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In this paper, we study the knot Floer homology of a subfamily of twisted (p, q) torus

knots where q ≡ ±1 (mod p). Specifically, we classify the knots in this subfamily that

admit L-space surgeries. To do calculations, we use the fact that these knots are (1, 1)

knots and, therefore, admit a genus one Heegaard diagram.

1 Introduction

Heegaard Floer theory consists of a set of invariants of 3D and 4D manifolds [19]. For Y a

closed three manifold, one example of such invariants is Ĥ F (Y), which is a Spinc-graded

abelian group where the Spinc structures of Y are in one to one correspondence with the

elements of H2(Y; Z). Lens spaces have the simplest Heegaard Floer homology, that is,

Ĥ F (Y, s) ∼= Z for each s in Spinc(Y). By definition, a rational homology three-sphere with

the same property is called an L-space.

A knot K ⊂ S3 is called an L-space knot if performing n-surgery on K results

in an L-space for some positive integer n. Any knot with a positive lens space surgery

is then an L-space knot. In [1], Berge gave a conjecturally complete list of knots that

admit lens space surgeries including torus knots [16]. Therefore, it is natural to look

beyond Berge’s list for L-space knots. Examples include the (−2, 3, 2n+ 1) pretzel knots

(for positive integers n) [2, 4, 21], which are known to live outside of Berge’s collection

when n≥ 5 [12]. It is also proved in [11] that these three-strand pretzel knots are the only
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2 F. Vafaee

pretzel knots with L-space surgeries. Another source of L-space knots is within the set

of cable knots. By combining work of Hedden [6] and Hom [7], the (p, q) cable of a knot,

K, is an L-space knot if and only if K is an L-space knot and q/p≥ 2g(K) − 1.

The primary purpose of this paper is to investigate L-space knots in the family

of twisted torus knots, K(p, q; s, r), which are defined to be (p, q) torus knots with r

full twists on s adjacent strands where 0 < s < p (see Figure 1). Watson proved in [23]

that the knots K(3, 3k + 2; 2, 1) are L-space knots (k> 0). We generalize this result in

Corollary 3.3 by showing that all twisted (3, q) torus knots admit L-space surgeries (q is

a positive integer that does not divide 3).

To the best of our knowledge, the examples mentioned are the only previously

known explicit families of L-space knots. If K is a quasi-alternating knot with unknot-

ting number one, then the preimage of an unknotting arc in the branched double cover

Fig. 1. A (p, q) torus knot with r positive full twists on s adjacent strands. (Here, p denotes the

longitudinal winding.) The arc τ is a one-bridge, that is, it divides the knot into two arcs, where

one arc is unknotted and the other arc can be trivialized (unknotted) by sliding one or both of its

endpoints along the a priori unknotted arc. To make sense of adjacency of strands, we need to

have the standard presentation of a torus knot. Note that where the twist occurs is irrelevant.
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On the Knot Floer Homology of Twisted Torus Knots 3

of K is a knot in an L-space with an S3 surgery (see [13; 20, Section 8.3; 22, Proposi-

tion 3.3]). The dual to this curve is therefore a knot in S3 with an L-space surgery, so

either it or its mirror image is an L-space knot. However, at present, there is no explicit

parametrization of the knots that arise in this way. In this paper, we classify all the

L-space twisted (p, q) torus knots with q = kp± 1. The question of what happens when

q �= kp± 1 remains unanswered. Our examples include the L-space pretzel knots as a

proper subfamily since the (−2, 3, 2m + 3) pretzel knot is isotopic to K(3, 4; 2, m) for

m ≥ 1.

We now state the main result of the paper. With the above notation:

Theorem 1.1. For p≥ 2, k≥ 1, r > 0, and 0 < s < p, the twisted torus knot, K(p,

kp± 1; s, r), is an L-space knot if and only if either s = p− 1 or s ∈ {2, p− 2} and r = 1. �

A key ingredient of the proof is the observation that all of the twisted torus

knots being studied are (1, 1) knots, that is, knots that can be placed in one-bridge

position with respect to a genus one Heegaard splitting of S3. Thus, the knot is com-

prised of two properly embedded unknotted arcs, one in each of the two solid tori of the

Heegaard splitting. These arcs meet along their endpoints so that their union is equal to

the knot.

From the perspective of knot Floer homology, (1,1) knots are particularly appeal-

ing. It was first observed by Goda et al. [5] that (1, 1) knots are exactly those knots that

can be presented by a doubly pointed Heegaard diagram of genus one. The chain com-

plex for knot Floer homology is defined in terms of a doubly pointed Heegaard diagram.

