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Abstract

In light of a reduction in corporate scientific research in recent decades, my disserta-

tion examines the mechanisms that drive corporate investment in scientific research.

More specifically, I explore the relationship between scientific research and its use in

invention, how it is organized within the firm, and its aggregated effect on firm-level

outcomes, within large firms in the U.S.. To answer my research questions, I con-

struct a novel dataset that traces above 4,000 U.S. publicly traded firms’ investment

in science and invention for 35 years (1980-2015). The second chapter of the disser-

tation provides an overview of the dataset and presents its advantages over previous

data. The third chapter of the dissertation examines how the production of scien-

tific research by U.S. corporations is related to its use in invention by the focal firm

and to spillovers captured by rivals’ inventions. The fourth chapter further looks at

the heterogeneity in firms’ investment in science by examining how the within-firm

organization of scientific discovery and invention conditions research output. The

findings from chapter three and chapter four suggest that as spillovers of science

to rivals increase, and the greater the connectedness between research and inven-

tion practices within the firm, the less likely firms are to invest in internal scientific

research.
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1

Introduction

Throughout the 20th century, corporate firms, such as Bell Labs and Xerox, at-

tracted talented researchers who produced Nobel prize-winning research. Corporate

research spurred significant inventions, including the transistor, the laser, and the

first computer with a graphical user interface, as well as breakthroughs in medicine

and pharmacology. The type of research conducted in large firms is different in its na-

ture than that undertaken in universities. Large firms have access to complementary

resources and can tackle multidisciplinary problems more easily than universities.

While corporate engagement in scientific research is an important activity that has

been linked to R&D productivity and economic growth, over the last three decades,

corporations have reduced their investment in scientific research (Mowery, 2009; Na-

tional Science Foundation, National Center for Science and Engineering Statistics,

2019; Arora et al., 2018). Similarly, corporate representation in scientific literature

is also shrinking. In an analysis of publications authored by publicly traded U.S.

companies, we observe that corporate publication rate fell by about 60% over the

sample period (Arora et al., 2021a).

My dissertation examines the mechanisms that drive corporate investment in
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scientific research. More specifically, I explore the relationship between scientific

discovery and its use by inventions, how it is organized within the firm, and its

aggregated effect on firm-level outcomes, within large firms in the U.S..

I build on a novel dataset that I constructed that traces above 4,000 U.S. pub-

licly traded firms’ investment in science and invention for 35 years (1980-2015). The

dataset introduces a major extension and improvement to the historical NBER patent

data (Hall et al., 2001; Bessen, 2009). It improves matches and dynamic reassign-

ments by tracking name and ownership changes throughout the sample period. The

second chapter of the dissertation, co-authored with Ashish Arora and Sharon Be-

lenzon, provides an overview of the data and compares it to NBER 2006 patent

data.

The third chapter of my dissertation, co-authored with Ashish Arora and Sharon

Belenzon, revisits the fundamental view that sees science as an input into invention

(Bush, 1945; Rosenberg, 1990; Narin et al., 1997). One might suggest that research

is becoming less relevant for invention over time. But in fact, we show that patents

continue to build on science at ever-increasing rates.

In a firm-level analysis of 4,000 American publicly traded firms between 1980 and

2015, we investigate how the production of scientific research by U.S. corporations

is related to its use in invention by the focal firm and spillovers captured by rivals’

inventions. We find that over the last 3.5 decades, spillovers have increased relative

to internal use. Changes over time in the importance and magnitude of spillovers and

internal use are potentially an important cause of the decline in corporate production

of scientific research.

We show that the private returns to corporate research depend on the balance

between two opposing forces: the benefits from the use of science in own downstream

inventions, and the costs of spillovers to rivals. Firms produce more future research

when it is used internally, but less research when it is used by rivals.

2



Put differently, we show that even as firms make greater use of the scientific knowl-

edge produced by rivals, they themselves are less willing to produce such knowledge.

This tradeoff between internal and external sourcing has an important implication for

managers. Managers must understand how to organize their firm’s R&D to capture

external opportunities and capitalize on declining internal science.

Following this insight, the fourth chapter of my dissertation examines the or-

ganization of R&D within firms. On the one hand, to improve internal use and

make research more immediately relevant to the firm’s needs, there should be greater

connectedness between research and invention practices within the firm (Kline and

Rosenberg, 1986; Rosenberg, 1990). However, less specialization can constrain re-

search productivity (Smith, 1776), which is important for long-term significant break-

throughs.

Using data on inventors and authors related to U.S. publicly traded scientific

firms for the period 1980-2015, I explore the implications of the internal organiza-

tion of scientific discovery – either integrated with invention or specialized – on the

firm’s invention, scientific discovery, and market value outcomes. To the best of my

knowledge, my research is the first to directly explore both the benefits and costs of

scientific discovery organization at the firm level.

I show that integration of scientific discovery with invention is related to a tradeoff

between short-term applied R&D and long-term fundamental R&D. While integra-

tion is beneficial for internal invention, it has adverse effects on scientific output,

which in turn decreases invention quality in the long run. I find that the negative re-

lationship between integration and publication reduces the direct increase in patents

due to integration by approximately 60%. I also show consistent results in terms

of market value - the private value of patents increases with integration, while the

private value of publications decreases with integration.

Furthermore, I present three main determinants that condition this tradeoff: re-

3



liance of invention on science, stage of technology, and external market for technology.

I show that firms optimally choose a higher level of integration when their inventions

are more fundamental science-based, when their technology is in early stage, and

when external technology is more abundant.

Taken together, the results from chapters three and four suggest that part of

the reduction in corporate investment in science can be related to firms building

more on rival scientific discovery and becoming more integrated over time. This

shift, though likely privately profitable, is not without social costs. The declining

corporate engagement in research may be contributing to the reported decline in

R&D productivity and the associated decline in productivity growth.

4



2

Matching Patents to Compustat Firms, 1980-2015:
Dynamic Reassignment, Name Changes, and

Ownership Structures

This chapter is adapted from a joint work with Ashish Arora and Sharon Belenzon

that is published in Research Policy Journal (Arora et al., 2021b). For the original

article please see: https://doi.org/10.1016/j.respol.2021.104217. This chapter also

draws substantially on an unpublished Online Appendix to Arora et al. (2021a). All

authors have equal contribution.

2.1 Introduction

An extensive literature uses patent data to answers questions on the determinants

and consequences of inventive activity. Many papers use patent data from the NBER,

which matches patents granted by the United States Patent Office to publicly traded

American firms (henceforth, Compustat firms). There are two versions of the NBER

data. The first, introduced by Adam Jaffe, Bronwyn Hall, and Manual Trajtenberg

(Hall et al., 2001), pioneered the use of patent data as indicators of inventive activity

5



at scale. We refer to this dataset as NBER ’01, which covers the years 1980-1999.

The second iteration of this database was developed by Jim Bessen (Bessen, 2009) for

the period 1980-2006 to address some shortcomings in the earlier version (henceforth,

NBER ’06). In particular, Bessen (2009) included an attempt to improve the dynamic

reassignment of patents, wherein as firms changed owners, their patents would get

reassigned (in the database) to the new owner.

This chapter describes a third iteration of the NBER data (henceforth, ABS), first

used in Arora et al. (2021a). We extend the data by a decade to 2015. In addition,

we reconstruct the complete historical data covered in the NBER data files. We build

on Bessen’s work and introduce several improvements focusing on better coverage of

name changes and ownership structures.1 We study the implications of our improved

matches on patent value and R&D elasticity of patenting.

We combine data from five main sources: (i) company and accounting information

from U.S. Compustat 2018, (ii) patents from PatStat; (iii) subsidiary data from

historical snapshots of ORBIS files for 2002-2015; (iv) mergers and acquisition data

from SDC Platinum and (v) company name changes from WRDS’s “CRSP Monthly

Stock”. For ownership and subsidiary data, we supplement NBER ’06 with a wide

range of M&A data, including SDC, historical snapshots of ORBIS files for 2002-

2015, and 10-K SEC filings. We further perform extensive manual checks to uncover

firms’ structure and ownership changes.

There are two main areas of improvement. First, we match more patents. About

20% of patents belonging to Compustat firms were omitted or incorrectly matched

in the NBER ’06 patent database. Second, we achieve better dynamic reassignment.

1 Assignee disambiguation is not an important contribution of our data work. We build on
existing name harmonization and string matching approaches. Several patent data projects such as
the USPTO’s PatentsView, UC Berkeley’s Patent Database (Li et al., 2014), and Darden’s Global
Corporate Patent Dataset (GCDP) (Bena et al., 2017) have advanced assignee disambiguation and
assignee-matching techniques. Researchers can use our historical standardized name lists to match
with their dataset of interest.
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Dynamic reassignment means that, for instance, if a sample firm merges with another

firm, the stock and flow of patents of the merged firm are linked to the Compustat

record from that point onward, but not before. Similarly, once a subsidiary is divested

from its parent Compustat firm, its patents are subtracted from the parent firm’s

stock from that point onward. Lastly, a significant component of the data upgrade

is accounting for changes in names. About 30% of the Compustat firms in our

sample change their name at least once. Accounting for name changes improves the

accuracy and scope of matches to patents (and other assets), ownership structure,

and dynamic reassignments of GVKEY codes to companies. Finally, we make our

data available to all researchers through a public data repository.2

We examine how estimates of the “shadow price” of patents in market value

regressions and R&D elasticity in patenting regressions change across NBER datasets

and our updated data. In general, we find that our data produces higher estimates

of patent value from estimating Tobin’s Q specifications, as well as higher R&D

elasticity estimates from a patent production function.

Section 2 explains how we construct our sample. Section 3 discusses the main

challenges we face when matching patent data to Compustat firms. Section 4 presents

the patent matching procedure and the process of dynamic reassignment. Section

5 compares ABS data to NBER ’06, including detailed case studies to illustrate

improvements to the NBER database. Section 6 analyzes differences in estimates

of patent value and R&D productivity between existing NBER datasets and our

sample, and Section 7 concludes.

2 The data can be freely downloaded from 10.5281/zenodo.3594642. The version used for the
analysis in this paper is version 5. We are making changes to the data on a regular basis, and they
are updated to the Zenodo website. Please check for the latest version available.
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2.2 Sample construction

To construct our sample, we start with all North American Compustat records ob-

tained from WRDS in August 2018 and select companies with active records and

positive R&D expenses for at least one year from 1980 through 2015 (inclusive). We

define an active record as a year with common shares traded (CSHTR F). We ex-

clude firms that are not headquartered in the United States based on their current

headquarter location in the Compustat 2018 file.3 We further restrict our sample to

companies with at least one patent during our sample period.

Following NBER ’06, we aggregate the data to the parent company level, which we

refer to as an ultimate owner (hereafter, UO). For example, the company GENZYME

CORP (GVKEY 12233) is the ultimate owner of the publicly traded companies GEN-

ZYME MOLECULAR ONCOLOGY (GVKEY 117298), GENZYME TISSUE RE-

PAIR (GVKEY 118653), GENZYME SURGICAL PRODUCTS (GVKEY 121742),

and GENZYME BIOSURGERY (GVKEY 143176). Yet, GENZYME TRANSGEN-

ICS CORP (a.k.a. GTC BIOTHERAPEUTICS, GVKEY 028563) is a standalone

company, because it has been spun-off by GENZYME CORP. A major contribution

of our data is tracing ownership changes over time and identifying the exact years

when GENZYME TRANSGENICS CORP falls under GENZYME CORP and the

years when it is a standalone firm. An additional important contribution is account-

ing for private subsidiaries as well as Compustat, publicly-traded, subsidiaries.

A UO firm enters our sample once it is publicly traded and has at least one

patent in stock and remains in our data until the end of the sample period unless

it is acquired, dissolved, or taken private. All UO firms in our sample have at least

3 consecutive years of active records in Compustat. In total, we match 1.3 million

patents to 4,420 U.S. headquartered Compustat firms and their subsidiaries. These

3 18.5% of the related Compustat firms are dropped due to the restriction on U.S. headquartered
firms.
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patents account for about 50% of all utility patent grants of U.S. origin.4 When

a patent has several assignees, we match the patent to multiple firms and assign

fractional ownership to each assignee (i.e., 1/number of assignees). In case of an

ownership change within the sample, patents are dynamically matched to up to five

UO firms (see Section 4.2 for detail). We do not account for patent reassignments

that are not part of a corporate ownership change.

2.3 Key measurement challenges

Working with patent and Compustat data presents several challenges. Many of the

challenges arise because Compustat uses GVKEY codes to track companies, but

GVKEY codes fail to capture changes over time in ownership structure and firm

names, and the same company may have multiple codes over time. For example,

Ralston Purina is listed under two different GVKEYs: (i) 1980-1993 under “RAL-

STON PURINA - CONSOLIDATED” (GVKEY 008935) and (ii) 1993-2000 under

“RALSTON PURINA CO” (GVKEY 028701)). Compustat does not link related

company identifiers, making it difficult to track companies over time only based on

GVKEY. For example, “AT&T CORP” (GVKEY 001581) stopped being traded

independently in 2005 after it was acquired by “SBC COMMUNICATIONS INC”

(GVKEY 009899), which in turn changed its own name to “AT&T INC” Compus-

tat does not provide information on these changes. To overcome this challenge, we

develop a specialized database on current and historical ownership structures and

name changes for our sample firms.

4 We match 58% of all U.S. origin patents that are assigned to a U.S. company or corporation
during the period 1980-2015 (assignee type classification is based on PatentsView data). When
comparing ABS patents with the unmatched patents, we find that the main difference is in the
use of in-text and front page NPL citations (Marx and Fuegi, 2020a,b). Unmatched patents cite
on average 1.6 in-text and 2.3 front-page citations more than ABS patents. These patterns are
consistent with large firms having a much higher propensity to patent. Specifically, they are likely
to file a large number of incremental patents (Cohen and Klepper, 1996), which are less likely to cite
science. Unmatched patents are also more likely from science-intensive sectors, such as life-sciences.
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2.3.1 Company names

A major contribution of this paper is identifying name changes of Compustat firms

over the sample years 1980-2015. Company names are important because U.S. patent

documents list the name, rather than the CUSIP number or GVKEY of the assignee.

Patent records contain the owner’s name at the time of their publication, whereas

companies appear in the Compustat file under their most current name with no

records of previous names. Company names may change over the course of our

sample period due to generic name changes (e.g., “MINNESOTA MINING AND

MANUFACTURING” changed its name in 2002 to “3M”) or due to M&As (e.g.,

“WESTINGHOUSE ELECTRIC CORP” (GVKEY 011436) acquired “CBS INC” in

1995 and changed its own name to “CBS CORPORATION” in 1997 while maintain-

ing the same GVKEY Compustat firm identifier). Another common reason for name

changes is reverse takeovers. For example, in 1993 the private company Dentsply In-

ternational Inc acquired the public company GENDEX CORPORATION (GVKEY

013700) in a reverse takeover and became publicly traded under the “DENTSPLY

INTERNATIONAL INC” name and the original GVKEY. Name changes imply that

we cannot simply match the name of Compustat firms to patent assignees because

Compustat includes only the most recent name of the focal corporation. For example,

when Google reorganized as Alphabet in the summer of 2015, Compustat updated

Google’s name in all historical records to Alphabet. This means that matching

patents to Alphabet in 2015 would exclude Google’s patents. This problem may

persist even if we have complete ownership information on subsidiaries.

About 30% of the Compustat firms in our sample change their name at least

once.5 To locate historical names, we use the WRDS’s “CRSP Monthly Stock” file,

5 This is comparable to the findings by (Wu, 2010), who finds that during 1925-2000, over 30% of
CRSPlisted firms changed their names at some point after going public. The three leading reasons
for name changes are: (i) M&As & restructure activity (36%); (ii) change in focus of operation
(17%); (iii) brand or subsidiary name adoption (12%).
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which includes monthly information on names for each security over time along with

its historical CUSIP code and a unique permanent security identification number

assigned by CRSP, the PERMNO code, which is kept constant throughout the trad-

ing period regardless of changes in name or capital structure. For example, while

SPHERIX INC is related to two different GVKEYs (002237 for 1980-2013 and 018738

for 2013-current, it has a unique PERMNO code for the entire period (18148)). Simi-

larly, Google Inc PERMNO code is 90319 and it remains the same after the company

reorganized as ALPHABET INC in 2015. We calculate the starting and end years

for each name based on the trading dates in the “CRSP Monthly Stock” file.

Using WRDS “CRSP/Compustat Merged Database - Linking Table”, we link

each PERMNO from CRSP to Compustat GVKEY code. The crosswalk between

CRSP and Compustat is not straightforward. As shown above, a PERMNO can

have multiple related GVKEYs. In such cases, we apply a dynamic match between

a PERMNO and Compustat accounting data. However, CRSP also includes cases

where under the same GVKEY there are several PERMNO codes. 6 In such cases,

we manually checked using 10K-SEC fillings the years that the name was relevant

for each GVKEY.7

We perform extensive checks on the name list, including identifying and distin-

guishing companies with similar names. For instance, RACKABLE SYSTEMS INC

(GVKEY 162907) changed its name to SILICON GRAPHICS INTL CORP after it

acquired the public company SILICON GRAPHICS INC (GVKEY 012679) in 2009.

We ensure that we count SILICON GRAPHICS patent stock and patent flow un-

6 This is mainly due to significant M&As, including reverse acquisitions that occurred during the
years when the firm was not listed.

7 There is a difference in coverage between CRSP and Compustat for the early sample years. For
example, CRSP only includes firms listed in major American exchanges and specifically excludes
regional exchanges, while Compustat includes all 10K filer firms in North America. Moreover, CRSP
coverage for major exchanges has expanded gradually over the years (e.g., ARCA was only added
from 2006). We manually added missing information from Compustat and checked for historical
names.
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der RACKABLE’s GVKEY starting from 2009. Similarly, we need to distinguish

between the original BIOGEN INC (GVKEY 002226) and the new BIOGEN INC

(GVKEY 024468) that was formed only after BIOGEN’s merger with IDEC PHAR-

MACEUTICALS CORP in 2003. Finally, we cleaned and standardized firm names

as CRSP tends to abbreviate long words in the company name that it provides.

2.3.2 Name standardization

Prior to matching, we standardize firm names to reconcile company names that may

be spelled differently across databases. We compose a standardization code used

on both the source and the target names to increase the number of exact matches.

Each company name was first standardized by converting all strings to uppercase

characters and cleaning all non-alphabetic characters as well as Compustat related

indicators (e.g., -OLD, -NEW, -CL A) and other common words (e.g., THE).

Additionally, an important step in standardizing the company names is stan-

dardizing abbreviations. We formed a list that includes over 80 abbreviated words

matched to their various original words. For example, LABORATORIES, LABORA-

TORY, LABS, LABO, LABORATORIE, LABORATARI, LABORATARIO, LABO-

RATARIA, LABORATORIET, LABORATORYS, and LABORATORIUM were all

abbreviated to “LAB”. The list was compiled from the most frequently abbreviated

words in WOS affiliation field (accordingly, the list is targeted to our sample). This

list is presented in Table 2.

Table 2.1: Most frequent abbreviated words

ADV AEROSP AGR AMER ANAL ANALYT ANIM APPL APPLICAT
ASSOC AUTOMAT BIOL BIOMED BIOPHARM BIOSCI BIOSURG BIOSYS BIOTEC
BIOTHERAPEUT CHEM CLIN COMMUN COMP CORP CTR DEV DIAGNOST
DYNAM EDUC ELECTR ENGN ENVIRONM FAVORS GEN GENET GRAPH
INSTR INTERACT INTL INVEST LAB LTD MAT MED MFG
MICROELECTR MICROSYS MOLEC NATL NAVIGAT NEUROSCI NUTR ONCOL ORTHOPAED
PHARM PHOTON PHYS PROD RES SCI SECUR SEMICOND SERV
SFTWR SOLUT SURG SYS TECH TEL TELECOM THERAPEUT TRANSPORTAT

For each standardized name, we create a cleaner, fully-standardized name by
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omitting the legal entity endings and other general words (e.g., INC, CORP, LTD,

PLC, LAB, PHARMACEUTICAL), where possible, to maximize match rates (e.g.,

“XEROX CORP” was standardized to “XEROX”, “ABBOTT LABORATORIES”

to “ABBOTT”). However, in cases where the company name is too short, generic,

or can match to other strings within the affiliation field, we preserved the original

standardized name to avoid mismatches and extensive manual checks on the match

results. For example, omitting the legal entity from “QUANTUM CORP” would

result in a potential mismatch between “QUANTUM” and “TEXAS STATE UNIV

CTR APPL QUANTUM ELECTR DEPT”.

The last step in name standardization is to locate abbreviations that are com-

monly used by companies instead of their official names. For example, “INTER-

NATIONAL BUSINESS MACHINES CORP”, will also appear under its common

abbreviation “IBM” and ‘’GENERAL ELECTRIC CO” under “GE”. We also add

the names of prominent R&D laboratories affiliated with companies, such as the T.J.

Watson Research Center (IBM) and Bell Labs (initially AT&T and later under Lu-

cent technologies), as authors often omit the name of the company when the address

of the laboratory is stated as the publication address.

2.3.3 Ownership structure

Compustat does not link parent companies to their publicly traded subsidiaries, nor

does it provide information on private subsidiaries, which can be owned directly by

the UO or indirectly via one of its subsidiaries. Because patents can be assigned to

any legal entity in the corporation (Arora et al., 2014), we need to develop compre-

hensive data on corporate ownership structure. Moreover, because ownership can

change over time, we need to trace these changes at the UO and subsidiary level so

that we can assign patents to their relevant UOs in each year.

We rely on two main data sources of information on ownership structure: (i)
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annual publications of ORBIS by Bureau Van Dyke, which provide us with annual

”snapshots” of private and public subsidiaries and (ii) SDC Platinum, which provides

us with detailed information on significant ownership changes, such as mergers, ac-

quisitions, and spin-offs.

There are several challenges in identifying subsidiaries owned by Compustat firms.

First, many of the subsidiaries are private, and manual checks are required to verify

which of the several similarly named companies is actually owned by a focal UO.

Second, subsidiary ownership changes over time. Companies may spin out their

subsidiaries, some of which might go public or be sold to other firms. A major

contribution of our data is developing comprehensive time-varying data on corporate

ownership structure.

Our primary source of information on subsidiaries owned by Compustat firms is

ORBIS. We use ORBIS’s complete ownership data for each year from 2002 through

2015, because 2002 is the first year ORBIS reported reliable firm coverage for Amer-

ican firms. For earlier years, we rely on NBER files and 10-K SEC filings. Our first

step is to match the names of Compustat firms to ORBIS. To do so, we standardize

the names of the “Global Ultimate Owner” field in ORBIS, hereafter, GUO, similar

to the standardization procedure we used for Compustat firms (see Section 2.3.2).

These companies can be UOs themselves or publicly traded subsidiaries of UO firms.

Having matched the names of GUOs to all historical Compustat firm names, we

retain all the subsidiaries listed in ORBIS of the successfully matched GUOs.

The next step is to match the related subsidiary names to Compustat. We restrict

our sample to subsidiaries that are majority-owned by the GUO firm.8 This yields an

8 The 10-K SEC filings used to supplement ORBIS data for the pre-2002 period usually list only
majority-owned subsidiaries. Therefore, to be consistent throughout the sample period, we use
only majority-owned subsidiaries. Since across the sample period, 75% of the subsidiaries in the
ORBIS files are majority-owned, we are capturing most of the subsidiaries. Furthermore, in most
ORBIS files for our sample period (2002-2012 files), the non-majority-owned subsidiaries related
to our sample firms are no more than 20%. Only from 2013, the non-majority-owned subsidiaries
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ownership link within Compustat between parent firms and their public subsidiaries.

We use this information to aggregate the patent matching to the parent company

level. In addition, ORBIS provides us with private subsidiaries for each Compustat

firms, which we later use in the patent matching procedure.

Changes in ownership happen for a diverse set of reasons, including mergers,

acquisitions, and spinoffs. We rely on SDC Platinum as an additional source of

information for changes in ownership. While ORBIS provides time-series information

on ownership structure, its main advantage is mapping subsidiaries to parent firms

in specific years. SDC, on the other hand, is a specialized database that focuses only

on ownership changes. We ute SDC to track ownership changes both at the UO and

subsidiary level.

We downloaded detailed information on the acquirer and target firm names, ac-

quirer and target firm CUSIPs, type of deal, execution dates, and percentage of shares

owned after each transaction. We restrict our focus to deals involving a change in

ownership that resulted in majority ownership (more than 50% of shares) for the

acquirer, and exclude deals involving asset or business unit acquisitions. We stan-

dardize target and acquirer names (see Section 2.3.2) and match them to Compustat

firms and their related subsidiaries.

For subsidiaries, execution dates are used to define the years a subsidiary begins or

ceases to being owned by the GUO (in case of several acquisitions during the sample

period). For UOs, we track up to five ownership changes for each firm name after it

enters Compustat and one additional reassignment before it became publicly traded

if relevant (i.e., if it was a subsidiary of another Compustat firm in our sample prior

to its IPO).9 We assume that if a firm is acquired, all its patents are transferred to

jump to 40%.

9 For example, Vysis Inc first enters our sample as a subsidiary of Amoco (1991-1997) and is then
spun-off and becomes an UO firm in our sample as an independent publicly traded company in
1998 and is eventually acquired and becomes a subsidiary of Abbott in 2001.
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the acquirer firm. All subsidiaries are also assumed to move with their parent firm

when the parent firm is acquired, unless indicated otherwise. We do not account

for reassignments of patents that are not part of the ownership changes that we

document.

2.4 Assigning patents to firms

Matching patents to their owner for each year involves two main steps. In the first

step, we match names of patent assignees to names of companies that can potentially

own the patent. Second, we track changes in the ownership of a patent over time.

We explain each step below.

2.4.1 Matching assignees to company names

We match our sample of Compustat firms and their subsidiaries to names of patent

assignees from PatStat, which has approximately 5.3 million patents granted between

1980 and 2015. We remove published patent applications (i.e., publication numbers

longer than 7 characters), non-utility patents, including Design, Reissue, Plant and

T documents, and reexamination certificates. We also remove patents assigned to

individuals or government entities (for example, an assignee that includes the string

”DECEASED” or ”U.S. DEPARTMENT”). This procedure leaves us with roughly

5 million patents and 897 thousand unique standardized assignee names, which we

match to sample firms as follows.

We begin by matching firm names to assignees using an exact match procedure.

For unmatched patents, we implement several fuzzy matching techniques to account

for names that are slightly different, but are in fact the same entity. The final step

includes manual checks at the assignee name and patent levels to ensure the correct-

ness of the matches. The matching was carried out twice, both for standardized and
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for original names.10 Special care was taken in cases where firm or assignee names

are generic, when several different firms share a common portion of a name, or when

firm names contain a common given or family name. To resolve ambiguities, we

performed web searches and examined the actual patent documents.

For the remaining assignee names not matched during the exact matching pro-

cess, fuzzy matching was performed to find each of the assignee names from the

firm names to identify cases where assignee and firm names do not match exactly

but are, in fact, the same firm. Some names are misspelled or include additional

letters that prevent an exact match. In other cases, patent assignee names in-

clude a specific division title (”ROCKWELL BODY AND CHASSIS SYSTEMS”,

”ROCKWELL SOFTWARE”), a licensing unit (”MICROSOFT TECHNOLOGY

LICENSING LTD”, ”RCA LICENSING”), or a geographic branch or firm location

(”BIOSENSE WEBSTER ISRAEL LTD”).

Fuzzy matching was performed using the FuzzyWuzzy library in Python (i.e., To-

ken Set function), and using term frequency-inverse document frequency (TF-IDF).

FuzzyWuzzy uses a slightly modified Levenshtein distance to calculate similarities

between two strings. More specifically, a vector is created for each assignee name

using the words contained in it and then compared to the entire list of firm names

(that are also vectorized) to find potential matches. When comparing two vectors,

the same elements (words) contained in both vectors are marked as “matched”, and

the similarity between the remaining different elements are calculated using the Lev-

enshtein distance algorithm after sorting the elements alphabetically. The similarity

score between the two strings is higher when the elements that match exactly make

up a larger portion of the strings and when the remaining (unmatched) part has a

small distance based on the Levenshtein distance. To account for multiple scores

10 An additional match was performed after dropping legal entities, to account for firms whose
names differ only by the legal entity.
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that indicate a strong match, the top ten potential matches with the highest scores

are examined manually to identify the most appropriate match.

We perform an additional search for the top 300 patenting firm names to find

matching assignee names that were not matched through the fuzzy match process.

We search for assignee names with at least five related patents that contain any of

the fully standardized firm names after the removal of legal entities. Through this

process, we include subsidiaries that have the same organic name as the parent UO

firm (For example, ”EMERSON” firm name matched with ”EMERSON CLIMATE

TECH”, a division within the firm). The search was conducted through a script

that receives the list of assignee names and fully standardized firm names and au-

tomatically produces all matching pairs. In each search result pair, a firm name is

contained within the assignee name string. Following the search, a complete manual

check was conducted among all search results to mark the legitimate matches.

As a final check, we employed a team of RAs to verify that assignees with more

than 100 patents were correctly matched by the fuzzy matching algorithm. The RAs

went through the fuzzy matched names to confirm that they are in fact, the right

match. Existing matches were invalidated when they were not the right match, and

new matches were added when more appropriate matches were found.

