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Abstract

In this paper, we show that the Keller-Segel equation equipped with zero Dirichlet Boundary

condition and actively coupled to a Stokes-Boussinesq �ow is globally well-posed provided that

the coupling is su�ciently large. We will in fact show that the dynamics is quenched after

certain time. In particular, such active coupling is blowup-suppressing in the sense that it

enforces global regularity for some initial data leading to a �nite-time singularity when the �ow

is absent.

1 Introduction

The Keller-Segel equation is a well known model of chemotaxis [20, 26]. It describes a population of
bacteria or slime mold that move in response to attractive external chemical that they themselves
secrete. The equation has interesting analytical properties: its solutions can form mass concentration
singularities in dimension greater than one (see e.g. [25] where further references can be found).
Often, chemotactic processes take place in ambient �uid. One natural question is then how the
presence of �uid �ow can a�ect singularity formation. In the case where the ambient �ow is passive
- prescribed and independent of the bacteria density - it has been shown that presence of the �ow can
suppress singularity formation. The �ows that have been analyzed include some �ows with strong
mixing properties [21], shear �ows [4], hyperbolic splitting �ow [15], and some cellular �ows [19].
In a similar vein, [9] explored advection induced regularity for the Kuramoto-Sivashinsky equation.
The paper [14] studied the phenomena of delayed blow up by transport noise in a more general
framework nonlinear PDE that includes the Keller-Segel, Fisher-KPP, and Kuramoto-Sivashinsky
equations.

The case where the �uid �ow is active - satis�es some �uid equation driven by force exerted
the bacteria - is very interesting but harder to analyze. There have been many impressive works
that analyzed such coupled systems, usually via buoyancy force; see for example [10, 11, 23, 22,
24, 27, 6, 12, 29, 28] where further references can be found. In some cases results involving global
existence of regular solutions (the precise notion of their regularity is di�erent in di�erent papers)
have been proved. These results, however, apply either in the settings where the initial data satisfy
some smallness assumptions (e.g. [11, 24, 6]) or in the systems where both �uid and chemotaxis
equations may not form a singularity if not coupled (e.g. [27, 29, 28]). Recently, in [16] and
[30], the authors analyzed Patlak-Keller-Segel equation coupled to the Navier-Stokes equation near
Couette �ow. Based on ideas of blowup suppression in shear �ows and stability of the Couette �ow,
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the authors proved that global regularity can be enforced if the amplitude of the Couette �ow is
dominantly large and if the initial �ow is very close to it.

In the recent work of the authors joint with Yao [17], the two dimensional Keller-Segel equation
coupled with the incompressible porous media via buoyancy force has been analyzed. It has been
proved that in this case, an arbitrary weak coupling constant (i.e, gravity) completely regularizes
the system, and the solutions become globally regular for any reasonable initial data. At the heart
of the proof is the analysis of potential energy, whose time derivative includes a coercive "main
term" ‖∂x1ρ‖2H−1

0

(where ρ is the bacteria density). Essentially, this H−1
0 norm has to become

small, and intuitively this implies mixing in the x1 direction. Hence the solution becomes in some
sense quasi-one-dimensional and this arrests singularity formation.

Our goal in this paper is to analyze the Keller-Segel equation in an arbitrary smooth domain in
dimensions two and three coupled to the Stokes �ow via buoyancy force:

∂tρ+ u · ∇ρ−∆ρ+ div(ρ∇(−∆)−1ρ) = 0, x ∈ Ω,

∂tu−∆u+∇p = gρez, div u = 0, x ∈ Ω,

u(0, x) = u0(x), ρ(0, x) = ρ0(x), ρ0(x) ≥ 0,

u|∂Ω = 0, ρ|∂Ω = 0.

(1.1)

Here Ω is a smooth, compact domain in Rd, d = 2 or 3. ez denotes the unit vector (0, 1) when
d = 2 or (0, 0, 1) when d = 3. g ∈ R+ is the Rayleigh number representing the buoyancy strength.
Moreover, the operator (−∆)−1 denotes the inverse homogeneous Dirichlet Laplacian corresponding
to the domain Ω. Throughout this work, we will always work with nonnegative initial density ρ0,
which is biologically relevant. In the case of the Stokes �ow, the �uid velocity is more regular, and
the equation includes time derivative that complicates matters, partly due to a loss of a �Biot-Savart
law� that relates ρ and u directly. We are unable to prove global regularity for all g, and we are not
sure if it is true. Our main result is global regularity for strong buoyancy. The proof is completely
di�erent from [17]: it relies on softer arguments and the analysis of the large buoyancy limit.

The �rst part of this paper, corresponding to Section 2, addresses the local well-posedness of
strong solutions to (1.1). Before we make precise of the notion of a strong solution, we shall �rst
introduce the following useful function spaces: to study the regularity properties of ρ, we consider

H1
0 := completion of C∞c (Ω) with respect to H1 norm,

H−1
0 := dual space of H1

0 .

Moreover, we use the traditional notation W k,p(Ω) to denote Sobolev spaces equipped with norm
‖ · ‖k,p in domain Ω. If p = 2, we in particular write Hk(Ω) = W k,2(Ω) equipped with norm ‖ · ‖k.
We will write W k,p (or Hk) instead of W k,p(Ω) (or Hk(Ω)) for simplicity if there is no confusion
over the domain involved. We also say an n-vector �eld v = (vi)i ∈ Hk if vi ∈ Hk for i = 1, . . . , n.

As we also need to work with Stokes equation, it is standard to introduce the following spaces:

C∞c,σ := {u ∈ C∞c (Ω) | div u = 0},

H := completion of C∞c,σ with respect to L2 norm,

V := H ∩H1
0 (Ω), V ∗ := dual space of V,

where V is equipped with H1
0 norm, and V ∗ is equipped with the standard dual norm. We also

recall the following useful operators: the Leray projector P : L2 → H and the Stokes operator
A := −P∆ : D(A) = H2 ∩ V → H. We refer the readers to [7] for a more thorough treatment
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of such operators. As a common practice in the study of Stokes equation, one may equivalently
rewrite the �uid equation as:

∂tu+Au = gP(ρez), (1.2)

We will often use this formulation in regularity estimates for the rest of this work.
To make our discussion more precise, we give rigorous de�nition of a strong solution and a

regular solution to (1.1).

De�nition 1.1. Given initial data ρ0 ∈ H1
0 , u0 ∈ V , and some T > 0, we say the pair (ρ(t, x), u(t, x))

is a strong solution to (1.1) on [0, T ] if

ρ ∈ C([0, T ];H1
0 ) ∩ L2((0, T );H2 ∩H1

0 ), u ∈ C([0, T ];V ) ∩ L2((0, T );H2 ∩ V ),

∂tρ ∈ C([0, T ];H−1
0 ), ∂tu ∈ C([0, T ];V ∗),

and (ρ, u) satisfy (1.1) in the distributional sense. Moreover, a solution is regular if it is strong and

additionally

ρ ∈ C∞((0, T ]× Ω), u ∈ C∞((0, T ]× Ω).

With this de�nition, we are able to obtain the following local well-posedness result:

Theorem 1.1. Given initial data ρ0 ∈ H1
0 , u0 ∈ V with ρ0 ≥ 0, there exists a T∗ = T∗(‖ρ0‖L2) > 0

such that there exists a unique strong solution (ρ, u) to problem (1.1) on [0, T∗].

It will be convenient for us to assume that T∗ ≤ 1 to simplify some estimates.
We will then prove a regularity criterion which allows us to continue a strong solution of (1.1)

as long as the L
4

4−d

t L2
x norm of ρ is controlled. More precisely, we have

Theorem 1.2. Let Ω ⊂ Rd, d = 2, 3, be a smooth, bounded domain. If the maximal lifespan T0 of

the strong solution (ρ, u) to problem (1.1) is �nite, then necessarily

lim
t↗T0

∫ t

0
‖ρ‖

4
4−d

L2 ds =∞.

We remark that a similar result was proved in [21] in the periodic setting for the uncoupled
Keller-Segel equation.

In the second part of this work, namely Section 3, we will quantify the quenching e�ect of the
Stokes-Boussinesq �ow with strong buoyancy on the Keller-Segel equation equipped with homoge-
neous Dirichlet boundary condition. To be more precise, we show that the �ow can suppress the
norm ‖ρ‖L2 to be su�ciently small within the time scale of local existence. In particular, we will
show the following main result of this work:

Theorem 1.3. For any smooth, bounded domain Ω ⊂ Rd, d = 2, 3, and arbitrary initial data

ρ0 ∈ H1
0 ∩ L∞, u0 ∈ V , with ρ0 ≥ 0, there exists g∗ = g∗(‖ρ0‖L∞ , ‖u0‖1) so that for any g ≥ g∗,

(1.1) admits a strong, global-in-time solution. In particular, ρ is quenched exponentially fast in the

sense that

‖ρ(t)‖L2 ≤ 2‖ρ0‖L2ec0(1−t), (1.3)

where c0 is a positive constant that only depends on domain Ω.
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We observe that if we �x any smooth passive divergence-free u satisfying the no-�ux u · n = 0
boundary condition, then one can �nd smooth initial data ρ0 such that the solution of the �rst
equation in (1.1) will lead to �nite time blow up. The argument proving this is very similar to that
of Theorem 8.1 in [21] for the case of T2; the localization used in that proof makes it insensitive to
the boundary condition.

The main step towards showing Theorem 1.3 is to prove that ‖ρ‖L2 can be made arbitrarily
small within a short time interval in the regime of large g. This step is based on a rather soft
compactness/rigidity argument inspired by [8], where quenching phenomena for reaction-di�usion
equations with buoyancy were explored. Due to the compactness/rigidity nature of our method, we
expect that one can extend Theorem 1.3 to certain unbounded domains that admit Sobolev com-
pactness theorems; for a description of such domains, we refer interested readers to [1]. Extending
Theorem 1.3 to more general unbounded domains would need new ideas, and we are not sure such
an extension would in general hold true.

In the �nal part of this paper, namely Section 4, we provide an argument demonstrating that
a strong solution to (1.1) is in fact regular. As a consequence of this fact, the main results (i.e.
Theorem 1.1, Theorem 1.2, and Theorem 1.3) can all be promoted to regular solutions. The precise
statement that we will prove is the following.

Theorem 1.4. Suppose (ρ, u) is the strong solution to (1.1) with initial data ρ0 ∈ H1
0 , u0 ∈ V on

[0, T ] for some T > 0. Then (ρ, u) also veri�es the following regularity property:

ρ ∈ C∞((0, T ];H1
0 ∩Hk), u ∈ C∞((0, T ];V ∩Hk)

for all k ∈ N. In particular, (ρ, u) is a regular solution to (1.1).

While such regularization is expected for semilinear parabolic equations, we were unable to
locate a convenient reference for a regularity result in the scale of Sobolev spaces Hk with large k in
the scenario of (1.1). Thus for the sake of the completeness, we will give explicit a priori estimates
which lead to this higher regularity in Section 4.

We end this section by declaring several notations and conventions that will be used throughout
this work. We will use the expression f . g to denote the following: there exists some constant C
only depending on domain Ω such that f ≤ Cg. In particular, we will denote a generic constant
depending only on Ω by C, and it could change from line to line. Finally, we will use the Ein-
stein summation convention. That is, by default we sum over the repeated indices; e.g. we write
aixi :=

∑
i aixi.

Acknowledgment. The authors acknowledge partial support of the NSF-DMS grants 2006372
and 2306726. We also thank anonymous referees for constructive comments which greatly improved
the presentation of this work.

2 Local Well-Posedness of Strong Solution

In this section, we will establish the local well-posedness of strong solutions to problem (1.1), namely
Theorem 1.1. It is well-known that the classical parabolic-elliptic Keller-Segel equation is locally
well-posed in domains such as Rd or Td, d = 2, 3, or in a smooth, bounded domain with Neumann
boundary condition on ρ in suitable function spaces (see e.g. [5, 21, 27]). Since we consider a
di�erent boundary condition (i.e. Dirichlet boundary condition on ρ), we will give a proof for the
sake of completeness.
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We �rst set up an appropriate Galerkin scheme that uses two sets of bases in Subsection 2.1.
In Subsection 2.2, we start with a set of lower order a priori energy estimates which guarantee
spatial regularity of a solution up to H2. In Subsection 2.3, we will complete the proof of Theorem
1.1 by showing the uniqueness of strong solutions. We will then demonstrate an L2 regularity
criterion (i.e. Theorem 1.2) in Subsection 2.4. In the �nal subsection, we will show the global
well-posedness of strong solution equipped with small ρ0 measured in L2 norm. Both the regularity
criterion and the small-data global well-posedness results will be instrumental in establishing the
global well-posedness of (1.1).

Remark 2.1. We will only discuss the case when d = 3. Then d = 2 case follows from similar (and

easier) arguments.