As shown by Ozsváth and Szabó [18], for knots admitting a genus one diagram, knot

Floer homology can be computed combinatorially and efficiently.

The outline of the paper is as follows: Section 2 introduces the theory of (1, 1)

knots and presents how to draw a genus one Heegaard diagram for (1, 1) knots via an

explicit example. Section 3 contains the main result of the paper, as well as the corollar-

ies. In the final section, we state some questions that address future research.

2 Background and Preliminary Lemmas

We start this section by showing that the knots K(p, kp± 1; s, r) are (1, 1) knots. Next, we

explain an algorithm that produces genus one Heegaard diagrams for the twisted torus

knots with a (1, 1) decomposition. Finally, we assemble some preliminary facts needed

to prove Theorem 1.1.
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4 F. Vafaee

2.1 (1, 1) knots and genus one Heegaard diagrams

Let p and q be relatively prime positive integers and let r and s be integers. We denote

the knot illustrated in Figure 1 by K(p, q; s, r). Let τ be the arc indicated in Figure 1. By

untying the crossings of the r full twists above the arc through edge slides along the

arc, we will show that τ becomes a one-bridge for K(p, q; s, r) provided that q = kp± 1.

See Figure 2 for an explicit example. It has been a long-standing question of whether or

not any twisted torus knot, with q that is not of the form kp± 1, is a (1, 1) knot. In 1991,

Morimoto, Sakuma, and Yokota conjectured that the answer is negative.

Conjecture 2.1 ([14, Conjecture 1.3]). K(p, q; 2, r) admits no (1, 1) decomposition unless

either p≡ ±1 (mod q), or q ≡ ±1 (mod p), or r = 0,±1. �

Having s = 2 does not seem to play an important role in the conjecture and, in

fact, we expect a similar conjecture to hold when the twisting is on any number of

strands. Bowman et al. [3, Theorem 1.1] have proved this conjecture when the number of

twists is large.

2.1 2.2

Fig. 2. A (3, 4) torus knot with two positive full twists on two adjacent strands. The one bridge

is indicated by τ .
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On the Knot Floer Homology of Twisted Torus Knots 5

In the rest of this subsection, we give an explicit construction of a genus one

doubly pointed Heegaard diagram via a specific example, namely K = K(3, 4; 2, 2) (see

Figure 2). This example should help clarify the strategy we use for our calculations.

We now describe a procedure to see that the arc τ (indicated in Figure 2) is a one-

bridge, that is, it divides the knot K into two arcs, where one arc is a priori unknotted

and the other arc can be trivialized (unknotted) by sliding one or both endpoints of this

arc along the bold curve in Figure 2.2. (See [17] for a detailed discussion on how to pro-

duce a genus one Heegaard diagram for a certain family of (1, 1) knots.) The closed curve

indicated in bold is the union of the one-bridge, τ , and the a priori unknotted arc. There-

fore, its neighborhood is an unknotted torus. In Figure 3 we show, diagrammatically,

how to use the one-bridge and the unknotting process to obtain a Heegaard diagram for

the knot K. (The red and blue curves in Figure 3 (α and β curves, respectively) are the

boundaries of the meridional disks corresponding to the two solid tori of the genus one

Heegaard splitting of S3.) We do this by trivializing the arc living in the complement

of the torus. To begin, move the z base point in the counterclockwise direction, making

sure that the z base point passes to the left of the w base point, as otherwise we would

create more crossings rather than simplify the arc (see Figure 3.2). Now move the w base

point in the clockwise direction, passing to the left of the z base point (see Figure 3.3).

That completes the construction of the genus one Heegaard diagram (see Figure 3.4).

This construction can be generalized to an algorithm with three steps to produce

a genus one Heegaard diagram for K(p, kp± 1; s, r). Note that the number of longitudinal

and meridional windings is dictated by the arc living in the torus complement:

Step 1. Wind the z base point once around the torus in the counter clockwise direc-

tion. Note that z traverses the torus (k + r) times meridionally.

Step 2. Wind the w base point (s − 2) times in the clockwise direction. Note that each

time w traverses the torus (k + r) times meridionally.

Step 3. Finally, wind the w base point (p− s) times, longitudinally, to completely

trivialize the arc (in the sense that the planar projection of the arc no longer

has any self-intersection). Note that each longitudinal winding goes through

k meridional moves.