2.4.2 Dynamic reassignment

We build on the methodology developed by Bessen (2009) and perform a dynamic

reassignment for our sample of UO Compustat firms. Our matching is done at the

firm name level. We assign each firm name a unique identifier labeled as ID NAME

and indicate the first, and last year the name is relevant for a PERMNO ADJ – our

UO identifier. We then perform dynamic matching of names to PERMNO ADJ based

on SDC’s M&A data. PERMNO ADJs are dynamically linked to GVKEYs (to link

to Compustat data). The same ID NAME can be linked to multiple PERMNO ADJ
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over time, and each PERMNO ADJ can be linked to multiple GVKEYs within the

same year and over time.

We include up to five ownership reassignments for each firm name that appears in

our initial Compustat sample and acquired by another firm in our sample. Our UO

and subsidiary historical standardized name lists, including dynamic reassignments,

are publicly available.

2.5 Comparison with NBER data, 1980-2006

We compare ABS sample to NBER ’06 for the period 1980-2006 ( Supplementary

Figure 2.1 plots the difference in matched granted patents over time). Table 2.2

presents the comparison results.

About 80% of the patent-GVKEY matches are identical between the NBER and

ourselves. We match an additional 18% of the patents mostly due to: (i) improved

dynamic linkage of patents to GVKEYs (e.g., Pharmacia), and (ii) linkage of ad-

ditional patents based on historical name information, wider M&A coverage, and

improved matching techniques (e.g., Phillips). In 1% of the cases, we find the same

assignment as NBER, but these matches are irrelevant for our sample (e.g., Rhone-

Poulenc). Finally, in about 1% of the cases, we are unable to include the NBER

matches for a variety of reasons, including possible mistakes on our part. In an

unreported analysis, we compare the citation patterns of ABS patents with patents

matched only by NBER ’06. The difference in yearly weighted forward patent cita-

tion per patent (ABS minus NBER ’06) is only 0.066 (0.08 for IPC-year weighted

forward patent cites), which is less than 6% of the mean value of forward citations

per patent.

Table 2.3 examines differences in characteristics of firms that are mismatched by
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Table 2.2: Comparison of ABS with NBER for 1980-2006: Patent-GVKEY Assign-
ments, U.S. HQ Firms

Comparison
1980-2006

% Patents Examples

Agreement 80
Matched to dif-
ferent GVKEY

4 Improved dynamic matching to Compustat
records using historical name. Patents of
the merged company included under the
GVKEY from acquisition, but not before.
Example: PHARMACIA: we matched to
PHARMACIA & UPJOHN’s GVKEY pre-
2000 instead to MONSANTO

Only our Sample 14 Newly matched patents due to (i) availabil-
ity of historical names; (ii) better M&A data;
and (iii) Improved matching. e.g. PHILLIPS
PETROLEUM CO: 4000+ patents pre-
merger with Conoco Inc in 2002; MON-
SANTO: 2000+ patents pre-merger with
Pharmacia.

Only NBER -
we matched but
irrelevant gvkey-
year

1 (i) NBER match (incorrectly) based on 2006
Compustat name: e.g. 1000 patents
of RHONE-POULENC patents matched to
RORER’s GVKEY pre-merger in 1990; (ii)
Improved subsidiary coverage: e.g., 450
patents of HUGHES AIRCRAFT are incor-
rectly linked to GM’s GVKEY pre-1985 ac-
quisition.

Only NBER 1 (i) Withdrawn patents: 600 patents (ii)
Misc. could not verify connection, typos, and
possible mistakes by us

NBER ’06 and firms that are matched correctly. For this exercise, the sample consists

of firm-year level observations matched on GVKEY-year pair between NBER ’06 and

ABS samples for the period 1980-2006. We classify a firm as mismatched if the firm’s

cumulative patent stock in ABS is at least 10% above or below the number reflected in

the NBER ’06 sample.11 Comparing NBER ’06 to ABS, 1,664 firms are mismatched

11 To facilitate comparison between the samples, we consider only patents granted under the current
UO.
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(approximately 40%). Of the mismatched firms, 129 firms have more patents in

NBER ’06 than in ABS. That is, for these firms, ABS revise downwards their number

of patents (mostly through dynamic reassignment). Comparing mismatched firms

with a downward revision of their patents to those with an upward revision of patents,

downward revision firms have lower Tobin’s Q (3.4 for downward vs. 4 for upward),

yet are bigger in terms of sales (2,271 for downward versus 1,858 for upward) and

assets (1,345 for downward versus 1,337 for upward). Overall, Table 2.3 shows that

mismatched firms are bigger as measured by assets and sales, but have a lower Tobin’s

Q, and R&D stock and flow. Supplementary Table 2.14 further presents a list of the

top 50 firms with the highest number of average annual difference in matched patents.

The number of firms with at least one mismatched patent ranges from 288 in 1980

to 658 in 2006. For these firms, the average absolute difference in matched patent

per year is 12.2. Mismatches are higher in chemistry and life science with an annual

13 mismatched patents per firm, as compared to 12 and 10.75 mismatched patents

in ICT and semiconductors, respectively.

Table 2.3: Difference in Means: Mismatched and Matched Firms (ABS vs. NBER
’06, 1980-2006)

(1) (2) (3) (4) (5) (6) (7)

Diff. in means Mismatched Not-mismatched

(3) minus (6) No. Obs. Mean Std. Dev. No. Obs. Mean Std. Dev.

Market value -157.8 21,146 2,427.8 11,917.3 22,302 2,585.5 20,618.5

Tobin’s Q -0.9** 21,146 4.0 5.7 22,302 4.9 6.3

R&D stock -108.6** 21,146 248.3 1,054.9 22,302 356.9 2,098.7

R&D expenditure -19.9** 21,146 58.8 272.8 22,302 78.7 430.7

Assets 307.7** 21,146 1,337.2 6,219.2 22,302 1,029.5 7,606.3

Sales 392.2** 21,146 1,889.6 8,247.3 22,302 1,497.4 8,583.2

Notes : The sample consists of firm-year level observations matched on GVKEY-year pair between
NBER ’06, and ABS samples. Mismatched firms are those whose cumulative granted patents in
ABS is at least 10% above or below the number reflected in the NBER ’06 sample. ** p<0.01, *
p<0.05
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Table 2.4 presents a regression version of the difference in means analysis. The

dependent variable is the absolute number of mismatched annual patents between

ABS and NBER ’06, normalized by the number of annual patents of the firm. The

regression results suggest that larger firms (as measured by assets) are likely to see

higher share of mismatched patents. Further, patent-intensive firms (measured as the

ratio of patents per R&D expenditures) have a higher share of mismatched patents

between ABS and NBER ’06.

Table 2.4: OLS Estimates. Absolute Percentage Difference in Annual Patents As-
signed (ABS vs. NBER ’06)

(1) (2) (3) (4) (5) (6)

DV:Absolute difference in annual patents (ABS minus NBER ’06) divided by mean annual patents

Unscaled RHS variables Scaled RHS variables

VARIABLES Pooled Within-firms Between-firms Pooled Within-firms Between-firms

ln(R&D stock) 0.019* 0.009 0.012

(0.009) (0.019) (0.009)

ln(Assets) 0.021** 0.010 0.039**

(0.007) (0.008) (0.007)

ln(Tobin’s Q) -0.001 -0.007 0.017 -0.011 -0.009 -0.001

(0.006) (0.006) (0.010) (0.007) (0.006) (0.011)

Patents / R&D exp. 0.058** 0.063** 0.028** 0.048** 0.062** 0.003

(0.006) (0.005) (0.009) (0.006) (0.005) (0.008)

R&D stock / Assets -0.003 -0.001 -0.007

(0.003) (0.004) (0.004)

Industry fixed effects Yes No Yes Yes No Yes

Firm fixed effects No Yes No No Yes No

Year fixed effects Yes Yes No Yes Yes No

DV sample average 0.385 0.385 0.361 0.385 0.385 0.361

Number of firms 3750 3750 3771 3750 3750 3771

Observations 34,047 34,047 3,771 34,047 34,047 3,771

R-squared 0.08 0.50 0.13 0.07 0.50 0.11

Notes : The sample consists of firm-year level observations matched on GVKEY-year pair between NBER ’06, and
ABS samples. The absolute difference is divided by mean of ABS and NBER ’06 patent for the firm in that year.
Standard errors (in brackets) are robust to arbitrary heteroscedasticity and allow for serial correlation through
clustering by GVKEY. ** p<0.01, * p<0.05
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2.5.1 Case studies

We present several case studies to illustrate the outcome of our patent matching

procedure.

SEALED POWER and GENERAL SIGNAL

The following example underscores the mismatching consequences of not accounting

properly for name and ownership changes. Until 1998, SEALED POWER and GEN-

ERAL SIGNAL were two distinct entities. Historical Compustat records include the

following information for these companies until 1998:

1. GVKEY 9556, related names:

(a) SEALED POWER CORP (1962-1988) – original name

(b) SPX CORP (1988-1997) -name changed retroactively in Compustat

2. GVKEY 5087, related name: GENERAL SIGNAL CORP (1950-1997)

In 1998, SPX Corp acquired General Signal Corp in a reverse merger, and Gen-

eral’s GVKEY (5087) became the new security of SPX traded retroactively under the

new name “SPX CORP”. The original SPX records were renamed retroactively in

Compustat as “SPX CORP-OLD”. Current Compustat records include the following

records for these companies for the complete period they are traded:

1. GVKEY 9556, related name: SPX CORP-OLD

2. GVKEY 5087, related name: SPX CORP

We treat these GVKEYs as two separate companies up to 1997 accounting for

all relevant names (SEALED POWER CORP, SPX CORP for GVKEY 9556, and

GENERAL SIGNAL CORP for GVKEY 5087) and connect the SPX CORP name to
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General’s original GVKEY (5087) only from 1998 onward. In the NBER ’06 patent

dataset (see table 2.5), the two companies are collapsed under the same company

(same PDPCO id) and for the purpose of Compustat accounting information Gen-

eral’s original GVKEY (5087) is used for the complete period while the original SPX

GVKEY (9556) is disregarded. Indeed, in the NBER files SPX patents pre-1998 are

matched to General’s GVKEY. Moreover, patents related to “GENERAL SIGNAL

CORP” (757 patents without considering related subsidiaries) as well as “SEALED

POWER CORP” (36 patents without considering related subsidiaries) are located

in the 2006 NBER raw patent match but are not assigned to any Compustat record.

Table 2.5: Data for SPX Corp in NBER ’06

Current name gvkey firstyr lastyr pdpco pdpseq begyr endyr

SPX CORP 5087 1950 2006 5087 1 1950 2006

SPX CORP-OLD 9556 1962 1997 5087 -1

Notes : PDPCO is NBER’s Patent Data Project (PDP) unique company id. FIRSTYR is
the first year GVKEY company has data. LASTYR is the last year a GVKEY company
has data. PDPSEQ is the GVKEY sequence within PDPCO. If PDPSEQ=-1, the related
GVKEY is disregarded. BEGYR is the beginning year for GVKEY within PDPCO. ENDYR
is the last year for GVKEY within PDPCO. All patents related to SPX CORP will be
accounted under GVKEY 5087 from 1950 to 2006, while the original SPX GVKEY (9556)
is disregarded.

CONOCO and PHILLIPS PETROLEUM

This example illustrates the importance of historical names and ownership changes.

In 1981 Conoco was acquired by Dupont, which later spun it off as a publicly traded

company, which was eventually acquired in 2002 by the publicly traded company

Phillips Petroleum. The merged entity was renamed ConocoPhillips. Examining

current Compustat records, we can only locate the name ConocoPhillips with no

record of Philips Petroleum. Compustat does not provide any information on the
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owner of the record prior to the merger. We use the CRSP monthly stock file to

locate all historical names of related securities. Table 2.6 shows the name list for

Conoco-Phillips.

Two important changes resulted from this name list. First, we located about 4,000

patents issued to Phillips Petroleum prior to the merger with Conono, which were not

previously matched. Second, we dynamically reassign patent stock. For example,

U.S. patent Num. “5404954” was granted to Conoco Inc in 1995. At that time,

Conoco was a subsidiary of Dupont. In our data, this patent would be included in

Dupont’s patent flow for 1995. It will also be counted under Dupont’s patent-stock for

1996-1997. However, from 1998, when Conoco is spun-off as an independent publicly

traded company, this patent would be transferred from Dupont to Conoco’s patent

stock. Similarly, in 2002 the patent would transfer to ConocoPhillips patent stock.

A different patent, issued to Phillips Petroleum in 1999, would be part of the patent

flow assigned to Phillips in 1999 and be counted under the patent stock for Phillips

Petroleum until 2002, and then would move on to become part of ConocoPhillips

patent stock.
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Table 2.6: Example of dynamic name list for Conoco-Phillip

ID
Name

Name std fyear
0

nyear
0

Pernmo
Adj 0

Name ACQ 0 Fyear
1

Nyear
1

Permno
Adj 1

Name ACQ 1 fyear
2

nyear
2

Permno
Adj 2

Name ACQ 2

2384 CONOCO INC 1981 1997 11703 DU PONT
E I DE
NEMOURS
& CO

1998 2001 86368 CONOCO INC 2002 2015 13928 PHILLIPS
PETR CO

7325 PHILLIPS
PETR CO

1998 2002 13928 PHILLIPS
PETR CO

2003 2015 13928 CONOCO
PHILLIPS

2385 CONOCO
PHILLIPS

2002 2015 13928 CONOCO
PHILLIPS

7324 PHILLIPS 66 1980 2011 13928 CONOCO
PHILLIPS

2012 2015 13356 PHILLIPS 66

Notes: This table presents the dynamic reassignment name list related to Conoco-Phillips. ID NAME is the unique stan-
dardized name id. NAME STD is the standardized firm name. PERMNO ADJ(0-5) is the UO firm id. A name can be
matched dynamically up to 5 times (1-5) and to an additional pre-IPO owner if applicable (0). NAME ACQ(0-5) is the
related UO name. FYEAR(0-5) is the first-year for ID NAME within PERMNO ADJ. NYEAR(0-5) is the last-year for
ID NAME within PERMNO ADJ. For example, a patent granted to Conoco Inc in 1995 would be included in Dupont’s
patent flow for 1995. It will also be counted under Dupont’s patent-stock for 1996-1997. However, from 1998 this patent
would be transferred dynamically from Dupont to Conoco’s patent stock. Similarly, in 2002the patent would transfer to
ConocoPhillips patent stock
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TIME-WARNER and AMERICAN ONLINE

This case-study illustrates how properly accounting for name and ownership changes

improve the accuracy of patent flow as well as the dynamic reassignment of patents.

Warner Communication was an independent and publicly traded company until its

merger with Time Inc in 1989 when Time-Warner Inc was formed. In the second half

of 2000, Time-Warner was merged with American Online to form AOL Time Warner.

In 2003 the company dropped the ”AOL” from its name and was renamed Time-

Warner Inc. AOL remained a subsidiary until it was spun-out in 2009. This example

illustrates the importance of accounting jointly for name and ownership changes,

whereby there are instances where ownership changes without a name change, and

other instances where name changes without an ownership change. Accounting for

both changes is critical for accurate matching.

A comparison with NBER ’06 reveals the following. First, Warner Communica-

tion and its related subsidiary patents are correctly matched to WARNER COM-

MUNICATIONS INC (GVKEY 11284) up to the merger with Time Inc. However,

they are not dynamically assigned after 1988 to Time Warner or any other company.

Consequently, the patent stock and patent flow of Time-Warner (and later AOL

Time-Warner) from patents related to Warner communication and its subsidiaries

(e.g., Warner Bros, WEA Manufacturing), are below the true value after the acqui-

sition in1989.

Second, TIME-WARNER’s related patents from 1991 to 2000 (before the merger

with American-Online Inc in late 2000) are matched incorrectly to GVKEY 25056,

which during those years was solely AMERICAN-ONLINE INC original Compustat

financial records. The current name of GVKEY 25056, TIME WARNER INC, which

is likely to have misled NBER to link the Time Warner patents to it, was only

adopted retroactively in 2003 when the “AOL” was dropped from the official name.
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Moreover, AMERICAN ONLINE INC and AOL related patents (152 patents up to

2006 based on NBER raw patent match) are not linked to any Compustat record.

AOL-TIME WARNER related patents, on the other hand, are matched to a “Pro-

Forma” Compustat record that is active for only two years 1999-2000: AOL TIME

WARNER INC-PRO FORM (GVKEY 142022). All of which implies that AOL Time

Warner’s flow of patents is smaller than the actual patents it owns.

Having a complete history of names enables us to correctly identify each Compu-

stat record and its origin and dynamically match each firm name in our sample to

the correct financial records. In this case (i) AMER ONLINE INC (and later AOL)

is matched from 1980 until its spinout in 2009 to GVKEY 25056 and after to AOL

INC (GVKEY 183920). (ii) Warner Communication is matched up to the merger

with Time Inc to WARNER COMMUNICATIONS INC (GVKEY 11284) and later

dynamically transferred ending up in AOL -Time Warner GVKEY (25056) start-

ing 2001. (iii) AOL -Time Warner is matched to AOL -TIME WARNER (GVKEY

25056) starting 2001 after the merger was approved. (iv) Time Inc itself is not in-

cluded as an UO in our sample as it did not have R&D expenses, but it is included

as a subsidiary name under the Time-Warner UO company.

PHARMACIA, UPJOHN and MONSANTO

This example demonstrates that having a complete history of names enables us

to correctly identify each Compustat record’s historical ownership and dynamically

match each firm name in our sample to its relevant financial records in each period.

For instance, linking each patent to its correct financial record can be a concern for

papers that link patents to market value, specifically those distinguishing different

types (e.g., high vs. low cited patents), which rely on the specific patent that was

matched and not only the quantity.

In 1995 original Pharmacia merged with Upjohn to form Pharmacia & Upjohn.
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In 2000, original Monsanto merged with Pharmacia & Upjohn to form Pharmacia

Corporation (New Pharmacia). Between 2000-2002 the new Pharmacia gradually

spun off its agricultural operations to a newly created subsidiary, Monsanto Com-

pany (New Monsanto). In 2003 the new Pharmacia was acquired by Pfizer and is

now a wholly-owned subsidiary of Pfizer. Matching the original assignee name to a

current Compusat file can result in misallocating patents of Pharmacia pre-2000 to

the New Pharmacia Compustat record, which was originally owned by Monsanto at

the time, as well as not accounting for Monsanto’s patents granted pre-2000. Table

2.7 summarizes how we deal with this case. On balance, it shows a complex pattern

of unallocated patents, as well as misallocated patent stock.

NABISCO

Nabisco’s case study illustrates how we account for ownership changes in our data.

Table 2.8 shows that during our sample period, Nabisco has changed ownership four

times. In 1981 Nabisco merged with the publicly traded company Standard Brands

to form Nabisco Brands. In 1985 R.J. Reynolds merged with Nabisco Brands to cre-

ate RJR Nabisco, which eventually became Nabisco Group holding after the tobacco

business was spun out in 1999. In 2000, Nabisco was acquired by Phillip Morris,

which combined Nabisco with its Kraft brand. Finally, in 2001 Kraft (together with

Nabisco) was spun out as a publicly traded company that later on became Mon-

delez International Inc. In our dataset all Nabisco related patents and publications

are dynamically transferred between Compustat records and UO firms based on its

ownership throughout the years as illustrated in Table 2.8.

Examining NBER ’06, Table 2.9 shows that all Nabisco related patents are linked

to GVKEY 9113 from 1950 to 1999. Though the current name related to GVKEY

9113 is “Nabisco Group Holding Corp”, based on the historical name information, we

know that up to the merger of R.J. Reynolds with Nabisco it belonged solely to R.J.
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Table 2.7: PHARMACIA & UPJOHN and MONSANTO dynamic match

Period related
GVKEY

Relevant
Compustat
name for
period

Most recent
Compustat
name

Comments Patent flow per our
strategy

Patent flow per original
NBER match

1950-1994 11040 UPJOHN CO PHARMACIA
& UPJOHN
INC

Original Upjohn before
merger with Pharmacia

2,091 Upjohn related
patents

N/A

1995-1999 11040 PHARMACIA
& UPJOHN
INC

PHARMACIA
& UPJOHN
INC

1995: Upjohn merged with
original Pharmacia to form
Pharmacia & Upjohn

479 Pharmacia & Up-
john related patents

N/A

1950-1999 7536 MONSANTO
CO

PHARMACIA
CORP

Original Monsanto before
merger with Pharmacia &
Upjohn

3,228 Monsanto re-
lated patents

2,733 Pharmacia & Up-
john related patents (in-
cluding patents of Pharma-
cia before it merged with
Upjohn). While Mon-
santo’s 3,228 patents are
not linked.

2000-2002 7536 PHARMACIA
CORP (”new
Pharmacia”)

PHARMACIA
CORP

2000: Original Monsanto
merged with Pharmacia &
Upjohn to form Pharmacia
Corporation (New Pharma-
cia). All of PHARMACIA,
UPJOHN and PHARMA-
CIA & UPJOHN patents
are transferred here from
2000. Monsanto’s patents
are redirected to the new
Monsanto spin-off company.

304 Pharmacia & Up-
john related patents

304 Pharmacia & Upjohn
related patents

2000-2015 140760 MONSANTO
CO (”new
Monsanto”)

MONSANTO
CO

2000-2002: Pharmacia
Corporation (New Phar-
macia) gradually spun-off
its agriculture operations
to a new publicly traded
company, Monsanto Co
(New Monsanto). All Mon-
santo related patents are
transferred here from 2000.

553 Monsanto related
patents (2000-2006)

553 Monsanto related
patents (2000-2006). NBER
links Monsanto’s patents
to GVKEY 140760 from
1997 while records for
1997-1999 are available on
Compustat, they are based
on prospective fillings when
Monsanto was still traded
under GVKEY 140760.

2003-2015 8530 PFIZER INC PFIZER INC 2003: Pharmacia Corpo-
ration (New Pharmacia)
was acquired by Pfizer and
is now a wholly owned
subsidiary of Pfizer. All
of PHARMACIA, UP-
JOHN and PHARMACIA
& UPJOHN patents are
transferred here from 2003.

472 Pharmacia & Up-
john related patents
(up to 2006)

472 Pharmacia & Upjohn
related patents (up to 2006)

Notes :This table presents the comparison between NBER ’06 and our data for dynamic patent reassignment for Phamacia-Monsanto related
patents at the GVKEY-Period level. Most recent Compustat name is based on Compustat 2018 file. Relevant Compustat name for the period
is the historical firm name based on CRSP Monthly Stock file. Patent flow per our strategy is based on NBER raw patent match data for
the relevant Compustat name excluding subsidiaries. Patent flow per original NBER match is based on NBER ’06 data.

Reynolds. Reynold’s patents, on the other hand (Over 419 patents for the period

before it spun-out of RJR Nabisco and not including patents of acquired companies

such as Heublein Inc), are not assigned by NBER to GVKEY 9113, and they are

only being linked to Compustat records after the tobacco business spun-out of RJR

Nabisco and became independently traded again under GVKEY 120877 (eventually

merging with U.S. operations of British American Tobacco to form Reynolds Ameri-
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Table 2.8: Nabisco dynamic match

Years related
GVKEY

Original Com-
pustat owner

Current Com-
pustat name

Comments

1981-
1985

7674 STANDARD
BRANDS INC

NABISCO
BRANDS INCO

1981: Standard
Brands com-
pany merged with
Nabisco Inc to form
Nabisco Brands Inc

1986-
1999

9113 R J
REYNOLDS
IND INC

NABISCO
GROUP HOLD-
INGS CORP

1985: R.J.
Reynolds Indus-
tries merged with
Nabisco Brands to
form R J R Nabisco
Inc

2000 8543 PHILIP MOR-
RIS COS INC

ALTRIA
GROUP INC

2000: Nabisco was
acquired by Phillip
Morris

2001-
2015

142953 KRAFT FOOD
INC

MONDELEZ
INTERNA-
TIONAL INC

2001: Kraft
together with
Nabisco split from
Phillip Morris

Notes : This table presents the dynamic reassignment for Nabisco related
patents at the GVKEY-Period level. Current Compustat name is based on
Compustat 2018 file. Original Compustat owner for the period is the historical
firm name based on CRSP Monthly Stock file.

can Inc). As a result, in 1998, the patent stock in NBER for GVKEY 9113 (“Nabisco

Group Holding Corp”) is 495 (consisting solely of Nabisco matched patents), whereas

it should be 914 if it included R.J. Reynolds related patents. Furthermore, NBER

’06 does not dynamically move Nabisco’s patent-stock or account for its patent flow

after 1999 when it was bought by Philip Morris and eventually became part of Kraft

(a total of 529 Nabisco related patents up to 2006).

CHEMTURA CORPORATION

Chemtura Corporation case-study illustrates how having historical names helps ac-

count for ownership changes in our data and accurately compute the patent stock.
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Table 2.9: Data Entry for Nabisco in NBER ’06

Current compustat record name gvkey firstyr lastyr pdpco pdpseq begyr endyr

NABISCO GROUP HOLDINGS CORP 9113 1950 1999 9113 1 1950 1999

NABISCO INC 7675 1950 1980 9113 -1

NABISCO BRANDS INC 7674 1950 1984 9113 -1

NABISCO HLDGS CORP -CL A 31427 1993 1999 9113 -1

Notes : PDPCO is NBER’s Patent Data Project (PDP) unique com y id. FIRSTYR is the first year
GVKEY company has data. LASTYR is the last year a GVKEY company has data. PDPSEQ is the
GVKEY sequence within PDPCO. If PDPSEQ=-1, the related GVKEY is disregarded. BEGYR is the
beginning year for GVKEY within PDPCO. ENDYR is the last year for GVKEY within PDPCO. All
patents related to Nabisco will be accounted under GVKEY 9113 from 1950 to 1999, while all other
related GVKEYs are disregarded.

Chemtura Corporation traces back to the chemical corporation Crompton & Knowles

that was founded in the 19th century. In 1996, Uniroyal Chemical Corporation

merged with Crompton & Knowles. In 1999, Crompton & Knowles merged with the

publicly traded company Witco to form Crompton Corporation. In 2005, Crompton

acquired the publicly traded company Great Lakes Chemical Company, Inc., to form

Chemtura Corporation, while Great Lakes Chemical Corporation continued to exist

as a subsidiary company of Chemtura.

Based on our strategy, we consider all historical names of the current Chemtura

Corporation (PERMNO ADJ 38420) including:

1. CROMPTON & KNOWLES CORP starting 1980

2. CK WITCO CORP starting 1999

3. CROMPTON CORP starting 2000

4. CHEMTURA CORP starting 2005

Most importantly, because we consider the complete set of historical names, we

are able to locate all the relevant M&As throughout the years of the publicly traded
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firms that exist as an independently traded company in our data prior to an acquisi-

tion. Accordingly, we dynamically transfer them post-acquisition to PERMNO ADJ

38420:

1. Uniroyal Chemical Corporation (acquired 1996)

2. Witco Corp (acquired 1999)

3. Great Lakes Chemical (acquired 2005)

When we examine NBER ’06 patent dataset, we find that the only name that

was matched to CHEMTURA CORP (GVKEY 3607) is “CHEMTURA CORP”

(PDPASS 13245038). As the Chemtura name was adopted in 2005, only one patent

was matched for that name. In addition, none of the acquired publicly traded com-

panies were dynamically transferred to CHEMTURA CORP post-acquisition. It

is likely that a lack of information on historical names led NBER to rely on post-

acquisition name (Chemtura) and thus prevented it from accounting for the M&A

activities.

By considering all previous names related to GVKEY 3607: (i) Crompton &

Knowles Corp; (ii) CK Witco Corp and (iii) Crompton Corp - based on the NBER

raw patent match, we locate 220 additional patents up to 2006 that were not linked to

any Compustat record that should be assigned to Crompton & Knowles (77 patents),

CK Witco ( 26 patents)), and Crompton (117 patents).12 In addition, the acquired

Uniroyal Chemical Corp has a patent stock of 379 patents in 2006 (out of which 185

patents are post-acquisition), and the acquired Witco company has a patent stock

of 405 in 2006 (out of which 62 patents are from post-acquisition period), and Great

Lake Chemicals has a patent stock of 183 in 2006 (out of which three patents are

in 2006, the year after the company was acquired). Overall, applying our strategy

12 This calculation does not include subsidiaries and acquired companies.
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to the raw NBER patent match, we find a patent stock of 1,187 patents in 2006 for

GVKEY 3607 as opposed to 1 patent in NBER.

2.6 Econometric analysis

We examine how improved matching affects regression estimates of the market value

of patent-stock, and of the patenting elasticity of R&D. The standard measurement

error model assumes that measurement error is not correlated with either the de-

pendent variable or any independent variable. We generalize the standard model to

examine the implications of a failure to dynamically reassign patents, and of omitted

patents, for estimates of the market value of patent stock, and R&D elasticity of

patents.