2.1 Galerkin Approximations

Since (1.1) is a system of semilinear parabolic equations in a compact domain, it is convenient to
construct a solution to (1.1) by Galerkin approximation. Let {vk}k, {λk}k be the eigenfunctions and
eigenvalues of −∆. Let {wj}j , {ηj}j be the eigenfunctions and eigenvalues of the Stokes operator
A. Consider the following approximate system:

∂tρ
(n) + Qn(u(n) · ∇ρ(n))−∆ρ(n) + Qn(div(ρ(n)∇(−∆)−1ρ(n))) = 0,

∂tu
(n) +Au(n) = gPn(ρ(n)ez),

ρ(n)(0) = Qnρ0, u
(n)(0) = Pnu0,

(2.1)

where Qnf := (f, vk)L2vk, Pnf := (f, wj)L2wj . Here (·, ·)L2 denotes the standard L2-inner product.
Note that the projection operators Pn,Qn are symmetric with respect to L2 inner product. Writing

the approximated solutions ρ(n)(t, x) = ρ
(n)
k (t)vk(x), u(n)(t, x) = u

(n)
j (t)wj(x) (recall that we are

summing over repeated indices), we obtain the following constant-coe�cient ODEs in t: for l =
1, . . . , n, 

d
dtρ

(n)
l + C

(n)
ljk u

(n)
j ρ

(n)
k + λlρ

(n)
l −D

(n)
ljkρ

(n)
k ρ

(n)
j = 0,

d
dtu

(n)
l + ηlu

(n)
l = gCklρ

(n)
k ez,

ρ
(n)
l (0) = (ρ0, vl)L2 , u

(n)
l (0) = (u0, wl)L2 ,

(2.2)

where
C

(n)
ljk := (Qn(wj · ∇vk), vl)L2 , D

(n)
ljk := Qn(div(vk∇(−∆)−1vj), vl)L2 ,

Ckl := (Pvk, wl)L2 .

To close the Galerkin approximation argument, we shall prove suitable uniform-in-n energy esti-
mates for (ρ(n), u(n)) and pass to the limit using compactness theorems. For the sake of simplicity,
we shall prove such energy estimates in an a priori fashion, for su�ciently regular solutions of
the original system (1.1). One could verify that all estimates below can be carried over to the
approximated solutions (ρ(n), u(n)) in a straightforward manner.

2.2 A priori Estimates and Existence

Given initial data ρ0 ∈ H1
0 , u ∈ V , we �rst show the following L∞t L

2
x and L2

tH
1
x estimates for a

strong solution (ρ, u):
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Proposition 2.1. Given initial data ρ0 ∈ H1
0 , u ∈ V , we assume (ρ, u) is a strong solution to (1.1)

on [0, T ] for some T > 0. Then for t ∈ [0, T ], we have

d

dt
‖ρ‖2L2 + ‖∇ρ‖2L2 . ‖ρ‖6L2 ,

1

2

d

dt
‖u‖2L2 + ‖∇u‖2L2 ≤ g‖u‖L2‖ρ‖L2 . (2.3)

Moreover, there exists T∗ = T∗(‖ρ0‖L2) ∈ (0, 1], and a constant C(‖ρ0‖L2 , ‖u0‖L2) > 0 such that

sup
t∈[0,T∗]

‖ρ(t)‖2L2 +

∫ T∗

0
‖∇ρ(t)‖2L2ds ≤ 4‖ρ0‖2L2 . (2.4)

sup
t∈[0,T∗]

‖u(t)‖2L2 +

∫ T∗

0
‖∇u(t)‖2L2ds ≤ C(‖ρ0‖L2 , ‖u0‖L2)(g2 + 1). (2.5)

Proof. First by testing the ρ-equation of (1.1) by ρ and integrating by parts, we have

1

2

d

dt
‖ρ‖2L2 + ‖∇ρ‖2L2 =

1

2

∫
Ω
ρ3dx ≤ C‖ρ‖3/2

L2 ‖∇ρ‖
3/2
L2 ≤

1

2
‖∇ρ‖2L2 + C‖ρ‖6L2 ,

where we used the following standard Gagliardo-Nirenberg inequality in 3D for f ∈ H1
0 (see [2], for

example):

‖f‖3L3 ≤ C‖f‖3/2L2 ‖∇f‖
3/2
L2 .

After rearranging, we obtain the �rst inequality of (2.3). Similarly, we test the u-equation of (1.1)
by u. After integration by parts, we have

1

2

d

dt
‖u‖2L2 + ‖∇u‖2L2 = g

∫
Ω
u · (ρez)dx ≤ g‖u‖L2‖ρ‖L2 , (2.6)

which proves the second inequality in (2.3). Then, the estimate (2.4) follows immediately from
applying Bihari�LaSalle inequality Better to provide a reference since not broadly known to (2.3)
and choosing T∗ = T∗(‖ρ0‖L2) ≤ 1 su�ciently small. Now integrating (2.6) from 0 to t ∈ (0, T∗),
using (2.4), and taking supremum over t, we have

sup
t∈[0,T∗]

‖u(t)‖L2 ≤ 8g‖ρ0‖L2T∗ + ‖u0‖L2 . (2.7)

Using (2.4) and (2.7) in the integrated in time version of (2.6), we obtain that∫ T∗

0
‖∇u(s)‖2L2ds ≤ ‖u0‖2L2 + 4gT∗‖ρ0‖L2(8g‖ρ0‖L2T∗ + ‖u0‖L2) (2.8)

The proof of (2.5) is �nished after we combine (2.7) and (2.8).

Remark 2.2. From now on, any appearance of T∗ refers to the time T∗ chosen in Proposition 2.1.

With Proposition 2.1, we will derive the following upgraded temporal and spatial regularity
estimates for solution (ρ, u) within the time interval [0, T∗].

Proposition 2.2. Assuming (ρ, u) to be a strong solution to (1.1) with initial data ρ0 ∈ H1
0 , u ∈ V ,

there exists C(ρ0, u0, g) > 0 such that∫ T∗

0

(
‖ρ(t)‖22 + ‖u(t)‖22 + ‖∂tρ(t)‖2L2 + ‖∂tu(t)‖2L2

)
dt

+ sup
t∈[0,T∗]

(‖ρ(t)‖21 + ‖u(t)‖21) ≤ C(ρ0, u0, g).
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Proof. Testing the ρ-equation in (1.1) by −∆ρ and integrating by parts, we obtain:

1

2

d

dt
‖∇ρ‖2L2 + ‖∆ρ‖2L2 =

∫
Ω

∆ρ(u · ∇ρ) +

∫
Ω

∆ρdiv(ρ∇(−∆)−1ρ) = I + J.

Let us �x ε > 0. Using Sobolev embedding, Poincaré inequality, and Young's inequality with ε, we
can estimate I by:

I ≤ ‖∆ρ‖L2‖∇ρ‖L2‖u‖L∞ ≤ ε‖∆ρ‖2L2 + C(ε)‖u‖22‖∇ρ‖2L2 .

Moreover, we can write J as:

J =

∫
Ω

∆ρ
(
∇ρ · ∇(−∆)−1ρ− ρ2

)
dx = J1 + J2.

Using elliptic estimates and Gagliardo-Nirenberg inequality, we can estimate J1 by:

J1 ≤ ‖∆ρ‖L2‖∇ρ‖L3‖∇(−∆)−1ρ‖L6 . ‖∆ρ‖L2‖∇ρ‖L3‖∇(−∆)−1ρ‖1
. ‖∆ρ‖L2‖∇ρ‖1/2

L2 ‖∇ρ‖
1/2
1 ‖ρ‖L2 . ‖ρ‖3/22 ‖∇ρ‖

1/2
L2 ‖ρ‖L2

≤ ε‖∆ρ‖2L2 + C(ε)‖∇ρ‖2L2‖ρ‖4L2 ,

where we also used Young's inequality in the �nal step.
We are going to use the following Gagliardo-Nirenberg inequalities: in dimension three,

‖ρ‖L4 . ‖∆ρ‖3/8
L2 ‖ρ‖

5/8
L2 ; ‖ρ‖L4 . ‖ρ‖3/41 ‖ρ‖

1/4
L2 .

Then we can estimate J2 as follows:

J2 ≤ ‖∆ρ‖L2‖ρ‖2L4 ≤ C‖∆ρ‖L2‖∆ρ‖1/2
L2 ‖ρ‖

5/6
L2 ‖ρ‖

1/2
1 ‖ρ‖

1/6
L2

= C‖∆ρ‖3/2
L2 ‖ρ‖

1/2
1 ‖ρ‖L2 ≤ ε‖∆ρ‖2L2 + C(ε)‖∇ρ‖2L2‖ρ‖4L2 ,

Collecting the estimates above and choosing ε to be su�ciently small, we obtain the following:

d

dt
‖∇ρ‖2L2 + ‖∆ρ‖2L2 .

(
‖ρ‖4L2 + ‖u‖22

)
‖∇ρ‖2L2 (2.9)

On the other hand, we test (1.2) by Au. Integrating by parts, we have

1

2

d

dt
‖∇u‖2L2 + ‖Au‖2L2 = g

∫
Ω
Au · ρez ≤

1

2
‖Au‖2L2 +

g2

2
‖ρ‖2L2

Rearranging the above and using Theorem A.1, we conclude that,

d

dt
‖∇u‖2L2 + ‖u‖22 ≤ g2‖ρ‖2L2 ≤ 4g2‖ρ0‖2L2 , t ∈ [0, T∗], (2.10)

where the last inequality is due to Proposition 2.1. Integrating (2.10) from 0 to t, t ≤ T∗ and then
taking supremum of t on [0, T∗], we obtain

sup
t∈[0,T∗]

‖∇u(t)‖2L2 ≤ 4g2‖ρ0‖2L2T∗ + ‖∇u0‖2L2 ;
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in addition, ∫ T∗

0
‖u(t)‖22 ≤ 4g2‖ρ0‖2L2T∗ + ‖∇u0‖2L2 . (2.11)

It follows that

sup
t∈[0,T∗]

‖u(t)‖21 +

∫ T∗

0
‖u(t)‖22dt ≤ C(u0, ρ0, g).

Integrating (2.9) and using (2.11), we have that for all t ∈ [0, T∗],

‖∇ρ(t)‖2L2 . ‖ρ0‖21 exp

(∫ T∗

0
(‖ρ‖4L2 + ‖u‖22ds

)
≤ ‖ρ0‖21 exp

(
C(ρ0, g)T∗ + ‖u0‖21

)
<∞.

Similarly to the case of u, we can also use (2.9) to control
∫ T∗

0 ‖ρ(t)‖22dt as well, arriving at

sup
t∈[0,T∗]

‖ρ(t)‖21 +

∫ T∗

0
‖ρ(t)‖22 ≤ C(u0, ρ0, g).

We have thus showed the spatial regularity of ρ and u.
Finally, we shall obtain regularity estimates for the time derivatives. Using the equation (1.1),

we see that

∂tρ = −u · ∇ρ+ ∆ρ− div(ρ∇(−∆)−1ρ) and ∂tu = −Au+ gP(ρez).

Using standard Sobolev embeddings and elliptic estimates, we have the following bounds:∫ T∗

0
‖u · ∇ρ(t)‖2L2dt ≤

∫ T∗

0
‖u‖2L6‖∇ρ‖2L3dt . sup

t∈[0,T∗]
‖u(t)‖21

∫ T∗

0
‖ρ(t)‖22dt,∫ T∗

0
‖∆ρ‖2L2dt ≤

∫ T∗

0
‖ρ(t)‖22dt,∫ T∗

0
‖ div(ρ∇(−∆)−1ρ)‖2L2dt .

∫ T∗

0
‖ρ‖4L4 + ‖∇ρ · ∇(−∆)−1ρ‖2L2dt

. sup
t∈[0,T∗]

‖ρ(t)‖41T∗ + sup
t∈[0,T∗]

‖ρ(t)‖21
∫ T∗

0
‖ρ(t)‖22dt,∫ T∗

0
‖Au‖2L2 + g‖Pρ‖2L2dt ≤

∫ T∗

0
‖u‖22 + g‖ρ‖2L2dt.

The above estimates and bounds we proved earlier imply that∫ T∗

0
‖∂tρ‖2L2dt+

∫ T∗

0
‖∂tu‖2L2dt ≤ C(u0, ρ0, g),

and the proof is thus complete.

With the regularity estimates above, we may construct solutions (ρ, u) from (ρ(n), u(n)). The
following standard compactness theorem is useful. We refer interested readers to Theorem IV.5.11
in [3] and Theorem 4 of Chapter 5 in [13] for related proofs.
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Theorem 2.1. Let

E1 := {ρ ∈ L2((0, T );H2), ∂tρ ∈ L2((0, T );L2)},
E2 := {u ∈ L2((0, T );H2 ∩ V ), ∂tu ∈ L2((0, T );H)}

for some T > 0. Then E1 is continuously embedded in C([0, T ], H1), and E2 is continuously

embedded in C([0, T ], V ).

With the compactness theorem above, we are ready to show the existence part of Theorem 1.1
as follows.

Corollary 2.1. Given initial data ρ0 ∈ H1
0 , u ∈ V , there exists a weak solution (ρ, u) of the system

(1.1) satisfying

ρ ∈ C([0, T∗];H
1
0 ) ∩ L2((0, T∗);H

2 ∩H1
0 ), u ∈ C([0, T∗];V ) ∩ L2((0, T∗);H

2 ∩ V ), (2.12)

∂tρ ∈ C([0, T∗];H
−1
0 ), ∂tu ∈ C([0, T∗];V

∗). (2.13)

Proof. The uniform bounds in Proposition 2.2 inform us that there exists a subsequence of {ρ(n)}n, {u(n)}n,
which we still denote by ρ(n), u(n), and ρ, u, such that

1. ρ(n) ⇀ ρ weak-∗ in L∞((0, T∗);H
1
0 ), weakly in L2((0, T∗);H

2 ∩H1
0 ); ∂tρ

(n) ⇀ ∂tρ weakly in
L2((0, T∗);L

2),

2. u(n) ⇀ u weak-∗ in L∞((0, T∗);V ), weakly in L2((0, T∗);H
2 ∩ V ); ∂tu

(n) ⇀ ∂tu weakly in
L2((0, T∗);H).

