanifold changes and cannot be sufficiently char-

acterized by the current subset approximations, we must perform adaptive model

selection. This can be accomplished within our framework by updating the tree

structure – growing the tree or pruning the tree, which we refer to as “splitting” and

“merging” branches, respectively. Previous work has derived finite sample bounds

and convergence rates of adaptive model selection in nonparametric time series pre-

diction [56].

To decide whether to change the tree structure, we introduce the average approx-

imation error:

εt ,
t∑
i=1

αt−i‖PΩi
(xi − PM̂i

xi)‖2 = αεt + (1− α)et. (5.23)

This error is an approximation to the first term in (5.3), where we replace PM̂ with

the projection onto a sequence of approximations PM̂i
. We will consider changing

the tree structure when εt is greater than our prescribed error tolerance ε > 0.

Splitting tree branches increases the resolution of the approximation at the cost

of higher estimator complexity. Merging reduces resolution but lowers complexity.

When making decisions on splitting or merging, we take into consideration the ap-

proximation errors as well as the model complexity (the number of subspaces Kt

used in the approximation). This is related to complexity-regularized tree estima-

82

tion methods [17, 27, 85] and the notion of minimum description length (MDL) in

compression theory [6, 57]. In particular, we use the sum of the average fitting error

and a penalty proportional to the number of subspaces used for approximation as

the cost function when deciding to split or merge. The splitting and merging are

summarized in Algorithm 5 and Algorithm 6. The splitting process mimics the k-

means algorithm. In these algorithms, note that for node (j, k) the parent is node

(j − 1, bk/2c) and the sibling node is (j, k + 1) for k even or (j, k − 1) for k odd.

5.3.6 Initialization

To initialize MOUSSE, we assume a small initial training set of samples, and perform

a nested bi-partition of the training data set to form a tree structure, as shown in

Figure 5.2. The root of the tree represents the entire data set, and the children of

each node represent a bipartition of the data in the parent node. The bipartition of

the data can be performed by the k-means algorithm. We start with the entire data,

estimate the sample covariance matrix, perform an eigendecomposition, extract the

d-largest eigenvectors and eigenvalues and use them for U1,1,0 and Λ1,1,0, respectively.

The average of the (D−d) minor eigenvalues are used for δ1,1,0. If the approximation

error is greater than the prescribed error tolerance ε, we further partition the data

into two clusters using k-means (for k = 2) and repeat the above process. We keep

partitioning the data until δ`,n,0 of all leaf nodes are less than ε. Then we further

partition the data one level down and form the virtual nodes. This tree construction

is similar to that used in [2].

In principle, it is possible to bypass this training phase and just initialize the tree

with a single root node and two random virtual children nodes. However, the training

phase makes it much easier to select algorithm parameters such as ε and provides

more meaningful initial virtual nodes, thereby shortening the “burn in” time of the

algorithm.

83

5.3.7 Choice of parameters

In general, α should be close to 1, as in the Recursive Least Squares (RLS) algorithm

[38]. In the case when the submanifold changes quickly, we would expect smaller

weights for approximation based on historical data and thus a smaller α. In contrast,

a slowly evolving submanifold requires a larger α. In our experiments, α ranges from

0.8 to 0.95. ε controls the data fit error, which varies from problem to problem

according to the smoothness of the submanifold underlying the data and the noise

variance. Since the tree’s complexity is controlled and pen(M) in (5.3) is roughly

on the order of O(1), we usually set µ close to ε.

5.4 Changepoint detection

We are interested in detecting changes to the submanifold that arise abruptly and

change the statistics of the data. When the submanifold varies slowly in time,

MOUSSE described in Section 5.3 can track the submanifold and produce a se-

quence of stationary tracking errors. When an abrupt change occurs, MOUSSE loses

track of the manifold and results in an abrupt increase in tracking errors. Hence,

using tracking errors, we can develop a changepoint detection algorithm to detect

abrupt changes in the submanifold.

5.4.1 CUSUM procedure

We adopt the widely used statistical CUSUM procedure [60, 62] for changepoint

detection. In particular, we assume that ν0 is a normal distribution with mean µ0

and variance σ2
0, and ν1 is a normal distribution with mean µ1 and the same variance

σ2
0. Then we can formulate the changepoint detection problem as the following

84

hypothesis test:

H0 : e1, . . . , et ∼ N (µ0, σ
2
0)

H1 : e1, . . . , eκ ∼ N (µ0, σ
2
0), eκ+1, . . . , et ∼ N (µ1, σ

2
0)

We assume µ0 and σ2
0 are known since typically there is enough normal data to

estimate these parameters. (When the training phase is too short for this to be the

case, these quantities can be estimated online, as described in [61].) However, we

assume µ1 is unknown since the magnitude of the changepoint can vary from one

instance to another. In forming the detection statistic, we replace µ1 by its maximum

likelihood estimate (for each fixed changepoint time κ = k):

µ̂1 =
St − Sk
t− k

,

where

St ,
t∑
i=1

ei.

This leads to the generalized CUSUM procedure, which computes the CUSUM statis-

tic at each time t and stops the first time when the statistic hits threshold b:

T = inf

{
t ≥ 1 : max

t−w≤k<t

|(St − Sk)− µ0(t− k)|
σ0

√
t− k

≥ b

}
, (5.24)

where w is a time-window length such that we only consider the most recent w

errors for changepoint detection, and the threshold b is chosen to control the false-

alarm-rate, which is characterized using average-run-length (ARL) in the changepoint

detection literature [71]. This threshold choice is detailed in Section 5.5.3.

5.4.2 Distribution of et

In deriving the CUSUM statistics we have assumed that et are i.i.d. Gaussian dis-

tributed. A fair question to ask is whether et is truly Gaussian distributed, or even a

85

−4 −2 0 2 4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Quantile of Standard Gaussian

Q
ua

nt
ile

 o
f e

t
Figure 5.3: Q-Q plot of et, for a D = 100 submanifold.

good statistic to use. Consider the complete data case. Typically we can assume the

high-dimensional tracking error is well-approximated by a Gaussian random vector:

êt , PM̂t
(xt)− xt. (5.25)

In general êt has non-zero mean, since we approximate the manifold using a union

of subspaces. Moreover, due to curvature of the manifold, in general each dimension

of the error vector, [êt]m, are not independent and the variances of [êt]m may not

be identical. As a result, we cannot claim et = ‖êt‖2 is χ2 or even non-central χ2

distributed; in fact, no closed form expression for the distribution of et exists.

However, a Gaussian distribution is a good approximation for the distribution

of et, since when D is large, et averages over errors across D dimensions. The QQ-

plot of et from one of our numerical examples in Section 5.6 when D = 100 is

shown in Figure 5.3. We will also demonstrate in Section 5.6.4 that the theoretical

approximation for ARL using Gaussian assumption for et is quite accurate.

5.5 Performance Analysis

In this section, we first study the performance of MOUSSE, and then study the

choice for the threshold parameter of the changepoint detection algorithm and pro-

86

vide theoretical approximations. A complete proof of convergence of MOUSSE (or

GROUSE or PETRELS) is hard since the space of submanifold approximations we

consider is non-convex. Nevertheless, we can still characterize several aspects of our

approach.

In Sections 5.5.1 below, we assume that there is complete data, and we restrict

our approximation to a single subspace so that Kt = 1. Assume the mean and

covariance matrix of the data are given by c∗ and Σ∗, respectively. Assume the

covariance matrix has low-rank structure: Σ∗ = diag{λ∗1, . . . , λ∗D} with λm = δ∗ for

m = d+ 1, . . . , D.

5.5.1 Optimality of estimator for c∗

When there is only one subspace and the data are complete, the cost function (5.3)

without the penalty term becomes

min
U,c

t∑
i=1

αt−i‖(I−UU>)(xi − c)‖2. (5.26)

By writing each term as ‖(I−UU>)(xi − c)‖2 = ‖(I−UU>)(xi − x̄ + x̄− c)‖, we

can write the cost function as

tr[(I −UU>)S(I−UU>)] +
1− αt

1− α
(x̄− c)>(I−UU>)(x̄− c), (5.27)

where

x̄ =
t∑
i=1

αt−ixi, S =
t∑
i=1

αt−i(xi − x̄)(xi − x̄)>. (5.28)

Since the second term in (5.27) is quadratic in c, it is minimized by c = x̄. Also

note that in this case the optimization problem (5.3) decouples in U and c. Since

our online update for ct is given by ct+1 = αct + (1− α)xt, we have

ct = (1− α)
t∑
i=1

αt−ixi + αtc0,

87

where the term αtc0 is a bias introduced by initial condition c0. Since E{xt} = c∗,

E{ct} → (1 − α) · 1
1−αc∗ = c∗. Hence our estimator for c is proportional to the

minimizer for (5.3) and is asymptotically unbiased.