2.6.1 Sources of measurement error and likely direction of bias: A simple econo-
metric framework

Using boldface to represent vectors, let Y represent Tobin’s Q (i.e., market value

over assets) so that Yit represents the Tobin’s Q for firm i and time t. Similarly, let

X represent patent stock over assets. Ignoring control variables for simplicity, the

simplest version of the typical regression is of the form

Yit “ α0 ` α1Xit ` εit (2.1)

Suppose Xit is measured with error. The error-laden variable is denoted by X˚
it “

Xit `mit, where mit is measurement error. Thus the actual regression specification

estimated is

Yit “ α0 ` α1X
˚
it ` εit (2.2)

Let y “ Y´Ȳ, where Ȳ is the sample mean of Y. Define x˚ similarly. We arrive

at a simplified regression specification in deviation form, where we suppress the time

subscript to avoid clutter.
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y “ α˚1x
˚`ε(2.3)

Let a1 be the OLS estimate of α1 in 2.1, and a˚1 be the corresponding estimate in

2.3. Then

a˚1 “
Covpx˚,yq

V arpx˚q
“
Covpx,yq ` Covpm,yq

V arpx˚q

“
Covpx,yq

V arpxq

V arpxq

V arpx˚q
`
Covpm,yq

V arpx˚q

“ a1
V arpxq

V arpx˚q
`
Covpm,yq

V arpx˚q

(2.4)

Epa˚1q “ α1
V arpxq

V arpx˚q
`
Covpm,yq

V arpx˚q
(2.5)

Equation 2.5 highlights the simplest form of expressing the sources of variation in

OLS estimates due to measurement error.13 It is often assumed that measurement

error is uncorrelated with the dependent variable, y, which implies that the second

term on the right hand side of equation 2.5 is zero. If the measurement error is also

uncorrelated with the independent variable,x, so that V arpx˚q=V arpxq + V arpmq,

then
V arpxq

V arpx˚q
ă 1. Under these assumptions, a1˚ ă a1, we get the classical result

that measurement error leads to attenuation bias.

However, depending on the source, measurement error m may be correlated with

either or both x and y. The nature of the possible bias differs between the two terms

in equation 2.5. The first term deals with the magnitude of the coefficient estimate,

and can inflate the magnitude of the coefficient if V arpx˚q ă Varpxq, and deflate

it if V arpx˚q ą Varpxq. On the other hand, the second term can either bias up

(positive bias), if Covpm,yq ą 0, or down (negative bias) if Covpm,yq ă 0

13 We ignore the complications in replacing sample moments with population moments in moving
from 2.4 to 2.5
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2.6.2 Matching errors, and failure to dynamically reassign patents

Dynamic reassignment bias

Mergers and acquisitions, and divestitures are an important source of failure of dy-

namic reassignment. A firm may be acquired by another firm, or a firm may sell a

subsidiary to another. From that time onwards, the assets, including the patents of

the acquired entity, need to be assigned to the acquiring entity, or else the stock of

patents of the acquiring entity to be lower than the true value. We work through a

simple case to provide an intuitive understanding of the possible bias when patents

are not dynamically reassigned. Suppose a subsidiary is sold by firm s to firm b,

but the stock of patents is not adjusted. Thus firm s ’s stock of patents per dollar

of assets (Xs) is higher than the correct number by c, and firm b’s is lower. Let S

represent the set of sellers, and B represents the set of buying firms. Further, sup-

pose that there are K buying and selling firms out of a sample of N, and let γ “ K
N

.

Measurement error can be represented as

mi “

$

’

&

’

%

c if i P S

´c if i P B

0 otherwise.

Equation 2.5 points to two key quantities: V arpx˚q and Covpm,yq. Let Ȳs represent

the mean for i P S, and likewise for Ȳb, X̄s, and X̄b

V arpx˚q “ V arpxq ` V arpmq ` 2Covpx,mq

Covpx,mq “
1

N

˜

c
ÿ

iPS

Xi ´ c
ÿ

iPB

Xi

¸

“ γcpX̄s ´ X̄bq

Covpy,mq “
1

N

˜

c
ÿ

iPS

Yi ´ c
ÿ

iPB

Yi

¸

“ γcpȲs ´ Ȳbq

(2.6)

As long as sellers are less patent-intensive than buyers, V arpx˚q ą V arpxq. There-

fore, from equation 2.5, |Epa˚1q| ă |α1|, implying that the OLS estimate is biased
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towards zero. However, if sellers have lower Tobin Q than buyers, Covpy,mq ă 0.

If α1 ą 0, as one might expect, this would reinforce the downward bias. If sellers

are on average more patent-intensive than buyers, then equation 2.6 implies that it

is possible that the V arpx˚q ă V arpxq. Thus, the first term of 2.5 may be greater

than α1 in magnitude. Notice that the quantitative importance of the bias, if any,

grows over time because γ, the proportion of firms involved increases.14 In summary,

if patents are not dynamically reassigned, the estimation bias will depend upon the

difference between the average Tobin Q, the difference the average patent intensity

of sellers and buyers, the magnitude of the mismatch, c, and on the share of firms,

γ involved in transactions

Bias from omitted matches

We match more patents, not fewer patents. That is, most of the errors in NBER are

errors of omission, and relatively few are errors of commission (assigning patents to a

firm that do not belong to that firm). Suppose Ci patents are incorrectly unmatched

to firm i, i PM , where M is the set of firms that suffer from such errors of omission.

Let ci “
Ci

Ai

, where Ai be the assets of firm i. For simplicity, let ci “ c. The

measurement error m can be represented as

mi “

#

´c if i PM

0 otherwise.

Following equations 2.6, and abusing the notation to let γ “ M
N

we get

Covpx,mq “ ´γc
ÿ

iPM

pXi ´ X̄q (2.7)

Covpy,mq “ ´γc
ÿ

iPM

pYi ´ Ȳ q (2.8)

14 Recall from section 2.5, the number of mismatched firms grows over time, from 142 in 1980 to
404 in 2006
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If mismatched firms have higher Tobin Q than average, then equation 2.8 implies

a negative bias. However, Equation 2.7 implies that if firms with missing patents

are more patent-intensive than average, then it may be that V arpx˚q ą V arpxq. In

that case, instead of attenuation bias, we would have amplification bias. If α1 ą 0,

the negative bias works against the amplification bias. The outcomes under different

combinations of assumptions can be worked out similarly.

The foregoing analysis is, of course, simplified.15 Despite its simplicity, it shows

that the direction and magnitude of bias is not straightforward: It will depend on a

variety of factors, which themselves depend on the source of measurement error, its

magnitude, and the characteristics of the firms subject to the error. Importantly, the

different sources of bias reflected in equation 2.5 may point in opposing directions.

Simply put, the bias resulting from measurement error due to errors of omission and

imperfect dynamic assignment is mostly an empirical matter.

2.6.3 Market value equation

In what follows, we focus the possible biases in the estimate of the coefficient of patent

stock in a Tobin Q regression originating from different sources of measurement error.

We include only companies that appear in the relevant datasets being compared, so

that differences in estimates are not driven by changes in the sample composition

(that is, extending the coverage of firms being matched in a given year, rather than

the quality of the matches). Table 2.10 presents descriptive statistics for the main

variables used in the estimation. We follow Bloom et al. (2013) and Arora et al.

(2021a) and estimate the following Tobin’s Q specification:

lnp
V alueit
Assetsit

q “ α0`α1
Patent stockit´2

Assetsit´2

` α2
R&D stockit´2

Assetsit´2

`` ηi ` τt ` εit

(2.9)

15 For instance, we have ignored other control variables.
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Tobin’s Q is market value over assets. Patent stockit´2 and R&D stockit´2 are

measured as the stocks of patents and perpetual R&D stock, respectively.16 We

are interested in how the estimated market value of patents, α̂1, differs between the

NBER datasets and ours. Tables 2.11 and 2.12 present the estimation results of

comparing α̂1 across the different datasets.

Table 2.11 compares α̂1 across NBER ’01, NBER ’06, and ABS (our sample)

for the period 1980-1999 (the sample period used in NBER ’01). To isolate the

effect of measurement error, only firm-years observations common across databases

are included (Panel C in Table 2.10 provides summary statistics for these firms).

Columns 1-3 present the estimates for 1980-2001 for NBER ’01. Column 1 controls

for industry fixed effect in a pooled regression, Column 2 add firms fixed effects,

and Column 3 includes only mismatched firms – whose cumulative patents for the

entire sample period in ABS is at least 10% above or below that in NBER ’06. The

estimated α̂1 ranges from 0.006 to 0.043 but is not statistically significantly different

from zero. Columns 4-6 repeat the same specifications using the NBER ’06 dataset.

The estimates range from 0.028 to 0.072, and α̂1 is statistically significant except for

mismatched firms. Comparing Columns 3 to Column 6 indicates that when focusing

only on mismatched firms, α̂1 increases from 0.010 to 0.028, but remains statistically

indistinguishable from zero. Columns 7-9 replicate the same specifications using ABS

data. The estimated α̂1 ranges from 0.090 to 0.043, and all estimates are statistically

significantly different from zero. In particular, the estimate for mistmatched firms

is 0.043, close to the estimate for the sample as a whole, 0.049. In other words, the

mismatched firms appear to be representative of the ABS dataset, but not so for the

NBER datasets.

Table 2.12 compares NBER ’06 to our dataset by including only firm-year obser-

16 to facilitate comparison between the samples, the patent stock includes only patents granted
under the current UO
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vations that appear in both for the period 1980-2006.17 The estimate of α̂1 obtained

from NBER ’06 is lower, especially for the sample of mismatched firms (0.016 versus

0.042 from Columns 3 and 6). Column 7 shows that α̂1 remains identical to its 1980-

2006 value when using our expanded sample of 1980-2015. Overall, improvements

in measurement result in higher estimated private value of patent stock, particularly

for firms whose patents are measured with error.

17 Supplementary Table 2.15 presents results by main industries
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Table 2.10: Summary Statistics for Main Variables

(1) (2) (3) (4) (5) (6)

Distribution

VARIABLES Obs Mean Std. Dev. 10th 50th 90th

Panel A: ABS (1980-2015)

R&D stock ($mm) 57,837 425 2,339 1.04 34.64 540

R&D expenditure ($mm) 57,837 95 498 0.41 7.99 126

Tobin’s Q 57,837 5 6 0.36 1.80 20

Assets ($mm) 57,837 1,612 9,687 1.99 56.34 2,239

Sales ($mm) 57,837 2,143 11,054 2.62 116.23 3,465

Patent stock (ABS) 57,837 256 1,621 1.00 11.00 300

Patent flow (ABS) 57,837 23 135 0.00 1.00 33

Panel B: NBER ’06 & ABS Match (1980-2006)

R&D stock ($mm) 43,448 304 1,675 0.84 26.84 402

R&D expenditure ($mm) 43,448 69 365 0.35 6.19 94

Tobin’s Q 43,448 4 6 0.33 1.70 17

Assets ($mm) 43,448 1,179 6,970 2.06 47.73 1,709

Sales ($mm) 43,448 1,688 8,424 2.95 100.94 2,818

Patent stock (ABS) 43,448 170 962 1.00 9.00 211

Patent flow (ABS) 43,448 18 89 0.00 1.00 28

Patent stock (NBER ’06) 43,448 147 918 0.00 5.00 154

Patent flow (NBER ’06) 43,448 15 85 0.00 1.00 20

Panel C: NBER ’01 & NBER ’06 & ABS Match (1980-1999)

R&D stock ($mm) 29,075 242 1,335 0.65 19.94 323

R&D expenditure ($mm) 29,075 56 293 0.31 4.79 77

Tobin’s Q 29,075 4 6 0.27 1.39 13

Assets ($mm) 29,075 991 4,997 2.26 44.74 1,621

Sales ($mm) 29,075 1,522 6,844 3.51 102.98 2,857

Patent stock (ABS) 29,075 131 649 1.00 7.00 180

Patent flow (ABS) 29,075 16 70 0.00 1.00 26

Patent stock (NBER ’06) 29,075 112 616 0.00 4.00 132

Patent flow (NBER ’06) 29,075 13 67 0.00 1.00 19

Patent stock (NBER ’01) 29,075 84 528 0.00 0.00 91

Patent flow (NBER ’01) 29,075 10 59 0.00 0.00 13

Notes : This table presents summary statistics of the main variables examined in the
paper.
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Table 2.11: Tobin’s Q and Patent Stock: NBER ’01, NBER ’06 and ABS

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Dependent Variable: ln(Tobin’s Q)

Dataset(sample years): NBER ’01 NBER ’06 ABS

Pooled All Mismatched Pooled All Mismatched Pooled All Mismatched

Patent stockt´2{Assetst 0.006 0.043 0.010 0.072** 0.044** 0.028 0.090** 0.049** 0.043*

(0.013) (0.029) (0.046) (0.007) (0.015) (0.034) (0.006) (0.013) (0.018)

R&D stockt´2{Assetst 0.162** 0.124** 0.123** 0.143** 0.117** 0.121** 0.122** 0.104** 0.100**

(0.004) (0.011) (0.015) (0.005) (0.012) (0.015) (0.005) (0.012) (0.017)

Industry FE Yes No No Yes No No Yes No No

Firm FE No Yes Yes No Yes Yes No Yes Yes

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Dependent Variable Avg. 3.365 3.365 3.205 3.365 3.365 3.205 3.365 3.365 3.205

Firms 2764 2764 1162 2764 2764 1162 2764 2764 1162

Observations 19,897 19,897 9,463 19,897 19,897 9,463 19,897 19,897 9,463

R-squared 0.41 0.73 0.72 0.42 0.73 0.72 0.42 0.73 0.72

Notes: The sample consists of firm-year level observations matched on cusip-year pair across NBER ’01, NBER ’06, and ABS
samples. The sample for mismatched-firm analysis includes firms whose cumulative patents in ABS is at least 10% above or
below the number in NBER ’06. Standard errors (in brackets) are robust to arbitrary heteroscedasticity and allow for serial
correlation through clustering by cusip. ** p<0.01, * p<0.05
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Table 2.12: Tobin’s Q and Patent Stock: NBER ’06 and ABS

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent variable: ln(Tobin’s Q)

Dataset(sample years): NBER ’06 (’80-’06) ABS (’80-’06) ABS(’80-’15) ABS(’07-’15)

Pooled All Mismatched Pooled All Mismatched All All

Patent stockt´2{Assetst 0.060** 0.031** 0.016 0.080** 0.042** 0.042** 0.043** 0.056**

(0.004) (0.009) (0.019) (0.004) (0.008) (0.012) (0.007) (0.014)

R&D stockt´2{Assetst 0.137** 0.119** 0.123** 0.117** 0.107** 0.103** 0.110** 0.133**

(0.003) (0.007) (0.010) (0.003) (0.008) (0.011) (0.006) (0.015)

Industry FE Yes No No Yes No No No No

Firm FE No Yes Yes No Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes Yes Yes

Dependent variable Avg 4.125 4.125 3.757 4.125 4.125 3.757 4.348 5.001

Firms 3644 3644 1567 3644 3644 1567 4190 1861

Observations 31,439 31,439 15,810 31,439 31,439 15,810 43,470 9,111

R-squared 0.43 0.71 0.69 0.43 0.71 0.69 0.69 0.84

Notes: The sample consists of firm-year level observations matched on GVKEY-year pair between NBER ’06 and ABS
samples. The sample for mismatched-firm analysis includes firms whose cumulative patents in ABS is at least 10% above
or below the number in NBER ’06. Standard errors (in brackets) are robust to arbitrary heteroscedasticity and allow for
serial correlation through clustering by GVKEY. ** p<0.01, * p<0.05
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2.6.4 Patent production function

If measurement error in patents is systematically correlated with R&D stock, mea-

surement error will also bias the estimates of elasticity of patenting with respect

to R&D in patent production function estimates. We estimate the following patent

production function to assess how the elasticity of patents with respect to R&D

expenditures changes across the different samples. As before, to understand the im-

plications of measurement error, we use firm-year observations common across all

datasets, so that changes in the composition of the sample are not at work.

lnpPatentsqit “β0 ` β1 lnpR&D stockit´2q ` β2lnpAssetsqit´2 ` ηi ` τt ` εit

(2.10)

Our interest is the coefficient β̂1. As discussed, a primary source of measurement

error is in patents themselves. Unlike the Tobin’s Q estimates, here, measurement

error is in the dependent variable, which results in larger standard errors of the

estimate, or a bias that depends directly on the correlation between the measurement

error and some independent variable, or both. For patents flows, the most likely

source of error is mismatching (e.g., due to name changes or other issues in matching).

Incomplete dynamic reassignment mostly affects lagged patent stocks rather than the

flow of patents.

Table 2.13 presents the estimation results.18 Columns 1-6 compare NBER ’01,

NBER ’06, and ABS for the period 1980-99. Comparing Columns 1, 3, and 5, we

see that the estimated elasticity of patents with respect to R&D stock is similar

across the datasets for the entire sample. However, considering only the mismatched

firms, we see a marked increase in the measured estimated elasticity, consistent with

a negative correlation between the error and R&D: Firms for which NBER failed to

18 Supplementary Table 2.16 presents pooled results.
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match patents are also likely to have higher R&D stock. This is consistent with the

results in Table 2.4.19

2.7 Summary and conclusions

This paper reports on updates and improvements to the well-known NBER patent

database. We extend the database from 2006 to 2015. We also improve the accu-

racy of the matches by accounting for changes in company names, and changes to

corporate boundaries through mergers and acquisitions of firms or their subsidiaries.

Doing so enables us to improve the accuracy of the match between firms and the

patents they own. This results in an increase in the number of patents we match

to sample firms. It also enables us to dynamically assign patent stocks to firms as

the patent assignees change owners. We find that approximately 40% of the sample

firms are mismatched firms – whose cumulative patents for the entire sample period

in ABS is at least 10% above or below that in NBER ’06.

We explore the implications of the measurement error for two important relation-

ships that the literature has investigated. The first is the market value of patents,

and the second is the patent production function, which relates patent flow to R&D

investment. We provide a simplified framework to guide intuition about possible

bias. We find that measurement error results in modest under-estimates of patent

value. We also find that estimates of the elasticity of patenting with respect to R&D

are also under-estimated, especially for firms where measurement error is significant.

19 Table 2.4 showed that absolute difference between ABS patents and NBER ’06 patents is pos-
itively related to R&D stock. Because matching errors are mostly errors of omission rather than
commission, the absolute difference is also the difference itself. If ABS is the true patent count,
then Table 2.4 is the measurement error, implying a positive correlation between measurement error
and R&D stock. If yit is the true patent flow for firm i in year t and the error-laden patent flow is
y˚it “ yit `mit, then the estimated patent production function is y˚it “ xitα ` εit. This can be
rewritten as yit “ xitα ` pεit ´mitq. The regression error, therefore, contains the negative of the
measurement error. Therefore, a positive correlation between the measurement error and x implies
a negative correlation between the regression error and x, and hence a negative bias in the estimate
of α.
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Overall, these results are good news in that existing estimates reported in the liter-

ature are not biased in any significant way. However, additional research would be

required to evaluate the implications for more restricted samples (where the fraction

of firms affected by error may be larger). In addition, analyses of trends over time,

based on the older data, may need to be re-examined, insofar as the incidence of

measurement error may have increased over the sample period.
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Table 2.13: Patent Production Function Estimates Across Datasets

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

DV: ln(1+Number of patents)

’80-’99 ’80-’06 ’80-’15 ’07-’15

NBER ’01 NBER ’06 ABS NBER ’06 ABS ABS

Sample: All Mismatch All Mismatch All Mismatch All Mismatch All Mismatch All All

ln(R&D stock) 0.164** 0.092** 0.250** 0.140** 0.301** 0.231** 0.271** 0.139** 0.339** 0.255** 0.345** 0.283**

(0.025) (0.026) (0.031) (0.034) (0.030) (0.035) (0.028) (0.028) (0.025) (0.029) (0.024) (0.050)

ln(Assets) 0.068** 0.042** 0.102** 0.064** 0.127** 0.122** 0.095** 0.063** 0.119** 0.118** 0.121** 0.064**

(0.012) (0.010) (0.013) (0.014) (0.014) (0.018) (0.010) (0.011) (0.010) (0.014) (0.009) (0.012)

Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

DV Avg. 10.088 6.314 13.597 8.652 15.947 13.597 15.059 9.722 17.933 15.264 23.285 39.548

Firms 3188 1295 3188 1295 3188 1295 3935 1660 3935 1660 4347 2220

Obs. 28,785 13,146 28,785 13,146 28,785 13,146 42,949 20,805 42,949 20,805 57,082 14,133

R-squared 0.90 0.89 0.82 0.79 0.85 0.84 0.79 0.75 0.84 0.83 0.83 0.93

Notes: The sample used for 1980-1999 consists of firm-year level observations matched on cusip-year pair across NBER ’01, NBER
’06, and ABS. The sample used for years 1980-2006 consists of firm-year level observations matched on GVKEY-year pair between
NBER ’06 and ABS. The sample used for 1980-2015 and 2007-2015 consists of firm-year observations from ABS. Standard errors (in
brackets) are robust to arbitrary heteroscedasticity and allow for serial correlation through clustering by firm. ** p<0.01, * p<0.05
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2.8 Supplementary Results

Figure 2.1: Patents assigned to U.S. HQ public corporations and their related
subsidiaries

48



Table 2.14: Top 50 Mismatched Firms: ABS minus NBER ’06 (1980-2006)

GVKEY Company
Average annual

difference in
matched patents

Total difference
in matched

patents
Avg Tobin’s Q

11436 CBS CORP -OLD 331 6,626 1.3
7475 MOBIL CORP 262 4,973 0.7
29356 VERITAS SOFTWARE CORP 218 1,525 10.5
5693 HONEYWELL INC 183 3,474 1.0
9947 SPERRY CORP 154 921 0.2
8549 CONOCOPHILLIPS 148 3,997 0.8
7435 3M CO 139 3,762 3.0
11636 XEROX CORP 130 3,498 1.0
9653 SHELL OIL CO 119 712 0.8
31166 GUIDANT CORP 118 1,416 10.3
2285 BOEING CO 109 2,935 0.9
14380 PIONEER COS INC -CL A 101 1,216 0.9
157858 FREESCALE SEMICONDUCTOR INC 95 286 2.1
2991 CHEVRON CORP 91 2,454 1.0
7536 PHARMACIA CORP 90 2,073 1.8
142953 MONDELEZ INTERNATIONAL INC 88 526 1.3
25279 BOSTON SCIENTIFIC CORP 85 1,282 7.5
4060 DOWDUPONT INC 83 2,244 1.0
5047 GENERAL ELECTRIC CO 83 2,228 2.0
11040 PHARMACIA & UPJOHN INC 81 1,624 2.1
6266 JOHNSON & JOHNSON 79 2,142 4.3
116526 CONEXANT SYSTEMS INC 72 575 3.1
8543 ALTRIA GROUP INC 69 1,865 1.6
3532 CORNING INC 68 1,834 2.0
4510 FMC CORP 68 1,833 0.7
157415 TRW AUTOMOTIVE HOLDINGS CORP 68 203 0.3
5860 ITT INC 67 1,819 0.9
1608 AMP INC 61 1,165 2.8
4503 EXXON MOBIL CORP 55 1,493 1.3
6774 LOCKHEED MARTIN CORP 54 1,466 0.8
9203 ROCKWELL AUTOMATION 54 1,451 1.1
15708 ALLERGAN INC 53 961 7.8
4087 DU PONT (E I) DE NEMOURS 53 1,424 1.3
1478 WYETH 50 1,353 4.0
4462 NEWMARKET CORP 49 1,335 0.9
15855 SYMANTEC CORP 48 669 8.2
29849 WESTERN ATLAS INC 45 180 1.1
7679 NALCO CHEMICAL CO 44 836 2.8
166414 ALEXZA PHARMACTCLS INC 43 43 16.7
60979 WABTEC CORP 40 474 2.0
10301 TRW INC 38 844 0.8
65399 MERITOR INC 38 380 0.4
11038 UNOCAL CORP 38 941 1.1
9372 ST JUDE MEDICAL INC 37 963 7.6
28742 BORGWARNER INC 37 518 0.8
134932 ON SEMICONDUCTOR CORP 37 256 2.3
3810 DAY INTERNATIONAL INC 36 250 0.1
8488 APPLIED BIOSYSTEMS INC 35 943 4.1
24205 INTL SPECIALTY PRODUCTS INC 35 383 1.0
10983 UNITED TECHNOLOGIES CORP 33 890 0.8
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Table 2.15: Tobin’s Q and Patent Stock by Main Industries

(1) (2) (3) (4) (5) (6) (7)

Dependent variable: ln(Tobin’s Q)

Years: 1980-1999 1980-2006 1980-2015 1980-2017

Patent Data NBER ’01 NBER ’06 ABS NBER ’06 ABS ABS ABS

Panel A: Chemicals and Life Sciences

Patent stockt´2{Assetst -0.017 0.017 0.031 0.016 0.027* 0.037** 0.032*

(0.035) (0.018) (0.017) (0.011) (0.011) (0.008) (0.016)

R&D stockt´2{Assetst 0.105** 0.097** 0.087** 0.105** 0.097** 0.113** 0.172**

(0.017) (0.017) (0.018) (0.011) (0.011) (0.009) (0.022)

Firm fixed effects Yes Yes Yes Yes Yes Yes Yes

Year dummies Yes Yes Yes Yes Yes Yes Yes

Dependent variable sample average: 5.496 5.496 5.496 6.792 6.792 7.442 9.132

Number of firms 532 532 532 727 727 893 480

Observations 3,802 3,802 3,802 6,486 6,486 9,479 2,285

R-squared 0.83 0.83 0.83 0.79 0.79 0.77 0.85

Panel B: ICT

Patent stockt´2{Assetst 0.471** 0.168** 0.130** 0.071** 0.071** 0.070** 0.117*

(0.138) (0.061) (0.050) (0.024) (0.021) (0.018) (0.053)

R&D stockt´2{Assetst 0.141** 0.130** 0.113** 0.135** 0.125** 0.117** 0.065

(0.025) (0.026) (0.029) (0.014) (0.015) (0.013) (0.034)

Firm fixed effects Yes Yes Yes Yes Yes Yes Yes

Year dummies Yes Yes Yes Yes Yes Yes Yes

Dependent variable sample average 4.923 4.923 4.923 5.449 5.449 5.225 4.732

Number of firms 334 334 334 592 592 731 336

Observations 2,018 2,018 2,018 3,952 3,952 5,855 1,423

R-squared 0.72 0.72 0.72 0.65 0.65 0.63 0.81

Panel C: Semiconductors

Patent stockt´2{Assetst 0.052 0.053 0.054 0.036 0.046* 0.068** 0.096**

(0.070) (0.046) (0.037) (0.027) (0.023) (0.019) (0.033)

R&D stockt´2{Assetst 0.124** 0.115** 0.100** 0.114** 0.101** 0.097** 0.068

(0.033) (0.033) (0.038) (0.021) (0.024) (0.017) (0.042)

Firm fixed effects Yes Yes Yes Yes Yes Yes Yes

Year dummies Yes Yes Yes Yes Yes Yes Yes

Dependent variable sample average 2.899 2.899 2.899 3.447 3.447 3.453 3.504

Number of firms 485 485 485 618 618 699 307

Observations 3,290 3,290 3,290 5,146 5,146 7,117 1,500

R-squared 0.67 0.67 0.67 0.64 0.64 0.62 0.79

Notes : The sample used for 1980-1999 consists of firm-year level observations matched on cusip-year pair across NBER ’01,
NBER ’06, and ABS. The sample used for years 1980-2006 consists of firm-year level observations matched on GVKEY-year
pair between NBER ’06 and ABS. The sample used for 1980-2015 and 2007-2015 consists of firm-year observations from ABS.
Panel A consists of firms (at the firm-year level) that operate in Chemicals and Life Sciences, Panel B consists of firms (at the
firm-year level) that operate in IT & Telecommunications, and Panel C consists of firms (at the firm-year level) that operate in
Semiconductors. Standard errors (in brackets) are robust to arbitrary heteroscedasticity and allow for serial correlation through
clustering by firm. ** p<0.01, * p<0.05
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Table 2.16: Patent Production Function Across Datasets - Pooled

(1) (2) (3) (4) (5)

Dependent variable: ln(1+Number of Patents)

1980-1999 1980-2006

NBER ’01 NBER ’06 ABS NBER ’06 ABS

ln(R&D stock) 0.160** 0.278** 0.322** 0.288** 0.331**

(0.015) (0.014) (0.013) (0.011) (0.011)

ln(Assets) 0.131** 0.099** 0.124** 0.092** 0.119**

(0.010) (0.010) (0.009) (0.008) (0.008)

Industry fixed-effects Yes Yes Yes Yes Yes

Year dummies Yes Yes Yes Yes Yes

Dependent variable sample average 5.453 8.087 9.636 8.792 10.710

Number of firms 3188 3188 3188 3935 3935

Observations 3,188 3,188 3,188 3,935 3,935

R-squared 0.39 0.50 0.63 0.51 0.62

Notes : The sample used for 1980-1999 consists of firm-year level observations matched on cusip-
year pair across NBER ’01, NBER ’06, and ABS. The sample used for years 1980-2006 consists of
firm-year level observations matched on GVKEY-year pair between NBER ’06 and ABS. Standard
errors (in brackets) are robust. ** p<0.01, * p<0.05
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3

Knowledge Spillovers and Corporate Investment in
Scientific Research

This chapter is adapted from a joint work with Ashish Arora and Sharon Belenzon

that is published in American Economic Review (Arora et al., 2021a). All authors

have equal contribution. For the original article please see:

https://doi.org/10.1257/aer.20171742

3.1 Introduction

Although economists often speak of R&D as a single construct, it is useful to dis-

tinguish between research (“R”) and development (“D”). Research is an input into

invention: scientific discoveries may lead to new products and processes, but even

when inventions do not directly arise from a scientific discovery (Kline and Rosen-

berg, 1986; David et al., 1992), research enhances the efficiency of inventive activity

(Nelson, 1959).1 Research is typically thought of as being performed by universities

and funded by the government, but many significant scientific breakthroughs have

1 In Vannevar Bush’s words, “New products and new processes do not appear full-grown. They
are founded on new principles and new conceptions, which in turn are painstakingly developed by
research in the purest realms of science.” (Bush, 1945, p.241)
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come from scientists working not in universities but in the labs of companies such as

Du Pont, ICI, Merck, Xerox, IBM, and AT&T. In 2018, the business sector in the

United States invested about $337 billion in internal R&D. Of this, $67.5 billion, or

a fifth, was spent on research (“R”), with development (“D”) accounting for the rest.

