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Abstract

Extreme events - that is, intense events so rare to be poorly represented in histor-

ical observational records - play a fundamental role in atmospheric processes, and

can have far reaching consequences ranging from impacts on society, economy, the

environment, as well as on the global water and energy budgets. However, character-

izing the statistical properties of such events is a challenging task, as (i) by definition

extremes are poorly sampled, and thus studying them often requires extrapolation

beyond the range of available observations, and (ii) extremes are often the result of

nonlinear and intermittent processes, which determine significant difficulties both in

predicting them and in studying their frequency of occurrence beyond the range of

observations. This dissertation focuses on new statistical methods specifically aimed

at characterizing extremes events in rainfall and boundary layer turbulence, including

contributions along three main lines of inquiry:

1. Developing extreme value models able to reduce estimation uncertainty in the

case of short rainfall time series. To this end, a non-asymptotic approach is

developed which, deviating from traditional extreme value theory, models the

entire distribution of rainfall magnitudes and frequency of occurrence. Using

compound distributions and the structure of latent-level Bayesian models, this
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framework accounts for the effects of low-frequency variability of rainfall statis-

tics on the tail decay of their probability distribution.

2. Characterizing the frequency of extreme values from remotely-sensed rainfall

estimates. This objective is approached by developing a downscaling technique

that allows comparing rainfall statistics across different spatial averaging scales,

and by constructing a model of the error so as to permit their validation over

poorly gauged locations. The framework developed here now allows for the

production of large-scale estimates of the frequency of extreme rainfall based

on satellite-derived rainfall datasets and their validation even in data-scarce

regions.

3. Investigating the dynamics of scalar quantities transported in the atmospheric

boundary layer, with a focus on fluxes of sensible heat and methane. In the

case of sensible heat, I studied to what extent the extreme values properties

of temperature fluctuations retain information on the turbulence generation

mechanism. In the case of methane, I focused instead on an inverse problem:

given the observed statistical properties of methane concentration fluctuations,

is it possible to infer the spatial intermittency of its source at the ground? In

both cases, I found that statistical properties of the scalar, including its extreme

v



value statistics, can be used to improve characterization of the turbulent flow

and of its boundary conditions.
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Chapter 1

Introduction

1.1 Background and Motivation

Extreme events are usually defined as those events so rare to be poorly represented

in historical observational records [Col01, DHF07]. From a physical perspective, they

can also be defined by individuating regions of the phase space of a system which are

rarely visited by the system’s trajectories [AK05]. Clearly, the definition of ”rarity”,

and thus the same definition of extreme event, depends in general on the observer’s

timescale, and on its willingness to wait ”long enough”. In the context of atmospheric

and hydrological processes, extreme events can have far reaching consequences rang-

ing from impacts on society, economy, the environment, as well as on the global water

and energy budgets. It is precisely the dynamics of these impacted physical systems

which dictates the range of waiting times we are interested in when studying extreme

values of a given process. Thus, the metric used to quantify the rarity of an event is

conventionally the average recurrence interval, or return time of that event. In this

dissertation I focus on the statistical modelling of two main phenomena: Rainfall on

the one hand, and the transport of scalar quantities in the atmospheric boundary

layer on the other. While both these phenomena are deeply rooted in the dynamics

of atmospheric turbulent flows, they also exhibit substantial differences. Notably,

the different range of temporal and spatial scales which are under investigation, and

the different nature of the available observations, ranging from high-frequency in-situ

measurements to large-scale remotely-sensed estimates. In both contexts, character-
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izing the frequency of such extreme events in atmospheric processes is a challenging

task due to the nonlinear, multiscale and chaotic nature of the physical processes in-

volved. For this reason, observations and statistical methods have been instrumental

in characterizing the variability of these processes, and in guiding the development of

phenomenological theories. As a representative example, recognizing the importance

of extreme fluctuations in energy dissipation rates led to one of the major devel-

opments in phenomenological theory of turbulence [LL59, Kol62, FD96]. Similarly,

drawing from its similarity with turbulence, the adoption of multifractal models for

rainfall led to significant advanced in describing the space-time fluctuations of rain-

fall fields [SL87, OG94, Mar05, NB15]. However, estimating statistical properties

of extremes remains in general a very challenging task, since data are ’scarce’ by

definition. Additionally, the complex nonlinear nature of the processes studied here

determines a basic difficulty in predicting the occurrence of future values, and in char-

acterizing their frequency beyond the range of observations. The overarching goal

of the work presented here is developing novel statistical technique to advance our

ability of characterizing rare fluctuations in both rainfall and scalar turbulence, and

in turn, use these predictive tools to obtain a deeper understanding of the physical

processes involved.

1.2 Overview

Toward this broad objective, my graduate work includes three main contributions.

First, a novel characterization of the probability distribution of daily rainfall ex-

tremes, aimed at optimizing the information contained in samples of limited length

[ZBM16, ZCM20]. Second, the development of a statistical technique to spatially

downscale, validate, and correct satellite-retrieved rainfall statistics, with a particu-
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lar focus over poorly gauged areas [ZM19, ZM20]. Finally, I investigated the nature

of turbulent fluxes in the atmospheric boundary layer (ABL), with a focus on the

exchange of both sensible heat [ZBK18] and methane [ZPGK20] with the surface.

Here I have studied the role of intermittency - either internal intermittency, as in

the case of temperature, or intermittency that is externally imposed by the bound-

ary conditions, as in the case of methane - in modulating the exchange of mass and

energy with the surface.

Therefore, this dissertation is structured along three main lines of inquiry - re-

spectively focusing on (a) the statistical modelling of daily rainfall extremes, (b) the

estimation of extreme values from remotely-sensed rainfall fields, and (c) the investi-

gation of scalar fluxes in boundary layer turbulence. Each of these components will

be discussed in two of the following Chapters:

• Chapter 2: A Non-Asymptotic Approach to Model the Frequency of Daily

Rainfall Extremes (Theme a)

• Chapter 3: Bayesian Hierarchical Modelling of Extreme Values of Environmen-

tal Time Series (Theme a)

• Chapter 4: Downscaling of Extremes Rainfall Statistics from Satellite Obser-

vations (Theme b)

• Chapter 5: Extreme Value Analysis of Remotely-Sensed Rainfall in Ungauged

Areas: Spatial Downscaling and Error Modelling (Theme b)

• Chapter 6: Extremes, Intermittency, and Time Directionality of Atmospheric

Turbulence at the Crossover from Production to Inertial Scales (Theme c)

• Chapter 7: Intermittent Surface Renewals and Methane Hotspots over Natural

Wetlands (Theme c)
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The dissertation closes with Chapter 8, where the main results are discussed and

their intellectual merit is discussed with respect to future research directions.

1.2.1 Improving the Characterization of Daily Rainfall Ex-

tremes

Existing statistical models of extreme rainfall make use of only a limited fraction of

the available observations, such as annual maximum values or exceedances over high

thresholds. Discarding most of the available information is inefficient, and can hinder

the inclusion of information about the physical process that generates the observed

phenomena. With the objective of overcoming this limitation, I have worked on a

non-asymptotic approach to rainfall extremes which accomplishes two main tasks: i)

models the entire rainfall process as opposed to just the right tail of the distribution,

leading to a more efficient use of the data when only small samples are available, and

ii) meaningfully anchors the statistical inference to parameters which can be more

reliable to estimate. My work can explicitly model the inter-annual variability in the

distribution of rainfall magnitudes. I have shown that accounting for this variability

tends to yield probability distributions with ’heavier tails’ than one would otherwise

obtain, thus underlining the fundamental role of low-frequency climate variability in

controlling the observed frequency of intense precipitation events [ZBM16]. Building

upon this result, I have then developed a Bayesian formulation of this model for

precipitation extremes [ZCM20]. This improvement, while retaining the fundamental

structure of the model introduced in [1], improves (I) the quantification of uncertainty,

and (II) the inclusion of prior climatic information in the inference process, as made

possible by the Bayesian framework adopted. This approach has been extensively

tested and applied using a network of rainfall records over the Conterminous United
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States.

1.2.2 Downscaling and Validating Remote Sensing Rainfall

Datasets over Poorly Gauged Locations

Remote sensing datasets have become an essential source of information to study

the fluctuations of the water cycle at the global scale. However, in the case of in-

termittent and highly-variable processes such as rainfall, validation of these datasets

requires extensive measurement campaigns at the ground. In the case of rainfall, this

is a daunting task, given that large areas worldwide are poorly gauged, including, in

particular, arid regions, complex terrain areas, and developing countries. The goal is

to harness the potential of the Tropical Rainfall Measurement Mission (TRMM), and

now the Global Precipitation Measurement (GPM) mission to study rainfall extremes

over poorly instrumented areas worldwide. I have thus developed a framework for

spatially downscaling rainfall statistics obtained from satellite multi-sensor precipita-

tion estimates, and for comparing them with point gauge observations over extended

poorly-gauged areas [ZM19]. The method relies on the theory of stochastic processes

to describe the space-time variability of the precipitation process, and allows for

the comparison of statistics obtained from gridded precipitation datasets with their

counterparts obtained from a single measuring gauge at the ground, thus relaxing

the need for extensive field campaigns with multiple gauges. I then combined this

approach with a non-parametric model of the error aimed at inferring the perfor-

mance of remotely sensed rainfall datasets over ungauged locations, thus allowing for

predictions uniquely based on the local topography and climatic variables [ZM20].

Taken together, these results provide an innovative framework for estimating the fre-

quency of extreme events at the global scale from remotely sensed observations, and
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for extending their validation over ungauged locations.

1.2.3 Investigating Turbulent Fluxes in the Atmospheric Bound-

ary Layer

A significant component of my graduate work investigates the transport of scalar

quantities such as temperature and gases in the turbulent atmospheric boundary

layer. My first objective was inferring the signature of atmospheric stability (i.e., of

the interplay between buoyancy and shear forces in generating turbulence) on the

statistical properties of scalar quantities transported in the boundary layer. Interest-

ingly, from a campaign of sonic-anemometer measurements performed at the Duke

forest, I found that atmospheric stability has a clear signature both on the frequency

of extreme scalar fluctuations and on the symmetry of their time-evolution [ZBK18].

This finding parallels flight-crash dynamics recently observed in numerical simula-

tion of turbulent flows. I then turned my attention to studying the fluxes of methane

(CH4) originating from boreal peatlands, using data from a long-term measurement

campaign conducted in Finland [ZPGK20]. Natural fluxes of methane - a strong

greenhouse gas - are particularly difficult to characterize due to their sporadic be-

havior, as they not only occur by diffusion through the water table, but also through

plant transpiration and by the localized release of methane bubbles through the wet-

land surface. This peculiarity sets them apart from fluxes of other quantities such

as carbon dioxide and water vapor, and makes it difficult to correctly quantify the

magnitude of these fluxes and their seasonal variability with the standard eddy co-

variance technique. The dynamics of the ground source cast this again as an extreme

value problem, where relatively few short events account for a considerable fraction

of the overall fluxes. I have analyzed this problem by applying a partition scheme in
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the wavelet domain aimed at detecting the signature of ebullition in CH4 concentra-

tion time series. This information was then used to calibrate an intermittent surface

renewal scheme, which provides novel information on how CH4 source intermittency

impacts the gas transfer velocity.
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Chapter 2

A Non-Asymptotic Approach to Model

the Frequency of Daily Rainfall Extremes

Adapted from: Zorzetto, E., G. Botter, and M. Marani. ”On the emergence of

rainfall extremes from ordinary events.” Geophysical Research Letters 43.15 (2016):

8076-8082.

2.1 Introduction

Extreme Value Theory (EVT) [FT28, Gne43, Gum58] is a fundamental tool in the

study of many geophysical processes, such as the local and global hydrologic cy-

cle [KPN02], wind velocities [CH04], earthquake magnitudes [PSSR14], ecological

processes [KBP05], storm-surge marine levels [CT90], pollutant dynamics in the en-

vironment [ET09], and many others. In the classical EVT, extremes are defined as

”block maxima”, i.e. as the events with maximum magnitude x occurred over a

period of fixed lengeth (often one year). The n events occurring in each block are

assumed to be independent and their magnitude is assumed to follow the same par-

ent cumulative distribution F (x). Hence, block-maxima have cumulative distribution

Hn(x) = F (x)n. This expression is not directly applicable as n is the value assumed

by a random variable N . To obtain a closed-form expression for Hn(x), the classi-

cal EVT makes one of two possible assumptions. A first approach is to assume the

number of events per block to be ”large enough” (i.e. n→∞), such that the succes-

sion Hn(x), upon proper renormalization, tends to an asymptotic distribution, H(x),
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which takes the form of the Generalized Extreme Value (GEV) distribution [VM36].

It has been noted that in many applications the number of events from which the

maximum value is selected is not nearly sufficient for this asymptotic hypothesis to

be valid [CH04, Kou04]. A second approach, termed Peak Over Threshold (POT)

method [BDH74, P+75] i) fixes a high intensity threshold, q, ii) assumes a Poisson

occurrence of events above the threshold, and iii) models the excess values over q

(assumed to be independent of the occurrence process) using a Generalized Pareto

Distribution (GPD) [DS90]. Also in this second approach, sometimes referred to

as Partial Duration Series [Ste93] the resulting EV distribution is GEV. Both these

classical EVT approaches lead to formulations which neglect a significant proportion

of the observations, as they fit the block-maxima distribution, H(x), using only the

block-maxima themselves, or a relatively small number of exceedances over a high

threshold. Effectively, both these approaches discard the information contained in

the bulk of the parent distribution F (x), along with most of the observations. Here

I refine and apply a statistical approach based on the assumption that the extreme

events are block maxima among a finite and stochastically variable number of ordi-

nary events. These are defined as the values obtained by the repeated sampling, in

each block, from an underlying and possibly time-varying distribution (e.g., all rain-

fall occurrences in a given year in the case of daily rainfall). This simple consideration

allows me to use the entire observational set to infer the distribution of extremes, by

means of a Metastatistical Extreme Value framework (MEV), with obvious statistical

adavantages. This approach is here applied to the relevant case of daily rainfall events

using a worldwide data set of long rainfall records and a Monte Carlo approach to

comparatively assess MEV and GEV high-quantile estimation uncertainties.
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2.2 Theoretical Framework

I propose the use of a Metastatistical Extreme Value (MEV) approach that relaxes

the limiting assumptions of the classical EVT by considering as random variables the

parameters defining the number of events and the probability distribution of event

magnitudes [MI15]. This leads to a compound distribution [Dub68] or superstatistics

[BC03, PVF06, BBIR13] for the distribution of the block maxima. In the MEV ap-

proach the variability of these parameters accounts for i) the random process of event

occurrence, which generates a finite and varying number of events in each block, and

ii) the possibly changing probability distribution of event magnitudes across different

blocks. The MEV approach accomplishes this by recognizing the number of events in

each block, n, and the values of the parameters, ~θ, of the parent distribution F (x; ~θ)

to be realizations of stochastic variables (N and ~Θ). The probability distribution of

block-maxima can now be defined, by use of the total probability theorem, by consid-

ering all possible values N and ~Θ, thereby yielding a MEV cumulative distribution

function:

ζ(x) =
∞∑
n=1

∫
Ω~Θ

F (x; ~θ)n g(n, ~θ)d~θ (2.1)

where g(n, ~θ) is the joint probability distribution of N and ~Θ (discrete in N and

continuous in ~Θ), and Ω~Θ is the population of all possible values of the parameters.

The probability distribution of the extremes thus arises from the full distribution of

the ordinary events (not just from a predetermined part of the tail), which is sampled

- each year - a variable number of times n. For this reason, the MEV approach ex-

ploits all the available observations defining the probability distributions of ordinary

events in each block, rather than censor the dataset to only include values from the

tail of F (x). It is interesting to note that if one assumes i) x to be the excess over

a high threshold q ii) F (x; ~θ) to be a Generalized Pareto distribution (with fixed,
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deterministic parameters), and iii) n to be generated by a Poisson distribution, then

the GEV distribution is recovered as a particular case of the MEV distribution by

means of the POT approach. Rather than specifying the joint probability density

function (pdf) g(n, ~θ), I obtain here an approximate expression for ζ(x) by substi-

tuting the expectations in eq. (2.1) with sample averages. I illustrate this derivation

with application to the relevant case of daily rainfall observed at a point. Following

Wilson and Toumi [WT05] and Marani and Ignaccolo [MI15], I adopt the Weibull,

or stretched exponential distribution [LS98], F (x;C,w) = 1 − e−( xC )
w

to model the

non-zero daily rainfall amounts (C and w being, respectively, the Weibull scale and

shape parameters). One can thus define the MEV-Weibull cumulative distribution

function as

ζ(x) =
∞∑
n=1

∫
C

∫
w

g(n,C,w) ·
[
1− e−( xC )

w]n
dCdw (2.2)

The Weibull distribution, F (x;Cj, wj), is assumed to describe the observations

in each year on record (j = 1, 2, ...,M). A sample of yearly maxima distributions,

Hnj(x) = F (x;Cj, wj)
nj (where nj is the number of wet days in year j), can thus

be defined, and a sample-average approximation can be computed ζ(x) ∼= ζm(x) =

1/M
∑

j F (x;Cj, wj)
nj (Fig. 2.1). The discrete expression of the MEV-Weibull dis-

tribution thus reads:

ζm(x) =
1

M

M∑
j=1

[
1− e

−
(

x
Cj

)wj]nj
(2.3)

Convergence of (2.3) to (2.2) is ensured provided that (Cj, wj, nj) are sampled ∀j

from their joint distribution g(N,C,w). I fit the Weibull distribution to observations

in each single year by means of the Probability Weighted Moments method (PWM),

which, compared to other methods (e.g. Maximum Likelihood, ML), attributes a

greater weight to the tail of the distribution. Moreover, the PWM method performs

well for small samples and is not very sensitive to the presence of outliers [GLM79].
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ML is, on the contrary, known to be a biased estimator of the Weibull parameters,

especially the shape parameter, for small samples [Sor06]. In the following I will often

consider the event magnitude, x̂, corresponding to a given value of the return period

of interest, which I obtain by numerically solving ζm(x̂) = (Tr− 1)/Tr (ζm(x) being

given by eq. (2.3)). I describe below extensive comparisons of MEV high-quantile

estimates with those obtained from the traditional Generalized Extreme Value dis-

tribution. I estimate GEV parameters using the most efficient and most commonly

used techniques: Maximum Likelihood (ML) [Col01], L-Moments [Hos90], the Peak

Over Threshold approach [DS90], and Mixed Methods [MS02]. The POT approach

was applied by selecting threshold values such that an average of 5 excesses/year are

used to fit the parameters. Overall, I find that, for this 37-station dataset, the POT

and L-moment methods yield the best estimates of GEV parameters (see Appendix

A for more details), whereas ML estimators exhibit a larger error standard deviation,

especially for smaller samples.

2.3 Data Sets

I gathered data from 37 rainfall records distributed globally and spanning different

rainfall regimes. Many of the records were extracted from NOAA’s Global Histori-

cal Climatology Network (GHCN) (ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/).

Particularly long time series were gathered independently (e.g. the Padova time se-

ries, the longest daily rainfall record worldwide, consisting of 272 years of observations

[MZ15]). See Table A.2 in Appendix A for a complete description of the data included

in the analysis. The stations span different climatic conditions, thus allowing to test

the ability of the MEV approach to capture observed extremes across a wide variety

of precipitation regimes. I restricted my analysis to time series with length exceeding
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100 years (mean length in the dataset is 135 years). Furthermore, only years with

less than 10% of missing daily data were considered, which implies that about 2.4%

of the years in the global data set were excluded from the analysis. I tested the abil-

ity of the Weibull distribution to describe observed daily rainfall for all the stations

considered using the Kolmogorov-Smirnov and Cramer Von Mises statistical tests.

The positive outcomes of the statistical tests performed for the different stations are

described in Appendix A (Figure A.3).

2.4 Monte Carlo Analysis of Model Performance

The possible presence of non-stationarity or of periodicities in observed rainfall records

adds an additional, and difficult to control, source of uncertainty in the compara-

tive evaluation of extreme value analyses [SK15]. Hence, I used a Monte Carlo ap-

proach which by construction removes possible non-stationarities in the observations,

while preserving the distribution of the rainfall accumulation values and number of

events/year present in the observed dataset. To this end, for each station in the

data set, I randomly reshuffle the observed numbers of wet days/year (nj’s), thereby

preserving their original distribution, but destroying any serial correlation that may

be present. Subsequently, I construct a m-year synthetic sample by randomly draw-

ing (without resubstitution) nj rainfall accumulation values (j = 1, ...,m) from the

original record. The resulting synthetic time series lacks any serial correlation and

preserves the original frequency distribution of rainfall depths. From each rainfall

sequence generated through the above procedure (with length, m years, equal to the

original observed time series), I extract the first s years to be used as a sample to fit

the EV distributions. The training sample size s is varied from 10 to 80 years with a

2-year step, to explore the range of commonly available sample sizes (see Fig. 2.2A).
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The remainder of the time series (m − s years) is then used to independently test

the MEV and GEV models performances. The selection of observed time series with

length exceeding 100 years allows me to use empirical frequencies as references for

the exceedance probabilities inferred through the EV models. The sample frequency

of an yearly maximum value, xi, is computed using the Weibull plotting position

formula as Fi = i/(m− s+ 1), and is assumed to be the best estimate of the actual

exceedance probability F (xi). i is the rank of xi in the list, sorted in descending

order, of the s−m yearly maxima available in the validation sub-set. I finally com-

pare x̂i = F−1(Fi) (where F−1(·) denotes the inverse of one of the EV distributions

to be tested) and xi to determine the estimation error for the 20 largest events in

each Monte-Carlo generated datasets. I repeat this bootstrap/reshuffling procedure

nr = 100 times for each observed time series, in order to obtain a large number of

realizations over which to average the root mean square error. The accuracy of the

empirical frequency estimates of the underlying probability improves with the length

of the time series and with the number of Monte Carlo realizations considered, and

decreases as the return period examined increases. For this reason I focus my atten-

tion on return times in the range 10-150 years. For every bootstrap realization, for

every sample size and return time (s, Tr), theoretical quantiles, x̂, were estimated

from the EV distributions being compared. Using the observational quantiles xobs

relative to the same Tri, the non-dimensional estimation error can be computed as

ε = (x̂− xobs) /xobs. The values of εi obtained from each reshuffled series are then

averaged over all the Monte Carlo realizations (nr = 100) to obtain a global perfor-

mance metric:

ρ (s, Tr) =

[
1

nr

nr∑
k=1

(
x̂k (s, Tr)− xobs,k (s, Tr)

xobs,k (s, Tr)

)2
] 1

2

(2.4)
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Figure 2.2 plots the ratio of ρMEV to ρGEV as a function of s and Tr, in which

data from all the stations have been pooled together. In order to obtain meaningful

statistics, individual values of the ratio of the RMSE’s computed from eq. (2.4) are

averaged over tiles in the plane (s, Tr) of size 20 yrs x 10 yrs.

2.5 Results

Figure 2.2B shows that MEV on average outperforms GEV when used to obtain

estimates for return periods exceeding the length of the sample used to fit the dis-

tribution. For the largest return periods, often of greatest practical interest, the

average MEV error is of the order of 50-60% the average GEV estimation error. This

result has broad implications, as most of the time series globally available only span

a few decades (Fig. 2.2A), while return periods of common interest are greater than

Tr = 100 years. The analysis of the ratio of the estimation errors as a function of

the dimensionless number Tr/s (Fig. 2.4B) clarifies this notion. While some scat-

ter exists, the average of ρMEV /ρGEV over bins of Tr/s values clearly indicates that

the MEV error tends to be smaller than the GEV error when Tr is greater than

the sample size (i.e., Tr/s > 1), attaining a 50% improvement for Tr/s indicatively

larger than 5. In absolute terms the average Root Mean Square Error for MEV and

Tr/s = 5 is roughly 20% (Fig. 2.4A). Figures A.1 and A.4 in Appendix A show simi-

lar results for the comparison with the POT and GEV-ML approaches. Additionally,

the comparison of the full distributions of the estimation errors for a common return

period and sample size confirms that the MEV approach leads to a significantly nar-

rower error distribution with a mode close to zero, as show in Figure 2.3 (see also

Table A.1 and Figure A.5 in Appendix A).
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2.6 Discussion

The MEV approach presents significant conceptual advantages with respect to tradi-

tional methods rooted in the EVT. It removes any asymptotic hypothesis and hence

does not require that a sufficiently large number of events/year takes place. The

hypothesis of a Poisson occurrence of events is also removed in the MEV approach,

the POT approach being retrieved as a special case. The use of a distribution with

varying parameters to describe the ordinary event intensities embeds the inter-annual

variability of the rainfall generation process, and paves the way to the natural incorpo-

ration of trends or multi-annual climatic oscillations. The MEV approach recognizes

that annual maxima do not necessarily come just from the tail of the underlying

parent distribution, a known limitation of the classical EVT [VLL15].

Classical EVT shows that extremes can only exhibit three types of tail behaviours

(upper bounded, exponential, power-law tailed), which becomes manifested in the

value of the GEV shape parameter [FT28, VM36, Kou04], a conceptually impor-

tant implication of the classical EVT requiring further discussion. This fat (power-

law) vs. thin (exponential) tail asymptotic dichotomy is conceptually suggestive

and practically relevant, such that one wonders if it is negated by the MEV-Weibull

approach, which seems to invariably yield a thin-tailed behaviour dictated by the

exponential nature of the Weibull distribution. However, the Weibull distribution

has been noted to exhibit a sub-exponential tail when w < 1, with a behaviour which

is intermediate between an exponential (w = 1) and a power-law [LS98, Sor06].

Furthermore, I note that the combination of exponential distributions with differ-

ent decay parameters in a metastatistical framework can lead to power-law tails

[Dub68, BC03, PVF06, GMFG+10]. For example, in the present MEV formulation

one can show that (see Appendix A for the details), when only the scale parameter
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of the Weibull distribution varies stochastically, the MEV distribution can assume a

power-law form, i.e., a heavier tail than the underlying Weibull distributions in eq.

(2.3). Hence, I conclude that the MEV-Weibull formulation, even though it is based

on stretched-exponential building blocks, can reproduce thin- as well as fat-tailed

extreme value distributions. The adoption of a single Weibull distribution to de-

scribe all daily events within each year implies that seasonality and different rainfall

generation mechanisms are not explicitly resolved. Recent work on flood frequency

analysis [MS02, VS10] indeed suggests that power-law tails may artificially emerge

from a mixture of probability distributions associated to different rainfall-generating

mechanisms. However, this interpretation is not fully in contrast with my approach,

which explains thick-tailed extremes by the metastatistical mixing of distributions of

the same type, but with stochastic parameters.

2.7 Conclusions

Analysis of extremes in several ultra-centennial daily rainfall records shows that the

MEV approach on average outperforms traditional GEV methods when the return

period of interest is longer than the length of the observational time series available.

The GEV distribution does provide accurate descriptions of the specific samples

used to fit it, as shown by the high goodness of fit obtained when the performance

is evaluated on the same data used for its calibration (see Figure A.2 in Appendix

A), but, compared to the MEV approach, it fails to properly generalize and capture

the underlying statistical properties of the population. The MEV approach, on the

contrary, uses information from the bulk of the distributions of ordinary values, and

is able to more effectively capture the characters of the population of extremes,

such that the estimated high quantiles are less sensitive to the specific sample used
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for fitting. In conclusion, I argue that the MEV approach should be preferred to

the GEV distribution, especially when small samples are available and high-quantile

extremes are to be estimated.
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C, w and n, is obtained by averaging over the empirical frequency distribution of the
parameters.
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Figure 2.2: Comparative performance of MEV and GEV distributions. (A) Fre-
quency distribution of sample sizes from the NOAA-NCDC global daily rainfall
dataset. (B) Ratio ρMEV /ρGEV , of the Root Mean Square Errors of quantile es-
timates from the MEV-Weibull and GEV-LMOM approaches as a function of return
period and size of the sample in our dataset. Individual ρMEV /ρGEV values from
each site are pooled together and averaged over rectangular tiles on an uniform grid
(with sides ∆Tr = 10 years and ∆s = 20 years). The Tr/s = 1 line is indicated as a
reference. The MEV distribution outperforms the GEV distribution in the blue area.
Areas in white contain no data.
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and MEV distributions. ε was computed over all the available stations and Monte
Carlo realizations (nr = 100). The return time is Tr = 50 years and the sample
size s = 30 years (close to the mean length of the time series in the NOAA-NCDC
global dataset). The mode of the MEV error is nearly zero, and the error distribution
exhibits a smaller spread compared to the frequency distribution of the GEV error.
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Figure 2.4: Performance of the MEV and GEV distributions as a function of the
dimensionless parameter Tr/s. (A) Root Mean Square Error ρMEV , obtained from
100 Monte Carlo generations. Points denote values from single realizations, while
red closed circles represent averages over bins of width 0.5 units. Colors denote the
density (points/unit area of the plot, computed over circles of fixed radius) of the
values falling in each area of the scatter plot (blue indicating the lowest density and
yellow the highest one). (B) Ratio ρMEV /ρGEV of the Root Mean Square Errors
obtained with the MEV and GEV approaches.
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Chapter 3

Bayesian Hierarchical Modelling of

Extreme Values of Environmental Time

Series

Adapted from: Zorzetto, E., A. Canale, and M. Marani. ”Bayesian non-asymptotic

extreme value models for environmental data .” Manuscript submitted to Bayesian

Analysis.

3.1 Introduction

The quantitative modelling of extreme events is of paramount importance in sev-

eral disciplines, such as water science, geology, engineering, and finance, to name a

few. In these contexts extremes are often defined as the maximum values observed

in each year, or, more in general, as block maxima (BM). This approach avoids (by

neglecting them) having to explicitly tackle issues related to seasonality, and intro-

duces a unit of time to define the frequency of occurrence of extremes over time

scales of applicative interest. This traditional approach has proven very fruitful and

has generated a large theoretical body related to the max-stability property of the

Generalized Extreme Value (GEV) distribution [FT28, Gne43, VM36, Col01]. An

alternative modelling approach is based on defining extremes as exceedances over a

high threshold, described through the theory developed by Balkema and De Haan

[BDH74] and Pickands [P+75]. Both approaches are asymptotic in nature.
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In the Block Maxima approach, GEV is the non-degenerate distribution obtained

for block maxima, after proper normalization, in the limit of an infinite number of

independent and identically distributed (i.i.d) events in each block [FT28, Gne43],

result later extended to the case of weak dependence structure [Lea83, LLR12]. Based

on the value of its shape parameter, often denoted as ξ ∈ R, the GEV family includes

three possible limiting distributions for the block maxima: a double exponential

(Gumbel, or EV1, for ξ = 0), a heavy-tailed (Frećhet, or EV2, for ξ > 0), and an

upper bounded (inverse Weibull or EV3, for ξ < 0) distribution.

Conversely, in the Peaks Over Threshold (POT) framework, the Generalized

Pareto Distribution (GPD) is derived as a model for excesses over threshold, in the

limit of the threshold tending to the upper end point of the underlying random vari-

ables’ support [Dav84, Smi84, DS90]. This approach was later also extended to the

case of dependent sequences [Lea83, Smi92, BT98]. The GEV and GPD parametric

models, respectively derived through the BM and POT frameworks, are deeply con-

nected. In particular, by modelling the magnitude of threshold excesses with a GPD

and their frequency of occurrence through a Poisson point process, again one obtains

GEV as a model for the block maxima [DS90, Col01], with a parameter ξ equal to the

corresponding GPD shape parameter. For a comprehensive introduction, see [Col01],

[DHF07] and [EKM13].

Threshold models generally lead to a more efficient use of the data compared to the

BM approach. However, the selection of the threshold is a relevant issue in this case,

and a contrast exists between the desire of including as much data as possible in the

EV model, while at the same time satisfying the asymptotic assumption, which would

require the adoption of a high threshold. Therefore in general the optimal threshold

selection requires a tradeoff between bias and variance of the resulting estimator

[EKM13]. Several techniques have been developed for informing this decision [see
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Dup99, Col01, EKM13, WT12].

The wide popularity enjoyed by approaches based on the GEV distribution led

much of the extreme-value literature to focus on the block-maxima alone, or on few

values above a high threshold, discarding and neglecting the ’ordinary values’ from

which these large events are extracted. In turn, this caused the widely accepted

traditional Extreme Value Theory (EVT) 1) to be based on asymptotic results, to

avoid the need of specifying details about the underlying distributions of the ’ordinary

events’, and 2) to focus only on few selected events, thereby ’wasting’ most of the

available information.

These issues have been receiving an increasing attention in recent times. Hydro-

logical applications of EV models have shown that the number of yearly events is

rarely sufficiently large for the asymptotic argument to hold [Kou04, MI15]. More-

over, for some parent distributions commonly used in a wide class of environmental

applications, the actual extreme value distribution has been noticed to converge to

its theoretical limiting form at a slow rate [CH04]. This is for example the case

of the Weibull parent distribution, a parametric model widely adopted to describe

several natural processes—such as wind speeds [HC14] and rainfall accumulations

[WT05]—or in economics [LS98].

A more practical problem is related to the estimation of the GEV distribution

shape parameter, ξ, which controls the nature of the tail of the distribution. When

applied to precipitation data, maximum likelihood and L-moments estimates of ξ

from block-maxima and POT techniques can be markedly biased depending on the

size of available samples, and this can lead to an underestimation of the probability

of large extremes in the case of small samples [Kou04, PK13, SK14]. This issue can

be mitigated by use of sample statistics that are more efficient and robust than tra-

ditional ones [HW87], or, following a Bayesian approach, by penalizing the likelihood
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function with ’Geophysical Prior’ distributions for ξ [MS00a, CPS03]. However, the

limits, both conceptual and practical, of an approach that on the one hand heavily

censors the data and, on the other, suffers by estimation bias and uncertainty, remain.

Another limitation of the traditional EVT which has been recently pointed out is

related to the assumption of a single and invariable parent distribution [MI15]. In fact,

many phenomena display changes in the event magnitude generation process that

are imperfectly known and predictable due to the complexity of the system. In these

circumstances the assumption of a time-independent form of the parent distribution

can be questionable. Examples of this type of issues can be found in many Earth-

system processes and variables, such as rainfall intensity [MI15, MNAM18], flood

magnitudes [MMV20], wind speeds, and tropical storm intensities [HSM20].

Overall, though mitigated by advanced estimation approaches, the above limi-

tations can have wide implications in the many applications requiring the accurate

estimation of large quantiles, i.e. quantiles characterized by return times—average

recurrence intervals—larger than the length of observed samples.

Recent contributions attempt to fill some of the gaps discussed above. Some

of these contributions have focused on including the entire parent distribution of

events in EV modelling, by using mixture of distributions [FHR02], by extending

a GPD model to the entire range of observed values while retaining a Pareto tail

[TAO06, PT13, NHRH16], by combining splines with an algebraic tail decay [HNZ19],

or by use of a parametric family of distributions to model the entire range of ordinary

values [MI15, JRM+19].

The case of variable parent distribution has recently been tackled with the intro-

duction of the Metastatistical Extreme Value Distribution (MEVD), a non-asymptotic

extreme value approach in which a compound parametric distribution describes the

entire range of ordinary values, with parameters varying across blocks [MI15, ZBM16,
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MNAM18, ZM20]. The main rationale behind the introduction of MEVD is describ-

ing the superposition of dynamics occurring over a wide range of time scales by

use of compound distributions, i.e., by allowing the parameters of the distribution

describing a fast dynamics to vary on a separate, much slower time scale.

Building upon the MEVD, here I introduce a Bayesian hierarchical model for ex-

treme events which models the entire distribution of observed values, and explicitly

incorporates the variability of their parent distribution across blocks. Latent vari-

able models arise naturally in the Bayesian framework [GCS+13] and in the context

of extremes have been widely used to develop spatial models [DPR+12, BHRM18]

and to describe the temporal dependence of excesses over thresholds [BG14, BG16].

Here I harness the flexibility of Bayesian hierarchical modelling to account for the

low-frequency variability in the underlying physical processes generating the data

observed in different blocks, and to connect this variability with the tail properties

of their extreme value statistics.

The use of Bayesian methods to model extremes of environmental data is quite

general and successful [CT96, CPS03, FG18] and is particularly useful in the common

case in which one has to rely on relatively short observational time series but has

relevant and reliable expert prior information of the physical processes involved—as

discussed in Section 3.2.3.

The Chapter is organized as follows: In Section 3.2 I introduce the general struc-

ture of the hierarchical model and subsequently specialize it to the analysis of rainfall

data with a focus on informative prior specifications. In Section 3.3.2 the proposed

formulation is empirically tested and compared to Bayesian implementations of stan-

dard extreme value models via a comprehensive simulation study. In Section 3.4 an

application to a large data set related to daily rainfall measured over the United

States is described. The Chapter ends with a a final discussion.
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3.2 A Hierarchical Bayesian Extreme Value Model

3.2.1 Notation and general formulation

The proposed Bayesian Hierarchical Model for Extreme Values (HMEV) is formulated

by denoting as nj the number of events observed over the j-th block of time (j =

1, . . . , J , with J the number of blocks in the observed sample) and xij the magnitude

of the i-th event within the j-th block (i = 1, . . . , nj). The magnitudes of the nj

events occurring within a block are assumed to be realizations of independent and

identically distributed (i.i.d.) random variables Xij, with common parametric cdf

F (·; θj). θj ∈ Θ is the possibly multivariate unknown parameter vector and f(·; θj)

the related probability density function. Under this framework, the block maxima

Yj = maxi {Xij} have cdf

ζj(y) = Pr(Yj ≤ y) = F (y; θj)
nj . (3.1)

In the following I define a generative hierarchical model for the data at hand. A

graphical representation of its structure is illustrated in Figure 3.1. I let nj be a

realization of a random variable with probability mass function (pmf) p(n;λ), where

λ is an unknown vector of parameters. I further assume that latent θj’s exist that

are i.i.d. realizations of a random variable with probability density function g(·; η),

where η is an unknown vector of parameters. With the convention that the symbol

∼ means “is a realization of a random variable having pdf/pmf,” I can write the

following hierarchical model,

nj | λ ∼ p(nj;λ), θj | η ∼ g(θj; η), xij | nj, θj ∼ f(xij; θj) for i = 1, . . . , nj.

(3.2)

27



λ0 λ nj

η0 η θj

xij

j ∈ {1 . . . J}

i ∈ {1 . . . nj}

Figure 3.1: Hierarchical structure of the model described in equations (3.2)–(3.3).
Grey dots represent observed variables.

Following a Bayesian approach, the hierarchical representation of the model is com-

pleted by eliciting suitable distributions, representing one’s prior beliefs, for the un-

known parameters λ and η,

λ | λ0 ∼ πλ(λ;λ0), η | η0 ∼ πη(η; η0). (3.3)

In equation (3.3) λ0 and η0 represent suitable prior hyperparameters. Comments

and suggestions about their elicitation are reported in Section 3.2.3. Denoting as

x the collection of all xij’s and as n the collection of all the nj’s, I indicate with

Π(η, λ | x,n, η0, λ0) the posterior distributions of (η, λ) ∈ Ω.

The main goal of extreme value analysis can be summarized in estimating the cdf

in (3.1) or one of its functionals. This can be be done marginalizing out (3.1) with

respect to the distributions of θj and nj [MI15], obtaining the following expression

(3.4), where h is function of the model’s parameters λ and η:

h(y;λ, η) =
Nt∑
n=0

∫
Θ

F (y; θ)ng(θ; η)p(n;λ)dθ. (3.4)
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where Nt is the maximum number of events in a block (e.g. Nt = 366 days in the case

of yearly blocks and daily observations of an environmental variable such as rainfall).

A Bayesian estimator of (3.4) can then be obtained by integration over the posterior

distribution of the model parameters λ and η:

ζ̂(y) = E[h(y;λ, η)|xij, nj] =

∫
Ω

h(y;λ, η)Π(η, λ | x,n, η0, λ0)dλdη. (3.5)

Other functionals of interest such as the variance, or the probability intervals corre-

sponding to given quantiles, can be calculated accordingly. As customary in extreme

value analysis, for an event of given intensity y I am interested in estimating the

corresponding return time Tr, or its average recurrence interval, which is defined in

terms of the cumulative distribution function as T̂r(y) = {1 − ζ̂(y)}−1. Conversely,

the return level ŷ associated with a given non exceedance probability p0, or return

time Tr0 = 1/ (1− p0), is obtained as ŷ = ζ−1 (1− 1/Tr0), where ζ−1 (·) denotes

the quantile function obtained by inverting the non exceedance probability function

defined by eq. (3.5).