It is straightforward to check that the limits ρ and u satisfy (1.1) in the sense of distribution.
Invoking Theorem 2.1, we have proved (2.12).

Now, we show ∂tu ∈ C([0, T∗];V
∗). In view of (1.2), it su�ces to show that −Au + gρe2 ∈

C([0, T∗];V
∗). For simplicity, we show that the most singular term Au ∈ C([0, T∗];V

∗). But this
is indeed true as u ∈ C([0, T∗];V ) and A is a bounded linear operator from V to V ∗. Hence,
∂tu ∈ C([0, T∗];V

∗).
To show the needed regularity of ∂tρ, it su�ces to show that −u ·∇ρ+∆ρ−div(ρ∇(−∆)−1ρ) ∈

C([0, T∗];H
−1
0 ). A similar argument to how we treat Au will yield ∆ρ ∈ C([0, T∗];H

−1
0 ). We then

prove strong continuity for the most singular nonlinear term u · ∇ρ, and the term div(ρ∇(−∆)−1ρ)
will follow from a similar argument. Let t, s ∈ [0, T∗]. Picking ϕ ∈ H1

0 and integrating by parts, we
have ∫

Ω
(u(t, x) · ∇ρ(t, x)− u(s, x) · ∇ρ(s, x))ϕ(x)dx

=

∫
Ω

(u(t, x)− u(s, x)) · ∇ρ(t, x)ϕdx+

∫
Ω
u(s, ·) · ∇(ρ(t, x)− ρ(s, x))ϕ(x)dx

=

∫
Ω

div((u(t, x)− u(s, x))ρ(t, x))ϕdx+

∫
Ω

div(u(s, ·)(ρ(t, x)− ρ(s, x)))ϕ(x)dx

= −
∫

Ω
((u(t, x)− u(s, x))ρ(t, x)) · ∇ϕdx−

∫
Ω

(u(s, ·)(ρ(t, x)− ρ(s, x))) · ∇ϕ(x)dx.

The �rst term on RHS can be estimated by:∫
Ω

((u(t, x)− u(s, x))ρ(t, x)) · ∇ϕdx ≤ ‖u(t, ·)− u(s, ·)‖L3‖ρ(t, ·)‖L6‖ϕ‖1

. ‖u(t, ·)− u(s, ·)‖1‖ρ(t, ·)‖1‖ϕ‖1
≤ C(ρ0, u0, g)‖u(t, ·)− u(s, ·)‖1‖ϕ‖1.
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Note that we used Sobolev embedding in the second inequality and the uniform bound of ρ in
L∞((0, T∗);H

1
0 ) norm in the last inequality. Similarly, we can estimate the second term on RHS by:∫
Ω

(u(s, ·)(ρ(t, x)− ρ(s, x))) · ∇ϕ(x)dx ≤ C(ρ0, u0, g)‖ρ(t, ·)− ρ(s, ·)‖1‖ϕ‖1

thanks to u ∈ L∞((0, T );V ). Combining the two estimates above and using duality, we conclude
that

‖u(t, ·) · ∇ρ(t, ·)− u(s, ·) · ∇ρ(s, ·)‖H−1
0
≤ C(ρ0, u0, g)(‖u(t, ·)− u(s, ·)‖1 + ‖ρ(t, ·)− ρ(s, ·)‖1)→ 0

as t→ s due to u ∈ C([0, T∗];V ) and ρ ∈ C([0, T∗];H
1
0 ). This veri�es ∂tρ ∈ C([0, T∗];H

−1
0 ), and we

have proved (2.13).

2.3 Uniqueness

In this section, we show the uniqueness of regular solutions to problem (1.1).

Proposition 2.3. Given two solutions (ρ1, u1), (ρ2, u2) de�ned on the same time interval [0, T ]
with the same initial data (ρ0, u0), it holds that ρ1 ≡ ρ2, u1 ≡ u2 on [0, T ].

Proof. Consider the di�erences of the two pairs of solutions: r = ρ1 − ρ2, w = u1 − u2. A straight-
forward computation yields the following equations satis�ed by r, w:{

∂tr −∆r + u1 · ∇r + w · ∇ρ2 + div(r∇(−∆)−1ρ1 − ρ2∇(−∆)−1r) = 0,

∂tw +Aw = gP(rez),

with boundary conditions r|∂Ω = 0, w|∂Ω = 0 and zero initial condition. Testing the r-equation by
r, we obtain

1

2

d

dt
‖r‖2L2 + ‖∇r‖2L2 = −

∫
Ω
ru1 · ∇r −

∫
Ω
r(w · ∇ρ2) +

∫
Ω
r∇r · ∇(−∆)−1ρ1

−
∫

Ω
ρ2∇r · ∇(−∆)−1r = I1 + I2 + I3 + I4.

Using incompressibility of u1, we immediately have I1 = 0 via integration by parts. Using Hölder
inequality and Sobolev embedding, we can estimate I2 by:

I2 ≤ ‖r‖L2‖w‖L6‖∇ρ2‖L3 . ‖r‖L2‖w‖1‖ρ2‖2 ≤ ε‖w‖21 + C(ε)‖ρ2‖22‖r‖2L2

for any ε > 0. Using elliptic estimates, Sobolev embedding, and Gagliardo-Nirenberg-Sobolev
inequalities, we may estimate I3 by:

I3 ≤ ‖∇r‖L2‖r‖L3‖∇(−∆)−1ρ1‖L6 . ‖∇r‖L2‖r‖1/2
L2 ‖∇r‖

1/2
L2 ‖ρ1‖L2

. ‖ρ1‖L2‖∇r‖3/2
L2 ‖ρ‖

1/2
L2 ≤ ε‖∇r‖2L2 + C(ε)‖ρ1‖4L2‖r‖2L2 .

Similarly, we can estimate I4 by

I4 . ‖ρ2‖L∞‖r‖L2‖∇r‖L2 . ‖ρ2‖2‖r‖L2‖∇r‖L2 ≤ ε‖∇r‖2L2 + C(ε)‖ρ2‖22‖r‖2L2 .

On the other hand, we test the w-equation by w:

1

2

d

dt
‖w‖2L2 + ‖∇w‖2L2 = g

∫
Ω
w · rez ≤

1

2
‖w‖2L2 +

g2

2
‖r‖2L2 .
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Consider E(t) := ‖w‖2L2 +‖r‖2L2 . Collecting the estimates above and choosing ε > 0 to be su�ciently
small, we have the following inequality:

dE

dt
≤ C(‖ρ2‖22 + ‖ρ1‖4L2 + g2)E(t) =: Cf(t)E(t).

Since (ρi, ui) are strong solutions for i = 1, 2, we know that f ∈ L1([0, T ]). Since (r, w) assumes zero
initial condition, we have E(0) = 0. Then an application of Grönwall's inequality on time interval
[0, T ] implies E(t) = 0 for all t ∈ [0, T ] Hence, uniqueness of strong solution is proved.

2.4 Regularity Criterion

In this section, we aim to prove Theorem 1.2. We �rst need the following fact on the monotonicity
of L1 norm of cell density ρ:

Lemma 2.1. Assume Ω to be a smooth domain in either R2 or R3. Let (ρ, u) be a strong solution

to problem (1.1) on [0, T ]. Suppose also that ρ0 is nonnegative. Then for a.e. t ∈ [0, T ], we have

d

dt
‖ρ(t)‖L1 ≤ 0.

Proof. First, we note that by parabolic maximum principle, we must have ρ(t, x) ≥ 0 in [0, T ]×Ω.
Using (1.1), we compute that

d

dt
‖ρ(t, ·)‖L1 =

d

dt

∫
Ω
ρ(t, x)dx =

∫
Ω

(
−u · ∇ρ+ ∆ρ− div(ρ∇(−∆)−1ρ)

)
dx

=

∫
Ω

div(∇ρ− ρ∇(−∆)−1ρ)dx =

∫
∂Ω

∂ρ

∂n
− ρ ∂

∂n
(−∆)−1ρdS

=

∫
∂Ω

∂ρ

∂n
dS,

where ∂
∂n denotes the outward normal derivative and dS denotes the surface unit. Note that

regularity of a strong solution is su�cient to conclude that the right hand side is in L2([0, T∗]),
and so ‖ρ(t, ·)‖L1 is absolutely continuous in time. We also used the incompressibility of u,
divergence theorem, and the Dirichlet boundary condition in the derivation above. In view of
parabolic maximum principle, we must have

∂ρ

∂n

∣∣
∂Ω
≤ 0.

Hence, we conclude that
d

dt
‖ρ(t, ·)‖L1 ≤ 0, t ∈ (0, T ].

Now, we are ready to give a proof of the L2 regularity criterion:

Proof of Theorem 1.2. Assume (ρ, u) is a solution to (1.1) with smooth data (ρ0, u0). Let T0 > 0
be its maximal lifespan.
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1. d = 2. Suppose T0 <∞ and

lim
t↗T0

∫ t

0
‖ρ‖2L2ds = M <∞.

First, we test the u-equation in (1.1) by Au, which yields:

1

2

d

dt
‖∇u‖2L2 + ‖Au‖2L2 = g

∫
Ω
Au · ρe2 ≤

1

2
‖Au‖2L2 +

g2

2
‖ρ‖2L2 , t ∈ [0, T0).

Rearranging the above inequality, using Grönwall inequality, Theorem A.1 and the assumption,
we obtain that

sup
t∈[0,T0]

‖u‖21 +

∫ T0

0
‖u‖22ds ≤ ‖u0‖21 +

g2M

2
<∞. (2.14)

Testing ρ-equation by −∆ρ, one obtains that

1

2

d

dt
‖∇ρ‖2L2 + ‖∆ρ‖2L2 =

∫
Ω

∆ρu · ∇ρ−
∫

Ω
∆ρρ2 +

∫
Ω

∆ρ∇ρ · ∇(−∆)−1ρ

=: Q1 +Q2 +Q3.

Similarly to the estimate (2.9), we have for any ε > 0

Q1 ≤ ‖∆ρ‖L2‖∇ρ‖L2‖u‖L∞ ≤ ε‖∆ρ‖2L2 + C(ε)‖∇ρ‖2L2‖u‖22,

Q2 ≤ ε‖∆ρ‖2L2 + C(ε)‖ρ‖4L4 ≤ ε‖∆ρ‖2L2 + C(ε)‖ρ‖2L2‖∇ρ‖2L2 .

The term that we have to treat di�erently is Q3. Using Hölder inequality, Sobolev embedding,
and an Lp-based elliptic estimate, we have:

Q3 ≤ ‖∆ρ‖L2‖∇ρ‖L3‖∇(−∆)−1ρ‖L6 . ‖∆ρ‖L2‖∇ρ‖L3‖∇(−∆)−1ρ‖1, 3
2

. ‖∆ρ‖L2‖∇ρ‖L3‖ρ‖L3/2 . ‖∆ρ‖L2‖ρ‖1/3
L2 ‖∇2ρ‖2/3

L2 ‖ρ‖
2/3
L1 ‖∇ρ‖

1/3
L2

. ‖∆ρ‖5/3
L2 ‖ρ‖

1/3
L2 ‖ρ‖

2/3
L1 ‖∇ρ‖

1/3
L2 ≤ ε‖∆ρ‖2L2 + C(ε)‖ρ‖2L2‖ρ‖4L1‖∇ρ‖2L2 ,

where we used the Gagliardo-Nirenberg-Sobolev inequalities

‖f‖L3/2 ≤ C‖f‖2/3L1 ‖∇f‖
1/3
L2 , ‖∇f‖L3 ≤ C‖f‖1/3

L2 ‖∇2f‖2/3
L2 ,

in the fourth inequality, and Young's inequality in the last step. By Lemma 2.1, we know that
for t ∈ [0, T0), ‖ρ(t, ·)‖L1 ≤ ‖ρ0‖L1 . Then we have

Q3 ≤ ε‖∆ρ‖2L2 + C(ρ0, ε)‖ρ‖2L2‖∇ρ‖2L2 .

Choosing ε > 0 su�ciently small and using the estimates of Li above, the ρ-estimate can be
rearranged as:

d

dt
‖∇ρ‖2L2 + ‖∆ρ‖2L2 ≤ C(ρ0)(‖u‖22 + ‖ρ‖2L2)‖∇ρ‖2L2 . (2.15)

Using Grönwall inequality, we have:

sup
0≤t≤T0

‖∇ρ(t, ·)‖2L2 +

∫ T0

0
‖ρ‖22ds . ‖∇ρ0‖2L2 exp

(
C(ρ0)

∫ T0

0
(‖u‖22 + ‖ρ‖2L2)ds

)
≤ C(ρ0, u0,M, g, T0),

where we used the assumption, (2.14), and elliptic estimate. But this implies that one can
extend the solution (ρ, u) beyond the supposed lifespan T0 by Theorem 1.1. This yields a
contradiction.
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2. d = 3. Suppose T0 <∞ and

lim
t↗T0

∫ t

0
‖ρ‖4L2ds = M <∞.

Testing the u-equation in (1.1) by Au and deploying estimates similar to the d = 2 case, we
have

sup
t∈[0,T0]

‖∇u‖2L2 +

∫ T0

0
‖u‖22ds ≤ ‖u0‖21 +

g2
√
MT0

2
<∞.