This $67.5 billion represents nearly a third of all research conducted in the United

States that year, which amounted to $211.5 billion.2

The two components of R&D differ in another respect as well. Whereas new

products and processes can be protected from potential imitators by patents, copy-

rights, and trade secrecy, research is typically disclosed in scientific publications, even

when it is conducted by corporate scientists. Research, therefore, is more likely than

development to generate knowledge spillovers (e.g., Dasgupta and David (1994a);

Arrow (1962); Nelson (1959)). When these spillovers accrue to rivals, they are not

merely externalities; they may actually reduce private returns from research. In-

deed, Rosenberg (1990) posed the question of why firms invest in research in the

first instance. He suggested that, in addition to sometimes producing commercially

valuable findings, research investments enabled firms to benefit from academic sci-

ence. The literature has offered several other possible mechanisms for private returns

from research. Common features of these explanations are that they do not require

the firm to use the research for innovation, and that spillovers to other firms do not

reduce returns from research.3

In this paper, we focus on how private returns to corporate research depend on

2 R&D performed by the business sector in 2018, including that financed by the government and
other sources, amounted to $422 billion, with research accounting for $91.8 billion. Source: National
Science Foundation, National Center for Science and Engineering Statistics 2019, Tables 2, 3, 4.
Available at https://ncses.nsf.gov/pubs/nsf20307, last accessed July 20th, 2020.

3 These explanations include absorptive capacity (Cohen and Levinthal, 1989; Cockburn and
Henderson, 1998; Griffith et al., 2004, 2006; Aghion and Jaravel, 2015), incentives for high-skilled
scientist-inventors (Stern, 2004; Henderson and Cockburn, 1994; Audretsch, 1996; Cockburn and
Henderson, 1998), and signaling to investors, prospective customers or regulators (Azoulay, 2002;
Hicks, 1995).
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the balance between two opposing forces: the benefits from the use of science in own

inventions, and the profit-reduction from knowledge outflows to rivals.4 Because

spillovers, as used in the literature, include knowledge inflows from other firms, to

avoid confusion we henceforth use the term “spillouts” to refer to knowledge outflows

to rivals.

Our analysis includes all publicly traded American manufacturing firms with at

least one year of positive R&D expenditures and at least one patent over the period

1980-2015. The final sample consists of an unbalanced panel of 3,807 firms and

53,110 firm-year observations. We measure the use of internal research in invention

by citations made by the firm’s patents to its own scientific publications. We measure

spillouts by citations from the patents of rivals to the focal firm’s publications.

With these newly constructed data, we present two main findings. First, we

show that there is a positive relationship between the market value of a firm and its

stock of scientific output. This relationship is stronger when the firm’s patents use

the science that the firm’s scientists produce. Conversely, a firm’s stock of scientific

output is less valuable to the firm when rivals use its science. Second, and consistent

with this, we find that a firm produces more scientific publications if it is more likely

to use the science in its patents, but produces fewer publications if the science is

more likely to be used by rivals’ inventions.

Although we do not claim that our estimates of these relationships are causal,

the patterns of association are consistent with the notion that firms obtain greater

value from scientific research when they are able to use it for their inventions, but

the value is reduced when knowledge is used by rivals. The relationships endure

4 Xerox’s Palo Alto Research Center (PARC) illustrates the tradeoff. Xerox’s failure to commer-
cialize PARC discoveries, which were ultimately used by companies such as Apple, Microsoft, and
3Com, is frequently cited as a reason for PARC’s ultimate demise. Yet, the benefits Xerox obtained
from PARC’s research in areas that were closer to Xerox’s core business, such as the laser printer,
were substantial. These inventions allowed the firm to recoup its investment in PARC despite the
spillovers, at least for a time.
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even after controlling for firm fixed effects, as well as a variety of time-varying firm

characteristics. We also present estimates where we instrument for citations by rivals

using tax credits as instruments for patenting by rivals, following Bloom et al. (2013)

and Lucking et al. (2018).

Our work connects to two streams of research in the economics of innovation

literature. One stream of prior work, (e.g., Mansfield (1980) and Griliches (1986))

has relied on confidential data to distinguish between research and development.

Using a sample of approximately 1,000 large manufacturing firms from 1957 through

1977, Griliches (1986) found that firms that spent a larger share of R&D on basic

research were substantially more productive. In a more recent paper, Akcigit et al.

(2013) use confidential data on French firms to distinguish between basic and applied

research. They argue that spillovers from basic research are broader than those from

applied research.

Instead of using confidential data on R&D inputs, we use publicly available data

on outputs, namely publications and patents. This enables us to trace knowledge

flows from research to innovation using patent citations to corporate publications.

Therefore, we can explore the tradeoff between internal use and use by rivals in a

firm’s decision to invest in research. Despite these differences, our empirical results

are consistent with the findings of this literature. Consistent with Griliches (1986),

we find that research is privately valuable, in part because research enhances the

productivity of innovation. Further, consistent with Akcigit et al. (2017), we find

that knowledge spillovers are more likely to be associated with publications rather

than patents.

The second literature has focused on knowledge spillovers. Building on Jaffe

(1986), who measures spillovers using external R&D, Bloom et al. (2013) (hereafter,

BSV) distinguish between the R&D expenditures of product-market rivals and tech-

nology neighbors. The latter potentially represent beneficial knowledge-inflows that
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improve the focal firm’s innovation outcomes. However, the R&D expenditures of

product-market rivals, though they may also have benefits, have a rent-stealing effect

as well: an increase in the knowledge base of competitors hurts the focal firm in the

product market.

We build on BSV, with three main differences. First, we consider research, which

is upstream of invention, as an input into invention. Research is often disclosed in

scientific publications, and is a more potent source of spillovers than inventions, which

are protected by patents. Second, we focus on knowledge outflows or spillouts, as

opposed to knowledge inflows. That is, we examine how the use of its knowledge by

outsiders affects the focal firm, rather than how a focal firm is affected by knowledge

produced by other firms.5 Unlike knowledge spillovers in general, which benefit other

firms but do not directly affect the firm producing the knowledge, spillouts to rivals

directly reduce the rents from innovation. Spillouts are, therefore, an indirect cost

of research. Third, we introduce a direct measure of spillouts. While previous work

typically measured potential knowledge flows using R&D performed by other firms,

we measure knowledge flows directly as patent citations to science produced by a

focal firm.

Our paper contributes to the ongoing policy discussions on the apparent decline

in inventiveness (Bloom et al., 2017) and the associated slowdown in productivity

growth. If inventions build on science, particularly corporate science, then a decline

in corporate science may be implicated in the declining novelty of inventions. Figure

3.1 shows that the share of basic and applied research in the total domestic R&D

funded and performed by the business sector has declined from over 31 percent in

5 Our paper is closer to Belenzon (2012), which examines the relationship between the private
value of a firm’s patent and the citations it receives from the firm’s own patents as well as the
patents of its rivals. In related work, Ceccagnoli (2005) investigates a model where some firms
invest in R&D that can spill out to rivals, who may not invest in R&D. However, Ceccagnoli (2005)
does not trace spillouts, and does not distinguish between research and development.

56



1986 to about 20 percent in 2008, and has remained at that level thereafter.6 The

share of research in total R&D performed by business, including that financed by

the government and other sources, shows a similar decline, from a peak of around 30

percent in 1991 to about 20 percent in 2008, albeit rising modestly thereafter. That

is, the composition of business R&D appears to be shifting away from research.

Many leading American firms began to withdraw from research in the 1980s

(Mowery, 2009). Their research labs were shut down or were oriented towards more

applied activities. Bell Labs was separated from its parent company AT&T and

placed under Lucent in 1996, Xerox PARC was spun off into a separate company

in 2002, and Du Pont closed its Central Research and Development Laboratory in

2016. These accounts are consistent with Figure 3.2, which presents trends in the

annual number of publications (“R”) and patents (“D”) divided by sales, for our

sample firms. The corporate publication rate fell by about 60% over the sample

period, whereas the patenting rate does not show any clear trend. This suggests

that the composition of corporate R&D is changing over time, with less “R” and

more “D” (Arora et al., 2018). Changes in the balance between internal use and

spillouts may be related to the declining share of research in corporate R&D. If firms

become more sensitive to their research leaking out to rivals, then they focus on

research projects with the highest likelihood of internal use, cutting back on more

broad-ranging research initiatives.

Our paper also contributes by developing new data and measures. We create

and validate a new measure of use of science in invention. Although some recent

work has also used patent citations to science, ours is the first large scale study

measuring the flow of corporate science to corporate invention, within and across

6 Based on Tables 2-4, National Science Foundation, National Center for Science and Engineer-
ing Statistics 2019. National Patterns of R&D Resources: 2017–18 Data Update. NSF 20-307.
Alexandria, VA. Available at https://ncses.nsf.gov/pubs/nsf20307.
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firm boundaries, for a period of over a third of a century.7 We match publication

records from Web of Science to front-page non-patent literature (NPL) references and

link both to Compustat firms. In so doing, we also improve and extend the NBER

patent database, adjusting for changes in corporate names and ownership. The

outcome is a more accurate and comprehensive match between firms and their stock

of patents and publications, which accounts for changes in names, and for mergers,

acquisitions, and divestitures. This process is described in section 3.3 below.

The chapter proceeds as follows. Section 3.2 presents the analytical framework

that guides our empirical investigation. Section 3.3 discusses the data, section 3.4

outlines the econometric specifications, and section 3.5 summarizes the results. Sec-

tion 3.6 concludes with a discussion of how trends in spillouts and internal use may

be related to the changes in the composition of corporate R&D.

3.2 Analytical framework

We outline a simple framework to motivate the empirical analysis. We follow the

framework in BSV but differ in three important respects. First, we distinguish

between research and innovation. Research reduces the cost of innovations, and in-

novations increase profits. Second, we focus on knowledge “spillouts” from research;

inventions are protected by patents and are assumed not to generate “spillouts”.

Finally, whereas BSV study how spillovers are beneficial externalities that enhance

the efficiency of R&D, our focus is on how spillouts to rivals reduce private returns

from research, and therefore also the incentives to invest in research.

Consider two firms, indexed by 0 and 1. Both invest in innovation, d0 and d1,

7 Patent citations are imperfect measures of knowledge flow, but Roach and Cohen (2013) judge
patent to publication citations to be better sources of tracking flow of scientific knowledge than
patent to patent citations, which have been more extensively used in the literature (e.g., Jaffe
et al. (1993)). In recent work, Azoulay et al. (2019) use patent citations to track the flow of
National Institutes of Health (NIH) funded research to biomedical inventions, and Bryan et al.
(2020) compare front-page citations to in-text citations to a fixed set of journals. We also validate
our measure using the Carnegie Mellon Survey of R&D performing firms.
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Figure 3.1: Research in Business R&D, 1980-2018
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Data for this plot are generated from Tables 2-4, National Science Foundation, Na-
tional Center for Science and Engineering Statistics 2019. National Patterns of
R&D Resources: 2017–18 Data Update. NSF 20-307. Alexandria, VA. Available
at https://ncses.nsf.gov/pubs/nsf20307.

respectively, to compete in the product market. For simplicity, only firm 0 invests

in research. Research by firm 0 reduces its own cost of innovation, but also spills

out to the rival firm, reducing the rival’s cost of innovation. There are three stages.

In stage 3, the firms compete in the product market. Each firm’s product market

profit depends upon its own innovation output and that of the rival. The reduced

form profit functions are Π0pd0, d1q and Π1pd0, d1q. In stage 2, firms choose their

innovation output. The cost of innovation for firm 0 is φpr0;λqd0, where r0 is the

investment in research by firm 0, and λ represents internal absorptive capacity, or

the ability to learn from internal research. The innovation cost for firm 1 is spr0; θqd1,

where θ reflects the ability of the rival to learn from “spillouts” from firm 0’s research.

In stage 1, firm 0 chooses its research investment, r0, to maximize v0 “ Π0pd0, d1q ´

φpr0;λqd0 ´ γpr0q, where γpr0q is the direct cost of research.8

8 If firm 1 also invests in research, then φ and s also depend on r1. In this case, the results that
follow should be interpreted as holding r1 constant (i.e., characterizing firm 01s reaction function
from stage 1).
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Figure 3.2: Trends in Corporate Scientific Publications and Patents, 1980-2015
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The figure presents the trend in publications and patents over time. The figures are
measured by total annual count divided by the sum of annual sales (mm$) across
our complete sample firms from 1980 through 2015. Both lines start at a normalized
index value of 100 for 1980 and future years are measured relative to 1980. The
sample for publications is conditional on firms with at least 1 publication stock.

Table 4.1 summarizes the effects of spillouts on value, research, and innovation,

if Π0 is additively separable and concave. The first set of results relate to value.

Table 3.5 empirically examines whether research is more valuable if it is used by

the firm, but less valuable if it is used by rivals. The same tradeoff also applies to

investment in research, but with one important difference: investment in research

depends on the marginal returns to research. The marginal return to research,
Bv0

Br0

“

´d0
Bφ

Br0

`
BΠ0

Bd1

Bd1

Br0

´
Bγ

Br0

, has three terms. The first term represents how research

lowers the cost of innovation. This term is positive and represents the benefit from

research. The second term represents the impact of spillouts to rivals. We expect the

rival’s innovation to increase because it benefits from knowledge spillouts, so that

spillouts to rivals are an indirect cost of doing research. The final term represents a

direct marginal cost of research.

In general, internal use increases the marginal return to research, whereas spill-

outs decrease it. However, strategic complementarity in stage 2 between internal
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and rival innovation can potentially offset these direct effects. For instance, internal

use increases internal innovation, thereby increasing marginal returns to research.

However, if rival innovation also increases because of strategic complementarity, this

indirect cost of research reduces marginal return. That is, the same underlying mech-

anisms may result in different relationships when we compare how value and research

respond to spillouts and internal use. We explore these relationships empirically in

Table 3.6.

Strategic interactions are particularly relevant for innovation outcomes. In their

absence, internal use increases innovation and spillouts decrease innovation. How-

ever, under strategic complementarity, spillouts may even increase innovation. In

Table 3.7, we explore empirically the extent to which the use of scientific knowledge

makes innovative activity more productive, and how spillouts affect innovation.

Table 3.1: Predicted Relationships

VARIABLE VALUE RESEARCH INNOVATION

Spillout to rivals Decrease Decrease No effect
Internal use Increase Increase Increase

3.3 Data and Main Variables

We combine data from six sources: (i) company and accounting information from

S&P North America Compustat (Standard & Poor’s, 2018b); (ii) scientific publi-

cations from Web of Science (WoS) by Clarivate (Clarivate Analytics, 2016); (iii)

patent and non-patent literature (NPL) citations from PATSTAT (European Patent

Office, 2016); (iv) subsidiary data from ORBIS (Bureau van Dijk, 2018); (v) acquisi-

tion data from SDC Platinum (Securities Data Company Platinum, 2018); and (vi)

company name changes from WRDS’s “CRSP Monthly Stock” (Center for Research

in Security Prices, 2018b,a).
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We re-construct the NBER data (Hall et al. (2001), Bessen (2009)) from 1980 and

extend it to 2015 while introducing several improvements to accommodate changes

in corporate names and ownership structures. We use scientific publications as our

measure of the production of scientific knowledge and patents as our measure of

inventive activity. We treat a citation by a patent to a corporate publication as an

indicator that the patented invention used the knowledge in the publication. For

this purpose, we also develop new data on corporate publications matched to NPL

citations, which we discuss below.

3.3.1 Accounting panel data

We start with all North American Compustat records and select companies with

positive R&D expenses for at least one year during our sample period of 1980-2015.

We exclude firms that are not headquartered in the United States and firms without

patents. As in Bloom et al. (2013), we further restrict the sample to manufacturing

firms. Our final sample consists of an unbalanced panel of 3,807 firms and 53,110

firm-year observations.

Approximately 30% of the Compustat firms in our sample changed their name at

least once, making it challenging to match publication and patent data. Accounting

for name changes is difficult because there is no single source that tracks different

names of the same firm, and to the best of our knowledge, this has not been done

previously on a large scale. We identify name changes in two ways: (i) we link

Compustat records to WRDS’s “CRSP Monthly Stock” file, which records historical

names for each month a security is traded, and (ii) perform extensive manual checks

using Securities and Exchange Commission (SEC) filings to verify all related names

for our sample period.

The second major challenge comes from ownership changes. A parent com-

pany and a majority-owned subsidiary may have different identification numbers
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and records in Compustat. Moreover, a single company may correspond to multi-

ple firm identifiers due to changes in ownership (such as mergers, acquisitions, and

spinoffs). We identify ownership structures and ownership changes in three ways.

First, we match our sample firms to ORBIS ownership files for the years 2002-2015

for annual subsidiary information (using each publication year as a separate “snap-

shot” of ownership structure).9 Second, for firms that exit Compustat before 2002,

we manually collect subsidiary names based on SEC filings and rely on the NBER

patent database for pre-2002 ownership data. Third, we match our firms to M&A

data from SDC Platinum to supplement information on ownership changes.

3.3.2 Main variables

Corporate publications

We match our sample firms to the Web of Science database. We include articles

from journals covered in the “Science Citation Index” and “Conference Proceedings

Citation Index - Science”, excluding social sciences, arts, and humanities articles.

Using the affiliation field and all historical company names, we identify approximately

800 thousand articles published between 1980 and 2015 that have at least one author

employed by our sample of Compustat firms or their majority-owned subsidiaries at

the time.

Corporate patents

We match patents to our sample of Compustat firms and their subsidiaries. We

account for firm name changes as well as M&A reassignment of patents based on

SDC and ORBIS data. As with publications, when the ownership of the patenting

entity changes, the patents associated with the entity are reallocated to the new

owner. We match approximately 1.3 million patents to our sample firms and their

9 The year 2002 is the first year with reliable coverage of ownership information in ORBIS.
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subsidiaries.

Patent citations to corporate publications

We match non-patent literature (NPL) citations to publications as our measure of

the use of corporate science in invention. Using all patents granted in the period

1980-2015, we perform a many-to-many match between NPL citations and WoS

publications (approximately 10 million citations matched to 800 thousand corporate

publications), allowing for more than one publication to be matched to each citation.

For each possible match, we construct a score that captures the degree of textual

overlap between the free-text NPL format and the structured WoS record, which in-

cludes the following fields: article title, journal, and authors. To exclude mismatches,

we use a more detailed secondary matching algorithm that is based on different WoS

fields: standardized authors’ names, number of authors, article title, journal name,

and year of publication. The matching algorithm accounts for misspelling, unstruc-

tured text, incomplete references, and other issues that may cause mismatches. We

manually verify the accuracy of the matches. We then focus on citations made by our

sample of corporate patents. This process resulted in 70 thousand unique corporate

publications cited by 140 thousand unique corporate patents.10

3.3.3 Descriptive statistics

Our main sample and variables are at the firm-year level. Table 3.2 presents descrip-

tive statistics for our main variables over the sample period. Our sample includes

a wide distribution of firm sizes, with market value ranging from 6 million dollars

(10th percentile) to 4 billion dollars (90th percentile) and sales ranging from 3 million

10 Papers and patents are matched “dynamically.” For instance, if a sample firm merges with
another firm, then the patents of the merged firm are included in the stock of patents linked to
the Compustat record from that point onward, but not before. Most importantly, we can identify
more accurately an internal or external citation based on the owner of the citing patent and the
affiliation of the author for the cited paper at the time the paper was published.
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dollars (10th percentile) to 3.7 billion dollars (90th percentile). About 70% of firms

have at least one publication during the sample period (all sample firms have at least

one patent). These firms produce, on average, 19 publications per year. The dis-

tribution of publications is skewed, with the median firm producing one publication

per year. We observe a similar pattern for patents, with an average of 24 patents

per firm-year and a median of 2 patents.

Table 3.2: Summary Statistics for Main Variables

Distribution

VARIABLE # Obs. # Firms Mean Std. Dev. 10th 50th 90th

Scientific publications count 41,664 2,781 19 101 0 1 22
Scientific publications stock 41,664 2,781 92 537 0 4 95
Patents count 53,110 3,807 24 138 0 2 36
Patents stock 53,110 3,807 111 644 1 7 158
R&D expenditures ($mm) 53,110 3,807 96 501 0.41 8 124
R&D stock ($mm) 53,110 3,807 391 2,353 0.5 21 432
Market value ($mm) 53,110 3,807 3,381 21,351 6 130 3,962
Tobin’s Q 53,110 3,807 4 6 0 2 17
Sales ($mm) 53,110 3,807 2,253 11,470 3 119 3,640
Assets ($mm) 53,110 3,807 1,684 10,065 2 58 2,315

Notes: This table provides summary statistics for the main variables used in the econo-
metric analysis. The sample is at the firm-year level and includes an unbalanced panel
of 3,807 U.S. headquartered publicly traded manufacturing ultimate owner parent com-
panies (of which 2,781 are publishing companies) over the sample period of 1980-2015.

Table 3.3 provides an additional descriptive analysis of citation patterns. Among

the 2,781 publishing firms, 734 cite their own publications in their patents at least

once, and 984 produce publications that are cited by other firms. Cited publications

receive substantially more external citations than internal citations (10.3 vs. 4.6).

Yet, the number of external citations drops sharply when accounting for the product

market proximity between the citing and cited firms (from 10.3 to 3.7), indicating

that a substantial portion of spillouts are unlikely to be harmful to the focal firm.

In an additional analysis (not reported in the table), we find that publications that
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are cited internally are almost ten times more likely to receive an external citation.

Publications that are cited by the firm’s own patents receive 1.1 external citations,

compared to only 0.1 external citations for publications that are not internally cited.

Furthermore, we find that firms with an above-mean ratio of internal citations to total

citations received have more productive R&D programs (measured by the number of

publications and patents per dollar of R&D) and are more R&D intensive (measured

by R&D expenditures over sales). These patterns are consistent with our main

premise that, although research may spill out to rivals, as long as the benefit of

internal use offsets the private cost of spillouts, firms might have sufficient incentives

to invest in scientific research.

Table 3.3: Summary Statistics for Patent Citations to Corporate Publications

(1) (2) (3) (4)

VARIABLE Number of
firms with

positive values

Citations per
firm-year

Number of
citing

patents per
firm-year

Number of
cited

publications
per firm-year

Patent citations, all 1,123 14.98 9.82 7.67
Internal patent citations 734 4.64 2.33 2.78
External patent citations, corporate 984 10.33 7.49 5.27
External patent citations, RIVAL 975 3.7 2.58 2.08

Notes: This table provides summary statistics for patent citations to scientific publications by
our sample firms. The sample is at the firm-year level and includes only firms with at least
one publication that is cited by a patent (either internally or by a corporate patent). RIVAL
measures citations from product market rivals.

3.3.4 Validating patent citations to scientific articles as a measure of use of science
in innovation

We use patent citations to scientific publications to measure the use of knowledge.

Although patent citations are widely used, they are also widely criticized as imperfect

measures of knowledge flows (Jaffe and Trajtenberg, 2002; Duguet and MacGarvie,

2005; Roach and Cohen, 2013). Roach and Cohen (2013) point out, however, that
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patent to publication citations, though imperfect, are much better than patent to

patent citations at tracing knowledge flows, especially from public research to firms.

Our interest is in knowledge flows from corporate research to other firms. To vali-

date our measure of use of science—NPL citations to scientific articles—we use the

Carnegie Mellon Survey (CMS) data on industrial R&D (Cohen, Wesley M., Richard

R. Nelson, and John P. Walsh, 2000). As part of the survey, lab directors in R&D

performing firms were asked about the extent to which their R&D projects used

scientific knowledge from various sources. Of the firms in our sample, 772 are also

covered in the CMS, with a total of 28,318 patents granted between 1991 and 1999.

Table 3.4 confirms that firms whose patents cite scientific publications also re-

ported that science contributed to their R&D projects, even after controlling for firm

size, number of backward patent citations to other patents, and four-digit industry

SIC code dummies. Furthermore, the fields of science that contribute the most to a

firm are also those whose publications the firm’s patents cite, and firms that draw

on public science also tend to cite public science in their patents. Column 4 is espe-

cially important. It documents a strong relationship between our measure of patent

citations to corporate science and the reported value of other firms’ research as an

input into own innovation.11

11 We thank Michael Roach and Wesley Cohen for providing the Carnegie Mellon Survey data to
us.
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Table 3.4: Citations to Science as Measures of Use: Supporting Evidence from the Carnegie Mellon Survey

Dependent variable: CMS questions

(1) (2) (3) (4) (5)

Response to CMS questions: Importance of public research findings (Q.18) Importance
of main
research
field’s

findings
(Q.22)

Importance
of other
firm’s

research
findings
(Q.16)

Basic
research

share
(Q.45)

Citations to top 200 universities articles 0.337
(0.146)

Citations to public science articles 0.246 1.821
(0.120) (0.697)

Citations to articles in main research field 0.148
(0.065)

Citations to corporate articles 0.453
(0.161)

Citations to patents 0.001 0.001 -0.002 -0.003 -0.043
(0.006) (0.006) (0.005) (0.007) (0.037)

lnpSalesq 0.078 0.074 0.040 -0.016 0.023
(0.032) (0.034) (0.020) (0.027) (0.174)

Industry dummies Yes Yes Yes Yes Yes
Observations 555 555 495 555 557
R-squared 0.39 0.39 0.46 0.41 0.39

Notes: This table presents OLS estimation results for the relationship between average patent citations to publications per patent and the 1994 Carnegie Mellon
survey (CMS) response (Cohen, Wesley M., Richard R. Nelson, and John P. Walsh, 2000) related to the importance of research findings as an input to the firm’s
R&D projects. Columns 1 & 2 are based on CMS question 18: “During the last three years, what percentage of your R&D unit’s projects made use of the following
research outputs produced by universities or government research institutes and labs?”. Column 3 is based on CMS question 22: “Referring to the fields listed
above, indicate the field whose research findings in general (not just university and government research) contributed the most to your R&D activities during the
last three years”. Column 4 is based on CMS question 16: “Below are some sources of activities or information on the R&D activities or innovations of other firms
in your industry. Please score each of following in terms of the importance of that information’s contribution to a recently completed major project”. Column 5
is based on CMS question 45: “Approximately what percentage of your R&D effort is: a. Basic Research; b. Applied Research; c. Design and/or Development; d.
Technical Service.”. The sample includes only patenting firms. In Column 3, the sample is restricted to firms that indicated their main research field in question
22 (excluding ‘Others’ category). For Citations to articles in main research field, publications were classified to research fields based on the Web of Science journal
subject category. Citations to corporate articles include citations to publications by our main sample of Compustat firms. Citations to patents include backward
citations to patents. The unit of observation is a firm. Robust standard errors in parentheses.
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3.4 Econometric framework

The analytical framework in section 3.2 provides two sets of predictions. First, that

research would increase the value of the firm to the extent it is used internally, but

that it would be less valuable to the extent that it spills out to rivals. Second, and

consistent with this, the firm would produce less research if it is more likely to spill

out to rivals, and more research if the firm is more likely to use it internally. We

turn next to the empirical investigation of these predictions.

3.4.1 Market value equation

We follow Bloom et al. (2013) and their predecessors (Griliches (1986) and Hall et al.

(2005)) and estimate the following Tobin’s Q specification (bold indicates vector

representation):

ln
V alueit
Assetsit

“α0
Git´1

Assetsit´1

` α1 ln (Cumulative internal use it´1q

` α2 ln (Cumulative SPILLOUT it´1q

`Z 1it´1γ ` ηi ` τt ` εit

(3.1)

Tobin’s Q is market value over assets. G is knowledge assets, measured as the

perpetual stocks of R&D, publications, and patents. The use of internal science

in innovation is measured by the cumulative number of citations made by the focal

firm’s patents to its own publications. More precisely, internal use counts all citations

made by the focal firm’s patents to its own research published up to and including

year t´ 1 (including citations received in years greater than t to those publications).

Similarly, spillout is measured as the cumulative number of rivalry-weighted external

citations to the focal firm’s publications. To account for rivalry, we follow BSV and

measure product-market rivalry as the Mahalanobis similarity of vectors representing

the shares of industry segment sales (Standard & Poor’s, 2018a) for each pair of firms,
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labeled as SEG. Citations received by firm i from firm j are weighted by SEGij,

the “distance” of citing firm j from the cited focal firm i in the product market.12

If internal use is valuable (see Table 4.1 in Section 3.2), we expect α̂1 ą 0, and if

spillouts reduce the value of research, we expect α̂2 ă 0.13

While we focus on spill-outs, the earlier literature (e.g., Jaffe (1986); Bloom et al.