3.2.2 A specific formulation of HMEV for modelling daily

rainfall

I now discuss how the model structure presented above can be applied to mod-

elling extreme values of environmental time series. Here I provide a specification of

the HMEV for modelling the frequency of annual maxima daily rainfall accumula-

tions, based on the general hierarchical structure outlined in Section 3.2.1. To this

end, I need to specify parametric models for event magnitudes and occurrence, and

elicit suitable prior distributions for their unknowns parameters. In this process, I

seek to harness information on the physical processes generating the data and in-
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clude it in the Bayesian pipeline. Several parametric families have been employed

to model rainfall accumulations, including the exponential [RICI87], gamma [SN14],

Weibull [WT05], lognormal and Pareto [PKM13], or mixtures of Gaussian distribu-

tions [LL13]. Generally, the choice of the model for a particular application is merely

based on some goodness of fit assessment, without seeking a physical justification for

the choice of the distribution. However, physical arguments have been provided sug-

gesting the body of the daily rainfall distribution should follow a gamma distribution

[SN14, NSSB17, MVN19], and suggesting its right tail should decay as a stretched

exponential (i.e., Weibull) distribution [WT05]. Since the focus of this work is on ex-

treme values, I briefly review the latter argument and show how physical insight can

be incorporated into the present Bayesian specification. Wilson and Toumi[WT05]

noted that precipitation accumulations can be characterized as the product of three

independent random variables, namely the average vertical air mass flux through a

moist level, the air specific humidity, and the precipitation efficiency, i.e., the fraction

of the vertical water vapor flux which is precipitated out as rainfall during each event.

As these are all average quantities, it is assumed that, by the central limit theorem,

their respective distributions can be approximated by Gaussians. By the theory of

extreme deviations [Sor06, FS97], it can then be shown that, in the upper part of

the distribution (i.e., for large enough rainfall accumulations), the product of a finite

number K of standard normal random variables is approximately a stretched expo-

nential or Weibull distribution with a shape parameter equal to 2/K, where K = 3

is the number of variables in the present case. Therefore, not only this argument

supports the choice of the stretched exponential distribution to model heavy rainfall

accumulations, but additionally provides an indication on the value of its shape pa-

rameter. This argument provides valuable prior information to be exploited in our

Bayesian hierarchical model.
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Consistently with this argument, I model the magnitudes of daily rainfall accumu-

lations xij in year j with a 2-parameter Weibull distribution with parameter vector

θj = (γj, δj) and pdf

fw(x; γj, δj) =
γj
δj

(
x

δj

)(γj−1)

exp

{
−
(
x

δj

)γj}
(3.6)

where δj > 0 and γj > 0 denote the scale and shape parameters respectively.

To allow for the inter-block variability discussed in Section 3.2.1, I assume that the

latent variables δj ∼ gδ(δj;µδ, σδ) and γj ∼ gγ(γj;µγ, σγ) are independent and have

Gumbel pdfs, a flexible yet parsimonious 2-paramater model allowing for possible

asymmetry.

gδ(δj;µδ, σδ) =
1

σδ
exp

{
−δj − µδ

σδ
− exp

(
−δj − µδ

σδ

)}
, (3.7)

gγ(γj;µγ, σγ) =
1

σγ
exp

{
−γj − µγ

σγ
− exp

(
−γj − µγ

σγ

)}
(3.8)

Next, I need to specify p(·;λ) in equation (3.2). It is well known that the rain-

fall process often tends to be overdispersed at the interannual time scale [ET10].

This consideration would suggest a choice of p(·;λ) allowing a variance-to-mean ratio

greater than one, to flexibly represent the possible presence of clustering. However,

I show in the following that the distribution of nj chiefly affects the probability dis-

tribution of extreme events, (3.4), through its mean value only. To show this, let us

rewrite (3.4) in terms of the survival probability function S(y; θ) = 1− F (y; θ),

h(y;λ, η) =
Nt∑
n=0

∫
Θ

[1− S(y; θ)]ng(θ; η)p(n;λ)dθ, (3.9)

by expanding [1−S(y; θ)]n in a Taylor series around zero [1− S(y; θ)]n = 1−nS(y; θ)+
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O (S(y; θ)), and by retaining only the linear term in the expansion—as justified for

large values of n and extreme quantiles (i.e., for S(y | θ)→ 0)—one finds:

h(y;λ, η) '
Nt∑
n=0

p(n;λ)

∫
Θ

g(θ; η)dθ −
Nt∑
n=0

np(n;λ)

∫
Θ

S(y; θ)g(θ; η)dθ

= 1− Eλ[n]

∫
Θ

S(y; θ)g(θ; η)dθ. (3.10)

This expression depends on the distribution of nj only through its expected value

conditional to the sample of observed nj. I therefore argue for the adoption of a

minimalistic model, the binomial distribution, with a success probability λ ∈ (0, 1)

and number of trials Nt equal to the block size (e.g., Nt = 366 in our application

to annual maximum daily rainfall). This rationale is also supported by practical

applications of Poisson processes of extremes [S+89] and of MEVD, showing that the

specific distribution adopted for the nj’s does not significantly affect the estimation

of large extremes as long as the average is correctly reproduced [MZAM19, HSM20]

3.2.3 Prior elicitation

One of the main advantages of introducing a hierarchical model describing the entire

distribution of daily rainfall accumulations is the possibility of eliciting priors directly

on the underlying distribution of the observed “ordinary” events xij and on the dis-

tribution of nj, rather than on the distribution of block maxima. By doing so, in

particular, I avoid the difficulty of prescribing a prior directly on the shape parameter

ξ of the annual maxima distribution, which is the main challenge in the inference on

EV models, and to which it is difficult to attribute physical meaning. Studies at the

global [PK13] and continental scale [PAFG18] showed that the shape parameters of

extreme value models can vary significantly in space and is particularly difficult to
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estimate reliably [e.g. Col01], especially for small samples [SK14]. However, here I

argue that using the entire distribution of daily rainfall provides inferential advan-

tages, and allows for the inclusion of additional physical insight on the process at

hand.

For what concerns the specific parametric family for πη(·; η0), with η = {µδ, σδ, µγ, σγ},

I opt for independent inverse gamma distributions, but other choices of 2-parameters

distributions such as gamma lead to a similar model flexibility and to qualitatively

similar results. What is crucial is the specification of the values of the parameters

of the above distributions according to the physical understanding of the precipita-

tion process. Prior belief on the typical intensity of the events, µδ, is not difficult

to obtain empirically for a given location as the climatological mean. Furthermore,

the physical argument outlined in Section 3.2.2 enables one to assume a priori that

the inverse gamma prior distribution for µγ is centered around 2/3. Note that if

additional physical insight is available on the types of storms characterizing the site

of interest, or from similar sites, this prior elicitation could be further refined, e.g.,

based on studies of the value of γ over large geographic areas [PAFG18].

For the latent Gumbel scale parameters σδ and σγ, quantifying the variability of

the Weibull parameters between blocks, I also choose informative distributions with

expectations equal to 25% and 5% of the respective location parameters (µδ and

µγ). This choice reflects the notion that I expect significant variability in the scale

parameter across years—here quantified as 25% of its mean value —but, conversely,

I do not expect the shape parameter to vary as much, as its expected value should be

more strongly constrained by the general physical nature of precipitation processes.

Of course different precipitation types can occur in different proportions in different

years, and, since I do not model these components explicitly, I should include their

effect in possible variations of the scale parameters. Guided by these considerations,
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I choose a latent scale parameter for the variability of the Weibull shape parameter

equal to 5% of its prior expected value.

Sometimes, information can be available on the relative frequency of different

precipitation mechanisms, for example as obtained through satellite or radar mea-

surements. In this case, the prior location value of σδ could be for example increased

in settings characterized by higher inter-annual variability of the relative frequency

of different precipitation types, as suggested in [MZAM19].

An independent weakly informative beta prior for the binomial rate parameter for

nj concludes the prior elicitation. I found that eliciting an informative prior for nj

is not as important as for the other parameters is the model, as (i) inference on the

single-parameter distribution for nj is more robust than inference of the distribution

of xij even for very small sample sizes, and (ii) the HMEV estimates are primarily

affected by the expected value of the nj’s distribution rather than by its higher-order

moments. The specific values of the prior parameters used in the in the remainder

of the article are summarized in Table B.1 in Appendix B.

3.2.4 Posterior computation and posterior predictive checks

Given the complex structure of the models described in previous sections, it is clear

that an analytical expression for the posterior distribution of the parameters or for

ζ̂(y) in (3.5) is not available and numerical procedures are needed. Here I chose to

approximate the posterior distribution with Markov Chain Monte Carlo (MCMC)

and specifically using a Hamiltonian Monte Carlo approach exploiting the flexibility

of the Stan software [CGH+17].

The implementation of the hierarchical model and related prior described in Sec-

tion 3.2.2 is trivial under Stan and is provided as a standalone R package. In all the
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following examples, I run nc = 4 parallel chains, with ng = 2000 iterations in each

chain. I discard the first half of each chain to account for the burn-in effect. The

final sample on which I perform inference is therefore based on B = ncng/2 = 4,000

draws.

Using MCMC I can make inference on any functional of the posterior distribution,

calculating, at each iteration of the sampler, the current value of the functional of

interests. For example, if the cumulative probability of block maxima approximating

(3.4) is the target, one should compute at the generic iteration

ζ(b)(y) =
1

Mg

Mg∑
j=1

F (y; θj
(b))n

(b)
j (3.11)

where θ
(b)
j and n

(b)
j for j = 1, · · · ,Mg are drawn from the related posterior predictive

distributions for each block, and Mg is a number of future blocks—Mg = 50 in our

application. Therefore, the Monte Carlo approximation of the posterior expectation

(3.5) is

ζ̂MC(y) =
1

B

B∑
b=1

ζ(b)(y). (3.12)

Note that (3.11) approximates the functional h(z;λ, η) where λ and η are the param-

eters describing the inner level of the hierarchical model and the averaging operation

in (3.11) is performed on the values of θj and nj. Conversely, (3.12) is obtained by

averaging over the B draws from the posterior distribution thus accounting for the

posterior uncertainty of the λ and η parameters.

To assess whether the parametric assumptions of the proposed HMEV provide a

good fit to the observed data, it is important to perform posterior predictive checks

[GCS+13] comparing relevant quantities—such that yi, nj, or xij—with their cor-

responding posterior predictive densities. Although the posterior predictive distri-
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butions are not analytically available, it is straightforward to simulate new data

from them by leveraging the MCMC samples of the parameters and the hierarchical

representation of the model reported in Figure 3.1. I recommend to focus on the

distribution of block maxima, and, given the interest in consistent estimates of the

probability of large extremes, particularly on its right tail.

3.3 Simulation Study

3.3.1 Description

To assess the empirical performance of the proposed HMEV model, and to compare it

with standard alternative methods, I performed an extensive simulation study. Dif-

ferent synthetic data sets have been generated under four scenarios characterized by

specific event magnitude distributions: Generalized Pareto (GP), Gamma (GAM),

Weibull (WEI) with constant parameters in each block, and a dynamic Weibull model

in which the variable scale and shape parameters in each block follow Gumbel distri-

butions (WEIG). While the latter specification reflects the structure of the proposed

hierarchical model, the other 3 scenarios represent model misspecifications and will

be used to assess the rubustness of the proposed formulation to the specific distri-

bution of event magnitudes. Common to all scenarios, the number of events in each

block is drawn from a beta-binomial distribution with mean µn = 100 events/block,

variance equal to σ2
n = 150, and Nt = 366 block size. This choice represents the case

of overdispersion commonly observed in rainfall and other environmental time series

[ET10]. Each of the Rs = 100 replicated data set consists of two independent time

series of lengths Mtrain and Mtest blocks, which are respectively used for training and

testing the different EV models. Here I fix Mtest = 500 yearly blocks, and train the
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different models focusing on sample size values of Mtrain = 20 and 50 years, represen-

tative of many geophysical datasets. Table B.2, reported in Appendix B, describes

the specific values of the parameters used to generate the synthetic data.

The competing methods used to benchmark HMEV are Bayesian implementa-

tions of the classical generalized extreme valued distribution (GEV) and peak over

threshold (POT) Poisson point process models, whose details, including prior spec-

ifications, are reported in Appendix B. In order to perform a fair comparison, also

these competing models are estimated under a Bayesian approach, using informative

priors. In particular, for both models the prior distribution for the shape param-

eter is centered around the value 0.114, determined from investigations of rainfall

records at the global scale [PKM13], and has a standard deviation of 0.125, yield-

ing a distribution close to the Geophysical prior suggested by Martins and Stedinger

[MS00a].

To evaluate the predictive accuracy of the different competing methods in esti-

mating the true distribution of block maxima, I use different criteria measuring both

the global goodness of fit and the uncertainty in estimating the probability of ex-

treme events. The log pointwise predictive density (lppd) [GCS+13] computed both

for the in-sample data and for the out-of-sample data is often used as a measure of

global performance of the models. An alternative measure is the logarithm of the

pseudo-marginal likelihood (lpml), a convenient index that directly accounts—at no

additional computational cost—for a leave-one-out cross validation measure [GD94].

Notably, since the lpml approximates the expected log pointwise predictive density,

the difference between the in-sample lppd and the lpml represents the number of

effective parameters of a model [see e.g., VGG17] and thus will be used to quantify

overfitting.

Since the focus of this work is the right tail of the distribution of the block
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maxima, here I introduce an additional index that measures predictive performance

for quantiles above a given non exceedance probability. To this end, I introduce the

Fractional Square Error (FSE)

FSE =
1

mT

Mx∑
j=1

1I(T̃ ,∞) (Tj)

√√√√ 1

B

B∑
b=1

(
ζ(b)−1 (pj)− yj

yj

)2

, (3.13)

where ζ(b)−1
(·) refers to the quantile function of the specific model at the b-th MCMC

iteration, 1IA (x) is the indicator function that equals 1 if x belongs to A, and Tj is the

empirical return time of yj defined as Tj = (1− pj)−1, with pj = rank(yj)/(Mx + 1).

Mx is the length in blocks of the sample of annual maxima used to compute the FSE.

In the in-sample and out-of-sample validation performed here, Mx = Mtrain and Mx =

Mtest respectively. The value mT represents the number of observations in the test

set with empitical return time equal to or larger than T̃ , i.e. mT =
∑Mx

j=1 1I(T̃ ,∞) (Tj).

Therefore, the FSE represents an average measure of a standardized distance between

model-estimated quantiles and empirical quantiles for return times larger than T̃ . In

the following analysis I compute this measure for values of the return time larger

than T̃ = 2 years, thus focusing on the range of exceedance probability of interest in

many practical applications.

To separately assess the precision and the variability of extreme value quantile

estimates obtained from different models, I employ two additional measures, namely

their average bias and the average width of the 90% posterior predictive credible

intervals defined, respectively as

bq =
1

mT

Mx∑
j=1

1I(T̃ ,∞) (Tj)
1

B

B∑
b=1

(
ζ(b)−1

(pj)− yj
yj

)

∆q90 =
1

mT

Mx∑
j=1

1I(T̃ ,∞) (Tj) (q̂95 (pj)− q̂5 (pj)) ,

(3.14)
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Figure 3.2: Fractional square error computed for the 4 different model specifica-
tions for in-sample data (upper panels) and for out-of-sample data (lower panels),
computed for a sample size of 50 years.

where the quantities q̂95 (pj) and q̂5 (pj) are the upper and lower bounds of the pos-

terior credibility interval for the quantile ζ(b)−1
(pj) estimated taking the empirical

quantiles over the B MCMC draws.

3.3.2 Results

The results of the simulation study are illustrated in Figures 3.2–3.5. Specifically,

Figure 3.2 shows the empirical distribution of the FSE over the Rs = 100 synthetic

samples, training the model using 50 years of simulated data. The POT method

appears to outperform the annual-maximum GEV in all cases examined, except in

the case of WEIG specification, where arguably the inter-block variability of the xij

distribution determines a variable rate of threshold exceedance, as well as a variable

distribution of the excess magnitudes over the fixed threshold. While exhibiting a

generally higher FSE for in-sample testing, HMEV cleary outperforms the competi-

tors in the GAM, WEI, and WEIG scenarios in terms of out-of-sample performance.
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(a)

(b)

Figure 3.3: Mean bias (a) and mean credibility interval width (b) for the 4 different
model specifications for in-sample data (upper panels) and for out-of-sample data
(lower panels), computed for a sample size of 50 years.
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In the GP scenario, POT remains the best model even in the case of out-of-sample

testing.

To gain a deeper understanding of this general behavior, Figure 3.3a reports the

results of the two measures introduced in (3.14). Generally, the best performance

for the bias appears to be specification dependent, as is the case for the FSE, while

for what concerns the width of the credibility interval, the HMEV is consistently

the most efficient procedure, producing narrower credibility intervals. I note that

the latent level temporal variability of the θj confer to HMEV a tail behavior which

is intermediate between the lighter constant-parameter Weibull tail, and the Pareto

model, as shown by the overestimation / underestimation of the posterior predictive

quantiles in these two limiting cases.

The bias of the different models does not appear to vary significantly from in-

sample to out-of-sample testing, suggesting than the difference observed in the FSE

is primarily controlled by the variability of the different estimates.

To visualize this global behavior, Figure 3.4 shows a representative example of

the performance of the methods. Specifically, it reports the quantile versus return

time plots obtained for the different methods applied to a single dataset generated

according to the WEIG specification, with the yearly number of events nj ∼ Bin(λ),

with λ = 0.3. The results obtained for training datasets of 20 (panel a) and 50

(panel b) years show that HMEV yields quantile estimates characterized by narrower

credibility interval and is characterized by a tail behavior which is lighter tailed

compared to the other methods. Note that both the GEV and POT models, despite

the informative prior used, appear to be more sensitive to the largest observations

in the training samples and tend to overestimate the true function. This behavior is

expected given the limited length of the training samples used here (20 to 50 years of

data), which are however representative of sample sizes commonly available in many
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Figure 3.4: Quantiles predicted by the GEV (red), POT (green), and HMEV (blue)
models based on training sets of 20 years (a) and 50 years (b) Lines show the expected
value of the quantile for a given return time, while dashed lines represent the 5%-95%
credibility intervals. Circles represent the observed return time of in-sample block
maxima. The black lines report the quantiles computed from the true HMEV model.

applications in geophysics, engineering and environmental sciences. Representative

plots for the remaining scenarios (model misspecification) are reported in Appendix

B.

Note that the in-sample and out-of-sample tests illustrated in Figures 3.2 and 3.3

are characterized by different sample sizes. Therefore, the absolute difference between

in-sample and out-of-sample metrics is not directly interpretable as a measure of

overfitting. Therefore, to better quantify overfitting I study the effective number of

parameters in each model, estimated as the difference between the in-sample lppd and

the log posterior marginal likelihood, shown in Figure 3.5. HMEV displays a lower

effective number of parameters in most of the specifications considered, suggesting

that it is dramatically less prone to overfitting. While this behavior appears more

markedly for two of the four data specifications (WEI and GAM), it is worth noting

that this advantage increases when considering sample sizes smaller than Mtrain = 50

years examined here, as shown in Appendix B.
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Figure 3.5: Effective number of parameters for the 4 different model specifications,
evaluated for a sample size of Mtrain = 50 years of simulated data.

3.4 Application to the United States Historical

Climatological Network Data

In this Section I analyze a rich collection of daily rainfall time series extracted from the

United States Historical Climatological Network (USHCN) data. The data are freely

available from the National Centers for Environmental Information (NCEI) of the

National Oceanic and Atmospheric Administration (NOAA) [MDK+12, MDV+12].

The USHCN data set consists of 1218 long daily rainfall records covering the Conter-

minous Unites States (CONUS), with a significant fraction of the available records

being longer than 100 years. This caracteristic makes this dataset particularly useful

for the purpose of assessing the performance of this method by using only a por-

tion of the data for the model fit, keeping the remainder as out-of-sample validation

data. Moreover, since the CONUS spans a range of different climatic regimes, this

datasets allows me to test the robustness of the model structure adopted here to

different climates and precipitation types, which are expected to impact both the

distribution of the xij and their arrival rate. The records characterized by non-blank

quality flag were removed from the analysis, as well as the years characterized by more
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Figure 3.6: Rainfall time series measured at the New York Central Park (NYCP)
station from 1969 to 2018 (Station ID USW00094728). (a), Time series of all daily
rainfall accumulations, (b) annual maxima values only, (c) autocorrelation function
of the daily rainfall accumulations,and (d) scatter plot of pairs of succeeding non-zero
rainfall values.

than 30 daily missing observations. Therefore, for the subsequent analysis I select

only stations with at least 100 years of record with enough non-missing, non-flagged

observations, for a total of 479 stations.

3.4.1 New York Central Park station analysis

As a benchmark application I carefully discuss the results of the anlysis of the

longest station in our data set, which was recorded in Central Park, New York City,

from 1869 to 2018, for a total of 150 years of continuous observations (Station ID

USW00094728). The entire series of daily event magnitudes as well as the 150 annual

maxima values recorded at this station are reported in the top panels of Figure 3.6.

Inspection of the autocorrelation function— panel c) of Figure 3.6—suggests that
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Figure 3.7: Posterior predictive distributions for the logarithm of the annual maxi-
mum daily rainfall accumulations (a), yearly number of events (b) and logarithm of
non-zero daily rainfall events (c) computed by fitting HMEV to a 50-years sample
extracted from the New York City time series. Black lines show the density of the
observed values (obtained by kernel density estimation), while the light blue line show
the kernel density estimates for 100 draws from the posterior predictive distributions.

the daily rainfall accumulations are not heavily correlated. However, when dealing

with rainfall accumulations at shorter time scales, or in different climatic conditions,

serial dependence may need to be accounted for when applying extreme value mod-

els based on the i.i.d. assumption. Hence, as commonly done in practice (see, e.g.,

[CNN07, MNAM18]), prior to model fitting I decluster the time series, by computing

the autocorrelation of the daily magnitudes and determining the time lag τc in which

the correlation decays below c = 0.1. Then, each rainfall record is declustered by only

keeping the largest accumulation value observed within a neighborhood of length τc.

After this selection of pseudo-independent events, data are analyzed following

the approach described in Section 3.2.2, with the same prior elicitation discussed in

Section 3.2.3. Examination of the posterior predictive distributions for the annual

maxima, number of events, and daily rainfall magnitudes, reported in Figure 3.7,

shows that the pdfs of these variables are overall satisfactorily captured by HMEV.

Note that a discrepancy appears for small values of daily rainfall magnitudes, where
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the censoring of actual values associated to the sensitivity of the instrument—0.3

mm here—introduces a threshold in the observed accumulations—clearly visible in

panel d) of Figure 3.6. Despite this discrepancy for small magnitudes, the overall pdf

of daily values, and in particular its right tail, appears to be satisfactorily captured

by HMEV.

The considerable length of this particular time series allows me to explore the

sensitivity of extreme value estimates to the specific sample used to train the model.

In Figure 3.8 I compare extreme value quantiles obtained from the HMEV, GEV, and

POT models trained on just the first 20 years or the first 50 years on record, respec-

tively. Models estimates differ, with HMEV exhibiting—as previously observed from

our simulation study—narrower credibility intervals with respect to POT and GEV

models. HMEV predicts values slightly smaller than the Pareto model, but presents

an overall good agreement with the empirical frequencies associated to the annual

maxima extracted from the entire record (150 years of data). Interestingly, estimates

from the GEV and POT models tend to fall between the frequencies computed from

the training sets and those from the entire 150 year time series, showing their greater

dependence on the specific training set used. This is shown even more clearly by the

large differences, for GEV and POT estimates, between panel a) and panel b): when

the length of the training set is increased such estimates significantly change, whereas

HMEV estimates remain relatively insensitive to the increased available information.

3.4.2 Full USHCN data analysis

Building upon the insight gained from the simulation study I now turn my attention

to quantifying the predictive ability of different models using real observations from

a larger set of stations, and repeating the analysis for different sample sizes in order

46



Figure 3.8: Extreme daily rainfall quantiles computed for the NYCP data set using
for the fit only the first 20 (a) or 50 (b) years of the time series. Triangles represent the
empirical cumulative frequency of data points in the training set, while black circles
indicate the empirical frequencies computed from the entire 150-years time series.
Predictions for the expected quantiles are indicated by red dashed line (Bayesian
GEV), dashed green line (Bayesian POT), and continuous blue line (HMEV) with
5% - 95% credibility intervals reported as shaded areas for each model.

to test the sensitivity of the different models to sample size, a well-known issue in

applications of extreme value models. To this end, for each station in our sample of

479 USHCN datasets, I extract Mtrain years to be used to train the extreme value

model. Specifically, I repeat the analysis with Mtrain equal to 10, 20, 30, 40, 50 years.

In each case, I then randomly extract 50 years of data from the remaining part of

the time series to be used for independent validation. This procedure was repeated

Rg = 10 times for each time series in the analysis reported here, thus producing a set

of 4790 sample points. For each of these cases, I investigate the effect of the specific

model used and of sample size, employing the set of different performance metrics

introduced in Section 3.3.2.

Figure 3.9 shows the fraction of stations in which a specific competing model

provides the best fit to the specific dataset. Examining this behavior for varying

sample sizes, one can observe how HMEV becomes increasingly more competitive as
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Figure 3.9: Fraction of cases in which each EV model exhibited the best estimation
performance, evaluated with different metrics (FSE or lppd) using either in-sample
or out-of-sample data.

the amount of available training data is decreased. As for simulation analyses, when

one considers in-sample testing, POT most often is the best model. However, when

out-of-sample performance is considered, the superior performance of the HMEV

approach becomes clear. If one focuses on global measures of the probability distri-

bution of estimation uncertainty for all yearly maxima, such as the lppd, the POT

approach still seems superior for large training sample sizes. However, when the pre-

dictive uncertainty for extreme yearly maxima is examined (i.e. the FSE), arguably

the main goal of extreme value analysis, the HMEV approach outperforms the other

methods for all sample sizes. The difference between in-sample lpml and lppd, which

provides a measure a model overfitting tendency, consistently depicts HMEV as the

approach less prone to overfitting. See Figures B.1 and B.2 in Appendix B.
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I also provide a spatially-explicit representation of model performances, by map-

ping, in Figures B.7 and B.8, reported in Appendix B, the best model for each

station. The spatial distribution of the results overall appears to be consistent over

the spatial domain of the study, even though some differences emerge between West-

ern and Eastern USA. It is expected that, in specific locations, different precipitation

regimes might produce distributions of daily rainfall which are not well captured

by the stretched exponential model used in the present formulation of the HMEV.

While producing location-specific models goes beyond the scope of the present study,

the hierarchical structure of HMEV can be flexibly adapted by using different para-

metric families for the parent distribution, while benefiting from the high predictive

performance outlined in our analysis.

As a representative application of the HMEV method to the computation of ex-

treme value rainfall quantiles, I report with different colors in Figure 3.10 the mag-

nitude of the 50-year daily rainfall event estimated for the set of stations analyzed

here. For each station, following the analysis performed above, I randomly extract 50

years of record, repeating the procedure Rg = 10 times and averaging the results, so

as to have a common same sample size for all records. As before, quantile estimates

are obtained by numerically inverting the HMEV posterior predictive distribution,

and computing the average quantile values over 4000 MCMC samples. This analy-

sis provides a spatially explicit prediction for the 50-year event magnitude over the

Continental United States, which as an example underlines the high quantile values

corresponding to the South East, the Gulf coast, and the Pacific North West. The

coherent probabilistic nature of the Bayesian HMEV can be exploited to assess the

uncertainty of extreme value quantiles. For example, in Figure 3.10 the width of

the 90% credibility intervals for a return time of 50 years—normalized for the cor-

responding quantile—is proportional to the size of each dot. This relative measure
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of uncertainty appears to be larger in the Western USA, characterized by a drier

climate and lower values of 50-year quantiles.

Figure 3.10: Spatial distribution of the HMEV quantiles (color shading) and re-
lated normalized uncertainty (dot dimension) corresponding to an average recurrence
interval of Tr = 50 years computed from 50-years samples extracted from the 479
USHCN stations included in the analysis. Normalized uncertainty computed as the
ratio between the width of the 90% credibility interval normalized and the posterior
expected value of the quantile.

3.5 Discussion

I introduced a Bayesian hierarchical model to make inference on extreme values of in-

termittent sequences, with underlying model parameters possibly varying over time.

I applied this approach both to synthetic and real data, testing its performance in

estimating high quantiles, and provided a benchmark of its performance against some

commonly used extreme value models. The proposed approach significantly reduced

uncertainty in extreme value frequency estimation, which I attribute to the increased

amount of observational information used and to the ability to leverage available

information regarding the parent distribution describing the underlying physical pro-
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cess. This advantage becomes crucially important for short observational time series,

and especially for large extremes in the right-most part of the distributional tail.

My findings show that, when the underlying process generating the observations

xij is well approximated by a parametric model—such as the Weibull distribution

adopted here— use of an asymptotic extremal model leads to the loss of a large

amount of information and to the subsequent inflation of the posterior uncertainty.

While the ability of the proposed model to describe the tail of different pro-

cesses appears to be dependent on the specific marginal distribution of xij, the model

structure introduced here exhibits narrower posterior predictive intervals and a lower

effective number of parameters when compared to other widely used extreme value

models that do not attempt to account for the entire parent distribution. HMEV

quantile estimates, in fact, exhibit reduced uncertainty even when the (synthetic)

data being analyzed is not generated by the specific parent distribution of ordinary

values chosen in the HMEV formulation. Therefore, a clear advantage in applying

the HMEV methodology is that posterior predictive tests can be employed to check

in-sample goodness-of-fit, and overfitting is minimized.

In addition to these advantages, HMEV, based as it is on the specification of a

distribution for all observations, is also amenable to possible extensions and general-

izations. For example, at locations where different event-generating mechanisms are

present [LL13, MZAM19], one can quite naturally adopt more complex specifications

for the distribution of event magnitudes, such as mixtures of parametric distributions,

as was done in some MEVD formulations [MZAM19, MVM20]. Finally, the HMEV

framework also naturally lends itself to extensions aimed at including possible system-

atic changes in the probability distributions of ordinary values, e.g. associated with

trends in low-order moments derived from observations, climate model projections,

or from physical principles that may provide insight into future rainfall characteristic
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magnitudes (e.g. Clausius-Clapeyron scaling of atmospheric water-holding capacity

[AS08]).
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Chapter 4

Downscaling of Extreme Rainfall

Statistics from Satellite Observations

Adapted from: Zorzetto, Enrico, and Marco Marani. ”Downscaling of rainfall ex-

tremes from satellite observations.” Water Resources Research 55.1 (2019): 156-174.

4.1 Introduction

Even though systematic rainfall observations date back more than two centuries

[NW08, CBD+13, MZ15], and rain-gauge networks are quite developed internation-

ally [MDV+12], the global density of rainfall observations still exhibits large gaps over

continents [KBH+16], with oceans remaining largely ungauged. In recent decades,

advances in rainfall remote sensing technologies have contributed to attenuate this

chronic lack of spatial information and have made available vast rainfall datasets, with

unprecedented resolution in space and time. Rainfall satellite estimates from differ-

ent sensors (chiefly radar, microwave imagery and infrared sensors) are now routinely

combined to produce global grids of Quantitative Precipitation Estimates (QPE).

Satellite QPEs, and in particular observations from the Tropical Rainfall Measuring

Mission (TRMM) [HBN+07] and the Global Precipitation Measurement (GPM) mis-

sion [HBB+14], greatly improve our knowledge of global precipitation dynamics, with

implications for a wide variety of water-related disciplines, from water resources engi-

neering, to risk evaluation and management, to ecology and eco-hydrology. However,

the quantification of the accuracy associated with satellite QPEs encounters the basic
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difficulty of quantitatively comparing them with reference observations at the ground,

which are inevitably performed at much smaller spatial scales. In fact, it is well known

that, when a rainfall field is aggregated over an area, its statistical properties change

with the size of the averaging area and according to the correlation properties of

the rainfall field itself. These scale properties of rainfall fields have been investigated

both from the point of view of random processes [Bel87, CI88, CKO02, Mar05, Van10]

and using the formalism of random cascades [SL87, GW93, OG96, NB15]. A cen-

tral problem is developing relations between the properties of rainfall averaged over

coarse spatial scales (as in the case of remote sensing QPEs, with common resolutions

varying between 101 km2 and 102 km2), to those measured at a point in space, the

reference source of rainfall observations.

Given the important implications associated with an accurate quantification of

rainfall from space, calibrating, testing, and quantifying uncertainty in satellite QPEs

using rain-gauge data is an important open problem [HH08, VK07, PLW10, MT13,

LSLC16]. The comparison of ground-based radar and satellite sensor statistics has

been object of extensive research. Kirstetter et al. [KHG+12] introduced a framework

to evaluate the performance of space-borne precipitation sensors based on ground

radar mosaics. They proposed a weighted average of ground radar observations which

accounts for the power gain function of the space-born sensor, assumed to be Gaus-

sian. Gebremichael et al. [GK04a] investigated to what extent radar-derived rainfall

products can capture small scale rainfall variability. They employed a point to area

conversion of the correlation function and found that radar-estimated correlations

tend to be lower than those observed by rain gauges at spatial distances shorter than

5km.

Müller and Thompson [MT13] proposed a bias correction procedure for TMPA

3b42 QPEs based on a stochastic representation of the rainfall field. Rainfall statis-
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tics observed at measuring stations are interpolated and used to estimate properties

of the rainfall field at the TMPA pixel scale and correct TMPA QPEs accordingly.

While the method can be used for extrapolations to ungauged pixels, its calibration

requires observations from a sufficiently large number of measurement stations within

the same TMPA pixel to fit the stochastic model to the rainfall field. A downscaling

technique that only makes use of TMPA-measured rainfall statistics (mean, vari-

ance and number of wet days) was recently proposed [DJRRI15] based on a simple

stochastic model of point rainfall [CI88]. While the proposed technique does not

require knowledge of ground information for its calibration, the assumptions made

on the point rainfall process (chiefly, the exponential distribution of rainfall duration

and intensity) hinder its application to the study of rainfall extremes.

The estimation of extreme rainfall return levels is particularly affected by the

uncertainty and measurement errors that characterize space-borne rainfall retrievals,

and is further hindered by the short observational coverage provided by satellite

sensors (currently less than 20 years for TRMM and GPM retrievals). Under these

premises, the quantification of the frequency of occurrence of rainfall extremes is

inherently difficult, as large quantiles are, by definition, poorly sampled in short

observational time series. What is more, traditional extreme value analyses, based

on the use of just annual maxima (AM), or of relatively few values over a high

threshold [Col01], discard most of the information contained in already short QPE

time series, and are thus extremely sensitive to the observational uncertainty of a

small number of observations. As a result, standard extreme value analyses applied

to QPE data are inevitably affected by large and difficult to quantify uncertainties,

that severely limit its use for quantitative predictions [ZLH15].

The examination of the literature points to significant gaps in 1) relating the

statistics of rainfall observed at coarse spatial scales with those observed at a point,
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2) the use of remote sensing observations to derive extreme rainfall properties. The

main objective of this Chapter is to bridge these gaps by introducing a novel sta-

tistical downscaling methodology with specific focus on extreme rainfall stastistics.

To this end, I build a framework that 1) relates daily rainfall statistics from area-

integrated remote sensing QPEs to those from point measurements at the ground,

and 2) infers extreme rainfall statistics via the Metastatistical Extreme Value Distri-

bution (MEVD) [MI15, ZBM16, MNAM18]. This approach simultaneously addresses

the issues related to the short sample sizes and to the coarse spatial resolution of satel-

lite QPEs. MEVD links the probability distribution of extreme events to the entire

underlying distribution of ”ordinary” daily events, here defined as all the daily rain-

fall accumulations greater than a fixed and low threshold. The MEVD approach has

been shown to significantly reduce estimation uncertainty, with respect to traditional

extreme value analysis methods, particularly for values of the average recurrence in-

terval (Return Time, Tr) larger than the length of the time series used for calibration

[ZBM16]. Furthermore, MEVD estimates are defined using the entire set of observa-

tions, rather than just a portion of the distributional tail, and thus produce estimates

that are less sensitive to the observational uncertainty and to the presence of outliers

in QPE datasets. Marra et al. [MNAM18] recently tested the MEVD framework

using synthetic rainfall time series perturbed with errors typical of satellite observa-

tions, finding that the method is more robust to these source of error than traditional

extreme value models, thus supporting this first application of the method to satellite

QPEs.

This MEVD-based downscaling methodology is here tested using TRMM TMPA

Research Version 7 3b42 QPEs over the Little Washita watershed, Oklahoma, where

the dense Micronet rain gauge network allows an accurate description of the spatial

distribution of rainfall [ESC+93, VK07, VKS09].
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4.2 Materials and Methods

The instantaneous rainfall rate at the ground can be regarded as a three-dimensional

random field i(x, y, t), described by a suitable set of coordinates (here t indicates

time, and x and y are the rectangular coordinates of a point on Earth’s surface).

Both rain gauges and remote sensing observations provide an integral representation

of i(x, y, t) on a finite space-time domain centered at a point (xc, yc, tc), which can in

general be expressed as

hL(xc, yc, tc) =
1

LxLy

∫ xc+
Lx
2

xc−Lx2

∫ yc+
Ly
2

yc−
Ly
2

∫ tc+
T
2

tc−T2

i(x, y, t)dxdydt (4.1)

where the rainfall process i(x, y, t) is averaged over a rectangular spatial domain, with

sides Lx and Ly, and is integrated over a time interval T . For example, in the case

of traditional rain gauges, rainfall volume is recorded as an integral over finite time

intervals (e.g., hourly or daily), while the measurement can be regarded as being

performed at point in space, given the small integration area (order of 10−2 m2).

Conversely, the reflectivity fields retrieved by a radar may be regarded as average

values over a spatial domain corresponding to the size of a radar beam (order of

square kilometers). For example, retrievals by the precipitation radar (PR) on board

the TRMM mission are best interpreted as weighted averages within each radar beam,

with weights that depend on the characteristics of the sensor [KHG+12]. The time

scale of a radar retrieval is very short, as it is the result of the quasi-instantaneous

detection of hydrometeors within layers of the atmospheric column. Here I focus my

attention on the TMPA multi-sensor product, which can be regarded as pixel-average

QPEs, and perform my analyses on precipitation retrievals aggregated at the fixed
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daily time scale (Td = 24 hours)

h(x, y) =

∫ tc+
Td
2

tc−
Td
2

i(x, y, t)dt (4.2)

so as to investigate the effects of spatial averaging alone on the statistical properties

of satellite-sensed rainfall fields. To this end, in the next subsections (i) I introduce

a framework for linking the daily rainfall distribution at a point and its counterpart

averaged over an area of a given size, (ii) I present a methodology for inferring the

correlation structure of the rainfall field from satellite QPEs, and (iii) I combine this

information to estimate the MEVD at a point in space from satellite area-averaged

observations.

4.2.1 Scale-wise variation of the distribution of daily rainfall

The occurrence of daily rainfall at a point can be described by a stochastic process al-

ternating between dry and wet states. The probability distribution of this compound

process is characterized by a finite atom of probability in zero and its moments, in

particular its mean µc0 and variance σ2
c0

, differ from the corresponding statistics of

the wet process only (non-zero rainfall, with mean and variance µr0 and σ2
r0

respec-

tively). Here the first subscript refers either to the compound process (c) or to the wet

(rainfall being detected) component only (r), while the second subscript distinguishes

the process at a point (0) from the process averaged at the spatial scale of satellite

retrievals (L). L is characteristic linear scale of the satellite pixel measurement, de-

fined as the square root of the pixel area (L =
√
LxLy). While I am interested in the

distribution of ’wet’ events when studying extremes, it is necessary to also consider

the compound process as rainfall observations averaged at large scales also include

zero-rainfall areas.
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For the compound process, the reduction of variance connected with the spatial

averaging of the rainfall field can be expressed by a variance function of the form

γ0 (L) =
σ2
cL

σ2
c0

=
4

L2
xL

2
y

∫ Lx

0

∫ Ly

0

(Lx − x) (Ly − y) ρ(x, y)dxdy (4.3)

where σ2
cL

is the variance of the (compound) rainfall field averaged in a space

domain of area A = Lx · Ly corresponding to the QPE pixel size, σ2
c0

is its variance

at a point and ρ(x, y) is the spatial correlation function of the process, here assumed

to be quadrant symmetric [Van10]. While γ0 in general depends on the shape of the

area over which the average is carried out, here I apply the method to TMPA time

series, and therefore I assume that γ0 only depends on the linear characteristic scale

of the TMPA pixel, L.

The intermittent nature of rainfall fields implies that not only the variance of the

process (and its higher-order moments), but also the yearly number of wet days NL

of the averaged process will in general differ from the yearly number of wet days N0

observed at a point, as it is possible to have a pixel-averaged value of rainfall greater

than zero when only part of the pixel is actually wet [VMKM08]. Here I characterize

this effect by introducing a factor β0, defined as the ratio between the probability of

the pixel of size L being wet, prL , and the probability of any given point inside it

being wet pr0 , i.e., β0 (L) = prL/pr0 .