5.5.2 MOUSSE tracking error scaling with level

As mentioned earlier, our multiscale subset model is closely related to geometric

multiresolution analysis (GMRA) [2]. In that work, the authors characterize the fa-

vorable approximation capabilities of the proposed multiscale model. In particular,

they prove that the magnitudes of the geometric wavelet coefficients associated with

their algorithm decay asymptotically as a function of scale, so a collection of data

lying on a smooth submanifold can be well-approximated with a small number (de-

pending on the submanifold curvature) of relatively large geometric wavelets. These

geometric wavelets are akin to the leaf nodes in our approximation, so the approxi-

mation results of [2] suggest that our model admits accurate approximations of data

on smooth submanifolds with a small number of leafs.

5.5.3 Choice of threshold for changepoint detection

In accordance with standard changepoint detection notation, denote by E∞ the

expectation when there is no change, i.e., EH0 , and by Ek the expectation when

there is a changepoint at κ = k, i.e., EH1,κ=k. The performance metric for a

changepoint detection algorithm is typically characterized by expected detection

delay supk≥0 Ek{T − k|T > k} and the average-run-length (ARL) E∞{T} [71].

Typically we use E0{T} as a performance metric since it is an upper bound for

supk≥0 Ek{T − k|T > k}. Note that the CUSUM statistic (5.24) is equivalent to

T = inf{t ≥ 1 : max
t−w≤k<t

|S̃t − S̃k|√
t− k

≥ b, } (5.29)

88

where S̃t =
∑t

i=1(ei − µ0)/σ0. Under H0, we have (ei − µ0)/σ0 i.i.d. Gaussian

distributed with zero mean and unit variance. Using the results in [72], we have the

following approximation. When b→∞,

E∞{T} ∼ (2π)1/2 exp{b2/2}
b
∫ b

0
xν2(x)dx

, (5.30)

where ν(x) = (2/x)[Φ(x/2)−0.5]
(x/2)Φ(x/2)+φ(x)/2

[90], φ(x) and Φ(x) are the pdf and cdf of the nor-

mal random variable with zero mean and unit variance. We will demonstrate in

Section 5.6.4 that this asymptotic approximation is fairly accurate even for finite b,

which allows us to choose the changepoint detection threshold to achieve a target

ARL without parameter tuning.

5.6 Numerical Examples

In this section, we present several numerical examples, first based on simulated data,

and then real data, to demonstrate the performance of MOUSSE in tracking a sub-

manifold and detecting changepoints. We also verify that our theoretical approxi-

mation to ARL in Section 5.5.3 is quite accurate.

5.6.1 Tracking a static submanifold

We first study the performance of MOUSSE tracking a static submanifold. The

dimension of the submanifold is D = 100 and the intrinsic dimension is d = 1.

Fixing θ ∈ [−2, 2], we define v(θ) ∈ RD with its n-th element

[v(θ)]n = 1/
√

2πe−(zn−θ)2/(2γ2), (5.31)

where γ = 0.6, and zn = −2+4n/D, n = 1, . . . , 100, corresponds to regularly spaced

points between −2 and 2. This static submanifold is sampled by sampling different

θ ∈ [−2, 2] and generating corresponding points on the submanifold according to

89

(5.31). The observation xt is obtained from (5.1), where the noise variance is σ2 =

4×10−4. We set parameter values as α = 0.95, ε = 0.1, µ = 0.1, and use PETRELS-

FO. Figure 5.4 demonstrates that MOUSSE is able to track a static submanifold

and reach the steady state quickly from a coarse initialization. In Figure 5.4 and the

following numerical examples, the expected instantaneous fitting error is evaluated

using N = 1200 draws fromM, denoted y1, . . . ,yN and computing the Monte Carlo

estimate

E{et} ≈
1

N

N∑
i=1

d2(yi,Si), (5.32)

where Si denotes the minimum distance subset to yi.

10 0 10 1 10 2 10 32

4

6

t

K
t

10 0 10 1 10 2 10 30

0.2

0.4

t

E[
e t]

Figure 5.4: MOUSSE tracking a static submanifold with D = 100 and d = 1.

5.6.2 Tracking a slowly time varying submanifold

Next we track a slowly time varying submanifold using MOUSSE, in a similar setting

to Section 5.6.1 where D = 100 and d = 1. The submanifold is also generated using

(5.31), except that now we let γ to be time varying:

γt =

{
0.6− γ0t t = 1, 2, . . . , s
0.6− γ0(2s− t) t = s+ 1, s+ 2, . . . , 2s

(5.33)

90

where parameter γ0 controls how fast the submanifold changes. We choose γ0 =

2 × 10−4, s = 1000 with 40% missing data, and the parameters for MOUSSE are

µ = 0.1, ε = 0.1, and α = 0.9. The result of the tracking can be found in an illus-

trative video on Youtube. Snapshots of this video at time t = 250 and t = 1150 are

shown in Figure 5.1. In this display, the dashed line corresponds to the true subman-

ifold, the red lines correspond to the estimated union of subspaces, and the + signs

correspond to the past 500 samples, with darker colors corresponding to more recent

observations. From this video, it is clear that we are effectively tracking the dynam-

ics of the submanifold, and keeping the representation parsimonious so the number

of subspaces used by our model is proportional to the curvature of the submanifold,

and as the curvature increases and decreases, the number of subspaces used in our

approximation similarly increases and decreases. The number of subspaces Kt and

fitting error as a function of time are shown in Figure 5.5. The red line in Figure 5.5

corresponds to ε. Note that MOUSSE is able to track the submanifold, in that it can

maintain a stable number of leaf nodes in the approximation and meet the target

error tolerance ε.

0 500 1000 1500 2000
4

6

8

500 1000 1500 2000
0.02
0.04
0.06
0.08

0.1

t

K
t

t

ε t

Figure 5.5: MOUSSE tracking a slowly evolving submanifold with D = 100 and
d = 1. Dashed red line depicts CUSUM theoretical threshold calculated for ARL =
1000.

91

https://www.youtube.com/watch?v=-Igj-Czo8SY

5.6.3 Comparison of tracking algorithms

We also compare the performance of different tracking algorithms presented in Sec-

tion 5.3.4: GROUSE, PETRELS-GS and PETRELS-FO. We use E{et} defined in

(5.32) as a comparison metric. In comparing the three methods, we set the pa-

rameters for each tracking algorithm such that the algorithm has the best possible

performance. The comparison is displayed in Figure 5.6, where the horizontal axis is

the submanifold changing rate γ, the vertical axis is the percentage of missing data,

and the brightness of each block corresponds to E{et}. In Figure 5.6, PETRELS-FO

performs better than GROUSE and PETRELS-GS, especially with a large percent-

age of missing data. Also note that for PETRELS-FO, the optimal parameters are

fairly stable for various combinations of submanifold changing rate and percentage of

missing data: the optimal parameters are α ≈ 0.9, µ ≈ 0.2, and ε ≈ 0.1. Considering

its lower computational cost and ease of parameter tuning, we use PETRELS-FO

with MOUSSE for the remaining experiments in this chapter.

Changing rate (× 10 −4)

Pe
rc

en
ta

ge
 o

f m
is

si
ng

2 4 6 8 10

10%

30%

50%

70%

0

0.2

0.4

0.6

0.8

1

(a) E{et} of MOUSSE using
GROUSE

Changing rate (× 10 −4)

Pe
rc

en
ta

ge
 o

f m
is

si
ng

2 4 6 8 10

10%

30%

50%

70%

0

0.2

0.4

0.6

0.8

1

(b) E{et} of MOUSSE using
PETRELS-GS

Changing rate (× 10 −4)

Pe
rc

en
ta

ge
 o

f m
is

si
ng

2 4 6 8 10

10%

30%

50%

70%

0

0.2

0.4

0.6

0.8

1

(c) E{et} of MOUSSE using
PETRELS-FO

Figure 5.6: MOUSSE tracking a slowly varying submanifold using: (a) GROUSE,
(b) PETRELS-GS and (c) PETRELS-FO. Horizontal axis corresponds to rate of sub-
manifold’s change and vertical axis corresponds to fraction of data missing. Bright-
ness corresponds to E{et}.