A derivation identical to (2.9) yields:

d

dt
‖∇ρ‖2L2 + ‖∆ρ‖2L2 .

(
‖ρ‖4L2 + ‖u‖22

)
‖∇ρ‖2L2 .

Applying Grönwall inequality and combining the two estimates above, we have for t ∈ [0, T0]
that

‖∇ρ(t, ·)‖2L2 +

∫ T0

0
‖ρ‖22ds . ‖ρ0‖21 exp

(
C(ρ0)

∫ T0

0
(‖ρ‖4L2 + ‖u‖22)ds

)
≤ C(ρ0, u0,M, g, T0).

And this contradicts the assumption that T0 is the maximal lifespan in view of Theorem 1.1.

The proof is thus completed.

2.5 Global Well-Posedness with Small L2 Data

We conclude Section 2 by making the following observation: a strong solution equipped with initial
data (ρ0, u0) with ‖ρ0‖L2 su�ciently small survives for all times. This observation is based on
an L2-energy inequality with a higher-than-quadratic nonlinearity, together with the continuation
criterion proved in Theorem 1.2. A precise statement of this result is given as follows.

Proposition 2.4. Let (ρ, u) be a strong solution to (1.1) with initial data ρ0 ∈ H1
0 , u0 ∈ V and the

maximal lifespan T0 > 0. There exists ε0 > 0 su�ciently small, depending only on domain Ω and

independent of g, so that if ‖ρ0‖L2 < ε0, T0 =∞. Moreover, ρ decays exponentially fast i.e.

‖ρ(t)‖L2 ≤ ‖ρ0‖L2e−c0t, (2.16)

for some constant c0 > 0 depending only on domain Ω.

Proof. Following the proof of Proposition 2.1, using the energy estimate of ρ, a Gagliardo-Nirenberg-
Sobolev inequality, Young's inequality and Poincaré inequality, for t ∈ (0, T0) we have that

1

2

d

dt
‖ρ‖2L2 ≤ −‖∇ρ‖2L2 +

1

2
‖∇ρ‖2L2 + C‖ρ‖

12−2d
4−d

L2

≤ − 1

2Cp
‖ρ‖2L2 + C‖ρ‖

12−2d
4−d

L2 =: fd(‖ρ‖2L2), (2.17)

where Cp denotes the Poincaré constant that only depends on domain Ω. Since 2 < 12−2d
4−d when

d = 2, 3, we �x ε0 ∈ (0, 1) su�ciently small so that fd(s) < − 1
4Cp

s2 for s ∈ (0, ε0]. Note that such
choice of ε0 only depends on domain Ω.
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With such choice of ε0, we claim that the solution is global and the L2 norm never exceeds ε0.
Indeed, suppose not and let τ ∈ [0, T0] to be the �rst time such that ‖ρ(τ)‖L2 = ε0. If τ < T0,
applying (2.17) together with our choice of ε0, we note that

1

2

d

dt
‖ρ‖2L2

∣∣∣
t=τ
≤ fd(ε20) < − 1

4Cp
ε20 < 0−

which contradicts the de�nition of τ. Hence, we must have τ = T0. But since ‖ρ0‖L2 < ε0, we
conclude that

sup
t∈[0,T0]

‖ρ(t, ·)‖L2 ≤ ε0,

which yields ∫ T0

0
‖ρ(t, ·)‖

4
4−d

L2 dt ≤ ε
4

4−d

0 T0 <∞.

Then by Theorem 1.2, we must have T0 = ∞, as otherwise we could extend the strong solution
beyond T0, leading to a contradiction.

To prove (2.16), we note from above that supt≥0 ‖ρ(t, ·)‖L2 ≤ ε0. In fact, by our choice of ε0
and (2.17), we have

d

dt
‖ρ‖L2 ≤ −

1

4Cp
‖ρ‖L2 , t ≥ 0.

A direct application of Grönwall inequality yields

‖ρ(t)‖L2 ≤ ‖ρ0‖L2e
− 1

4Cp
t

for all t ≥ 0. We have thus established (2.16) by setting c0 := 1
4Cp

and rearranging the inequality
above.

3 Proof of the Main Theorem: Suppression of Chemotactic Blowup

In this section, our goal is to show Theorem 1.3, namely proving that (1.1) is globally strong in
the regime of su�ciently large g. In particular, we will see that the coupling of the Keller-Segel
equation to the Stokes �ow with su�ciently robust buoyancy term is regularizing, in the sense that
the solution ρ(t, x) approaches zero exponentially fast as g is su�ciently large.

3.1 Velocity Control

In this subsection, we remark on two controls on the velocity �eld u in (1.1) that will be instrumental
in our main proof. The �rst lemma is in fact a standard H1

t,x control of u, where part of which is
hidden in our proof of energy estimate in Proposition 4.1. We give a brief derivation here for clarity.

Lemma 3.1. Let (ρ, u) be a strong solution to problem (1.1) with initial data ρ0 ∈ H1
0 , u0 ∈ V . We

have

‖u‖2H1([0,T∗]×Ω) ≤ C(‖ρ0‖L2 , ‖u0‖1)(g2 + 1). (3.1)

Proof. In view of the estimate (2.5) in Proposition 2.1, it su�ces to show that∫ T∗

0
‖∂tu(t)‖2L2dt ≤ C(‖ρ0‖L2 , ‖u0‖1)(g2 + 1). (3.2)
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Testing the u equation in (1.1) by ∂tu, we have

‖∂tu‖2L2 +
1

2

d

dt
‖∇u‖2L2 = g

∫
Ω
∂tu · (ρez)dx ≤

1

2
‖∂tu‖2L2 +

g2

2
‖ρ‖2L2 ,

where we used incompressibility of u and Cauchy-Schwarz inequality above. Rearranging, integrat-
ing in time, and using (2.4) we obtain∫ t

0
‖∂tu(s)‖2L2ds+ ‖∇u(t)‖2L2 ≤ g2

∫ t

0
‖ρ(s)‖2L2ds+ ‖∇u0‖2L2

≤ g2(2T∗‖ρ0‖2L2) + ‖u0‖21
≤ C(‖ρ0‖L2 , ‖u0‖1)(g2 + 1).

By taking supremum of t over [0, T∗], we have arrive at the estimate (3.2).

The following lemma yields a key additional control over the velocity �eld by genuinely exploiting
the buoyancy forcing structure of the �uid equation in (1.1):

Lemma 3.2. Let (ρ, u) be a regular solution to problem (1.1) with initial data ρ0 ∈ H1
0 , u0 ∈ V .

Then

sup
t∈[0,T∗]

‖u(t)‖2L2dt ≤ C(‖ρ0‖L2)g + ‖u0‖2L2 . (3.3)

Remark 3.1. Note that a straightforward L2 estimate of u only yields a bound
∫ T∗

0 ‖u(t)‖2L2dt . g2.

What we display in the lemma is that the structure of buoyancy forcing �gains a g−1�.

Proof. Without loss of generality, assume that Ω contains the origin. Denote L := diam(Ω) > 0.
Multiplying the ρ-equation of (1.1) by z − L (recall that z = xd when Ω ⊂ Rd, d = 2, 3) and
integrating over Ω, we have

d

dt

∫
Ω

(z − L)ρdx+

∫
Ω

(z − L)(u · ∇ρ)dx−
∫

Ω
(z − L)∆ρdx+

∫
Ω

(z − L) div(ρ∇(−∆)−1ρ)dx = 0.

Moreover using the Dirichlet conditions ρ|∂Ω = 0 and u|∂Ω = 0, we note that via integration by
parts: ∫

Ω
(z − L)(u · ∇ρ)dx = −

∫
Ω
ρuzdx+

∫
∂Ω

(z − L)ρundx = −
∫

Ω
ρuzdx,

−
∫

Ω
(z − L)∆ρdx =

∫
Ω
∂zρdx−

∫
∂Ω

(z − L)
∂ρ

∂n
dS,∫

Ω
(z − L) div(ρ∇(−∆)−1ρ)dx = −

∫
Ω
ρ∂z(−∆)−1ρdx,

where un denotes the normal component of u along ∂Ω, and dS denotes the surface measure induced
on ∂Ω. Collecting the above computations, we have∫

Ω
ρuzdx =

d

dt

∫
Ω

(z − L)ρdx+

∫
Ω
∂zρdx−

∫
∂Ω

(z − L)
∂ρ

∂n
dS −

∫
Ω
ρ∂z(−∆)−1ρdx. (3.4)

On the other hand, testing the u-equation of (1.1) by u, we also have

1

2

d

dt
‖u‖2L2 + ‖∇u‖2L2 = g

∫
Ω
ρuz. (3.5)
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From the proof of Lemma 2.1, we also know that ∂ρ/∂n ≤ 0 on ∂Ω in [0, T∗]. Hence, we have∫
∂Ω(z − L) ∂ρ∂ndS ≥ 0 by de�nition of L. Combining this fact with (3.4), (3.5), and integrating on

[0, T∗], we have

‖u(t)‖2L2 − ‖u0‖2L2 ≤ 2g

[ ∫
Ω

(z − L)(ρ(t, x)− ρ0(x)) dx+

∫ t

0

∫
Ω
∂zρ dx−

∫ t

0

∫
Ω
ρ∂z(−∆)−1ρ dx

]
≤ Cg( sup

0≤t≤T∗
‖ρ(t)‖L2 +

√
T∗

(∫ T∗

0
‖∇ρ‖2L2dt

)1/2

+

∫ T∗

0
‖ρ‖2L2dt)

≤ C(‖ρ0‖L2)g,

where we used elliptic estimate in the second inequality, and (2.4) in the �nal inequality. The proof
is therefore completed after integrating in time again.

3.2 A Key Theorem

In this part, we prove a quantitative characterization of the regularizing e�ect of the Stokes-
Boussinesq �ow in (1.1). With a rigidity-type argument inspired by [8], we show that the �ow
with su�ciently large g can suppress the L2 energy of ρ to be arbitrarily small within the time scale
of local existence, as elucidated in the following theorem:

Theorem 3.1. Let ρ0 ∈ H1
0 ∩ L∞, u0 ∈ V be initial conditions for the problem (1.1), and consider

(ρ, u) to be the corresponding strong solution. For arbitrary ε > 0, there exists
g∗ = g∗(‖ρ0‖L∞ , ‖u0‖1, ε) such that for any g ≥ g∗,

inf
t∈[0,T∗]

‖ρ(t, ·)‖L2 ≤ ε.

Proof. We prove by contradiction. Suppose there exists ε0 > 0 such that there is a sequence
{(ρn, un, gn)}n verifying the following:

1. gn →∞;

2. {(ρn, un, gn)}n are strong solutions to (1.1) with ρ = ρn, u = un, g = gn equipped with initial
data (ρn,0, un,0);

3. ‖ρn,0‖L2 ≤ ‖ρ0‖L2 , ‖ρn,0‖L∞ ≤ ‖ρ0‖L∞ , and ‖un,0‖L2 ≤ ‖u0‖L2 ;

4. for any t ∈ [0, T∗] and for all n
‖ρn(t, ·)‖L2 > ε0. (3.6)

Note that since the time T∗ depends only on ‖ρ0‖L2 , we can work on the same time interval for
all n. If we are able to derive a contradiction, this would imply the existence of g∗ that depends
only on ‖u0‖1 and ‖ρ0‖∞ (note that ‖ρ0‖L∞ controls ‖ρ0‖L2) - indeed, we are not �xing the initial
data for {(ρn, un, gn)}n but instead only impose uniform norm bounds on it. Let us consider the
normalized velocity ūn = un/gn. Now, we divide the proof into the following steps:

� Step 1: Convergence properties of (ρn, un). From (3.1), we have ‖ūn‖H1([0,T∗]×Ω) ≤
C(‖ρ0‖L2 , ‖u0‖1). Using weak compactness and the Sobolev compact embedding theorem, we
obtain that there exists ū∞ ∈ H1([0, T∗]× Ω) such that

ūn ⇀ ū∞ in H1([0, T∗]× Ω), and ūn → ū∞ in L2([0, T∗]× Ω).
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In fact, observe that from the estimate (3.3) of Lemma 3.2 it follows that ‖ūn‖L2([0,T∗]×Ω) → 0
as n → ∞, so ū∞ = 0. In addition, from the energy estimate (2.4), we may pick a further
subsequence, still indexed by n, such that there exists ρ∞ ∈ L2(0, T∗;H

1
0 (Ω)) and

ρn ⇀ ρ∞ in L2(0, T∗;H
1
0 (Ω)).

� Step 2: Derivation of the limiting �uid equation. Since (ρn, un) is a strong solution
to (1.1) with parameter gn on [0, T∗], un in particular solves the �uid equation in (1.1) in the
sense of distributions. That is,

−
∫ T∗

0

∫
Ω

(∂tφ)ūndxdt+

∫ T∗

0

∫
Ω

(Aφ)ūndxdt =

∫ T∗

0

∫
Ω
ρn(φ · ez)dxdt,

for any smooth vector �eld φ ∈ C∞c ([0, T∗]×Ω) with div φ = 0. By the convergence properties
of ρn, un as shown in Step 1, and by Lemma 3.2 we �nd that

ρ∞ez = ∇p∞, (t, x) ∈ [0, T∗]× Ω (3.7)

holds in a sense of distributions.