I require that the average of the rainfall process must remain constant when

averaging in space, so that µcL = µc0 , as a consequence of the conservation of mass.

However, the average of the wet process will not in general be conserved across scales,

such that

µr0 = µrLβ0 (4.4)

Analogously, the variance of the intermittent rainfall process can be linked to the
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variance of the wet events by means of the following relation, that holds at any spatial

scale (see Appendix C for its derivation)

σ2
c = σ2

rpr + µ2
r (1− pr) pr (4.5)

whence using the definition of the variance function γ0 from equation (4.3) I obtain

σ2
rL
prL + µ2

rL
(1− prL) prL = γ0

[
σ2
r0
pr0 + µ2

r0
(1− pr0) pr0

]
(4.6)

and thus, using equations (4.4) and (4.6), one can obtain the statistics of the

point process in terms of area-averaged quantities

σ2
r0

=
β0

γ0

[
σ2
rL

+ µ2
rL

(1− prL)
]
− µ2

r0
(1− pr0) (4.7)

Several parametric distributions have been proposed to model the non-zero daily

rainfall accumulations, ranging from exponential-type distributions to stable distri-

butions (e.g., see [GK54, MS00b]). Here I employ a Weibull distribution to describe

the wet component of the daily rainfall process across spatial scales. I note that

i) the Weibull distribution has been found to appropriately describe daily rainfall

across many different climates globally, while sharing a formal analogy with the

multiplicative nature of convective processes [FS97, WT05], and ii) the Weibull dis-

tribution describes both light- and heavy-tailed random variates with characteristic

scale through a parsimonious 2-parameter model [LS98]. However, I note that the ap-

proach I propose here is quite general, and can be tailored to processes characterized

by different 2-parameter distributions with only minor modifications.

The Weibull distribution is here parametrized with a scale parameter C and a

shape parameter w, so that the cumulative probability distribution of the random
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variable HL, representing daily rainfall accumulations at the spatial scale L, reads

P (HL < hL) = 1 − exp [− (hL/CL)wL ]. The first two central moments of this distri-

bution (i.e., its mean and variance) are respectively

µrL =
CL
wL

Γ

(
1

wL

)
(4.8)

and

σ2
rL

=
C2
L

w2
L

[
2wLΓ

(
2

wL

)
− Γ

(
1

wL

)2
]

(4.9)

where Γ denotes the Gamma function. Eq. (4.4) applied to the case of a Weibull

variate yields a relation linking the shape and scale parameters of the process at two

different scales (
C0

w0

)2

= β2
0

(
CL
wL

)2 Γ2
(

1
wL

)
Γ2
(

1
w0

) (4.10)

A similar argument can be applied for the variance of the compound process, defined

in equation (4.7), using the expression for the Weibull moments (equations (4.8) and

(4.9)) and eq. (4.10)

γ0β0

2w0Γ
(

2
w0

)
Γ2
(

1
w0

) =
2wLΓ

(
2
wL

)
Γ2
(

1
wL

) + (γ0 − 1) prL (4.11)

Eq. (4.11) is nonlinear and can be solved numerically to determine the value of the

shape parameter, w0, at a point in space. Finally, eq. (4.10) yields the value of the

scale parameter C0 at a point. This procedure can be used to infer the parameters of

the probability distribution of non-zero rainfall values (the ’wet process’) at a point

from the parameters describing the distribution of area-averaged values, provided the

values of γ0 and β0 are known.

Here I define a wet day (i.e., a day in which an ’ordinary’ rainfall event occurs)
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as a 24-hour period characterized by rainfall amounts greater or equal to q = 1

mm. This threshold value is assumed constant across spatial scales and different

data sources. Defining wet days using a fixed and low threshold is necessary when

applying the method to data from both rain gauges and satellite sensors, which are

inherently characterized by different detection thresholds. The 1 mm threshold value

is coherent with the guidelines by the World Meteorological Organization [KTZZ09].

The analysis proceeds by applying the Weibull distribution of ordinary daily rain-

fall accumulations to the excess above the threshold, y = h − q. I note that the

distribution of y corresponds to the distribution of the rainfall accumulations h con-

ditional to being above threshold: P (Y ≤ y) = P (H ≤ y + q|H > q). Accordingly,

the number of wet events and their statistics are computed for the population above

this detection threshold.

I also note that the above argument can be extended to link the pdf of daily rainfall

between two spatial scales L1 and L2, with e.g., L1 > L2. In this case, the ratios of the

variance and wet fraction of the process averaged at these two spatial scales can be

respectively expressed as γ(L1, L2) = γ0(L1)/γ0(L2) and β(L1, L2) = β0(L1)/β0(L2).

Next, I explore how the value of the two ratios, γ0 and β0, can be estimated from

satellite retrievals.

4.2.2 A Model for the correlation structure of daily rainfall

The equations relating the Weibull distributional parameters at a point in space to

those valid for areal-averaged rainfall (eqs. (4.10) and (4.11)) require knowledge of

the variance function γ0 (eq. (4.3)), which, in turn, depends on the correlation struc-

ture ρ (x, y) of the rainfall field. Relating the correlation structure of the continuous

stochastic field (whose realizations are the rain gauge point observations) to that of
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the same field averaged over finite areas (whose realizations are the satellite QPEs)

requires additional attention to the issue of spatial scale. In fact, spatial averag-

ing does not only affect the probability distribution of rainfall daily totals, but it

also modifies the correlation between their values at two points in space when their

distance is commensurate with the characteristic length scale L of the averaging area.

The covariance between the local averages hL and h′L of the precipitation field

performed over two different pixel areas with the same characteristic size L can be

expressed as [Van10]:

Cov [hL, h
′
L] =

σ2
c0

4 (LxLy)
2

3∑
k=0

3∑
l=0

(−1)k (−1)l 4 (Lx,k, Ly,l) (4.12)

where σ2
c0

is the variance of the process at a point, and the quantities 4(Lx,k, Ly,l)

are the analogues of the variance function in eq. (4.3) valid for the integral of the

random field over a finite area of sizes Lx,k and Ly,l

4(Lx,k, Ly,l) = 4

∫ Lx,k

0

∫ Ly,l

0

(Lx,k − s1) (Ly,l − s2) ρ(s1, s2)ds1ds2 (4.13)

The set of distances Lx,k and Ly,l (with k, l = 0, 1, 2, 3) encodes all the necessary

information on the relative position of the two pixels over which the averages of

the rainfall field are computed. If ∆x and ∆y are the distances, along the x and y

direction respectively, between the centers of two pixels, Lx,k is defined as

• Lx,0 = ∆x− Lx (distance between the end of the first pixel and the beginning

of the second, along coordinate x)

• Lx,1 = ∆x (distance between the beginning of the first pixel and the beginning

of the second, along the coordinate dimension x)

• Lx,2 = ∆x + Lx (distance between the beginning of the first pixel and the end
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of the second, along the coordinate dimension x)

• Lx,3 = ∆x (distance between the end of the first pixel and the end of the second,

along the coordinate dimension x)

Analogous definitions hold for Ly,l along the y direction.

The expression of the covariance (eq. (4.12)) can be used to obtain the correlation,

ρhL,h′L , between the two pixel-averaged time series as a function of their relative

position:

ρhL,h′L =
Cov[hL, h

′
L]

σhLσh′L
=

∑3
k=0

∑3
l=0 (−1)k (−1)l 4 (Lx,k, Ly,l)

44 (Lx, Ly)
(4.14)

where the covariance of local averages has been divided by the variances σhL and σh′L

of the process averaged over the two pixels respectively.

If a parametric analytical expression is available for the correlation ρ(x, y) of

the precipitation field at a point, then equation (4.14) can be used to determine its

parameters by matching the right hand side with the inter-pixel correlation observed

from a satellite-sensed rainfall field. Note that, under the hypothesis of an isotropic

rainfall field, the two-point correlation ρ (x, y) only depends on the distance between

two points in space, so that it can be expressed as a function ρ(d) with d =
√
x2 + y2.

Here I use a correlation structure characterized by an exponential kernel (EK)

and a power-law tail [Mar03].

ρ(d) =

 e−
αd
ε d < ε(

ε
ed

)α
d ≥ ε

(4.15)

This expression is continuous with continuous derivative in d = ε, and can describe

both light- and heavy-tailed families of correlation decay. In the following, I apply
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this model to test the ability of eq. (4.14) of reproducing the variation in the rainfall

spatial correlation between the satellite pixel and the point scale.

The spatial correlation of the process averaged at the pixel scale is obtained by

directly computing the value of the Pearson correlation coefficient between pairs of

TMPA pixels located at different distances. While the Pearson correlation is known

to be a possibly biased estimator when applied to a skewed and intermittent process

such as rainfall [HKC01], alternative estimates would require ad-hoc hypotheses on

the rainfall distribution and on the conditional probability of zero rainfall [VMKM08].

I therefore choose to use the classic Pearson correlation estimator, which entails the

minimal number of additional assumptions.

If ns TMPA grid cells are used in the estimation of the spatial correlation, m =

ns(ns − 1)/2 estimates of the correlation (ρj, for j = 1, 2, ...m) are obtained, each

corresponding to a distance dj between the centers of the pair of pixels considered.

The TMPA-observed spatial correlation is then assumed to match the correlation

function of the area-averaged process, given by eq. (4.14), which depends on the

unknown parameters ε and α defining the point correlation function. A Sum of

Square Errors (SSE) is computed as

SSE (ε, α) =
m∑
j=1

[
ρhL,h′L (dj; ε, α)− ρj

]2
(4.16)

The quantity SSE(ε, α) in equation (4.16) is then minimized using the L-BFGS-

B algorithm [BLNZ95] to obtain a best estimate of the parameters (ε, α). Once the

correlation function at a point is known, it can be used in eq. (4.3) to compute the

variance reduction function, γ0 (L), necessary to obtain the distribution of rainfall

accumulations at a point.

When computing the variance and covariance of local averages (eqs. 4.3 and 4.14)
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I assume a square pixel so that Lx ' Ly ' L. Therefore, γ0 = γ0(L) is simply a

function of the linear characteristic scale L of the pixel.

4.2.3 Downscaling of the yearly number of rainfall events

The last piece of information necessary to reconstruct the pdf of daily rainfall at a

point is the ratio β0, or ’intermittency function’, which accounts for the variation

in the yearly number of rainfall events when the rainfall field is averaged over the

pixel area. Here I propose an application of Taylor’s Frozen Turbulence Hypothesis

[Tay38] to use TMPA information at finer temporal resolution (down to three hours)

to infer the sub-pixel scale intermittency of the rainfall process at the daily scale.

The Taylor hypothesis has been previously applied to study the space-time scaling

of rainfall fields (e.g., [Dei00]) and was employed to compare precipitation products

at different spatial scales [HEM+15] . Here I apply a similar argument to estimate

the spatial wet fraction of the compound rainfall field from its variability in time as

inferred from TMPA 3b42 data only.

When applied to rainfall measurements, the Taylor hypothesis states that sta-

tistical properties of the rainfall field sampled at a spatial aggragtion scale X and

instantaneously in time are equivalent to the same properties sampled at a temporal

scale T = X/U and at a point in space, where U has the meaning of an average

’advection’ speed. Therefore, according to this hypothesis, properties of the field

(such as the wet fraction pr of the compound rainfall process), when advected past

a rain gauge, do not change significantly over time. This assumption holds, for ex-

ample, for turbulent flows characterized by small turbulent intensity (i.e., the root

mean squared longitudinal velocity fluctuation must be small compared to the mean

advection speed) [Stu12].
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If the Taylor hypothesis holds exactly, then the contour lines where pr(X,T ) is

constant are straight lines in (X,T ) space. More generally, the advection velocity may

vary with the aggregation scale of the process, consistent with the rainfall process

being described by a multifractal field [EBH+15]. Following this assumption, I define

an advection velocity U as the ratio between differences of integration scales in space

and time respectively that would produce the same observed difference in the quantity

pr.

Here I estimate the wet fraction pr using the TMPA 3b42 precipitation time series

integrated at different temporal (T = 3, 6, 9, 12, 24, 36, 48 hours) and spatial scales

(X = L, 2L, 3L, corresponding to local averages over one TMPA pixel, 2x2 and 3x3

pixels respectively), as shown in Figure 4.1. The measured values of pr are then

interpolated in time (here using np = 1000 values of the temporal scale T in the

range from 3 to 48 hours), and the local slope of the pr contour levels is used to

estimate the local advection velocity U .

I select a target aggregation scale (XG, TG) (e.g., the aggregation scale in space and

time of rain gauge measurements) and identify the unique values X̂0 and Û such that

the line X = X̂0 + Û · T passes through the target scale and has a slope equal to the

local advection speed. The local advection speed is evaluated as the slope between two

points with spatial aggregation scales X = L and X = 2L (corresponding to the local

averages over 1 pixel and 2x2 pixels respectively) and temporal scales determined by

two conditions: i) the two points share the same value of the observed wet fraction

p∗r, and ii) when extrapolating to the rain gauge scale, the resulting line passes

through the target scale (XG, TG) (blue line in Figure 4.1). These two conditions

together uniquely determine the two quantities X̂0 and Û , and thus can be used to

compute the unknown property p∗r at the rain gauge scale simply extrapolating TMPA

observations. The intermittency function can then be evaluated as β0 = pr(L, Td)/p
∗
r,
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i.e., as the ratio between the wet fraction at the 1-pixel, daily scale pr(L, Td), and the

wet fraction p∗r extrapolated at the rain gauge scale (XG, TG). This procedure assumes

that the contour lines of the wet fraction in the (X,T ) plane can be approximated

to straight lines for spatial scales smaller than 2L.

4.2.4 Extreme value model

I have seen how my hypotheses on the spatial structure of the rainfall fields yield a

model for the marginal distribution of daily rainfall at a point. This information can

now be used to estimate rainfall extremes. I base my analysis on the MEVD [MI15,

ZBM16], which expresses the cumulative distribution function of block-maxima, ζ (h),

of independent variates (”ordinary values”) distributed according to an underlying

parent distribution with cumulative probability function P (H ≤ h) = F (h; ~θ), as

ζ(h) =
∞∑
N=0

∫
Ω~θ

g(N, ~θ)F (h; ~θ)Nd~θ (4.17)

where ~θ is the set of parameters describing the parent distribution F (h, ~θ), Ω~θ is their

population, N is the number of events/block, and g(N, ~θ) is the joint probability den-

sity function of N and ~θ. In order to avoid ad-hoc assumptions about the expression

for g(N, ~θ) [ZBM16], I use a sample mean in place of the ensemble mean when eval-

uating (4.17) from a sample time series of s years. I further adopt, as customary in

extreme precipitation analysis, 1-year blocks, and, for F (h; ~θ), a Weibull distribution,

such that the ~θ = (C,w) and the MEVD cumulative distribution function of yearly

maxima becomes:

ζ(h) =
1

s

s∑
j=1

[
1− e

−
(

h
Cj

)wj]Nj
(4.18)
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where Weibull parameters and number of wet days (Cj, wj, Nj) are allowed to vary

across years. Zorzetto et al.[ZBM16] extensively study the properties of MEVD and

find, over a large dataset of long daily rain-gauge time series, that it significantly

reduces extreme-value estimation uncertainty with respect to traditional approaches

hinged on the Generalized Extreme Value distribution when only relatively small

samples (with respect to the return time of interest) are available for calibration.

In the present context, the parameters of the Weibull distributions in eq. (4.17)

are estimated for each year on record (j = 1, 2, ..., s) from the TMPA dataset and

then downscaled to the point scale following the procedure described in the previous

sections. The Weibull distribution is fitted by means of the probability weighted

moments approach [GLMW79], following [ZBM16].

While the size of the estimation window over which Weibull parameters are esti-

mated (not to be confused with the blocks over which maxima are determined, which

typically remain yearly in applications) can in general be varied, I limit here my anal-

ysis to yearly estimates. I note that in the case of very dry climates (i.e., low number

of events/year) this choice may not be optimal, and longer windows could improve

parameter estimation. On the other hand, using estimation windows that are longer

than necessary is not advantageous as it reduces the variability of extremes associated

with interannual variabilities (and, possibly, with systematic long-term changes). I

suggest that such metastatistical source of variability in the ordinary events plays an

important role in the emergence of fat-tailed extreme values [ZBM16]. This is in gen-

eral justified as the rainfall process is the result of a mixture of different mechanisms

that appear every year with different frequencies and thus determine a variation in

shape and scale parameters of the parent distribution of ordinary rainfall values.
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4.2.5 Satellite rainfall data

The Tropical Rainfall Measurement Mission (TRMM) Multisatellite Precipitation

Analysis (TMPA) 3b42 dataset provides a 19-years long, quasi-global coverage of

tropical and subtropical regions (Latitudes between −50◦S and +50◦N), with re-

markable spatial (0.25◦ x 0.25◦) and temporal (3-hourly) resolution. The TMPA

3b42 version 7, research-quality, dataset provided by NASA and used in this study

can be accessed at

https://mirador.gsfc.nasa.gov/. TMPA estimates are obtained by merging in-

formation from a set of different sensors (primarily passive microwave and infrared)

characterized by differing accuracy and resolution, with the purpose of improving

the overall quality and coverage of the final (level 3) product. As a final step,

ground-based gridded precipitation data from the Global Precipitation Climatol-

ogy Project (GPCP) are used to correct TMPA precipitation estimates to preserve

ground-estimated monthly means (see [HBN+07] for details). For the purpose of this

study, I extracted a lattice of 3x3 TMPA pixels centered at the point with coordinates

34.785N,−98.125E (see Figure 4.2) to match the ground-based data used for testing

and validation of the methods. TMPA 3b42 gridded rain rate fields are available

every three hours. Here I regard these values as average quantities over the observa-

tion interval. After correcting for the local time zone (since data are reported at a

nominal observation time), I compute daily totals based on the three-hourly rainfall

rates. The complete TMPA record in the interval 1998-2015 was used in the analysis,

after testing that for each QPE time series the yearly fraction of missing data was

less than 10%. Missing data values were set to zero.
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4.2.6 Ground-based observations

To test estimates of point-value extremes from TMPA data, I take advantage of a

dense rain gauge network (ARS Micronet), located in the Little Washita River water-

shed, Oklahoma [ESC+93]. The network consists of 42 tipping bucket rain gauges, 23

of which fall within one single pixel of the TMPA 3b42 gridded product (see Figure

4.2). This particular network was selected to test my methodology because of (i)

the remarkable spatial density of the stations, and (ii) the extensive characterization

of TMPA performance available for this particular location (e.g., [VK07, HH08]). I

identify and use for my analysis a subset of the rain gauges in the network that fall

within a single TMPA pixel and for which a continuous 19-year record exists (1998-

2016), providing a perfect temporal overlap with the TMPA dataset. The daily data

from the Oklahoma Micronet were obtained from http://ars.mesonet.org/ and

were pre-processed by removing data that the were marked as affected by certain or

highly probable instrumental error [ESC+93].

For testing downscaling results with ground observations, I use the Micronet time

series for which an almost complete record exists in the interval 1998-2015, so as to

match exactly the temporal range of TMPA QPEs. Of the 23 Micronet stations over

the pixel centered in 34.785N,−98.125E, only 7 have a continuous record in this

range of years (with a maximum number of missing values/year less than 42). I use

this subset of the stations to fit the distribution of daily rainfall accumulations at a

point and to compare it with the corresponding TMPA pixel-average and downscaled

distributions. For testing the TMPA-downscaled spatial correlation function, all

stations in the Micronet network are used.

Due to the limited length of the TMPA dataset used in this study, it is desider-

able to use an independent, and longer, set of observations in close proximity to the
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Micronet, to be able to empirically evaluate quantiles with relatively large return

periods. For this reason, I selected 4 stations from the National Oceanic and Atmo-

spheric Administration (NOAA) Global Historical and Climatology Network Daily

(GHCND) dataset (see Table 4.1). For each station, only years with less than 10% of

missing years were included in the analysis. The stations were selected on the basis

of (i) the length of the record (set to be at least 50 years), and (ii) their proximity to

the Micronet stations. As shown in the following, the precipitation field is still highly

correlated at distances larger than the maximum distance between these stations,

suggesting that observations from the GHCND gauges and the Micronet stations can

be regarded as samples of the same rainfall process.

4.3 Results

4.3.1 Correlation structure and downscaling of daily rainfall

distribution

I start by comparing the spatial correlation function computed from the 9 TMPA

time series corresponding to the pixels covering the study area, the downscaled point

correlation function obtained by the minimization of eq. (4.16), and the correlation

independently estimated using the Micronet rain gauges at the ground (Figure 4.2).

The analysis of inter-station correlation for the Micronet network reveals that this

site is characterized by a slowly decaying correlation (Figure 4.3). The values of

the parameters defining the correlation model indicate a decay slower than predicted

by a simple exponential (the transition to power-law behavior occurs at about ε=14

Km, see Table 4.2), suggesting caution in using the common exponential correlation

functions arising from spatial Poisson models [CI88, DJRRI15]. The rainfall fields
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obtained from the TMPA 3b42 dataset exhibit greater spatial correlation than those

from the point process, as expected. To test how well the correlation structure of the

continuous rainfall field can be reconstructed based on TMPA data alone, I minimize

the SSE (4.14) and determine the parameters (ε and α) describing the point to

point correlation. Figure 4.3 shows that the proposed downscaling procedure yields

correlation values which are consistent with the point correlation values estimated

from the Micronet network observations (see Table 4.2 for the specific parameter

values). For distances larger than 40 Km (extrapolating beyond the range of distances

available for fitting the spatial correlation function), the downscaled correlation model

appears to decay faster than the one obtained from fitting the point observations.

This evidence confirms the importance of correctly accounting for the area-averaged

nature of remotely-sensed information when comparing correlation functions from

satellite and ground-based precipitation observations. The downscaling exercise was

also repeated by keeping the exponent α constant across scales, and by solving the

optimization of eq. (4.16) only to determine the value of ε, the scale parameter

of the correlation function at a point. This yielded a similar result to the one ob-

tained by minimizing both parameters (Figure 4.3). Application of eq. (4.3) using

the TMPA-downscaled spatial correlation function yielded a value of the variance

reduction function γ0(L) = 0.89 between the pixel and the point scale.

Next, I compare the values of the intermittency ratio β0 obtained by applying Tay-

lor’s hypothesis as described in Section 4.2.3 with ground and satellite observations

averaged at different scales. The procedure based on the Taylor hypothesis yields a

value of β0(L) = 1.09, slightly larger than the value obtained by averaging the inter-

mittency ratio from Micronet time series measured at the ground (NL/N0 = 1.05).

Figure 4.4 shows a comparison of the yearly number of wet days distribution observed

at the ground (Micronet stations) with the corresponding values at the pixel scale.
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The distribution of NL obtained from TMPA QPEs (SL) and by averaging rain gauges

at the ground (GL) both exhibit a larger mode when compared to the point values

observed at single rain gauges (Gi). I then apply the Taylor hypothesis to also obtain

estimates of the number of wet days N0 at a point in space. The distributions of N0,

obtained respectively from downscaling gauge average (Gd) and TMPA QPEs (Sd),

exhibit lower mean and median than the original distributions of NL, yielding results

consistent with the distribution of values observed by rain gauges at the ground.

I next illustrate the application of the downscaling approach to the transformation

of the pdf of rainfall values averaged/observed at a coarse scale to the pdf of rainfall

values at a finer spatial scale. Before applying the method to infer extreme value

statistics at a point, I first test how well the method reproduces the distribution of

ordinary rainfall values at different spatial scales. To do so, I apply the downscaling

method to Weibull parameters obtained fitting the entire available satellite and rain

gauge time series. To downscale these probability distributions of ordinary events,

I proceed as follows. At the coarse scale, the Weibull parameters are estimated by

means of the probability weighted moments technique [GLMW79]. I then estimate

the values of the parameters at the point scale by use of the downscaling relations,

eqs. (4.10) and (4.11), using the values of β0 and γ0 obtained from TMPA time series.

I first select the Micronet stations within the pixel centered in 34.875N,−98.125E

(central pixel in Figure 4.2) with at least 18 years of data, in order to obtain a perfect

overlapping with the time interval of the TMPA dataset, and compute their average

time series. The downscaling procedure is then applied to this ’exact’ areal average

rainfall to test whether the approach can recover the distribution of daily rainfall

accumulations at a point. Results show that the downscaling procedure provides a

good estimation of the distribution at a point (Figure 4.5a), which is within the range

of variability of the Micronet stations at the ground. Comparison with the TMPA
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daily time series over the same pixel shows that its distribution closely resemble

the one obtained from data observed at a point (Figure 4.5b). In both cases, the

magnitude of the scale correction directly depends on the decay of the correlation

function, which exhibits a long tail.

Given the large spatial extent of the correlation over the study area, and in order

to more stringently test the downscaling approach formulated here, I consider pro-

gressively coarser data obtained by averaging over 2 x 2 pixels (linear characteristic

scale 2L) and over 3 x 3 pixels (scale 3L) centered in −98.125 E, 34.785 N (see lattice

in Figure 4.2). Again, in order to test the downscaling method using homogeneous

observations at different scales, I focus my attention on satellite estimates only, per-

forming the downscaling from scale 3L to scale L (a single pixel) and from 3L to 2L.

This application of the downscaling method confirms that the methodology, even

when applied to the coarse observations at the 3L scale, is able to correctly repro-

duce the exceedance probability distribution at a smaller spatial scales (downscaling

from scale 3L to scales L and 2L are featured in figures 4.6a and 4.6b respectively).

The shape of the exceedance probability distribution changes more markedly in this

case, as large values become significantly less likely at coarser aggregation scales (see

green and red lines in Figure 4.6). Overall, I find a better performance when the

method is applied and tested using homogeneous data (using either TMPA QPEs

or gauges averaged at different spatial scales), while some discrepancy exists when

gauge and satellite data are compared, as in Figure 4.5b. These findings suggest that

such added differences can be attributed to observational limitations affecting remote

sensing QPE values.
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4.3.2 Extreme value analysis

After testing how the distributions of ordinary values can be reconstructed at a

small spatial scale given knowledge of the distribution at the TMPA pixel scale, I

now turn to the inference of the extreme value distribution at the point scale. I

first apply MEVD to the stations of the Little Washita Micronet, despite the short

record length available. In this case, the empirical quantiles observed at the ground

appear to be somewhat overestimated (Figure 4.7), similarly to what happens when

downscaling the Weibull parameters from the pixel-average time series. I explain

this behaviour by recalling that the MEVD yields an optimal performance when the

return time for which a quantile is estimated is greater than the sample size used

for the estimation [ZBM16]. In the present case the same sample is used for both

calibration and validation, and the relatively short sample limits the range of return

times that can be explored in the comparison with ground observations.

Hence, to more accurately investigate the performance of the proposed model

over a wider range of return times, I compare MEVD downscaling results with those

obtained from rain gauge stations from the GHCND network, with record lengths

ranging from 72 to 115 years (Table 4.1). For each station, the corresponding TMPA

pixel time series was used to fit the Weibull distribution and estimate the values of

parameters CL and wL, which were subsequently downscaled to the point scale (C0

and w0). Downscaled parameter values were used to construct the MEVD according

to equation (4.18) and estimate quantiles for a set of return times up to the length

of the available time series. Comparisons are then performed with the empirical

quantiles, i.e. the actual annual maxima observed. Results are also comparatively

evaluated with estimates obtained by directly fitting GEVD and MEVD to rain

gauge-measured time series (Figure 4.8). High quantile estimates obtained fitting
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GEVD and MEVD (to time series of annual maxima and ordinary rainfall events,

respectively) both exhibit a good match with the empirical quantiles extracted from

the same time series. While some overestimation of extreme quantiles is still seen

for one of the stations for estimates downscaled from TMPA QPEs, the comparison

with longer observational time series shows a good match with empirical quantiles.

The effect of the specific detection threshold used to detect ordinary rainfall events

is also evaluated (Figure 4.9). For small values of the threshold (q < 1 mm), the esti-

mated quantiles seem to depend on the particular value of the threshold used in the

analysis. In particular, this variation is more significant for the TMPA data when

compared to the GHCND estimated quantiles. This difference is explained by con-

sidering that rainfall values are only recorded at finite intervals by the tipping bucket

rain gauges, while discretization effects are negligible for TMPA QPEs. Significantly,

variations in QPE-based quantile estimates are modest when one considers values of

the threshold of one millimeter or larger. For this reason I have limited my analysis to

the value q = 1 mm, within the range of values in which results are weakly dependent

on the specific threshold value adopted and justified by a largely used definition of

’wet day’.

The considerable length of the GHCND records allows me to further quantify

model performance using independent samples for calibration and testing. For each

station, observations are resampled with resubstitution to generate realizations that

preserve the set of parameters (N,C,w) from the original time series. Subsequently,

the synthetic time series thus obtained are divided into two independent sub-samples,

of which one is used for calibration and one for testing. The test was performed by

extracting from test samples the annual maxima and by estimating the correspond-

ing return times by means of the Weibull plotting position formula [ZBM16]. This

procedure was repeated for a number of times ng = 100. For each such bootstrap
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realization, observed (hobs) and estimated quantiles for a given return time (ĥ (Tr))

were used to compute a Fractional Square Error (FSE), defined as:

FSE(s, Tr) =

 1

ng

ng∑
i=1

[
ĥi(Tr)− hobsi (ss, Tr)

hobsi (Tr)

]2
1/2

(4.19)

where s is the calibration sample size and Tr is the return time. This procedure was

here applied to rain-gauge calibration samples with length 20 and 30 years respec-

tively, representative of the typical satellite record length, and for values of Tr up to

40 years (limited by the available test sample sizes).

The entire bootstrap procedure was then repeated using the downscaled param-

eters obtained from the TMPA record, and again using a set of ng = 100 synthetic

samples of 40 years, randomly extracted from the relevant GHCND station for testing.

In this case only the validation sample (randomly extracted from a GHCND station

at the ground) varied, while the calibration sample was kept constant (corresponding

to the entire TMPA time series available).

The results of this analysis (Figure 4.10) show that the performance of MEVD

and GEVD calibrated using rain gauge data are comparable for small values of the

return time (up to about Tr = 15 years for the sample size of s = 20 years, and to

about Tr = 20 years in the case of s = 30 years). In essence, the advantage in using

the MEVD over the GEVD distribution becomes evident for values of Tr greater than

the length of the sample used for calibration, as found in previous work [ZBM16].

The extreme values estimates obtained by downscaling TMPA statistics to the point

scale (green line in Figure 4.10) yield values of the FSE which are consistently higher

when compared to ground observations, as one would expect. However, as the return

time increases, the error increases at a rate which is lower than that characterizing

ground-based estimates, and results are comparable for return times of 20 years and
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larger. In this range of return times, estimation uncertainty is particularly large for

the GEVD model, as observed when calibration and validation are performed using

independent datasets. I note that this result was obtained without applying any bias

correction to the TMPA-derived distribution of rainfall accumulations. Overall, these

results support the robustness of the method proposed, when applied to relatively

short time-series record, as is the case for the TMPA dataset, and when relatively

high quantiles need to be estimated.

4.4 Discussion and Conclusions

I developed and tested a new downscaling approach to infer point rainfall extreme

value distributions from satellite observations. The approach, outlined in sections

4.2.1 - 4.2.5, introduces a stochastic framework that provides estimates of ”ordinary”

and extreme value probability distributions at the point scale. The procedure is

parsimonious and its application only requires 1) the specification and fitting of the

probability distribution of ”ordinary” values observed at the coarse aggregation scale,

2) knowledge of the correlation structure of the rainfall field as observed from remote

sensing at the coarse scale, 3) knowledge of the intermittency structure of rainfall

events as quantified by β0, ratio of the wet fractions at the pixel and point scales,

which can also be estimated from satellite observations using the Taylor hypothesis.

A summary of the steps necessary for the application of the method is provided in

Appendix C.

The use of the dense Little Washita Micronet rain gauge network allowed some

detailed testing of the proposed approach. In particular, I performed downscaling

tests from/to the following spatial scales: 75 km (3 x 3 TMPA pixels), 25 km (1

TMPA pixel), and the point scale (rain gauges). The ordinary and extreme value
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distributions downscaled from coarser scale observations exhibit a good agreement

with those obtained from observations at target (smaller) scales when homogeneous

observations (either rain gauges or TMPA QPE fields) averaged at different spatial

scales are used. When the method is applied to TMPA QPEs and validated using

independent ground observations, I observe some discrepancy in the downscaled prob-

ability distributions of daily rainfall. Comparison between these results (obtained by

comparing downscaled TMPA statistics and rain gauges at the ground) with those

obtained using homogeneous observations suggests that this behavior is primarily

due to the performance of TMPA QPEs over this particular location. This results

is appealing as extensive application of the method can lead to the evaluation of

multi-sensor derived precipitation fields over regional to global scales.

For the study location, the application of the MEVD-downscaled method to

TMPA data led to errors in quantile estimates that are comparable to those ob-

tained by application of MEVD or GEVD distribution directly to the gauge data for

the largest values of return time explored here. This result is quite encouraging in

terms of 1) testing remote sensing rainfall observations (and TMPA data in particu-

lar) against point observations at the ground at the global scale; 2) evaluating with

reasonable and quantifiable accuracy point extremes at the global scale using TMPA

(and possibly other rainfall remote sensing) observations.

While this work builds a new framework for estimating rainfall extremes from

satellite data, a significant result with many hydrological applications, a number of

hypotheses are made. First, the assumption of isotropic correlation structure, while

commonly used, could limit the application of the method e.g. in the presence of

orographic forcing. However, the covariance expression, eq. (4.12), can in principle

be adapted to different, and non-isotropic forms, if additional information on the

spatial correlation structure is available/required. This is particularly important in
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applications over complex terrain. However, the method presented here can be di-

rectly applied to higher-resolution satellite products, and in particular to the IMERG

dataset, as longer time series become progressively available.

The downscaling method proposed assumes that the form of the probability dis-

tribution of rainfall values (Weibull in this case) is preserved across different spatial

scales. While it is known that this is not rigorously the case, my results suggest

that this assumption approximately holds in the range of scales explored here (linear

scales ranging from 0.1 m up to about 75 km).

I tested this approach in a region which is characterized by a relatively simple

orography, where a dense network of ground observations is available for independent

testing and where TMPA uncertainty is relatively well characterized in the absence of

additional confounding factors (e.g., large variability in surface emissivity, high relief,

etc.). It will be important to further test the proposed method, which is general in

nature and can potentially be applied to any multi-sensor satellite QPE product,

by exploring a wider set of locations with different rainfall regimes. In particular,

applications to coastal areas, tropical climates and locations with high relief will

be particularly challenging, for the coexistence of different precipitation mechanisms

and severe storms likely to affect the shape of the daily rainfall pdf as well as the

performance of TRMM sensors [RMPG13, LWB18].

In applying the proposed approach at larger scales, I note that, because the down-

scaling procedure connects satellite-scale and point-scale probability distributions, it

can also be used to correct the satellite-inferred ordinary distribution and MEVD in

data-scarce regions where only sparse rain gauges are available. Even in the pres-

ence of a single rain gauge in a given location, it would be possible to compare

satellite-derived point rainfall statistics (β0, γ0 and Weibull parameters) with the

corresponding values observed at a point. The approach can thus potentially lead to
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a self-contained procedure, yielding internal bias correction as well as high-quantile

rainfall estimates.

The scale-wise dependence of the distribution of daily rainfall was here combined

with the MEVD framework to infer extreme value properties of the rainfall field

at a point in space. Together, these two steps provide a link between statistical

properties of the rainfall process at different spatial scales, with broad implications

for hydrological and ecological watershed studies, for the study of water resources in

poorly gauged areas, and, ultimately, for better understanding the global distribution

of hydrologic extremes.
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Station GHCND Station ID Latitude Longitude Elevation Time span
Anadarko USC00340224 35.0667 -98.25 354.8 1893 - 2016
Chickasha USC00341747 35.05 -97.95 332.5 1901-1965
Chickasha USC00341750 35.05 -97.91667 331.9 1954 - 2016
Duncan USC00342660 34.5011 -97.9591 343.2 1936 - 2016
Marlow USC00345581 34.6368 -97.9786 393.8 1900 - 2016

Table 4.1: Summary of the GHCND stations used to validate downscaled high-re-
turn period rainfall values obtained from TMPA data.

Dataset ε[Km] α
Micronet stations network 13.75 0.13
TMPA 3b42 pixels 53.14 0.28
Downscaling from TMPA, α and ε 26.50 0.23
Downscaling from TMPA, only ε 34.79 0.28

Table 4.2: Parameters ε (scale) and α (shape) of the EK model describing the spatial
correlation structure of daily rainfall.
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Figure 4.1: Extrapolation of the wet fraction at different integration scales. The
black circles represent scales in space and time at which TMPA 3b42 precipitation
estimates are aggregated. The density plot shows interpolated pr values within the
range of scales covered by the TMPA product. Blue squares represent the points used
to compute the local advection velocity (slope of the blue line), and the red square
shows the target scale at which extrapolation of pr is performed (rain gauge mea-
surement). The red triangle shows the time-space scale of the TMPA pixel-average
time series, used to compute the β0 ratio.

Figure 4.2: Schematic map of TMPA pixels and of the rain gauge network used in
this study.
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Figure 4.3: Comparison of rainfall correlation function in space as computed from
the rain gauges in the Micronet network (open circles) and TMPA gridded precipita-
tion (red cirles). Fit of the EK model is shown by the dashed black and red line for
rain gauges and TMPA correlations, respectively. Result of the downscaling scheme
are also indicated (blue line). The result obtained by only downscaling the scale
parameter while is also reported for comparison (blue dashed line).
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Figure 4.4: The results of downscaling for the wet fraction pr. The distribution of
the yearly number of wet days observed for the Micronet stations (pink, Gi), for their
pixel average (blue, ḠL), and for the TMPA time series at the same location (orange,
SL). The downscaled values at a point obtained from the gauge average Ḡd and
from the TMPA data Sd are included in cyan and green respectively. The boxplots
report the mean (green triangles), and median (orange line) of each distribution. The
bars extend from the lower to the upper distributional quartiles, and the whiskers
represent the range of each sample.
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Figure 4.5: (a) Exceedance probability distributions observed for single Micronet
stations with at least 19 years of data (open circles) and from their pixel average (red
circles). The Weibull fits are reported in red for the average, and black for the single
station (mean and 1σ standard deviation confidence interval). The blue line shows
the distribution obtained by downscaling from the pixel scale to a point. (b) Com-
parison of the same exceedance probability distribution for Micronet stations (open
circles) and satellite observations (red circles), and the respective Weibull fit (red
line and black area respectively). The blue line represent the probability distribution
downscaled from the satellite dataset.
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Figure 4.6: (a) Exceedance probability distributions observed for TMPA time series
aggregated spatially at different scales. (a) results for the downscaling from scale 3L
to scale L, and (b) downscaling from scale 3L to 2L.
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Figure 4.7: Extreme values observed and estimated for the Micronet stations within
the TMPA pixel centered in 34.785N,−98.125E. Observed annual maxima from the
Micronet stations with 19 years of data (black, mean and 1σ confidence interval),
quantiles estimated from MEVD fitted directly to time series at a point (blue, mean
and 1σ confidence intervals), and from downscaling Weibull parameter values from
the pixel-average time series (green circles).
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Figure 4.8: Extreme quantiles observed for the 4 GHCN stations in the vicinity
of the Micronet network (black markers). The corresponding estimated quantiles
have been obtained from directly fitting the extreme value models GEVD (red lines)
and MEVD (blue lines) to the entire observed time series. Green lines show the
corresponding MEVD quantiles obtained by fitting the Weibull distribution to corre-
sponding TMPA pixel time series and by downscaling the yearly Weibull parameters
in the MEVD expression to the point scale.
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Figure 4.9: Effect of the detection threshold used to define ordinary rainfall values
on extreme value estimates for a return times of Tr = 15 years. The relative error is
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Figure 4.10: RMSE obtained from the cross-validation test using samples of 20
years (a) and 30 years (b) in fitting MEVD (blue) and GEVD (red) to rain gauge
GHCND data. The results from the application of the MEVD distribution calibrated
from TMPA observations and downscaled at a point is reported in green for both
panels. Lines and shaded areas depict averages and standard deviations respectively,
computed by repeating the procedure for the set of GHCND stations. Vertical dashed
lines indicate the value of the return time corresponding to the sample size used for
calibration of MEVD and GEVD with rain gauge data.
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Chapter 5

Extreme Value Analysis of

Remotely-Sensed Rainfall in Ungauged

Areas: Spatial Downscaling and Error

Modelling

Adapted from: Zorzetto, Enrico, and Marco Marani. ”Extreme value metastatistical

analysis of remotely sensed rainfall in ungauged areas: Spatial downscaling and error

modelling.” Advances in Water Resources 135 (2020): 103483.