92

5.6.4 Changepoint detection example

To verify our theoretical approximation for ARL, we perform Monte Carlo simula-

tion. Direct simulation of T to obtain E∞{T} is very time-consuming because we

typically want to choose a b such that E∞{T} is on the order of 10000. Hence we use

an indirect simulation method commonly used in changepoint detection [90]. The

indirect method is based on the fact that when there is no changepoint, for large b,

T is typically exponentially distributed. Hence, we have under H0,

P{T > m} = e−m/E
∞{T},

which means we can simulate P{T > m} for fixed m and b, and then obtain under

H0

E∞{T} = −m/ logP{T > m}. (5.34)

Using this formula, we generate 10000 Monte Carlo (MC) trials, each a slowly time-

varying submanifold of duration t = 500. Then we use MOUSSE to track the

submanifold, and obtain a sequence of errors. We form the CUSUM statistics using

this sequence of errors, and find the fraction of sequences such that

max
1≤t≤500

max
t−w≤k≤t

1

σ0

|(St − Sk)− µ0(t− k)|√
t− k

≥ b,

which is the estimate for P{T > 500}. Then we use the above formula to obtain

E∞{T}.

TABLE 5.1 shows the value of b suggested by theory for different ARLs and the

value of b computed using the MC procedure described above. For comparison, we

also obtain the ARL by treating this as a single subspace tracking problem for which

PETRELS-FO is employed. These values of b are in parentheses.

To estimate the expected detection delay, we generate instances where the γt in

93

Table 5.1: Average run length (ARL) E∞{T}.

ARL b b MC b MC b MC
Theory (0% data (20% data (40% data

missing) missing) missing)
1000 3.94 4.55 (4.28) 4.94 (4.32) 5.39 (4.38)
5000 4.35 5.26 (4.93) 5.56 (5.00) 6.00 (5.08)
10000 4.52 5.62 (5.20) 5.82 (5.27) 6.25 (5.37)

the model has an abrupt jump ∆γ at time t = 200.

γt =

{
0.6− γ0t t = 1, 2, . . . , 199
γ199 −∆γ − γ0t t = 200, 201, . . . , 400

(5.35)

Then we apply the CUSUM statistics and find the expected detection delay E0{T}

with respect to t = 200 using 10000 Monte Carlo trials. We compare the expected

detection delay of MOUSSE and the single subspace tracking method. Results cor-

responding to big (∆γ = 0.05) and small (∆γ = 0.03) magnitude of jump of γt are

given in TABLE 5.2, 5.3 respectively. Again, values in parenthesis are obtained by

using single subspace tracking. The threshold b’s are chosen according to the Monte

Carlo results given in TABLE 5.1; e.g., for the cell corresponding to ARL = 1000

and 0% missing data in TABLE 5.2 or 5.3, b should be set as 4.55 for MOUSSE and

4.28 for the single subspace method. TABLE 5.2, 5.3 demonstrate that MOUSSE

has much smaller expected detection delay than a single subspace method.

5.6.5 Real data

A video from the Solar Data Observatory, which demonstrates an abrupt emergence

of a solar flare, can be found on Youtube. The Solar Object Locator for the original

data is SOL2011-04-30T21-45-49L061C108. Also displayed is the residual êt of (5.25)

obtained using MOUSSE, which clearly shows peaks in the vicinity of the solar flare.

A frame from this dataset during a solar flare is shown in Figure 5.7a. The frame

94

https://www.youtube.com/watch?v=_sNZ_bw0NZw

Table 5.2: Detection delay when jump of γt is ∆γ = 0.05.

ARL delay delay delay
(0% data (20% data (40% data
missing) missing) missing)

1000 2.28 (19.81) 2.43 (19.80) 2.87 (20.25)
5000 2.39 (24.70) 2.58 (24.70) 3.15 (25.22)
10000 2.46 (27.05) 2.65 (27.05) 3.28 (27.41)

Table 5.3: Detection delay when jump of γt is ∆γ = 0.03.

ARL delay delay delay
(0% data (20% data (40% data
missing) missing) missing)

1000 3.41 (32.71) 4.53 (32.97) 6.84 (33.57)
5000 4.23 (43.25) 5.68 (44.02) 8.67 (44.10)
10000 4.79 (47.96) 6.27 (48.61) 9.52 (49.03)

is of size 232 × 292 resulting in 67744 dimensional online data. To reduce difficulty

of parameter tuning, we scale the pixel intensities in the dataset by multiplying

the data by a factor of 10−4 to be consistent with the scale of our simulated data

experiments. The parameters we use are ε = 0.3, µ = 0.3, and α = 0.85. The video

and the snapshots in Figure 5.7 demonstrate that MOUSSE can not only detect the

emergence of a solar flares but also localize the flare by presenting êt, and these

tasks are accomplished far more effectively with MOUSSE (even with d = 1) than

with a single subspace. Note that with the single subspace tracking, the residual

norm e(t) is not a stationary time series prior to the flare and thus poorly suited for

changepoint detection. In the original images, the background solar images has bright

spots that are slowly and changing shape, which makes detection based on simple

background subtraction incapable of detecting small transient flares. In contrast,

with our approach, with Kt around 10, the underlying manifold structure is better

95

tracked and thus yields more obvious error e(t) when anomaly occurs.

(a) Snapshot of original SDO
data at t = 227

(b) MOUSSE residual at t =
227

(c) Single subspace tracking
residual at t = 227

50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

t

e t

(d) et from MOUSSE

50 100 150 200 250 300
0

5

10

15

20

25

t

C
U

SU
M

 st
at

s

(e) CUSUM stats from
MOUSSE

50 100 150 200 250 300
0

5

10

15

t

e t
(f) et from single sub-
space tracking

50 100 150 200 250 300
0

20

40

60

80

100

t

C
U

SU
M

 st
at

s

(g) CUSUM stats from
single subspace tracking

Figure 5.7: Detection of solar flare at t = 227: (a) snapshot of original SDO
data at t = 227; (b) MOUSSE residual êt, which clearly identifies an outburst of
solar flare; (c) single subspace tracking residual êt, which gives a poor indication of
the flare; (d) e(t) for MOUSSE which peaks near the flare around t = 227; (e) the
CUSUM statistic for MOUSSE; (f) e(t) for single subspace tracking; (g) the CUSUM
statistic for single subspace tracking. Using a single subspace gives much less reliable
estimates of significant changes in the statistics of the frames.

Our second real data example is related to automatic identity theft detection. The

basic idea is that consumers have typical spending patterns which change abruptly

after identity theft. Banks would like to identify these changes as quickly as pos-

sible without triggering numerous false alarms. To test MOUSSE on this high-

dimensional changepoint detection problem, we examined the E-commerce transac-

tion history of people in a dataset used for a 2008 UCSD data mining competition

at http://www.cs.purdue.edu/commugrate/data_access/all_data_sets_more.

php?search_fd0=20. For each person in this dataset, there is a time series of trans-

actions. For each transaction we have a 31-dimensional real-valued feature vector and

96

http://www.cs.purdue.edu/commugrate/data_access/all_data_sets_more.php?search_fd0=20
http://www.cs.purdue.edu/commugrate/data_access/all_data_sets_more.php?search_fd0=20

a label of whether the transaction is “good” (0) or “bad” (1). The full dataset was

generated for a generic anomaly detection problem, so it generally is not appropriate

for our setting. However, some of these transaction timeseries show a clear change-

point in the labels, and we applied MOUSSE to these timeseries. In particular, we

use MOUSSE to track the 31-dimensional feature vector and detect a changepoint,

and compare this with the “ground truth” changepoint in the label timeseries. The

effect of this for one person’s transaction history is displayed in Figure 5.8. We see

that while MOUSSE does not generate particularly large spikes in et, the associated

CUSUM statistic shows a marked increase near t = 70, when the labels (not used by

MOUSSE) change from 0 (good) to 1 (bad).