� Step 3: Nontriviality of ρ∞. By maximum principle, we know that ρn, and thus ρ∞,
is nonnegative. We would also like to claim that ρ∞ 6≡ 0. To show this fact, we need the
following proposition.

Proposition 3.1. Let Ω ⊂ Rd, d = 2, 3, be a smooth, bounded domain. Assume (ρ, u) to be

the strong solution of problem (1.1) on [0, T∗] with initial condition ρ0 ≥ 0 ∈ H1
0 ∩L∞, u0 ∈ V .

If there exists M > 0 such that sup0≤t≤T∗ ‖ρ(t)‖L2 ≤M , then we have

sup
0≤t≤T∗

‖ρ(t)‖L∞ ≤ CM
4

4−d .

Here C is a constant that only depends on Ω.

A variant of this result has been proved in [21] (Proposition 9.1), in a two dimensional periodic
setting. The proof of Proposition 3.1 is similar and for the sake of completeness will be provided
in the appendix.

Next, we need the following lemma.

Lemma 3.3. Let D ⊂ Rd, d ∈ N, be a bounded domain, and let {fn}n ⊂ L2(D) be a sequence

of nonnegative functions that weakly converges to a function f ∈ L2(D). Assume that there

exist M, ε > 0 such that ‖fn‖L2 > ε, ‖fn‖L∞ ≤M for all n. Then f 6≡ 0.

Proof. Suppose for the sake of contradiction that f ≡ 0. Consider the characteristic function
φ = χD. Since D is bounded, φ ∈ L2(D). Then the weak convergence informs us that

lim
n→∞

∫
D
fn = 0.

As fn ≥ 0 for all n, this is equivalent to limn→∞ ‖fn‖L1 = 0. Since ‖fn‖L∞ ≤ M , by
interpolation we have

‖fn‖2L2 ≤ ‖fn‖L∞‖fn‖L1 → 0

as n→∞. But this contradicts the assumption that ‖fn‖L2 > ε.
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Observe that from (2.4), we know that ‖ρn(t, ·)‖L2 ≤ 4‖ρ0‖L2 for all t ∈ [0, T∗] and all n. Thus
applying Proposition 3.1 to ρn we get that ‖ρn(t, ·)‖L∞ ≤M for all t ∈ [0, T∗], and all n. Here

M = C‖ρ0‖
4

4−d

L2 is chosen as in Proposition 3.1. Then Lemma 3.3 implies that ρ∞ 6≡ 0.

� Step 4: Derivation of a contradiction. Let us consider

ψn(x) :=

∫ T∗

0
ρn(t, x)dt, ψ∞(x) :=

∫ T∗

0
ρ∞(t, x)dt.

In particular, ψ∞ 6≡ 0 and ψ∞ ≥ 0 by Step 3. On the one hand, picking arbitrary η ∈ L2(Ω),
we have∣∣∣∣ ∫

Ω
η(x)(ψn(x)− ψ∞(x))dx

∣∣∣∣ =

∣∣∣∣ ∫ T∗

0

∫
Ω
η(x)(ρn(t, x)− ρ∞(t, x))dxdt

∣∣∣∣
=

∣∣∣∣ ∫ T∗

0

∫
Ω
η(x)χ[0,T∗](t)(ρn(t, x)− ρ∞(t, x))dxdt

∣∣∣∣,
which converges to 0 as ρn ⇀ ρ∞ in L2([0, T∗] × Ω). This implies that ψn ⇀ ψ∞ in L2(Ω).
On the other hand, we note that by Minkowski inequality and Hölder inequality,

‖∇ψn‖L2 ≤
∫ T∗

0
‖∇ρn‖L2dt ≤

√
T∗‖∇ρn‖L2([0,T∗]×Ω) ≤ C(‖ρ0‖L2),

where we used (2.4) in the last step. Since ρn|∂Ω = 0, we know that ψn ∈ H1
0 (Ω) with

a uniform H1-norm bound from above. Hence by weak compactness and Sobolev compact
embedding theorem, there exists a subsequence, still denoted by ψn, and ψ̃∞ ∈ H1

0 (Ω) such
that

ψn ⇀ ψ̃∞ in H1
0 (Ω), ψn → ψ̃∞ in L2(Ω).

Indeed, we must have ψ̃∞ = ψ∞ due to the uniqueness of weak limit, and hence ψ∞ ∈ H1
0 (Ω).

But now, integrating (3.7) with respect to time, we have

∇P = ψ∞ez,

where P (x) :=
∫ T∗

0 p∞(t, x)dt. But this implies that ψ∞(x) = h(z), where h is some single-
variable function. Moreover, we know that ψ∞ ∈ H1

0 (Ω). These two facts imply that ψ∞ ≡ 0.
However, this contradicts the fact that ψ∞ > 0 - as shown in Lemma 3.3 under assumption
(3.6). This completes the proof of the theorem.

3.3 Proof of Global Well-Posedness with Large g

From Theorem 3.1, we know that, �xing initial data (ρ0, u0), the L2 norm of ρ is suppressed to
a su�ciently small level in the regime of large g. In view of the small-data global well-posedness
result stated in Proposition 2.4, the cell density ρ will enter the regime of exponential decay as soon
as ‖ρ‖L2 touches a su�ciently low level. Combining these two facts will yield Theorem 1.3. We now
provide a rigorous proof of the aforementioned idea.

18



Proof of Theorem 1.3. Let us �rst choose ε0 as in Proposition 2.4. By Theorem 3.1, there exists
g∗ = g∗(‖ρ0‖L∞ , ‖u0‖1) such that for every g ≥ g∗ there exists τg ∈ [0, T∗] with ‖ρ(τg)‖2L2 < ε. Now
we consider the problem (1.1) equipped with initial data (ρ(τg, x), u(τg, x)). Applying Proposition
2.4 immediately yields global existence of strong solution (ρ, u) and the exponential decay estimate

ec0(t−τg)‖ρ(t)‖L2 ≤ ‖ρ(τg)‖L2 ≤ 2‖ρ0‖L2 .

We remark that the second inequality above follows from our choice of T∗ and the fact that
τg ≤ T∗.

4 Promotion to Regular Solution

In this section, we will show that strong solutions are in fact regular solutions. This will be done
by establishing the smoothness of a solution (ρ, u) for positive times, namely

ρ ∈ C∞((0, T∗]× Ω), u ∈ C∞((0, T∗]× Ω),

via energy estimates in arbitrarily high order Sobolev norms. We would like to remark on the
following caveat: with Dirichlet boundary condition imposed on both ρ and u, one cannot obtain
higher order Sobolev estimates by commuting the di�erential operator ∂s with the equation, where
∂s denotes a general s-th order spatial derivative. The main reason is that when we treat the
dissipation term, integration by parts incurs a boundary term that is di�cult to control. To remedy
this issue, we commute time derivatives ∂kt through the equation. It is clear that no boundary terms
are generated since ∂t preserves Dirichlet boundary condition. By applying this strategy, we can
improve regularity in time, after which spatial regularity can be upgraded using elliptic estimates.

Again, to obtain the claimed regularity we should proceed by the Galerkin scheme and perform
the estimates in Proposition 4.1 for the approximated solutions. Since this step is similar to that
in Corollary 2.1, we omit this tedious part and will proceed with only a priori estimates as follows.

Proposition 4.1. Assume (ρ, u) is a regular solution to problem (1.1) with initial condition ρ0 ∈
H1

0 , u0 ∈ V . Then the following bounds hold:

tk
(
‖∂ltρ(t, ·)‖21+k−2l + ‖∂ltu(t, ·)‖21+k−2l

)
≤ C(ρ0, u0, g, k), (4.1)

tk
∫ T∗

t

(
‖∂ltρ(τ, ·)‖22+k−2l + ‖∂ltu(τ, ·)‖22+k−2l

)
dτ ≤ C(ρ0, u0, g, k), (4.2)

for any t ∈ (0, T∗], k ∈ N, 0 ≤ l ≤ bk+1
2 c, where b·c denotes the �oor function.

Proof. We prove the proposition by induction on k. Since the case k = 0 is already proved by
Proposition 2.2, we now assume that the statement holds up to index k − 1. We will discuss two
cases based on the parity of k. We also remind the readers that the constant C(ρ0, u0, g, k) might
change from line to line.

1. k is odd. Let us write S = k+1
2 , and de�ne the s-energy

Es(τ) = ‖∂st ρ(τ, ·)‖2L2 + ‖∂st u(τ, ·)‖2L2

for any 0 ≤ s ≤ S. From now on, we �x arbitrary t ∈ (0, T∗]. This case can be detailed into
the following steps.
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Step 1: show (4.1), (4.2) with l = S. Commuting ∂st with (1.1) for 0 ≤ s ≤ S, we obtain
that

∂t∂
s
t ρ−∆∂st ρ+

s∑
r=0

(
s

r

)[
(∂rt u · ∇)∂s−rt ρ+ ∂s−rt ρ∂rt ρ+∇∂s−rt ρ · ∇(−∆)−1(∂rt ρ)

]
= 0,

(4.3a)

∂t∂
s
t u+A∂st u = gP(∂st ρez), (4.3b)

equipped with boundary conditions ∂st ρ|∂Ω = 0, ∂st u|∂Ω = 0. Testing (4.3b) with s = S by
∂St u, we obtain that

1

2

d

dt
‖∂St u‖2L2 + ‖∇∂St u‖2L2 ≤

g

2

(
‖∂St u‖2L2 + ‖∂St ρ‖2L2

)
.

Testing (4.3a) with s = S by ∂St ρ:

1

2

d

dt
‖∂St ρ‖2L2 + ‖∇∂St ρ‖2L2 =

S∑
r=0

(
S

r

)
(Ir + Jr +Kr), (4.4)

where

Ir =

∫
Ω

(∂St ρ)(∂rt u · ∇)∂S−rt ρ, Jr =

∫
Ω

(∂St ρ)∂S−rt ρ(∂rt ρ),

Kr =

∫
Ω

(∂St ρ)∇∂S−rt ρ · ∇(−∆)−1(∂rt ρ).

To estimate Ir, �rst note that I0 = 0 by incompressibility and integration by parts. For
1 ≤ r ≤ S − 1, we integrate Ir by parts once to obtain:

Ir = −
∫

Ω
∂j∂

S
t ρ∂

r
t uj∂

S−r
t ρ,

where we also used the incompressibility of ∂rt u. Thus, we can estimate:

Ir ≤ ‖∇∂St ρ‖L2‖∂rt u‖L3‖∂S−rt ρ‖L6 ≤ δ‖∇∂St ρ‖2L2 + C(δ)‖∂rt u‖2L3‖∂S−rt ρ‖21,

for some δ > 0. If r = S, we instead estimate:

IS ≤ ‖∇∂St ρ‖L2‖∂St u‖L2‖ρ‖L∞ ≤ δ‖∇∂St ρ‖2L2 + C(δ)‖ρ‖22‖∂St u‖2L2 .

This concludes the estimates of Ir. To estimate Jr, we note that if r = 0 or r = S, we have

Jr ≤ ‖∂St ρ‖2L2‖ρ‖L∞ . ‖∂St ρ‖2L2‖ρ‖2

If 1 ≤ r ≤ S − 1, then we have

Jr ≤
1

2
‖∂St ρ‖2L2 +

1

2
‖∂rt ρ‖21‖∂S−rt ρ‖21.

Now we estimate Kr. If r = 0, we use the standard elliptic estimate and Young's inequality
to obtain:

K0 ≤ δ‖∇∂St ρ‖2L2 + C(δ)‖ρ‖21‖∂St ρ‖2L2 ,
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where δ > 0. If r = S, we apply elliptic estimates and Sobolev embeddings:

KS ≤ ‖∇ρ‖L3‖∂St ρ‖L2‖∇(−∆)−1∂St ρ‖L6 . ‖∇ρ‖1‖∂St ρ‖2L2 .

If 1 ≤ r ≤ S − 1, we can estimate

Kr ≤ ‖∇∂S−rt ρ‖L3‖∂St ρ‖L2‖∇(−∆)−1∂rt ρ‖L6 ≤
1

2
‖∂St ρ‖2L2 + C‖∇∂S−rt ρ‖21‖∂rt ρ‖2L2 .

After choosing δ > 0 to be su�ciently small, the above estimates yield the following di�erential
inequality: for τ ∈ (0, T∗),

dES
dτ

+ ‖∇∂St ρ(τ, ·)‖2L2+‖∇∂St u(τ, ·)‖2L2 ≤ C(k)

[ (
1 + g + ‖ρ‖2 + ‖ρ‖22

)
ES(τ)

+

S−1∑
r=1

(
‖∇∂S−rt ρ‖21‖∂rt ρ‖2L2 + ‖∂rt ρ‖21‖∂S−rt ρ‖21 + ‖∂rt u‖2L3‖∂S−rt ρ‖21

)]

= C(k)

(
F (τ)ES(τ) +

S−1∑
r=1

Gr(τ)

)
(4.5)

with

F (τ) = 1 + g + ‖ρ(τ, ·)‖2 + ‖ρ(τ, ·)‖22,
Gr(τ) = ‖∇∂S−rt ρ‖21‖∂rt ρ‖2L2 + ‖∂rt ρ‖21‖∂S−rt ρ‖21 + ‖∂rt u‖2L3‖∂S−rt ρ‖21.

To proceed, we need the following useful lemma:

Lemma 4.1. There exists τ0 ∈ [t/2, t] such that ES(τ0) ≤ C(ρ0, u0, g, k)t−k.