5.1 Introduction

Quantitative Precipitation Estimates (QPE) from satellite-borne sensors provide much

needed information on the water cycle at the global scale, and are an essential

source of observations over large areas worldwide, particularly where the density

of rain gauge stations at the ground is low [KBH+16, CW18]. However, while cur-

rent algorithms try to optimally merge information from radar, passive microwave

and infrared sensors [HBN+07, HBB+14], uncertainty in the rainfall retrievals from

these instrumental sources inevitably propagates to the final multi-sensor rainfall

QPEs. The error structure of the resulting QPEs is thus difficult to character-

ize, as it depends on numerous variables, including the specific sensor, the precip-

itation type, and surface characteristics [HBN+07, THA+13, MSA+14]. For this
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reason, considerable effort has been devoted to the ground validation of satellite

QPEs, based on the available observations at the ground. Among many others, see

[NSM+03, SHL08, SXWX10, Vil10, CHG+13, BS15, MPBH+17, MKT+18]. However,

the density of observational networks at the ground varies significantly around the

world, so that a spatially consistent characterization of the QPE error structure is to

date very challenging over extended regions. Ideally, the validation of satellite QPEs

should be performed by comparing the estimated rainfall rates or rainfall accumu-

lation volumes with a ground-truth dataset aggregated at the same integral domain

in space and time [PMF+18]. However, this is in practice only possible with the use

of exceptionally dense rain gauge networks, of which a limited number exist worl-

wide (e.g., see [ESC+93, VK07, FKF+17, PJCM10, PBAM13, AUG+12, VMKM08,

WW10, DWB15]) or by comparing QPEs with ground radar estimates where these

are available [TB10, KHG+12, AMNB12, KHG+13, MMP+17]. These requirements

severely hinder the QPE validation effort over complex terrain and poorly gauged ar-

eas. The problem of validating QPE rainfall statistics is particularly challenging when

the frequency of heavy rainfall is the variable of interest [HHA09, PMPA16]. While

the global-scale coverage and fine temporal scale of satellite QPEs make them invalu-

able datasets for studying extreme rainfall at the global scale (see e.g., [ZCL+06]), the

inference on rainfall distributional tail properties is challenging due to the short length

of homogenous records, and to the observational uncertainty in satellite retrievals

which inevitably produces large uncertainty in the estimated extreme rainfall quan-

tiles. Recently, the use of satellite QPE datasets for rainfall frequency analysis over

ungauged regions, and particularly for the estimation of intensity-duration-frequency

curves, has received increasing attention [GHS17, ONSH18, FYH+18, MNA+19]. The

main objective of this work is to contribute to bridging this gap by coupling a recently

introduced downscaling technique [ZM19] with a model of the error for QPE-derived
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rainfall statistics. The key steps performed in this combined technique are i) evalua-

tion of key rainfall properties (probability density function (pdf), spatial correlation

structure, intermittency and frequency of extremes) from a gridded precipitation

dataset, ii) downscaling these quantities so as to make a comparison possible with

point-measurements at the ground where these are available, and iii) developing a

model of the error aimed at extrapolating the QPE error structure to locations where

ground measurements are not available. A key feature of the approach developed here

is that it is specifically targeted towards the study of extreme rainfall frequency, with

important consquences for the use of satellite QPEs for hydrological analysis and

for studying the risk of natural hazards. To this end, I employ the Metastatistical

Extreme Value distribution (MEVD) [MI15, ZBM16, MNAM18], an extreme value

model which provides a connection between the pdf of rainfall accumulations and

the frequency of extremes. Global-scale applications of statistical value models to

multi satellite QPE datasets have been performed before. For example, Zhou et

al. [ZLH15] apply the Generalized Extreme Value distribution in order to map the

average recurrence intervals of precipitation for real-time precipitation monitoring;

Demirdjian et al. [DZH18] apply a recursive clustering algorithm which, combined

with the Peak Over Threshold Method (e.g., [Col01]) reduces estimation uncertainty

when applied to short, remotely-sensed datasets. Here I produce the first global-scale

maps of extreme value quantiles estimated with MEVD, which i) reduces estimation

uncertainty from short rainfall datasets, as shown in [ZBM16] and ii) by providing

a link between extreme and non-extreme rainfall statistics, introduces a new way

to study the effects of spatial averaging and QPE bias correction on the statistics

of rainfall extremes. Overall, the combined method of analysis developed here pro-

vides a novel framework for understanding how biases in QPE statistics propagate to

rainfall frequency analysis, and for designing suitable site-specific corrections. This
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last point has significant impact for ungauged areas worldwide where the density of

stations (or the length of the available records) is not sufficient for obtaining reli-

able extreme value estimates with traditional statistical techniques. The statistical

framework outlined above is here developed and applied to a large domain cover-

ing the entire Conterminous United States (CONUS). This domain is covered by

a large number of gauges and ground-radar derived precipitation products, so that

the performance of satellite sensors and QPE datasets have been extensively studied

here (e.g., [ABS+11, CHG+13, PN15]). This makes it the ideal domain for testing

my methodology, which does not make use of any ground observation for the down-

scaling, and only requires sparse gauge observations, or radar data, for constructing

the model for the error. Therefore, ground rain-gauge observations and comparison

with previous studies can be used for independently testing the performance of the

method and for validating my findings. Moreover, the CONUS domain spans a broad

range of climatic regimes and terrain types, thus allowing me to extend my previous

work [ZM19] and explore the variability of QPE rainfall statistics and the associated

error structure over this broader domain. Here I focus my attention on the Tropical

Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA)

3B42 research version dataset, which to date includes 20 years of continous data

and, even after the end of the TRMM mission, is a well-tested source of informa-

tion for hydrological applications. However, I note that the approach developed here

is not product-dependent, and is suitable for a straightforward application to any

gridded precipitation product, such as the Integrated Multi-Satellite Retrievals for

GPM (IMERG) product [HBB+14], or even reanalysis products and climate model

outputs. The Chapter is organized as follows: In Section 5.2 I present the statistical

technique used to downscale rainfall statistics from gridded QPE datasets, so as to

enable a direct comparison with point gauge measurements. Building on this method,
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in Section 5.3 I develop a non parametric model for the error based on a quantile

regression forest algorithm [Mei06]. The error model is then tested using a cross val-

idation scheme so as to effectively simulate the prediction of QPE rainfall statistics

over ungauged areas. In Section 5.4 I then present the statistical framework aimed

at the large-scale extreme rainfall value analysis based on gridded QPE precipitation

products, and discuss the current limitations in evaluating the results over poorly

instrumented areas. The extreme value estimates are then corrected and tested using

the model of the error developed in Section 5.3. Results of these steps are presented

throughout these sections, and are followed by a discussion of my findings and by the

conclusions drawn by this study (Section 5.5). A list of acronyms and abbreviations

used throughout the Chapter is featured in Appendix D.

5.2 Spatial Downscaling of the Probability Distri-

bution of QPE Magnitudes

I start by addressing the scale gap between daily rainfall statistics estimated from

TMPA gridded QPE fields and their counterpart derived from rain gauge point mea-

surements. For this purpose, I employ a recently developed statistical downscaling

technique [ZM19] based on the theory of random fields [Van10, MT13]. While this

technique entails a number of assumptions, it greatly extends the areas where vali-

dation of gridded QPEs datasets is possible as it does not require the presence of a

dense network of rainfall gauges or ground radars covering the location of interest for

downscaling QPE statistics. The main assumptions made in deriving this methodol-

ogy are: i) Local spatial homogeneity and isotropy of the rainfall field, ii) a Taylor

frozen-turbulence hypothesis for obtaining the wet fraction at a point in space, and

iii) the assumption that the distribution of daily rainfall events can be represented as
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a stretched exponential both at the point scale and at the grid cell scale (albeit with

varying parameters). In the following I briefly summarize the downscaling method

applied here; for additional information on the derivation of the methods, the reader

is referred to [ZM19]. I define as ordinary rainfall events all daily rainfall accumula-

tions at a given temporal integration scale in excess of a fixed low threshold value,

here set to q = 1 mm/day. I choose a fixed threshold to define ordinary daily rain-

fall events which is larger than both the detection limits of gauges and QPE data,

when aggregated at the daily timescale, while at the same time low enough so as

to include the bulk of the daily rainfall distribution in my analysis. I denote with

Ns the yearly number of such events, or wet days. The wet fraction is thus defined

as as prs = Ns/Nt, with Nt = 366 the number of daily observations in each year.

The suffix s here indicates the linear spatial scale S at which a rainfall time series

is averaged. Here, s = 0 indicates the point scale L0 corresponding to rain gauge

measurements (the characteristic size of a rain gauge is of the order of L0 ' 10−4

km), and s = L corresponds to the linear characteristic scale of the gridded QPE

to be downscaled (L =
√
LxLy, where Lx and Ly are the dimension of a QPE grid

cell along the zonal and meridianal directions respectively). Since I am dealing with

spatial domains which are well characterized by a single length scale, here I use a

single linear length scale S to characterize a random field averaged over an area S2.

I assume that in each year the ordinary rainfall event magnitudes observed at scale

s, hs = h̃s − q (defined for daily rainfall totals h̃s ≥ q), are realizations of a random

variable Hs with population ΩHs = (0,+∞) and marginal distribution described by a

Weibull or stretched exponential distribution, defined by the cumulative probability

function

P (Hs < hs) = F (hs) = 1− e−( hsCs )
ws

(5.1)
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here Cs is a scale parameter with the same units of hs (mm/day here) and ws is the

dimensionless shape parameter of the distribution. A recent study analyzed the tail

properties of hourly rainfall accumulations over the CONUS [PAFG18], and found

that Weibull provides a satisfactory description of hourly rainfall observations, com-

plementing and reinforcing previous evidence for rain-gauge daily accumulations at

the global scale [WT05]. While the Weibull parameter Cs represents the characteris-

tic magnitude of daily rainfall events, ws describes the decay of the tail of F (hs), such

that values of ws < 1 correspond to a sub exponential behavior (i.e., the exceedance

probability exhibits a heavy tail, albeit with a characteristic scale). An exponen-

tial decay is recovered for ws = 1, and values of ws larger than unity correspond to

faster-than-exponential decays. This simple parametric model is assumed to describe

the shape of the daily rainfall distribution of both rain gauge and satellite-derived

rainfall accumulations, such that their respective difference is encoded in differences

between the values of Cs and ws at the different spatial scales.

5.2.1 Downscaling scheme

Zorzetto and Marani [ZM19] showed that the parameters of the distribution of ordi-

nary rainfall events in eq. (5.1), aggregated at a fixed temporal scale and averaged

at two different spatial scales can be linked by two equations which depend on the

intermittency and spatial correlation of the rainfall field. For example, the stretched

exponential parameters CL, wL describing the ordinary rainfall pdf at the grid cell

scale (s = L) of the QPE dataset can be expressed in terms of the parameters C0

and w0 of the rainfall field at the point scale (s = 0) by the relations

γ0β0

2w0Γ
(

2
w0

)
Γ2
(

1
w0

) = 2wl
Γ
(

2
wL

)
Γ2
(

1
wL

) + (γ0 − 1)prL (5.2)
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(
CL
wL

)2 Γ2
(

1
wL

)
Γ2
(

1
w0

) (5.3)

where Γ denotes the Gamma function, prL is the wet fraction of the ordinary rainfall

process at the grid cell scale L, γ0 = γ0(L) is the variance reduction factor i.e., the

ratio of the variances σ2
L and σ2

0 of the process averaged at the two scales S = L

and S = L0 respectively, and β0 = β0(L) = prL/pr0 , or intermittency function, is the

ratio of the wet fraction at the two scales considered here. While prL can be directly

computed from QPE time series, γ0 and β0 are not known in the absence of rain

gauge measurements, since they do not only depend on the areal average process but

also on the rainfall process at scale L0, i.e., at ’a point in space’.

5.2.2 Scalewise variation of the spatial correlation function

However, the variance reduction function γ0 can be obtained from the spatial corre-

lation of the rainfall field ρ (s1, s2), here assumed to be quadrant-symmetric [Van10],

where s1 and s2 are distances between two points measured along two coordinate

axes, as

γ0 =
σ2
L

σ2
0

=
4

L2
xL

2
y

∫ Lx

0

∫ Ly

0

(Lx − s1) (Ly − s2) ρ (s1, s2) ds1ds2 (5.4)

where Lx and Ly are the spatial dimensions of the grid cell size. Ideally, the point

correlation ρ (s1, s2) should be estimated using a sufficient number of rain gauges

distributed in space. As these are not available everywhere (in fact, they are lacking

in most areas) here I estimate it using the correlation between QPEs time series

sampled at grid cells within a 3 x 3 local neighborhood. This correlation between

spatially averaged values can be linked to the unknown correlation at the point scale
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by means of the following relation [Van10]

ρhL,hL′ =

∑3
k=0

∑3
l=0(−1)k(−1)l∆ (Lx,k, Ly,l)

4∆ (Lx, Ly)
(5.5)

where the set of distances Lx,k and Ly,l for k, l = 0, 1, 2, 3 contains the information

on the relative positions of pairs of cells within the neighborhood considered. Letting

∆x and ∆y be the distances between the two grid cells along the s1 and s2 coordinate

directions, then these distances are defined as

• Lx,0 = ∆x− Lx, Ly,0 = ∆y − Ly

• Lx,1 = ∆x, Ly,1 = ∆y

• Lx,2 = ∆x+ Lx, Ly,2 = ∆y + Ly

• Lx,3 = ∆x, Ly,3 = ∆y

and with the function ∆ (a, b) defined as

∆ (a, b) = 4

∫ a

0

∫ b

0

(a− s1) (b− s2) ρ(s1, s2)ds1, ds2 (5.6)

Since the QPE dataset allows the computation of estimates of ρhL,hL′ , I can obtain an

estimate of the point scale correlation by assuming a parametric form for the spatial

correlation function ρ(s1, s2) and by numerically minimizing the Sum of Squared

Errors (SSE) between its areal average value at the grid cell scale given by eq. (5.5)

and the values estimated from QPEs. I assume here an isotropic correlation function,

such that ρ(s1, s2) = ρ(
√
s1

2 + s2
2) = ρ(d)

ρ(d; ε, α) =

 e−
αd
ε d < ε(

ε
ed

)α
d ≥ ε

(5.7)
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This formulation has an exponential kernel and a power-law tail characterized by the

exponent α; the smooth transition between the two regimes occur at a distance d = ε

[Mar03, ZM19]. Depending on the values of the parameters α and ε it allows for the

description of both light- and heavy-tailed correlations. With this assumption, the

SSE becomes a function of the parameters α and ε:

SSE (ε, α) =
m∑
j=1

[
ρhL,hL′ (dj; ε, α)− ρj

]2
(5.8)

where the ρj are correlation estimates obtained from the QPE dataset, using a local

lattice of 3x3 grid cells centered over the location of interest. Using a larger lattice

would increase the number of points available to estimate the correlation function,

but, on the other hand, would increase the likelihood of including in the analysis

non-homogeneous rainfall statistics, which certaintly are present at the regional scale,

especially over a complex terrain. For each pair of grid cells within this local domain,

the Pearson correlation was computed between the respective QPE time series, and

the resulting values binned over a set m of distances dj. Here I minimize the SSE

in eq. (5.8) by means of the differential evolution stochastic minimization algorithm

[SP97], as opposed to the deterministic algorithm used in [ZM19]. The differential

evolution minimization is particularly suited to avoid possible local minima in the

(α, ε) parametric space, and thus more robust in minimizing a function which depends

upon the experimental points ρj. I seek the global minimum of eq. (5.8) within the

rectangular domain α ∈ (0, 1) and ε ∈ [0, 1000] km, which are physically meaningful

ranges of values. While quantifying the uncertainty in the downscaled correlation

parameters is a challenging task, as the shape of objective function eq. (5.8) varies

with the observed values ρj, I note that the downscaling methods only requires the

functional of the correlation function defined in eq. (5.4), which is an integral property
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of the correlation function over the pixel size. Therefore, I expect γ0 to be less

sensitive to observational uncertainty than the single parameter values α and ε.

5.2.3 Scalewise variation of the wet fraction

To obtain an estimate of the intermittency function β0(L), i.e. of the ratio between

the yearly number of events for the ordinary rainfall process averaged at the grid

cell scale L0 with respect to the point scale, I rely on an application of the Taylor

frozen turbulence hypothesis [Tay38, Dei00, HEM+15] introduced by [ZM19]. This

approximation enables me to use of information from the QPE dataset at smaller

temporal scales (up to 3-hours for the TMPA dataset) to infer a property of the

rainfall field, namely the wet fraction, at spatial scales smaller than the grid cell

scale and at the daily timescale. I aggregate TMPA rainfall fields at increasing

spatial scales S and temporal scales T (integrating in time and averaging in space),

and at each space-time scale the wet fraction pr(S, T ) is computed as the fraction

above q of the time series at scale (S, T ). I then extrapolate this quantity to the

point scale L0 by assuming that the function pr(S, T ) is locally linear in the (S, T )

plane; i.e., that integration in time and averaging in space have the same effect

on a property of the rainfall field (the wet fraction here) up to a constant factor

which has the meaning of a local advection velocity. This assumption holds exactly

only in the case of a perfectly fractal rainfall field [HEM+15] but, even though only

approximate in general, it offers a conceptually satisfactory way to infer the point-

scale wet fraction using only QPE data at the grid-cell scale. Through this approach

I obtain β0 = prL/pr0 , where prL is simply obtained from the remote-sensing QPE,

and pr0 is the value that a linear extrapolation in the (S, T ) plane yields for daily

rainfall at the rain gauge spatial scale L0. Note that in order to apply this technique

I need a sufficiently fine-scale resolution in time for the QPE dataset compared to
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the scale at which the downscaling analysis is performed (3-hrs versus daily here).

The reader is referred to [ZM19] for a more detailed description and application of

the methodology.

5.2.4 Data

An independent evaluation of the statistical structure of a QPE dataset using the

approach described above requires observations from rain gauges at the ground. I

focus on the CONUS domain, defined here as the domain over land within 22◦N -

50◦N and −130◦W - −60◦W. Over this domain I use observations from the network

of hourly precipitation data (HPD) rain gauges of the National Oceanogaphic and

Atmospheric Administration (NOAA), which covers the CONUS starting from 1948

[NCE]. Precipitation data were aggregated at the daily time scale by summing hourly

accumulations in each day of the record, defined starting from midnight. I excluded

from the analysis days with quality-flagged or missing precipitation amounts. The

remotely-sensed gridded precipitation product used in this study is TMPA 3b42 ver-

sion 7, research version [HBN+07, HABN10, HB13], of which I use the entire record

1998-2018 so as to obtain the longest possible dataset for extreme value analysis.

Note that starting in 2014, after the end of the TRMM era, rainfall retrievals from

the GPM mission are used in TMPA estimates, introducing some heterogeneity in

the dataset. Rainfall rates obtained from the TMPA dataset are here assumed to

represent the average rainfall rate for each 3-hr timestep. These values were ag-

gregated so as to compute rainfall accumulations at time scales raging from 3−hrs

to 48−hours, as needed for estimating the intermittency of the rainfall field as dis-

cussed in Section 5.2.3, with the 24−hours totals used for my analysis at the daily

time scale. I note that discrepancies between gauge and TMPA daily totals may

potentially arise in the presence of a pronounced daily precipitation cycle, and as
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a consequence of the instantaneous nature as well as the timing of satellite rainfall

retrievals [LSLC16]. Here I do not anticipate that this issue will play a relevant role

in my analysis, since I do not study the timing of specific events but only average

statistics. The spatial resolution of the data is 0.25◦ x 0.25◦, corresponding to a

characteristic grid cell size of about 25km over the CONUS domain. While here I

interpret the TMPA rainfall rates as areal averages over the grid cell area (see, e.g.,

[VK07]), this is an approximation, as these estimates are obtained by merging re-

trievals from different instrumental sources (passive microwaves and infrared), with

different footprints. Additionally, the monthly-scale gauge correction is performed

using precipitation gridded at scales larger than the spatial reolution of TMPA, and

therefore introduces larger-scale information in the pixel-scale QPE time series. In

essence, any discrepancy stemming from this assumption will be included in the

structure of the error that will be estimated as a result of my analysis.

In order to evaluate QPE statistics, after downscaling, I select a set of QPE grid

cells from the TMPA dataset that are characterized by the presence of (i) at least

one rain gauge within the grid cell with at least a 10-year record of daily rainfall,

and (ii) at least 4 rain gauges in a 5x5 pixel neighborhood around the location of

interest, which are used for producing an estimate of the local spatial correlation of

the rainfall field. This information is not used to train the downscaling method, but

only for validation purposes. To be selected, these rain gauge records must overlap

for a temporal window of at least 2000 observations (i.e., about ' 7 years of record).

This condition was chosen as a tradeoff between having enough data for reliably

estimating the correlation between sites, and including a large enough number of

sites for testing purposes. My results are not very sensitive to this choice, as for

most of the gauged sites in the dataset the record length is significantly longer than

7 years. In the following I will refer to the set of sites meeting these conditions as

103



the Set of Gauged Sites, or SGS.

5.2.5 Results of the downscaling method

To study the spatial correlation of the rainfall field, I focus on two metrics: the

ratio between the two parameters of the correlation function ε/α, and the variance

reduction function γ0. The first is a characteristic spatial scale describing how the

correlation decays with distance (for very large values of ε this is exactly the spatial

integral scale of the field, which is not necessarily finite depending on the values of

α), while γ0 is an integral property of the correlation function between the point

and the grid-cell scale. γ0 is the main quantity of interest here as it connects the

variance of the rainfall accumulations at different spatial averaging scales, and it is

the only quantity dependent on the correlation function that is directly needed in

downscaling the pdf of ordinary rainfall in eqns. (5.2) and (5.3). I note that three

different cases can be identified when downscaling the spatial correlation function

from gridded QPEs. When the correlation scale of the rainfall field at the ground

is small compared to the spatial averaging scale (ε/αL < 1), then the correlation

structure of the continuous process is in large part hidden by the averaging process

and I expect it cannot be completely recoverable from the QPE dataset alone. This

occurs only in a very limited subset of the SGS sites examined here. I find that the

ratio ε/α is smaller than 25km only at 33 of the 860 SGS sites where downscaling

is performed (3.8% of all cases). These are primarily locations characterized by a

complex terrain, and it is reasonable to think that in these cases the correlation at

the point scale is not retrievable from QPE alone. I therefore exclude these locations

from the following analysis. Conversely, when the correlation of the field is much

larger than the grid scale over which averaging is performed, most of the information

about the correlation function is preserved even after averaging. In this case I argue
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that the effect of, and need for, a downscaling process may be limited because the

variables being averaged are highly correlated, and thus they tend to behave very

similarly to their spatil average. This case also does not occur frequently, with only 8

out of the 860 sites examined here exhibiting ratios ε/α larger than 200km, the largest

ratio being around 8. In the intermediate case between these two situations, when

the correlation distance of the rainfall field is comparable to or larger than the scale

of averaging, a substantial part of the information about the correlation structure

of the continuous process at the point is preserved by the averaging process. The

application of the downscaling approach, i.e. the minimization of eq. ((5.8)), can

produce in this case good estimates of the correlation structure at the point scale.

To provide a global metric describing the effect of correlation downscaling, I compare

the estimated values of ε/α and γ0 with the corresponding metric ε(L)/α(L) obtained

from fitting eq. (5.7) to the empirical correlation estimates (ρj, dj) obtained from

a local lattice of QPE time series. In turn, using ε(L) and α(L) instead of ε and α

in eq. (5.4) I can infer an estimate, γ0,L, of the variance reduction function value

that one would obtain by using the grid-cell scale correlation function instead of its

downscaled version. Examination of the values of rainfall spatial correlation over

the CONUS domain (here indexed by longitudinal position, see Figure 5.1a) shows

that the TMPA-estimated correlation obtained by fitting eq. (5.7) to the gridded

QPEs is larger than its estimates from point measurements at the ground. This is

as expected, since I are comparing a correlation between averaged values with its

point-scale counterpart. When I compare the downscaled correlation values obtained

from the QPE dataset by minimizing eq. (5.8), I see that some underestimation

occurs primarily at the boundaries of the domain, and chiefly for grid cells located

in the proximity of the west coast. This result is consistent with a previous study

which investigated the ability of radar rainfall retrievals to reproduce the small-scale
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rainfall variability [GK04a]. However, in the central part of the CONUS domain, the

zonal variability of the correlation appears to be reasonably captured by the TMPA

estimates. The application of the downscaling approach produces correlation values

that are much closer to those from gauge observations, suggesting that, indeed, the

proposed downscaling procedure yields statistical properties that are close to those

of point observations. A similar result emerges if I turn my attention to the variance

reduction function (Figure 5.1b), for which I again notice how the downscaled results

are closer to values from ground observations for the central part of the CONUS, and

less so along the east and west coasts.

A summary of the variability of the downscaled parameters over the SGS is pro-

vided by the scatter plots in Figure 5.2. While no apparent bias appears for the values

of γ0,d with respect their counterpart estimated at the ground, a significant variabil-

ity is detected for the lowest values of γ0, which correspond to grid cells located

primarity in the mountainous part of the Western United States (Figure 5.2a). This

scatter for low values of γ0 confirms the increasing difficulty of correctly estimating

the point correlation when its characteristic length scale becomes smaller compared

to the averaging length L; However, note that the large majority of the SGS sites

have values of γ0 larger than 0.9, range in which the discrepancy between ground and

downscaled values is limited, as shown in panel 5.2a. The comparison of the number

of wet days, N0,d, obtained from downscaling TMPA QPE’s with gauge-estimated

values, N0,g, indicates that the QPE dataset consistently underestimates the num-

ber of events recorded at the ground (Figure 5.2b), and that this underestimation

increases with the value of N0,g. While the number of events N0,d is sistematically

underestimated, the scale parameter C0,d appears to be significantly larger than its

corresponding ground values (Figure 5.2c). I argue that this feature of the QPE

dataset is at least partially explained by the gauge correction applied to the TMPA
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3b42 research version dataset: gauge data are used to rescale TMPA monthly totals,

and thus if the number of missed events is appreciable, such a correction will result

in a deformation of the pdf of ordinary events with respect to the ’real’ one at the

ground, and will lead to the overestimation of the characteristic event size C0,d so

that monthly totals measured at the ground are preserved. The downscaled shape

parameter w0,d appears to be quite variable with respect to its gauge-estimated coun-

terpart w0,g (Figure 5.2d). As was the case for γ0, even though most of the values

here are close to the identity line, for some points corresponding to locations in the

Western United States the downscaled values of w0 are significantly lower than gauge

estimates, meaning that for these locations the downscaled ordinary rainfall statistics

exhibit a heavier tail, i.e., an overestimated probability of intense events. To study

the spatial distribution of the discrepancy between QPE downscaled statistics and

the corresponding values at the ground, I define the relative errors

ηz =
z0,d − z0,g

z0,g

(5.9)

where the variable of interest can be one of the following: z = C,w,N or γ, the

subscript 0 again refers to values at the ”point” spatial scale L0, and the subscripts d

and g refer to the downscaled or rain-gauge observed quantities respectively. Figure

5.3 reports the spatial variability of the relative errors ηz for the four parameters

and the set of SGS sites. The map of the relative errors ηγ in the variance reduction

function over the CONUS is featured in panel 5.3a. The variance reduction function

γ0 appears to be well captured by the downscaled correlation, especially over the

East coast and in the midwest regions of the CONUS. Some overestimation appears

corresponding to the West Coast, while γ0 tends to be generally underestimated with

respect to ground values in the Western CONUS. The error in the yearly number
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of events appears to be larger on the West coast and in the North-East, whereas

it is smaller in the South-East and Mid-West regions of the USA (Figure 5.3b).

Once the variance reduction function and intermittency functions are known, the

parameters describing the pdf of ordinary rainfall events at the point scale can be

estimated by means of eqns. (5.2) and (5.3). For the scale parameter C0, some

overestimation is found to occur, especially in the northeastern and northwestern

sectors of the CONUS, while mostly underestimation occurs in the west (Figure

5.3c). Conversely, the shape parameter w0 appears to be underestimated in the west

and overestimated in the east (Figure 5.3d). Together, these results suggest that in

the West downscaled QPE statistics exhibit heavier tails and lower mean compared

to their ground counterparts, while the opposite is true for the Eastern USA and

the Pacific coast, where both parameters are overestimated: the characteristic event

magnitude is overestimated, but the tail of the distribution is lighter than ground

estimates suggest. These results are coherent with previous work [PN15], which found

that TMPA 3b42 shows a consistent underestimantion of the yearly number of events,

especially in the North East and Middle Atlantic regions of the CONUS. Therefore,

the results obtained here for the Weibull scale parameter are also to be expected, as

the gauge correction applied to TMPA by rescaling the monthly total accumulations

will determine an overestimation of the characteristic event size in the number of

events is underestimated. As I will discuss in the following section, these distortions

of the pdf of daily rainfall have relevant consequences for the estimation of extremes.
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Figure 5.1: Results obtained by downscaling the daily precipitation spatial correla-
tion function from the grid cell to the point scale. (a) Correlation kernel spatial scale,
and (b) variance reduction factor γ0 as a function of Longitude. Red circles denote
the values obtained by fitting the correlation function directly to the empirical cor-
relation between TMPA grid cells, blue circles refer to the correlation downscaled to
the point scale, and green circles are obtained by estimating the correlation function
from rain gauges of the NOAA HPD dataset.
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Figure 5.2: Scatter plots of parameter values downscaled from the TMPA dataset
vs. the corresponding values estimated from rain gauges at the ground. (a) Variance
reduction function γ0, (b) Average yearly number of events N0, (c) Weibull scale
parameter C0, and (d) Weibull shape parameter w0. The color indicates the relative
density of points in the graph computed by means of kernel density estimation, with
warmer colors indicating higher point density.
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Figure 5.3: Spatial distribution of the relative errors between parameter values
downscaled from the TMPA gridded precipitation dataset with respect to their coun-
terparts estimated from rain gauge records at the ground. The figure features in
panel (a) the error in the variance reduction function ηγ, in (b) the error in the
yearly number of events ηN , and in panels (c) and (d) the errors in the Weibull scale
ηC and shape ηw parameters respectively.
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5.3 A Model of the Error for QPE Downscaled

Statistics

As discussed above, downscaling the pdf of rainfall accumulations allows for the direct

validation and correction of remotely sensed QPE’s statistics at gauged sites. This

result is useful in itself, as downscaling allows for proper comparisons of quantities

defined at the same scale, and it reduces the density of the gauge networks required

for validating QPE-derived rainfall estimates. However, for many areas worldwide

which are characterized by sparse or altogether absent ground stations, it is of primary

importance to provide the error analyses that can be applied to ungauged locations.

In the case of target sites located at a limited distance from gauged locations, this

objective can be pursued by building a geo-spatial model of QPE error statistics.

Here I investigate how QPE errors can be predicted from the information collected

at gauged sites located at considerable distance from the target sites, so that they

are characterized by weak or no direct correlation. To this end, I develop a non-

parametric model of the error based on the quantile regression forest (QRF) algorithm

[Mei06] with the objective of inferring the relative errors in the downscaled parameters

(y = ηC , ηw or ηN ) at ungauged locations, based on a set of variables describing the

local rainfall regime and terrain type. QRF has been applied before to study the

error structure of passive microwave rainfall retrievals [BAK17], and constitutes a

modification of the classic Random Forest (RF) algorithm introduced by Breiman

[Bre01]. This modification of the RF algorithm is chosen for its ability to 1) describe

the generally nonlinear relations between the error in the downscaled parameters and

a set of explanatory features [BJKK12], 2) limit the problem of overfitting [Bre01,

TPL19], and 3) deal with possibly correlated predictor variables [ZK14]. Predictions

from these models are based on regression trees, structures which encode the recursive
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partitioning of the predictor variable space in distinct and non overlapping regions. In

each terminal node of a tree, the predicted value of the target variable is estimated

as the average response in that region. Predictions of RF and QRF are ensemble

values over a large number k of decision trees, each trained on a bootstrap sample

from the original dataset. Instead of predicting the expected value of the variable

of interest for a given value of the predictor, as is the case for the RF method,

QRF estimates the full conditional distribution of the response variable Y given

a value of X, a possibly multi-dimensional predictor vector. Reconstructing the

entire conditional distribution can be useful here for i) limiting the possible effect

of outliers on the estimated conditional mean using the median value instead, and

ii) constructing confidence intervals for the estimates of interest. QRF estimates the

empirical distribution function of Y for a given value x of the explanatory variable

X as [Mei06]

P (Y < y | X = x) =
n∑
i=1

ωi (x) 1{yi≤y} (5.10)

where

ωi (x) = k−1

k∑
t=1

ωi (x, θt) (5.11)

here k is the number of trees, and each tree is built from an independent and iden-

tically distributed vector θt, t = 1, . . . , k which encodes the information on which

predictors are used as split point in each node of the tree. The indicator function

1{yi≤y} assumes the value 1 when the observation yi ≤ y, and is equal to 0 otherwise.

The quantities ωi(x, θt) are weights obtained from observation yi of the response

variable, for the t-th tree. They are defined as

ωi(x, θt) =
1{xi∈Rl(x,θt)}∑n

j=1 1{
j:Xj∈Rl(x,θy)

} (5.12)
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where again 1{·} denotes the indicator function, so that they are zero if observation xi

does not belong to leaf l (x, θt) and are positive otherwise. The leaf l (x, θt) refers to

the terminal node of tree t individuating the region Rl(x,θy) obtained by partitioning

the predictor variable space at each node split.

Here I apply this algorithm as implemented in the Scikit-garden Python package

[Kum17]. For the present application, I select a set of explanatory features which

are representative of the local rainfall climatology, and which can all be obtained

from a remotely-sensed dataset, without the need of observations at the ground.

For this purpose I identify as predictors the stretched exponential scale (CL) and

shape (wL) parameters, the average yearly number of events NL, and the variance

reduction function γ0 as estimated from the QPE dataset. Additional predictors I

consider to describe local environmental conditions are the mean elevation averaged

over the QPE grid cell (µe), and the standard deviation of the elevation σe computed

over a domain of size 1.25◦x1.25◦ degrees centered over the location of interest, in

order to account nearby orographic features. Predictor variables were normalized by

subtracting their averages and diving by their standard deviations. Elevation data

were obtained from the global topographic map obtained from NOAA National Center

for Environmental Information [AE09], which provides elevation with respect to mean

sea level globally at 1 arc-minute resolution. This information is here averaged so

as to match the TMPA grid over the CONUS. The QRF model is here applied by

training k = 2000 decision trees, although experiments were carried out with different

values of k to make sure the results were not overly sensitive to this choice. I note that

for their nature, RF and QRF models should not be used in extrapolation outside

the range of the predictors used for training. Instead, they should be trained using a

set of observations representative of the range in which I wish to obtain predictions.

Therefore, when applied to a heterogeneous region such as the CONUS, one would
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like to understand if error predictions are possible based on sparse and low-density

network of training sites, which is the working condition over many areas worlwide.

Here I address this question by designing a cross-validation procedure in which I

take advantage of the relatively dense observational network available in this study

over the CONUS to simulate how the method performs when trained using a low-

density gauge network and tested on an independent dataset. First, locations within

the set of gauged sites (SGS) are randomly resampled. Starting from a random

location I construct a sample by examining sequentially (and randomly) inspecting

and removing all gauged sites located at a distance less than 100km from any sites

already included in the sample. By doing so, I obtain a sample size of about 175

sites (which vary at each realization), and obtain a dataset in which selected sites

are at most weakly spatially correlated, thus allowing for proper calibration and

testing of the error model. Second, I randomly divide the stations obtained in stage

1 into two independent sets, used for training the model and for independent testing

respectively. Here I use 50% of the sites for calibration and the remining 50% for

validation of the QRF model. I repeat these two steps a number of times (ng = 20 in

the analysis reported here), and pool together the results to obtain a global measure

of performance over the test sites extracted in each realization. In each testing

or training site, I performed the downscaling of QPE statistics as described in the

previous Section 5.2, obtaining estimates of the parameters C0,d and w0,d, as well as

of the yearly number of events N0,d at a point. Moreover, at these sites independent

rain gauge estimates of these quantities at the ground (C0,g, w0,g and N0,g) are also

available. Therefore, I can obtain a measure of the error in downscaling these variables

by simply applying eq. (5.9). Results of this analysis are featured in Figure 5.4,

which compares the values of the errors ηC , ηW , and ηN predicted for the test sites

with the ’true’ values of such errors obtained using gauge records at the ground. In
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addition, the lower panels in Figure 5.4 show the values C0,c, w0,c, and N0,c obtained

by correcting the downscaled parameters using the QRF error model. The QRF-

corrected values show a good agreement with their counterpart from rain gauges

at the ground, especially for the scale parameter C0,c and the number of events

N0,c. A somewhat larger scatter occurs for the shape parameter w0,c. Overall, this

result constitutes a clear improvement with respect to the downscaled parameter

values shown in Figure 5.2. While using an ensemble of decision trees as done in

the QRF algorithm allows to reduce prediction uncertainty and improve stability

with respect to single decision trees, these improvements occur at the expense of

the interpretability of the model. Nevertheless, it is possible to obtain an estimate

of the relative importance of the predictor variables. In the regression model, the

importance of a given predictor is computed as the mean decrease in the sum of

squared residuals achieved at each node split by selecting that predictor. [JWHT13].

The importance of the features used in the QRF model to predict the three errors of

interest ηC , ηw and ηN is quantified in Figure 5.5. The error in the number of events

seems to depend primarily on the characteristic scale of ordinary rainfall events CL,

whereas for the error in the scale parameter ηC , the most important features are the

parameters of the ordinary rainfall distribution at the QPE grid cells scale. In the

case of the error in the shape parameter ηw, the most important predictors are those

representing local orography, and the scale parameter CL. The average number of

events does not play a primary role for either of the three error variables, and is

only somewhat relevant for predicting the values of ηC . However, I note that these

parameter importances should be interpreted with caution, as the predictor variables

are not completely independent between each other. While this is not an issue for

the QRF error predictions, this should be kept in mind when examining parameter

importances. The dependence of the shape parameter error from elevation suggested
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by the QRF analysis is not a surprise, given its spatial distribution shown examined

in Figure 5.3. However, it is interesting to note that the role of orography seems to

be more substantial in explaining errors in the tail of the distribution (i.e., in w0)

rather than on the characteristic rainfall magnitude or in the yearly average number

of events.

5.4 The Statistical Distribution of Extreme Events

from Remotely-sensed Rainfall

I turn here my attention to studying the probability distribution of extreme events

based on TMPA QPE’s, building on the tools developed and tested in the previous

sections. To this end, here I provide the first large-scale application of the Metastatis-

tical Extreme Value Distribution (MEVD) to remotely sensed QPE fields. Following

[MI15, ZBM16, ZM19] I study the distribution of the annual maximum, H
(m)
s , among

a variable number of independent and identically-distributed ordinary rainfall events,

here at the daily time scale. The parameters describing the distribution of ordinary

events, as well as the yearly number of events, are themselves considered to be ran-

dom variables, whose realizations are estimated in each year of a rainfall record. From

a sample of M years of daily rainfall observations, I thus estimate the cumulative

probability distribution of the annual maximum according to the MEVD:

P
(
H(m)
s < h

)
' ζs(h) =

1

M

M∑
i=1

[
F (i)
s (h)

]N(i)
s

(5.13)

where, for each year i = 1, ...,M in the rainfall time series the yearly number of or-

dinary events is N
(i)
s and: Pi (Hs < h) = F

(i)
s (h) is the distribution of ordinary events

in year i of the rainfall record, which here I assume to be a stretched exponential

117



Figure 5.4: Results from the application of the quantile regression forest algorithm
to predict parameter values at the ground and relative errors. Performance is quan-
tified only for grid cells located at least 100 Km apart, in order to avoid the effects of
spatial correlated grid cells. Upper panels (a), (b), and (c) report the dimensionless
errors ηC , ηw and ηN for scale and shape parameters and for the number of events
respectively. Lower panels report scatter plots of the corrected parameters compared
to the respective values estimated at the ground: (d) Weibull scale parameter C0,
(e) Weibull shape parameter w0, and (f) average yearly number of events N0. Again,
colors indicate the density of the points in the graph as computed by means of kernel
density estimation, with warmer colors indicating a higher density of points.
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Figure 5.5: Distributions of importance for the predictor variables used in the QRF
model for predicting relative errors in the average number of events (panel a), Weibull
scale parameter (panel 2) and shape parameter (panel 3) as estimated in the cross
validation analysis used to test the error model. Horizontal and vertical black bars
represent the medians and the interquantile range respectively.
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with cumulative probability

F (i)
s (h) = 1− e

−
(

h

C
(i)
s

)w(i)
s

(5.14)

with yearly scale and shape parameters C
(i)
s and w

(i)
s , and spatial averaging scale s.