K
t

e t
C

U
SU

M

20 40 60 80 100

20 40 60 80 100

20 40 60 80 100

20 40 60 80 100

6

8

10

0

0.05

0.1

0

2

4

0

0.5

1

la
be

l

t

Figure 5.8: Credit card user data experiments. (a) Number of leaves used by
MOUSSE. (b) MOUSSE residual norm. (c) MOUSSE CUSUM statistic (solid blue
line) and CUSUM theoretical threshold calculated for ARL = 1000 (dashed red line).
(d) Ground truth transaction label with changepoint near where CUSUM statistic
starts increasing.

97

5.7 Conclusions

This chapter describes a novel multiscale method for online tracking of high-dimensional

data on a low-dimensional submanifold, and using the tracking residuals to perform

fast and robust changepoint detection. Changepoint detection is an important subset

of anomaly detection problems due to the ever-increasing volume of streaming data

which must be efficiently prioritized and analyzed. The multiscale structure at the

heart of our method is based on a Geometric MultiResolution Analysis which facili-

tates low-complexity piecewise-linear approximations to a manifold. The multiscale

structure allows for fast updates of the manifold estimate and flexible approximations

which can adapt to the changing curvature of a dynamic submanifold. These ideas

have the potential to play an important role in analyzing large volumes of streaming

data, which arises in remote sensing, credit monitoring, and network traffic analysis.

While the algorithm proposed in this chapter has been focused on unions of sub-

spaces, an important open question is whether similar techniques could be efficiently

adopted based on sparse covariance matrix selection [26, 49]. The resulting approxi-

mation space may no longer correspond to a low-dimensional submanifold, but such

structures provide good representations of high-dimensional data in many settings,

and our future work includes tracking the evolution of a mixture of such structures.

Issues related to non-Gaussian observation models, inverse problem settings, dynam-

ical models, and optimal selection of the statistic used for changepoint detection (i.e.

alternatives to et, as considered in [89]) all pose additional interesting open problems.

98

Appendix A

Supplementary Proofs for Chapter 2

A.1 Proof of high SNR case

Proof of Theorem 1 We have

det Σ1 = (σ2)n−d
∏d

i=1 (λ1,i + σ2) ,

det Σ2 = (σ2)n−d
∏d

i=1 (λ2,i + σ2) .

Let the SVD of U1,∩Λ1,∩U
>
1,∩+U1,\Λ1,\U

>
1,\+U2,∩Λ2,∩U

>
2,∩+U2,\Λ2,\U

>
2,\ be ZΛZ>,

where Λ = diag{λ1, . . . , λ2d−r}. Then,

det

(
Σ1 + Σ2

2

)
= (σ2)n−2d+r

2d−r∏
i=1

(
λi
2

+ σ2

)
.

Substituting the above into the Bhattacharyya bound, we have

Pe ≤
1

2
(σ2)

d−r
2 ·


√∏d

i=1 (λ1,i + σ2)
∏d

i=1 (λ2,i + σ2)∏2d−r
i=1

(
λi
2

+ σ2
)


1
2

=(σ2)
d−r
2 · 2

2d−r
2
−1


√∏d

i=1 λ1,i

∏d
i=1 λ2,i∏2d−r

i=1 λi


1
2

+ o
(

(σ2)
d−r
2

)
.

(A.1)

99

Our objective is to expand
∏2d−r

i=1 λi in terms of principal angles. Since the image of

U1,∩ (or U2,∩) is orthogonal to U1,\ and U2,\,

2d−r∏
i=1

λi = pdet(U1,∩Λ1,∩U
>
1,∩ + U2,∩Λ2,∩U

>
2,∩) · pdet([U1,\Λ

1
2

1,\ U2,\Λ
1
2

2,\][U1,\Λ
1
2

1,\ U2,\Λ
1
2

2,\]
>)

= pdet
(
U1,∩Λ1,∩U

>
1,∩ + U2,∩Λ2,∩U

>
2,∩
)
· det([U1,\Λ

1
2

1,\ U2,\Λ
1
2

2,\]
>[U1,\Λ

1
2

1,\ U2,\Λ
1
2

2,\]),

where we assume n ≥ 2(d−r) in order to derive the second equality, which simplifies

as follows:

det([U1,\Λ
1
2

1,\ U2,\Λ
1
2

2,\]
>[U1,\Λ

1
2

1,\ U2,\Λ
1
2

2,\])

= det
([

Λ1,\Λ
1
2

1,\U
>
1,\U2,\Λ

1
2

2,\Λ
1
2

2,\U
>
2,\U1,\Λ

1
2

1,\Λ2,\

])
= det(Λ1,\) det

(
Λ2,\ −Λ

1
2

2,\U
>
2,\U1,\Λ

1
2

1,\Λ
−1
1,\Λ

1
2

1,\U
>
1,\U2,\Λ

1
2

2,\

)
= det(Λ1,\) det

(
Λ

1
2

2,\(I−U>2,\U1,\U
>
1,\U2,\)Λ

1
2

2,\

)
=

d−r∏
i=1

λ1,\,i ·
d−r∏
i=1

λ2,\,i ·
d∏

i=r+1

sin2 θi.

(A.2)

The last equality follows from the observation that the eigenvalues of U>2,\U1,\U
>
1,\U2,\

are cos2 θr+1, . . . , cos2 θd. The theorem now follows by substituting Eq. (A.2) into

Eq. (A.1).

A.2 Proof of Low SNR case

We first state and prove (for completeness) two preliminary lemmas that are needed

to characterize classification error.

100

Lemma 14. Let D ∈ Rn×n be any positive semi-definite matrix with all eigenvalues

smaller than 1, then

tr(D)− 1

2
tr(D2) ≤ ln det(In + D) ≤ tr(D)− 1

4
tr(D2).

Proof. Denote the nonnegative eigenvalues of D � 0 as d1, . . . , dn, where d1, . . . , dn ≤

1. Then ln det(In+D) = ln
∏n

i=1(1+di) =
∑n

i=1 ln(1+di). Since x− x2

2
≤ ln(1+x) ≤

x − x2

4
for all x ∈ [0, 1], we obtain

∑
i di −

d2i
2
≤ ln det(In + D) ≤

∑
i di −

d2i
4

, which

reduces to

tr(D)− 1

2
tr(D2) ≤ ln det(In + D) ≤ tr(D)− 1

4
tr(D2).

This bound is very tight when all the di’s approach 0.

Lemma 15. Suppose U ∈ Rn×d,V ∈ Rn×d are two orthonormal bases and that

Φ ∈ Rd×d, Ψ ∈ Rd×d are diagonal with nonnegative decreasing diagonal elements

φ1, . . . , φd and ψ1, . . . , ψd respectively. Denote the i-th principal angle between U and

V as θi where i = 1, . . . , d. Then

φdψd
∑
i

cos2 θi ≤ tr(UΦU>VΨV >) ≤ φ1ψ1

∑
i

cos2 θi.

Proof. Let the Singular Value Decomposition of U>V be JCH>, then tr(U>VV>U) =

tr(C2) =
∑

i cos2 θi. We have

tr(UΦU>VΨV>) = tr(ΦU>VΨV>U)

= tr(ΦJCH>ΨHCJ>) = tr(J>ΦJCH>ΨHC).

For any two positive semidefinite matrices A,B ∈ Rm×m, let the maximum and

minimum eigenvalues of A be λ1(A), λm(A) respectively, then by [51]

λm(A) tr(B) ≤ tr(AB) ≤ λ1(A) tr(B).

101

Hence,

tr(UΦU>VΨV>) ≤ φ1 tr(CH>ΨHC) = φ1 tr(H>ΨHC2)

≤ φ1ψ1 tr(C2) = φ1ψ1

∑
i

cos2 θi.

The lower bound can be proved in the same way. This bound becomes tight when

the diagonal elements of Φ and Ψ are uniform.