Proof. Let us consider (4.3) with s = S − 1. For any τ ∈ [t/2, t], we note that by (4.3b),

‖∂St u(τ)‖2L2 . ‖A∂S−1
t u‖2L2 + g2‖∂S−1

t ρ‖2L2 ≤ ‖∂S−1
t u‖22 + g2‖∂S−1

t ρ‖2L2 .

Integrating over [t/2, t] and using (4.2) at index k − 1 (which is valid as this is part of the
induction hypothesis), we obtain∫ t

t/2
‖∂St u(τ)‖2L2dτ ≤

∫ T∗

t/2
‖∂St u(τ)‖2L2dτ ≤ C(ρ0, u0, g, k)t1−k. (4.6)

Similarly, applying Hölder inequality to (4.3a), we have

‖∂St ρ‖2L2 . ‖∂S−1
t ρ‖22 +

S−1∑
r=0

C(k)

(
‖∂rt u‖21‖∇∂S−1−r

t ρ‖21

+ ‖∂S−1−r
t ρ‖21‖∂rt ρ‖21 + ‖∇∂S−1−r

t ρ‖21‖∂rt ρ‖2L2

)
. (4.7)

Observe that given the induction hypothesis, applying (4.2) with index k − 1, we have∫ t

t/2
‖∂S−1

t ρ(τ)‖22dτ ≤ C(ρ0, u0, g, k)t1−k.
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Also, for r = 0, . . . , S − 1,∫ t

t/2
‖∂rt u(τ)‖21‖∇∂S−1−r

t ρ(τ)‖21dτ ≤ C(ρ0, u0, g, k)t−2rt−2(S−r−1) = C(ρ0, u0, g, k)t1−k,

where we applied (4.1) with index 2r to ‖∂rt u(τ)‖1 and (4.2) with index 2(S − r − 1) to
‖∇∂S−1−r

t ρ(τ)‖1. In a similar fashion, we can also obtain the following bound:∫ t

t/2

[
‖∂S−1−r

t ρ(τ)‖21‖∂rt ρ(τ)‖21 + ‖∇∂S−1−r
t ρ(τ)‖21‖∂rt ρ(τ)‖2L2

]
dτ ≤ C(ρ0, u0, g, k)t1−k.

Collecting the estimates above and combining with (4.7), we have∫ t

t/2
‖∂St ρ(τ)‖2L2dτ ≤ C(ρ0, u0, g, k)t1−k. (4.8)

Combining (4.6) and (4.8), we have∫ t

t/2

(
‖∂St u(τ)‖2L2 + ‖∂St ρ(τ)‖2L2

)
dτ ≤ C(ρ0, u0, g, k)t1−k.

By mean value theorem, we can �nd a τ0 ∈ (t/2, t) such that

ES(τ0) = ‖∂St u(τ0)‖2L2 + ‖∂St ρ(τ0)‖2L2 ≤ C(ρ0, u0, g, k)t−k,

and this concludes the proof.

We also need another lemma that treats the terms Gr.

Lemma 4.2. Let τ0 be chosen as in Lemma 4.1. Then for any r = 1, . . . , S − 1, we have∫ T∗

τ0

Gr(τ)dτ ≤ C(ρ0, u0, g, k)t−k.

Proof. We �x r = 1, . . . , S − 1. By de�nition of Gr, we can write∫ T∗

τ0

Gr(τ)dτ =

∫ T∗

τ0

(
‖∇∂S−rt ρ‖21‖∂rt ρ‖2L2 + ‖∂rt ρ‖21‖∂S−rt ρ‖21 + ‖∂rt u‖2L3‖∂S−rt ρ‖21

)
dτ

=:

∫ T∗

τ0

(
G1
r(τ) +G2

r(τ) +G3
r(τ)

)
dτ.

Applying (4.1) with index 2r − 1 and (4.2) with index k − 2r + 1 to terms ‖∂rt ρ‖2L2 and

‖∇∂S−rt ρ‖21 respectively, we observe that∫ T∗

τ0

G1
r(τ)dτ ≤ C(ρ0, u0, g, k)τ1−2r

0

∫ T∗

τ0

‖∂S−rt ρ(τ)‖22dτ

≤ C(ρ0, u0, g, k)τ
−(2r−1)
0 τ

−(k−2r+1)
0

≤ C(ρ0, u0, g, k)t−k,

where we used the fact that τ0 > t/2.

22



To study the term involving G2
r , we will apply (4.1) with index 2r and (4.2) with index k− 2r

to terms ‖∂rt ρ‖21 and ‖∂S−rt ρ‖21 respectively. This yields:∫ T∗

τ0

G2
r(τ)dτ ≤ C(ρ0, u0, g, k)τ−2r

0

∫ T∗

τ0

‖∂S−rt ρ(τ)‖21dτ

≤ C(ρ0, u0, g, k)τ−2r
0 τ

−(k−2r)
0

≤ C(ρ0, u0, g, k)t−k,

Finally, using Sobolev embedding, Gagliardo-Nirenberg-Sobolev inequality, and Cauchy-Schwarz
inequality,∫ T∗

τ0

G3
r(τ)dτ ≤

∫ T∗

τ0

‖∂rt u‖2L3‖∂S−rt ρ‖21dτ .
∫ T∗

τ0

‖∂rt u‖L2‖∇∂rt u‖L2‖∂S−rt ρ‖21dτ

≤ C(ρ0, u0, g, k)τ
− 2r−1

2
0 τ−r0

∫ T∗

τ0

‖∂S−rt ρ‖21dτ

≤ C(ρ0, u0, g, k)t−(k− 1
2

) ≤ C(ρ0, u0, g, k)t−k.

Note that we applied (4.1) with index 2r − 1 to ‖∂rt u‖L2 , (4.1) with index 2r to ‖∇∂rt u‖L2 ,
and (4.2) with index k − 2r to the other ‖∂S−rt ρ‖21. We also used τ0 ≤ T∗ ≤ 1 in the �nal
inequality. The proof is thus completed after we combine the estimates above.

Using induction hypothesis at k = 0, we have F ∈ L1(0, T∗) with the bound ‖F‖L1(0,T∗) ≤
C(u0, ρ0, g). We may thus apply Grönwall inequality to (4.5) on time interval [τ0, t], where τ0

is selected as in Lemma 4.1 above. Using the two lemmas above, we have

ES(t) ≤ C(k)

(
ES(τ0) +

S−1∑
r=1

∫ t

τ0

Gr(τ)dτ

)
exp

(
‖F‖L1(0,T∗)

)
≤ C(ρ0, u0, g, k)t−k, (4.9)

where we recall that T∗ depends only on ρ0. This veri�es (4.1). To verify (4.2), we integrate
(4.5) on interval [t, T∗], which yields:∫ T∗

t

(
‖∇∂St ρ(τ)‖2L2 + ‖∇∂St u(τ)‖2L2

)
dτ ≤ ES(t)+C(k)

(∫ T∗

t
F (τ)ES(τ)dτ+

S−1∑
r=1

∫ T∗

t
Gr(τ)dτ

)
.

Using (4.9), Lemma 4.2, and the fact that t
2 < τ0 < t, we can estimate the above by:∫ T∗

t
(‖∇∂St ρ(τ)‖2L2 + ‖∇∂St u(τ)‖2L2)dτ ≤ C(ρ0, u0, g, k)t−k

+ C(ρ0, u0, g, k)(t−k‖F‖L1 + t−k)

≤ C(ρ0, u0, g, k)t−k.

This concludes the proof of (4.2) with l = S.

Step 2: show (4.1), (4.2) with l < S. We will show how we obtain the case when l = S−1.
Then the rest just follows from another induction on l = 1, . . . , S backwards.

23



We may rewrite the equations (4.3) with s = S − 1 as

−∆∂S−1
t ρ = −∂St ρ−

S−1∑
r=0

(
S − 1

r

)[
∂rt u · ∇∂S−1−r

t ρ+ ∂S−1−r
t ρ∂rt ρ+∇∂S−1−r

t ρ · ∇(−∆)−1(∂rt ρ)

]
= −∂St ρ+R1 (4.10a)

A∂S−1
t u = −∂St u+ gP(∂S−1

t ρez) = −∂St u+R2 (4.10b)

Here, R1, R2 are the remainder terms which are essentially of lower order. We will see that
these terms can be treated by the induction hypothesis on k. To illustrate this, we show that
the following estimates hold:

Lemma 4.3. For any t ∈ (0, T∗],

tk−
1
4 (‖R1(t)‖2L2 + ‖R2(t)‖2L2) ≤ C(ρ0, u0, g, k),

tk−
1
4

∫ T∗

t

(
‖R1(τ)‖21 + ‖R2(τ)‖21

)
dτ ≤ C(ρ0, u0, g, k).

Proof. First, it is straightforward to obtain the following bounds for R2 by directly imposing
the induction hypothesis at index k − 1:

tk−1‖R2(t)‖2L2 + tk−1

∫ T∗

t
‖R2(t)‖21dt ≤ C(ρ0, u0, g, k). (4.11)

Prior to estimating R1, we �rst need an improved bound for ‖u‖2: invoking (4.11) with k = 1,
we have

‖R2(t)‖2L2 ≤ C(ρ0, u0, g).

Since S = 1 when k = 1 by de�nition, we apply the Stokes estimate to (4.10b) with S = 1 to
see that

‖u‖22 . ‖∂tu‖2L2 + ‖R2‖2L2 ≤ C(ρ0, u0, g)(t−1 + 1) ≤ C(ρ0, u0, g)t−1, (4.12)

where we used Step 1 with k = 1 above. Now, we are ready to estimate R1. We �rst note
that it involves 3 typical terms, namely

Rr11 := ∂rt u · ∇∂S−1−r
t ρ, Rr12 := ∂S−1−r

t ρ∂rt ρ, R
r
13 := ∇∂S−1−r

t ρ · ∇(−∆)−1(∂rt ρ),

where 0 ≤ r ≤ S − 1. We will prove suitable bounds for Rr11, and the rest can be bounded
more easily since these terms involve fewer derivatives. If 1 ≤ r ≤ S − 1, then by Hölder
inequality:

‖Rr11‖2L2 ≤ ‖∂rt u‖2L6‖∇∂S−1−r
t ρ‖2L3 . ‖∂rt u‖21‖∂S−1−r

t ρ‖1‖∂S−1−r
t ρ‖2

≤ C(ρ0, u0, g, k)t−2rt−
k−2r−1

2 t−
k−2r

2

≤ C(ρ0, u0, g, k)t−(k− 1
2

),

where we used (4.1) at indices 2r, k − 2r − 1, k − 2r respectively.
If r = 0, then we observe that R0

11 = u · ∇∂S−1
t ρ. We estimate as follows:

‖R0
11‖2L2 ≤ ‖u‖2L∞‖∂S−1

t ρ‖21 ≤ ‖u‖
1/2
L2 ‖u‖

3/2
2 ‖∂

S−1
t ρ‖21

≤ C(ρ0, u0, g, k)t−3/4t−(k−1) = C(ρ0, u0, g, k)t−(k−1/4)
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where we used Agmon's inequality in 3D:

‖u‖2L∞ . ‖u‖1/2
L2 ‖u‖

3/2
2

in the second inequality. We also invoked (4.1) with index 0 to estimate ‖u‖L2 , (4.1) with
index k − 1 to bound ‖∂S−1

t ρ‖1, and (4.12) to control ‖u‖2.
Turning to the second inequality, since ∂rt u = 0 on ∂Ω, then we can invoke Poincaré inequality
to obtain:∫ T∗

t
‖Rr11‖21dτ .

∫ T∗

t
‖∇Rr11‖2L2dτ

.
∫ T∗

t

(
‖∇∂rt u · ∇∂S−1−r

t ρ‖2L2 + ‖∂rt u · ∇2∂S−1−r
t ρ‖2L2

)
dτ

=: Rr111 +Rr112.

If 1 ≤ r ≤ S − 1, using Hölder inequality and Gagliardo-Nirenberg-Sobolev inequalities, we
can estimate Rr111 by

Rr111 ≤
∫ T∗

t
‖∇∂rt u‖2L3‖∇∂S−1−r

t ρ‖2L6dτ .
∫ T∗

t
‖∇∂rt u‖L2‖∇2∂rt u‖L2‖∇∂S−1−r

t ρ‖21dτ

≤ C(ρ0, u0, g, k)t−rt−(k−2r)

∫ T∗

t
‖∇2∂rt u‖L2‖∇∂S−1−r

t ρ‖1dτ

≤ C(ρ0, u0, g, k)t−rt−
k−2r

2 t−rt−
k−2r−1

2 = C(ρ0, u0, g, k)t−(k− 1
2

).