(2013)) has stressed spill-ins or incoming knowledge flows. To facilitate comparison

with that literature, we also present specifications that control for potential incoming

knowledge flows. Accordingly, Z is a vector of controls, including the sum of stocks of

R&D, patents, and publications by other firms weighted according to the proximity

of these firms to the focal firm in the product and technology spaces. As in Bloom

et al. (2013), SPILLSICit is the sum of weighted R&D by product market rivals

and is computed as
ř

j SEGij ˆ GRDjt. GRDjt is the perpetual R&D stock of a

potential rival firm j. Similarly, SPILLTECHit is the sum of outsiders’ R&D stock

weighted by the technology distance, computed as
ř

j TECij ˆGRDjt. Technology

proximity, TECij, is measured analogously as the Mahalanobis similarity of vectors

12 Cumulative SPILLOUT it´1 “
řN

j“1 nij ˆ SEGij , where nij is the number of citations from
patents of firm j to publications by firm i published up to year t-1 (inclusive), and SEGij is the
product market proximity between the two firms. To get SEGij we follow BSV’s procedure and
weight the share of firm i1s sales in industry segment s (defined by 4-digit SIC codes) by the market
share of firm i in industry segment s (industry segments are from Compustat’s operating segments
database). Define Wi as the vector, whose individual component wis is the share of segment s in
firm i1s total sales, multiplied by the share of firm i in the total sales in segment s. For example,
if firm i and firm j have similar sales shares across operating segments, the proximity score of the
firms would be high. The Mahalonobis distance allows industry relatedness to be firm-specific by
accounting for how dominant each firm is in an industry, with higher weights assigned for more
dominant competitors. For instance, if firm i and firm j’s sales both account for a large share of total
industry sales in industry segment A, then segment A would be given high weight in determining
the proximity score between i and j. The proximity between firm i and firm j is the vector cosine

similarity: SEGij “
W 1

i ¨W
1
j

‖W 1
i‖‖W 1

j‖
.

13 If a firm invests in research to signal quality to regulators and customers or to attract talented
researchers, citations of its publications by others would validate its claims to quality and reinforce
the signal. That is, external citations, rather than representing profit-reducing spillovers, would
increase profits. Similarly, higher-quality research, which is more likely to garner citations, would
be positively related to profits. Thus, if citations by rivals are negatively related to value, this
strongly suggests that spillouts of knowledge to rivals reduce profits from research.
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representing the shares of patents across 4-digit international patent classes (IPC)

for each pair of firms, i and j. That is, we use the same formulation as for SEGij,

but instead of share of sales by industry segments we use share of patents by IPC.

Finally, ηi and τt are firm and year fixed effects, while εit is the i.i.d error term.

3.4.2 Publication equation

The relationship between scientific research, internal use, and spillout is specified as

follows:

lnpPublicationsitq “β0 ` β1 lnpInternal useit´1q ` β2 lnpSPILLOUT it´1q

`Z 1it´1γ ` ηi ` τt ` εit
(3.2)

Our coefficients of interest are β1 for internal use and β2 for spillouts to rivals.

From Section 3.2 we expect β̂1 ą 0 and β̂2 ă 0, respectively. Here, internal use is

constructed as the lagged number of patent citations made by firm i’s patents granted

at year t ´ 1 to its own scientific articles published up to year t ´ 1 (inclusive).14

Similarly, spillout is the equivalent measure with SEG-weighted external citations.

The key difference in how we measure internal use and spillout in the publication

equation as compared to the market value equation is the exclusion of future citations

in the publication equation (that is, citations to publications published up to year

t ´ 1 by patents granted in years greater than t). The reason for excluding future

citations is to mitigate the concern that common technological shocks may drive

the relationship between publications, internal use and spillout. Current and future

shocks to research opportunity can affect both focal publications and the number of

citing patents by the focal firm and its rivals. Focusing on pre-determined citations

mitigates this concern.

14 Our results are not sensitive to including higher-order citation lags, or to including future patent
citations to existing publications (citations to articles published up to year t ´ 1 by patents that
are granted at years greater than t).
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Another issue is a potential bias due to scale. Firms with more publications

and patents will tend to have more internal citations, leading to an upward bias in

β̂1. To mitigate this concern, all specifications include firm fixed effects as well as

controls for firm scale, such as patent and R&D stocks. We also present results when

citations by rivals are instrumented using variation in state R&D taxes (see Section

3.4.4 below), and control for the R&D by product-market rivals and by technology

neighbors (as in the Tobin’s Q specification).

3.4.3 Patent equation

We estimate the following patent equation to test our premise that internal and

external research are related to innovation.

lnpPatentsqit “ω0 ` ω1Publications stockit´1 ` ω2lnpInternal useit´1q`

ω3 lnpSPILLOUT it´1q ` ω4lnpCitations to rivalsit´1q

` ω5lnpR&D stockit´1q ` ηi ` τt ` εit

(3.3)

In Equation 4.2, Patentsit is the flow of patents for firm i in year t. The framework

presented in Section 3.2 assumes that the use of science, be it internal or external,

would reduce the cost of innovation. To measure the use of external science by the

focal firm, Citations to rivals represents the average number of citations to rivals’

publications per patent of the focal firm granted at year t ´ 1.15 Internal use is

measured as the number of citations to internal publications, per patent of the focal

firm granted in year t´ 1. If the use of science leads to more innovation, we expect

ω̂2 ą 0 and ω̂4 ą 0. However, internal research can also enhance innovation indirectly,

such as by redirecting the firm’s innovative activities to more promising avenues

(Nelson, 1982), or by attracting talented inventors (Stern, 2004). This indirect effect

15 Section 3.2 had ignored research by rivals. Empirically, we explore how the use of rivals’ research
conditions innovation by the focal firm by allowing its innovation to also depend on the use of
external science.
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is represented by ω1, the coefficient of the stock of publications.

3.4.4 Instrumental variable strategy

Investment in research and citations made by external patents may be driven by

common unobserved time-varying effects, leading to an upward bias in the OLS

estimate of the spillout coefficients α̂2 and β̂2 in the Tobin’s Q and publication

equations, respectively. For instance, if a particular line of scientific inquiry becomes

economically promising, research in that field may receive more citations as other

firms ramp up inventive activity in that field. Similarly, an expansion in demand may

increase research by the focal firm as well as its use by others. Formally, a firm and

its rivals may have common shocks to the marginal benefits of R&D. These common

shocks would result in a positive correlation between the research conducted by the

focal firm and the patenting output of its rivals, and hence, between the research

conducted by the focal firm and the citations the research receives from patents filed

by rivals.

We follow Bloom et al. (2013) and Lucking et al. (2018) and use state-level

variation in tax credits as an instrument for rivals’ patenting.16 In effect, our IV

strategy is to use the variation in the cost of R&D as a source of exogenous variation

in inventive activity (i.e., patents). R&D tax credits affect the marginal cost of

R&D, but not the benefit. Therefore, they offer a source of variation in R&D that is

independent of the confounding variation. For each sample firm, we calculate its cost

of R&D and regress the number of patents against this cost. The predicted number of

patents from this regression is used as our input into calculating a focal firm-specific

aggregate number of predicted patents by its rivals, where the aggregation is based

on the weighting procedures discussed in Section 3.4.1. The aggregate rival patents

16 The coefficient estimate of internal use remains vulnerable to an upward bias from such common
shocks.
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are used as our instrument for SPILLOUT in the different equations.

We implement the IV approach by first projecting our patent count variable on

both the state and the federal tax credit components of R&D user costs. Next, we

calculate the predicted value of logged patent-count using the regression estimates,

π̂it. For each firm i, we compute ˆRivalPATit “
ř

i SEGijπ̂jt, where SEGij is the

distance in product space between firm j and focal firm i, using the Mahalanobis

distance described earlier. Finally, we use ˆRivalPAT it´2 as an instrument for Ri-

val citationsit´1. This procedure follows Bloom et al. (2013) and is used because

SPILLOUTit´1 is itself constructed by weighting citations from firms by the Ma-

halonobis distance.

3.5 Estimation results

3.5.1 Market value equation

Table 3.5 presents the estimation results for market value. Column 1 shows that the

coefficient of R&D stock is 0.11. Column 2 adds publication and patent stocks, and

shows a stronger relationship of value with patents than with publications. Column

3 adds internal use and spillout. As expected, α̂1 ą 0 and α̂2 ă 0. Both estimates

are statistically different from zero (p-valueă 0.05).

Column 4 presents the second stage, where we instrument for spillout.17 The

estimates indicate that the value of an additional internal citation is offset by 2.2

citations made by rivals.18 The coefficient estimate of spillout is significantly larger

17 Column 1 in Supplementary Table 3.9 presents the first stage results of regressing spillout against
ˆRivalPAT . More patenting by rivals leads to more citations by these rivals to the focal firm’s

publications. Supplementary Table 3.8 presents the estimation results of regressing rival patents,
which generates our instrument ˆRivalPAT , on rival cost of R&D (Column 1). There is a strong
negative relationship between rival R&D cost and rival patenting, and with the R&D expenditures
of rivals (Column 2).

18 Average values for internal use and spillout are 29 and 32, respectively. The marginal effect of
an additional rival citation, evaluated at the sample mean, is ´0.006 “ p´0.175ˆ4{33qˆ0.3 (mean
SEG value is 0.3, mean Tobin’s Q is 4, and 33 is one plus average value of spillout). The same
calculation for internal use is 0.013 “ p0.096ˆ 4{30q.
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in magnitude than the coefficient in the previous specifications. One possible expla-

nation for the higher IV estimate is that rival citations may reflect the quality of the

firm’s science as well as spillouts. We expect that the former is positively associated

with value, whereas the latter is negatively associated, with the resulting OLS es-

timate being negative but smaller in magnitude. Another possible source of bias is

common shocks. For example, shocks to demand or technical opportunities would

result in a positive correlation between patent citations received from rivals and the

firm’s own value. Overall, we find that private returns to research are positively

related to its internal use in invention, but negatively related to its external use in

invention by rivals.

The literature on knowledge spillovers has used aggregate R&D by firms overlap-

ping in technology (Jaffe, 1986), and by firms competing in the product market (BSV)

to proxy for potential incoming knowledge flows, or spill-ins. Accordingly, we include

these measures in Columns 5-9. Following BSV, these are labeled SPILLTECH and

SPILLSIC, respectively. By so doing, we also account for the knowledge use that

patent citations to publications may miss; others may benefit from a firm’s research

without necessarily citing it in their patents. The results in Columns 5-7 show that

the use of a firm’s scientific knowledge by rivals, as measured by citations, continues

to be negatively related to value, even after controlling for external R&D by rivals

and other related firms. Although the coefficient of citations by rival patents drops

in magnitude (citations by rival patents is positively related to R&D by rivals), it

remains comparable to the coefficient of citations by internal patents, and statisti-

cally different from zero. However, R&D by rivals and by firms operating in similar

technology fields is negatively related to value, indicating that knowledge spill-ins

might be offset by other rent reducing effects, such as more intense product market

competition, or preemption in the technology space.

To study these opposing effects of external R&D, we replace aggregate external
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R&D with disaggregated measures of research and innovation by other firms, using

their publications and patents, in Columns 8 and 9. If publications are a source

of external knowledge that firms can use freely in their own inventions, then we

would expect external publications (whether authors by product market rivals or

technology neighbors) to be positively related to value. Patents also disclose knowl-

edge. However, patent holders have claimed property rights over some or all of this

knowledge. External patents potentially preempt the focal firm from inventing in

the related technical space, or presage forthcoming innovations that might reduce

the focal firm’s profits.19 Therefore, external patents may be negatively related to

value.

The results in Columns 8 and 9 are consistent with these conjectures. In Col-

umn 8, the coefficient of publications by rivals, SPILLSIC-PUB, is positive, whereas

the coefficient of rival patents, SPILLSIC-PAT is negative. Similarly, in column 9,

the coefficient of publications by firms operating in neighboring technology areas,

SPILLTECH-PUB, is positive (but statistically not different from zero), whereas the

coefficient of patents, SPILLTECH-PAT is negative. Overall, these results reinforce

the basic premise of this paper that the different constituents of R&D, namely re-

search and development, have very different economic properties. Research, which

is upstream, is the more potent source of spillovers. Innovation by rivals, on the

other hand, is more likely to be covered by means of appropriation, such as intellec-

tual property rights or secrecy, and thus, also more likely to have a market-stealing

component.

19 For instance, the patenting firm may expand into the focal firm’s market or license to entrants
into the focal firm’s market, or the focal firm may have acquired licenses to some of those patents.
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Table 3.5: Stock Market Value and Patent Citations to Corporate Science

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Dependent variable: ln(Tobin’s Q)

R&D “R”vs“D” Internal
use and

spill-outs

2nd Stage
IV, Rival

Spill-ins,
BSV

Spill-ins,
Jaffe

Spill-ins,
Jaffe and

BSV

SPILLSIC,
“R”vs“D”

SPILLTECH,
“R”vs“D”

lnpCumulative internal useqt´1 0.043 0.096 0.047 0.054 0.052 0.051 0.048
(0.021) (0.030) (0.021) (0.021) (0.021) (0.021) (0.021)

lnpCumulative SPILLOUT qt´1 -0.083 -0.175 -0.059 -0.065 -0.057 -0.053 -0.057
(0.021) (0.041) (0.021) (0.021) (0.021) (0.021) (0.021)

Publication stockt´1{Assets 0.018 0.020 0.023 0.019 0.020 0.020 0.015 0.015
(0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008)

Patent stockt´1{Assets 0.061 0.060 0.056 0.057 0.057 0.057 0.057 0.058
(0.007) (0.007) (0.008) (0.008) (0.007) (0.008) (0.008) (0.008)

R&D stockt´1{Assets 0.105 0.067 0.069 0.084 0.075 0.075 0.076 0.080 0.078
(0.005) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007)

lnpSPILLSIC, GRDqt´1 -0.345 -0.195 -0.335
(0.060) (0.079) (0.076)

lnpSPILLTECH, GRDqt´1 -0.563 -0.369 -0.616
(0.089) (0.119) (0.103)

lnpSPILLSIC, PUBqt´1 0.235
(0.072)

lnpSPILLSIC, PAT qt´1 -0.356
(0.064)

lnpSPILLTECH, PUBqt´1 0.130
(0.109)

lnpSPILLTECH, PAT qt´1 -0.313
(0.085)

Weak identification F=698.05
Firm fixed-effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes
Tobin’s Q sample average 4 4 4 4 4 4 4 4 4
Number of firms 3,653 3,653 3,653 3,383 3,653 3,653 3,653 3,653 3,653
Observations 43,432 43,432 43,432 39,861 43,432 43,432 43,432 43,432 43,432
R-squared 0.68 0.68 0.68 0.69 0.68 0.68 0.68 0.69 0.68

Notes: This table presents estimation results for the relationship between Tobin’s Q with internal use and spillouts. SPILLSIC is the product market
distance weighted sum of all other firms’ R&D/Publications/Patents stocks (as appropriate). SPILLTECH is the technology-distance weighted sum
of all other firms’ R&D, Publication, or Patent stocks (as appropriate). All specifications include a dummy variable that receives the value of one
for observations where lagged publications stock is equal to zero; and a dummy variable that receives the value of one for observations where lagged
R&D stock is equal to zero. One is added to logged control variables. Standard errors (in brackets) are robust to arbitrary heteroscedasticity and
allow for serial correlation through clustering by firms.
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3.5.2 Publications equation

The tradeoff between internal use and spillouts will be reflected in the decisions to

invest in research as well. However, the production of research depends not on the

average return, but rather the marginal returns to research. As discussed in Section

3.2, an increase in internal use has a direct effect of increasing the marginal return,

and an indirect effect that depends on how the rival responds. If there is strategic

substitutability, the indirect effect reinforces the direct effect through an increase in

the firm’s investment in innovation. With strategic complementarity, the indirect

effect is in the opposite direction. Similarly, an increase in spillouts has a direct

effect of reducing the marginal return to research, but strategic complementarity

results in an offsetting indirect effect. Put differently, the relationship of spillouts

and internal use with research can be empirically different from the relationship with

value, though both sets of relationships reflect the same economic forces.

Table 3.6 presents the estimation results for publications. As expected, β̂1 is

positive and statistically significant (Column 1), indicating that firms produce more

publications if their past publications were used internally. Not all citations to science

are equally relevant for investing in research. We expect internal citations to be more

relevant to a firm’s decision to invest in research when the cited publication (i) is more

recent (the lag between the grant year of the patent and publication year of the article

is shorter) and (ii) is cited by the firm’s more valuable patents. These predictions are

confirmed in Columns 2 and 3. Column 2 distinguishes between citations to old and

new science. Internal citations to new science consist of citations to articles published

no earlier than five years from the grant year of the citing patent, and citations

to all earlier articles are treated as citations to old science. Only the coefficient

estimate of citations to recent science is positive and statistically significant (the

estimates on new and old science are statistically different from each other with a
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p-value ă 0.05). Column 3 distinguishes between citations made by high and low

quality patents.20 The coefficient estimate for high-quality patents is positive and

statistically significant, while the estimate for low-quality patents is statistically zero

(the estimates are statistically different from each other with a p-value ă 0.05).

In summary, Columns 1-3 are consistent with the view that patent citations to

own science that matter for the production of future science are citations that come

from high-quality patents of the sponsoring firm to recent publications. These rela-

tionships bolster the view that scientific output is an input into downstream inventive

activity, and that to justify investment in research, managers need to demonstrate

that the knowledge produced is useful for the downstream inventive activity of the

sponsoring firm.

Column 4 adds spillout. The coefficient estimate β̂2 is negative and statistically

significant. A firm whose research spills over to rivals is likely to reduce its invest-

ment. The direct effect of spillout is to reduce the payoff from research by increasing

innovation by rivals. However, if innovation strategies are strategic complements, an

increase in innovation by rivals would induce the focal firm to increase innovation as

well, which increases the marginal payoff to research. Empirically, it appears that

the direct effect outweighs the potentially offsetting indirect effect.

Columns 5-6 alleviate concerns that our results are driven by firm-year observa-

tions with zero publications. Column 5 presents estimates from a Negative Binomial

publications count specification with pre-sample fixed effects (5-year pre-sample av-

erage number of publications) following Blundell et al. (1999). Column 6 presents

results for inverse hyperbolic sine transformation. Our main results remain robust.

Column 7 presents estimates from instrumenting for spillout with ˆRivalPAT .21

20 Patent quality is based on the number of citations a patent receives divided by the average
number of citations received by all patents granted in the same year as the focal patent. Patents
are classified into high and low quality using the median value from the corporate patents sample.

21 Column 2 of Supplementary Table 3.9 presents the first stage results of regressing spillout against
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The IV estimate of spillout is larger in magnitude, indicating a larger negative effect

of rival citations on focal publications. This is consistent with the results from Table

3.5. Based on the IV estimates, the positive contribution of an additional internal

citation is offset by 8 external citations.22

Columns 8-10 add controls for potential spill-ins. Similar to our findings from

Table 3.5, the coefficient of publications by rivals, SPILLSIC ´ PUB, is positive,

whereas the coefficient of rival patents, SPILLSIC ´PAT is negative (but statisti-

cally not different from zero). In column 10, the coefficient of publications by firms

operating in similar technology areas, SPILLTECH ´ PUB, and the coefficient of

patents, SPILLTECH ´ PAT are both positive. This is a point of difference from

the market value estimates, which show a negative estimate for the coefficient of

SPILLTECH ´ PAT . A possible explanation is that, although more patenting by

firms operating in similar technology fields hurts the profits of the focal firm, strategic

complementarity in the innovation stage results in more patents and, consequently,

more research by the focal firm.23 That is, the effect of SPILLTECH ´ PAT on

the average return to research is negative, while its effect on the marginal value of

research is positive.

ˆRivalPAT , with the expected sign.

22 The mean for internal use is 14, and for spillout is 75. An additional rival citation lowers
publications by 0.014 “ p´0.229 ˆ 15{76q ˆ 0.3 (0.3 is average SEG value–the contribution of an
additional citation by a rival). An additional internal citation increases publications by 0.117 “
p0.125ˆ 15{16q.

23 In unreported specification, we confirm that SPILLTECH ´ PAT is positively related to
research.
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Table 3.6: Publications and Patent Citations to Corporate Science and Publication Output

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Dependent variable: ln(1+Number of publications) Number of
publications

Inverse
hyperbolic

sine

ln(1+number of publications)

Internal
citations

New
vs.
Old

science

High
vs. Low
Quality
Patents

Rival
and

internal
citations

Negative
Binomial,

Pre-sample
controls

OLS 2nd
Stage

IV, Rival

Spill-ins,
Jaffe and

BSV

SPILLSIC,
“R”vs“D”

SPILLTECH,
“R”vs“D”

lnpInternal useqt´1 0.056 0.087 0.150 0.113 0.125 0.085 0.084 0.084
(0.017) (0.017) (0.027) (0.021) (0.022) (0.017) (0.017) (0.017)

NEW publications 0.132
(0.018)

OLD publications -0.028
(0.018)

High quality citing patents 0.073
(0.019)

Low quality citing patents -0.019
(0.019)

lnpSPILLOUT qt´1 -0.075 -0.075 -0.071 -0.229 -0.082 -0.085 -0.083
(0.025) (0.027) (0.031) (0.049) (0.026) (0.026) (0.025)

lnpSPILLTECH, GRDqt´1 0.120 0.052
(0.083) (0.071)

lnpSPILLSIC, GRDqt´1 0.010 -0.045
(0.053) (0.053)

lnpSPILLTECH, PUBqt´1 0.278
(0.078)

lnpSPILLTECH, PAT qt´1 0.091
(0.070)

lnpSPILLSIC, PUBqt´1 0.143
(0.048)

lnpSPILLSIC, PAT qt´1 -0.075
(0.046)

lnpR&D stockqt´1 0.139 0.139 0.139 0.139 0.328 0.172 0.149 0.136 0.134 0.134
(0.014) (0.014) (0.014) (0.014) (0.028) (0.017) (0.016) (0.014) (0.014) (0.014)

lnpPatent stockqt´1 0.084 0.084 0.085 0.089 0.170 0.100 0.114 0.089 0.093 0.088
(0.014) (0.014) (0.014) (0.014) (0.023) (0.017) (0.015) (0.014) (0.014) (0.014)

Pre-sample FE 0.433
(0.024)

Weak identification F=364.78
Firm fixed-effects Yes Yes Yes Yes No Yes Yes Yes Yes Yes
Year dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Publications sample average 15 15 15 15 14 15 16 15 15 15
Number of firms 3807 3807 3807 3807 3030 3807 3521 3807 3807 3807
Observations 49,303 49,303 49,303 49,303 34,889 49,303 45,210 49,303 49,303 49,303
R-squared 0.88 0.88 0.88 0.88 0.88 0.89 0.88 0.88 0.88

Notes: This table presents estimation results for the relationship between publications with internal use and spillout. All specifications include a dummy
variable that receives the value of one for firms that never published up to the focal year; a dummy variable that receives the value of one for firms without
yearly granted patents; and a dummy variable that receives the value of one for firms without annual patent citations to own publications. One is added to
logged control variables. Standard errors (in brackets) are robust to arbitrary heteroscedasticity and allow for serial correlation through clustering by firms.
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3.5.3 Patent equation

The framework developed in Section 3.2 assumes that scientific knowledge lowers

the cost of innovation (or equivalently, increases the efficiency of investments in

innovation). In Table 3.7, we directly explore whether the use of science enhances

innovation. As is customary in the literature, we use patents to measure the flow

of innovations produced by a firm, controlling for R&D investment. Our interest is

in how innovation is related to the focal firm’s scientific knowledge, to the use by

the focal firm of its own and outside knowledge, and to spillouts of its knowledge to

rivals.

Column 1 includes publications stock without controlling for use. As expected,

publications are positively related to patenting. Column 2 adds internal use. In-

terestingly, the coefficient estimate of publications stock does not change by much,

indicating that scientific research, in addition to directly producing commercially

valuable discoveries (as captured by patent citations to publications), may also en-

hance innovation in other ways. For instance, investing in research may guide inno-

vation activities into more productive avenues and away from less productive ones

(Nelson, 1982; Fleming and Sorenson, 2004), and attract talented inventors (Stern,

2004). Column 3 shows that citations by the focal firm to publications by rivals

(spill-ins) are positively related to the patenting output of the focal firm. This result

supports the assumption that a firm’s innovation cost falls when it can use exter-

nally produced knowledge. Column 4 adds spillouts to rivals. Spillouts are positively

related to patents, but statistically not different from zero. Column 5 instruments

for rival citations using the same instrument used in Table 6. There is a positive

effect of rival citations on patenting, larger in magnitude, albeit still not statistically

different from zero (Column 3 of Supplementary Table 3.9 presents the first-stage

estimation results). Column 6 confirms that the results are similar when controlling
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for SPILLSIC and SPILLTECH.

These results are consistent with the simple story that scientific knowledge en-

hances innovation. This knowledge may be produced internally but may also be

produced by rivals. Knowledge that spills out to rivals reduces value, but how the

firm’s research and innovation responds to spillouts is more nuanced and also depends

upon the nature of strategic interactions. In particular, strategic complementarity in

innovation may result in innovation increasing with spillouts while research nonethe-

less falls.
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Table 3.7: Patenting and citations to corporate science

(1) (2) (3) (4) (5) (6)

Dependent Variable: ln(1+Number of patents)

Publications
stock

Internal
use per
patent

Spill-ins
from rivals

Spill-outs 2nd Stage
IV, Rival

2nd Stage
IV, Rival

lnpPublications stockqt´1 0.245 0.213 0.207 0.206 0.225 0.232
(0.024) (0.023) (0.023) (0.023) (0.025) (0.025)

lnpInternal useqt´1 0.208 0.181 0.177 0.151 0.149
(0.022) (0.023) (0.021) (0.023) (0.023)

lnpCitation to rival pub.qt´1 0.239 0.237 0.223 0.230
(0.035) (0.034) (0.035) (0.035)

lnpSPILLOUT qt´1 0.011 0.082 0.118
(0.030) (0.059) (0.060)

lnpSPILLSIC, GRDqt´1 0.072
(0.088)

lnpSPILLTECH, GRDqt´1 -0.539
(0.122)

lnpR&D stockqt´1 0.298 0.289 0.285 0.285 0.303 0.314
(0.018) (0.018) (0.018) (0.018) (0.020) (0.020)

Weak identification F=369.3 F=379.0
Firm fixed-effects Yes Yes Yes Yes Yes Yes
Year dummies Yes Yes Yes Yes Yes Yes
Patents sample average 25.43 25.43 25.43 25.43 26.93 26.93
Number of firms 3807 3807 3807 3807 3521 3521
Observations 49,303 49,303 49,303 49,303 45,210 45,210
R-squared 0.85 0.86 0.86 0.86 - -

Notes: This table presents estimation results of a patent equation that examines the relationship patents with use of
science (own and by rivals) and spillouts. All specifications include dummy variables that receive the value of one for
firms without citations at the focal year; a dummy variable that receives the value of one for observation where lagged
publications stock is equal to zero; and a dummy variable that receives the value of one for observation where lagged
R&D stock is equal to zero. One is added to logged control variables. Standard errors (in brackets) are robust to
arbitrary heteroscedasticity and allow for serial correlation through clustering by firms.
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3.6 Conclusion and discussion

American firms are investing a smaller share of their R&D budget in research. The

decline in corporate participation in science, even as inventions themselves become

more dependent on science, is piquant. Even as firms make greater use of scientific

knowledge, they themselves are less willing to produce such knowledge, preferring to

shift attention and resources from upstream research to downstream development.

This shift, though likely privately profitable, is not without social costs. The declin-

ing corporate engagement in research may be contributing to the reported decline

in R&D productivity and the associated decline in productivity growth (e.g., Bloom

et al. (2017)). As we show in this paper, firms invest in research to boost innovation.

However, when the research spills out to rivals, leading to an increase in inventions

by rivals, the private returns to research fall. The changing tradeoff between the

benefits of internal use against the cost of spillouts to rivals may be one reason for

the shift in corporate R&D in America, with less “R” and more “D”. It is plausible

that firms have become more vigilant in ensuring that the knowledge they produce

creates value for them. If so, they would also have become more sensitive to rivals

using their research. The heightened sensitivity would lead firms to invest in fewer

research projects that are more carefully targeted to internal needs, and less likely

to spill out to others.

We conjecture that this is part of a broader change in the U.S. innovation ecosys-

tem since the 1980s. In addition to the changes in industrial structure, there have

been significant changes in the intellectual property regime, universities have become

more active in commercializing research, and startups have become more important

sources of innovation (Arora et al., 2020a). The growing division of innovative labor

has seen firms increasingly acquiring knowledge and inventions from others through

licensing, alliances, and outright acquisitions. Not surprisingly, there is greater at-
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tention on knowledge as an asset, and more efforts to monetize it in a variety of

ways.24

Changes in intellectual property protection may also be at work (Galasso and

Schankerman, 2014; Moser, 2005). Here there are contradictory impulses. On the

one hand, it is widely acknowledged that intellectual property protection in the

United States was strengthened in the 1980s. Consistent with this, there are signifi-

cant differences across industries in the extent to which firms are withdrawing from

research. Life sciences have seen the smallest decline compared to sectors such as

materials, chemicals, and information technology, perhaps because profit-reducing

spillouts are less likely because intellectual property protection is the strongest in

life-sciences (Williams, 2013). On the other hand, the last decade has seen a push

back, with several court cases weakening patent protection. Moreover, if scientific

findings have become more broadly applicable, then even without changes in the

patent regime, the patents filed by a firm may cover a smaller fraction of the ap-

plications of its scientific discoveries, more so if firms themselves are more narrowly

focused on fewer products.

Indeed, patent citations to papers suggest that the likelihood of a research finding

spilling out has increased. Figure 3.3 shows that the propensity of patents to cite

corporate science (measured as the ratio between citations to corporate science per

patent and total number of available corporate publications in a given year) has been

rising over time for both internal and rival citations. But, while the propensities to

cite internally and by rivals are identical in 1990, by 2015 rival citations become

twice as likely than internal citations. Moreover, such spillouts may also potentially

reduce profits if rivalry is more intense (Aghion et al., 2005), although the hypoth-

24 American corporations reported $66 billion of income from licensing industrial technology in
2002, and IRS data imply an annual growth of 11 percent between 1994 to 2004, well above the
average GDP growth of 3.42 percent over the same period (Robbins, 2009). For 2011, income to
American corporations from licensing technology stood at nearly $82 billion. Patent assignments
also increased between 1987 and 2014. See Arora et al. (2020a) for more details.