Remark 2.2. To trivialize the part of the knot that lives outside of the torus, we isotope

the base points, z and w, on the torus which forces the α curve to be perturbed. Specif-

ically, in a neighborhood of the base points, the isotopy drags one (or more) sub-arc(s)

of α. �
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6 F. Vafaee

3.1 3.2

3.3 3.4

Fig. 3. The process of obtaining a genus one Heegaard diagram for the (3, 4) torus knot with

two positive full twists on two adjacent strands. In the algorithm discussed in Section 2.1 (3.2)

corresponds to Step 1, and also (3.3) corresponds to, simultaneously, implementing Steps 2 and 3.

Note that the torus (in bold) corresponds to a neighborhood of the bold curve of Figure 2.2. Note

also that the α curve is drawn in red and the β curve is drawn in blue.
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On the Knot Floer Homology of Twisted Torus Knots 7

Note that the Heegaard diagram in Figure 3.4 may be represented by a rectangle

with canonical identification implicit (see Figure 5.1).

2.2 Lifted Heegaard diagrams, L-space knots, and C F K−

For K ⊂ S3 a knot, let C F K−(K) denote the knot Floer complex associated to K [18].

Fortunately, computing C F K−(K) for a (1, 1) knot K is purely combinatorial. We refer

the interested reader to [18, p. 89; 5] for further details. To analyze holomorphic disks

in the torus, it is convenient to pass to the universal covering space π : C → T . Given the

base points z and w in T , π−1(z) and π−1(w) lift to affine lattices Z and W, respectively.

Also let {α̃i} and {β̃ j} be the connected components of π−1(α) and π−1(β), respectively.

Now, given two intersection points x and y between α and β, the element φ ∈ π2(x, y)

is a Whitney disk that has Maslov index one and admits a holomorphic representative

if and only if there is a bigon φ̃ ∈ π2(x̃, ỹ) with Maslov index one, where x̃ and ỹ are

lifts of x and y, intersection points between α̃i and β̃ j (for some i and j). In particular,

M(φ̃) ∼=M(φ). See [18] for the notation used above. Figure 7.2 shows a Heegaard diagram

for K = K(3, 4; 2, 2) that has been lifted to C. Also, Figure 8 represents C F K−(K). An

L-space knot K can be thought of as a knot with the simplest knot Floer invariants. To

make sense of this fact, note that [19]

ΔK(T) =
∑
m,s

(−1)mrk Ĥ F Km(K, s)Ts, (2.1)

where ΔK(T) is the symmetrized Alexander polynomial of K. We observe that the total

rank of Ĥ F K(K) is bounded below by the sum of the absolute values of the coefficients

of the Alexander polynomial of K. A necessary condition for K to be an L-space knot is

for this bound to be sharp. The following lemma turns out to be useful during the course

of proving Part (c) of Theorem 3.1. See [21, Theorem 1.2] for the complete statement.

Lemma 2.3. Assume that K ⊂ S3 is a knot for which there is an integer p such that S3
p(K)

is an L-space. Then

rk Ĥ F K(K, s) ≤ 1 ∀ s ∈ Z.

In particular, all of the nonzero coefficients of ΔK(T) are ±1. �

Therefore, if the absolute value of one of the coefficients of ΔK(T) is >1, then

K is not an L-space knot. We end this subsection by noting that a knot Floer complex

with a staircase-shape (as in Figure 8) represents an L-space knot. Such a complex has
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8 F. Vafaee

a basis {x1, x2, . . . , xm} for C F K∞(K) (defined in [18]) such that

∂xi = xi−1 + xi+1 for i even

∂xi = 0 otherwise,
(2.2)

where the arrow from xi to xi−1 is horizontal and the arrow from xi to xi+1 is vertical.

(We refer the reader to [8, Section 6] for the concept of a knot Floer complex with a

staircase-shape.) The following corollary is a consequence of [8, Remark 6.6].

Corollary 2.4. For a knot K ⊂ S3, if C F K−(K) has a staircase-shape, then K is an L-space

knot. �

3 Proof of the Main Theorem

This section is devoted to the proof of the main result of the paper. For the sake of the

proof, it will convenient to restate Theorem 1.1 in the following equivalent form.

Theorem 3.1. For p≥ 2, k≥ 1, r > 0, and 0 < s < p, we have that K(p, kp± 1; s, r):

(a) is an L-space knot if s = p− 1,

(b) is an L-space knot if r = 1 and s ∈ {2, p− 2}, and

(c) does not admit any L-space surgeries otherwise. �

We prove part (a) by explicitly computing the knot Floer complex of K(p, kp± 1;
p− 1, r). Parts (b) and (c) are proved by focusing on the similarities and differences of

the corresponding complexes to those of K(p, kp± 1; p− 1, r). The key to the proof is in

identifying whether or not the knot Floer complex associated to K(p, kp± 1; s, r) has a

staircase-shape (Corollary 2.4).