The main idea behing the use of eq. (5.13) for modelling daily rainfall accumula-

tions extreme values is the recognition that low frequency variability in the rainfall

generating mechanism can produce heavier tails than would be otherwise observed.

This effect is captured in eq. (5.13) by averaging over parameter values estimated

independently for each year in the record [ZBM16]. While the Weibull distribution

is widely used for hourly to daily accumulations [WT05, PAFG18], I note that Eq.

(5.13) can be tailored to different parametric models for the probability distribution

of ordinary rainfall events, thus conferring to the MEVD significant application flex-

ibility. For computing rainfall quantiles for a given cumulative probability pne (or

return time Tr = 1− 1/pne) I can invert equation (5.13) and evaluate quantiles as

ĥs (Tr) = q + ζ−1
s (pne) . (5.15)

Parameters for the MEVD and GEV distributions were computed by means of

probability weighted moments [GLMW79] and L-moments [HWW85] respectively.

For extreme value analysis, years with more than 10% of missing observations (36

data points at the daily scale) were not included in the analysis, as the selection of

annual maxima values as well as the estimation of daily rainfall statistics would be

potentially biased in the presence of relevant fractions of missing data.
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5.4.1 The MEVD applied to TMPA QPE’s

The expected value of the daily rainfall accumulation corresponding to a 50-years

return time was obtained by applying the MEVD to the TMPA 3B42 V7 Research

version for the CONUS. For comparison, I produced the same estimate by fitting the

Generalized Extreme Value (GEV) distribution (e.g., [Col01]) to the series of Annual

Maxima (AM) extracted from the same dataset. The large-scale spatial features of

extreme rainfall frequency over the CONUS are similarly captured by the two models

(Figure 5.6). Interestingly, the spatial distribution of MEVD-estimated quantiles is

significantly smoother when compared with its GEV counterpart. This is consistent

with the notion that MEVD, by using all the observations available, produces more

stable estimates [ZBM16] that are also less sensitive to outliers, inevitably present

in remote-sensing estimates, as also noted in [MNA+19]. GEV-estimates are, on the

contrary, dominated by a few large outlier values, as manifest in the ”grainy” tex-

ture of Figure 5.6b. I argue that this behavior originates from the fact that MEVD

inferences are based upon the entire distribution of ordinary events, determining a

decreased sensitivity to biases in QPE estimates of large rainfall values compared to

annual-maxima or peaks-over-threshold approaches. As discussed in [MA14], while

TMPA is able to capture rainfall from intense convective events, the accuracy of the

estimates progressively descreses when limiting the analysis to rainfall rates exceeding

increasingly high threshold values. A second observation is that the 50-year quantiles

estimated by MEVD appear to be larger than those estimated by GEV in many ar-

eas over the CONUS, especially in the midwest. This feature does not appear to be

uniquely inherent to the statistical models used: If I repeat the same analysis for the

rain gauges from the NOAA hourly precipitation dataset (HPD) aggregated at the

same daily scale (Figure 5.6 c, d) I find that the two statistical models yield much more
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similar results in this case, although the 50-year quantile field obtained from MEVD

remains spatially smoother that its GEV counterpart. It is reasonable that, being

the MEVD and GEV distribution fitted using different parts of the dataset (annual

maxima in the case of the GEV, and the bulk of the distribution in the case of MEV),

the extreme values estimated through the two formulations should respond differently

to distortions in the pdf of the QPE magnitudes. However, a direct comparison of

the extreme value quantiles reported in panels a) -b) and c-d) of Figure 5.6 is not

feasible because of the scale discrepancy between QPE’s and point rain gauge mea-

surements. Eq. (5.13) provides a direct link between properties of the ordinary daily

rainfall distribution and the frequency of extreme values. Hence, using downscaled

parameters of the ordinary rainfall distribution inferred from remote sensing, it can

be used to directly compare the MEVD-derived extremes at a point with those from

independent rain gauge records, and to possibly correct for emerging discrepancies.

Here I test this idea by extending the cross validation method employed in Section

5.3 for testing how the correction applied to the stretched exponential parameters

affects extreme rainfall quantile estimates. For each iteration in the cross-validation

scheme, once the TMPA parameters C
(i)
L , w

(i)
L and N

(i)
L for i = 1, ...,M have been

computed over the test sites, they are used to provide an estimate of the Tr = 50

years quantile ĥL (Tr) by means of eq. (5.15). Analogously, the downscaled (C
(i)
0,d,

w
(i)
0,d,N

(i)
0,d) and corrected (C

(i)
0,c, w

(i)
0,c,N

(i)
0,c) values of the parameters are used to estimate

the corresponding quantiles at a point, ĥ0,d (Tr) and ĥ0,c (Tr) respectively. For each

testing site I independently compute the MEVD parameters (C
(i)
0,g, w

(i)
0,g,N

(i)
0,g) and

quantiles ĥ0,g (Tr) from the rain gauge record at the ground. Note that here I esti-

mate the parameters C
(i)
s , w

(i)
s and the number of events N

(i)
s , appearing in eq. (5.13),

separately for each year in the rainfall record so as to account for their inter-annual

variability. I then downscale each yearly value of the parameters using the equations
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described in Section 5.2, and correct them using the error model described in Section

5.3. Note that the downscaling and correction relations used are the same for each

year in the record. When downscaling the Weibull parameters for estimating MEVD

at subgrid scales, I apply eqns. (5.2) and(5.3) to each set of yearly parameter values

separately, using the constant values of the variance reduction function and intermit-

tency function derived from the entire QPE time series available. In principle, the

spatial correlation of precipitation may also vary year to year, e.g. as a consequence

of the varying frequency of different precipitation types. However, given the known

difficulty of estimating values of correlation for skewed, non-Gaussian processes such

as Precipitation at the daily time scale [GK04a], I did not include this possible source

of inter-annual variability in the model, and computed correlation values from the

entire QPE time series. Therefore, in this application the intermittency of the rain-

fall field and the decrease of its variance with averaging scale are the same for each

year of observations. The downscaled MEVD parameters are then corrected for each

year of the record using the median value of the relative error predicted by the QRF

algorithm. As for the parameter downscaling, I do not explicitly correct for possible

biases in the inter-annual variability of the parameter estimates. The result of this

comparison between TMPA, downscaled and corrected quantiles with the correspond-

ing rain gauge quantiles ĥ0,g is reported in Figure 5.7, in the form of scatter plots

(panel 5.7a) and pdf of the relative error between estimated values and reference rain

gauge quantiles (panel 5.7b). One can see that QPE quantiles tend to consistently

overestimate rain gauge quantiles, even though they have a different nature as they

are best interpreted as areal average quantiles over the pixel as opposed to values at

the point. This is clearly a byproduct of the biases observed in the TMPA-estimated

Weibull parameters, especially the overestimation of the scale parameter observed in

Figure 5.2c. Turning our attention to the downscaled values, they exhibit an even
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more substantial overestimation with respect to the rain gauge benchmark. This is

expected, as moving towards smaller averaging scales the fluctuations of the daily

rainfall process tend to become more energetic, as quantified by the increase in vari-

ance and decrease in the number of events captured by eqns. (5.3) and (5.2). Lastly,

the quantile values corrected by applying the QRF error model appear to be much

closer to the ground estimates. Despite some variability remaining in the distribution

of the estimates, QPE statistics bias is greatly reduced and the pdf of relative errors

exhibit in this case a clear peak around zero. This encouraging result supports the

choice of applying the same correction to each yearly parameter in the MEVD distri-

bution, without applying any specific correction to the inter-annual variability of the

parameters. I note that the application of downscaling and bias correction techniques

tend to have opposite effects on the estimated quantiles: The downscaling tends to

increase the magnitude of the 50 − year event in this case, and the bias correction

tends to decrese it (on average). Even though this might seem counterintuitive, and

perhaps unnecessary, I stress that this distinction between scale effects and errors is

quite important, as it is the difference between the downscaled and gauge values that

should be minimized, for example when designing new sensors and algorithms: areal

averages and point values should not be directly compared. Overall, the combined

application of downscaling and bias correction appears to provide good results, and

confirms that the bias correction performed on the parameters is relevant for cor-

recting extreme value quantiles. As a representative application of the error model,

I trained the QRF model with data from all the SGS sites and predicted the spatial

distribution of the error over the CONUS. Figure 5.8 features the median relative

errors in the Weibull parameters (panels 5.8(a) and 5.8(b)) and in the yearly number

of events (panel5.8(c)). Consistently with the observations from gauged sites, these

results clearly show spatial features such as the overestimation of the characteristic
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Figure 5.6: Results of the extreme value analysis over the study domain. Expected
value for the annual maximum daily rainfall quantile corresponding to a return time
of 50 years. (a) MEVD quantiles computed from the TMPA dataset over the CONUS,
(b), GEV quantiles computed from TMPA over the same domain, (c), MEVD quan-
tiles computed from the NOAA HPD rain gauge stations, and (c) GEV quantiles for
the NOAA HPD stations. Only stations with at least 10 years of data were included
in the analysis.

scale Cd over the Northeast US and the underestimation of the shape parameter wd in

the Western US, predominantly controlled by orography. After correcting the yearly

MEVD parameters with the median QRF relativer error estimate, one can compute

the errors in MEVD estimate quantiles. The spatial distribution of the error in the

50-year quantile is featured in Figure 5.8(d), which shows the quantile being gener-

ally overestimated over the CONUS. This overestimation is particularly relevant in

the Western US, where underestimation of the shape parameter over complex ter-

rain produces extreme value distributions with tails significantly heavier than the

corresponding ground estimates.
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Figure 5.7: (a) Scatter plot comparing extreme rainfall quantiles computed from
TMPA data to corresponding rain-gauge values for a return time Tr = 50 years,
as a result of the cross validation scheme used to test the QRF error model. For
each random extraction of the test sites, I report the TMPA extreme values quantiles
estimated at the grid-cell scale (red circles), the corresponding values downscaled to
a point in space (blue circles), and the QRF-corrected quantiles (green circles). In
panel (b) I show the corresponding histogram of rainfall quantiles from gauge records
(grey bars), and kernel density estimates for the distributions of TMPA quantiles
(red line), downscaled quantiles (blue line) and corrected quantiles (green line).
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Figure 5.8: Spatial distributions of the median relative errors predicted for the
Weibull scale (a) and shape (b) parameters, and for the yearly number of events
(c). Panel (d) features the relative error in the 50-years MEVD estimated quantile,
obtained correcting MEVD parameters using QRF-drived median error predictions.
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5.4.2 The global distribution of rainfall extremes

I am now in a position to extend the analysis of rainfall extremes over the CONUS to

the entire TMPA domain, which covers tropical, subropical and mid-latitude areas

between 50◦S and 50◦N . Application of the MEVD to the TMPA dataset is per-

formed for each pixel independently, as done for the CONUS, and at the grid cell

spatial scale. The global distribution of extreme daily rainfall obtained from comput-

ing quantiles for a 50-year return period with the MEVD is featured in Figure 5.9.

The most extreme rainfall values occur over subtropical regions, with several hotspots

over land which include South America and South-East Asia. While the most intense

quantiles are estimated to occur over Ocean. However, the results obtained here by

applying the error model should be regarded as representative of conditions over land

only, and validation over ocean should be pursued separately (e.g., see [SA09, PG14]).

Moreover, the gauge correction of TMPA dataset performed at the monthly scale can

hardly be performed over the ocean, for lack of sufficient data. This circumstance

is expected to negatively impact the accuracy of QPE’s over the ocean with respect

to the accuracy over land. When comparing quantiles estimated with GEV and

MEVD, one can observe that i) the main quantitative patterns of the two models

estimates are quite coherent at the global scale; and ii) MEVD estimates exhibit a

remarkable spatial coherence when compared to GEV estimates. While the estima-

tion uncertainty of GEV is heavily affected by the short dataset available here (20

years of annual maxima), regionalization techniques are expected to decrease this

uncertainty [HW05, BRC+16, DZH18, SLH19]. However, I note that the reduction

in estimation uncertainty achieved by using MEVD does not use information from

nearby grid cells, but uses the entire distribution of ordinary values from a single

grid cell. As an example, I show a zoomed-in representation of the 50-year event
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Figure 5.9: Distribution of extreme daily rainfall magnitude over the global-scale
TMPA domain over land and ocean surfaces. Rainfall quantiles corresponding to a
50 years return time are reported as estimated by the GEV distribution (panel (a))
and MEVD (panel (b)).

estimated for a domain in South-East asia, one of the regions characterized by most

intense maximum rainfall accumulation according to the global-scale analysis above

5.10). Again, MEVD estimates appear very coherent in space, suggesting that the

uncertainty intervals in quantile estimates are significantly reduced with respect to

the GEV model.
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Figure 5.10: Distribution of extreme daily rainfall magnitude over South-East Asia.
Rainfall quantiles corresponding to a 50 years return time are reported as estimated
by the GEV distribution (panel (a)) and MEVD (panel (b)).
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5.5 Discussion and Conclusions

In this Chapter I have described an approach for downscaling and validating satellite

QPEs over ungauged areas, and for correcting and extending extreme-value esti-

mates over ungauged locations. The methodology proposed here separately accounts

for the scale difference between QPE gridded statistics and reference rain gauges

at the ground, and for errors in QPE estimates. My cross-validation results quan-

tify estimation uncertainty and support the downscaling and correction procedures

proposed, suggesting that they can be applied to the entire CONUS and, by extrapo-

lation, to many mid-latitude areas at the global scale, thus providing error estimates

also where ground information is scarce. The analysis over the CONUS provides

useful insight over a range of different climatic regimes, while optimally exploiting

the ground observations available there for testing purposes. I also note that the two

main assumptions adopted here, namely the adoption of the Weibull distribution for

daily rainfall accumulations across scales and of eq. (5.7) for the spatial correlation,

can in principle be relaxed and tailored to local rainfall regimes as needed, thus con-

ferring to the proposed approach a greater flexibility. While the Weibull distribution

has been advocated as a general model for the tail of the daily rainfall distribution

at the global scale [WT05], the goodness of fit to daily values is expected to vary

in different climate regions. However, the approach proposed here can be applied to

other parametric models for daily rainfall, provided that the first two moments exist.

The assumption of isotropic correlation function would be more difficult to relax, as

is the case for the Taylor hypothesis used here to downscale the wet fraction of the

rainfall process to the point. While these are approximations, a more refined descrip-

tion of the rainfall field would require the availability of information at the ground.

As my main objective here is to propose a methodology for application to data-scarce
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regions, I utilize these assumptions on the rainfall field to infer sub-grid scale prop-

erties of the rainfall field from the QPE dataset alone. One limitation encountered

in Section 5.2.5 concerns the downscaling of the spatial correlation function at loca-

tions where the correlation decays very rapidly with distance, as is the case for sites

characterized by particularly complex terrain. While this situation occurs only for a

small fraction of the SGS sites examined here, these conditions may occur in many

mountainous regions worldwide. A possible way to address this limitation could be

to develop spatially explicit models of the correlation based on local studies over

complex terrain (e.g., [DWB15]). The results obtained in this study suggest that the

gauge correction applied in order to obtain the TMPA research version dataset can

lead to a significant deformation of the shape of the daily rainfall distribution. This

is especially relevant in areas where remote sensors fail to detect a significant frac-

tion of events. This consideration suggests the possibility of applying the QRF error

model directly to the non-adjusted real time datasets. An interesting avenue of fu-

ture research will be the application of this framework separately to the non-adjusted

precipitation statistics computed for different seasons. This analysis would outline

the performance of microwave retrievals in recovering rainfall statistics for different

precipitation types, and quantify their contributions to the discrepancies observed

in the yearly rainfall distributions. The aim of the downscaling approach proposed

here is to infer rainfall statistics across spatial averaging scales at a fixed tempo-

ral integration scale (daily in this application). Applications of the methodology to

different temporal scales are possible and deserve further investigation. Extending

the downscaling procedure to finer scales may encounter some limitations. First, the

estimation of the spatial correlation becomes increasingly uncertain when moving to

short time scales, and the characteristic correlation length scale of the rainfall field

decreases, as discussed by Gebremichael et al. [GK04a]. At temporal scales where
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the correlation characteristic distance becomes smaller than the grid cell size, the

downscaling becomes unfeasible, as discussed in Section 5.2.5. Second, the Taylor

hypothesis approach introduced by Zorzetto and Marani [ZM19] and discussed here

in Section 5.2.3 requires information at temporal scales smaller that the temporal

scale of interest in order to infer the wet fraction of the rainfall field at sub-grid spa-

tial scales. Therefore, the shortest temporal scale at which the spatial downscaling

analysis can be performed needs to be larger than the temporal resolution of the QPE

dataset. Finally, a third limitation concerns the use of eq. (5.13): Moving to progres-

sively finer temporal scales, the assumption of independent ordinary rainfall events

becomes increasingly questionable as the temporal autocorrelation of the process be-

comes more significant. Therefore, application of MEVD would require declustering

of the observations, e.g., as proposed by [MNAM18]. I also note that, for the QRF

error model to work adequately, one should limit extrapolation of the QPE errors

only to areas whose characteristics are represented in the training dataset. However,

as I show in the cross validation experiment, the model can be successfully trained

over large areas using low-density networks of rain gauges. This was indeed the main

objective of the study, and it extends the domain where QPE validation is possible

beyond the existing dense networks of rain gauges, which tend to be available only in

developed countries, in densely populated areas, and are lacking in arid locations and

locations characterized by complex topography. However, where this information is

not available, the approach presented here provides a coherent quantification of esti-

mation uncertainty, accounting for the different intrinsic nature of spatially-averaged

satellite QPEs and point observations at the ground. The analyses proposed here

can be used to inform the development of rain-gauge networks covering a targeted

set of sample climatic location to maximize the inference potential over ungauged

sites. An interesting research direction that builds on the results presented here is
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the possible extension of the methodology to a seasonal analysis of rainfall pdf’s and

correlation structure, or, possibly, to a classification based on different precipitation

types. This type of differentiation could be useful either to assess more specifically

the performance of remotely sensed QPEs in different seasons and for different pre-

cipitation types, and to study the distribution of extremes originated from multiple

mechanisms.
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Chapter 6

Extremes, Intermittency, and Time

Directionality of Atmospheric Turbulence

at the Crossover from Production to

Inertial Scales

Adapted from: Zorzetto, E., A. D. Bragg, and G. Katul. ”Extremes, intermittency,

and time directionality of atmospheric turbulence at the crossover from production to

inertial scales.” Physical Review Fluids 3.9 (2018): 094604.

6.1 Introduction

Turbulence in fluids is prototypical of spatially extended nonlinear dissipative systems

characterized by large fluctuations that are active over wide ranging scales [Sre99].

The dynamics of a substance or scalar advected by a turbulent flow (often termed

’scalar turbulence’ [SS00]) is by no means an exception to this description. Scalar

turbulence shares many phenomenological parallels with the much studied turbulent

velocity fluctuations, especially in the inertial subrange. However, scalar turbulence

also exhibits distinctive large- and fine-scaled temporal patterns (e.g. ramp-cliff)

that are usually weak or all together absent from their component-wise turbulent

velocity counterparts [ACFVA79, SS00, War00]. This finding is particularly true in

the atmospheric surface layer (ASL) [Gar94, Stu12], a layer within the atmospheric
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boundary layer (ABL) that is sufficiently far above roughness elements but not too

far from the ground to be directly impacted by the Coriolis force. In the ASL, the

frictional Reynolds number Re∗ = u∗z/ν can readily exceed 105, where z is the dis-

tance above the ground surface, u∗ is the friction velocity related to the kinematic

turbulent stress, and ν is the kinematic viscosity of air. A direct consequence of this

large Re∗ is a wide separation between scales over which turbulent kinetic energy (k)

is produced and dissipated. In the absence of thermal stratification, k is produced

at scales commensurate with z; however, the action of fluid viscosity responsible

for the dissipation of k occurs at scales commensurate to or smaller than the Kol-

mogorov microscale ηK = (ν3/〈ε〉)1/4, where 〈ε〉 is the mean turbulent kinetic energy

dissipation rate that is proportional to u3
∗/z for a neutrally stratified ASL [Stu12].

These estimates of 〈ε〉 and ηK result in z/ηK ∼ Re
3/4
∗ > 5000 in the ASL, which is

rarely achieved in direct numerical simulations or laboratory studies. Embedded in

this wide ranging scale separation is the inertial subrange [Kol41], where self similar

scaling of velocity and air temperature structure functions is expected to hold for

eddy sizes much larger than ηK but much smaller than z. Integral scales or scales

comparable to z are directly influenced by boundary conditions imposed on the flow

including surface heating (or cooling) in the ASL, whereas small scales (e.g. ηK) may

attain universality and local isotropy after a large number of cascading steps away

from the energy injection scales.

Much attention has been historically dedicated to the inertial subrange and the

subsequent cross-over to the viscous or molecular regimes precisely because of the

possible universal character of turbulence at such fine scales [Kra68, KPS92, War00,

SSK+14, YZS15, KMP+15]. However, it is now accepted that some coupling between

small and large scales exists, especially for passive scalars [War00, SS00, KPCS06],

that act to enhance intermittency buildup across scales and distort any universal
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behavior by injecting the effects of the boundary conditions (or the k generation

mechanism). Along similar lines of inquiry, it has been conjectured that the pres-

ence of coherent ramp-cliff patterns in concentration (or temperature) time series

are responsible, to some degree, for this coupling [War00]. Ramp-cliff structures are

characterized by local intense scalar gradients separated by large quiescent regions.

The presence of ramp-cliff structures in scalar time series has been shown to break

locality of eddy interactions and determine some departures from small scale isotropy.

Sweep-ejection dynamics connected to the presence of ramps are likely to play a

major role in observed extreme value statistics, as shown e.g., for Lagrangian veloc-

ity sequences in plant canopy turbulence [Rey12]. Moreover, ramps are asymmetric

and produce non-zero odd ordered structure functions, sharing striking resemblance

with flight-crash events recently reported for the turbulent kinetic energy of La-

grangian particles [XPF+14]. Even though ramps have been extensively observed

experimentally [ACFVA79], studied as surface renewal processes [KPCS06], and from

a Lagrangian perspective [SS00, FGV01], a unified picture describing their effects on

inertial scales statistics remains lacking and motivates the work here.

My main objective is to investigate two questions about scalar turbulence at

scales spanning production to inertial subranges: How do ramp-cliff patterns mod-

ify (i) the probability of extreme scalar concentration or air temperature excursions

and its corollary intermittency buildup, and (ii) symmetry and time reversibility of

scalar turbulence. These two questions are explored for differing turbulent energy

injection mechanisms (mechanical and buoyancy forces) in the ASL. Here I focus on

the production-to-inertial scales instead of the usual inertial to viscous ranges for the

following reasons. First, any cross-scale coupling with ramp-cliff patterns is likely

to be sensed at large scales commensurate with the ramp durations. Second, these

scales are deemed most relevant when constructing sub-grid scale models for improv-
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ing Large Eddy Simulations [MLC96, PAMP00, HPM03, SPA06]. Third, these scales

encode much of the scalar variance that is needed when deriving phenomenological

theories for the bulk flow properties based on the spectral shapes of the turbulent

velocity and air temperature [KKP11, KLCBZ13, LKBZ12, KPSBZ14, LKZ15], es-

pecially for the ASL.

To achieve the study objectives, high frequency measurements of the three velocity

components and air temperature fluctuations in the ASL are used to explore flow

statistics at the transition from production to inertial scales. In particular, the focus

is on the first two decades dominated by approximate inertial subrange effects, where

the transition from the large eddies to the universal equilibrium or inertial range

occurs. The statistical properties of temperature increments within this range of

scales is examined with the goal of addressing to what extent the tail properties (and

thus the probability of extreme events) at fine scales still carry signatures from the

production ranges and in particular of large coherent structures such as ramp-cliffs.

The experiments here span several atmospheric stability regimes that dictate to what

degree turbulent kinetic energy is mechanically or buoyantly generated (or dissipated)

depending on surface heating (or cooling) and on the turbulent shear stress near the

ground [MO54b]. However, due to the large Reynolds number encountered in the

ASL, the stable stratification is not sufficiently severe to allow for a transition to

non-turbulent regimes. Therefore, the turbulence can be studied as three dimensional

and fully developed.

This Chapter is organized as follows: In Section 6.2, the budget for turbulent

kinetic energy forced by a mean velocity gradient and buoyancy is reviewed so as to

define the key variables and dimensionless quantities pertinent to ASL flows. Then,

the statistical tools used to characterize intermittency and time directionality of the

scalar field are introduced. Section 6.3 presents the experimental setup, data process-
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ing, and compares the outcome of this experiment with predictions from traditional

turbulence theory in the inertial subrange. The results obtained investigating ex-

treme values and time directional properties for velocity and temperature are then

presented in Section 6.4. In Section 6.5 the main conclusions are featured. Appendix

E shows that distortions of the inertial range due to stable stratification are not

relevant for the range of scales studied here.

6.2 Theory

6.2.1 Overview of ASL similarity at large- and small-scales

The turbulent kinetic energy budget for a stationary and planar homogeneous flow

in the absence of subsidence is given by

∂k

∂t0
= 0 = −u′w′dU

dz
+ βogw′T ′ + PD + TT − ε, (6.1)

where k = (u′2 + v′2 + w′2)/2 is the turbulent kinetic energy, u′, v′, and w′ are the

turbulent velocity components along the mean wind (or x), lateral (or y), and vertical

(or z) directions, respectively, t0 is time, and the five terms on the right-hand side of

Eq. (6.1) are mechanical production, buoyant production (or destruction), pressure

transport, turbulent transport of k, and viscous dissipation of k, respectively, βo is the

thermal expansion coefficient for gases (βo = 1/T , T is air temperature here), g is the

gravitational acceleration, −u′w′ = u2
∗ is the turbulent kinematic shear stress near

the surface, and w′T ′ is the kinematic sensible heat flux from (or to) the surface.

When w′T ′ > 0, buoyancy is responsible for the generation of k and the ASL is

classified as unstable. When w′T ′ < 0, the ASL is classified as stable and buoyancy

acts to diminish the mechanical production of k. The relative significance of the
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mechanical production with respect to the buoyancy generation (or destruction) may

be expressed as

−u′w′dU
dz

+ βogw′T ′ =
u3
∗
κz

[
φm(ζ) +

κzβogw′T ′

u3
∗

]
=
u3
∗
κz

[φm(ζ)− ζ] , (6.2)

where

dU

dz
=
u∗
κz
φm(ζ), ζ =

z

L
, L = − u3

∗

κgβow′T ′
, (6.3)

and φm(ζ) is known as a stability correction function reflecting the effects of thermal

stratification on the mean velocity gradient (φm(0) = 1 recovers the von Karman-

Prandtl log-law), κ ≈ 0.4 is the von Karman constant, and L is known as the Obukhov

length as described by the Monin and Obukhov similarity theory [MO54b]. The

physical interpretation of L is that it is the height at which mechanical production

balances the buoyant production or destruction when φm(ζ) does not deviate appre-

ciably from unity. For a neutrally stratified ASL flow, |L| → ∞ and |ζ| → 0. The

sign of L reflects the direction of the heat flux, with negative values of L correspond-

ing to upward heat fluxes (unstable atmospheric conditions) and positive values of L

corresponding to downward heat flux (stable atmosphere).

Several bulk flow statistics in the ASL can be reasonably described by the afore-

mentioned Monin-Obukhov similarity theory, including the mean air temperature

gradient dT/dz and the air temperature variance T ′2, both varying with ζ when

normalized by a temperature scale T∗ = −w′T ′/u∗. However, the statistics of some

large-scale features within the temperature time series traces, such as the statistics of

ramp-cliff patterns, do not scale with z. For starters, the ramp characteristic dimen-

sion is generally larger than z and their duration exceeds the mean vorticity time scale

(κzφm(ζ)−1)u−1
∗ . Ramps have been observed within canopies, near the canopy atmo-

sphere interface, and other types of flows as reviewed elsewhere [KPCS06, War00].
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While z/L may not be the proper scaling parameter for ramps, it does indirectly im-

pact many of their features in air temperature time traces sampled within the ASL.

For example, in stably stratified ASL flows, the temperature ramps appear ’inverted’

when compared to their near-neutral counterparts. The amplitudes and durations

of ramps can increase with increasing instability due to weaker shearing and intense

buoyant updrafts [CNBL97, TF07].

At small scales associated with the inertial subrange, the velocity and temperature

second-order structure functions are commonly described by the Kolmogorov 1941

(K41) theory [Kol41] given as

S2
u(r) = [∆u(r)]2 = 4Co,u(〈ε〉r)2/3, (6.4)

S2
w(r) = [∆w(r)]2 = 4Co,w(〈ε〉r)2/3, (6.5)

S2
T (r) = [∆T (r)]2 = 4Co,T 〈εT 〉〈ε〉−1/3r2/3, (6.6)

where ∆u(r) = u(x+ r)− u(x), ∆w(r) = w(x+ r)−w(x), and ∆T (r) = T (x+ r)−

T (x) are the velocity and temperature increments at separation distance (or scale)

r, 〈ε〉 and 〈εT 〉 are the k and temperature variance dissipation rates respectively,

Co,u and Co,w are the Kolmogorov constants for the longitudinal and vertical velocity

components, and Co,T is the Kolmogorov-Obukhov-Corrsin (KOC) constant. These

scaling laws, obtained under the assumptions of similarity and local isotropy, appear

to hold reasonably in the ASL for scales smaller than z/2 [KHS97]. Moreover, the

normalized third order structure functions

S(r) =
S3
u

(S2
u)

3/2
=
〈∆u(r)3〉
〈∆u(r)2〉3/2

(6.7)
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and

F (r) =
S3
TTu

S2
T [S2

u]
1/2

=
〈∆u(r)∆T (r)2〉

〈∆T (r)2〉〈∆u(r)2〉1/2
(6.8)

must be constant to recover K41 predictions for S2
u and S2

T in the inertial range

[Obu49].

However, relevant deviations from K41 scaling have been reported for higher order

structure functions, especially for the scalar fluctuations. These deviations arise as (i)

Eqs. (6.4) - (6.6) do not account for intermittency related to spatial variability of the

actual ε and εT , and (ii) the hypothesis of local isotropy might not hold for scalars due

to non-local interactions across scales [Sre91]. A signature of the latter is the large

structure skewness for temperature determined by ramp structures [KHS97, War00].

Many models, starting from Kolmogorov’s log-normal dissipation rate refinement

[Kol62], seek to relax some of the restrictive assumptions of K41 so as to explain the

anomalous scaling observed in higher order moments. For scalars, these corrections

are commonly expressed as

SnT = Cn (εr)n/3 (r/LI)
ζ′n−n/3 (6.9)

where the exponent ζ ′n implies a scaling different from K41 that depends on the

moment order n. The presence of an integral time scale LI suggests an explicit

dependence on large scale eddy motion within the inertial subrange. One estimate

of LI may be derived from the integral length scale of the flow given by

LI = U · Iw = U ·
∫ ∞

0

ρw(τ0)dτ0, (6.10)

where ρw(τ0) is the vertical velocity autocorrelation function and τ0 is the time lag.

Here, Iw is presumed to be the most restrictive scale given that w′ is the flow variable
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most impacted by the presence of the boundary.

The statistics of air temperature increments across scales (τ0/Iw) for different ζ

conditions are explored with a lens on two primary features: buildup of heavy tails

and destruction of asymmetry originating from ramp-cliff structures at the cross-over

from τ0/Iw > 1 to τ0/Iw ≈ 0.1. Because changes in ζ do result in changes in Iw, the

time (or space) lags are presented in dimensionless form as τ = τ0/Iw, so that the

increments of a flow variable ∆s, with ∆s = ∆u,∆w,∆T at a given dimensionless

scale τ , can be expressed as ∆s(τ) = s(t+ τ)− s(t), where t = t0/Iw.

6.2.2 Probabilistic description of intermittency across scales

The intermittent behavior of ASL turbulent flows has been documented by several

experiments [KPC94, KVA01], and a number of models have been proposed to cap-

ture the effects of intermittency on the flow statistics in the inertial range of scales

(e.g., lognormal, bi- and multi-fractals - beta model, log-stable, She-Leveque vortex

filaments, etc). Common to all these models is the hypothesis of local isotropy and

the accounting for uneven distribution of eddy activity in the space/time domain,

which explains the anomalous scaling of higher order even structure functions.

Here, a statistical description of scalar increments is used to fingerprint large-scale

signatures across scales τ for different ζ. If such fingerprints exist, the dissipation

rates ε and εT need not be sufficient to describe all aspects of the inertial range

statistics. The one-time probability density function (pdf) of the increments ∆s(τ)

of the flow variable s = u,w, T at a given dimensionless scale τ , can be expressed as

[PC93]

p(∆s) =
N

qo(∆s)
exp

∫ ∆s

0

ro(∆s
′)

qo(∆s′)
d∆s′. (6.11)

This expression is exact when ∆s are realizations of a stationary stochastic process
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S(t) under the condition p(∆s) → 0 as ∆s → ∞. Here qo(∆s) = 〈Ṡ2|∆s〉/〈Ṡ2〉

and ro(∆s) = 〈S̈|∆s〉/〈Ṡ2〉 are the normalized averages of the first and second order

conditional derivatives of the process S(t), and N is a normalization constant. Eq.

(6.11) generalizes previous results obtained by Sinai and Yakhot [SY89] and Ching

[Chi93] for the pdf of temperature fluctuations and their increments, where the term

ro(∆s) was linear (ro(∆s) = −∆s). Eq. (6.11), while derived for a twice-differentiable

process, can be interpreted as the steady-state solution of a Fokker Planck equation

with p(∆s) vanishing at infinite boundaries, with drift and diffusion coefficient equal

to r0 and q0 respectively [Gar24, PKC+11].

Although Eq. (6.11) can be directly computed from an observed time series, the

estimation of the conditional derivatives in qo(∆s) and ro(∆s) becomes inevitably

uncertain as ∆s approaches the tails of the pdf. However, a number of parametric

distributions commonly used in statistical mechanics arise as particular cases of Eq.

(6.11) when ro(∆s) = −∆s, such as Gaussian (qo constant), power-laws (qo(∆s) ∼

∆s2) and stretched exponentials (qo(∆s) ∼ ∆sa, 0 < a < 2). To facilitate estimation

and comparisons with data, two different parametric models for the tails of Eq. (6.11)

are here adopted: a Stretched Exponential (SE) and a q-Gaussian distribution (QG).

The first arises from multiplicative processes of normal-distributed random variates

[FS97], while the second maximizes a generalized measure of information entropy

proposed by Tsallis [Tsa88, TLSM95, SVKA05]. While QG does not have a clear

physical basis in the context of turbulent flows [GK04b], it has been widely used in

the analysis of turbulence simulations and data [RRN+01, AA02, BRS+02, KPCS06].

I employ these two models to infer tail behavior as well as to test the independence of

my findings from the particular parametric distribution used to characterize p(∆s).

The QG and SE pdfs are given as
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pQG(∆s) = N(q) ·
(

1 + (q − 1)
∆s2

2ψ2

) 1
1−q

, (6.12)

pSE(∆s) =
η

λ

(
∆s

λ

)η−1

· exp

(
∆s

λ

)η
. (6.13)

Both pdf models have two degrees of freedom corresponding to a scale (ψ,λ)

and shape (η, q) parameter. I adopt the (symmetric) QG model and the SE fitted

separately to right and left tails of p(∆T ).

6.2.3 Probabilistic description of asymmetry and irreversibil-

ity across scales

The presence of ramp-cliff structures has been conjectured to result in non-local inter-

actions of different size eddies within the inertial subrange [War00]. This non-locality

affects both even and odd moments of higher order. A statistical framework to inves-

tigate the effects of ramps on the asymmetric nature of velocity and scalar increments

for different atmospheric stability classes is now discussed. Sharp edges associated

with cliffs might directly inject scalar variance at much smaller scales and thus alter

the magnitude and sign of odd order moments within the inertial range (depending

on z/L). The presence of asymmetry has been investigated based on odd-ordered

structure functions [War00] or multipoint correlators [MPS+98]. In particular, a sim-

ple measure for the persistence of asymmetry at small scales is the skewness of the

scalar increments S3
T = 〈∆T (τ)3〉/〈∆T (τ)2〉3/2. The structure skewness of air tem-

perature has been found to scale as Reλ = σuλ/ν (where λ is the Taylor microscale

and σu is the root mean square of the longitudinal velocity fluctuations) and thus for

a boundary layer ST3 ∼ Re
1/2
∗ . However, for large values of Reλ experimental evidence

suggests that ST3 tends to plateau and become independent of Reλ [Sre91, War00].

145



A further signature of ramp-cliff structures is that increments ∆T (τ) may exhibit

a time directional (or ’irreversible’) behavior. Time reversibility implies that the

trajectories of a stationary process Θt exhibit the same statistical properties when

considered forward or backward in time. In particular, for a reversible time series the

n-points joint pdf of (Θ1,Θ2, ...Θn) is equal to the joint pdf of the reversed sequence

(Θn,Θn−1, ...Θ1) for every n. While testing this general definition of reversibility

would require perfect knowledge of the phase space trajectories, a weaker definition

is the so called lag-reversibility. This condition only requires the two-points pdfs to

be equal: fΘt,Θt+τ (Θ1,Θ2) = fΘt+τ ,Θt(Θ2,Θ1). While this definition is less general,

it still provides a necessary condition for testing time reversibility. Moreover, it is

consistent with the traditional descriptions of turbulence that are primarily based on

two-point statistics. Lag reversibility implies that [Law91]

Rτ = ρc(Θ
2
t ,Θt+τ )− ρc(Θt,Θ

2
t+τ ) = 0. (6.14)

where ρc denotes a correlation coefficient between two variables. This condition can

be directly tested across different τ and ζ using a conventional correlation analysis.

A second test for reversibility of scalar trajectories is here performed based on the

Kullback-Leibner measure, a form of relative entropy that determines the average

distance between the entire pdf of forward and backward trajectories [CT18, PRD07,

PKC+11]. Again, the analysis here is restricted to the inspection of lag-reversibility

(n = 2) across scales τ . In such a restricted form, this measure reduces to

〈Zτ 〉 =

∫
ΩΘ

∫
ΩΘ′τ

p(Θ′τ |Θ)p(Θ) log
p(Θ′τ |Θ)

p(−Θ′τ |Θ)
dΘ′τdΘ, (6.15)

where Θ′τ = ∆Θ(τ)/τ , and the domains of integration ΩΘ and ΩΘ′τ correspond to the

populations of the random variables Θ and Θ′τ respectively. Eq. (6.15) determines,
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at each dimensionless scale τ , the average distance between the probability of the

transition ∆Θ(τ) and its inverse, at every given level Θ.

A statistical mechanics interpretation of Eq. (6.15) would imply that for a system

in non-equilibrium steady state, the Fluctuation Theorem must hold so that

log
p(−Zτ )
p(Zτ )

= −Zτ (6.16)

for the variable Zτ computed at some level Θ

Zτ (Θ) = log
p(Θ′τ |Θ)

p(−Θ′τ |Θ)
. (6.17)

Note here the usage of conditional probabilities instead of their unconditional forms

employed in recent flight-crash studies of Lagrangian fluid particles [XPF+14] that

also made use of Fluctuation Theorem and time-reversibility. Eq. (6.15) has been

shown to have general validity [PRD07] independent of the underlying dynamics or

statistical-mechanics interpretations, when considering conditional statistics.

6.3 Data and Methods

The three velocity components and air temperature measurements were sampled at

56 Hz using an ultra-sonic anemometer positioned at z =5.2 m above a grass-covered

surface at the Blackwood Division of the Duke Forest, near Durham, North Carolina,

USA. The anemometer samples the air velocity in three non-orthogonal directions

by transmitting sonic waves in opposite directions and measuring their travel times

along a fixed 0.15 m path length. Temperature fluctuations are then computed from

measured fluctuations in the speed of sound assuming air is an ideal gas. The non-

orthogonal sonic anemometer design used here has proven to be the most effective at
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reducing flow distortions induced by the presence of the instrument.

The experiment resulted in 123 time series records (henceforth termed ’runs’)

each having a duration of 19.5 minutes (65536 data points at 56Hz), covering a

range of different atmospheric stability conditions [KHS97]. Of these, only 34 runs

passed a stationarity test and were included in the analysis (see Table 6.1 for a

summary of the properties of the flow for these runs). The assumption of stationarity

is necessary so as to (i) decompose the flow variables into a mean and fluctuating

part, (ii) adopt Eqs. (6.11) and (6.15) so as to describe intermittency and time

irreversibility respectively, and (iii) compute the integral scales needed in delineating

the transition from production to inertial. To test the dataset for stationarity, I

employ the second order structure functions of velocity components (u,w) and air

temperature T . Runs were included only if the slope of S2
s = 〈[s(t+ τ)− s(t)]2〉 for

time delays larger than about 9 minutes (30000 sample points) was smaller than a

fixed value (0.01). For the 34 runs meeting this strict stationarity criterion, second

order structure functions for w and T are featured in Fig. 6.1. As expected, structure

functions exhibit an approximate 2/3 scaling at fine scales and transition to a constant

value as the autocorrelation weakens at large separation distances.