86



esis of greater competition has to contend with other research pointing to growing

market concentration and the rise of superstar firms (Autor et al., 2020; Gutiérrez

and Philippon, 2017). 25

If firms are indeed more concerned with ensuring a return on their investments

in research, then they are likely to focus on fewer research projects, more likely to

serve clearly identified internal needs, and perhaps narrower in scope and less likely

to spillout to others. As a result, even if the threat of spillouts increases, it could

well be that spillovers in the aggregate may fall, with deleterious consequences for

overall productivity growth. This suggests that understanding how the economic

institutions, such as intellectual property and anti-trust laws, affect knowledge-flows

across firms, and how the nature of the knowledge itself conditions these relationships,

remain important subjects for future research.

25 The greater rent-destroying potential is pithily illustrated in the following quote from a former
Bell Labs researcher (Odlyzko, 1995, p. 4, emphases added):

Xerography was invented by Carlson in 1937, but it was only commercialized by
Xerox in 1950. Furthermore, there was so little interest in this technology that during
the few years surrounding commercialization, Xerox was able to invent and patent
a whole range of related techniques, while there was hardly any activity by other
institutions. [... By contrast] when Bednorz and Mueller announced their discovery
of high-temperature superconductivity at the IBM Zurich lab in 1987, it took only a
few weeks for groups at University of Houston, University of Alabama, Bell Labs, and
other places to make important further discoveries. Thus, even if high-temperature
superconductivity had developed into a commercially significant field, IBM would have
had to share the financial benefits with others who held patents that would have been
crucial to developments of products.
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Figure 3.3: Trends in Use of Science by Corporate Patents, 1985-2015
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This figure presents trends in the propensity of corporate patents to cite corporate
science, measured as the ratio between citations to science per corporate patent
divided by total number of corporate publications in each year (y-axis values are
multiplied by 1,000). The sample is conditional on firm-year observations with at
least one granted patent. Rival citations weigh external citations by the product
market proximity between the citing and cited firms.
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3.7 Supplementary Results

Table 3.8: Predicting Patents and R&D using Federal and State
R&D Tax Credit

(1) (2)

Dependent variable: ln(1+Number of patents) ln(R&D)

lnpFedera Tax Creditsq -2.202 -4.557
(0.450) (0.335)

lnpState Tax Creditsq -0.474 -0.389
(0.128) (0.101)

Firm fixed-effects Yes Yes
Year dummies Yes Yes
Joint F-test of the tax credits F=19.10 F=101.16
Dependent variable sample average 30.20 109.57
Number of firms 3,451 3,451
Observations 42,642 42,6421
R-squared 0.83 0.92

Notes: Data on Federal and State R&D tax credit is based on Lucking,
Bloom, Van Reenen (2018). Restricted to firm-years with available data.
Standard errors (in brackets) are robust to arbitrary heteroscedasticity.
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Table 3.9: Instrumental Variable Estimation (First Stage): Federal and State R&D
Tax Credit

(1) (2) (3)

Specification: Tobin’s Q Publications Patents

Dependent variable: lnpSPILLOUTt´1q lnpSPILLOUTt´1q lnpSPILLOUTt´1q

First Stage First Stage First Stage

Predicted RIV AL Patentsqt´1 0.187 0.104 0.104
(0.007) (0.005) (0.005)

lnpInternal useqt´1 0.352 0.230 0.224
(0.022) (0.016) (0.016)

Publication stockt´1{Assets 0.005
(0.004)

Patent stockt´1{Assets -0.005
(0.003)

R&D stockt´1{Assets 0.007
(0.003)

lnpR&D stockqt´1 0.004 0.011
(0.004) (0.004)

lnpPatent stockqt´1 0.015
(0.006)

lnpPublication stockqt´1 0.007
(0.006)

lnpCitation to rival publicationsqt´1 0.060
(0.019)

Firm fixed-effects Yes Yes Yes
Year dummies Yes Yes Yes
Number of firms 3,383 3,521 3,521
Observations 39,861 45,210 45,210

Notes: This table presents first stages of instrumental variable estimations for the effect of SPILL-
OUT on Tobin’s Q, publications and patents. Standard errors (in brackets) are robust to arbitrary
heteroscedasticity and allow for serial correlation through clustering by firms.
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4

Sitting on the Fence: integrating the two worlds of
scientific discovery and invention within the firm

4.1 Introduction

Throughout the U.S. corporate history, there has been a constant debate on the “ap-

propriate” organization of scientific discovery1 within firms. Managers have mainly

focused on whether integration between research and development practices is more

effective than the specialization of research activity (Wise, 1985; Hounshell and

Smith, 1988). This debate goes as far back as the early 20th century when large

firms established central corporate research labs (e.g., DuPont, GE, Xerox-PARC,

and AT&T-Bell Laboratories). For example, Dupont had invested in both the “East-

ern Lab”, where researchers were working side by side engineers, mainly on applied

research related to the firm’s immediate product and process improvements needs, as

well as in the ”Experimental Station” and its Central Research Department (CRD),

where scientist initially focused on long-term-fundamental research, separate from

1 Henceforth, I shall use scientific discovery interchangeably with scientific research or simply
research.
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the manufacturing and product lines (Hounshell and Smith, 1988).2

The decline in central corporate research laboratories, starting in the 1980s (Mow-

ery, 2009; Pisano, 2010; Arora et al., 2018, 2020a) has only made the topic of the

organization of scientific discovery within firms more relevant and important. While

past research mainly highlighted the benefits of integration of research and devel-

opment practices to the invention output, in the current paper, I examine both the

benefits and the costs of integration, as well as its determinants, in a within-firm

analysis.

The literature presents two main views on the organization of scientific discovery.3

On the one hand, a specialized organization (Smith, 1776), which supports a clear

division of research and invention practices to increase productivity.4 On the other

hand, an integrated organization5, which supports the connectedness and the con-

tinuous interaction between research and invention practices to increase productivity

(Kline and Rosenberg, 1986; Rosenberg, 1990). As Rosenberg (1990) stated, “When

basic research in industry is isolated from the rest of the firm, whether organization-

ally or geographically, it is likely to become sterile and unproductive”. These two

views are not mutually exclusive; a firm can decide to implement a combination of

2 Dupont’s CRD later changed its focus towards more applied research based on the needs of its
business units, and accordingly, it was renamed the Central Research and Development Department.
It continued to operate until 2016, when DuPont merged with Dow Chemical and decided to
downsize and reorganize it as the Science & Innovation group, which was more closely aligned with
the firm’s business units.

3 While originally the concept of specialization and the division of innovative labor (Smith, 1776;
Arora and Gambardella, 1994), was discussed in terms of different firms and organizations special-
izing in the stages of the innovation process where they have a comparative advantage, this paper
takes a within-firm perspective of the topic.

4 Smith (1776) suggests that productivity is enhanced by increasing dexterity and time saved
by avoiding task changing: “Subdivision of employment in philosophy, as well as in every other
business, improves dexterity, and saves time. Each individual becomes more expert in his own
peculiar branch, more work is done upon the whole, and the quantity of science is considerably
increased by it.” (Smith (1776):12-13)

5 Integration in this research should not be confused with vertical integration, and with the con-
cept of ”Technology integration” (Iansiti, 1997), which relates to the capability of choosing among
technological options (i.e., research outputs), and effectively integrating them into an application.
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both as well as to change its scientific discovery organization over time. For example,

in 2014, after many years of clear separation between its research and product units,

Microsoft reassigned half of its research unit to a new group, MSR NEXT. Scien-

tists in this new group work alongside engineers on applied projects with immediate

impact on Microsoft’s products (e.g., the Skype translator) rather than focusing on

basic research initiatives (Bloomberg, 2016)6. Similarly, Google has its hybrid AI

teams (Spector et al., 2012), where researchers work closely with its product groups

and focus on more short-term applied initiatives related to Google’s current prod-

ucts, as well as Google Depmind - a separate specialized AI research unit that focuses

on basic research initiatives.

Building on Ronald Coase and Oliver Williamson’s idea that “All feasible forms

of organization are flawed”7, in this research, I examine the tradeoffs and the de-

terminants that are associated with the organization of scientific discovery - either

specialized or integrated - within firms.

I demonstrate the short-term benefits of integration in the form of higher inven-

tion productivity and the long-term costs of integration in terms of lower research

productivity. I find that a one standard deviation increase in integration is related

to an increase of 9 patents and to a decrease of 1.3 scientific papers per firm-year.

These relationships are stronger for science-based technologies. Building on the view

that science is an input to invention (Bush, 1945; Rosenberg, 1990; Narin et al.,

1997; Arora et al., 2021a), the cumulative decrease in scientific discovery quality

will, in turn, dilute the firm’s invention quality and breakthroughs in the long-run

- resulting in approximately a 60% reduction in the direct increase in patents due

to integration. Finally, the organization of scientific discovery also has value impli-

6 https://www.bloomberg.com/features/2016-microsoft-research

7 Interview with Oliver E. Williamson following the announcement of his 2009 Nobel
Prize: https://www.nobelprize.org/prizes/economic-sciences/2009/williamson/26025-interview-
with-oliver-e-williamson/
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cations for the firm. I find that the positive relationship between the market value

of a firm and its scientific knowledge stock is weaker with integration, especially

for science-based firms and for weak markets for technology. Conversely, the posi-

tive relationship between market value and scientific invention stock is stronger with

integration, especially for science-based firms and for early-stage technology.

The paper contributes to the organizing for innovation literature that examines

the relationship between internal organization and innovative output (Kay, 1988;

Argyres and Silverman, 2004; Arora et al., 2014; Argyres et al., 2019; Aggarwal

et al., 2020). R&D organizational structure, and more specifically, the organization

of scientific discovery, is a strategic choice, and the current research documents and

quantifies the tradeoffs associated with this choice. The results documented in this

paper imply that managers must understand how to organize scientific discovery

while balancing short-term and long-term R&D initiatives (Laverty, 1996), as well

as internal and external technology sources. Furthermore, the paper contributes to

the recent line of research on corporate science (Mowery, 2009; Pisano, 2010; Simeth

and Cincera, 2016; Arora et al., 2018, 2020a, 2021a), by offering an explanation of

why conducting corporate basic research remains important and useful for corporate

invention.

In terms of data, the paper offers a new and more concrete measure of the orga-

nization of scientific research at the firm level. I build on firm-level data, covering

35 years of publications and patents, and their link to each other (DISCERN, 2020)

to measure the connectedness of research and invention practices within the firm. I

compute a firm-level measure of integration: the share of integrated-authors (of all

authors). Integrated authors are scientists who perform both research and invention

(i.e., both authors and inventors) and collaborate with specialized inventors (i.e., who

only patent). The data enable me to perform cross-industry within-firm analyses and

answer relevant questions of how integration relates to firm-level outcomes, which
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were limited in previous author-inventor co-authorship studies that were mostly at

the patent level and for specific industries (Gittelman and Kogut, 2003; Bonaccorsi

and Thoma, 2007; Breschi and Catalini, 2010).

The paper proceeds as follows. Section 2 presents the theory and literature review,

Section 3 presents the framework that motivates the empirical analysis. Section 4

discusses the data and main measures, Section 5 presents the descriptive statistics

and non-parametric evidence, and Section 6 summarizes the econometric results.

Section 7 concludes.

4.2 Theory and literature review

4.2.1 The relationship between scientific discovery and invention

Scientific discoveries and inventions are two distinct worlds. The former focuses on

the general principles and methods, and the latter on commercial application. For

the purpose of this paper, we can think of Scientific Discovery as research efforts

that yield a scientific publication, and of Invention as downstream development of

an artifact that results in a patent.

The simplest view of the relationship between scientific discovery and invention

was the so-called ”linear model” associated with Bush (1945), who asserted that tech-

nical progress rests upon scientific advance. Over the years, this view was modified to

a more complex relationship that includes a more interactive connection between sci-

entific discovery and invention. More specifically, there is a need to account for both

“demand-pull” and “discovery-push” in driving the technological innovation process

(Marquis and Allen, 1966; Kline and Rosenberg, 1986; Rosenberg and Nathan, 1994).

The organization of scientific discovery is closely related to the relationship be-

tween science and invention. Applying the terminology of Stokes (1997)’s quadrant

model: at one extreme specialization, which imposes a clear division between scien-

tific discovery and invention practices, results in ”discovery-push” research - a high
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fundamental understanding of the underlying principals with no direct technological

application (i.e., Bohr’s pure basic research quadrant). On the other hand, integra-

tion of scientific discovery and invention results in ”demand-pull” research with direct

technological application: either use-inspired basic research (Pasteur’s Quadrant) or

pure applied research (Edison’s Quadrant). Put differently, the organization of sci-

entific discovery has direct implications on the nature of research the firm undertakes

and the firm’s invention output.

While integration connects research to the immediate technical needs of the firm

and facilitates the transfer of science to invention, it is unlikely to result in funda-

mental research, which is important for significant long-term breakthroughs (Nelson,

1959; Arrow, 1962). As Google-Deepmind’s founder puts it,

“A lot of research in industry is product led,” Hassabis says. “The problem with

that is that you can only get incremental research. [That’s] not conducive to doing

ambitious, risky research, which, of course, is what you need if you want to make big

breakthroughs.” (Wired, 2019)8

When organizing scientific discovery, managers thus need to understand how to

balance between the short-term benefit from integration and its long-term costs;

maximizing the impact of corporate science on invention, and at the same time,

protecting its long-term properties.

4.2.2 The short-term benefits from integration

The concept of integration between research and invention practices relates to early

work by Thomas Allen and Michael Tushman (Allen, 1966; Allen and Cohen, 1966;

Allen, 1969; Tushman, 1977; Allen et al., 1979; Tushman and Katz, 1980). Integration

nurtures the development of scientists as boundary spanners as well as gatekeepers

- occupying a central position in diffusing knowledge between the firm’s functions

8 https://www.wired.co.uk/article/deepmind-protein-folding
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and between external scientific sources and the firm. Put differently, integration

bridges between scientific discovery and invention, facilitating the transfer of science

to invention as well as directing research based on the firm’s development needs.

An extensive line of research examines the innovative performance of corporate

scientists, who both invent and do research (Henderson and Cockburn, 1994; Stern,

2004; Gittelman and Kogut, 2003; Bonaccorsi and Thoma, 2007; Sauermann and

Roach, 2012; Motohashi, 2020).9 Overall, empirical studies document that firms

with integrated author-inventor scientists have higher quality patents. Gittelman

and Kogut (2003), for instance, show for a sample of biotechnology firms, that the

availability of scientists who both publish and patent, has more impact on the quality

of a patent (examined at the individual patent level using forward patent citations

to the focal patent) than the firm’s stock of scientific publications. Similarly, exam-

ining research programs of major pharmaceutical firms, Henderson and Cockburn

(1994) find that scientists, who are promoted on the basis of their publications and

reputation in the broader scientific community, are related to an increase in inven-

tion productivity. Focusing on the nanotechnology industry, Bonaccorsi and Thoma

(2007) further show that corporate patents that include at least one inventor who

is also an author, are of higher quality than patents with inventors only - including

receiving more forward citations and having a wider patent scope.

In related work, Clark et al. (1987) and Holbrook et al. (2000) further suggest that

firms that apply cross-functional coordination mechanisms outperform those that do

not. For example, Fairchild’s early success and its significant breakthroughs in the

planar process and integrated circuits are attributed mainly to the cross-functional

9 past work on author-inventor has mainly focused on the individual scientist and was examined
at the patent-level as opposed to the firm-level analysis of a firm’s choice of integration and firm-
level outcomes that I pursue in the current paper. The firm-level analysis provides a more holistic
examination that advances our understanding of the link between the organization of scientific
discovery and firm-level invention and scientific outcomes
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integration between research and production (Holbrook et al., 2000).10

In summary, this literature concludes that for a given level of investment in

internal research, a higher level of integration between science and invention practices

increases the firm’s absorptive capacity capabilities (Cohen and Levinthal, 1990;

Rosenberg, 1990). In other words, integration gives the firm a competitive advantage

to build on internal and external science, which is openly accessible to everyone,

in its inventions (Cockburn and Henderson, 1998; Singh, 2005). Building on the

view that science acts as a guide to invention, it follows that firms that are better

able to use research should generate more or better-quality patents (Fleming and

Sorenson, 2004; Arora et al., 2021a). In addition, integration connects research to

the immediate technical needs of the firm, and thus, as asserted by Rosenberg (1990),

it increases R&D productivity. Consistent with this, I find that higher integration

between scientific discovery and invention practices increases downstream invention

quantity and quality.

If integration between research and invention is, in fact, fruitful for invention –

why don’t all firms choose to organize their scientific discovery in such a way? What

the aforementioned papers do not examine is the relationship between integration

and long-term scientific discovery, invention, and value outcomes. In this paper, I

address this gap in the literature by examining both the benefits as well as the costs

of integration.

4.2.3 The long-term costs of integration

Previous research sheds some light on the direct costs of integration in terms of

scientific research output. From an opportunity cost perspective, integration draws

10 Moreover, Fairchild’s decline in the mid-1960s is mainly contributed to the move towards more
specialized research: ”When the firm grew large and geographically dispersed and when R&D had
become highly centralized, and an end in itself, this type of coordination broke down, contributing
to Fairchild’s decline” (Holbrook et al. (2000): p. 1030)
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scientists away from research, which results in lower scientific output. In terms

of coordination costs, integration involves researchers teaming up with inventors,

two very different groups in their nature (Allen, 1984; Vincenti, 1990). Researchers

and inventors use different technical language and coding schemes (Allen, 1984).

Furthermore, they have different incentives and rewards system. Researchers are

more concerned with non-pecuniary motives such as independence, autonomy in

their research agenda, the publication of their work, and their reputation in the

broader scientific community (Stern, 2004; Sauermann and Cohen, 2010). Inventors’

goals, on the other hand, are more tied to the implementation of their work and their

achievements within the firm (Ritti, 1971; Allen, 1984). Inventors’ clearly defined

research objectives based on development needs might contradict the researcher’s

basic motives. Integration can, therefore, also decrease the recruitment of researchers,

who prefer independence and have a taste for basic research, which will eventually

lead to further deterioration in basic science (Stern, 2004).11

Integration also has an indirect cost in terms of long term invention output.

Building on the fundamental view that sees scientific research as an input into in-

vention (Bush, 1945; Rosenberg, 1990; Narin et al., 1997; Arora et al., 2021a), the

decline in scientific research due to integration will decrease invention in the long

run (Gambardella, 1992; Li et al., 2017; Poege et al., 2019).12

In the current paper, I find that integrating scientific discovery with invention

practices lowers the quantity and quality of publications as well as their private

value. I also show that Scientific discovery complements the invention process. Taken

11 While scientists’ preferences are not directly considered in this paper, scientists select into
organizations that fit their preference in terms of taste for either science or commercialization
(Stern, 2004; Sauermann and Roach, 2012). Insofar as more productive scientists are more likely to
work in firms with clearer separation between discovery and invention, integration will reduce the
scientific capability of the firm.

12 for example, Gambardella (1992), shows a positive relationship between the quantity of basic
research a pharmaceutical firm performs and the patents it produces
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together, I document the cost of integration in terms of long term invention output.

The current paper is closely related to a stream of literature that explores R&D or-

ganizational structure and innovation outcomes (Kay, 1988; Argyres and Silverman,

2004; Arora et al., 2014; Argyres et al., 2019), which suggests that R&D structure -

centralized or decentralized13 - conditions the nature of research the firm undertakes.

Firms with decentralized R&D, managed at the business unit level with close inter-

actions between research and production (similar to the concept of integration in the

current paper) tend to produce more short-term applied research specific to their

products and services. In contrast, firms with a centralized research lab are likely

to conduct more general basic scientific research that benefits the firm as a whole.

Another related stream of research is the innovation networks literature (Breschi

and Catalini, 2010; Argyres et al., 2019). Examining networks of author-inventors,

Breschi and Catalini (2010) investigate whether one function comes at the expense of

the other for the scientist. They find that maintaining a central position in the tech-

nological network may come at the expense of filling a similarly central position in a

scientific network. While Breschi and Catalini (2010) do not consider the institutional

affiliations of authors-inventors, they suggest that some tradeoff may exist between

the two functions. In more recent work, Argyres et al. (2019) bridge between the

R&D organization literature and the network literature to examine the relationship

between formal R&D structure, internal inventor networks, and innovative outcomes.

They find that co-invention networks mediate the relationship between structure and

innovative outcomes. That is, they show evidence that suggests, as I argue in the

current paper, that co-invention practices within a firm are shaped by choice of R&D

structure. Furthermore, the concept of integration is related to a line of research that

examines the diversity of inventors’ knowledge on invention teams and firms’ recom-

13 measured by resource allocation decision (Argyres and Silverman, 2004; Argyres et al., 2019),
and patents assignment between the headquarter and affiliates (Arora et al., 2014)
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binant capabilities (Henderson and Clark, 1990; Fleming, 2001; Katila and Ahuja,

2002; Singh and Fleming, 2010; Carnabuci and Operti, 2013; Aggarwal et al., 2020;

Nagle and Teodoridis, 2020) and their relationship to invention output. For ex-

ample, Singh and Fleming (2010) show that diversity within-teams can trim poor

outcomes, which is another mechanism through which integration can contribute to

invention quality. Aggarwal et al. (2020) further distinguish between within-team

versus across-team knowledge diversity using a firm-level analysis. When considering

both within-team coordination costs and cross-team knowledge flows, they find that

concentrated knowledge structures, with low within-team diversity and high across-

team diversity, are associated with higher firm-level innovation quality. This latter

finding emphasizes the importance of examining organizational measures and their

outcomes at the firm-level, as I pursue in the current paper. Lastly, this paper is

closely related to the literature on the interplay between exploration and exploita-

tion and the concept of ambidexterity (March, 1991; Tushman and O’Reilly III, 1996;

Lavie et al., 2010; O’Reilly III and Tushman, 2013; Stettner and Lavie, 2014).

4.2.4 The determinants of integration

The coupling between discovery and invention practices can vary within-industries

and within-firms over time. To better understand firms’ integration choice, I present

three main factors that condition the benefits and costs associated with integration:

market for technology, reliance on science, and stage of technology.

A reduction in scientific discovery due to integration that will result in lower

invention quality, suggests that firms would need to rely on external sourcing for

technology in the long run. Firms can obtain external technology through (i) mar-

kets for technology (MFT) (Arora et al., 2001; Serrano, 2010), (ii) markets for firms

(MFF), and (iii) Mobility of people (Singh and Agrawal, 2011; Tzabbar et al., 2015).

As the market for external technology rises, the firm can increase integration, even
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at the cost of lowering internal scientific discovery, knowing that external technol-

ogy sourcing options are available. Alternatively, as outside opportunities decrease,

firms will need to rely on internal development for breakthroughs in the long run

- integration should thus be minimized to maximize the payoff from internal scien-

tific discovery.14 This idea also fits with previous research findings that decentralized

firms that have a stronger connection between science and invention at the unit level,

tend to rely more on external acquisitions, while centralized firms draw more value

from internal R&D (Arora et al., 2014). Consistent with this reasoning, we should

expect integration to increase and be less harmful for scientific discovery value with

the availability of external technology sourcing.

In terms of the nature of scientific research in the field, Cohen et al. (2020), find

that in more applied-engineering fields, where research and invention practices are

more connected, the opportunity cost for academic scientists being author-inventors

is quite low relative to more fundamental fields (e.g., physical sciences). In the current

paper, I extend their argument to the level of the firm. I argue that in fundamental

science-based fields, where research results are further away from the commercial

end, although integration is meaningful (i.e., connecting two distinct practices), the

opportunity costs for research are high - integration requires scientists to depart

further away from the traditional research in their field.15 Consistent with this

reasoning, we should expect integration to be less valuable for scientific discovery

value, yet more beneficial for invention value, in more fundamental science-based

14 one can argue that as the market for technology increases, firms would increase their specializa-
tion in scientific discovery in order to become a seller of technology in the market. As my sample
consists of large firms, it seems less likely that they are innovating to sell their inventions (Figueroa
and Serrano, 2019). In fact, I find that only 13% of the firms in my sample sell more than 30% of
their patents granted throughout the complete sample period.

15 In fact, in applied fields, where the practice of science is inseparable from the development (such
as in the clinical trial phase in the pharmaceutical and biotech industry), we can expect corporate
scientists to be both researchers and inventors in the same mind, such that there is no real need for
integration.
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fields.

Similarly, the benefits from integration are more significant in the early stages

of a technology field (Lieberman, 1978; Faulkner, 1994), when invention is more

knowledge led, and is less so in later stages, where inventions are incremental and

are more likely to result from trial and error. Therefore, for firms with frequent

introductions of new technologies, we should expect higher benefits from integration

in terms of invention value.

To better understand the tradeoffs and the determinants related to integration,

I briefly outline a simple framework, which I then build on in the empirical analysis.

4.3 Conceptual framework

I present a framework in which a firm’s payoff depends on internal inventions, d1

and on external technology sourcing. Scientific discovery, r, benefits internal in-

vention by directing the firm’s search focus to a defined set of possible avenues to

explore (Nelson, 1982; Fleming and Sorenson, 2004). This reduces the cost of inven-

tion and increases its quality. Firms also choose their long-term scientific discovery

organization strategy – either specialized or integrated with invention. Both scien-

tific discovery, r, and integration, t, are inputs to invention, such that, for a given

level of investment in scientific discovery, a higher level of integration increases the

firm’s invention quality. That is, d1 “ d1pr, t, Zq, where Z is various technology and

industry characteristics, where
Bd1

Br
ą 0 and

Bd1

Bt
ą 0. Investment in science has

a marginal cost of c. Both investment in science, s, and integration, t, determine

the firm’s scientific discovery output. While integration increases internal invention,

it reduces scientific discovery. That is, r “ rps, t, Zq, where
Br

Bs
ą 0 and

Br

Bt
ă 0.

Similarly, for external technology, I assume that the net value of the firm’s external
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sourcing is P ptqd2, where
BP

Bt
ą 0. That is, external sourcing of inventions increases

with the thickness of the market for technology d2 and with integration, such that

higher integration makes it easier for the firm to discern relevant external inven-

tions and observe them inside the firm post-acquisition. The firm’s decision problem

is to choose its research investment, s, and integration, t, to maximize its profit:

V “ Πpd1q ` P ptqd2 ´ cs, where
BΠ

Bd1

ą 0. Since integration is negatively related to

scientific discovery and positively related to invention, this should be reflected not

only in the level of publications and patents, but also in the firm’s value. That is,

I examine the cross partial of V with respect to integration and scientific discovery

(or invention). I find that B2V
BtBr

ă 0, and B2V
BtBd1

ą 0. The optimal coupling between

scientific discovery and invention practices varies by main determinants of integra-

tion. In this model, I examine the availability of external technology sourcing, d2, as

well as the technology and industry characteristics, Z, such as reliance of invention

on science and stage of technology in the field as main determinants. In terms of the

market for technology, when external sourcing opportunities are low, firms need to

rely on internal development for breakthroughs in the long run. Therefore, we should

expect lower benefits from integration in terms of scientific discovery value when the

supply of external technology is low. In terms of the nature of technology, in science-

based fundamental fields, research and invention are two distinct practices. While

integration should increase invention value, by connecting two distinct practices, the

opportunity cost for research is higher - it requires scientists to depart further away

from the traditional research in their field. We should, therefore, expect integration

to be negatively related to scientific discovery value in fundamental science-based

fields. Similarly, in the early stages of a technology field, where an invention is more

knowledge led, we should expect higher benefits from integration in terms of inven-

tion value. Yet, the opportunity cost of integration in terms of scientific discovery
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value should still be high. Table 4.1 summarizes how integration conditions main

outcomes: scientific discovery, invention, and patent and publication value, and how

those relationships vary by main determinants. Table 4.2 presents the predicted rela-

tionship between integration and the main determinants. Section 4.6, explores these

relationships empirically. Table 4.7 explores the relationship between integration and

these main determinants. Table 4.8 examines whether research quantity and quality

decrease with integration. Similarly, Table 4.9 explores the positive relationship be-

tween invention and both integration and scientific discovery. Taken together, they

show that the decline in scientific research due to integration may decrease invention

quality in the long run. In Table 4.8, I also pursue an Instrumental Variable esti-

mation strategy for the relationship between integration and research output that

is motivated by external sourcing as a potential determinant of integration. Table

4.10 presents the relationship between integration and patent and publication value.

Table 11 further shows how the above determinants of integration condition the re-

lationship between integration and patent and publication value,
B3V

BZBtBr
,

B3V

BZBtBd1

,

B3V

Bd2BtBr
, and

B3V

Bd2BtBd1

.

Table 4.1: Framework:Outcomes

VARIABLE SCIENTIFIC
DISCOVERY

INVENTION PUBLICATION
VALUE

PATENT
VALUE

Integration Decrease Increase Decrease Increase
Integration ˆ
Reliance on science Decrease Increase
Early stage of technology Decrease Increase
Thick MFT Increase -

Notes: The full model contains proofs and extensions.
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Table 4.2: Framework: Determinants

VARIABLE RELIANCE
ON SCIENCE

EARLY STAGE
TECHNOLOGY

THICK MFT

Integration Increase Increase Increase

Notes: The full model contains proofs and extensions.