Proof of Theorem 3.1(a). It will help to break the proof into two steps:

Proof Step 1: We show that K(p, kp± 1; p− 1, r) can be presented by a genus one

Heegaard diagram with the general form given in Figure 5.2.

Case 1. We first consider the case K(p, kp+ 1; p− 1, r). The case p= 2 is trivial.

The construction of a Heegaard diagram in the case when p= 3 was given in Section 2.

Also Figure 4 shows the process for K = K(4, 5; 3, 2).

To obtain a Heegaard diagram when p≥ 5 we can follow a similar procedure.

Note that the w base point winds around the longitude of the torus once in the case

p= 3, twice in the case p= 4, and p− 2 times in general. Moreover, in each longitudinal
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On the Knot Floer Homology of Twisted Torus Knots 9

4.1 4.2

4.3 4.4

Fig. 4. The process of drawing a genus one Heegaard diagram for the (4, 5) torus knot with two

positive full twists on three adjacent strands. (4.2)–(4.4) correspond to Step 1, Step 2, and Step

3, respectively, in the algorithm discussed in Section 2.1. The α curve is drawn in red. The base

points must pass to the left of each other, as otherwise we would create more crossings rather

than simplify the arc living in the torus complement.
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10 F. Vafaee

5.1 5.2

Fig. 5. Heegaard diagrams on the torus, represented by a rectangle with opposite sides identified.

(5.1) A Heegaard diagram for the (3, 4) torus knot with two positive full twists on two adjacent

strands. (5.2) The general form of a Heegaard diagram for K(p, kp± 1; p− 1, r), where r is an

arbitrary integer.

winding, the w base point traverses the torus k + r times meridionally, except for the

last longitudinal winding where α traverses the torus only k times meridionally. The

latter fact holds since we are twisting p− 1 strands of the (p, kp+ 1) torus knot (set

s = p− 1 in Step 3 of the algorithm given in Section 2). Note that as a result of s = p− 1,

we always drag only one sub-arc of α around the torus (Remark 2.2). Translating the

resulting Heegaard diagram obtained this way into the rectangular representation of

the torus, we get the general form of Figure 5.2.

Case 2: For the case q = kp− 1 we will have a similar setup, though the base

points have to pass to the right of each other, not to the left. In this case, there will

always be two intersection points of α and β that can be removed by an isotopy (see

Figure 6.1). To indicate the general case, we consider K = K(3, 5; 2, 1). The resulting Hee-

gaard diagram is isotopic to a Heegaard diagram for K(3, 4; 2, 2) shown in Figure 6.2. As

in Case 1, the Heegaard diagram will have the general form of Figure 5.2.

Proof Step 2: In this step, the goal is to calculate the filtered chain complex

C F K−(K) for K = K(p, kp± 1; p− 1, r). Figure 8 shows C F K−(K(3, 4, 2, 2)). We claim

that, in general, C F K−(K) has the same staircase-shape.
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On the Knot Floer Homology of Twisted Torus Knots 11

6.1 6.2

Fig. 6. By an isotopy, the shaded region disappears and the Heegaard diagram will have two less

intersection points.

As in Section 2.2 we lift the diagrams, obtained in Step 1, to C . Fix a con-

nected component α̃ of π−1(α). We claim that such a component is a union of “N”-shapes

(Figure 7.1). To see this fact, we notice that the lift of a genus one Heegaard diagram

can be obtained by gluing together infinitely many copies of the rectangular form of the

Heegaard diagram in the plane (gluing from the sides of the rectangles). Figure 7.2 repre-

sents a portion of such a lift for a specific example. Pick an intersection point and start

moving it along the α̃ curve. (For example, pick the intersection point 9 on α̃ in Figure 7.2

and start moving it upward.) The direction of the motion will reverse by turning around

either of the z or w base points. (In Figure 7.2, the direction of the motion will change

from upward to downward, and also from downward to upward, by going from 1 to 2,

and from 3 to 4, respectively.) Note that the rectangular form of the genus one Heegaard

diagram of K, as depicted in Figure 5.2, consists of a single β arc, together with α arcs

having endpoints on the edge(s) of the rectangle. Note also that there are only two α

arcs with both of their endpoints lying on one edge of the rectangle (namely the arcs

that turn around the base points). Therefore, by thinking of the lift of the diagram in C

as coming from infinitely many rectangles glued together along the sides and fixing a

connected component of π−1(α), the change in the direction of the motion (equivalently,

turning around either the z or w base point) never happens twice in a single rectangle
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12 F. Vafaee

7.1 7.2

Fig. 7. (7.1) A portion of the Heegaard diagram for K = K(p, kp± 1; p− 1, r) lifted to C, where r is

an arbitrary integer. Note that m is the number of intersection points in the genus one Heegaard

diagram of K. It is assumed, fixing α̃ a connected component of π−1(α), that we need n-connected

components of π−1(β) to obtain a complete list of all the m intersection points between α and

β downstairs. (7.2) A portion of the Heegaard diagram for the (3, 4) torus knot with two positive

full twists on two adjacent strands, lifted to C. Note that the base points specified in the image

depicted above are the only relevant base points needed to compute C F K−.