The presence of a stable stratification is known to produce distortions on the

spectral properties of turbulence at scales commensurate with (and larger than) the

Dougherty-Ozmidov length scale [RMP15]. I investigated this issue (see Appendix E

for more details) finding that stable stratification effects are only relevant at scales

larger than the integral scale Iw considered here and not in the inertial range.

As earlier noted, the most restrictive (i.e. smallest) integral time scale is Iw

associated with the vertical velocity w due to ground effects. I assume that this

time scale characterizes the transition from production to inertial ranges for all three

flow variables u,w, T . Eq (6.10) is here evaluated by integrating ρw(τ) up to the
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first zero crossing so as to avoid the effects of low frequency oscillations. Figure

6.1 illustrates the integral time scales of w and T as a function of ζ, where the

aforementioned integral time scales are normalized by the mean vorticity time scale

dU/dz = φm(ζ)u∗(κvz)−1. It is clear that such normalized Iw is approximately con-

stant across stability regimes and suggests Iw to be proportional to the duration of

vortices most efficient at transporting momentum to the ground for all ζ. Conversely,

the temperature integral time scale is much longer than Iw for near-neutral conditions

and only approaches Iw for strongly unstable conditions.

A known limitation of sonic anemometry is the presence of distortions at high

frequencies due to instrument path-averaging. For this reason, the smallest time scale

considered in the analysis is 0.05 · Iw, which corresponds to a minimum travel path

of 30cm (or twice the sonic anemometer path length). Taylor’s frozen turbulence

hypothesis [Tay38] (r = −Ut) was employed to convert values of τ to separation

distances r within the inertial subrange even though the turbulent intensity σu/U is

not small as shown in Table 6.1. For this reason, I adopt the dimensionless lag τ for

analysis and presentation. The τ can be interpreted as temporal or spatial noting

that distortions due to the use of Taylor’s hypothesis impact similarly the numerator

and denominator.

For every run, ζ was computed using Eq. (6.3) and then employed to classify the

ASL stability condition. Most of the runs in the dataset are unstable with a wide

range of |ζ|, while only 4 runs are characterized by ζ > 0. To ensure a balanced

statistical design, two stability classes are selected with the same number of runs (8)

in each class: strongly unstable (|ζ| > 0.5) and near neutral runs (|ζ| < 0.072). A

summary of the bulk flow properties for these runs are featured in Table (6.1).

In the analysis, each flow variable s (s = u,w, T ) is normalized to zero-mean and

unit-variance (labeled as sn). Then, at scale τ , a time series of ∆s(τ) = sn(t + τ)−
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sn(t) is constructed and again normalized to have unit variance.

For illustration purposes, Fig. 6.2 shows sequences of fluctuations u′, w′, T ′ ex-

tracted from runs in unstable and stable atmospheric regimes. In the first case, tem-

perature fluctuations clearly exhibit ramp-cliff structures occurring with time scales

larger than Iw. In the stable/near neutral case, large scale scalar structure are still

present even though their structure is qualitatively different from the unstable case,

and may include inverted ramp structures as in Fig. 6.2(B) when w′T ′ < 0.

To test the effects of these coherent structures on inertial subrange statistics,

and in particular to isolate the effect of temperature ramps on intermittency and

asymmetry, synthetic time series are used and are constructed as follows. First, a

phase-randomization of the original temperature records [PT94] is performed by pre-

serving the amplitudes of the Fourier coefficients while destroying coherent patterns

encoded in the phase angle. A synthetic sawtooth time series is then superimposed

on the time series obtained by phase-randomization. Here a coefficient α measures

the relative weight of the ramps with respect to the phase-randomized sequence. This

combination yields realizations of a renewal process (see Fig. 6.2(C) for a representa-

tive example with α = 0.5) that is unconnected with Navier-Stokes scalar turbulence,

but mimics sweep-ejection dynamics [KPCS06]. Synthetic ramps are here generated

with exponentially distributed durations and with a mean duration set to a multiple

of the integral time scale (2 · Iw in Figure 6.2(C)). The resulting time series is again

normalized to have zero mean and unit variance.
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Table 6.1: Bulk flow properties for the runs in the

dataset. The table reports the atmospheric stability pa-

rameter ζ, the Obukhov length L [m], the sensible heat

flux H = ρCpw′T ′ [Wm−2] (where ρ is the mean air

density and Cp is the specific heat capacity of dry air

at constant pressure), the mean air temperature T [◦C]

and mean velocity U [m/s], and the integral time scale

for w [s], the turbulent intensity σu/U , the temperature

standard deviation σT [◦C], and vertical velocity stan-

dard deviation σw [m/s].

Run ζ L H T U Iw σu/U u∗ σT σw

1 -11.56 -0.4 93.2 33.9 2.1 2.62 0.44 0.08 0.48 0.40

2 -1.31 -4.0 121.6 26.9 1.0 7.58 0.72 0.17 0.54 0.30

3 -0.89 -5.8 73.1 27.8 0.5 6.62 0.91 0.16 0.37 0.30

4 -0.81 -6.4 79.9 32.7 0.7 5.75 1.05 0.17 0.61 0.29

5 -0.80 -6.5 138.1 27.4 0.8 8.18 0.48 0.21 0.57 0.31

6 -0.67 -7.7 149.8 31.4 0.9 11.64 1.04 0.23 0.63 0.38

7 -0.59 -8.8 118.1 34.8 1.5 3.43 0.71 0.22 0.58 0.34

8 -0.52 -10.0 85.4 32.5 2.1 1.74 0.37 0.21 0.44 0.37

9 -0.45 -11.5 78.6 31.7 1.1 7.44 0.61 0.21 0.43 0.30

10 -0.44 -11.7 110.7 31.9 1.2 5.89 0.65 0.24 0.49 0.37

11 -0.44 -11.8 39.4 34.4 1.3 3.19 0.45 0.17 0.32 0.29

12 -0.40 -13.0 36.6 34.1 1.7 2.30 0.39 0.17 0.37 0.28

13 -0.37 -14.0 65.1 25.2 1.6 2.91 0.39 0.21 0.35 0.27

14 -0.33 -15.6 48.0 28.9 1.4 2.58 0.41 0.20 0.27 0.30
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Run ζ L H T U Iw σu/U u∗ σT σw

15 -0.33 -15.8 4.8 33.4 1.6 1.59 0.35 0.09 0.09 0.23

16 -0.29 -18.2 115.2 32.1 2.7 2.16 0.37 0.28 0.44 0.47

17 -0.28 -18.5 136.2 29.2 0.9 6.88 1.11 0.30 0.56 0.37

18 -0.27 -19.1 108.6 30.5 1.7 3.56 0.62 0.28 0.54 0.34

19 -0.17 -29.7 70.5 29.5 2.6 2.22 0.29 0.28 0.36 0.42

20 -0.15 -33.8 63.2 32.9 2.2 2.97 0.39 0.28 0.36 0.40

21 -0.14 -37.9 30.9 34.2 1.6 4.17 0.49 0.23 0.34 0.32

22 -0.12 -44.4 118.6 31.0 2.6 3.78 0.42 0.38 0.49 0.42

23 -0.09 -56.5 26.7 33.9 1.9 3.39 0.31 0.25 0.15 0.31

24 -0.08 -61.7 49.7 31.7 2.0 3.50 0.41 0.31 0.27 0.39

25 -0.08 -65.1 17.6 34.0 2.2 3.22 0.29 0.23 0.13 0.31

26 -0.07 -72.5 28.8 31.5 1.8 2.71 0.41 0.28 0.29 0.30

27 -0.04 -126.2 45.1 31.0 4.3 1.21 0.33 0.39 0.35 0.71

28 -0.03 -171.8 3.9 31.3 1.7 3.18 0.39 0.19 0.15 0.30

29 -0.02 -261.4 46.1 31.2 3.8 1.37 0.39 0.50 0.23 0.72

30 -0.02 -304.3 47.1 29.4 5.0 0.84 0.31 0.53 0.21 0.80

31 0.002 2397.4 -0.4 31.2 1.9 1.94 0.44 0.22 0.69 0.32

32 0.01 525.5 -1.3 32.9 0.9 3.00 0.51 0.19 0.18 0.23

33 0.05 93.8 -20.7 29.8 2.6 1.52 0.30 0.27 0.23 0.39

34 0.07 71.4 -14.2 30.4 1.9 2.18 0.37 0.22 0.25 0.28
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6.4 Results

The main questions to be addressed here require determination of (i) the probability

of extreme scalar concentration excursions and concomitant intermittency, and (ii)

scalar asymmetry and time irreversibility across scales. Here, tools introduced in

sections 6.2.2 and 6.2.3 are used to investigate how these two features vary from

production to inertial scales for temperature traces, and to compare this behavior

with the observed velocity components. Comparison of these quantities for runs

recorded in different atmospheric stability conditions allows to test whether significant

coupling across scales exists, and to what extent velocity and temperature statistics

are universal at the smallest scale examined here.

6.4.1 Probabilistic description of intermittency across scales

I first investigate the intermittent behavior of both scalar and velocity components by

assessing to what extent the scaling of even-order structure functions departs from

K41 predictions. Inspection of scaling exponents ζ ′n in Eq. (6.9) for u,w, T con-

firms that K41 predictions significantly overestimate scaling exponents for structure

functions of order higher than 2, as shown in figure 6.3(A). The scaling exponents

obtained for the scalar T show reasonable agreement with previous experimental re-

sults (Fig. 6.3(B)), with values systematically lower than predicted by the Kraichnan

model in the limiting case of time-uncorrelated velocity field [Kra94]. The values of

ζ ′n averaged over the set of runs observed during the experiment are lower for the

scalar, especially when compared to the longitudinal velocity components. From this

analysis, intermittency effects appear stronger for the scalar than for the longitudinal

velocity.

The empirical pdfs of velocity and air temperature increments (∆s = ∆u,∆w,∆T )
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for runs in the near-neutral (|ζ| < 0.072) and strongly unstable (ζ < −0.5) classes

(Fig. 6.4) show clear transitions from a quasi-Gaussian regime at large lags (τ = 2 in

figure) to distributions with sharper peaks and longer tails at scales well within the

inertial subrange (τ = 0.05). This behavior has been documented for a wide range of

turbulent flows [Men91] and is associated with the build up of intermittency [Kol62]

due to self-amplification inertial dynamics [LM05].

The bulk of the pdf of temperature increments at any given scale can also be

characterized by the coefficients of Eq. (6.11). Results show some differences be-

tween runs with differing |ζ| (Fig. 6.5). Namely, for runs in the strongly unstable

class, q0 exhibits a more pronounced peak around the origin and is characterized

by larger asymmetry at the cross-over scale τ = 1 compared to their near-neutral

counterparts (Fig. 6.5(A)). Moreover, the results here confirm that a choice of linear

r0(∆T ) and quadratic q0(∆T ) appear reasonable for ASL flows. In the case of an

unstable ASL, the term r0(∆T ) remains linear, while inspection of q0(∆T ) suggests

that a dependence on s with an exponent smaller than 2 might be more appropriate,

corresponding to stretched exponential tails for p(∆T ) for small lags τ in unstable

ASL flows. Comparison with the same data after run-by-run spectral phase random-

ization [PT94] shows that the latter exhibits almost Gaussian behavior, confirming

that the emergence of long tails at inertial scales is primarily a consequence of non

linear structures in the original time series.

The variation of the tail parameters η and q with decreasing scale τ (Fig. 6.6)

provides a robust measure of how the distributional tails of p(∆T ) evolve at the onset

of the inertial range. For temperature differences, the rates of change across scales

of both η and q appear to be dependent on the magnitude of the stability parameter

ζ. Consequently, while at large scales - where the pdf closely resembles a Gaussian

- neither η nor q exhibit a significant dependence on ζ, for scales well within the
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inertial subrange stability is clearly impacting the tail behavior of ∆T (Fig. 6.7).

This evidence suggests that the observed intermittency is not only internal (i.e.,

not only due to variability in the instantaneous dissipation rate [KPS92]) but is also

directly impacted by the larger scale eddy motion that sense boundary conditions. In

particular, when buoyancy generation is significant, the heat flux w′T ′ is connected

with the sweep and sudden ejection of air parcels, corresponding with the sharp edges

of the temperature ramps [ACFVA79, KPCS06]. The resulting sawtooth behavior

could be responsible for the injection of scalar variance at small scales (instead of a

gradual cascade), acting in particular on the negative tail of the ∆T pdf, as evident

from Fig. 6.5(A). On the other hand, the buildup of non-Gaussian statistics for

velocity increments is not as impacted by the stability regime, and therefore the

dominant effects are in this case primarily an effect of internal intermittency.

6.4.2 Probabilistic description of asymmetry across scales

To compare the data sets used here with laboratory studies, I first test the validity

of Obukhov’s constant skewness hypothesis, which would require the third order

structure function of the longitudinal velocity component being constant within the

inertial range. Figure 6.8 reports the values of the third order structure functions

(Eqs. (6.7) and (6.8)) evaluated at the onset of the inertial subrange as delineated

by the w time series. Both are approximately constant for scales smaller than Iw.

While comparison with experiments shows good agreement for S(τ) ' −0.25, F (τ)

is systematically smaller than its anticipated value [KHS97] (−0.4) for all ζ.

For the scalar T , The presence of a finite third order temperature structure func-

tion signifies that local isotropy is not fully attained in the range of scales explored

here. The temperature skewness S3
T exhibits a plateau for scales smaller than Iw
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(Fig. 6.9(A)) similar to previous measurements reported in grid turbulence forced by

a mean temperature gradient [MW98]. Moreover, S3
T levels off to positive values for

ζ > 0, while it becomes negative for ζ < 0. This finding is consistent with the pres-

ence of ramp-like structures when ζ > 0 (mildly stable conditions) that are inverted

when compared to their unstable counterparts.

The findings here confirm that at the cross-over from production to inertial, im-

prints of ramp structures persists well into the inertial subrange. The consequence

of these imprints on time-reversibility is now considered for temperature sequences.

The irreversibility analysis detects strong irreversbility at large scales that slowly de-

creases at the onset of the inertial range (Fig. 6.9). This finding is consistent with the

idea that atmospheric stability determines a preferential direction for the large-scale

scalar structures, which becomes progressively weaker at scales smaller than τ = 1.

Here, the sign of the heat flux has a primary effect on the orientation of the ramps,

as captured by Rτ . Furthermore, phase randomization is shown to destroy much of

this time irreversibility (Fig. 6.9(B)) while the addition of synthetic ramps, either

with positive or negative orientation, produces values of Rτ that closely resemble ob-

servations of stable and unstable ASL respectively. These synthetic experiments also

recover the sign of the third order moment S3
T (Fig. 6.9(A)) but not its magnitude at

smaller scales. As one would expect, a sawtooth time series does not fully reproduce

inertial scale scalar dynamics, even though it does clearly capture the qualitative

effect of boundary conditions on scalar ramp-cliffs.

Additional insight can be obtained by the relative entropy measure defined in Eq.

(6.15), which was here evaluated by integrating the relative entropy over the joint

frequency distribution of normalized temperature fluctuations and their increments

at each scale τ . I used a coarse binning for estimating the joint pdf p(T ′(τ), T ) and

assumed [PRD07] that only finite probability ratios contribute to 〈Zτ 〉. To check the
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consistency of this approach, calculations of Eq. (6.15) were repeated using a phase

space reconstruction technique based on embedding sequences (Tt, Tt+τ ) with delay

time τ and embedding dimension 2, which confirmed the validity of this approach

(results not shown).

The averaged relative entropy 〈Zτ 〉, while insensitive to the ramp orientation, at

every given level T quantifies the imbalance between forward and backward probabil-

ity fluxes of temperature trajectories (Fig. 6.10(A)). Again, irreversibility of scalar

records increases with the lag τ and here tend to plateu at larger scales (τ > 1).

Phase-randomized time series, by comparison, exhibit smaller values of 〈Zτ 〉 in

the inertial range. As one would expect, the excess is thus likely a direct result of

the presence of scalar ramps. The presence of asymmetric patterns in temperature

time traces further suggests that in the inertial range scalar turbulence is more time-

irreversible than velocity, as confirmed by the larger values of 〈Zτ 〉 at inertial scales

(Fig. 6.10(B)).

Time-irreversibility of phase space trajectories was further investigated by test-

ing if a significant difference exists between the probability distribution p(T ′τ |T ) and

p(−T ′τ |T ). To this end, a Kolmogorov-Smirnov (KS) test was performed at the sig-

nificance level 0.05. At every scale τ , results were averaged over different values of T

and across runs within the same stability class. The results from the KS test confirm

the picture obtained from the relative entropy measure 〈Zτ 〉: The pdf of forward and

backward temperature diverge significantly as the scale τ increases as shown in figure

6.10, panels (C) and (D). While this test does not capture the sign of the ramps, the

behavior of near neutral runs exhibit some difference from the case of relevant heat

flux: near neutral runs appear on average more reversible than unstable runs at the

same dimensionless scale τ .
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6.5 Discussion and Conclusions

In this work, statistical measures for the frequency of extreme fluctuations and the

time-directional behavior of observed time series were applied to scalar turbulence

in the ASL. It was demonstrated that i) the extreme value properties of the scalar

markedly depend on the external forcing, and ii) scalar dynamics is characterized by

time-irreversible behavior at the scales of injection of scalar variance in the turbulent

flow. This time-irreversibility propagates down to the smaller scales of the flow

examined here, thus carrying fingerprint of the energy injection mechanism.

It is well known that the pdfs of scalar increments develop heavier tails with

decreasing scales in the inertial range when compared to their velocity counterparts.

The analysis here shows that within the first two decades of the inertial subrange,

this buildup of tails also carries the signature of turbulent kinetic energy generation.

The direct injection of scalar variance from large scales seem to hinder any universal

description of ∆T statistics within this range of scales. Instead, the pdf of ∆T (r)

for ASL flows appear to be conditional on the value of ζ at scale r. This finding

reinforces previous experimental results [LM09] obtained for a different type of flow

(turbulent wake). In this case, the scalar injection mechanism was shown to impact

higher order scaling exponents of the temperature structure functions.

This dependence on atmospheric stability regime for p(∆T ) further suggests that

the topology of large eddies, and in particular the presence of ramp-cliff scalar struc-

tures, may be responsible for the scale-wise evolution of intermittency and the per-

sistent time directionality at fine scales. This intermittency excess observed in the

transition from production to inertial scales is consistent with self-amplification dy-

namics taking place that further excite the excess of scalar variance injected by the

ramps.
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However, while measures of intermittency appear to be dependent on the abso-

lute value of ζ, i.e., on the relative magnitude of shear and buoyancy production

terms (regardless on the sign of the heat flux), the analysis of asymmetry and time

reversibility clearly sense the sign of the heat flux H more than the magnitude of

ζ itself. This effect is arguably a product of the preferential orientation that the

external temperature gradient imposes on the scalar ramp-cliffs, as explained by

sweep-ejection dynamics. This hypothesis was here further tested by comparisons

with synthetic time series that mimic ramp-cliff patterns observed in the scalar time

series. The analysis confirmed that much of the observed time irreversibility, as well

as its dependence on the sign of H, are recovered by these surrogate time series (Fig.

6.9).

The analysis of time directional properties showed that time-irreversible behavior

for the scalar is stronger at the large scales of the flow where boundary conditions,

and in particular the sign of H, determine the orientation and structure of the eddies.

At finer scales, time irreversibility as quantified by both 〈Zτ 〉 and Rτ progressively de-

creases as advection destroys the preferential eddy orientation imposed by boundary

conditions. Note that this behavior is not captured by a simple measure of skewness

such as S3
T (Fig. 6.9(A)), which is small at large scales and plateaus in the iner-

tial range consistent with previous experiments [War00] and numerical simulations

[CLMV00], thus showing that local isotropy is not fully attained at the finer scales

examined here.

Turbulent flows exist in a state far from thermodynamic equilibrium, with the flow

statistics exhibiting irreversibility. This irreversibility is typically described in terms

of fluxes of energy or asymmetries in the pdfs of the fluid velocity increments [Fal09].

Similar methods could be used to describe irreversibility in the scalar field, e.g. using

S3
T , and this would imply that the irreversibility of the scalar field is stronger at
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smaller scales than it is at larger scales. However, in this paper I have used alternative

measures to quantify the irreversibility, namely 〈Zτ 〉 and Rτ . These quantities paint a

different picture, namely that it is the largest scales, not the smallest (inertial) scales

in the scalar field that exhibit the strongest irreversibility. A potential cause for these

differing behaviors is that whereas fluxes and quantities such as S3
T are multi-point,

single-time quantities, 〈Zτ 〉 and Rτ are single-point, multi-time quantities. Thus,

these two ways of describing irreversibility provide different perspectives about the

nature of irreversibility in turbulence, which involves fields that evolve in both space

and time. This difference in perspectives is a topic for future inquiry.

Collectively, the results presented in this paper suggest the following picture for

ASL turbulence at the cross-over from production to inertial. Increasing instabil-

ity in the ASL leads to increases in the mean turbulent kinetic energy dissipation

rate (as evidenced by Eq. (6.1)) and its spatial autocorrelation function and pdf.

The consequences of this increased dissipation with increased instability has different

outcomes for velocity and scalar turbulence. For velocity, refinements to K41 appear

sufficient to explain the observed scaling in the inertial subrange. For scalar turbu-

lence, the picture appears more complicated. Intermittency buildup with decreasing

(inertial) scales is more rapid when compared to their velocity counterparts, and the

signature of the temperature variance injection mechanism persists at even the finer

scales explored here.

Turbulence and scalar turbulence are characterized by a constant flux of energy

and scalar variance from the scales of production down to dissipation. While early

theories hypothesized a cascade only depending on these quantities, experimental

evidence to date supports a more complicated picture. The multi-time information

encoded in 〈Zτ 〉 reveal that time-reversibility is not constant across scales, as do the

fluxes of information entropy. Probability fluxes forward and backward in time are
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not balanced in general for air temperature increments, especially at the cross-over

from production to inertial. Furthermore, these fluxes carry the signature of the

external boundary conditions (i.e. H) and show that dissipation rates themselves are

not independent of the large-scale dynamics. Although a formal analogy between Eq.

(6.15) and the thermodynamics of microscopic non-equilibrium steady state systems

exists, I stress that in the present application turbulent fluctuations are macroscopic

and are the result of non-linear and non-local interactions.
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A

DC

B

Figure 6.1: In the upper panels, the normalized second order structure functions for
vertical velocity (A) and temperature (B) are shown for runs that are weakly unstable
(blue dashed lines), strongly unstable (red lines), and stable (black dash-dot lines).
Black lines indicate the value 1 and the 2/3 power law for reference; vertical dashed
lines correspond to the dimensionless scales τ = 0.05 (smallest scale not impacted
by instrument path length), τ = 1 (integral scale of the flow), and τ = 5 (typical
scale larger than Iw, while small enough not to be impacted by statistical convergence
issues in structure functions calculations). Lower panels illustrate (C) the integral
scales of the flow for s = T (circles) and s = w (crosses) as a function of the stability
parameter |ζ|, and (D) their ratio IT to Iw again as a function of |ζ|, where stable
runs (ζ > 0) are indicated by black squares.
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A B C

Figure 6.2: Sequences of velocity and temperature fluctuations extracted from a
strongly unstable run (run 8, ζ = −0.52, Iw = 1.74s, column A) and a stable/near
neutral one (run 34, ζ = 0.07, Iw = 2.18s column B). The presence of ramps and
inverted-ramp like structures respectively is marked by dashed vertical lines. Column
(C) illustrates a phase-randomized sequence obtained from run 34 (top), a series of
synthetic ramps with durations exponentially distributed with mean 2Iw (middle)
and the surrogate time series obtained merging the above sawtooth pattern with the
phase randomized time series (bottom), where the relative weight of the ramps α was
set equal to 0.5.
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A B

Figure 6.3: (A) Average values of the scaling exponents for longitudinal velocity u
(triangles), vertical velocity w (squares), and temperature T (circles). Black contin-
uous line and dashed line show respectively the K41 and the She-leveque predictions
for the longitudinal velocity structure functions. Exponents are computed from scales
ranging between τ = 0.05 and τ = 0.2. (B) Scaling exponents for temperature only;
Mean and standard deviation values are computed over all the runs and are indi-
cated by circles and vertical bars, respectively. Data from Mydlarsky and Warhaft
(1990) [MW98] (squares), Antonia et al. (1984) [AHGA84] (triangles), Meneveau et
al. (1990) [MSKF90] (*) and Ruiz et al. (1996) (diamonds) [RCBC96] are shown
for comparison. The KOC scaling (black line) and results from the Kraichnan model
(1994) [Kra94] (dashed line) as reported in [War00] are also presented for reference.
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A CB

𝜏 = 0.05

𝜏 = 2

Figure 6.4: Normalized probability density functions observed for increments of
longitudinal velocity (A), vertical velocity (B) and air temperature (C) at large scales
(τ = 2, top panels) and small scales (τ = 0.05, lower panels). The figure includes
data from runs in the strongly unstable class (ζ < −0.5, shown in red), and near
neutral class (|ζ| < 0.072, blue). Black lines show the standard Gaussian distribution
for reference.
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𝜏 = 1

𝜏 = 0.1

Figure 6.5: Functions q0(∆T ) and r0(∆T ) estimated from the conditional derivatives
of the original temperature time series, for the two classes of strongly unstable (red
lines) and near neutral runs (blue dashed lines). The same quantities are reported
for phase-randomized surrogate time series for comparison (grey circles). Results are
shown for the central body of the pdf (within 3σ from the mean) for illustration
purposes. Top panels (A,B) are computed for a lag equal to the integral time scale
of the flow τ = 1, while the bottom panels (C,D) correspond to the smaller time lag
τ = 0.1. Black lines q0 = 1 and r0 = −∆T correspond to the standard Gaussian
distribution.
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A CB

Figure 6.6: Evolution across scales τ of the q-Gaussian tail parameter q (A), and
of the stretched exponential shape parameter η obtained from separate fit to the left
(B) and right (C) tails of the distribution of temperature increments. Data from
two stability classes are included: strongly unstable (ζ < −0.5, red cirles) and near
neutral conditions (|ζ| < 0.072, blue triangles). Black lines and shaded areas indicate
average values and standard deviations respectively computed over the entire dataset.
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A CB
𝜏 = 5

𝜏 = 0.05

Figure 6.7: Tail parameters of the pdf of temperature increments across stability
conditions ζ. Results include the q-Gaussian tail parameter q (column A) and the
stretched exponential shape parameter η, obtained from fitting the left (column B)
and right tail (column C) of the distribution p(∆T ). Values of q and η are reported for
large scales (τ = 5, upper panels) and small scales (τ = 0.05, lower panels). Triangles
denote strongly unstable runs (ζ < −0.5), squares denote stable runs (ζ > 0) and
circles refer to slightly unstable runs (−0.5 < ζ < 0).
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A B

Figure 6.8: Normalized third order structure functions S(τ) and F (τ) at the
crossover from inertial to production scales. Vertical dashed line indicates the in-
tegral time scales, horizontal lines show the constant values 0.25 (A) and 0.4 (B).
Results are shown for near neutral runs (|ζ| < 0.072, blue dashed lines), strongly
unstable runs (|ζ| > 0.5, red lines), and runs with intermediate values of |ζ| (black
dash-dot lines).
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A B

Figure 6.9: Measures of asymmetry S3
T (A) and time irreversibility Rτ (B) com-

puted for temperature increments for scales varying from τ = 0.05 to τ = 5. The
plots include stable runs (black dashed lines), weakly unstable runs (blue dash-dot
lines) and strongly unstable runs (red lines). For reference, the same quantities are
computed for phase-randomized time series (cyan), and sythetic time series with
sawtooth positive (blue) and inverted ramps (black). Shaded regions correspond to
the 1σ-confidence intervals over 34 realizations of the surrogate time series. Rela-
tive weight and mean duration of the synthetic ramps were set to α = 0.4 and 2Iw
respectively.
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C D

Figure 6.10: (A) Mean and standard deviation over 34 time series of 〈Zτ 〉 computed
for scales varying from τ = 0.05 to τ = 20. Values of 〈Zτ 〉 are shown for original tem-
perature records (red), and surrogate time series obtained by phase-randomization
(green). For comparison, the same analysis is reported for fractional brownian mo-
tion with Hurst exponent H = 1/3 (blue). (B) A comparison of 〈Zτ 〉 for temperature
(red), longitudinal velocity (yellow) and vertical velocity (green). The lower panel
shows the Kolmogorov-Smirnov test average rejection rate (C) and average P-value
(D) computed for all the temperature time series (cyan for mean value and 1σ confi-
dence interval), and for different stability classes: strongly unstable runs (ζ < −0.5,
red), near-neutral runs (|ζ| < 0.072, blue) and intermediate values ( 0.072 < |ζ| < 0.5,
black). KS test was performed at the 0.05 significance level, corresponding to the
horizontal line in (D). The vertical dashed line marks the integral time scale Iw.
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Chapter 7

Intermittent Surface Renewals and

Methane Hotspots over Natural Wetlands

Adapted from: Zorzetto, E., Peltola, O., Grönholm, T., and G. G. Katul. ”Intermit-

tent Surface Renewals and Methane Hotspots over Natural Wetlands.” Manuscript in

preparation.

7.1 Introduction

Methane (CH4) fluxes are emitted in many types of natural and managed ecosys-

tems including wetlands, peatlands, and rice fields [BH93, Aul01, CSY20], but their

magnitude is highly variable [Lai09, BCC+04, HMD+14, KJP+19]. The CH4 fluxes

are conventionally measured using gas chambers positioned at the ground surface

[BLG+13, BMR93, MDYB+11] or by means of micrometeorological methods such as

the eddy covariance technique [BDS+12, HFRS11, RRP+07, HMD+14]. The release

of methane from the ground occurs via three main mechanisms: Molecular diffusion

through the saturated soil surface, diffusion through the aerenchymatous tissue in

plants [RKL+20], and release of methane through bubbles (ebullition). The latter

is by far the more variable mechanism, as the gas bubbles are emitted sporadically

and can lead to significant mass transfer rates that are localized in time and in

space. Because of the co-occurrence of these different sources at the ground, the

overall CH4 fluxes in these environments can exhibit a marked variability in space

and time. This peculiarity can cause significant difficulties in measuring CH4 ex-
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change with conventional gas chambers covering a small fraction of the ground area.

Rapid advancements in gas analyzers have been made over the past two decades,

allowing for direct measurements of methane turbulent fluxes above the ground us-

ing the eddy-covariance technique. These measurements are able to resolve methane

fluxes on sub-hourly time scale over a sufficiently large ’footprint’, but on the other

hand do not distinguish between ebullition, plant-mediated and background emis-

sions. The spatially intermittent source characterizing CH4 fluxes has been observed

to lead to scalar concentration fluctuations that are much more ’heavy-tailed’ than

their carbon dioxide (CO2), water vapor (H2O), or air temperature counterparts even

above ecosystems that appear to be reasonably uniform [PMH+13, KPG+18]. These

differences in concentration statistics may be exploited to progress on partitioning

measured CH4 fluxes into a background and an intermittent (”hotspot”) contribu-

tion. A partition methodology based on the wavelet transform was recently proposed

[IHT+18] to partition CH4 fluxes based on the scalar similarity with a reference

scalar (water vapor). Here, I apply a similar technique to characterize the fraction

of flux, scalar variance, and footprint area that carry the signature of localized CH4

hotspots. Then, based on these quantities, I extend the surface renewal (SR) the-

ory [Hig35, Dan51] to characterize mass exchange for scalars such as CH4 that are

characterized by an intermittent source at the ground. The SR theory has a long

history in atmospheric sciences and has been applied to turbulent transfer of heat

and water vapor [Bru65, Bru75, CFC96, HO13, HO15b, HO15a, KL17] assuming that

Kolmogorov size eddies dominate interfacial transport. However, prior models based

on continuous renewal of the surface are not directly applicable to characterizing CH4

emissions originating from intermittent sources at the ground. In fact, as early as

1961, it was already pointed out that the presence of zero-contact times (no renewal)

can have a significant effect on estimated fluxes, and in particular larger than the
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effect of the specific distribution of contact time used [Per61]. It is precisely this

intuition that is to be exploited here to model CH4 interfacial mass transfer. That

is, parcels of air may be continually refreshed via ejections and sweeps, but the ab-

sence of the ’hotspot’ source may be viewed as a no-renewal time when compared to

other scalars such as H2O or CO2. To be clear, the SR method developed here must

be regarded as a pragmatic approach to partitioning measured CH4 fluxes into their

background component and the contribution from spatially intermittent ”hotspots”. I

expect these hotspots to be statistically related to the occurrence of ebullition events,

or potentially to spatial variability in the distribution of plants and microbial activity.

These hypotheses are examined by relating the partitioned CH4 fluxes to environ-

mental variables previously documented as controlling gas exchange as seasonality,

atmospheric pressure and water table level. Hence, with imminent proliferation of

methane eddy-covariance flux measurements worldwide, the proposed SR scheme can

be complementary to other measurement approaches and modeling efforts aimed at

quantifying the magnitude and intermittency of CH4 fluxes across various ecosystems

and environmental conditions. The chapter is organized as follows: In Section 7.2

key definitions and a brief review of turbulent scalar exchange in the atmospheric

surface layer are provided with a focus on the classic SR theory (section 7.2.1) and

its limitations in describing fluxes of scalar quantities characterized by intermittent

and sparse sources or sinks at the ground. Section 7.3 describes the experimental

setup and data used. Section 7.4 describes the partition scheme based on the wavelet

decomposition, which is employed for partitioning scalar fluxes and scalar variances

into contributions connected to background or hotspot fluxes respectively. Based on

this partition, Section 7.5 introduces the SR scheme used to model scalar fluxes for

the setup here. The classic SR is extended to describe scalars such as CH4 that

are characterized by spatially and temporally inhomogeneous fluxes. In section 7.6,
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implications of the findings are discussed with a focus on the frequency and the

transport efficiency of the methane hotspot fluxes as well as an investigation of their

potential dependence on the aforementioned slowly evolving environmental variables.

7.2 Turbulent mass transfer and surface renewal

theory

Throughout, x, y, z and the corresponding velocity components u, v, and w are

respectively defined with x being aligned along the direction of the mean wind, z the

vertical direction with the ground set to z = 0, and y the direction orthogonal to both.

The transport of momentum, heat, and scalar quantities in the lower atmosphere is

primarily driven by turbulent eddies generated by the interplay between shear and

buoyancy forces [Wyn10, Stu12]. For stationary and planar-homogeneous flow at high

Reynolds numbers, in the absence of mean subsidence and mean pressure gradients,

the mean momentum and continuity equations for any scalar c reduce to

du′w′

dz
= 0;

dw′c′

dz
= 0, (7.1)

where overline represents averaging over coordinates of statistical homogeneity (time

in this case), s′ denotes the instantaneous fluctuation from the mean of a generic

variable s, so that s′ = 0. Here u′w′ represents the net downward flux of momentum

to the ground, w′c′ the turbulent flux of any scalar with positive values signifying

emissions and negative values signifying uptake, and c is the scalar concentration

representing CH4, H2O, CO2 or temperature T . Integrating these equations with

respect to z leads to the so-called constant flux assumption, meaning that turbulent

fluxes measured at some reference height zr above a surface represent the emissions
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or uptake at the surface [LKL18, FN08]. The presence of surface heating or cooling at

the ground produces thermal stratification within the atmospheric surface layer (ASL)

that contributes to the production or destruction of turbulent kinetic energy (TKE)

depending on the sign of the sensible heat flux w′T ′. Monin-Obukhov similarity

theory (MOST) [MO54a, Fok06] argues that in the case of a horizontally homogeneous

and stationary flow, the flow statistics only depend on one dimensionless stability

parameter ζ = z/Lmo, such that the equation for the mean velocity profile u (z) is

du

dz

kvz

u∗
= φm (ζ) , (7.2)

where kv ' 0.4 is the von Kárman constant, u∗ =
√
−u′w′ is the friction velocity,

and φm (ζ) is a stability correction function, Lmo is the Obukhov length defined as

Lmo = − u3
∗

kvg
w′T ′

Ta

, (7.3)

where Ta is the mean virtual temperature (in K), and T ′ are temperature fluctuations.

The well-known Businger-Dyer stability correction functions for φm can be used to

determine its value [Fok06, Bru13]. Likewise, for a generic scalar quantity c, the

mean concentration gradient is given as

dc

dz

kvz

c∗
= φc (ζ) , (7.4)

where c∗ = w′c′/u∗ and φc (ζ) is a stability correction function for a scalar described

elsewhere [Bru13]. In near-neutral conditions (ζ → 0) and the usual logarithmic mean

velocity and mean scalar concentration profiles are recovered with φm (0) = 1. In

general, eddy-covariance measurements of methane assume that measured turbulent

fluxes are constant with height but that φc for methane differs from its water vapor
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or carbon dioxide counterpart simply due to dissimilarities in sources and sinks at

the ground or entrainment from the atmosphere. In the case of methane, the source

strength at the ground is statistically patchy whereas for water vapor or carbon

dioxide, the ground sources or sinks are comparatively uniform (or at least better

blended). Hence, the effective eddy diffusivity from MOST given byKt = kvzu∗/φc(ζ)

may differ among scalars because the same air parcels making contact with the ground

and subsequently ejecting continually exchanges water vapor and carbon dioxide with

the surface but less so for methane in the absence of ebullition. This assumption forms

the basis of the extended surface renewal theory proposed here, where the presence

of source hotspots is linked to a breakdown in the continuous surface renewal process

described next.

7.2.1 Surface Renewal Theory

Surface Renewal (SR) theory has a long tradition in turbulence research and in-

terfacial mass transfer. It was first introduced in the mid 1930s [Hig35] and has

been extensively applied to numerous interfacial mass and heat transfer problems

[Dan51, Han56, Per61, Bru65, GSJ04, AP91]. In its original form, mass exchange

is driven by a surface concentration cs and a background concentration of the same

substance cb. The transport of any quantity c (e.g., mass, or possibly other quantities

such as heat and momentum) is carried out by the arrival of elements of fresh fluid

(i.e., turbulent eddies characterized by a background concentration cb) to the sur-

face, where the contact with the surface concentration cs triggers unsteady molecular

diffusion of the substance (or property) c on a semi-infinite domain. The conditions

imposed on this transient diffusion are c = cb at z > 0 , t = 0, c = cb for large z and

t > 0, and c = cs at z = 0, t > 0. Solving this problem for a scalar with molecular

diffusivity Dm yields the following expression for the instantaneous mass flux for a
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surface element characterized by age t

F (t) = Dm

(
∂c

∂z

)
z=0

= ∆c

√
Dm

πt
. (7.5)

After a certain residence time, each fluid element is ejected from the surface and im-

mediately replaced by a fresh element with background concentration. This idealized

model assumes that i) only molecular diffusion into the air parcel in contact with the

surface is allowed, ii) the freshly renewed surface is characterized by a scalar concen-

tration equal to the background concentration, and iii) the time scales of sweep and

ejection of the fluid parcel are small compared to the residence times of the parcel

at the surface. The distribution of contact times t on the surface depends on the

characteristics of the flow. In the original Higbie model [Hig35], each fluid parcel

had the same residence time τc (Plug Flow). The opposite situation is that studied

by Danckwerts [Dan51], in which the surface renewal is completely random (i.e., the

renewal rate does not depend on eddy age). This assumption has been shown to lead

to an exponential distribution of surface ages p(τ) = (1/b) exp (−τ/b), where 1/b is a

surface renewal rate and p(τ) is the probability density function of τ . The following

expression for the overall flux can now be derived based on an exponential p(τ):

Fm =

∫ ∞
0

F (τ)p(τ)dτ = ∆c

∫ ∞
0

√
Dm

πτ

1

b
exp

(
−τ
b

)
dτ = ∆c

√
Dm

b
. (7.6)

Other functional forms have been considered for the distribution of residence

times, including Gamma [Har62, BD72] (that would arise in the case in which younger

surface eddies are less likely to be renewed when compared with the Danckwerts

model) and Lognormal [GJH02] that is consistent with turbulence theories with inter-

nal intermittency in the dissipation rate accommodated. Several studies pointed out
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that the exact functional form of p(τ) is not important provided that its mean value

is correct [KPH66, Per61, SL88, KL17] though others dispute this claim for water sur-

faces where local vertical advection can be large [KS09]. To be clear, water surfaces

do not admit a ’no-slip’ condition, meaning that velocity is finite at the air-water in-

terface. This is not the case for the surfaces studied here. A large literature exists on

the application of SR techniques to turbulent flows and reviewing all this literature

is outside the scope here. A model based on the surface renewal of eddies charac-

terized by residence times of the order of the Kolmogorov time scale, first proposed

by Brutsaert [Bru65, Bru75, KL17, KLM19] to estimate evaporation rates is used for

illustration. The SR theory has also been applied to sensible heat flux assuming that

large-scale coherent structures (often referred to as temperature ramps or ramp-cliff

patterns [ACFVA79, War00, ZBK18] dominate the heat transfer. A large eddy model

was also proposed, recognizing that in the case of limited Reynolds numbers, scales

much larger than the Kolmogorov microscale can be the primary contributors to

the mass or heat transfer at the surface [FP67, LS70, THB76, KNM90, KMGV18].