4.4 Data and main variables

I combine data from 4 main sources: (i) firm-level data on publications and patents

from DISCERN dataset16 (Arora et al., 2021a), (ii) company and accounting in-

formation from S&P North American Compustat (Standard & Poor’s, 2018b), (iii)

scientific publications and author information from Web of Science (WoS) (Clarivate

Analytics, 2016), and (iv) patent and inventor information from PatStat (European

Patent Office, 2016).

4.4.1 Accounting panel data

DISCERN dataset covers U.S.-headquartered publicly listed firms and their sub-

sidiaries over the period 1980-2015. For the purpose of this paper, which focuses

on the organization of R&D, the sample is restricted to publishing manufacturing

firms17 with at least ten publications during the sample period.18 The final sample

includes an unbalanced panel of 1,506 ultimate owner parent companies and 24,510

firm-year observations over the sample period 1980-2015.

16 The data can be freely downloaded from 10.5281/zenodo.3594642. The version used for the
analysis in this paper is version 5.

17 As in Bloom et al. (2013), manufacturing firms are based on SIC codes in Compustat segment
file.

18 out of 2,653 firms in the sample with at least one granted publication throughout the sample
period, 1506 firms have at least 10 publications. The restriction on publications is to assure that
there is a sufficient amount of publications, such that the measure of integration is meaningful,
and the firm is, in fact, likely to face a choice regarding its scientific discovery organization. In a
robustness check, I further show that results hold both for small and large R&D firms in my sample.
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4.4.2 Main variables

Integration

Integration in this research is defined as the connectedness between scientific discov-

ery and invention practices within the firm. While scientific discovery organization

structure is difficult to observe, I compile a measure that is correlated with it: share

integrated authors of all authors. Integrated authors are scientists who perform both

research and invention (i.e., both authors and inventors) and collaborate with spe-

cialized inventors (i.e., who only patent). That is, integration involves collaborations

between individuals who work on research and those who specialize in invention.19

These collaborations could be in the form of cross-functional interactions between

separate research and development units20, as well as within-unit interactions. Fur-

thermore, these collaborations can be imposed by the firm’s research organization

strategy (e.g., Microsoft’s MSR NEXT group), by the firm’s organization and re-

porting structure, by R&D budget allocation decisions and workers’ incentive plan

(e.g., IBM’s incentive plan change in 1989 that emphasizes patenting over scientific

publication), as a result of physical co-location of authors and inventors, as well as

a consequence of the technology focus of the firm on more applied initiatives.

I pursue several robustness checks to get a better understanding of what my

measure of integration captures. First, I find that my measure of integration is

different from self-use of science in invention (Arora et al., 2021a). Specifically, I find

that only 20% of the patents by scientists classified as “integrated” self-cite inventors’

science, which supports the idea that integration is an outcome of direct interaction

between science and invention practices rather than merely an outcome of researchers

19 conditioning on collaborations with specialized inventors is essential for capturing real interac-
tions between science and invention practices and not simply a lone author or a group of authors
who patent their discovery.

20 Integration, in this sense, is closely related to Lawrence and Lorsch (1967)’s concept of ”unity
of effort among the various subsystems” and to Clark et al. (1987)’s cross-functional coordination.
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choosing to work on applied problems that are subsequently cited by their patents.

In Supplementary Table 4.13 Columns 5-8, I further present robustness checks for

integration using a measure of co-location of inventors and authors.21 For both the

publication and patent equation, I receive consistent and significant results with the

co-location dummy at the industry level, but insignificant results at the firm level.

This reassures that my measure of integration does not simply capture interactions

of research and inventions due to co-location of research and invention activities.22

Lastly, in section 4.5.3, I validate my measure of integration using the 1994 Carnegie

Mellon Survey (CMS) data (Cohen et al., 2000). I find that my measure is correlated

with cross-functional communication within firms.

To compute the integration measure, I start by identifying all authors listed on

the scientific publications and inventors listed on the patent documents related to

the corporate firm sample. My goal is to match authors and inventors related to the

same ultimate owner (UO) firm during a 5-year cohort period in order to identify

individuals who both patent and publish.23 Any individual who had at least one

publication during a 5-year cohort period is considered an author; any individual

who had at least one patent during the same period is considered an inventor.

One challenge I face using WoS data is that not all authors are linked to an

institutional affiliation address.24 This can cause a problem for collaborative publi-

21 I look at the top city of authors and the top city of inventors for each 5-yr cohort and compute
a dummy variable that equals one if they are located in the same city.

22 Supplementary Table 4.13 presents additional robustness checks for the integration measure. In
Columns 1 and 2 integration is computed excluding scientific publications from new journals post-
1990. Results for both patent and publication equations continue to hold, which reassures that my
results are not affected from new journals (and perhaps more applied journals) that were added
in the latter part of the sample. Similarly, in Columns 3 and 4 integration is computed excluding
applied scientific publications with below-median JIF, and results continue to hold.

23 The measure is per 5-year period as the main assumption is that integration is a long-term
organizational feature.

24 for example, in some cases, WoS only documents the link between the reprint author and her
institution address, while in the original publication, all authors are linked to an address
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cations that consist of authors from several institutions. To overcome this challenge,

I compile three lists of author names- (i) the complete list of authors listed on each

corporate publication, (ii) a list of all authors that were linked in WoS to their UO

firm, and (iii) a list of all authors related to non-collaborate scientific publications

(i.e., where all institutions listed on the publication are related to a unique UO firm).

In addition, for the purpose of compiling the inventor name list, I exclude from the

sample patents with multi assignees, which are far less prominent than collaborative

scientific publications (less than 2% of patents in the sample). I then use this in-

ventor list to match the above author list (i). In other words, limiting the sample

of inventors provides me the certainty that all matched author-inventor individuals

are related to the focal firm. Finally, after matching, I use author lists (ii) and (iii)

combined with the matched author-inventor results to compute the total number of

unique authors for each firm-cohort.

One other challenge is that patent data report inventors’ first names and last

names, whereas WoS data list last names and initials of authors. To resolve the

differences, I first standardized inventor and author names in a similar way – last

names and initials. Since the match is done within firm-cohort, I am less exposed

to mismatches that identify different individuals as the same person, which could

lead to an overestimation of integrated scientists. Nonetheless, I conduct extensive

manual checks to verify the matches, especially of common and short names.25

I divide the sample period into seven cohorts of 5 consecutive calendar years. I

fuzzy match the standardized list of inventor names with the list of standardized

author names to identify for each UO firm-cohort individuals responsible for both a

patented invention and a scientific publication. Next, I merge the matched results

back to the patent level data to identify integrated scientists who perform both

25 I also run the match with different levels of restrictions for false-positive matches. I confirm that
results hold even when I use a very conservative definition for matches
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research and invention (i.e., both authors and inventors) and are part of an inventor

team, which includes at least one specialized inventor (i.e., only inventor). By doing

so, I essentially exclude from my measure of integration cases of paper-patent pairs

as well as cases of lone inventors, where there is no real interaction between author

and inventor teams.

Lastly, I aggregate the data to the firm-cohort level by counting the number

of unique integrated scientists in each UO firm-cohort and dividing by the total

number of unique authors in each UO firm-cohort, to compute my main measure for

the analyses- share integrated authors of all authors.

Supplementary Table 4.12 illustrates the effectiveness of my measure in captur-

ing changes in the organization of scientific discovery using case studies. Column

1 explores the major change in International Business Machines’s (IBM) R&D or-

ganization strategy practices in the late 1980s (Gomory, 1989; Bhaskarabhatla and

Hegde, 2014). Up to 1989, IBM’s research under the academically oriented leader-

ship of Ralph Gomory (1970-1986) and his successor John Armstrong (1986-1989),

was mainly focused on basic research separated from development. In 1989, follow-

ing a change in U.S. patent law in the early 1980s, and with the appointment of

James McGroddy as director of IBM Research, the company adopted pro-patent IP

management practices. Simultaneously, it also shifted its focus towards more applied

research initiatives, including joint research and development programs. Column 1

presents the trend in the integration measure for IBM. The sharp increase in inte-

gration from an average share of 0.24 pre-1990s to 0.55 post-1990s is consistent with

the company’s documented shift in scientific discovery organization. Furthermore,

(Bhaskarabhatla and Hegde, 2014) find that in the decade following this shift, IBM

increased their patent applications and decreased its publications, which is consis-

tent with the results I document in this paper for integrated organization structure.

Table 4.12 Column 2 further explores the effect of Bell-Labs’ separation from AT&T
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CORP in 1996 on integration. It shows that following Bell’s acquisition by Lucent,

AT&T became more integrated - reflecting the firm’s loss of Bell’s specialization in

basic research.

To the best of my knowledge, this is the first paper to compile data on inventor-

author integration at the firm level for a wide variety of industries, across 3.5 decades.

Previous work mostly examined co-authorship data at the patent level (e.g., Bonac-

corsi and Thoma (2007)), within networks of inventors (e.g., Breschi and Catalini

(2010)), and for specific industries and limited years (e.g., Gittelman and Kogut

(2003)).

Market for technology (MFT)

I measure market for technology based on patent trading activity in invention classes

relevant to the focal firm’s patent portfolio (Serrano, 2010; Hochberg et al., 2018;

Figueroa and Serrano, 2019; Arora et al., 2020b). Patent transactions are from the

USPTO Patent Assignment dataset. 26 For each sample firm’s patent portfolio, I

compute the probability (averaged across related IPC classes) that a patent related

to the focal firm’s portfolio will be sold.27

Reliance on science in invention

I measure reliance on science by citations to external WoS scientific publications

located on the front page of a patent.28 Patent citations are from PatStat and their

matched publications from WoS.

26 The clean patent transaction data is based on Arora et al. (2020b). Following Figueroa and
Serrano (2019), the transactions exclude patents that are reassigned due to pure M&As as well
as deals with more than 25 patents transferred. That is, they may include acquisitions of small
startups.

27 Specifically, for each firm i, year t related IPC codes in its patents granted between [t,t-5], I
compute the share of external patents sold up to year t out of all patents granted between [t,t-8].
The share is then averaged across IPC classes.

28 I rely only on citations to external science to make sure that the measure is not directly related
to the main dependent variable, annual publications.
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Stage of technologies

Early-stage technologies are defined as patents granted no more than 10 years from

the related IPC inception year. IPC inception date is from PatStat.

4.5 Descriptive statistics and non-parametric evidence

The main sample and variables are at the parent company-year level. Table 4.3

presents descriptive statistics for the main variables over the sample period, 1980-

2015. The sample includes a wide distribution of firms in terms of size and R&D

investment: market value ranging from 24 million dollars (10th percentile) to 10

billion dollars (90th percentile) and R&D expenditures ranging from 2.74 million

dollars (10th percentile) to 319 million dollars (90th percentile). The sample also

varies in terms of R&D employees: authors range from 1 author (10th percentile) to

244 authors (90th percentile) and inventors from 2 inventors (10th percentile) to 442

inventors (90th percentile). The firms produce, on average, 31 publications and 49

patents per year.

Integration varies across the sample ranging from zero (10th percentile) to 50%

(90th percentile), with a mean of 22%, and it tends to be higher in science-based

industries (Electronics and Semiconductors- 26%, Pharma 24%, whereas IT and

Software 18%). Supplementary Figures 4.1 and 4.2 present trends in integration for

main industry groups: (i) IT & Software, (ii) Electronics & Semiconductors, (iii)

Telecommunication, (iv) Chemicals, (v) Energy, and (iv) Pharma & Biotech. There

is substantial heterogeneity in integration over time by industry. Figure 4.1 shows

an increase in integration in the first three groups (IT & Software, Electronics &

Semiconductors, and Telecommunication). For life-science related industries (Figure

4.2), integration trend is less clear, with very similar rate at the end of the sample

period as at the beginning of the sample period.
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4.5.1 Integration and the tradeoff between scientific discovery and invention

Table 4.4 presents mean comparison tests for differences in scientific discovery and

invention between firms with high and low integration. It shows that firms with

above-median integration share also have more and better-quality inventions (an

average of 0.48 citation-weighted patents to R&D ($mm) per firm-year for low in-

tegration share versus an average of 0.76 citation-weighted patents to R&D ($mm)

for high integration share). Conversely, firms with above-median integration share

have a significantly lower rate and quality of scientific discovery (an average of 0.66

citation-weighted publications to R&D ($mm) per firm-year for low integration share

versus an average of 0.55 citation-weighted publications to R&D ($mm) for high in-

tegration share). The difference is even higher for more science-based technologies.

These results are consistent with the idea that while integration is beneficial for

internal invention, it has adverse effects on scientific discovery.

4.5.2 Determinants of integration

Table 4.5 presents mean comparison tests for integration by above and below median

values of determinants of integration. It shows that firm-cohorts with above-median

reliance on science in invention (measured by average citations to external science per

patent) have a statistically significant higher share of integration (an average of 0.15

for low science-based versus an average of 0.28 for high science-based technologies).

Similarly, integration is more prominent in firm-cohorts with early-stage technologies

- measured by patents granted no more than 10 years from the related IPC inception

year. When examining external sourcing, I find that one primary determinant of

integration is external markets for technology. Integration is statistically significant

higher in firm-cohorts with above-median MFT (an average of 0.19 for low MFT

versus an average of 0.24 for high MFT).
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Table 4.3: Summary Statistics for Main Variables

Distribution

VARIABLE # Obs. # Firms Mean Std. Dev. 10th 50th 90th

Integration 24,510 1,506 0.22 0.22 0 0.18 0.5
Authors 24,510 1,506 152 609 1 17 244
Inventors 24,510 1,506 224 828 2 32 442
Market for technology (MFT) 24,510 1,506 0.06 0.02 0 0.06 0.08
Scientific publications count 24,510 1,506 31 130 0 4 47
Scientific publications stock 24,510 1,506 156 694 2 15 208
Patents count 24,510 1,506 49 200 0 6 94
Patents stock 24,510 1,506 227 933 2 25 444
R&D expenditures ($mm) 24,510 1,506 188 708 2.74 26 319
R&D stock ($mm) 24,510 1,506 814 3,414 6.6 93 1,276
Market value ($mm) 24,510 1,506 6,515 30,218 24 474 10,466
Tobin’s Q 24,510 1,506 5 6 0.46 2 20
Sales ($mm) 24,510 1,506 4,450 16,555 5 427 8,921
Assets ($mm) 24,510 1,506 3,343 14,522 4 236 5,990

Notes: This table provides summary statistics for the main variables used in the econo-
metric analysis. The sample is restricted to publishing firms with at least 10 publications
during the sample period. The sample is at the firm-year level and includes an unbal-
anced panel of 1,506 U.S. headquarter publicly traded manufacturing ultimate owner
parent companies over the sample period 1980-2015.
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Table 4.4: Integration, invention, and scientific discovery

(1) (2) (3) (4) (5) (6) (7)

Diff. in means High Integration Low Integration

(3) minus (6) No. Obs. Mean Std. Dev. No. Obs. Mean Std. Dev.

Patent flow/R&D exp. 0.124** 747 0.568 0.687 748 0.444 0.785

Citation-weighted patent flow/R&D exp. 0.272** 747 0.755 0.906 748 0.483 0.746

Publications flow/R&D exp. -0.212** 747 0.481 0.742 748 0.693 1.277

Citation-weighted publication flow/R&D exp. -0.106* 747 0.553 0.835 748 0.659 1.215

Firms with high reliance on science:

Citation-weighted patent flow/R&D exp. 0.350** 379 0.799 0.927 379 0.449 0.705

Citation-weighted publication flow/R&D exp. -0.196** 379 0.473 0.647 379 0.670 1.048

Notes: This table presents mean comparison tests for firms with high integration vs. firms with low integration.
The unit of analysis is a firm, yearly values are averaged over the sample period. High and low share of integration
are defined by above and below the median sample value of average per firm share of integration, respectively.
Patents are weighted by IPC-year normalized forward patent citations. Publications are weighted by journal-year
normalized forward publication citations. R&D expenditures are in $mm. * p<0.01 ** p<0.05

115



Table 4.5: Mean Comparison: Determinants of Integration

(1) (2) (3) (4) (5) (6) (7)

Diff. in means High Low

(3) minus (6) No. Obs. Mean Std. Dev. No. Obs. Mean Std. Dev.

Reliance on science in invention 0.128** 2,815 0.277 0.201 2,815 0.148 0.196

Early stage technology 0.070** 695 0.274 0.161 4,935 0.204 0.213

Market for technology 0.048** 2,815 0.236 0.218 2,815 0.188 0.196

Notes: This table presents mean comparison tests for integration by high and low values of different
determinants of integration. The unit of analysis is a firm-cohort, yearly values are averaged over the
cohort period. High and low are defined by above and below the median cohort value, respectively.
See main text for variable definitions. * p<0.01 ** p<0.05

4.5.3 Validating share of integrated authors as a measure of organization of scien-
tific discovery

To validate my measure of integration, I use the 1994 Carnegie Mellon Survey (CMS)

data on industrial R&D (Cohen et al., 2000). As part of the survey, lab directors

in R&D performing firms were asked about the relationship of their lab with other

business functions. Of the firms in my sample, 214 are also covered in the CMS. I

match the integration measure for years 1991-1995 to CMS questions response related

to the importance of inter-firm cross-function communication.

Table 4.6 confirms that my measure of integration is related to cross-functional

interactions within firms. Specifically, Column 1 shows that integration is related to

above-median communication between R&D units.29 More importantly, Column 2

suggests that integration is related to project teams with cross-functional participa-

tion.30

29 based on CMS data Q.5c: How frequently do your R&D personnel talk face to face with personal
from other R&D units?

30 based on CMS data Q.6b: During the last three years, have Project teams with cross-functional
participation been used to facilitate interaction?
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Table 4.6: Supporting Evidence from Carnegie Mellon Survey

(1) (2)

Dependent variable: Dummy for
above median

communication
between R&D

units

Dummy for
cross functional

teams (CMS
Q6B)

Integration 0.653** 0.202*
(0.208) (0.098)

lnpAuthorsq 0.025 -0.016
(0.023) (0.010)

lnpSalesq 0.010 0.035*
(0.021) (0.014)

Main R&D personnel degree field dummies Yes Yes
Observations 120 143
R-squared 0.19 0.18

Notes: This table presents OLS estimation results for the relationship between
integration and the 1994 Carnegie Mellon survey (CMS) questions response (Co-
hen et al., 2000) related to the importance of inter-firm cross-function commu-
nication. Column 1 is based on CMS data Q.5c: ”How frequently do your R&D
personnel talk face to face with personal from other R&D units?”. Column 2
is based on CMS data Q.6b: ”During the last three years, have project teams
with cross-functional participation been used to facilitate interaction?”. Sample
is restricted to survey firms that were matched to our sample. Robust standard
errors in parentheses. Number of observations vary based on the response rate
to each question.

4.6 Econometric analysis

4.6.1 Integration and determinants

Table 4.7 provides econometric evidence supporting the relationship between inte-

gration and main determinants, as presented in Table 4.5. All specifications include

firm and year fixed effects, and two-year lagged R&D stock.

Column 1 shows a positive and statistically significant relationship between re-

liance on science in invention (measured by annual citations to external scientific

publications) and integration. Column 2 examines the relationship between early-

stage technology and integration. It shows that one standard deviation increase in
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share of new technology will increase integration by 1.6%. Column 3 further ex-

amines the relationship between MFT and integration. It shows that one standard

deviation increase in MFT will increase integration by 5%. Finally, Column 4 com-

bines the different determinants and shows that results continue to hold. Table 4.7

suggests that the optimal coupling between scientific discovery and invention is pos-

itively related to the nature of research and technology in the field as well as to the

availability of external technology sourcing.

Table 4.7: Integration and Determinants

(1) (2) (3) (4)

Dependent variable: Integration

lnpCitations to external scienceqt´2 0.022** 0.022**
(0.001) (0.001)

Share new technologyt´2 0.116** 0.087*
(0.041) (0.040)

MFTt´2 0.446** 0.260**
(0.086) (0.084)

lnpR&D stockqt´2 0.007** 0.018** 0.017** 0.007**
(0.002) (0.002) (0.002) (0.002)

Firm fixed-effects Yes Yes Yes Yes
Year dummies Yes Yes Yes Yes
Number of firms 1,445 1,445 1,445 1,445
Observations 21,441 21,441 21,441 21,441
R-squared 0.56 0.55 0.55 0.56

Notes: This table presents OLS estimation results examining the relation-
ship between integration and main determinants. Integration is defined
as the share of a firm’s authors who both published an article and were
granted a collaborative patent with a specialized inventor during a 5-year-
cohort period. New technology is defined as patents granted no more than
10 years from the related IPC class inception year. Markets for technology
(MFT) is based on patent trading activity in invention classes relevant for
the focal firm’s patent portfolio. One is added to logged control variables.
Standard errors (in brackets) are robust to arbitrary heteroscedasticity and
allow for serial correlation through clustering by firms.
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4.6.2 Integration and scientific discovery

The relationship between scientific discovery and integration is specified as follows:

lnpPublicationsqit “β0 ` β1Integrationit´2 ` β2lnpR&D stockqit´2

`Z 1it´2γ ` ηi ` τt ` εit
(4.1)

In Equation 4.1, Publicationsit is the annual flow of publications by firm i in year

t weighted by the number of forward citations each publication receives divided by

the average number of citations received by all other publications published in the

same journal-year. Integration is proxied by Integrationit´2, measured by the share

of a firm’s authors who both publish and patent out of all authors. Zit´2 is a vector

of two-year lagged firm-year controls. The coefficient of interest is β1. Following the

prediction in Table 4.1, I expect β̂1 ă 0.

The organization of scientific discovery may vary across firms and industries. I

thus include firm fixed effects as well as time-varying firm characteristics for scale,

such as R&D stock. Furthermore, the choice of the temporal structure aims at

mitigating concerns that the relationship between the number of yearly publications

and integration is merely due to common shocks.

Table 4.8 presents the estimation results. Column 1 presents results from a

pooled specification with four-digit SIC dummies and 2-digit main IPC class dum-

mies. There is a negative and statistically significant relationship between integration

and number of yearly publications. In Column 2, which adds firm fixed effects to

the specification in Column 1, β̂1 slightly decreases, indicating that the relationship

between integration and publications partly reflects a degree of heterogeneity across

firms. Yet, β̂1 remains positive, both substantively and statistically: a one standard

deviation increase in integration is associated with a 3.9% decrease in yearly publi-

cations - approximately 1.3 publications per year. As a robustness check, Column 3

shows that results also hold when controlling for lagged stock of patents.
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Integration does not only condition the quantity of publications but, more im-

portantly, the quality of publications. Columns 4-6 confirm that results hold for a

variety of scientific quality measures. In Column 4, publications are weighted by

journal-year normalized forward publication citations. In Column 5, the sample of

patents is restricted to the top 2 percentile of corporate publication by journal-year

weighted forward citations. In Column 6, the sample is restricted to publications

with above-median Journal Impact Factor.

The level of integration the firm chooses varies by the nature of technology in the

field. Columns 7 and 8 divide the firm sample based on below and above-median

reliance on science in invention, respectively. Results indicate that the observed

relationship is driven by science-based technologies. The coefficient estimate for

integration for high reliance on science is negative and statistically significant, while

the estimate for low reliance on science is statistically zero. For the sample of science-

based firms, a one standard deviation increase in integration is associated with a 12%

decrease in yearly publications - approximately 10 publications per year.

It is possible that both integration and the production of research are potentially

affected by common unobserved variables, which would bias the OLS estimation. For

example, a change in scientific opportunities that affects both the rate of investment

in scientific discovery and the collaboration opportunities between researchers and

inventors. Another concern is that changes in firm strategy will affect both integra-

tion and investment in science - for example, a firm might be more inclined towards

integration if it intends to focus on more applied invention in the future. This could

coincide with the firm’s decision to invest less in science, which would mean that

the observed correlation between integration and research output is not causal. To

mitigate these concerns, I present results when integration is instrumented using

a potential external determinant of integration –the supply of external technology

sources. More precisely, I use as an instrument changes in state policy that regulate
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workers’ ability to move across employers.

The reduction in scientific discovery quality associated with integration, which in

return lowers long-term invention quality, suggests that firms would need to rely on

external sourcing in the long-term. Firms can obtain external technology through

MFT, MFF, and by hiring scientists. Moreover, there is evidence that internalizing

and diffusing a new hire’s knowledge requires a high degree of within-firm integration

(Tzabbar et al., 2015; Singh and Agrawal, 2011).

I follow Klasa et al. (2018) and exploit variation over time in the adoption of

Inevitable Disclosure Doctrine (IDD) by U.S. state courts as a source of exogenous

variation in integration. IDD has been shown to impose legal restrictions on labor

mobility (Marx et al., 2009; Klasa et al., 2018). IDD restricts worker mobility from

one organization to another in cases where they might ”inevitably disclose” trade

secrets. It is applicable even if the employee did not sign a non-compete or non-

disclosure agreement, if there is no evidence of actual disclosure, or if the rival is

located in another state.31 The dummy variable, IDDst, is equal to one when the

Inevitable Disclosure Doctrine is in effect in the focal firm’s state (s), in a given

year (t), and zero otherwise.32 External hiring can either substitute or complement

external sourcing through MFT (Arora and Gambardella, 1990; Arora, 1996; Cas-

siman and Veugelers, 2006, 2007; Bei, 2018). To capture the firm-specific external

technology sourcing options, IDD is multiplied by the firm-specific external market

for technology measure, MFTit to form IDD ˆMFTsit.
33

The key identifying assumption is that policy-imposed barriers to researcher’s mo-

31 As a robustness check, in unreported results, I compute a measure of authors’ tenure for each
firm-cohort and find a statistically significant positive relationship between IDD and authors’ tenure,
suggesting that IDD is related to restricted mobility

32 IDD effective years for relevant states are based on Klasa et al. (2018). The relevant state for
each firm-year is determined using the majority publishing-state in each 5-year cohort, based on
the publication’s affiliation field.

33 43% of the firm-year observations in the sample have effective IDD. The average value of IDDˆ
MFT measure is 0.056 with a standard deviation of 0.024
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bility do not directly affect the incentives to invest in research, but only through their

affect on integration. Further, one has to assume that the instrument IDDˆMFTit´2

shifts the cost of integration, but is uncorrelated with unobserved state-specific vari-

ables (e.g., technological or scientific opportunities) that may also affect incentives to

invest in research. To mitigate concerns, I further restrict my instrumental variable

estimation only to the publication equation as there is a higher chance that IDD

may affect incentives to patent, or that technology opportunities may directly affect

inventive output.

Columns 9-10 presents the estimates from instrumenting Integration share with

IDDst´2, MFTit´2, as well as the interaction between the two, IDDˆMFTsit´2, in a

single two-stage least-squares specification, at the main state-technology class level.34

Column 10 presents the first stage estimation results of regressing Integration share

against IDDˆMFTit´2. The results confirm that lower mobility (i.e., a higher value

of IDD) is associated with lower Integration and that higher value of MFT and the

interaction between the two, IDDˆMFTsit´2, are associated with more integration.

The Hansen test for overidentifying restrictions is consistent with the instruments

being valid (p-value for overidentifying restrictions=1.827, Hansen J statistic=0.401).

Column 9 presents the second stage estimation results. The coefficient estimate of

Integration share is negative, yet larger in absolute magnitude than in the pooled

OLS estimation results in Column 1. One explanation for the higher coefficient

is that the IV is correcting for a measurement problem (i.e., integrated authors is

a noisy measure of the true level of integration. For example, my measure might

omit cases of actual integration that did not result in a granted patent, but affected

scientific outcome), which causes a downward bias to the OLS estimation.

Lastly, to confirm that results are robust to a change in specification, Column

34 the IV variation is cross-technology and cross-state, but not much over time. Therefore, I do
not include firm fixed effects.
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11 presents results with Inverse hyperbolic sine transformation. The main results

remain robust. Supplementary Table 4.14 presents additional robustness checks for

the relationship between integration and publication.35

Overall, Table 4.8 shows that the simple patterns reported in Table 4.4 are not just

due to differences in the nature of technology and research, firm characteristics, or

time. Whereas previous research has focused on the relationship between integration

and invention outcomes, Table 4.8 suggests that integration significantly conditions

the firm’s investment in scientific publications, especially for science-based technology

firms.

35 Supplementary Table 4.14 Columns 1 and 2 distinguish between established publicly traded
scientific firms and more recent firms by splitting the sample to firms that entered before and after
the year 1990, respectively. To address concerns that publication and patenting patterns might
have changed throughout the sample period, in Columns 3 and 4, the panel is split by firm-years
prior and post the year 2000, respectively. To examine variation by firm size, in Columns 5 and 6
the sample is split by below and above median R&D, respectively. To address concerns that the
results are driven by life science industry, Column 7 excludes life science firms based on related SIC
codes. Lastly, Column 8 lags the integration measure by 5 years (1 cohort). Results are robust to
all specifications.
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Table 4.8: Integration and Discovery

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Dependent variable: ln(1+Number of publications) Integration Inverse
hyperbolic

sine

Pub.
Count
Pooled

Pub.
Count

Firm FE

Patent
stock

Citation
Weighted
Publica-

tions

Top 2
per-

centile
cited
pub.

High
Impact
Factor
Pub.