(note that we do not distinguish between the z and w base points downstairs, and their

lifts in C). Moreover, to recover all the intersection points in the lift, only two changes

of direction are needed. As a result, we get the shape of the lifted diagram as claimed.

Let us first consider the example, C F K−(K(3, 4; 2, 2)) whose Heegaard diagram

is given in Figure 7.2. Given a pair of intersection points x and y, the moduli space of

holomorphic representatives of Whitney disks φ ∈ π2(x, y) with Maslov index one, mod-

ulo reparametrization, is either empty or consists of one map. In what follows, we write

x → y if the moduli space consists of one such map, and if so, we record how many times

it passes over the z and w base points:

• 2 → 1, 6 → 5, 8 → 7 using one z base point,

• 3 → 9 using two z base points,
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On the Knot Floer Homology of Twisted Torus Knots 13

• 6 → 7, 8 → 9, 3 → 4 using one w base point, and

• 2 → 5 using two w base points.

From Figure 7.2, it is easy to see that we need four β̃ lines to generate the whole

nine intersection points in the lifted Heegaard diagram, that is, fixing α̃, by using only

four connected components of the lift of β we can obtain a lift of all the intersection

points between α and β. Starting from β̃4, there are three intersection points (3, 4,

and 9) with one disk 4 → 3 using one w base point and one other disk 9 → 3 using two

z base points. Thus, in terms of the Alexander gradings A(i) of the intersection points,

i ∈ {1, 2, . . . , 9} , we have that:

• A(3) − A(4) = nz(φ̃) − nw(φ̃) = −1, and

• A(3) − A(9) = nz(φ̃) − nw(φ̃) = 2.

See [18] for the notation. By a similar method, we can find the remaining Whitney disks

in the list above and use them to complete the ordering of the Alexander gradings. At

this point, we can obtain the staircase-shape of Figure 8.

For the general case of Figure 7.1, it is straightforward to observe that our strat-

egy can be extended. Assume that {x1, x2, . . . , xm} is the set of intersection points between

Fig. 8. C F K−(K(3, 4, 2, 2)).
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14 F. Vafaee

α and β curves coming from the genus one Heegaard diagram of K = K(p, kp+ 1; p− 1, r)

(see Figures 5.2 and 7.1). Assume also that, fixing α̃ a connected component of π−1(α), we

need n-connected components of π−1(β) to recover all the m intersection points down-

stairs between α and β (Figure 7.1). Our strategy is first ordering the generators based on

their Alexander gradings and, secondly, finding all the differentials. Using the “N”-shape

of Figure 7.1 and starting from β̃n, there are three intersection points (xm, xm−1, and xm−2)

with one disk xm−1 → xm using one w base point and one other disk xm−1 → xm−2 using

the z base point(s). Note that there exists no other nontrivial Whitney disk with Maslov

index one connecting xm−1 to another intersection point of Figure 7.1. Also on β̃n−1, there

is one disk xm−3 → xm−2 using the w base point(s). Continuing this process, we deduce

that

A(xm) > A(xm−1) > A(xm−2) > A(xm−3) > · · · > A(x1).

By noting that there is no other nontrivial Whitney disk with Maslov index one, we see

that the set {x1, x2, . . . , xm} forms a basis for C F K−(K) such that

∂xi = xi−1 + xi+1 for i even

∂xi = 0 otherwise.

This formula for the differentials (which is the same as (2.2)), together with the exis-

tence of three intersection points on each β̃ j line of Figure 7.1 with exactly two disks

using different base point types (i.e., z and w), gives the staircase-shape of C F K−(K)

(see the discussion about a knot Floer complex with a staircase-shape in Section 2.2).