Proof of Theorem 2 We are now ready to prove theorem 2. We expand K in

Eq. (2.4) as

K =
1

2
ln det

(
Σ1 + Σ2

2

)
− 1

4
(ln det Σ1 + ln det Σ2). (A.3)

The second term becomes:

− 1

4

[
d∑
i=1

ln

(
1 +

λ1,i

σ2

)
+

d∑
i=1

ln

(
1 +

λ2,i

σ2

)]
− n

2
ln(σ2), (A.4)

and we use Lemma 14 to bound the first term. Note that

1

2
ln det

(
Σ1 + Σ2

2

)
=

1

2
ln det

[
σ2

(
I +

U1Λ1U
>
1 + U2Λ2U

>
2

2σ2

)]

=
n

2
ln(σ2) +

1

2
ln det

(
I +

U1Λ1U
>
1 + U2Λ2U

>
2

2σ2

)
.

(A.5)

Let D , U1Λ1U>1 +U2Λ2U>2
2σ2 . We apply Lemma 14 to bound 1

2
ln det

(
Σ1+Σ2

2

)
:

n

2
ln(σ2) +

1

2

[
tr(D)− 1

2
tr(D2)

]
≤ 1

2
ln det

(
Σ1 + Σ2

2

)

≤ n

2
ln(σ2) +

1

2

[
tr(D)− 1

4
tr(D2)

]
,

(A.6)

102

Expanding tr(D) gives

n

2
ln(σ2) +

1

4

[
d∑
i=1

λ1,i

σ2
+

d∑
i=1

λ2,i

σ2

]
− 1

4
tr(D2) ≤ 1

2
ln det

(
Σ1 + Σ2

2

)

≤ n

2
ln(σ2) +

1

4

[
d∑
i=1

λ1,i

σ2
+

d∑
i=1

λ2,i

σ2

]
− 1

8
tr(D2).

(A.7)

Note that

tr(D2) =
1

4σ4

(d∑
i=1

λ2
1,i +

d∑
i=1

λ2
2,i + 2 tr(U1Λ1U

>
1 U2Λ2U

>
2)

)
. (A.8)

Envoking Lemma 15 to bound the last term of the above:

tr(U1Λ1U
>
1 U2Λ2U

>
2) ≥ λ1,dλ2,d

∑
i

cos2 θi

tr(U1Λ1U
>
1 U2Λ2U

>
2) ≤ λ1,1λ2,1

∑
i

cos2 θi

(A.9)

Combining Eq. (A.4) to (A.9), we obtain upper and lower bounds on K,

K ≤1

4

[
d∑
i=1

λ1,i

σ2
+

d∑
i=1

λ2,i

σ2

]
− 1

32σ4

(d∑
i=1

λ2
1,i +

d∑
i=1

λ2
2,i + 2λ1,dλ2,d

d∑
i=1

cos2 θi

)

− 1

4

[
d∑
i=1

ln

(
1 +

λ1,i

σ2

)
+

d∑
i=1

ln

(
1 +

λ2,i

σ2

)]

=
1

4

[
d∑
i=1

λ1,i

σ2
− 1

2

d∑
i=1

(
λ1,i

2σ2

)2

−
d∑
i=1

ln

(
1 +

λ1,i

σ2

)]
− 1

16σ4
λ1,dλ2,d

d∑
i=1

cos2 θi

+
1

4

[
d∑
i=1

λ2,i

σ2
− 1

2

d∑
i=1

(
λ2,i

2σ2

)2

−
d∑
i=1

ln

(
1 +

λ2,i

σ2

)]

,
1

σ4

(
c2 −

1

16
λ1,dλ2,d

d∑
i=1

cos2 θi

)
.

(A.10)

103

K ≥1

4

[
d∑
i=1

λ1,i

σ2
+

d∑
i=1

λ2,i

σ2

]
− 1

16σ4

(d∑
i=1

λ2
1,i +

d∑
i=1

λ2
2,i + 2λ1,1λ2,1

d∑
i=1

cos2 θi

)

− 1

4

[
d∑
i=1

ln

(
1 +

λ1,i

σ2

)
+

d∑
i=1

ln

(
1 +

λ2,i

σ2

)]

=
1

4

[
d∑
i=1

λ1,i

σ2
−

d∑
i=1

(
λ1,i

2σ2

)2

−
d∑
i=1

ln

(
1 +

λ1,i

σ2

)]
− 1

8σ4
λ1,1λ2,1

d∑
i=1

cos2 θi

+
1

4

[
d∑
i=1

λ2,i

σ2
−

d∑
i=1

(
λ2,i

2σ2

)2

−
d∑
i=1

ln

(
1 +

λ2,i

σ2

)]

,
1

σ4

(
c3 −

1

8
λ1,dλ2,d

d∑
i=1

cos2 θi

)
.

(A.11)

Negating K and exponentiating gives theorem 2.

A.3 Proof of Moderate SNR Case

Proof of Lemma 3 consider the function

f(λi) = ln(1 + λi)− ln(1 + p)− 1

1 + p
(λi − p) +

1

(1 + p)2
(λi − p)2,

defined in [0, p]. Its derivative is

f ′(λi) =
1

1 + λi
− 1

1 + p
+

2(λi − p)
(1 + p)2

=
(p− λi)(p− 1− 2λi)

(1 + λi)(1 + p)2
,

which is positive in
[
0, p−1

2

)
and negative in

(
p−1

2
, p
]
. Therefore, f(λi) is mono-

tonically increasing in
[
0, p−1

2

)
and decreasing in

(
p−1

2
, p
]
. Further, f(p) = 0 and

f(0) = − ln(1 + p) + p
1+p

+ p2

(1+p)2
whose sign depends on the value of p. The shape

of f(λi) is now characterized. There exists L < p−1
2

such that f(λi) ≥ 0 when

λi ∈ [L, p].

104

Before proving theorem 4, we need to bound λi using Weyl’s inequality [44].

Lemma 16 (Weyl’s inequality [44]). Let M and P be two n × n Hermitian matri-

ces, with eigenvalues µ1 ≥ · · · ≥ µn and ν1 ≥ · · · ≥ νn respectively. Denote the

eigenvalues of M + P by γ1 ≥ · · · ≥ γn. Then

max(µi + νn, νi + µn) ≤ γi ≤ min(µi + ν1, νi + µ1).

Proof of Theorem 4 Since p
c(p)
≤ λ1,i

σ2 ,
λ2,i
σ2 ≤ p, by the Weyl’s inequality, p

2c(p)
=

p/c(p)+0
2

≤ λi ≤ p+p
2

= p. Further, since 1 ≤ c(p) ≤ p
2L(p)

, we have λ1, . . . , λ2d−r ∈

[L(p), p]. By definition of L(p), we can invoke Eq. (2.7) in Lemma 3 to obtain

ln det

(
Σ1 + Σ2

2

)
=

2d−r∑
i=1

ln(1 + λi) + n ln(σ2)

≥ (2d− r) ln(1 + p) +
tr D− p(2d− r)

1 + p
− tr D2 − 2p tr D + p2(2d− r)

(1 + p)2
+ n ln(σ2).

(A.12)

Notice tr D = 1
2

∑
i

(
λ1,i
σ2 +

λ2,i
σ2

)
, and by Eq. (A.8) and (A.9),

tr D2 ≤ 1

4σ4

(∑
i

λ2
1,i + λ2

2,i + 2λ1,1λ2,1

∑
i

cos2 θi

)
.

Substituting these into Eq. (A.12), we get

ln det

(
Σ1 + Σ2

2

)
≥n ln(σ2) + (2d− r)

[
ln(1 + p)− p

1 + p
− p2

(1 + p)2

]

+
1 + 3p

2σ2(1 + p)2

(∑
i

λ1,i + λ2,i

)

− 1

4σ4(1 + p)2

(∑
i

λ2
1,i + λ2

2,i + 2λ1,1λ2,1

∑
i

cos2 θi

)
105

Substituting the above into the Bhattacharyya bound (2.4) yields an upper bound

on Pe, of the form given in Theorem 4. In particular,

c4 =
1

2

[
ln(1 + p)− p

1 + p
− p2

(1 + p)2

]
,

and

c5 =− 1 + 3p

4σ2(1 + p)2

∑
i

(λ1,i + λ2,i) +

∑
i λ

2
1,i + λ2

2,i

8σ4(1 + p)2

+
1

4

∑
i

[
ln

(
1 +

λ1,i

σ2

)
+ ln

(
1 +

λ2,i

σ2

)]
.

A.4 Analysis of NSC

Proof of Lemma 5 Since that the joint distribution of [ai aj]
>, [bi bj]

>, [ai bj]
> and

[ai + bi ai− bi]> are all Gaussian, it suffices to show that all covariance are diagonal.