If r = 0, then we apply Hölder inequality and a Gagliardo-Nirenberg-Sobolev inequality to
estimate that

R0
111 ≤

∫ T∗

t
‖∇u‖2L3‖∇∂S−1

t ρ‖2L6dτ ≤
∫ T∗

t
‖u‖1‖u‖2‖∂S−1

t ρ‖22dτ

≤ C(ρ0, u0, g, k)t−1/2

∫ T∗

t
‖∂S−1

t ρ‖22dτ

≤ C(ρ0, u0, g, k)t−1/2t−(k−1) ≤ C(ρ0, u0, g, k)t−(k−1/2),

where we used the bound (4.12) and (4.2) with index 0 and k − 1 above.
Now we discuss the bound for Rr112. For 1 ≤ r ≤ S − 1, we have

Rr112 ≤
∫ T∗

t
‖∂rt u‖2L3‖∇2∂S−1−r

t ρ‖2L6dτ

≤
∫ T∗

t
‖∂rt u‖L2‖∂rt u‖1‖∂S−1−r

t ρ‖23dτ

≤ C(ρ0, u0, g, k)t−
2r−1

2 t−r
∫ T∗

t
‖∂S−1−r

t ρ‖23dτ

≤ C(ρ0, u0, g, k)t−(k−1/2),

where we used (4.1) with indices 2r − 1 and 2r in the third inequality, and (4.2) with index
k − 2r in the last inequality. If r = 0, then we take advantage of Agmon's inequality in 3D
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again to obtain:

R0
112 ≤

∫ T∗

t
‖u‖2L∞‖∇2∂S−1

t ρ‖2L2dτ

≤
∫ T∗

t
‖u‖1/2

L2 ‖u‖
3/2
2 ‖∂

S−1
t ρ‖22dτ

≤ C(ρ0, u0, g, k)t−3/4

∫ T∗

t
‖∂S−1

t ρ‖22dτ

≤ C(ρ0, u0, g, k)t−3/4t−(k−1)

= C(ρ0, u0, g, k)t−(k−1/4).

Therefore, we arrive at the bound:∫ T∗

t
‖Rr11‖21dτ ≤ C(ρ0, u0, g, k)t−(k−1/4).

Proceeding in a similar fashion, we can acquire similar bounds for the Rr12 and R
r
13. The proof

of the lemma is thus complete after we sum up the estimates above.

By Step 1, we know that for any t ∈ (0, T∗],

tk
(
‖∂St ρ(t)‖2L2 + ‖∂St u(t)‖2L2

)
≤ C(ρ0, u0, g, k),

tk
∫ T∗

t

(
‖∂St ρ(τ)‖21 + ‖∂St u(τ)‖21

)
dτ ≤ C(ρ0, u0, g, k).

Combining Lemma 4.3 with equations (4.10a), (4.10b), and using elliptic estimates, we con-
clude that for t ∈ (0, T∗]

‖∂S−1
t ρ(t)‖22 + ‖∂S−1

t u(t)‖22 ≤ C(ρ0, u0, g, k)t−k,∫ T∗

t

(
‖∂S−1

t ρ(τ)‖23 + ‖∂S−1
t u(τ)‖23

)
dτ ≤ C(ρ0, u0, g, k)t−k,

which �nishes the case when l = S − 1. The rest will follow from an induction in l, and we
omit the details here. Hence, we have concluded the case where k is odd.

2. k is even. Since we have proved the k = 0 case, we may write k = 2S, S ≥ 1, and de�ne

Ẽs(t) = ‖∇∂st ρ‖2L2 + ‖∇∂st u‖2L2

for 0 ≤ s ≤ S. Notice that Ẽs(t) ∼ ‖∂st ρ‖21 + ‖∂st u‖21 in view of the Poincaré inequality. The
scheme of the proof in this case is the same double induction argument (in forward k and for
each k backwards in l), and we will follow the same outline as in the odd case. Considering
(4.3) for s = 1, . . . , S, we test (4.3a), (4.3b) with s = S by −∆∂St ρ,A∂St u respectively, which
yields:

1

2

d

dt
‖∇∂St ρ‖2L2 + ‖∆∂St ρ‖2L2 =

S∑
r=0

(
S

r

)
(Ĩr + J̃r + K̃r),

1

2

d

dt
‖∇∂St u‖2L2 + ‖A∂St u‖2L2 = g

∫
Ω
A∂St uP(∂St ρez) ≤

g

2
ẼS ,
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where for r = 0, . . . , S,

Ĩr =

∫
Ω

∆∂St ρ(∂rt u · ∇)∂S−rt ρ, J̃r =

∫
Ω

∆∂St ρ∂
r
t ρ∂

S−r
t ρ,

K̃r =

∫
Ω

∆∂St ρ∇∂S−rt ρ · ∇(−∆)−1∂rt ρ.

To estimate Ĩr, we �rst observe that

Ĩr ≤ ‖∆∂St ρ‖L2‖∂rt u‖L6‖∇∂S−rt ρ‖L3 ≤ ‖∆∂St ρ‖L2‖∂rt u‖1‖∇∂S−rt ρ‖1/2
L2 ‖∇2∂S−rt ρ‖1/2

L2 .

Hence if r 6= 0, we may estimate Ĩr as follows: for any ε > 0,

Ĩr ≤ ε‖∆∂St ρ‖2L2 + C(ε)‖∂S−rt ρ‖1‖∂S−rt ρ‖2‖∂rt u‖21.

If r = 0, we estimate

Ĩ0 =

∫
Ω

∆∂St ρ(u · ∇)∂St ρ ≤ ‖∆∂St ρ‖L2‖u‖L∞‖∇∂St ρ‖L2 ≤ ε‖∆∂St ρ‖2L2 + C(ε)‖u‖22‖∇∂St ρ‖2L2 .

To estimate J̃r, we have:

J̃r ≤ ε‖∆∂St ρ‖2L2 + C(ε)‖∂rt ρ‖21‖∂S−rt ρ‖21,

where ε > 0. Finally, to estimate of K̃r, we invoke elliptic estimate to obtain

K̃r ≤ ‖∆∂St ρ‖L2‖∂S−rt ρ‖1‖∇(−∆)−1∂rt ρ‖L∞ . ‖∆∂St ρ‖L2‖∂S−rt ρ‖1‖∇(−∆)−1∂rt ρ‖2
≤ ε‖∆∂St ρ‖2L2 + C(ε)‖∂rt ρ‖21‖∂S−rt ρ‖21,

for any ε > 0. Combining the estimates above yields the following energy inequality: for
τ ∈ (0, T∗),

dẼS
dτ

+ ‖∂St ρ(τ, ·)‖22+‖∂St u(τ, ·)‖22 ≤ C(k)

[ (
g + ‖u‖22 + ‖ρ‖22

)
ẼS(τ)

+

S−1∑
r=1

(
‖∂S−rt ρ‖1‖∂S−rt ρ‖2‖∂rt u‖21 + ‖∂S−rt ρ‖21‖∂rt ρ‖21

)]

≤ C(k)

(
F̃ (τ)ẼS(τ) +

S−1∑
r=1

G̃r(τ)

)
, (4.13)

where F̃ ∈ L1(0, T∗) due to the induction hypothesis at k = 0. Now, we would like to follow
the same plan as that in the odd case. This motivates us to prove lemmas similar to Lemma
4.1, 4.2, and 4.3 adapted to the even case. First, we show the following lemma that parallels
Lemma 4.1:

Lemma 4.4. There exists τ0 ∈ [t/2, t] such that ẼS(τ0) ≤ C(ρ0, u0, g, k)t−k.
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Proof. We consider (4.3) with s = S − 1. In view of (4.3b), we have

‖∂St u‖21 . ‖A∂S−1
t u‖21 + g2‖∂S−1

t ρ‖21 ≤ ‖∂S−1
t u‖23 + g2‖∂S−1

t ρ‖21,

for any τ ∈ [t/2, t]. Integrating over [t/2, t] and using (4.2) with index k − 1, we obtain∫ t

t/2
‖∂St u(τ)‖21dτ ≤

∫ T∗

t/2
‖∂St u(τ)‖21dτ ≤ C(ρ0, u0, g, k)t1−k. (4.14)

To estimate ‖∇∂St ρ‖L2 , we apply ∇ to both sides of (4.3a) with s = S − 1, and then use
Hölder's inequality:

‖∇∂St ρ‖2L2 . ‖∂S−1
t ρ‖23 +

S−1∑
r=0

C(k)

(
‖∇(∂rt u · ∇∂S−r−1

t ρ)‖2L2

+ ‖∇(∂S−r−1
t ρ∂rt ρ)‖2L2 + ‖∇(∇∂S−r−1

t ρ · ∇(−∆)−1(∂rt ρ))‖2L2

)
. (4.15)

To save space, we only consider the most singular term, namely ‖∇(∂rt u · ∇∂S−r−1
t ρ)‖2L2 , and

show that ∫ t

t/2
‖∇(∂rt u · ∇∂S−r−1

t ρ)‖2L2dτ ≤ C(ρ0, u0, g, k)t1−k. (4.16)

The estimates on the rest of the terms follow from a similar argument. To show (4.16), we
�rst compute that

∇(∂rt u · ∇∂S−r−1
t ρ) = ∇∂rt u · ∇∂S−r−1

t ρ+ ∂rt u · ∇2∂S−r−1
t ρ.

The �rst term can be estimated by

‖∇∂rt u · ∇∂S−r−1
t ρ‖2L2 ≤ ‖∇∂rt u‖2L4‖∇∂S−r−1

t ρ‖2L4

. ‖∇∂rt u‖21‖∇∂S−r−1
t ρ‖21

≤ ‖∂rt u‖22‖∂S−r−1
t ρ‖22.

Similarly, we may estimate the second term above by

‖∂rt u · ∇2∂S−r−1
t ρ‖2L2 . ‖∂rt u‖21‖∂S−r−1

t ρ‖23

Thus for r = 0, . . . , S − 1,∫ t

t/2
‖∇(∂rt u · ∇∂S−r−1

t ρ)‖2L2dτ .
∫ t

t/2

(
‖∂rt u‖22‖∂S−r−1

t ρ‖22 + ‖∂rt u‖21‖∂S−r−1
t ρ‖23

)
dτ

≤ C(ρ0, u0, g, k)(t−(2r+1)t−(k−2r−2) + t−2rt−(k−2r−1))

≤ C(ρ0, u0, g, k)t−(k−1)

where we applied (4.1) with index 2r+1 to ‖∂rt u‖2, (4.2) with index k−2r−2 to ‖∂S−1−r
t ρ‖2,

(4.1) with index 2r to ‖∂rt u‖1, and (4.2) with index k − 2r − 1 to ‖∂S−1−r
t ρ‖3. In a similar

fashion, we can also obtain the following bound:∫ t

t/2

[
‖∇(∂S−r−1

t ρ∂rt ρ)‖2L2 + ‖∇(∇∂S−r−1
t ρ · ∇(−∆)−1(∂rt ρ))‖2L2

]
dτ ≤ C(ρ0, u0, g, k)t1−k.
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Collecting the estimates above and combining with (4.15), we have∫ t

t/2
‖∇∂St ρ(τ)‖2L2dτ ≤ C(ρ0, u0, g, k)t1−k. (4.17)

Combining (4.14) and (4.17), we have∫ t

t/2
ẼS(τ)dτ ≤ C(ρ0, u0, g, k)t1−k.

By mean value theorem, we can �nd a τ0 ∈ (t/2, t) such that

ẼS(τ0) ≤ C(ρ0, u0, g, k)t−k,

and this concludes the proof.

Then we show a counterpart to Lemma 4.2.

Lemma 4.5. Let τ0 be chosen as in Lemma 4.4. Then for any r = 1, . . . , S − 1, we have∫ T∗

τ0

G̃r(τ)dτ ≤ C(ρ0, u0, g, k)t−(k− 1
2

).

Proof. Observe that for r = 1, . . . , S − 1,

G̃r = ‖∂S−rt ρ‖1‖∂S−rt ρ‖2‖∂rt u‖21 + ‖∂S−rt ρ‖21‖∂rt ρ‖21 =: G̃1
r + G̃2

r .

To estimate G̃2
r , apply (4.1) with index 2r to ‖∂rt ρ‖21 and (4.2) with index k − 2r − 1 to

‖∂S−rt ρ‖21 : ∫ T∗

τ0

G̃2
r(τ)dτ ≤ C(ρ0, u0, g, k)τ−2r

0

∫ T∗

τ0

‖∂S−rt ρ‖21dτ

≤ C(ρ0, u0, g, k)τ−2r
0 τ

−(k−2r−1)
0

≤ C(ρ0, u0, g, k)t−(k−1).

To treat the term G̃1
r , we use the induction hypothesis to obtain that∫ T∗

τ0

G̃1
r(τ)dτ =

∫ T∗

τ0

‖∂S−rt ρ‖1‖∂rt u‖1‖∂S−rt ρ‖2‖∂rt u‖1dτ

≤ C(ρ0, u0, g, k)τ
− k−2r

2
0 τ−r0

∫ T∗

τ0

‖∂S−rt ρ‖2‖∂rt u‖1dτ

≤ C(ρ0, u0, g, k)τ
− k−2r

2
0 τ−r0 τ

− k−2r
2

0 τ
− 2r−1

2
0

≤ C(ρ0, u0, g, k)t−(k− 1
2

)

Summing up the two estimates above completes the proof of the lemma.

Finally, we show a result parallel to Lemma 4.3.
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Lemma 4.6. For any t ∈ (0, T∗],

tk−
1
4 (‖R1(t)‖21 + ‖R2(t)‖21) ≤ C(ρ0, u0, g, k),

tk−
1
4

∫ T∗

t

(
‖R1(τ)‖22 + ‖R2(τ)‖22

)
dτ ≤ C(ρ0, u0, g, k),

where R1, R2 are de�ned as in (4.10).

Proof. First, we note that by applying (4.1) and (4.2) with index k − 2, we have

tk−2

(
‖R2(t)‖21 +

∫ T∗

t
‖R2(τ)‖22dτ

)
≤ C(ρ0, u0, g, k).