Now, Corollary 2.4 completes the proof. �

Proof of (b) and (c). Let K(p, q; s, r) be a twisted torus knot where 2 ≤ s ≤ p− 2. We dis-

cuss the case when q = kp+ 1 and leave the case q = kp− 1 to the reader. Since we apply

the same algorithm, as used in Part (a), to obtain a Heegaard diagram, we will only high-

light the differences in this case. Recalling the algorithm explained in Section 2.1, we

first wind z once in the counterclockwise direction (Step 1). Then, we wind the w base

point (s − 2) times in the clockwise direction, traversing the torus (k + r) times merid-

ionally in each winding (Step 2). Finally, we wind the w base point (p− s) more times

around the torus longitudinally (Step 3). Note that in the latter step, w goes through

only k meridional moves in each winding.

It will be convenient to pick an arbitrary orientation for the α curve. Note that,

unlike Part (a), more than one sub-arc will be dragged since 2 ≤ s ≤ p− 2 (Remark 2.2).
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Fig. 9. The base point w drags more than one sub-arc of α. The image depicted above is

schematic.

With the α curve oriented, either these sub-arcs will have all the same orientation or

there will be at least one pair of sub-arcs with opposite orientations. The case for only

two sub-arcs can be seen in Figure 9. Figure 10 shows the process of constructing a

Heegaard diagram for K(4, 5, 2, 1), which indicates the pattern, particularly in the case

when s ∈ {2, p− 2}. �

Claim. Unless s ∈ {2, p− 2} and r = 1, the trivializing process will drag oppositely ori-

ented sub-arcs.

Proof. Suppose r = 1. The first longitudinal traversal of Step 3 drags no additional sub-

arcs. The second traversal of Step 3, however, drags (s − 1) sub-arcs, all oriented in the

same direction. The next winding drags (s − 2) additional sub-arcs, all oriented in the

same direction but opposite to those of the first (s − 1) sub-arcs. This opposite orienta-

tion will clearly not occur if s = 2. Suppose s = p− 2. Then in Step 3, the w base point

is wound longitudinally around the torus p− (p− 2) = 2 times (twice). Hence, only sub-

arcs with the same direction will be dragged. If r ≥ 2 the full twists of Step 1 create

future oppositely oriented sub-arcs in Step 3, that is, the w base point will be dragging

sub-arcs with opposite orientations, starting the second longitudinal traverse of Step

3. More specifically, if the number of full twists is >1, each additional twist will create

two oppositely oriented sub-arcs and the w base point will drag both of these sub-arcs

after the first (s − 1) longitudinal windings. �

Since the hypotheses of Part (b) imply that the sub-arcs have the same orienta-

tion, a similar argument to Part (a), once we lift the diagram to C, shows that the ordering

of the Alexander gradings of the intersection points will follow the same manner as in

the case s = p− 1. More precisely, if we think of the lift of the Heegaard diagram as com-

ing from infinitely many rectangles glued together, by picking an intersection point and

moving it along a fixed connected component α̃ of π−1(α), we see that the picked point,
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16 F. Vafaee

10.1 10.2

10.3 10.4

Fig. 10. The process of drawing a genus one Heegaard diagram for K(4, 5; 2, 1). The α curve in

each step is oriented. This example indicates the pattern when s ∈ {2, p− 2} and r = 1. In general

when r = 1, to go from (10.3) to (10.4), w first drags (s − 1) sub-arcs, all oriented in the same direc-

tion. In the next winding it drags (s − 2) additional sub-arcs, all oriented in the same direction

but opposite to those of the first (s − 1) sub-arcs. Dragging oppositely oriented sub-arcs does

not occur in this example since s = 2. Note that the orientation is irrelevant once the Heegaard

diagram is completed.
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11.1 11.2

Fig. 11. A genus one Heegaard diagram for K(4, 5; 2, 1), as well as its lift to C.

during its motion, never turns around the z (or w) base point twice in a single rectangle.

Therefore, although the lifted diagrams are not looking the same as Part (a), we claim

that the corresponding complexes have the staircase-shape. In particular, for the case

s = 2 (respectively, s = p− 2), we need four (respectively, 2p− 4) changes of direction (we

remind the reader that by changing direction we mean turning around one of the base

points (z or w)) to recover all the intersection points of downstairs. For the specific exam-

ple of K(4, 5; 2, 1) depicted in Figure 11.2:

A(6) > A(5) > A(9) > A(8) > A(7) > A(4) > A(1) > A(11) > A(10) > A(3) > A(2).