For any i 6= j,

[
ai
aj

]
∼ N

([
αi
αj

]
, σ2I2

) [
bi
bj

]
∼ N

([
cos θiαi
cos θjαj

]
, σ2I2

)
[
ai
bj

]
∼ N

([
αi

cos θjαj

]
, σ2I2

)
.

For any i, [
ai
bi

]
∼ N

([
αi

cos θiαi

]
, σ2

[
1 cos θi

cos θi 1

])
[
ai + bi
ai − bi

]
∼ N

([
(1 + cos θi)αi
(1− cos θi)αi

]
,

2σ2

[
(1 + cos θi) 0

0 (1− cos θi)

])
,

(A.13)

which concludes the proof.

106

Proof of Lemma 7 As σ2 → 0, the mean-covariance ratios of both ai + bi and

ai − bi tend to infinity. Therefore, applying Lemma 6 to Eq. (A.13) (see proof of

Lemma 5), we have (ai + bi)(ai − bi) ∼ N
(
sin2 θiα

2
i , 4σ

2 sin2 θi(α
2
i + σ2)

)
. Applying

the independence between (ai + bi)(ai − bi) and (aj + bj)(aj − bj) (i 6= j), we obtain

the desired result by summing the mean and variance over all i.

Proof of Theorem 8 We prove the theorem by deriving upper bounds on Pr(C2|C1,α)

and Pr(C1|C2,α).

Pr(C2|C1,α) = Pr

(∑
i

(ai + bi)(ai − bi) ≤ 0

)

= Pr

∑i(ai + bi)(ai − bi)−
∑

i sin
2 θiα

2
i

2σ
√∑

i sin
2 θi(α2

i + σ2)
≤ −

∑
i sin

2 θiα
2
i

2σ
√∑

i sin
2 θi(α2

i + σ2)

 .

(A.14)

As σ → 0, the term to the left of “≤” in the last line of Eq. (A.14) is standard

normal distributed. Therefore we can invoke the Gaussian tail bound to obtain

Pr(C2|C1,α)

= Pr

∑i(ai + bi)(ai − bi)−
∑

i sin
2 θiα

2
i

2σ
√∑

i sin
2 θi(α2

i + σ2)
≥

∑
i sin

2 θiα
2
i

2σ
√∑

i sin
2 θi(α2

i + σ2)



≤ 1

2
exp

[
−

(∑
i sin

2 θiα
2
i

)2

8σ2
∑

i sin
2 θi(α2

i + σ2)

]
.

(A.15)

Pr(C1|C2,α) can be upper bounded in the same manner:

Pr(C1|C2,α) ≤ 1

2
exp

[
−

(∑
i sin

2 θiα
2
i

)2

8σ2
∑

i sin
2 θi(α2

i + σ2)

]
. (A.16)

107

Therefore,

Pe =
1

2

∫
Pr(C2|C1,α)p(α)dα +

1

2

∫
Pr(C1|C2,α)q(α)dα

≤
∫

1

2
exp

[
−

(∑
i sin

2 θiα
2
i

)2

8σ2
∑

i sin
2 θi(α2

i + σ2)

]
p(α) + q(α)

2
dα

,
∫
E(θ,α, σ)

p(α) + q(α)

2
dα,

(A.17)

which concludes the proof.

A.5 Proof of Proposition 1

Observe that

‖X>PX−T‖2
F = ‖(X> ⊗X>) vec(P)− vec(T)‖2

2,

is a least squares problem with minimizer

vec(P?) = (X> ⊗X>)† vec(T) = X>,

which can be rearranged to give

P? = (X>)†T[(X>)†]> = (XX>)−1XTX>(XX>)−1 � 0.

108

Bibliography

[1] K. Abed-Meraim, A. Chkeif, Y. Hua, and S. Attallah. On a class of orthonormal
algorithms for principal and minor subspace tracking. J. of VLSI Sig Proc.,
31:57–70, 2002.

[2] W. Allard, G. Chen, and M. Maggioni. Multi-scale geometric methods for data
sets II: Geometric multi-resolution analysis. App. and Comp. Harmonic Ana.,
32(3):435 – 462, May 2011.

[3] L. A. Aroian. The probability function of the product of two normally dis-
tributed variables. The Annals of Mathematical Statistics, pages 265–271, 1947.

[4] A. Ashikhmin and R. Calderbank. Grassmannian packings from operator reed-
muller codes. IEEE transactions on Information Theory, 56(11):5689–5714,
2010.

[5] L. Balzano, R. Nowak, and B. Recht. Online identification and tracking of sub-
spaces from highly incomplete information. In Proc. Allerton Conf. on Comm.,
Control and Comp., pages 704 – 711, Sept. 2010.

[6] A. Barron, J. Rissanen, and B. Yu. Minimum description length principle in
coding and modeling. IEEE Trans. Info. Theory, 44(6):2743–2760, October
1998.

[7] P. Bartlett. The sample complexity of pattern classification with neural net-
works: the size of the weights is more important than the size of the network.
IEEE Transactions on Information Theory, 44(2):525–536, 1998.

[8] Peter L. Bartlett and Shahar Mendelson. Rademacher and gaussian complexi-
ties: Risk bounds and structural results. Journal of Machine Learning Research,
3:463–482, 2002.

[9] R. Basri and D. W. Jacobs. Lambertian reflectance and linear subspaces.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(2):218–
233, 2003.

[10] M. Basseville and I. V. Nikiforov. Detection of abrupt changes: Theory and
applications. Prentice Hall, April 1993.

109

[11] P. N. Belhumeur, J. P. Hespanha, and D. Kriegman. Eigenfaces vs. fisherfaces:
Recognition using class specific linear projection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19(7):711–720, 1997.

[12] M. Belkin. Problems of Learning on Manifolds. PhD thesis, University of
Chicago, 2003.

[13] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and
data representation. Neural computation, 15(6):1373–1396, 2003.

[14] M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geomet-
ric framework for learning from labeled and unlabeled examples. Journal of
Machine Learning Research, 7:2399–2434, 2006.

[15] A. Bellet and A. Habrard. Robustness and generalization for metric learning.
Neurocomputing, 151(14):259–267, 2015.

[16] A. Bhattacharyya. On a meausre of divergence between two statistical popula-
tions defined by their probability distributions. Bulletin of the Calcutta Math-
ematical Society, 45:99–109, 1943.

[17] L. Breiman, J. Friedman, R. Olshen, and C. J. Stone. Classification and Re-
gression Trees. Wadsworth, Belmont, CA, 1983.

[18] D. Chen, X. Cao, L. Wang, F. Wen, and J. Sun. Bayesian face revisited: A joint
formulation. In European Conference on Computer Vision (ECCV), 2012.

[19] D. Chen, X. Cao, F. Wen, and J. Sun. Blessing of dimensionality: High-
dimensional feature and its efficient compression for face verification. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2013.

[20] M. Chen, W. Carson, M. Rodrigues, R. Calderbank, and L. Carin. Commu-
nications inspired linear discriminant analysis. In International Conference of
Machine Learning, 2012.

[21] M. Chen, J. Silva, J. Paisley, C. Wang, D. Dunson, and L. Carin. Compres-
sive sensing on manifolds using a nonparametric mixture of factor analyzers:
Algorithm and performance bounds. IEEE Transactions on Signal Processing,
58(12):6140–6155, 2010.

[22] Y. Chi, Y. C. Eldar, and R. Calderbank. Petrels: Parallel subspace estima-
tion and tracking using recursive least squares from partial observations. IEEE
Transaction on Signal Processing, 61(23):5947–5959, 2013.

[23] D. Cohn and G. Tesauro. How tight are the vapnik-chervonenkis bounds? Neural
Computation, 4(2):249–269, 1992.

110

[24] J. A. Costa and A. O. Hero. Geodesic entropic graphs for dimension and entropy
estimation in manifold learning. IEEE Trans. Sig. Proc., 25(8):2210–2221, 2004.

[25] N. Cristianini, A. Elisseeff, J. Shawe-Taylor, and J. Kandola. On kernel-target
alignment. In Advances in Neural Information Processing Systems, 2001.