Then it su�ces for us to show suitable bounds for R1. Similarly to the proof of Lemma 4.3,
we need to control the following typical terms:

Rr11 := ∂rt u · ∇∂S−1−r
t ρ, Rr12 := ∂S−1−r

t ρ∂rt ρ, R
r
13 := ∇∂S−1−r

t ρ · ∇(−∆)−1(∂rt ρ),

For simplicity, we will only consider in detail the most singular term Rr11, as the estimates for
the remaining two terms will follow similarly.

We �rst study ‖Rr11‖21, and it su�ces for us to consider the leading order contribution i.e.
‖∇Rr11‖2L2 . Recall from the proof of Lemma 4.3 that

‖∇Rr11‖2L2 . ‖∇∂rt u · ∇∂S−1−r
t ρ‖2L2 + ‖∂rt u · ∇2∂S−1−r

t ρ‖2L2 =: Rr111 +Rr112.

To treat Rr111, we see that for any 0 ≤ r ≤ S−1 , an application of Hölder inequality, Sobolev
embedding, and Gagliardo-Nirenberg Sobolev inequality yields:

Rr111 ≤ ‖∇∂rt u‖2L3‖∇∂S−r−1
t ρ‖2L6

. ‖∇∂rt u‖L2‖∇∂rt u‖1‖∇∂S−r−1
t ρ‖21

. ‖∂rt u‖1‖∂rt u‖2‖∂S−r−1
t ρ‖22

≤ C(ρ0, u0, g, k)t−rt−
2r+1

2 t−(k−2r−1)

≤ C(ρ0, u0, g, k)t−(k−1/2),

where we used (4.1) with indices 2r, 2r + 1, k − 2r − 1 respectively in the second to the last
inequality above. To treat Rr112, we �rst discuss the case when 1 ≤ r ≤ S − 1:

Rr112 ≤ ‖∂rt u‖2L3‖∇2∂S−r−1
t ρ‖2L6

≤ ‖∂rt u‖L2‖∂rt u‖1‖∂S−r−1
t ρ‖23

≤ C(ρ0, u0, g, k)t−
2r−1

2 t−rt−(k−2r)

≤ C(ρ0, u0, g, k)t−(k−1/2),

where we used (4.1) with index 2r−1, 2r, k−2r respectively in the second to the last inequality
above. In the case where r = 0, we instead estimate as follows using Agmon's inequality:

R0
112 ≤ ‖u‖2L∞‖∇2∂S−1

t ρ‖2L2

. ‖u‖1/2
L2 ‖u‖

3/2
2 ‖∂

S−1
t ρ‖22

≤ C(ρ0, u0, g, k)t−
3
4 t−(k−1)

≤ C(ρ0, u0, g, k)t−(k−1/4),
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where we used (4.1) with index 0, 1, and k−1 in the third inequality. Combining the estimates
above yields

tk−1/4‖Rr11(t)‖21 ≤ C(ρ0, u0, g, k).

Now we shall study ‖Rr11‖22. We still consider the leading order contribution, namely ‖∇2Rr11‖2L2 .
A straightforward computation yields:

‖∇2Rr11‖2L2 . ‖∇2∂rt u · ∇∂S−1−r
t ρ‖2L2 + ‖∇∂rt u · ∇2∂S−1−r

t ρ‖2L2 + ‖∂rt u · ∇3∂S−1−r
t ρ‖2L2

=: R̃r111 + R̃r112 + R̃r113.

To control R̃r111, we have for any t ∈ (0, T∗]:

R̃r111 ≤ ‖∇2∂rt u‖2L3‖∇∂S−1−r
t ρ‖2L6

. ‖∇2∂rt u‖L2‖∇2∂rt u‖1‖∇∂S−1−r
t ρ‖21

. ‖∂rt u‖2‖∂rt u‖3‖∂S−1−r
t ρ‖22

≤ C(ρ0, u0, g, k)t−
2r+1

2 t−
k−2r−1

2 ‖∂rt u‖3‖∂S−1−r
t ρ‖2

= C(ρ0, u0, g, k)t−
k
2 ‖∂rt u‖3‖∂S−1−r

t ρ‖2

where we used (4.1) with indices 2r + 1 and k − 2r − 1 above. Integrating in time, we obtain∫ T∗

t
R̃r111dτ ≤ C(ρ0, u0, g, k)t−

k
2

∫ T∗

t
‖∂rt u‖3‖∂S−1−r

t ρ‖2dτ

≤ C(ρ0, u0, g, k)t−
k
2

(∫ T∗

t
‖∂rt u‖23dτ

)1/2(∫ T∗

t
‖∂S−1−r

t ρ‖22dτ
)1/2

≤ C(ρ0, u0, g, k)t−
k
2 t−

2r+1
2 t−

k−2r−2
2

≤ C(ρ0, u0, g, k)t−(k−1/2),

where we used (4.2) with indices 2r + 1 and k − 2r − 2. A similar argument switching the
estimates of u and ρ terms yields the same bound for R̃r112:∫ T∗

t
R̃r112dτ ≤ C(ρ0, u0, g, k)t−(k−1/2).

To estimate R̃r113, we �rst note that for 1 ≤ r ≤ S − 1,

R̃r113 ≤ ‖∂rt u‖2L3‖∇3∂S−r−1
t ρ‖2L6

≤ ‖∂rt u‖L2‖∂rt u‖1‖∂S−r−1
t ρ‖24

≤ C(ρ0, u0, g, k)t−
2r−1

2 t−r‖∂S−r−1
t ρ‖24

where we used (4.1) with index 2r − 1 and 2r respectively in the last inequality above. Inte-
grating in time, we get:∫ T∗

t
R̃r113dτ ≤ C(ρ0, u0, g, k)t−

2r−1
2 t−r

∫ T∗

t
‖∂S−r−1

t ρ‖24dτ

≤ C(ρ0, u0, g, k)t−
2r−1

2 t−rtk−2r

= C(ρ0, u0, g, k)t−(k−1/2),
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where we used (4.2) with index k− 2r above. In the case where r = 0, we instead estimate as
follows using Agmon's inequality:

R̃0
113 ≤ ‖u‖2L∞‖∇3∂S−1

t ρ‖2L2

. ‖u‖1/2
L2 ‖u‖

3/2
2 ‖∂

S−1
t ρ‖23

≤ C(ρ0, u0, g, k)t−
3
4 ‖∂S−1

t ρ‖23

where we used (4.1) with indices 0 and 1. Integrating in time yields:∫ T∗

t
R̃0

113dτ ≤ C(ρ0, u0, g, k)t−
3
4

∫ T∗

t
‖∂S−1

t ρ‖23dτ

≤ C(ρ0, u0, g, k)t−
3
4 t−(k−1)

= C(ρ0, u0, g, k)t−(k−1/4),

where we used (4.2) with index k − 1 above. Collecting the estimates above yields

tk−1/4

∫ T∗

t
‖∇2Rr11‖2L2 ≤ C(ρ0, u0, g, k).

The proof is therefore completed.

From this point on, a similar argument to the odd case, combining Lemma 4.4, 4.5, and 4.6
above, �nishes the proof for the even case. We leave details for the interested reader.

Finally, by combining Proposition 4.1 and Sobolev embeddings, we infer Theorem 1.4.

A Appendix

In the appendix, we will remark on one regularity estimate for Stokes operator A that plays an
essential role in our energy estimates. What follows will be a proof of Proposition 3.1 that appeared
in the proof of the key result Theorem 3.1.

The regularity result for Stokes operator stated below is standard; proofs can be found for
example in [7]:

Theorem A.1. Let Ω be a bounded C2 domain. Then there exists a constant C depending only on

domain Ω such that for all u ∈ D(A) = H2(Ω) ∩ V ,

‖u‖2 ≤ C‖Au‖L2 .

Moreover, there exist constants c1, C1 only depending on domain Ω such that

c1‖∇u‖L2 ≤ ‖A1/2u‖L2 ≤ C1‖∇u‖L2

We will now give a proof for Proposition 3.1; its statement is reiterated below.
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Proposition A.1. Let Ω ⊂ Rd, d = 2, 3, be a smooth, bounded domain. Assume (ρ, u) to be the

strong solution of problem (1.1) on [0, T ] with initial condition ρ0 ∈ H1
0 ∩ L∞ and ρ0 ≥ 0. If there

exists M > 0 such that sup0≤t≤T ‖ρ(t)‖L2 ≤M , we then have

sup
0≤t≤T

‖ρ(t)‖L∞ ≤ CM
4

4−d ,

where C is a constant only depending on domain Ω.

Proof. In the proof, we consider t > 0 and suppress t dependence for the rest of the proof. Let
p ≥ 1 be an integer. We start with the following computation using (1.1):

d

dt
‖ρ‖2p

L2p = 2p

∫
Ω
ρ2p−1(−(u · ∇)ρ− div(ρ∇(−∆)−1ρ) + ∆ρ) dx = 2p(I + J +K).

Using incompressibility of u, we can compute that

I = −
∫

Ω
ρ2p−1(u · ∇)ρ dx = − 1

2p

∫
Ω
uj∂jρ

2p = 0.

Integrating by parts, we have

J = (2p− 1)

∫
Ω
ρ2p−1∂jρ∂j(−∆)−1ρdx =

2p− 1

2p

∫
Ω
∂j(ρ

2p)∂j(−∆)−1ρdx =
2p− 1

2p

∫
Ω
ρ2p+1dx

Using chain rule, we also have

K = −(2p− 1)

∫
Ω
ρ2p−2∂jρ∂jρdx = −2p− 1

p2

∫
Ω
|∇ρp|2dx.

Collecting all computations above, we observe that

d

dt
‖ρ‖2p

L2p = (2p− 1)‖ρ‖2p+1
L2p+1 −

(
4− 2

p

)
‖∇ρp‖2L2 . (A.1)

Now we shall estimate ‖ρ‖L2n inductively on n. The base case n = 1 is dealt with by our assumption.
Assume for t ∈ [0, T ] we have the bound

‖ρ‖L2n ≤ Bn, Bn ≥ 1

for any t ∈ [0, T ]. De�ne f = ρ2n , and apply p = 2n to (A.1), we obtain that

d

dt

∫
Ω
f2dx ≤ −2‖∇f‖2L2 + 2n+1‖f‖2+2−n

L2+2−n . (A.2)

Applying a Gagliardo-Nirenberg-Sobolev inequality, we can estimate using Young's inequality that

‖f‖2+2−n

L2+2−n . ‖∇f‖d2−n−1

L2 ‖f‖2+2−n−d2−n−1

L2 ≤ d2−n−2‖∇f‖2L2 + C‖f‖
2+2−n−d2−n−1

1−d2−n−2

L2 , (A.3)

‖f‖L2 . ‖∇f‖
d

d+2

L2 ‖f‖
2

d+2

L1 . (A.4)

The constants in the above inequalities do not depend on n. Plugging (A.3), (A.4) to (A.2), we
obtain

d

dt

∫
Ω
f2dx ≤ −2‖∇f‖2L2 +

d

2
‖∇f‖2L2 + C22n+1‖f‖

2+2−n−d2−n−1

1−d2−n−2

L2

≤ −C1‖f‖
2d+4

d

L2 ‖f‖
− 4

d

L1 + C22n+1‖f‖
2+2−n−d2−n−1

1−d2−n−2

L2 , (A.5)
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where C1, C2 are constants only depending on d. Note that given d = 2, 3, we have 2+2−n−d2−n−1

1−d2−n−2 <
2d+4
d for n ≥ 1. Moreover, observe that

‖f‖L1 ≤ B2n

n <∞.

Then for each n ≥ 1, the right hand side of (A.5) becomes negative when ‖f‖L2 is su�ciently large.
In particular, one can compute that ‖ρ‖

L2n+1 will never reach the value Bn+1, where Bn+1 is de�ned
by the following recursive relation:

logBn+1 =
2n+2 − d
2n+2 − 2d

logBn +
d

2n
[logC3 + (n+ 1) log 2] , (A.6)

where C3 is a constant independent of n. Note that we have

n∏
j=1

aj :=
n∏
j=1

2j+2 − d
2j+2 − 2d

= 2−n
n∏
j=1

2j+2 − d
2j+1 − d

= 2−n
2n+2 − d

4− d
=

4− d2−n

4− d
→ 4

4− d

as n → ∞, where in the second equality we used the telescoping nature of the product. Using the
recursive relation (A.6) and B1 ≤M , one might straightforwardly compute that

Bn+1 ≤M
∏n

j=1 aj

[
C
d2−n+

∑n−1
j=0 (

∏n
k=j+1 ak)d2−j

3

] [
2d(n+1)2−n+

∑n−1
j=0 (

∏n
k=j+1 ak)d(j+1)2−j

]
Note that 0 <

∏n
j=1 aj ≤

∏∞
j=1 aj ≤

4
4−d < 4 for d = 2, 3, we may deduce from the inequality above

that

Bn+1 ≤M
4

4−d

[
C

4d
∑n

j=0 2−j

3

] [
24d

∑n
j=0(j+1)2−j

]
≤ CM

4
4−d ,

where C is a constant depending only on domain Ω and dimension d, since series
∑

j 2−j and∑
j(j + 1)2−j converge. Finally, as Ω is bounded, we have

‖ρ‖L∞ = lim
n→∞

‖ρ‖L2n ≤ CM
4

4−d ,

and the proof of the lemma is complete.
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