Exploring the Whitney disks in the lifted diagram will give a staircase-shape for the

associated complex. To see this in the general case, note that the set of all intersection

points between α and β curves forms a basis for C F K−. Moreover, for every intersection

point xi, either the differential vanishes, or there exist two Whitney disks with Maslov

index one connecting xi to another two distinct intersection points, using z and w base

points alternatively. (This shows that the differentials are of the form of (2.2).) That is,

for each intersection point xi, either there is no arrow joining it to another intersection

point, or there are two arrows joining xi to two distinct intersection points such that

one arrow is horizontal and the other is vertical. This gives us the staircase-shape of the

knot Floer complex. Finally, Corollary 2.4 completes the proof of Part (b).
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18 F. Vafaee

To prove Part (c), note that if the arcs dragged by w have different orientations,

then, after lifting the diagram to C, the following phenomenon occurs:

Claim: The associated complex does not represent an L-space knot.

Proof. As in the proof of Part (a), we can order the Alexander gradings of the intersec-

tion points from the Whitney disks in the lifted Heegaard diagram. Let β̃1,. . . , β̃k denote

the lifts of β needed to find all of the Whitney disks. Work from β̃k to β̃1 and stop at

the first β̃i that exhibits the phenomenon in figure above. Then part of the diagram is as

Figure 12.

We analyze this by looking at the Whitney disks:

• 4 → 1, 3 → 2 using one z base point, and

• 1 → 2, 4 → 3 using one w base point.

Fig. 12. A sub-diagram of a lifted Heegaard diagram, fixing one connected component of α̃.
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As a result, the part of C F K− involving the intersection points, {1, 2, 3, 4}, on β̃i will look

like

Note that the boundary map decreases the Maslov grading by one, and the U-action

decreases the grading by two. Combining these facts with the existence of the disks

1 → 2 and 4 → 3, we find that the intersection points 2 and 4 both have the same Maslov

gradings as well as the same Alexander gradings. (We are assuming that there are no

trivial Whitney disks connecting two intersection points; if there is a bigon that does

not pass over any of the base points, we can isotop it away.) Thus,

rk Ĥ F K(K, s) ≥ rk Ĥ F Km(K, s) = rk Ĉ F Km(K, s) ≥ 2,

where s is the Alexander grading of the intersection points 2 and 4. Now, Lemma 2.3

completes the proof of the claim and Part (c). �

The Heegaard diagrammatic observation in Figure 6 can be generalized. The

author suspects that the following corollary could have been proved differently, using

braid words for instance.

Corollary 3.2. The twisted torus knot, K(p, kp+ 1; p− 1, r), is isotopic to K(p, (k + 1)

p− 1; p− 1, r − 1). �

Proof. We start from the genus one Heegaard diagram of K1 = K(p, (k + 1)p+ 1;
p− 1, r − 1), obtained from implementing the algorithm explained in Section 2.2. The

proof is done by first doing an isotopy to get rid of the two extra generators in the genus

one Heegaard diagram of K1 (note that the phenomenon of having two removable inter-

section points in Figure 6, once we implement the algorithm explained in Section 2.2,

will always occur in the genus one Heegaard diagram of K(p, kp− 1; p− 1, r)) and, sec-

ondly, tracking back the drag of the w and z base points in the torus. More precisely,

after removing the extra generators, if we track back the w base point, we see that it

passes, during its p− 2 longitudinal windings, to the right of z. Now, by tracking back

the z base point once around the torus, we see that it also passes to the right of w. These
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20 F. Vafaee

facts can be verified in the example depicted in Figure 6.2. (Thus, while implementing

the algorithm to obtain the diagram in the first place, the base points must have passed

by the left of each other). During this process, except for the first winding of w that

goes through k meridional moves, the rest of windings traverse the torus k + r times

meridionally. Therefore, by noting that only one sub-arc of α has been dragged by the

base points, we get that the diagram obtained after doing the isotopy is a genus one

Heegaard diagram for K2 = K(p, kp+ 1; p− 1, r). �

When p= 3 in Theorem 1.1, we obtain a generalization of [23, Theorem 1.2]:

Corollary 3.3. All twisted (3, q) torus knots admit L-space surgeries. �

4 Directions for Future Research

Closely related to the main result of this paper, one can ask the question of which opera-

tions on knots produce L-space knots. Satellite operations are the first in line. As pointed

out in Section 1, the (p, q) cabling is an L-space satellite operation [7]. More generally,

Hom et al. [9] introduced an L-space satellite operation, using Berge–Gabai knots as the

pattern. By definition, a knot P ⊂ S1 × D2 is called a Berge–Gabai knot if it admits a

nontrivial solid torus surgery. We also suspect that one can obtain more L-space satel-

lite operations, choosing the patterns from the list of L-space knots of Theorem 1.1.

Although classifying such operations does not seem to be an easy task to do, there is

an obstruction to obtaining L-space satellite knots (Lemma 2.3) which can be appealing.