[26] A. d’Aspremont, O. Banerjee, and L. El Ghaoui. First-order methods for sparse
covariance selection. SIAM. J. Matrix Anal. & Appl, 30(56), 2008.

[27] D. Donoho. Cart and best-ortho-basis selection: A connection. Annals of Stat.,
25:1870–1911, 1997.

[28] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification (2nd Edition).
New York, NY: Wiley-Interscience, 2000.

[29] A. Edelman, T. A. Arias, and S. T. Smith. The geometry of algorithms with
orthogonality constraints. SIAM journal on Matrix Analysis and Applications,
20(2):303–353, 1998.

[30] E. Elhamifar and R. Vidal. Sparse subspace clustering. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2009.

[31] E. Elhamifar and R. Vidal. Sparse manifold clustering and embedding. In
Advances in neural information processing systems, 2011.

[32] T. Evgeniou, C. Micchelli, and M. Pontil. Learning multiple tasks with kernel
methods. Journal of Machine Learning Research, 6:615–637, 2005.

[33] K. Fukunaga. Introduction to Statistical Pattern Recognition. San Diego: Aca-
demic Press, 1990.

[34] A. Globerson and S. Roweis. Metric learning by collapsing classes. In Advances
in Neural Information Processing Systems (NIPS), 2005.

[35] J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov. Neighbourhood
components analysis. In Advances in Neural Information Processing Systems
(NIPS), 2004.

[36] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. C. Courville, and Y. Bengio.
Max-out networks. In In Proceedings of the 30th International Conference on
Machine Learning, 2013.

[37] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an
invariant mapping. In IEEE computer society conference on Computer vision
and pattern recognition, 2006.

[38] S. Haykin. Adaptive Filter Theory. Prentice Hall, 4th edition, 2001.

111

[39] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recogni-
tion. arXiv preprint arXiv:1512.03385, 2015.

[40] X. He and P. Niyogi. Locality preserving projections. In Neural information
processing systems, 2004.

[41] G. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with
neural networks. Science, 313(5786):504507, 2006.

[42] G. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov.
Improving neural networks by preventing co-adaptation of feature detectors.
arXiv preprint arXiv:1207.0580, 2012.

[43] B. M. Hochwald, T. L. Marzetta, T. J. Richardson, W. Sweldens, and R. Ur-
banke. Systematic design of unitary space-time constellations. IEEE Transac-
tions on Information Theory, 46(6):1962–1973, 2000.

[44] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University Press,
2012.

[45] J. Hu, J. Lu, and Y. Tan. Discriminative deep metric learning for face verification
in the wild. In Computer Vision and Pattern Recognition (CVPR), pages 1875–
1882, 2014.

[46] J. Huang, Q. Qiu, R. Calderbank, and G. Sapiro. Geometry-aware deep trans-
form. In International Conference on Computer Vision, 2015.

[47] S. Ji, Y. Xue, and L. Carin. Bayesian compressive sensing. IEEE Transactions
on Signal Processing, 56(6):2346–2356, 2008.

[48] W. Johnson and J. Lindenstrauss. Extensions of lipschitz mappings into a hilbert
space. In Conference in Modern Analysis and Probability, 1982.

[49] S. M. Kakade, O. Shamir, K. Sridharan, and A. Tewari. Learning exponential
families in high-dimensionals: Strong convenxity and sparsity. In Proc. of Int.
Conf. on Artificial Intel. and Stats, pages 381 – 388, 2010.

[50] J. Kappenman. A perfect storm of planetary proportions. IEEE Spectrum,
49(2):26 – 31, Feb. 2012.

[51] D. L. Kleinman and M. Athans. The design of suboptimal linear time-varying
systems. IEEE Transaction on Automatic Control, 13(2):150–159, 1968.

[52] V. Koltchinskii and D. Panchenko. Empirical margin distributions and bounding
the generalization error of combined classifiers. Annals of Statistics, 30(1):1–50,
2002.

112

[53] A. Lakhina, M. Crovella, and C. Diot. Diagnosing network-wide traffic anoma-
lies. In Proc. of SIGCOMM, 2004.

[54] K.-C. Lee and D. Kriegman. Online learning of probabilistic appearance mani-
folds for video-based recognition and tracking. In Proc. of CVPR, pages 852 –
859, 2005.

[55] M. L. McCloud and L. L. Scharf. A new subspace identification algorithm for
high-resolution doa estimation. IEEE Transactions on Antennas and Propaga-
tion, 50(10):1382–1390, 2002.

[56] R. Meir. Nonparametric time series prediction through adaptive model selection.
Machine Learning, 39:5–34, 2000.

[57] N. Merhav and M. Feder. Universal prediction. IEEE Trans. Info. Theory,
44(6):2124–2147, October 1998.

[58] B. Neyshabur, R. Tomioka, and N. Srebro. Norm-based capacity control in
neural networks arxiv preprint arxiv:1503.00036 (2015). In The 28th Conference
on Learning Theory (COLT), 2015.

[59] M. Nokleby, M. Rodrigues, and R. Calderbank. Discrimination on the grassmann
manifold: Fundamental limits of subspace classifiers. IEEE Transaction on
Information Theory, 61(4):2133–2147, 2015.

[60] E. S. Page. Continuous inspection scheme. Biometrika, 41(1/2):100 – 115, June
1954.

[61] M. Pollak and D. Siegmund. Sequential detection of a change in a normal mean
when the initial value is unknown. Annals of Stats., 19(1):394 – 416, 1991.

[62] H. V. Poor and O. Hadjiliadis. Quickest detection. Cambridge University Press,
Dec. 2008.

[63] Q. Qiu and G. Sapiro. Learning transformations for clustering and classification.
Journal of Machine Learning Research, 16:187–225, 2015.

[64] M. Qu, F. Y. Shih, J. Jing, and H. Wang. Automatic solar filament detection
using image processing techniques. Solar Physics, (1-2):119–135, 2005. DOI:
10.1007/s11207-005-5780-1.

[65] M. Raginsky, R. Willett, C. Horn, J. Silva, and R. Marcia. Sequential anomaly
detection in the presence of noise and limited feedback. IEEE Trans. Info.
Theory, 58(8):5544 – 5562, Aug. 2012.

113

[66] S. R. Rao, R. Tron, R. Vidal, and Y. Ma. Motion segmentation via robust
subspace separation in the presence of outlying, incomplete, or corrupted tra-
jectories. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 1–8, 2008.

[67] H. Reboredo, F. Renna, R. Calderbank, and M. Rodrigues. Compressive clas-
sification of a mixture of gaussians: Analysis, designs and geometrical interpre-
tation. arXiv preprint arXiv:1401.6962, 2014.

[68] F. Renna, R. Calderbank, L. Carin, and M. Rodrigues. Reconstruction of signals
drawn from a gaussian mixture via noisy compressive measurements. IEEE
Transactions on Signal Processing, 62(9):2265–2277, 2014.

[69] J. D. M. Rennie and N. Srebro. Fast maximum margin matrix factorization
for collaborative prediction. In International Conference of Machine Learning,
2005.

[70] S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear
embedding. Science, 22(5500):2323–2326, 2000.

[71] D. Siegmund. Sequential Analysis: Test and Confidence Intervals. Springer,
Aug. 1985.

[72] D. Siegmund and E. S. Venkatraman. Using the generalized likelihood ratio
statistic for sequential detection of a change-point. Annals of Stat., 23(1):255 –
271, 1995.

[73] T. Sim, S. Baker, and M. Bsat. The cmu pose, illumination, and expression (pie)
database. In IEEE International Conference on Automatic Face and Gesture
Recognition, 2002.

[74] C. Sumit, R. Hadsell, and Y. LeCun. Learning a similarity metric discrimina-
tively, with application to face verification. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), volume 1, pages 539–546, 2005.

[75] Y. Sun, Y. Chen, X. Wang, and X. Tang. Deep learning face representation by
joint identification-verification. In Advances in Neural Information Processing
Systems (NIPS), pages 1988–1996, 2014.

[76] Y. Sun, X. Wang, and X. Tang. Deep learning face representation from pre-
dicting 10,000 classes. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1891–1898, 2014.

[77] Y. Taigman, M. Yang, M. A. Ranzato, and L. Wolf. Deepface: Closing the
gap to human-level performance in face verification. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1701–1708, 2014.