The SR theory has been applied to the flux of momentum and promising results

were reported from channel flow experiments [Han56, TS72, MHF92]. In the case

of momentum, the role of the pressure term complicates the picture of the renewal

processes when compared with passive scalar quantities, where molecular diffusion

dominates the smallest scales of the flow. However, common to all these studies is

the assumption that the renewal process at the surface is continuous. After present-

ing the experimental setup (7.3) and discussing the Wavelet partitioning scheme 7.4,

in Section 7.5 this approach is generalized to the case of intermittent source at the

ground, so as to tailor it to the case of CH4 fluxes over peatlands.
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7.3 Experiment

A published dataset [KPG+18] collected at Siikaneva, a boreal wetland located in

Southern Finland, is analyzed. Briefly, wind velocity components and virtual tem-

perature fluctuations were measured by an ultra-sonic anemometer. Two independent

gas analyzers were used to measure H2O, CO2 and CH4 concentrations, respectively.

All quantities were sampled at a frequency fs =10 Hz and stored in 30-minutes

records with each 30-minute record termed as a ’run’. A total of 4416 runs were

recorded between June 1st, 2013, and August 31st, 2013. Measurements were carried

out at a height zr = 2.8 m from the surface. I focus on data from a specific wind

sector (from 230 to 270 degrees, i.e., primarily the South-West wind direction) to

avoid wind sectors in which nearby forested areas could be part of the footprint and

possibly contaminate the signal from the peatland. In the wind sector used here,

the terrain is a reasonably homogeneous boreal bog for several hundred meters. For

each run, the turbulent time series were despiked following the method proposed in

[Bro86], and recommended in [SMF+16]. For CH4, an additional check was per-

formed: Any remaining fluctuations exceeding 60 standard deviations were removed

and set equal to the median of the signal. Coordinates were double-rotated such that

u = U equals the average wind speed, with v = 0 and w = 0. A cross correlation

analysis was used to compute and correct the lag of the gas concentration time se-

ries. A stationarity check [FW96] was then applied to the fluxes of momentum u′w′,

temperature w′T ′, and water vapor w′c′, with c′ here denoting the fluctuations of the

scalar H2O. Runs passing the test for all three quantities and with at least N = 214

data points were included in the analysis. The stationarity check was not applied

to the CH4 concentration time series since the objective is precisely the characteri-

zation of CH4 fluxes possibly connected with short term localized emission events.
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Additionally, the runs in the dataset were filtered by requiring a minimum turbulence

mixing (u∗ > 0.2 m/s). I also required that the H2O flux be upward (w′c′H2O > 0)

so as to avoid runs characterized by little or no evaporation, and that the H2O flux

approximately follows the MOST variance-flux relation so as to avoid runs character-

ized by non-local effects and entrainment from the top of the atmospheric boundary

layer as done in [IHT+18]. These conditions of H2O were prompted by the fact that

water vapor is to be used as a reference scalar to partition the CH4 signal based on

gas exchange mechanism as discussed in Section 7.4.

7.4 Partitioning methane fluxes using concentra-

tion measurements

Recent attention has been devoted to determining scalar fluxes originated from short

turbulent events [SGF17] and to the partitioning of CH4 fluxes connected with ebul-

lition using wavelet transforms [IHT+18, SKFG19]. Building upon these previous

studies, the CH4 time series is first analyzed in the wavelet domain with the objective

of partitioning turbulent fluxes into their background (B) and hotspot (H) compo-

nents. This information will be used to calibrate the intermittent surface renewal

model. Let c denote the concentration of the scalar of interest (e.g., methane here)

and r the concentration of a reference scalar quantity, here chosen to be water vapor.

If scalar similarity holds [Hil89], then the two scalar time series should be perfectly

correlated and the wavelet coefficients of the normalized time series cn = (c− c) /σc

and rn = (r − r) /σr should also be equal. To localize CH4 hotspot events both

in the time and frequency domains, the orthonormal wavelet transform [Mal89] is

applied. The scalar series are decomposed using the Haar wavelet basis, which has

been widely applied to the study of turbulent flows [Men91, KPC94, SA01]. The
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use of an orthonormal basis here is preferred because it does not introduce spurious

information in the transformed series, and thus the scale wise dependence between

the two scalar time series is preserved by the transform [KPC94, KFG97]. The Haar

basis functions are of the form ψ(m)(x) = 2−m/2ψ(0)((x− 2mi)/2m) with i,m ∈ Z the

position and scale indices defining dilated and translated version of the Haar mother

wavelet ψ(0)(x), defined as

ψ(0)(x) =


1 if 0 < x < 1/2

−1 if 1/2 ≤ x < 1.

0 otherwise

(7.7)

The wavelet coefficients WT
(m)
f [i] can be computed by iteratively coarse-graining the

generic series f(t) as shown elsewhere [KPC94]

WT (m) [i] =

∫ +∞

−∞
f (t)ψ(m) (t− i) dt. (7.8)

In the wavelet domain, the flux of a scalar quantity c can be computed from its

concentration measurement time series and vertical velocity as

Fc = w′c′ =
1

N

M∑
m=1

2M−m∑
i=1

WT (m)
w [i]WT (m)

c [i], (7.9)

while the variance of the scalar can be obtained as

σ2
c = c′c′ =

1

N

M∑
m=1

2M−m∑
i=1

(
WT (m)

c [i]
)2
. (7.10)

For each N observations per unit averaging interval (N = 214 = 16384 data points

per averaging period), the original series can be fully described from the N − 1
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wavelet coefficients WTm[i] (and the remaining coarse grained series for wavelets

with support longer that the Haar wavelet). To exploit the similarity between the

scalar of interest and a reference scalar, both series are filtered thereby excluding

from the analysis small scales within the inertial subrange and large scales for which

(i) scalar similarity does not necessarily hold, and (ii) the poor time localization

of the wavelet decomposition at the lowest frequencies may not provide sufficient

information. Therefore, I focus on the range of scales between 0.5Tw and 200Tw,

where Tw is the integral time scale of the vertical velocity fluctuations w′. This

range of scales explains most of the variances and covariances for both CH4 and

H2O. I define δs (m) as the indicator function selecting this range of scales (i.e.,

δs (m) = 1 if 0.5 < 2m/ (fsTw) < 200, and δs (m) = 0 otherwise). To quantify the

distance between the coefficients WT
(m)
c [i] and the corresponding reference scalar

coefficients WT
(m)
r [i], the slope and intercept of the linear relation WT

(m)
c [i] /σc =

αwWT
(m)
r [i] /σr + βw are first determined. The αw and βw are computed using a

Huber regressor algorithm, which is particularly robust to the presence of outliers.

The absolute differences ∆WT (m)[i] = |WT
(m)
c [i]/σc−αwWT

(m)
r [i]/σr − βw| between

the wavelet coefficients of the two scalars c(t) and r(t) are then determined, and their

standard deviation evaluated over the range of scales for which δs(m) = 1:

Σcr =

((
∆WT (m)[i]−∆WT (m)[i]

)2
)1/2

(7.11)

As expected, Σcr tends to decrease for increasing values of correlation Rcr between the

two scalars as shown in Figure 7.1(a) for c = CH4 and r = H2O. In the case of perfect

scalar similarity, the correlation between the two scalars should be Rcr = 1 and this

difference should approach zero. Moreover, panel 7.1(b) shows that runs with larger

Σcr are also characterized by CH4 traces having a larger skewness M30 compared to
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their H2O counterpart, as previously noted [KPG+18]. In the presence of identical

sources at the ground, this should not be the case, as noted by Hill [Hil89]. This

observation will be used to partition hotspot and background CH4 coefficients. For

this purpose, I select a value of Σcr that is representative of the variability between

the two time series that one would experience in the absence of differences in the

sources or sinks at the ground. In the dataset here, this limiting standard deviation

value is taken to be Σ̂rc = 0.3. As shown in Figure 7.1, this threshold corresponds to

runs characterized by Rcr closest to unity with CH4 and H2O exhibiting a comparable

skewness. As done in the study by Iwata et al., [IHT+18], a threshold of 3Σ̂rc was

adopted to determine whether or not any given CH4 wavelet coefficient WT
(m)
c [i]

carries signature of localized hotspots. This partition was applied with this hard

threshold to all the runs. For each run, the subset of the scale-time wavelet domain

characterized by values of ∆WT (m)[i] < 3Σ̂cr is characterized by a homogeneous

ground source for the two scalar. Conversely, the condition for detecting hotspots is

given by ∆WT (m)[i] > 3Σ̂rc. Denoting δx(i,m) as the indicator function that selects

these CH4 hotspots events only (x = h, equal to 1 when ∆WT (m)[i] > 3Σ̂rc, else 0)

or background events only (x = b, equal to δx(i,m) = 0 when ∆WT (m)[i] > 3Σ̂rc,

else δx(i,m) = 1), then CH4 fluxes and variances can be decomposed based on the

type of source at the ground exploiting similarity with water vapor concentration

time series.

The fraction A+ of time in which attached eddies identify localize hotspots is then

obtained by first back-transforming the filtered series of wavelet coefficients to the

time domain, using only the non-zero coefficients for the hotspot and background
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series respectively as selected by the indicators δx (i,m) and δs (m):

cx (t) =
M∑
m=1

2M−m∑
i=1

ψi,m (i)WT (m)
c [i] δs (m) δx (i,m) , (7.12)

Then, CH4 hotspots are individuated in the time domain imposing the condition

that the local power of the hotspot time series is larger than the variance of the

background time series. Therefore, the fraction of time in which hotspots are active

is obtained by the condition that (ce −median (ce))
2 > c2

b , i.e., whenever the squared

fluctuations from the median of the hotspot concentration component (ce) are larger

than the variance of the background time series cb. The dimensionless quantity A+

also corresponds to the fraction of source area where integral-scale eddies carry the

signature of hotspots at any given instant in time on average. This partition of the

original time series in hotspot and background contributions can be used to compute

the contribution of each component to the overall scalar variance and flux. The

fractions of total flux and total variance of each component can be expressed (for

either hotspots, x = h or background, x = b) as

fx =
1

w′c′
1

N

N∑
i=1

c′x(i)w
′(i)δt,x(i) (7.13)

and

vx =
1

σ2
c

1

N

N∑
i=1

c′x(i)
2δt,x(i) (7.14)

where δt,x(i) = 1 if the i − th observation has been classified as hotspot (x = h) or

background (x = b), and δt,x(i) = 0 otherwise. As anticipated, the active fractional

area of the footprint is

A+ =
1

N

N∑
i=1

δt,h(i). (7.15)
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Figure 7.1: Standard deviation of the difference of wavelet coefficients (Σcr) between
CH4 and H2O as a function of (a) the correlation Rcr between the two scalars, and
(b) the difference in skewness M30 between CH4 and H20 for each run included in
the analysis. The threshold value Σcr = 0.3 is indicated by the dashed horizontal
lines.

To test this partition methodology, the moments of the joint distribution of the scalar

and vertical velocity fluctuations are computed. This is done both for the original

and for the reconstructed time series with background coefficients only. Previous

studies have shown that 4th−order cumulant expansions suffice to explain the joint

pdfs of CH4 and w [KPG+18]. Therefore, the focus is on moments Mij up to the

4th order where Mij is defined as ciwj/σicσ
j
w where again σc, σw are the root-mean-

squared (rms) fluctuation of a scalar c and of the vertical velocity w respectively. To

characterize the statistical properties of the hotspot or background components of

any scalar concentration, a partial mixed moments can be defined (for either x = h, b)

as

Mx
ij =

1

σicσ
j
w

1

N

N∑
k=1

(c′(k))
i
(w′(k))

j
δt,x(k). (7.16)
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Figure 7.2: Comparison of moments of the joint distribution of scalar quantities and
vertical velocity, for both the original CH4 and H2O time series (blue data points)
and the corresponding background-only values (red data points) for each run included
in the analysis.

While the partition method only uses values of the scalar wavelet coefficients,

this test includes the interaction of the scalar with the vertical velocity fluctuations.

Overall, this check shows as expected that the background component moments are

closer to the 1:1 line compared to the original time CH4 series, and in particular the

imbalance in the scalar skewness M30 appears reduced (Figure 7.2). An additional

check can be performed by considering the transport efficiency eT , which quantifies

the ratio between direct and indirect flux as evaluated through quadrant analysis.

Here, eT is evaluated in the time domain for hotspot and background CH4 compo-
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nents as eT = 1 − |F ind/F dir| where F ind and F dir are the covariances evaluated by

including in the sum only indirect (in the case of CH4, downward, i.e., inner and

outer interactions only) or direct (upward, i.e., sweeps and ejections only) contribu-

tions to the flux respectively [KPG+18]. The CH4 fluxes are characterized by a larger

eT when compared to other scalars (Figure 7.3), and this behavior may be connected

to the signature of localized hotspots leading to an alignment between large w′ and

c′. In the case of CO2, eT appears lower than its H2O counterpart. Also in this case

this behavior may be the direct effect of the inhomogeneity of the spatial distribution

of CO2 sources and sinks at the ground. The relatively inefficient CO2 flux could

originate from areas characterized by less dense vegetation, or from the interplay

of photosynthethic activity (net sink) with the emission of bubbles also containing

CO2 from the peat, which would produce localized contributions of opposite sign.

As shown in Figure 7.4, eT exhibits a clear dependence on the atmospheric stability

as quantified by ζ. Overall, eT tends to be larger for CH4 when compared to H2O

regardless of the atmospheric stability conditions. However, when examining sepa-

rately background and hotspot components, eT appears lower for the former, and

more in line with the corresponding eT values observed for H2O, as shown in Figures

7.3 and 7.4. Even though the partition methodology used here only employs informa-

tion on the scalar concentrations, its results appear consistent even when considering

the interaction with the vertical velocity fluctuations, and in particular the scalar

transport efficiency eT . Based on these observations, an extension of surface renewal

theory is now introduced for characterizing the intermittent nature of CH4 fluxes.

The extension is based on the quantities vx, fx, and A+ obtained through the wavelet

partition performed here.
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Figure 7.3: Comparison of transport efficiencies eT for different scalars (CH4, CO2)
with the background scalar (H2O), and the same analysis for the partition of CH4

in hotspot and background components.

Figure 7.4: Dependence of scalar transport efficiencies eT on the atmospheric sta-
bility parameter ζ for H2O, CH4 and its hotspot and background components.
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7.5 A SR approach for continuous and intermit-

tent scalar sources

The SR approach begins by assuming homogeneous scalar source at the ground as

may be the case for H2O (at least when compared to the remaining scalars). The

turbulent transport can be adequately described by an SR scheme in which turbulent

eddies are continuously touching the ground and are randomly renewed so that the

distribution of residence times in contact with the ground is exponential [Dan51].

In conventional SR theories, the characteristic residence time is of the order of the

Kolmogorov time scale so that b = τη = (ν/ε)1/2 where ν is the kinematic viscosity

of air and ε is the mean turbulent kinetic energy (TKE) mean dissipation rate. For a

stationary, planar-homogeneous flow in the absence of subsidence and upon neglecting

turbulent transport and pressure redistribution terms [KKP11], the TKE budget is

given as

ε ' u3
∗

kvz
φm (z/Lmo) +

g

Ta
w′T ′, (7.17)

where the two terms on the right hand side of eq. (7.17) correspond to mechanical

production and buoyancy production (or destruction, depending on the sign of Lmo) of

TKE. Atmospheric surface layer flows over peatlands are characterized by high Re∗ =

zru∗/ν and a dynamically rough surface (i.e. zo is independent of Re∗). Therefore, ε

was computed by evaluating the balance in eq. (7.17) at z = h, with h = 7.5z0 [Bru13]

and z0 computed from the mean velocity profile as z0 = zre
−kvU/u∗ , where U is the

mean longitudinal velocity measured at a distance zr from the ground (zr = 2.8m in

the experimental setup here). The sign of the flux is not predicted by the SR model.

Therefore, the skewness of the flux time series, its time directionality properties

[ZBK18], or simply the sign of the eddy correlation flux (when this information is
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available) can be used. Here, the analysis is restricted to the case of positive (i.e.,

upward) fluxes (H2O and CH4). When comparing results with c = T or c = CO2 time

series, the sign of w′c′ will be used. In field studies of methane, the source strength at

the ground ∆c is not usually known. Here, I estimate ∆c as a function of the energy

and skewness of the scalar fluctuations as ∆c = ksrσ
(I)
c asr,c = ksrσ

(I)
c

(
1 + |M30,c|1/3

)
,

where M30,c is the skewness of the scalar time series, and σ
(I)
c the square root of the

spectral energy density of the scalar c integrated over a range of scales around the

integral time scale Tw (here set to the range of scales between 0.5 Tw and 5 Tw due to

the limited frequency localization of the Haar decomposition). I found empirically

that the proportionality constant ksr ≈ 4 applies for all scalar quantities examined

here. Based on previous results obtained for temperature, the quantity ksrσ
(I)
c may

be interpreted as a difference between the maximum and minimum concentration

fluctuations expected in a run [FB73], as driven by the difference between source

at the ground and background concentrations. Since the scalar variance varies with

turbulent intensity u∗, the correction factor asr,c accounts for the possible asymmetry

in the scalar time series, which is a statistical quantity expected to retain information

on the injection of scalar variance in a turbulent flow [War00, ZBK18]. With these

assumptions, the following expression for scalar fluxes can be derived

vg =
w′c′

∆c
=

w′c′

ksrσ
(I)
c asr,c

=

√
Dm

τη
= Sc−1/2(νε)1/4, (7.18)

where vg is a gas transfer velocity and Sc = ν/Dm is the molecular Schmidt number.

The vg emerging from this analysis is, as expected, consistent with the micro-eddy

model given by vg ∝ [Sc−1/2(νε)1/4] [KMGV18], where (νε)1/4 is the Kolmogorov

velocity. The vg ∼ Sc−1/2 has received wide support from experiments and direct

numerical simulations [TKKK16]. The Dm used here for different scalar quantities
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are reported in table 7.1 for convenience. Unlike water, diffusion of scalars in the

atmosphere leads to an Sc close to unity and is suggestive that Sc adjustments to

vg are not as crucial for the scalars of interest here. The surface renewal scheme

proposed was then applied to different scalars: methane, water vapor, temperature

and longitudinal velocity to further test the robustness of the approach. Figure 7.5

shows a comparison of this SR scheme with Eddy covariance flux estimates for all

4 quantities. The method, after calibration of a single constant ksr (which is the

same for each scalar and constant across all runs) appears to reasonably reproduce

all scalars, and surprisingly momentum fluxes (as noted in prior studies by [Han56]).

Note however that the SR is not fully prognostic when applied to momentum, since

u∗ is needed in the TKE budget to evaluate the Kolmogorov time scale. For CH4

SR and EC flux estimates exhibit a larger scatter, and the presence of some very

large outliers hints at the possible differences in ground sources when compared to

the other scalars, which will be examined next.

7.5.1 Extension to intermittent surface renewals

Since the complete SR theory requires the description of small-scale quantities at the

Kolmorogov scale and their spatial distribution, it is not feasible to reconstruct them

completely using conventional eddy covariance measurements. The current eddy-

covariance measurements simply do not resolve such fine scales due to instrument

separation and volume-averaging. To progress on an SR theory that is mindful of

such instrument limitations, a simplified intermittent model that will be based on

surface renewal micro eddy model (i.e., the bottleneck in the transport is dominated

by kolmogorov scale eddies in the vicinity of the surface) while the intermittency of

the process is described at the integral scale - i.e., at the scales of eddies touching the

ground, which may carry - or not - the signature of one or more CH4 hotspots events.
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Figure 7.5: Comparison between eddy covariance (EC) and surface renewal (SR)
fluxes for methane, sensible and latent heat fluxes, and (kinematic) momentum flux.
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Given this separation of scales relevant for the overall scalar fluxes, the large-scale

depiction of the intermittent source does not directly impact the shape of the distri-

bution of eddy ages at the ground, and thus the scaling of the fluxes with Re∗. As

is the case for the surface renewal micro-eddy model, both hotspot and background

diffusive fluxes should scale as Sc−1/2Re
−1/4
∗ . However, since the relative contribu-

tions of the two mechanisms is expected to change with environmental conditions,

the overall flux may diverge from the Re
−1/4
∗ scaling as anticipated from the larger

scatter for CH4 flux estimates when compared to other scalars (Figure 7.5). In this

formulation, the overall flux is given by F = (1−A+)Fb + (A+)Fh i.e., is a weighted

average of an hotspot flux Fh and a background flux Fb, each weighted by the re-

spective fractional contributing area of the footprint. Each of these two components

has expression of the type derived in eq. (7.18), but the two mass transfers are

driven by different source strengths denoted as ∆cb or ∆ch for the background and

hotspot components respectively. Since the source strength is proportional to the

square root of the scalar energy (over a given range of scales around Tw), one obtains

∆cb = ksrasr,bσ
(I)
b /
√

1− A+ and ∆ch = ksrasr,hσ
(I)
h /
√
A+, taking σ

(I)
b = vb · σ(I)

c and

σ
(I)
h = ve ·σ(I)

h . Analogously to asr,c, the quantities asr,h and asr,b are evaluated for the

two components using the skewness of the hotspot and background components alone

as obtained following the wavelet partitioning scheme discussed in section 7.4. Here,

ksr has the same value determined for the non-intermittent SR, and again assumes a

constant value across different runs and different scalars. Therefore, the overall flux

can be expressed as

F =

(√
1− A+ +

√
A+

vh
vb

asr,h
asr,b

)
ksrvbasr,bσ

(I)
c

√
Dm

τη
, (7.19)
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Figure 7.6: Scheme of the transport mechanism for CH4 near the surface. The
figure represents an idealized patchy CH4 source at the ground, emphasizing the
small scale η of eddies dominating the interfacial gas transfer, and the integral scale
u · Tw of the vertical velocity representing the large scales ’resolved’ by the tower
measurements, which carry the integrated signature of the patchy CH4 source at the
ground.

where A+ is the average fractional area characterized by integral-scale eddies carrying

the signature of CH4 hotspots. These quantities (A+, ∆ch and ∆cb) are all large-scale

quantities and do not correspond to the Kolmogorov-scale quantities governing the

mass exchange at the interface, but rather are linked to their integral-scale effect as

captured by the scalar concentration measurement time series. For a schematic rep-

resentation of the intermittent surface renewal scheme featuring the range of scales

involved, see Figure 7.6. Scalar fluxes over a rough surface for near neutral atmo-

spheric conditions as described by a micro-eddy type model [Bru75] can be expressed

in term of a dimensionless Dalton number Da = F/(u∗∆c) as Da = Sc−1/2Re
−1/4
∗ .

Similarly, a dimensionless expression for the intermittent surface renewal fluxes can
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be derived here as

Dab =
(√

1− A+ +
√
A+E+

)
Sc−1/2Re−1/4

∗ , (7.20)

where two additional dimensionless numbers are now required describing the interplay

of diffusive and hotspot contributions to the overall CH4 fluxes. Again, the number

A+ represents the average fraction of area (or time) characterized by hotspot source

(at the integral time scale); E+ = (asr,hvh)/(vbasr,b) represents the relative strength

of ebullition sources at the ground with respect to the concentration gradient driving

the diffusion process, and Dab = F/(u∗∆cb). The results of the CH4 flux wavelet

partition and its comparison with the (intermittent) surface renewal fluxes are re-

ported in Figure 7.7. The overall CH4 fluxes exhibit a larger scatter when compared

with H2O, suggesting that the transport efficiency is more variable as determined by

the interplay of hotspot and background fluxes. Comparing separately the hotspot

and background components to the fluxes with their counterpart obtained through

the wavelet partition scheme described in section 7.4, again one can see that a micro-

model type SR scheme is appropriate for each component separately even though a

larger scatter is present for the hotspot flux, which is responsible for the run-to-run

variability observed for the overall CH4 flux. In particular, the largest outliers ob-

served for the overall flux are predominantly characterized by hotspot-type fluxes, as

captured both by the wavelet partition scheme and the ISR-estimated flux.
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Figure 7.7: Surface renewal estimates for the hotspot (red) and background (cyan)
components of CH4 compared with the overall CH4 flux (black circles). SR fluxes
are compared compared with the corresponding wavelet - eddy covariance fluxes
partitioned through the wavelet scheme described in section 7.4.

7.6 Discussion

7.6.1 Transport efficiency and Interpretation of ISR param-

eters

The gas transfer velocity and transport efficiency of the different gas transfer mecha-

nisms are now considered. Generally, transport efficiency can be computed from eddy

covariance flux estimates as w′c′/σc/σw and is related to the asymmetry in the c′, w′

components by quadrant analysis (through the quantity eT analyzed in section 7.4),

or through the slope β in the relaxed eddy accumulation method [BO90, BNB92,

PDR93]. Transport efficiencies and gas transfer velocities (w′c′/σc) are reported in

Figure 7.8. Based on the wavelet partition scheme, the gas transfer velocities for

hotspot and background CH4 components can be computed as (A+F h)/(
√
vh/A+σc)

and ((1− A+)F b)/(
√
vb/ (1− A+)σc) respectively. From this analysis, the hotspot

197



component tends to have a larger transport efficiency compared to the background,

as foreshadowed by the difference between H2O and CH4 in the moments of the joint

pdf of (c′ and w′). However, the overall dependence on u∗ appears consistent be-

tween hotspot and background components, thus supporting the structure of the SR

model used here, where both components of the flux are assumed to scale with u
3/4
∗ .

As shown in panel 7.8b, for both components the gas transfer velocity exhibits the

same dependence on u∗. A similar result is obtained from the analysis of SR fluxes

(Figure 7.9. In this case, the gas transfer velocity is estimated dividing the SR flux

by the standard deviation of the scalar. SR estimates appear to satisfactorily repro-

duce CH4 gas transfer velocities and, as in the case of EC, assigns a larger transport

efficiency to the CH4 intermittent component. Note that a discrepancy exists for

the runs characterized by a very intense intermittent flux, for which SR predicts a

larger gas transfer velocity when compared to EC estimates. This can also be seen

by directly comparing SR and EC gas transfer velocity values as reported in Figure

7.10, and is an effect of the large values of scalar skewness characterizing the runs

with intense CH4 hotspot events.

7.6.2 Effects of intermittent sources on CH4 and CO2 scalar

concentrations

To elaborate on the effects of the intermittent CH4 fluxes, and the results of the

wavelet partition procedure, I focus my attention on a single run. I choose one

of the most ’extreme’ runs in the dataset, recorded on 2013 − 07 − 09 at 13 : 30,

which is a day characterized by an exceptionally intense CH4 flux, and for which

the partition scheme identifies multiple source hotspots. For this run, the CH4 time

series is particularly asymmetric with several ’spikes’ of the order of 10 standard
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Figure 7.8: Eddy-covariance estimated transport efficiency (a) and gas transfer
velocity (b) for H2O (blue), CH4 (green) and its hotspot (red) and background
(cyan) flux components as a function of u∗, obtained through the wavelet partition of
the total CH4 flux. For each component, each data point corresponds to a different
30 minutes run in the dataset. The black line shows the 3/4 slope expected from the
SR scaling.
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Figure 7.9: Surface renewal estimated transport efficiency (a) and gas transfer
velocity (b) for H2O (blue), CH4 (green) and its hotspot (red) and background
(cyan) flux components as a function of u∗. For each component, each data point
corresponds to a different 30 minutes run in the dataset. The black line shows the
3/4 slope expected from the SR scaling.

deviations (Figure 7.11) while the water vapor series exhibits ordinary statistical

properties. As a consequence, the wavelet partition clearly classifies most of these

large events as intermittent (Figure 7.11c). Interestingly, CO2 concentrations exhibit

some positive concentration fluctuations that appear synchronous with their CH4

counterparts. However, these CO2 events are much less energetic when normalized

by the variance of their respective series. This findings is consistent with the presence

of localized ebullition events, with bubbles containing not only CH4 but also CO2.

Gas chamber measurements indeed suggest that bubbles may be composed of about

20−80% methane, and partially filled with other gases such as N2 or CO2 [PRLV17].

If this is the case, the relative weakness of CO2 bubble-related signal can be explained

by considering the atmospheric mixing ratio of these two gases. The ratio between

bubble CH4 concentration (∼ 0.5) and CH4 concentration in air (∼ 2e − 6) is two
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Figure 7.10: Comparison of gas transfer velocities computed with the eddy covari-
ance (EC) and surface renewal (SR) approaches for H2O (blue), CH4 (green) and its
hotspot (red) and background (cyan) flux components. The 1 : 1 line is reported as
reference.
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order of magnitudes larger when compared to the ratio between bubble CO2 (∼ 0.3)

and air CO2 concentration (∼ 4e − 4). Hence, the occurrence of ebullition would

determine spikes in CH4 concentrations that are significantly more intense and easily

detected compared to their CO2 counterparts. Moreover, these considerations may

be used to explain the initial findings that CO2 transport efficiency is lower than

H2O, a behavior opposite to what was observed for CH4 (Figures 7.3a and 7.4a).

In the case of CH4, the occurrence of ebullition determines an increased transport

efficiency with the most intense buildup in methane concentration being transported

in few intense ejection events. These events significantly add to the already positive

background diffusive flux. However, during daytime (which is the case for most of

the runs analyzed here) the overall CO2 flux is downward due to photosynthetic

activity. However, the sporadic release of CO2-containing bubbles determines an

inflated fraction of positive CO2 ejection and thus an overall reduced eT for the total

downward flux. This behavior can also be seen in Figure 7.13, where the daily cycle

of scalar fluxes is shown as estimated by either EC or non-intermittent SR. Methane

fluxes do not show any clear diurnal variability and are dominated by the few already

noted highly intermittent runs. On the other hand, H2O, CO2 and sensible heat fluxes

exhibit diurnal variability as expected. However, it is interesting to note that if one

focuses on SR estimates and on the few runs supposedly characterized by intense

ebullition, a large discrepancy can be observed between EC and SR fluxes for CO2.

This finding again supports the picture regarding intermittent CO2 flux, which again

would require an ISR model to be described as done for CH4. In particular, it is the

skewness term used in approximating ∆c that produces this behavior. This behavior

thus suggests the possibility to observe runs in which the ground is overall a CO2

sink but the CO2 skewness is positive due to the effect of localized ejections. A ISR

scheme analogous to that developed for CH4 here could describe this behavior after
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partitioning the time series in its background (downward) and intermittent (with a

possible upward) CO2 flux components. The results of such an intermittent SR model

applied to CO2 fluxes are shown in Figure 7.12, where one can see the results are (a)

overall consistent with the EC results, and (b) CO2 hotspots are characterized by

more intense downward fluxes during most days, but in some cases these the sign of

hotspots and backround fluxes differ. As seen in Figure 7.11, in some cases positive

CO2 spikes are coherent with their CH4 counterparts and it is therefore possible that

the interplay of these different transport mechanism reduces the overall transport

efficiency for CO2 when compared to the reference H2O. These results however are

not as clear as those obtained for CH4, and may represent the combined effect of both

release of bubbles and inhomogeneity in the CO2 sinks at the surface (the vegetation

is patchy).

Table 7.1: Values used for the molecular diffusivity Dm and Schmidt number
Sc = ν/Dm for the scalar quantities of interest.

Quantity Dm[· 10−4 m2/s] Sc [−]
u 0.151 -
T 0.212 0.71
H2O 0.24 0.59
CO2 0.157 0.96
CH4 0.222 0.68

7.6.3 Relation between partitioned CH4 fluxes and environ-

mental parameters

How the parameters of the SR scheme derived above describing the ebullition process

vary with differing environmental and flow conditions is now discussed. The seasonal

variability of the methane fluxes is reported in Figure 7.14a. Panel 7.14b shows the

seasonal variability of ebullition fractions of flux (fe), variance (ve), and footprint area
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Figure 7.11: Example of run measured 2013-07-09 13:30:00, characterized by very
intense CH4 hotspots. The figure features (a) the normalized methane concentration
(green), (b) water vapor (blue) and (c) the results of the wavelet partition (cyan and
red indicating background and hotspot components respectively). A comparison with
the corresponding CO2 time series is featured in the lower panel, where red circles
denote points for which the corresponding CH4 concentration exceedes 3σc (d). For
each time series, the dashed horizontal lines show the 1 standard deviation bands
around the mean (computed for the background component only in panel (c)). The
pdfs of normalized scalar fluctuations are included for comparison.
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Figure 7.12: Partition of the CO2 flux in background and hotspot components. Left
panel shows a comparison of SR and EC estimates, while the right panel shows the
average fluxes measured during hotspot and background only times, respectively.

A+. The clear outliers occurring around the day 7-9-2013 are all characterized by

intense CH4 emissions, and by hotspots dominating the mass transfer mechanism. As

an example, I have already examined one of these runs in Figure 7.11. I also show the

relation of CH4 fluxes with key environmental parameters. In particular, I study its

variability with water table depth relative to the peatland surface, and with changes

in atmospheric pressure (Figure 7.14). While overall there is no clear dependence, it

is interesting to note that the runs characterized by very high CH4 fluxes all occur for

relatively high water table levels and in decreasing atmospheric pressure conditions.

This picture is consistent with the conditions for which CH4 ebullition is expected

to occur. I conjecture that is it likely that for most of the runs, the mechanisms

determining the intermittent fluxes may be variable, and include non-homogeneous

terrain, variable microbial activity, and some ebullition. However, in about 10 cases,

the runs are characterized by unusually intense CH4 positive fluctuations that give

rise to fluxes an order of magnitude larger than median seasonal values. For these

runs, the evidence analyzed here would suggest ebullition is the primary cause for
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Figure 7.13: Daily cycles of surface renewal (black stars) and eddy covariance flux
(colored circles) estimates for various scalars, for all the runs in the dataset. Note the
outliers for CH4 and CO2 corresponding to large fluctuations in the concentration
time series (marked in red for SR CH4 fluxes larger than 0.004µmolm−2 s−1).
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Figure 7.14: Panel (a): Seasonal variability of the total methane flux and of its
ebullition and background components throughout the period of measurement ana-
lyzed. Panel (b): Fraction of ebullition flux (black circle markers), scalar variance
(green squares) and fractional footprint area (red triangles) during the same time
interval.

these events. This appears to be the case because i) they all occur for high water

table levels, ii) they all appear for decreasing atmospheric pressure values, and iii)

they are accompanied by a similar (albeit weaker) behavior observed for the CO2

time series, which is consistent with a mixture of the two gases being release at the

interface in the presence of bubbles.

7.7 Conclusions

An intermittent surface renewal scheme was proposed with the objective of charac-

terizing the interplay and relative importance of diffusive and intermittent fluxes of
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Figure 7.15: Dependence of CH4 flux on (a) water table depth relative to the
peatland surface, and (b) atmospheric pressure tendency (increment in atmospheric
pressure computed for the 30 minutes corresponding to each run).

methane over boreal peatlands. This model, while still describing the interfacial mass

transport as a function of Schmidt number Sc and Reynolds number Re∗, depends

on additional parameters related to the spatial intermittency of the fluxes (A+) and

the relative strength of intermittent and background (i.e., continuous) scalar sources

at the interface (E+). In the context of CH4 emissions from boreal wetlands, the

intermittent hotspots detected with this framework can be linked either to the occur-

rence of ebullition, or to the non-homogeneous distribution of plants and microbial

activity. However, the analysis of the CH4 events characterized by the largest mag-

nitudes, together with relevant environmental parameters, suggest that the sporadic

release of bubble may be at the origin of the most intense hotspot events. Parti-

tioning CH4 fluxes with respect to a reference scalar (H2O) suggested that spatial

non-homogeneity of the CH4 source, and in particular hotspots possibly related to

ebullition, may be the primary cause for the observed statistical properties of CH4

concentration traces: In particular, the skewed and non-Gaussian character of their
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pdfs, and the larger transport efficiency eT compared to other scalars (e.g. tempera-

ture, water vapor). In the case of CO2, the lower values of eT appear to originate for

the same reason in some of the runs analyzed here: The presence of local ejections,

possibly related to sporadic bubble release, determines a decrease in the transport

efficiency for the (downward) CO2 flux. The results here suggest that SR, as well

as the ISR extension for spatially inhomogeneous sources, can be complementary to

EC measurements in quantifying scalar fluxes, and instrumental in detecting con-

tributions to CH4 fluxes from intermittent sources. This information is practically

relevant for the purpose of upscaling point measurements of CH4 fluxes performed

with the use of gas chambers. Given the limited time and spatial coverage of such

field measurements, the information provided by methods such as ISR can be rel-

evant for planning and interpreting the results obtained from field campaigns, now

increasing in number and coverage for CH4.
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Chapter 8

Conclusion

In this dissertation I have investigated the statistical properties of extreme values ob-

served in rainfall as well as in atmospheric surface layer (ASL) turbulent flows. In the

context of rainfall, this work challenges the classical adoption of asymptotic extreme

value models, and proposes instead techniques which use all available observations

to infer the frequency of large, and possibly yet unobserved, extremes. This point

of view appears particularly suited for applications to rainfall estimates from remote

sensing, where observational uncertainty hinders the use of models which only include

the few largest observed events. The advantage of using the non-asymptotic extreme

value framework proposed was further quantified by studying extremes from satellite

quantitative precipitation estimates (QPEs). This application, in turn, paved the way

toward additional lines of inquiry, since proper QPE validation requires a careful ex-

amination of (i) observational biases, which may deform the probability distribution

of rainfall intensities, with important consequences for extreme-value statistics, and

(ii) issues related to spatially-averaged rainfall fields, whose statistics, and extremes,

are dependent on the averaging scale, which needs to be accounted for when compar-

ing observations/estimates at different scales. These two directions of investigation

were separately studied in Chapters 4 and 5, where a framework for downscaling and

validating QPE statistics in data-scarce regions was developed. This dissertation

also investigated the role of extremes in ASL flows. From this perspective, my work

clarified the role of boundary conditions in determining the frequency of extreme fluc-

tuations of scalar quantities transported in the ASL. By studying the transport of
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sensible heat, I found that the frequency of intense temperature fluctuations depends

on the interplay of buoyancy associated with heating and shear-driven turbulence,

even well within the inertial subrange, a range of scale at which the classical paradigm

assumes that the detailed characteristics of the turbulence-generation mechanism are

lost as energy cascades through smaller and smaller spatial scales. The small-scale

statistical properties of scalars in ASL turbulence are not only impacted the tur-

bulence generation mechanism, but also contain relevant information on whether

the scalar is released in the flow intermittently, or in a spatially heterogeneous way.

Here I studied this phenomenon in the context of methane (CH4) emissions from

boreal peatlands. These environment are characterized by the presence of natural

CH4 ’hotspots’, related to either the sporadic release of methane-containing bubbles

in air, or to the heterogeneous distribution of plants and microbial activity, which

impress a clear signature to the statistical properties of CH4 concentrations mea-

sured in the ASL. In Chapter 7, this signature was exploited to partition CH4 fluxes

based on the different gas exchange mechanisms (i.e., ’hotspots’ possibly related to

bubble release events, as opposed to steady background diffusion through the wa-

ter and peat column), and to study the role of these extreme gas exchange events

in relation to the overall ecosystem greenhouse gases budget. While different from

a physical standpoint, the analysis of remotely-sensed rainfall and intermittent gas

fluxes from gas analyzer and sonic anemomenter measurements pose a very similar

challenge to the investigator. In both cases, the physical processes of interest, i.e.,

either the generation of extreme rainfall on the one hand, or the gas transfer rate

on the other, is dominated by small-scale spatial distribution of the relevant physical

quantities, at scales that are, in particular, smaller than the ’resolution’ of the obser-

vations. This resolution is the grid cell size in the case of rainfall, and the sampling

frequency of the sonic anemometer in the case of ASL turbulence. One of the main
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objectives of the investigations described in Chapters 4, 5, and 7 was indeed bridg-

ing this gap between the scale of available data products, and the smaller scales of

the physical processes under investigation. In both cases, as shown in Chapter 4 for

rainfall, and in Chapter 7 for ASL turbulence, when information at the integral time

scale is available, this can be combined with assumptions on the ’subgrid’ behavior

in order to infer some properties of the process at the smaller scales. In Chapter

7 this is achieved through a simplified turbulent kinetic energy balance [KKP11],

coupled with the idealized representation of interfacial gas transfer provided by the

surface renewal theory [ZPGK20]. Similarly, in the case of rainfall, the effects of

spatial averaging on the probability distribution of large events can be inferred by

assuming a spatial correlation function consistent with the observed spatial scaling of

rainfall [Mar05, OG94, NB15, ZM19]. In both cases, particular care is needed when

applying this technique to new data. As an example, in the case of rainfall areas

with complex topography, the associated spatial heterogeneity and anisotropy of the

rainfall field can severely limit this transfer of information across scales, as found and

discussed in Chapter 5. With respect to this issue, the results obtained here can be

used to inform the design of future studies and field campaigns, by combining point-

measurements (e.g., from rain gauges or gas chambers) with ’remote’ observations

of integral properties of the two processes (e.g., remote sensing or eddy-covariance

measurements).