Let P (K) be a satellite knot with pattern P ⊂ V = S1 × D2 and companion K. We recall

the behavior of the Alexander polynomial of a satellite knot:

ΔP (K)(T) = ΔP (T)ΔK(Tw)

where w is the geometric intersection number of the pattern P with a fixed meridional

disk of V (see for instance [10]). So one can attack the following question by first exam-

ining the obstruction of Lemma 2.3, using algebraic methods.

Question. Is there a classification of L-space satellite operations? �

Another interesting direction one can pursue, encouraged by the computations

done in this paper, is to calculate the Alexander polynomials ΔK(T) of twisted (p, q)

torus knots with q = kp± 1 or more generally with q an arbitrary nonzero integer. In [15],

Morton gives a closed formula for ΔK(T) where K = K(p, q; 2, r) and p> q > 0.

 at C
alifornia Institute of T

echnology on Septem
ber 23, 2015

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


On the Knot Floer Homology of Twisted Torus Knots 21

Acknowledgements

The author expresses sincere gratitude to Matthew Hedden for suggesting this project and for his

invaluable guidance as an advisor, to Adam Giambrone for his detailed and thoughtful comments

on an earlier draft of this paper, to David Krcatovich for numerous enlightening and instructive

discussion, and to Allison Moore for some helpful email correspondence and her interest in this

work. The author is also grateful to the anonymous referee for advantageous suggestions and

favorable comments.

References
[1] Berge, J. “Some knots with surgeries yielding lens spaces.” Unpublished manuscript.

[2] Bleiler, S. A. and C. D. Hodgson. “Spherical space forms and Dehn filling.” Topology 35, no. 3

(1996): 809–33.

[3] Bowman, R. S., S. Taylor, and A. Zupan. “Bridge spectra of twisted torus knots.” (2014):

preprint arXiv:1403.6504.

[4] Fintushel, R. and R. J. Stern. “Constructing lens spaces by surgery on knots.” Mathematische

Zeitschrift 175, no. 1 (1980): 33–51.

[5] Goda, H., H. Matsuda, and T. Morifuji. “Knot Floer homology of (1, 1)-knots.” Geometriae

Dedicata 112, no. 1 (2005): 197–214.

[6] Hedden, M. “On knot Floer homology and cabling. II.” International Mathematics Research

Notices 2009, no. 12 (2009): 2248–74.

[7] Hom, J. “A note on cabling and L-space surgeries.” Algebraic and Geometric Topology 11,

no. 1 (2011): 219–23.

[8] Hom, J. “The knot Floer complex and the smooth concordance group.” (2011): preprint

arXiv:1406.1597.

[9] Hom, J., T. Lidman, and F. Vafaee. “Berge–Gabai knots and L-space satellite operations.”

Algebraic and Geometric Topology (2014): preprint arXiv:1406.1597, to appear.

[10] Lickorish, W. B. R. “An Introduction to Knot Theory.” Graduate Texts in Mathematics, vol.

175. New York: Springer, 1997.

[11] Lidman, T. and A. H. Moore. “Pretzel knots with L-space surgeries.” (2013): preprint

arXiv:1306.6707.

[12] Mattman, T. W. “The Culler–Shalen seminorms of pretzel knots.” ProQuest LLC, Ann Arbor,

MI. Ph.D. thesis, McGill University, Canada, 2000.

[13] Montesinos, J. M. “Variedades de seifert que son recubricadores ciclicos rami cados de dos

hojas, boletino soc.” Boletı́n de la Sociedad Matemática Mexicana 18 (1973): 1–32.

[14] Morimoto, K., M. Sakuma, and Y. Yokota. “Examples of tunnel number one knots which have

the property “1 + 1 = 3”.” Mathematical Proceedings of the Cambridge Philosophical Society

119, no. 1 (1996): 113–8.

[15] Morton, H. R. “The Alexander polynomial of a torus knot with twists.” Journal of Knot

Theory and Its Ramifications 15, no. 8 (2006): 1037–47.

 at C
alifornia Institute of T

echnology on Septem
ber 23, 2015

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


22 F. Vafaee

[16] Moser, L. “Elementary surgery along a torus knot.” Pacific Journal of Mathematics 38, no. 3

(1971): 737–45.

[17] Ording, P. J. P. On knot Floer homology of satellite (1, 1) knots. Ph.D. thesis, Columbia

University, 2006.
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[21] Ozsváth, P. and Z. Szabó. “On knot Floer homology and lens space surgeries.” Topology 44,

no. 6 (2005): 1281–300.
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