Low
reliance on
science in
invention

High
reliance on
science in
invention

2nd
Stage IV

IDD
ˆMFT

1st Stage
IV IDD
ˆMFT

ASINH

Integrationt´2 -0.255** -0.176** -0.175** -0.190** -0.054** -0.093* 0.005 -0.449** -0.696** -0.208**
(0.024) (0.041) (0.040) (0.048) (0.014) (0.041) (0.051) (0.087) (0.258) (0.049)

lnpR&D stockqt´2 0.085** 0.071** 0.071** 0.076** 0.032** 0.059** 0.027 0.086** 0.060** 0.010** 0.071**
(0.004) (0.013) (0.015) (0.016) (0.006) (0.014) (0.020) (0.023) (0.005) (0.001) (0.015)

lnpAuthorsqt´2 0.727** 0.476** 0.477** 0.441** 0.046** 0.351** 0.316** 0.573** 0.817** 0.008** 0.569**
(0.005) (0.013) (0.013) (0.016) (0.007) (0.015) (0.019) (0.025) (0.006) (0.001) (0.015)

lnpPatent stockqt´2 -0.001
(0.015)

MFTt´2 1.504**
(0.102)

IDDt´2 -0.031**
(0.007)

pIDD ˆMFT qt´2 0.269*
(0.118)

Firm fixed-effects - Yes Yes Yes Yes Yes Yes Yes - - Yes
Tech-class dummies Yes No No No No No No No Yes Yes No
Industry dummies Yes No No No No No No No No No No
State Dummies No No NO No No No No No Yes Yes No
Year dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
DV Average 33.39 33.42 33.42 42.14 0.32 19.37 3.70 80.92 33.39 0.22 2.19
Number of firms 1,445 1,445 1,445 1,445 1,445 1,445 727 718 1,445 1,445 1,445
Observations 21,480 21,441 21,441 21,441 21,441 21,441 10,767 10,674 21,480 21,480 21,441
R-squared 0.83 0.88 0.88 0.82 0.65 0.87 0.49 0.84 - 0.12 0.87

Notes: This table presents OLS estimation results for the relationship between integration and annual publications.
Integration is defined as the share of a firm’s authors who both published an article and were granted a collaborative
patent with a specialized inventor during a 5-year-cohort period. Columns 7 and 8 are classified by below and above
median use of external science in invention, respectively. Markets for technology (MFT) is based on patent trading activity
in invention classes relevant for the focal firm’s patent portfolio. IDD dummy is based on a state level recognition of
Inevitable Disclosure Doctrine, and is equal to one for firm-years where IDD is effective. Kleibergen-Paap F statistic:
F=129ąStock-Yogo CV 5%=14 (J-statistic=0.401). One is added to logged control variables. All specifications include
lagged dummies for zero publications per year. Standard errors (in brackets) are robust to arbitrary heteroscedasticity
and allow for serial correlation through clustering by firms. ** p<0.01 * p<0.05
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4.6.3 Integration and invention

Next, I estimate a patent production function to assess the hypotheses that both

research and integration increase downstream invention and R&D productivity:

lnpPatentsqit “ω0 ` ω1 ln pPublications stockqit´2 ` ω2Integrationit´2 ` ω3lnpR&D stockqit´2

`Z 1it´2γ ` ηi ` τt ` εit

(4.2)

In Equation 4.2, Patentsit is the annual flow of patents weighted by the number

of citations each patent receives divided by the average number of citations received

by all other patents granted in the same ipc-year. The main variables of interest

are Publications stockit´2 and Integrationit´2. Other controls include the stock of

R&D and author flow, both lagged by two years.

Internal research can enhance downstream invention both as a direct input to

invention as well as indirectly by guiding invention (Fleming and Sorenson, 2004). I

thus expect firms with more scientific research stock to be more productive (ω̂1 ą 0).

Furthermore, following the prediction in Section 4.3, if integration leads to more

downstream invention, I expect ω̂2 ą 0. As shown in Table 4.9, both predictions are

confirmed in the data.

Table 4.9 Column 1 presents results from a pooled specification with four-digit

SIC dummies and 2-digit main IPC class dummies. There is a positive and statisti-

cally significant relationship between number of yearly patents and both integration

and publication stock. Column 2 presents the same pattern of results for a within-

firm specification: one standard deviation increase in integration is associated with

a 16.7% increase in yearly patents - approximately 9 patents per year. Moreover, the

marginal effect of an additional publication, evaluated at the sample mean, is equal

to approximately 4 patents. The results support the idea that scientific discovery

complements the innovation process.
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Integration conditions not only the quantity of inventions but also the quality of

inventions. Columns 3-5 confirm that results hold for a variety of invention qual-

ity measures. In Column 3, patents are weighted by IPC-year normalized forward

patent citations. Column 4 includes citation-weighted publication stock as control.

Column 5 measures patent originality based on the uniqueness of technology classes

combination reported in the patent data.

Columns 6-9 examine how the observed relationship varies by firm characteristics.

Columns 6 and 7, divide the firm sample based on below and above-median reliance

on science in invention, respectively. Similar to Table 4.8, results indicate that the

observed relationship is driven by science-based firms. The coefficient estimate for

integration for high reliance on science is statistically significant higher than for

low reliance on science (ω̂2 is 1.041 for high reliance on science, while 0.438 for low

reliance on science). For the sample of science-based firms, a one standard deviation

increase in integration is associated with a 28% increase in yearly citation-weighted-

patents - approximately 32 patents per year. Furthermore, the coefficient estimate for

publication stock for high reliance on science is positive and statistically significant,

while the estimate for low reliance on science is statistically zero.

Columns 8 and 9 further show that the relationship between integration and

yearly citation-weighted patents is stronger for firm-cohorts with early-stage tech-

nologies.

Lastly, to confirm that results are robust to a change in specification, Column

10 presents results with Inverse hyperbolic sine transformation. The main results

remain robust.

Taken together, Table 4.8 and Table 4.9 support the conjecture that integration

is related to a tradeoff between short-term and long-term R&D initiatives - because

integration is negatively related to publication (as presented in Table 4.8), which in

turn will have an adverse effect on inventions (as presented in Table 4.9). The direct
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increase in patents due to a one standard deviation increase in integration drops by

approximately 60% (from 9 patents to 3.8 patents)36 due to the indirect negative

relationship between integration and publications.

36 the net increase equals to 9´ 1.3ˆ 4 “ 3.8 patents
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Table 4.9: Integration and Invention

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Dependent variable: ln(1+Number of patents) Inverse
hyperbolic

sine

Patent
Count
Pooled

Patent
Count

Firm FE

Citation
Weighted
Patents

Citation
Weighted
Patents &
Publica-

tions

Original
Patents

(IPC com-
bination)

Low
reliance on
science in
invention

High
reliance on
science in
invention

Old Tech New
Tech

ASINH

Integrationt´2 0.998** 0.757** 0.739** 0.742** 0.615** 0.438** 1.041** 0.639** 1.445** 0.855**
(0.031) (0.058) (0.064) (0.064) (0.053) (0.061) (0.114) (0.062) (0.222) (0.064)

lnpPublication stockqt´2 0.061** 0.114** 0.095** 0.044** 0.100** -0.000 0.118** 0.037** 0.048 0.114**
(0.009) (0.029) (0.031) (0.014) (0.024) (0.014) (0.025) (0.014) (0.032) (0.033)

lnpR&D stockqt´2 0.397** 0.247** 0.225** 0.229** 0.208** 0.219** 0.173** 0.216** 0.235** 0.282**
(0.007) (0.028) (0.028) (0.027) (0.023) (0.032) (0.042) (0.027) (0.068) (0.031)

lnpAuthorsqt´2 0.287** 0.190** 0.198** 0.214** 0.162** 0.146** 0.243** 0.180** 0.237** 0.216**
(0.009) (0.017) (0.018) (0.019) (0.015) (0.020) (0.034) (0.019) (0.058) (0.019)

Firm fixed-effects - Yes Yes Yes Yes Yes Yes Yes Yes Yes
Tech-class dummies Yes No No No No No No No No No
Industry dummies Yes No No No No No No No No No
Year dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
DV Average 53.36 53.44 61.70 61.70 24.99 8.66 115.20 30.44 261.67 2.70
Number of firms 1,445 1,445 1,445 1,445 1,445 727 718 1385 338 1,445
Observations 21,480 21,441 21,441 21,441 21,441 10,767 10,674 18,532 2,898 21,441
R-squared 0.77 0.88 0.85 0.85 0.86 0.71 0.84 0.80 0.91 0.87

Notes: This table presents OLS estimation results of a patent equation- examining the relationship between R&D productivity and
integration. Integration is defined as the share of a firm’s authors who both published an article and were granted a collaborative
patent with a specialized inventor during a 5-year-cohort period. Columns 6 and 7 are classified by below and above median use
of external science in invention, respectively. All specifications include lagged dummies for zero publications per year and zero
patents per year. One is added to logged control variables. Standard errors (in brackets) are robust to arbitrary heteroscedasticity
and allow for serial correlation through clustering by firms. ** p<0.01 * p<0.05
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4.6.4 Integration and market value

If integration is positively related to invention quality and negatively related to

scientific discovery quality, this should be reflected not only in the level of patent

and publication output but, more importantly, in the firm’s value. I examine next

the relationship between integration and firm stock market value and estimate the

following Tobin’s Q specification following Griliches (1986) and Hall et al. (2005) as

well as more recent work by Simeth and Cincera (2016) and Arora et al. (2021a).37

ln
V alueit
Assetsit

“α0
Git´2

Assetsit
` α1Integrationit´2 ˚

lnpPublication stockqit´2

Assetsit

` α2Integrationit´2 ˚
lnpPatent stockqit´2

Assetsit

` α3Integrationit´2 `Z
1
it´1γ ` ηi ` τt ` εit

(4.3)

G is knowledge assets, measured as the perpetual stocks of publications and patents.

The main interest is at coefficients α1 and α2, which estimate the interaction between

integration and publication stock and patent stock, respectively.

Consistent with the results for publication and patent equation, I expect the

positive relationship between the market value of a firm and its stock of invention to

be stronger with integration. Conversely, the positive relationship between market

value and scientific knowledge stock should be weaker with integration. Thus, α̂1 ă 0

and α̂2 ą 0.

Table 4.10 presents the estimation results. Building on Simeth and Cincera (2016)

and Arora et al. (2021a), Column 1 presents the break up into publication and

patent stocks, indicating a positive value for both patents and publication stocks.

Column 2 adds the interaction between integration and citation-weighted patents

37 Market value is the sum of common stock, preferred stock, and total debt net of current assets.
Tobin’s Q is market value over assets
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and publication stocks. As expected, the coefficient estimate of the interaction with

publication stock is negative (α̂1 ă 0), and the estimate of interaction with patent

stock is positive α̂2 ą 0. Both estimates are statistically different from zero. In

Column 3, the relationship endures even after controlling for firm fixed effects. Lastly,

as a robustness check, Column 4 presents a within-firm estimation result for a market

value specification. Results hold, and both interaction estimates are statistically

different from zero.

Overall, the results in Table 4.10 are consistent with the idea that value creation

is conditioned by organizational structure (Arora et al., 2014). In particular, the

private value of publications decreases, and the private value of patents increases

when firms integrate scientific discovery with invention.
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Table 4.10: Integration and Market Value

(1) (2) (3) (4)

Dependent variable: ln(Tobin’s Q) ln(Market Value)

Base
(Pooled)

Integration
(Pooled)

Integration
(Firm FE)

Integration (Firm
FE)

Integrationt´2 ˆ
Publication stockt´2{Assets -0.118** -0.067**

(0.021) (0.021)
Patent stockt´2{Assets 0.091** 0.042*

(0.020) (0.020)
lnpPublication stockqt´2 -0.097**

(0.028)
lnpPatent stockqt´2 0.109**

(0.027)
Integrationt´2 0.100* -0.172** -0.286**

(0.040) (0.040) (0.101)
Publication stockt´2{Assets 0.025** 0.038** 0.015

(0.005) (0.007) (0.008)
Patent stockt´2{Assets 0.047** 0.017* 0.022**

(0.005) (0.007) (0.009)
R&D stockt´2{Assets 0.080** 0.067** 0.051**

(0.005) (0.005) (0.007)
Authorst´2{Assets 0.047** 0.056**

(0.005) (0.006)
lnpPublication stockqt´2 -0.063**

(0.015)
lnpPatent stockqt´2 -0.043**

(0.015)
lnpR&D stockqt´2 -0.003

(0.014)
lnpAuthorsqt´2 0.134**

(0.012)
lnpAssetsqt´2 0.278**

(0.013)

Firm fixed-effects - - Yes Yes
Tech-class dummies Yes Yes No No
Industry dummies Yes Yes No No
Year dummies Yes Yes Yes Yes
DV Average 5 5 5 7,234
Number of firms 1,424 1,424 1,424 1,424
Observations 20,107 20,107 20,061 20,044
R-squared 0.51 0.52 0.71 0.87

Notes: This table presents OLS estimation results for the relationship between integration and value.
Tobin’s-Q is the ratio of market value to assets. Integration is defined as the share of a firm’s authors
who both published an article and were granted a collaborative patent with a specialized inventor
during a 5-year-cohort period. Patents are weighted by IPC-year normalized forward patent citations.
Publications are weighted by journal-year normalized forward publication citations. One is added
to logged control variables. Standard errors (in brackets) are robust to arbitrary heteroscedasticity
and allow for serial correlation through clustering by firms. ** p<0.01 * p<0.05
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4.6.5 The determinants of integration and market value

Table 4.11 further examines how the determinants of integration condition the private

value of publications and patents. I start by examining the nature of research in the

field. Columns 1 and 2, divide the firm sample based on below and above-median

use of external science in invention, respectively. The results are consistent with

the idea that the opportunity cost of integration for more fundamental-science-based

firms is higher; integration requires them to depart further away from the traditional

research in their field, but the benefits of integration, as reflected in the private value

of patents, are also higher (i.e., by connecting two distinct practices).

Next, I examine the stage of technology in the field. Columns 3 and 4 divide the

firms based on their investments in new technology in each cohort. The results are

consistent with the idea that the benefit of integration in terms of patent value is

stronger when firms invest in early-stage technology that is more tightly connected

to scientific research (α̂2 is 0.241 for new technology, while the estimated coefficient

for old technology is statistically zero)

Lastly, I explore how the market for technology conditions the results. Columns 5

and 6 divide firms into two groups based on the median value of MFT in each cohort.

The results indicate that the cost of integration in terms of scientific discovery value

is prominent for low MFT (α̂1 is 0.106 for low MFT, while the coefficient estimate

for high MFT is statistically zero). This is consistent with the idea that when MFT

is low, firms need to rely on internal development for breakthroughs in the long run.

That is, integration becomes more harmful, as scientific discovery is essential for

breakthroughs.

Overall, Table 4.11 suggests that firms relying on internal scientific discovery for

value creation should find specialization more compatible with their objective. In

contrast, firms that focus on more applied, early-stage technology initiatives, possibly
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combined with external technology sourcing in the long-term, are best served by an

integrated structure.

Table 4.11: Determinants of Integration and Market Value

(1) (2) (3) (4) (5) (6)

Dependent variable: ln(Tobin’s Q)

Low
reliance

on
science

in inven-
tion

High
reliance

on
science

in inven-
tion

Established
Technol-

ogy

Early
Stage

Technol-
ogy

Low
MFT

High
MFT

Integrationt´2 ˆ
Publication stockt´2{Assets -0.040 -0.085** -0.057** -0.211* -0.106* -0.032

(0.030) (0.030) (0.022) (0.093) (0.044) (0.027)
Patent stockt´2{Assets -0.003 0.079** 0.034 0.241* 0.054 0.024

(0.030) (0.028) (0.021) (0.098) (0.036) (0.026)
Integrationt´2 -0.111* -0.239** -0.158** -0.502** -0.253** -0.091

(0.054) (0.061) (0.042) (0.153) (0.065) (0.056)
Publication stockt´2{Assets 0.033** -0.005 0.012 0.065 0.026 0.005

(0.012) (0.012) (0.009) (0.034) (0.015) (0.012)
Patent stockt´2{Assets 0.017 0.027* 0.022* 0.003 0.020 0.024*

(0.013) (0.012) (0.009) (0.037) (0.015) (0.011)
R&D stockt´2{Assets 0.053** 0.054** 0.052** 0.026 0.059** 0.048**

(0.012) (0.009) (0.008) (0.030) (0.014) (0.009)
Authorst´2{Assets 0.032** 0.072** 0.057** 0.081** 0.058** 0.053**

(0.009) (0.008) (0.006) (0.023) (0.010) (0.008)
Firm fixed-effects Yes Yes Yes Yes Yes Yes
Year dummies Yes Yes Yes Yes Yes Yes
DV Average 3.62 5.46 4.73 3.46 3.60 5.46
Observations 9,852 10,209 17,257 2,790 9,766 10,229
R-squared 0.68 0.72 0.72 0.79 0.72 0.76

Notes: This table presents OLS estimation results for the cross partial relationship between value
and, integration and various determinants. Tobin’s-Q is the ratio of market value to assets. Inte-
gration is defined as the share of a firm’s authors who both published an article and were granted
a collaborative patent with a specialized inventor during a 5-year-cohort period. Columns 1 and
2 are classified by below and above median use of external science in invention, respectively.
Columns 3 and 4, divide the firms based on their investment in new technology in each cohort.
New technology is defined as patents granted no more than 10 years from the related IPC class
inception year. Markets for technology (MFT) is based on patent trading activity in invention
classes relevant for the focal firm’s patent portfolio. Columns 5 and 6 are classified by below and
above the median value of MFT, respectively. Patents are weighted by IPC-year normalized for-
ward patent citations. Publications are weighted by journal-year normalized forward publication
citations. Standard errors (in brackets) are robust to arbitrary heteroscedasticity and allow for
serial correlation through clustering by firms. ** p<0.01 * p<0.05
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4.7 Conclusion and discussion

Using a novel firm-level measure of integration, the paper bridges two streams of

literature, innovation and organization, to try and get a better understanding of

the tradeoffs and determinants related to the organization of scientific discovery at

the firm level. While past research mainly highlighted the benefits of integration,

in the current paper, I examine both the benefits and the costs of integration. I

show that while integration guides the firm’s short-term invention search process,

specialization supports its long-term fundamental R&D initiatives. I present three

main determinants that condition this tradeoff: MFT, reliance on science, and stage

of technology.

The results suggest that firms might be losing their scientific capabilities if they

tie their internal science too tightly to the firm’s short-term invention needs. This

has adverse effects on long-term scientific capabilities, possibly pushing away top

scientists with a taste for basic science (Stern, 2004), which eventually leads to

deterioration long tun invention quality.

Though specialization is important for long-term significant breakthroughs, firms

cannot immediately appropriate the benefits of their investment in basic science

(Nelson, 1959; Arrow, 1962). Thus, it might be the case that the tradeoff that I

document in this paper is not immediately apparent to firms, as the feedback loop

from basic scientific discovery to invention is only manifested in the long-term. With

no clear effect in the short-term, firms might over integrate, or sequentially jump

from one organization structure to another (Hounshell and Smith, 1988).

Therefore, managers must understand how to organize scientific discovery while

correctly balancing short-term and long-term R&D initiatives (Laverty, 1996; Davila

et al., 2006). In fact, it has been argued that the creation of Nylon at Dupont would

not have been possible without the right blend of integrated research, connected to
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the immediate needs of the product units, the view led by the research director at

that time, Elmer K. Bolton, and that of the specialized basic research, led by Charles

Stine (Davila et al., 2006). This balanced view is also embedded in the concept of

ambidextrous organizations that pursue both exploration and exploitation. The

research on ambidexterity proposed several approaches for balancing exploration

and exploitation,including, simultaneously engaging in exploration and exploitation,

temporal sequential engagement, and balance of exploration and exploitation across

different organization modes (March, 1991; Tushman and O’Reilly III, 1996; Lavie

et al., 2010; O’Reilly III and Tushman, 2013; Stettner and Lavie, 2014). Future

work can similarly design optimal structure for scientific discovery organization that

would maximize the impact of corporate science on invention, and at the same time,

protect its long-term properties.38

Over the years, there has been an increase in the availability of external sources of

invention from small firms and universities (Pisano, 2010; Arora et al., 2020a). There

has also been a change in the research focus of universities towards more applied fields

that might affect the preferences of scientists who join the industry and the avail-

ability of external knowledge sources. Furthermore, the nature of research in several

fields have changed (e.g., the emergence of bio-science and biotechnology). These

changes may partly explain the relationships I document for integration. Future re-

search should explore how these and other changes affect trends in the organization

of scientific discovery.

In the current paper, I present external market for technology as an important

external determinant of integration. Interestingly, Arora et al. (2021a) find that while

internal investment in science is declining, firms are increasingly building on external

knowledge over the years. If external sourcing is, in fact, substituting for corporate

38 For example, Marginson and McAulay (2008: p.274) suggest that: ”Balance may be achieved
through diversity”- a mix of short-term oriented teams and long-term oriented teams that will
challenge the firm to perform well both in the short and long-term.
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research, it is important for managers to understand how to organize their firm’s

scientific discovery to best capitalize on the declining internal science while optimally

capturing external opportunities. In future work, I further explore this relationship

between integration and external sourcing and show evidence that integration not

only guides the firm’s internal search process but also its external technology search

(Sheer, 2021).

Finally, it is interesting to compare the results in the current paper to the findings

on academic scientists’ engagement with commercialization. While originally there

were concerns that engagement in commercialization may dilute basic research in

academia by imposing conflicting norms (Merton, 1973; Dasgupta and David, 1994b;

Argyres and Liebeskind, 1998), more recent research suggests that is not always the

case (Murray and Stern, 2006; Breschi et al., 2008; Goldfarb et al., 2009; Azoulay

et al., 2009; Thursby and Thursby, 2011; Banal-Estañol et al., 2015; Bikard et al.,

2019). For example, Azoulay et al. (2009) show that patenting by academic scien-

tists is positively related to the quantity and quality of their publications. Thursby

and Thursby (2011) further suggest that both basic and applied research is greater

when faculty have an interest in the commercialization of their research effort. Nev-

ertheless, comparing simultaneous discoveries of scientists who collaborate with the

industry with those who do not, Bikard et al. (2019) find that it is scientists who

collaborate with industry on projects with both scientific and commercial potential

who increase their research output. Their result suggests that academic scientists

achieve greater levels of specialization in their basic research when leaving the com-

mercial aspects to their industry partner. This latter finding echoes the idea of

specialization that I present in the current paper - when there is a clear separation

between research and invention activity, research output increases. Future research

can further examine the differences between the division of labor within versus across

institutions.
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I acknowledge the limitation of the paper in terms of relying on patent and scien-

tific publications data. First, these data are only sufficient for identifying instances

of integration where an author-inventor successfully files patents and publishes sci-

entific papers. As previously mentioned, these instances vary across industries and

technology fields. To mitigate this concern, my measure of integration does not rely

on the quantity of publications but identifies an author as an individual who had at

least one publication during a 5-year cohort period.

Second, as acknowledged in the innovation literature, using patent data as a

proxy of invention is not without problems. For example, some firms may choose

to keep their inventions as trade secrets, and there is also variation in the use of

patents across industries (Cohen et al., 2000). Lastly, patents are also different from

commercial success.

4.8 Supplementary Results

Table 4.12: Integration Case Studies

(1) (2)
COHORT IBM AT&T

1980-1985 0.25 0.21
1986-1990 0.24 0.21
1991-1995 0.35 0.30
1996-2000 0.50 0.41
2001-2005 0.58 0.45
2006-2010 0.63 N/A
2011-2015 0.69 N/A

Notes: The table presents the measure of inte-
gration for each firm-cohort.
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Table 4.13: Robustness Checks for Integration Measure

(1) (2) (3) (4) (5) (6) (7) (8)

Sample: Excluding new journals Excluding low JIF journals Co-location (Pooled) Co-location (Firm FE)

Dependent variable: ln(1+No. of
publications)

ln(1+No of
patents)

ln(1+No. of
publications)

ln(1+No. of
patents)

ln(1+No. of
publications)

ln(1+Number
of patents)

ln(1+No. of
publications)

ln(1+No. of
patents)

Integrationt´2 -0.231** 0.693** -0.187** 0.613**
(0.037) (0.060) (0.041) (0.060)

Co´ locationt´2 -0.031* 0.134** -0.006 0.067
(0.016) (0.018) (0.032) (0.039)

lnpPublication stockqt´2 0.141** 0.159** 0.039** 0.099**
(0.031) (0.034) (0.011) (0.032)

lnpR&D stockqt´2 0.060** 0.261** 0.055** 0.259** 0.092** 0.401** 0.073** 0.235**
(0.013) (0.030) (0.014) (0.035) (0.006) (0.007) (0.017) (0.029)

lnpAuthorsqt´2 0.446** 0.151** 0.438** 0.158** 0.765** 0.337** 0.441** 0.203**
(0.013) (0.018) (0.014) (0.019) (0.006) (0.010) (0.016) (0.019)

Firm fixed-effects Yes Yes Yes Yes - - Yes Yes
Tech-class dummies No No No No Yes Yes No No
Industry dummies No No No No Yes Yes No No
Year dummies Yes Yes Yes Yes Yes Yes Yes Yes
DV Average 37.18 53.44 25.83 68.58 42.78 62.65 42.83 62.76
Number of firms 1,266 1,266 1,055 1,055 1,408 1,408 1,408 1,408
Observations 19,214 19,214 16,023 16,023 21,126 21,126 21,072 21,072
R-squared 0.88 0.87 0.87 0.88 0.74 0.70 0.82 0.84

Notes: This table presents robustness checks for integration measure. In Columns 1 and 2 Integration is computed
excluding scientific publications from new journals post 1990. In Columns 3 and 4 Integration is computed excluding
scientific publications with below median JIF. In Columns 5-8 integration is defined based on co-location of inventors
and authors. All specifications include lagged dummies for zero publications per year and/or zero patents per year. One
is added to logged control variables. Standard errors (in brackets) are robust to arbitrary heteroscedasticity and allow
for serial correlation through clustering by firms. ** p<0.01 * p<0.05
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Table 4.14: Robustness Checks for Integration and Scientific Discovery

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent variable: ln(1+No. of
publications)

Sample: Established
scientific

firms
(pre-1990)

Young
scientific

firms
(post-1990)

Sample
pre-2000

Sample
post-2000

Small firms Large firms Excluding
life-science

Lag 5

Integrationt´2 -0.168** -0.190** -0.189** -0.176** -0.132** -0.240** -0.165**
(0.058) (0.053) (0.063) (0.049) (0.044) (0.074) (0.045)

lnpR&D stockqt´2 0.086** 0.069** 0.068** 0.068** 0.008 0.072** 0.065** 0.229**
(0.018) (0.024) (0.018) (0.018) (0.020) (0.018) (0.015) (0.031)

lnpAuthorsqt´2 0.548** 0.380** 0.473** 0.327** 0.344** 0.560** 0.489**
(0.017) (0.018) (0.018) (0.015) (0.015) (0.019) (0.014)

Integrationt´5 -0.140*
(0.060)

lnpAuthorsqt´5 0.201**
(0.019)

Firm fixed-effects Yes Yes Yes Yes Yes Yes Yes Yes
Year dummies Yes Yes Yes Yes Yes Yes Yes Yes
DV Average 49.67 12.49 35.35 31.85 3.68 64.10 27.12 46.14
Number of firms 585 860 987 1099 913 819 1,004 1,250
Observations 12,066 9,375 10,038 11,329 9,959 10,550 16,581 17,088
R-squared 0.91 0.81 0.91 0.89 0.67 0.92 0.88 0.82

Notes: This table presents robustness checks for the relationship between publication and integration. Columns
1 and 2 distinguishes between firms that enter the sample before and after 1990, respectively. In Columns 3 and
4 the panel is split by firm-years prior and post the year 2000, respectively. In Columns 5 and 6 the sample is
split by below and above median R&D, respectively. Column 7 excludes life science related firms based on SIC
codes. All specifications include lagged dummies for zero publications per year. One is added to logged control
variables. Standard errors (in brackets) are robust to arbitrary heteroscedasticity and allow for serial correlation
through clustering by firms. ** p<0.01 * p<0.05

139



Figure 4.1: Trend in Integration - Technology

Figure 4.2: Trend in Integration - Life Science
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5

Conclusions

Building on a novel dataset that I construct, I trace above 4,000 U.S. publicly traded

firms’ investment in science and invention for 35 years (1980-2015). Over the sample

period, I observe a clear reduction in investment in corporate scientific research,

changes in patterns of use of science in invention (chapter three), and changes in the

organization of research and invention practices within firms (chapter four).

My research contributes to the literature on organizing for innovation (Kay, 1988;

Argyres and Silverman, 2004; Arora et al., 2014; Argyres et al., 2019; Aggarwal et al.,

2020). The findings from chapter three and chapter four suggest that as firms make

greater use of external scientific knowledge, and as they rely more on external in-

ventions, while becoming internally more integrated, they are less likely to invest

in internal scientific research. This shift, though likely privately profitable, is not

without social costs. The declining corporate engagement in research may be con-

tributing to the reported decline in R&D productivity and the associated decline in

productivity growth. Furthermore, it is unclear whether corporations can sustain

their breakthroughs in the long run by relying on external sources. The type of

research conducted in large firms is different in its nature than that undertaken in
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universities and small firms. Large firms have access to complementary resources and

can tackle multidisciplinary problems more easily than universities and small firms.

Furthermore, university research needs further development and integration to pro-

duce inventions that can be commercialized (Arora et al., 2020a). Future studies

should further examine the changing role of science throughout the complete inno-

vation ecosystem (large firms, smaller firms, and universities) to better understand

the long-term implications of the reduction in corporate science.

Lastly, this dissertation features an important extension and improvement to data

on corporate patents and scientific publications. The data are publicly available

to researchers and can aid future studies explore corporate investment in scientific

discovery and invention.
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