114

[78] V. Tarokh, N. Seshadri, and R. Calderbank. Space-time codes for high data rate
wireless communication: Performance criterion and code construction. IEEE
Transactions on Information Theory, 44(2):744–765, 1998.

[79] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework
for nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000.

[80] V. N. Vapnik. An overview of statistical learning theory. IEEE Transactions on
Neural Networks, 10(5):988–999, 1999.

[81] M. B. Wakin. Manifold-based signal recovery and parameter estimation from
compressive measurements. submitted, 2009.

[82] L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus. Regularization of
neural networks using dropconnect. In In Proceedings of the 30th International
Conference on Machine Learning, 2013.

[83] K. Q. Weinberger and L. K. Saul. Distance metric learning for large margin
nearest neighbor classification. Journal of Machine Learning Research, 10:207–
244, 2009.

[84] J. Weston, F. Ratle, and R. Collobert. Deep learning via semi-supervised em-
bedding. International Conference on Machine Learning, 2008.

[85] R. Willett and R. Nowak. Multiscale Poisson intensity and density estimation.
IEEE Trans. Info. Theory, 53(9):3171–3187, 2007.

[86] T. Wimalajeewa, H. Chen, and P. K. Varshney. Performance limits of compres-
sive sensing-based signal classification. IEEE Transactions on Signal Processing,
60(6):2758–2770, 2012.

[87] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Yi Ma. Robust face
recognition via sparse representation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 31(2):210–227, 2009.

[88] Y. Xie, J. Huang, and R. Willett. Change-point detection for high-dimensional
time series with missing data. IEEE Journal of Selected Topics in Signal Pro-
cessing, 7(1):12–27, 2013.

[89] Y. Xie and D. Siegmund. Parallel sequential multisensor changepoint detection.
In Joint Stats. Meeting (JSM), San Diego, 2012.

[90] Y. Xie and D. Siegmund. Sequential multi-sensor change-point detection. sub-
mitted to Annals of Statis, June 2012.

[91] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric learning,
with application to clustering with side-information. In Advances in Neural
Information Processing Systems (NIPS), 2002.

115

[92] H. Xu and S. Mannor. Robustness and generalization. Machine Learning,
86(3):391–423, 2012.

[93] G. Yu and G. Sapiro. Statistical compressed sensing of gaussian mixture models.
IEEE Transactions on Signal Processing, 59(12):5842–5858, 2011.

[94] G. Yu, G. Sapiro, and S. Mallat. Solving inverse problems with piecewise lin-
ear estimators: from gaussian mixture models to structured sparsity. IEEE
Transactions on Image Processing, 21(5):2481–2499, 2012.

[95] K. Yu, W. Xu, and Y. Gong. Deep learning with kernel regularization for visual
recognition. In Advances in Neural Information Processing Systems, 2009.

[96] Z. Zha, T. Mei, M. Wang, Z. Wang, and X. Hua. Robust distance metric learn-
ing with auxiliary knowledge. In International Joint Conference on Artificial
Intelligence (IJCAI), 2009.

116

Biography

Jiaji Huang was born in Changzhou, Jiangsu, on July 27th, 1990. He received the

B.S. degree in electrical engineering from the University of Science and Technology of

China (USTC), Hefei, China, in 2011, and master’s degree in electrical and computer

engineering from Duke University, Durham, NC, in 2013. His research interest lies

in the intersection of signal processing, machine learning and information theory. He

is especially interested in understanding how the geometry of signals assists learning

tasks. His representative publications include (but not limited to):

J. Huang, Q. Qiu and R. Calderbank. The Role of Principal Angles in Subspace

Classification. IEEE transaction on Signal Processing, 64(8), 1933-1945, 2015.

L. Wang∗, J. Huang∗, X. Yuan∗, K. Krishnamurthy, J. Greenberg, V. Cevher, M.

Rodrigues, D. Brady, R. Calderbank, and L. Carin. Signal Recovery and System

Calibration from Multiple Compressive Poisson Measurements, SIAM Journal on

Imaging Sciences (SIIMS), vol. 8, no. 3, 1923-1954. (∗: equal contribution)

Y. Xie, J. Huang, and R. Willett. Changepoint detection for high-dimensional

time series with missing data, IEEE Journal of Selected Topics on Signal Processing

(J-STSP), vol. 7, no. 1, pp. 12-27. 2013.

117

J. Huang, Q. Qiu, R. Calderbank and G. Sapiro. GraphConnect : A Regularization

Framework for Neural Networks. Submitted to ICML 2016.

J. Huang, Q. Qiu, R. Calderbank and G. Sapiro. Discriminative Robust Trans-

formation Learning. Neural Information Processing Systems (NIPS), 2015.

J. Huang, Q. Qiu, R. Calderbank and G. Sapiro. Geometry-aware Deep Trans-

form. International Conference on Computer Vision (ICCV), 2015.

118

	Abstract
	List of Tables
	List of Figures
	List of Abbreviations and Symbols
	Acknowledgements
	1 Introduction
	2 Subspace Model and Linear Feature Learning
	2.1 Near Low-rank Gaussian Mixture Model
	2.2 Geometric Framework
	2.3 The MAP Classifier for a GMM
	2.3.1 The High SNR Regime
	2.3.2 The Low SNR Regime
	2.3.3 The Moderate SNR Regime
	2.3.4 Numerical Analysis of Synthetic Data

	2.4 Nearest Subspace Classifier: extending GMM
	2.4.1 Derivation of the Upper Bound
	2.4.2 Numerical Analysis of Synthetic Data

	2.5 TRAIT: Tunable Recognition Adapted to Intra-class Target
	2.5.1 Related Methods
	2.5.2 Two Properties of the TRAIT Transform
	2.5.3 Robustness to Model Mismatch

	2.6 Conclusion

	3 Local Structure and Robust Feature Learning
	3.1 Learning Robust Features from a Small Training Set
	3.2 Problem Formulation
	3.2.1 Motivation
	3.2.2 Formulation

	3.3 Theoretical Analysis
	3.3.1 Theoretical Framework
	3.3.2 (K,)-robustness and Covering Number

	3.4 An Illustrative Realization of DRT
	3.4.1 Other Distance

	3.5 Experimental Results
	3.5.1 Toy Example
	3.5.2 MNIST Classfication Using a Very Small Training Set
	3.5.3 Face Verification on LFW

	3.6 Conclusion

	4 GraphConnect: where Manifold Models Meet Deep Learning
	4.1 Generalization Error of Deep Neural Networks
	4.2 GraphConnect: A Motivating Example
	4.3 A Theoretical Perspective
	4.3.1 Analysis: Regularizing a Linear Layer
	4.3.2 Analysis: Regularizing Multiple Layers

	4.4 Algorithmic Details
	4.4.1 Choice of Bandwidth

	4.5 Experiments
	4.5.1 MNIST Revisited
	4.5.2 Comparison on SVHN and CIFAR-10
	4.5.3 Face Verification on LFW

	4.6 Conclusion

	5 Connecting Subspace and Manifold
	5.1 Motivating Application: Changepoint Detection
	5.2 Problem Formulation
	5.3 Multiscale Online Union of Subspace Estimation (MOUSSE)
	5.3.1 Multiscale union of subspaces model
	5.3.2 MOUSSE Algorithm
	5.3.3 Distances for MOUSSE
	5.3.4 Update subset parameters
	5.3.5 Tree structure update
	5.3.6 Initialization
	5.3.7 Choice of parameters

	5.4 Changepoint detection
	5.4.1 CUSUM procedure
	5.4.2 Distribution of et

	5.5 Performance Analysis
	5.5.1 Optimality of estimator for c
	5.5.2 MOUSSE tracking error scaling with level
	5.5.3 Choice of threshold for changepoint detection

	5.6 Numerical Examples
	5.6.1 Tracking a static submanifold
	5.6.2 Tracking a slowly time varying submanifold
	5.6.3 Comparison of tracking algorithms
	5.6.4 Changepoint detection example
	5.6.5 Real data

	5.7 Conclusions

	A Supplementary Proofs for Chapter 2
	A.1 Proof of high SNR case
	A.2 Proof of Low SNR case
	A.3 Proof of Moderate SNR Case
	A.4 Analysis of NSC
	A.5 Proof of Proposition 1

	Bibliography
	Biography