The main contributions of this dissertation can be summarized as follows:

• Chapter 2 tested a statistical model of extreme daily rainfall which, by describ-

ing the entire distribution of daily values, proves to be a more robust alternative

to traditional methods in the case of short sample sizes. By analyzing a set of

long (S > 100 years) rainfall records, my analyses pointed out two important

aspects to be considered when evaluating extreme-value models. The first as-
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pect concerns the importance of using cross validation techniques to evaluate

and select alternative models. The second aspect regards the relevance of the

ratio Tr/S, i.e. the ratio of the average recurrence interval of interest to the

sample size available. This ratio quantifies the degree of extrapolation involved

in the statistical estimation being performed and, as found in Chapter 2, differ-

ent extreme-value statistical models exhibit quite different performances when

analyzed as a function of Tr/S.

• In Chapter 3, I developed an extension of the model described in Chapter 2

using the formalism of Bayesian hierarchical models. This extension proved

useful in quantifying estimation uncertainty, and in incorporating physical in-

formation on the process at hand through the elicitation of informative priors.

While the use of Bayesian models is not new in atmospheric science and hy-

drological applications, here we introduced a novel latent level approach which

can be instrumental in describing extreme fluctuations of processes varying over

multiple, much different, temporal scales. By comparing measures of in-sample

and out-of-sample predictive accuracy, I found that the model structure devel-

oped here can significantly improve robustness with respect to overfitting the

specific sample of extreme values observed.

• Chapter 4 focused on the estimation of extreme rainfall from remotely-sensed

datasets. To this end, I worked to address two key issues: the limited length

of rainfall datasets on one hand, and the scale disparity between gridded and

rain-gauge precipitation products on the other, a relevant issue when validating

results using ground observations. Here I addressed this problem by developing

an approach to downscale key statistical properties of the rainfall field: The

frequency of rainfall events, their spatial correlation, and the distribution of
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their intensities. Testing this methodology using data from the Tropical Rain-

fall Measuring Mission (TRMM) over a single study site in Oklahoma, I have

found that this approach satisfactorily reproduced downscaled daily rainfall

pdfs. Then, the methodology was combined with the extreme value model pre-

sented in Chapter 2. By applying this combined approach over the test site, I

found that, despite the short record length available, its application can prove

relevant for improving the estimation of extreme rainfall frequency over poorly

instrumented regions.

• In Chapter 5 I applied the downscaling technique developed in Chapter 4 to

perform a large-scale comparison of statistical properties of rainfall observed

from single rain gauges at the ground and a gridded precipitation product

over the Conterminous US. After evaluating discrepancies between downscaled

and ground-measured rainfall statistics, the methodology was then extended by

developing a spatial model of the error. This extension is intended for interpo-

lating and characterizing the performance of remotely sensed rainfall products

over poorly gauged areas. Towards the long-term objective of producing and

validating a global-scale representation of extreme rainfall frequency, here I pro-

duced a first global estimate based on the tools developed in Chapter 2. I then

discussed the implications and the possible approach for a large-scale, global,

validation effort based on the results obtained from the United States.

• Chapter 6 experimentally explored the effects of mechanical generation of tur-

bulent kinetic energy and buoyancy forces on the statistics of air temperature in

the atmospheric boundary layer, focusing on a range of scales from production

to the inertial range. I found that within this range of scales the turbulence

generation mechanism leaves a signature on both the probability of extreme
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temperature fluctuations, and on the imbalance between forward and back-

ward phase-space trajectories of the temperature field. In particular, I found

that the absolute magnitude of the atmospheric stability impacts the distribu-

tion of scalar increments at separation scales well within the inertial sub-range.

Moreover, the sign of the heat flux fingerprints the observed time-directionality

properties of the temperature field in the first two decades of inertial sub-range

scales. These combined findings demonstrate that external boundary condi-

tions, and in particular the magnitude and sign of the sensible heat flux, have

a significant impact on temperature advection-diffusion dynamics well within

the inertial range.

• Chapter 7 introduced a technique for partitioning measured methane fluxes

over natural wetlands based on the spatial intermittency of the gas transfer

mechanism at the interface. For a study site in Finland, I found that differently

from water vapor fluxes, the exchange of CH4 exhibits short-term extreme

flux ”hotspots” events which can be difficult to characterize with the usual

eddy covariance technique, as well as to measure directly at the ground. By

developing an intermittent extension of the classical surface renewal theory, this

work introduces a novel approach for inferring the intermittent nature of scalar

sources at the ground and for exploring how their heterogeneity impacts the

efficiency of gas turbulent transport in the atmospheric surface layer.

These results suggest multiple future research directions. In recent years, in-

creasing attention has been devoted to the concept of probabilistic QPEs, i.e., rain-

fall estimates characterized by a complete probabilistic description of the differ-

ent sources of uncertainty deriving from the specific retrievals and algorithms used

[MSA+14, KGH+15, KKHH18]. However, when using these products to train statis-
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tical models, an essential step is providing a unified quantification of the uncertainty

deriving from these different sources, together with the uncertainty deriving from

inference on the statistical model itself. The Bayesian hierarchical model developed

in Chapter 3 is a promising tool in this respect. By adding one additional layer

to the model for representing the probabilistic nature of the QPE, the overall un-

certainty can be estimated for any functional quantity of interest and then used in

hydrometeorological studies.

In a broader perspective, the research described in this dissertation hopes to

be a contribution to long-standing research questions relevant for hydroclimatology.

Heavy precipitation and flooding events are expected to become more frequent in a

warming climate, although the strength of these changes is difficult to characterize,

especially at the finest temporal scales [AS08, WFE+14, MV15]. This difficulty arises

both from a data-driven perspective, due to the need of long and homogeneous records

[PM19], and from a modelling standpoint, where the correct representation of future

changes in precipitation is one of the ’real holes of climate science’ [Sch10]. More-

over, the inter-annual variability in the occurrence of extreme precipitation events, as

modulated by the internal variability of the climate system, is also expected to be im-

pacted by the warming conditions [PKL+17]. To address this challenge, hydrologists

and water managers have long advocated the adoption of non-stationary extreme

value models [MBF+08]. However, their application is still actively debated in the

hydrological literature [LC11, MK14], as the benefit of including climate-informed

covariates in the statistical analysis of extremes is often overshadowed by the inflated

uncertainty associated with both the inference process and model selection. Toward

this long-standing problem, my dissertation offers two contributions. First, the re-

sults obtained in Chapters 2 and 3 underline the importance of accounting for the

time-scale separation between possible climatic effects and the ’fast’ timescale rep-

216



resenting the actual phenomenon of interested (extreme daily rainfall in this case).

Second, the hierarchical structure developed in Chapter 3 is particularly suited to be

expanded to include the effect of climate controls on precipitation statistics. Com-

bining the tools developed here with physical understanding of climate controls on

precipitation processes will lead to an improved ability to characterize variability

and future changes in the frequency of extreme rainfall, a fundamental step for im-

prove preparation to and response against the hazards associated with precipitation

extremes.
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Appendix A

Appendix to Chapter 2

In this section I provide supporting information on data sets and methods used in

Chapter 2 to compare the performance of traditional GEV methods and Metastatis-

tical Extreme Value distributions.

A.1 Fitting of the GEV Distribution

The GEV distribution, depending on the value of its shape parameter ξ, encom-

passes the entire range of limiting distribution types, as stated in the Extremal Types

Theorem [FT28]. The three cases of upper bounded, exponential and heavy tailed

distribution are thus included in this formulation. The Von Mises parametrization

of the GEV Cumulative Distribution Function (CDF) of a random variable X reads

[VM36]:

F (x;µ, ψ, ξ) = exp

{
−
(

1 +
ξ

ψ
(x− µ)

)−1/ξ
}

(A.1)

Where µ, ψ, ξ are respectively location, scale and shape parameters. The GEV

distribution has become the standard approach to model rainfall extremes and much

of the recent literature in the field focuses on different approaches to most effectively

estimate its parameters from a sample of block-maxima. Several methods have been

developed for this task, some of the main contenders being the Maximum Likelihood

(ML) [Col01, MS00a], L-Moments (LMOM) [Hos90, HWW85], and Mixed Methods

[MS02]. It has been shown that the ML estimators for the GEV distribution have
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a larger variance compared to the LMOM-family estimators, especially for positive

values of ξ. On the contrary, LMOM estimators exhibit smaller variance and are

affected from bias [MS02, HWW85]. Hence, LMOM has better performances when

applied to small samples (due to the reduced estimator variance) and therefore it is

the most suited candidate to be applied in the range of sample sizes explored in this

work. I implemented the ML approach by numerical minimization [GSU01] of the

log likelihood function:

λxi (µ, ψ, ξ) = −N logψ −
(

1

ξ
+ 1

)∑
i

log

(
1 + ξ

xi − µ
ψ

)
−
∑
i

(
1 + ξ

xi − µ
ψ

)−1/ξ

(A.2)

For a complete description of the MLE for GEV and its asymptotic properties,

see Coles [Col01]. As per the LMOM method, GEV parameters were estimated

using the approach introduced by Hosking [Hos90]. L-moments are defined as linear

combinations of the Probability Weighted Moments (PWM). The estimate for the

r-th order PWM from a ordered sample x1:n, .., xn:n reads:

βr =
1

n

∑n
i=1

(
i−1
r

)
x1:n(

n−1
r

) (A.3)

Hence, L moments estimates are evaluated from PWM estimates as λ̂1 = β0,

λ̂2 = 2β1 − β0 and λ̂3 = 6β2 − 6β1 + β0. Following this approach, it is possible to

determine GEV parameters as a function of the first two L moments λ̂1 and λ̂2 and

the L skewness τ̂3 = λ̂3/λ̂2:

τ̂3 + 3

2
=

1− 3ξ̂

1− 2ξ̂
(A.4)
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ψ̂ =
ˆ
λ2ξ̂(

2ξ̂ − 1
)

Γ
(

1− ˆ̂
ξ
) (A.5)

µ̂ = λ̂1 +
ψ̂

ξ̂

[
1− Γ

(
1− ξ̂

)]
(A.6)

Solution of equation (A.4) would require a numerical procedure. However, for

the range of shape parameter encountered in this application (−0.5 < ξ < 0.5) the

following polynomial approximation can be used (see [HWW85] for details):

ξ̂ = 7.8590 · c+ 2.9554 · c2 (A.7)

Where

c =
2

3 + τ̂3

− log 2

log 3
(A.8)

The results obtained from the Monte Carlo analysis (Fig. A.4D) show that for

the range of sample sizes considered here, LMOM has in general better performances

than ML estimators. In particular for return times bigger than the available sample

size, LMOM yields on average estimates with a Root Mean Square Error (RMSE)

smaller than ML. The GEV distribution, obtained as asymptotic distribution, would

ideally be a proper model only for maxima extracted from infinitely large blocks.

In practical applications the selection of larger blocks inevitably reduces the sample

size available for the fitting procedure. On the other hand, too small blocks violate

GEV fundamental hypothesis and in many environmental application fail to provide

stationary series (e.g. sub annual blocks in the case of daily rainfall).
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A.2 The Peak Over Threshold Method

The Peak Over Threshold (POT) method was implemented following [DS90] to test

its performance against the GEV and MEV approaches. In the POT framework, the

excesses y = x−q over a sufficiently high threshold (q) are assumed to be drawn from

independent and identically distributed random variables, which obey the following

Generalized Pareto Distribution (GPD):

F (x;κ, σ) = 1−
(

1 +
κy

σ

)−1/κ

; (A.9)

The GPD shape and scale parameters (κ and σ, respectively) were estimated by

means of the ML method [Col01, GSU01]. The arrival rate (number of exceedances

over q in one year) is modeled using a Poisson distribution with mean λ (estimated

here as the sample mean of the yearly number of exceedances λ̂ = n̄). This POT

model yields a CDF for the annual maximum which has a GEV form. Hence, the

parameters of the latter can be estimated on the basis of the POT parameters (κ, σ, λ)

as follows:

ξ = κ (A.10)

σ = ψ + ξ (q − µ) (A.11)

λ =

(
1 + ξ

q − µ
ψ

)−1/ξ

(A.12)

As the threshold q tends to ∞ [Lea83] (i) the distribution of excesses tends to a

GPD form and, (ii) their arrival process tends to be Poisson. When fitting a POT
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model, the selected threshold must be high enough such that these two conditions are

approximately met. Interestingly, if a relatively low threshold is selected, such that

the bulk of F (x) is also included rather than just its tail, the shape parameter of the

GPD is seen to decrease. This implies that, for lower thresholds, the distribution of

the excesses is only marginally different from an exponential [CH04, SK14]. In this

case a stretched exponential distribution is more suitable to capture the observed

rainfall values. In every realization of the Monte Carlo analysis a threshold was

selected that is exceeded on average 5 times per year (thus, the total number of

excesses is 5 · s). This guarantees that a variable and sufficiently high threshold is

automatically selected at every generation. Figure A.1 shows the performance of

MEV and POT in the (s, Tr) space. The result is consistent with the GEV-MEV

contour (Fig. 2 in Chapter 2), confirming that MEV on average produces better

estimates for return time bigger than the available sample size. The same results are

also reported as a function of the dimensionless quantity (Tr/s) (Fig A.4C).

A.3 On the Asymptotic Assumption

It has been shown that, in hydrological applications, the number of yearly events may

not be sufficient for the asymptotic assumption to hold [CH04, Kou04]. This problem

could be circumvented by increasing the size of the blocks (in the Block Maxima ap-

proach) or by considering higher thresholds (for POT), which would in turn require

disproportionately large samples. On the other hand, considering lower thresholds

allows a reduction of the estimation uncertainty, but too low a threshold might lead

to a bias when the GPD and/or Poisson assumptions are no longer justified. Hence

an essential task is to determine what the tail of the distribution exactly is, i.e. what

fraction of the available observations should be incorporated in the EV analyses. The
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optimal solution is a trade off between bias and variance. For some underlying dis-

tributions (e.g. in the case of a Weibull parent) the convergence rate to its limiting

extremal pdf is so slow [CH04] that the use of a different asymptotic distribution

(Frechet instead of Gumbel), though not theoretically justified, is suggested by em-

pirical evidence [Kou04, PK13].Papalexiou and Koutsoyiannis[PK13] and Serinaldi

and Kilsby [SK14] explored respectively the dependence of the GEV/GPD estimated

shape parameter on different features of samples and estimation procedures. In par-

ticular, they find that, even in the presence of a heavy-tailed underlying stochastic

process, the sub-exponential tail tends to remain undetected when small samples are

used to fit and asymptotic EV distribution.

A.4 Fitting of the MEV Distribution

The discrete expression of the MEV-Weibull distribution, obtained by means of Monte

Carlo integration, requires the fitting of the Weibull distribution to the non zero daily

rainfall values for every single year of the sample. Since the sample size is relatively

small (it is equal to the yearly number of wet days) the Probability Weighted Moments

(PWM) approach was used. The k-th order PWM for the Weibull distribution reads

[GLM79]:

M1,0,k = M(k) =
C · Γ

(
1 + 1

w

)
(1 + k)1+ 1

w

(A.13)

For an ordered sample of size n, x1:n, ..., xn:n, the estimated PWM of order k M̂(k)

is:

M̂(k) =
1

n

n∑
j=1

(n− j) · (n− j − 1) · ... · (n− j − k + 1)

·(n− 1) · (n− 2) · ... · (n− k)
· xj:n (A.14)

So that the first two moments read M̂(0) = 1
n

∑n
j=1 xj:n and M̂(1) = 1

n

∑n
j=1

(
n−j
n−1

)
xj:n.
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The Weibull shape and scale parameters can thus be explicitly expressed as a function

of the first two PWM sample estimates:

ŵ =
M̂(0)

Γ
(

log
M̂(0)

M̂(1)

) (A.15)

Ĉ =
log 2

log
M̂(0)

2M̂(1)

(A.16)

Wilson and Toumi [WT05] provided a physical justification for the adoption of a

stretched exponential as fundamental distribution to model heavy daily rainfall. They

expressed the daily precipitated depth as a product of three independent Gaussian

distributed variables (mass flux, specific humidity and precipitation efficiency) and

recognized the pdf of such a product to be stretched exponential with shape parameter

w = 2/3 and scale parameter C ∈ R, thus implying a sub exponential tail behaviour

with characteristic scale [LS98]. The MEV framework assumes daily rainfall values to

be realizations of independent and identically distributed Weibull random variables.

To corroborate this assumption, I analyzed the correlation of daily rainfall from all

the datasets, finding that the average value for the 1-day lag autocorrelation is about

0.2 (Fig A.3B). The Weibull assumption was also tested by means of Kolmogorov-

Smirnov (KS) and Cramer Von-Mises (CVM) statistical tests. These tests were

performed for all the single years for every dataset, treated as independent samples

(coherently with their fitting in estimating the MEV parameters). Averages of the

p-value were then computed for all the 37 datasets (Fig A.3A). Both tests yielded

very similar result, showing good agreement between empirical data and the stretched

exponential model. Convergence of the discrete MEV formulation (3) to eq. (2) is
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ensured by the Bayesian Monte Carlo integration [Wei00]:

∫
~θ∗∈Ω ~θ∗

f(~θ∗)p(~θ∗)d~θ '
1

M

M∑
j=1

f(~θj) (A.17)

Convergence is ensured as long as ~θj j = 1..M are sampled from the target distri-

bution p(~θ), as any value ~θ∗ ∈ Ω~θ appears in the summation (A.17) with frequency

Mp(~θ∗)d~θ. Hence, the right hand side of eq. (A.17) is a discretization of the integral:

1

M

M∑
j=1

f(~θj) =
∑
~θ∗∈Ω~θ

f(~θ∗)p(~θ∗)d~θ (A.18)

The accuracy of this approximation increases with M (in particular, the error scales

like 1/
√
M), where in the present application M is the length (in years) of the

available rainfall record.

A.5 Distribution of the Meta-Parameters

The nature of the distribution of the meta parameters allows to better understand

the properties of the MEV distribution. It has been shown [BC03, PVF06] that by

compounding an exponential with a gamma distribution, one can obtain a power-law

behaviour. A similar theoretical argument has been applied to the case of a compound

Weibull-Gamma distribution [Dub68]. In the case of the MEV distribution, a similar

argument can be used if one assumes the quantity k = C−w to be a gamma-distributed

random variable (with shape and scale parameters, say, α and β respectively) and n

to be fixed. In this case the expression of the compound distribution is:

ζ(x) =

∫ +∞

−∞

(
1− n · ek·xw

) kα−1e−βk

Γ(α)β−α
· dk (A.19)
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Note that here I applied the Penultimate Approximation [CH04, MI15] to eq. (2),

thus assuming that Hn(x) ∼= 1−n·G(x) ∼= exp [−n ·G(x)] (Where G(x) is the Weibull

survival distribution function and G(x) << 1 for large x). Hence, it is possible to

rewrite eq. A.19 as:

ζ(x) = 1− n ·
(

1 +
xw

β

)−α
(A.20)

Hence, for sufficiently large values, the distribution of X tends to a power law

with exponent −w · α. The higher-order variability in the Weibull scale parameter

produces, in this case, a compound distribution with a heavier tail.
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Figure A.1: Ratio ρMEV /ρPOT , of the Root Mean Square Errors of quantile esti-
mates from the MEV-Weibull and POT approaches as a function of return period
and size of the sample. Individual ρMEV /ρGEV values (obtained from nr = 100 Monte
Carlo reshuffled time series) from all the stations are pooled together and averaged
over rectangular tiles on an uniform grid. White cells do not contain data.
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Figure A.2: Quantile-quantile plot for MEV and GEV distributions fitted to all the
available time series after reshuffling (to ensure stationarity). The same sample is
here used for calibration and performance evaluation. The GEV distribution shows
a better performance when evaluated using the same sample of annual maxima used
for its calibration. Comparisons with proper independent testing, where the MEV
approach outperforms the GEV distribution, suggest that the latter is less capable
to infer the general properties of the population.

Table A.1: Mean and standard deviation of the estimation errors for a sample of
size s=30 years.

Return Time GEV POT MEV
Tr=10 µ -8.51 -8.54 -5.37

σ 0.224 0.223 0.236
Tr=20 µ -7.87 -7.95 -3.59

σ 0.223 0.225 0.228
Tr=50 µ -5.99 -6.27 -0.76

σ 0.232 0.234 0.217
Tr=100 µ -5.46 -5.67 -3.71

σ 0.262 0.252 0.185
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Figure A.3: Results of goodness-of-fit tests for the Weibull distribution (A), and
rainfall autocorrelation (B). Kolmogorov-Smirnov and Cramer-Von Mises tests were
performed by fitting the Weibull distribution to every single year on record for every
station. Yearly p-values were then averaged for every station. The line corresponding
to the critical value α = 0.05 is reported as a reference. Note that for most of the
stations the mean p-value significantly exceeds α. In panel (A) the autocorrelation of
daily rainfall is reported for different time lags. Black points represent the value com-
puted for each station, whereas red closed circles are averaged over all the available
datasets. The autocorrelation for a 1-day lag is, on average, about 0.2.
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Figure A.4: Comparative performance of different EV models as a function of Tr/s,
obtained for n = 100 Monte Carlo generations. Ratio between the Root Mean Square
Errors for (A) MEV and GEV fitted with LMOM, (B) MEV and POT, (C) MEV
and GEV fitted with ML, and (D) GEV fitted with LMOM and ML. The colors
represent the density (points/unit area of the plot) of the values falling in each area
of the scatter plot (blue indicating the lowest density and yellow the highest one).
The horizontal line marks the equal performance condition between two methods.
The vertical lines correspond to the value Tr/s = 1.
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Figure A.5: Comparisons of the relative error distributions for the MEV and
GEV-LMOM (panels A,B,C), and POT (panels D,E,F). The relative error was com-
puted over all the stations and Monte Carlo realizations (nr = 100) using a fixed
sample size (s = 30 years) and different return times. As the return time increases
with respect to the sample size, the MEV distribution exhibits a remarkably smaller
variance compared to GEV and POT methods (see table A.1 for the values of er-
ror mean and standard deviation). Histograms for Tr = 100 were obtain pooling
together data from all the stations longer than 130 years.
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Table A.2: Summary information about the records used in the analysis.
Station ID Station Name Country/ Elevation Latitude Longitude Period of record Missing data Length

US State [m m.s.l.] [years] [years]
FR000007560 Mont Aigoual FR 1567 44.1167 3.5831 1896-2014 3 116
USC00090140 Albany GA 54.9 31.5333 -84.1333 1893-2014 2 120
UK000047811 Armagh UK 62 54.35 -6.65 1838-2001 0 164

- Asheville NC 682.1 35.5954 -82.5568 1903-2006 0 104
GM000004063 Bamberg GM 240 49.8753 10.9217 1879-2014 0 136
ASN00063118 Bilpin Fern Grove AS 610 -33.5156 150.4892 1895-2004 0 110
ITE00100550 Bologna IT 53 44.50 11.3458 1813-2007 0 195
SF000030320 Bredasdorp SF 50 -34.533 20.033 1875-1991 9 108
ASN00068007 Brownlow Hill AS 61 -34.025 150.645 1883-2014 4 128
EI000003969 Dublin EI 49 53.3639 -6.3192 1881-2014 8 126
ITE00100552 Genova IT 55 44.4144 8.9264 1833-2008 0 176
NLE00100502 Heerde NL 6 52.3958 6.0514 1893-2014 0 122
NLE00100503 Hoofdoorp NL -3 52.3108 4.7042 1866-2014 1 148
GM000004204 Jena Sternwarte GM 155 50.9267 11.5842 1827-2014 10 178
AU000005010 Kremsmuenster AU 383 48.05 14.1331 1876-2014 3 136
USC00044997 Livermore CA 149 37.6666 -121.767 1903-2014 2 110
SIM00014015 Ljubljana SL 299 46.0656 14.5169 1900-2014 0 115
SZ000009480 Lugano SZ 300 46.01 8.9667 1901-2014 0 114

086071 * Melbourne AS 31.2 -37.8075 144.9700 1856-2013 0 158
USC00025467 Mesa AZ 374.9 33.4166 -111.867 1897-2014 3 115
ITE00100554 Milano IT 150 45.4717 9.1892 1858-2008 0 151
GM000004199 Muenchen GM 515 48.1642 11.5442 1879-2014 4 132

† Oxford UK 63 51.77 -1.27 1853-2008 0 156
‡ Padova IT 12 45.398 11.880 1725-2013 17 272

FR000007747 Perpignan FR 42 42.7381 2.8731 1901-2014 2 112
ITE00115584 Pesaro IT 11 43.9108 12.9042 1871-2008 1 137

- Philadelphia PA 11 39.95 -75.15 1901-2006 0 106
NLE00101991 Putten NL 14 52.2517 5.62 1868-2014 0 147
USC00027281 Roosvelt AZ 672.1 33.6666 -111.15 1906-2014 5 104
SF000208660 Royal Obs. SF 40 -33.93 18.48 1850-1997 23 125
SZ000002220 Saentis SZ 2502 47.25 9.35 1901-2014 0 114
SZ000006717 C.d.G. San Bernard IT 2472 45.8667 7.1667 1901-2014 9 105

† Sheffield UK 115 53.38 1.494 1883-2008 0 126
ASN00066062 Sydney AS 39 -33.8607 151.205 1859-2014 0 156
SF000227590 Worcester SF 270 -33.617 19.467 1880-2008 13 116
HR000142360 Zagreb HR 157 45.8167 15.9781 1862-2004 0 143
SZ000003700 Zurich SZ 556 47.3831 8.5667 1901-2014 0 114

*Australian Bureau of Meteorology.
†British Atmospheric Data Centre, UK Meteorological Office
‡See [MZ15]
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Appendix B

Appendix to Chapter 3

B.1 Details on the Bayesian GEV and POT Mod-

els Implemented

Here I briefly review the main extreme value statistical models consistently with the

notation used in Chapter 3. The two approaches detailed below are the General-

ized Extreme Value distribution used as a model for block maxima series, and the

Peak Over Threshold (POT) model with the frequency of excesses over threshold

described through a Poisson point process. For a complete discussion, see Coles

[Col01] or De Haan and Ferreira [DHF07]. These models are commonly used for

EV analysis and statistical software that implement these technique is available,

such as for example the extRemes R package [GK+16]. The Bayesian (Hamilto-

nian Monte Carlo) estimation for the GEV and POT models used in our study

is described below and implemented in the hmevr R package, available at https:

//github.com/EnricoZorzetto/hmevr.

B.2 The Generalized Extreme Value Distribution

The (GEV) distribution [VM36] has cdf

Pr (Y ≤ y) = FGEV (y | µ, σ, ξ) = exp

{
−
(

1 +
ξ

σ
(y − µ)

)−1/ξ

+

}
. (B.1)
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where µ ∈ R and σ ∈ R+ are the location and scale parameters respectively, while

ξ ∈ R is a shape parameter, and (·)+ = max {0, ·}. Depending on the value of ξ,

the GEV family encompasses a double exponential, an heavy-tailed, and an upper-

bounded distribution. The GEV parameters are generally estimated by means of

Maximum Likelihood (ML), Penalized ML [MS00a], L-Moments [Hos90] or Bayesian

methods [CT96, CPS03]. Generally the L-moments approach performs better than

ML in the case of small samples. Bayesian methods generally allow for a better

characterization of the variability of estimated extreme values [CT96, CP96, CPS03,

ST04]. Here I use Bayesian methods for fitting the GEV model (I implemented a

Stan model, sampling from the posterior using the Hamiltonian Monte Carlo sampler

as done for HMEV). This yields Bayesian probability intervals for the GEV quantiles

for any given return time. In this analysis, I elicit the prior distributions for the three

GEV parameters as follows: For the shape parameter, I select a normal distribution

centered in 0.114 with a standard deviation σ = 0.125. This choice matches the

expected value suggested globally for daily rainfall extremes [Kou04], while the overall

shape of the prior distribution closely matches the Geophysical prior proposed by

Martins and Stedinger [MS00a] in order to guide inference towards realistic values of

the shape parameter in the present application. For the shape and scale parameters, I

select informative gamma prior distributions centered around the mean and standard

deviation of the annual maxima samples respectively, in order to exploit the available

knowledge on the expected value and characteristic variability of the maxima observed

at each site.
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B.3 The Peak Over Threshold Method

The GEV distribution also arises as limiting model for the block maxima of a point

process with Poisson-distributed arrival of events, and with magnitudes distributed

according to a Generalized Pareto Distribution (GPD). The GPD model is often used

to model exceedance over a high threshold [DS90]; If the random variable X ∈ R+

represents the daily rainfall magnitude, and Y = X−q its excess over a fixed threshold

q, the cumulative distribution of excesses over threshold reads

Pr (Y > y) = Pr (X > y + q|X > q) =
1− F (y + q)

1− F (q)
=

= 1− FGPD (x|q, β, κ) =

(
1 +

κ

β
(x− q)

)−1/κ (B.2)

where the GPD scale and shape parameters are σ ∈ R+ and ξ ∈ R respectively.

In this case, the distribution of block maxima reads

FPP (x) =
∞∑
n=0

pn(n|λ)FGPD (x|q, β, κ) =

= 1−
∞∑
n=0

λne−λ

n!

(
1 +

κ

β
(x− q)

)−1/κ

= FGEV (x|µ, σ, ξ)
(B.3)

where the parameters of the GEV are obtained as follows: κ = ξ, β = σ +

ξ (q − µ), and λ =
(

1 + ξ
β

(q − µ)
)−1/ξ

. Here I use Bayesian inference for this Poisson-

GPD model for threshold exceedances. I elicit the prior distribution for the model

parameters as follows: For the Pareto shape parameter, I choose the same informative

prior elicited for the GEV - annual maxima model. For the Poisson rate, I select

a weakly informative prior distribution centered on 4 events/year, which appears
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reasonable value since I select the threshold based on a fixed number of average

exceedances in each block. For the analysis over the entire USHCN dataset, I choose

an automated threshold such that 5% of the non-zero values in the entire record are

above threshold.

Once I draw from the posterior samples for these parameters λ(s), β(s), and κ(s),

for each posteror draw s = 1, . . . , S, I can compute the corresponding posterior

probability distributions for the GEV parameters through the relations

µ(s) = q + β(s)

κ(s)

(
λ(s)κ

(s)

− 1
)

, σ(s) = β(s)λ(s)κ
(s)

, ξ(s) = κ(s)

B.4 Definitions of lppd and lpml

Evaluating the predictive accuracy of extreme value models in estimating the right

tail of the distribution is indeed an inherently challenging task, as high quantiles are,

by definition, poorly represented in the available samples. For this reason, cross val-

idation techniques are rarely used to assess the performance of fitted extreme value

models. In the analysis discussed in Chapter 3, however, I harnessed the consider-

able length of the synthetic data sets available here in order to extensively test the

performance of different methods using both in-sample and out-of-sample validation

techniques. The log pointwise predictive density (lppd) [GCS+13] computed both

for the in-sample data and for the out-of-sample data is used as a measure of global

performance of the models. For a sample of block maxima yi, i = 1, . . . ,M , this

measure can be directly estimated from S MCMC draws as

l̂ppd = − 1

M

M∑
i=1

log

(
1

S

S∑
s=1

p(yi|θ(s))

)
(B.4)

where here I multiply by the factor −1/M so as to reduce its variation with
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sample size M . This quantity, if computed for in-sample annual maxima data yi,

i = 1, . . . ,M is expected to overestimate the expected log predictive density (elpd)

for the same data points. This overestimation is generally corrected by quantifying

the overfit of the model using some estimate of its effective number of parameters.

Common corrections used in practice include the Deviance Information Criterion

(DIC), the Watanabe-Aikake information criterion (WAIC) [GCS+13], or leave-one-

out techniques such as the log posterior marginal likelihood (LPML) [GD94], or a

leave-one-out based on Pareto Smoothed Importance Sampling (PSIS) [VGG17].

Here I used the logarithm of the pseudo-marginal likelihood (lpml), a convenient

index that directly accounts, at no additional computational cost, for a leave-one-out

cross validation measure [GD94]. Notably, since the lpml approximates the expected

log pointwise predictive density, the difference between the in-sample lppd and the

lpml represents the number of effective parameters of a model [VGG17] and thus will

be used to quantify the tendency of different models to overfitting. The log posterior

marginal likelihood is

lpml = − 1

M

M∑
i=1

log (CPOi) (B.5)

where again I multiply by the factor −1/M to reduce its variation with sample

size. Here CPOi is the Conditional Predictive Ordinate statistics introduced by

[GDC92] and [GD94], which estimates the probability of observing a value yi given

that y−i has been observed. CPOi can be obtained as follows:

CPOi =

{∫
1

p (yi | θ)
p (θ | y−i) dθ

}−1

(B.6)

The CPO can be computed as the geometric mean of the likelihood of the data

(annual maxima yi) given the model. Sampling from the posterior, one can compute

237



Table B.1: Values of the constants used to elicit the prior hyperparameters of the
model for event magnitudes.

Parameter Value

αµγ0 = iµγ0

βµγ0 = iµγ0 · eµγ0

αµδ0 = iµδ0
βµδ0 = iµδ0 · eµδ0
ασγ0 = iσγ0

βσγ0 = iσγ0 · eσγ0 · vσγ0

ασδ0 = iσδ0
βσδ0 = iσδ0 · eσδ0 · vσδ0
Constant Value Meaning
iµγ0 10 shape informativeness
iµδ0 10 scale informativeness
iσγ0 10 shape informativeness
iσδ0 10 scale informativeness
eµγ0 0.7 expected value shape
eµδ0 10/Γ (1 + 1/0.7) expected value scale
vσγ0 0.05 expected variability shape
vσδ0 0.25 expected variability scale

CPOi as follows:

ĈPOi =

[
1

S

S∑
s=1

1

p (yi | θ(s))

]−1

(B.7)

and thus l̂pml = − 1
M

∑M
i=1 log

(
ĈPOi

)
.

B.5 Effective Number of Parameters for USHCN

Station Data

As shown in Figure B.1, I report the effective number of paramaters of the EV models

fit to the observed station data, computed as the difference between lppd and lpml.

Additionally, I include the same quantity computed in an alternative way (using the

238



Table B.2: Summary of 4 model specifications used to generate synthetic datasets
in the simulation study.

Model for xij parameters
GP ξ = 0.1, σ = 8
GAM α = 1.2, β = 0.12
WEI γ = 0.6, δ = 8
WEIG µδ = 6, σδ = 1, µγ = 1, σγ = 0.1,
Model for nj parameters
BBN µn = 100, σ2

n = 150

Table B.3: Summary of the model for the number of arrivals.
Model Outer level Inner Level Prior
Binomial nj ∼ Bin(π0) π0 ∼ Beta (2, 2)

Beta
Binomial

nj ∼ Bin(π0) π0 ∼ Beta (αn, βn) µn Γ (10, 0.1)
ωn Γ (0.2, 0.2)

αn =

(
1− (ωn+1)

(Nt−µn)

)
(

(ωn+1)
(Nt−µn)

Nt−1
)

βn = αn
µn

(Nt − µn)

Watanabe-Aikake information criterion, WAIC, in Figure B.2 - see e.g. Gelman et

al. [GCS+13]) to show that this result is not overly sensitive to the specific choice of

information criterion adopted.

Here I also show the effective number of parameters computed in the simulation

study for a sample size of 10 and 20 years, in Figures B.3 and B.4 respectively. These

complement the result obtained for a sample size of Mtrain = 50 years, which is

featured in Chapter 3.

To complete the results in Chapter 3, here I include results of the simulation study

obtained for a sample size of Mtrain = 20 years. These include fractional square error

(Figure B.5), mean bias (Figure B.5), and average width of credibility intervals for

the extreme value quantiles (Figure B.6).
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Figure B.1: Effective number of parameters for the stations in the USHCN dataset.

B.6 Spatial Distribution of the Results for lppd

and FSE

Here I provide a spatially-explicit representation of model performances by mapping,

in Figures B.7 and B.8, the best model for each station as evaluated through the lppd

and FSE measures respectively. Each metric is evaluated both for in-sample and

out-of-sample data, and the result is averaged over the Rg = 10 resampling of the

original data, according to the procedure described in Chapter 3. This representation

of the results of the analysis shows again the interesting difference observed for the

in-sample analysis, which tends to favor the POT method, and the out-of-sample

results, where HMEV appears to be selected more often as preferred model. The

frequency of HMEV being the model of choice is higher for smaller sample sizes, as

discussed in Chapter 3.

240



Figure B.2: Effective number of parameters for the stations in the USHCN dataset,
computed using the Watanabe-Aikake information criterion (WAIC).

B.7 Examples of Fit to Simulated Samples

in Figures B.9, B.10, and B.11 I report examples of EV models fit to simulated

data generated using the Weibull, Gamma, and Generalized Pareto specifications,

respectively.
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Figure B.3: Effective number of parameters computed in the simulation study for
a sample size of 10 years.

Figure B.4: Effective number of parameters computed in the simulation study for
a sample size of 20 years.
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[Fractional
square error computed for the 4 different model specifications]Fractional square

error computed for the 4 different model specifications for in-sample data (upper
panels) and for out-of-sample data (lower panels), computed for sample size of 20

years.

Figure B.5: Mean bias for the 4 different model specifications for in-sample data
(upper panels) and for out-of-sample data (lower panels), computed for sample size
of 20 years.
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Figure B.6: Mean credibility interval width for the 4 different model specifications
for in-sample data (upper panels) and for out-of-sample data (lower panels), com-
puted for sample size of 20 years.
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Figure B.7: Best model for each station, as evaluated through the lppd measure for
in-sample and out-of-sample data.
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Figure B.8: Best model for each station, as evaluated through the fractional square
error (FSE), evaluated for in-sample and out-of-sample data.
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Figure B.9: Example of fit to samples of 20 (left panel) and 50 (right panel) yearly
blocks of data generated according to the Weibull specification.

Figure B.10: Example of fit to samples of 20 (left panel) and 50 (right panel) yearly
blocks of data generated according to the Gamma specification.
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Figure B.11: Example of fit to samples of 20 (left panel) and 50 (right panel) yearly
blocks of data generated according to the GPD specification.
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Appendix C

Appendix to Chapter 4

C.1 Variance of the Compound Rainfall Process

The compound rainfall process (wet and dry periods) is characterized by a pdf fc(h)

that has a finite atom of probability in h = 0, such that fc(h) = (1−pr)δ(h)+prfr(h),

where fr(h) is the pdf of wet events only, δ(h) is the Dirac delta function centered in

0, and pr is the probability of a day being wet. Therefore, the mean of the compound

process is µc = µrpr as there is no contribution from the atom of probability in zero.

The variance is

σ2
c = E

[
(h− µc)2] = E

[
h2
]
c
− E [h]2c (C.1)

where E [·] is the expected value operator. Therefore

σ2
c = (1− pr)

∫ ν

0

h2δ(h− 0)dh+ pr

∫ +∞

ν

h2fr(h)dh− E [h]2c (C.2)

in the limit ν → 0. Since the value of the first integral in eq. (C.2) is zero, one

obtains:

σ2
c = prE

[
h2
]
r
− p2

rµ
2
r (C.3)

from which, summing and subtracting prµ
2
r

σ2
c = prE

([
h2
]
r
− µ2

r

)
+ prµ

2
r − p2

rµ
2
r (C.4)
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Thus proving eq. (4.5)

σ2
c = σ2

rpr + µ2
r (1− pr) pr (C.5)

C.2 Summary Description of the Downscaling Method-

ology

1. Extraction of the local lattice of TMPA 3b42 pixels QPEs time series at the

3-hourly time scale, centered over the location of interest.

2. Aggregation of TMPA data at the daily scale, construction of the time series

of exceedances over the detection threshold, evaluation of the cross correlation

between the TMPA QPEs time series, and minimization of eq. (4.16) in order

to estimate the parameters α and ε defining the point correlation function.

3. Application of the procedure detailed in section 4.2.3 to estimate the quantity

β0 using Taylor’s frozen turbulence hypothesis.

4. Evaluation of the the variance reduction function eq. (4.3) by integrating the

correlation function ρ(d;α, ε) at a point.

5. Estimation of the yearly parameters CL and wL by fitting the Weibull distri-

bution to the TMPA QPE time series over the location of interest.

6. Downscaling of the yearly parameters of the Weibull distribution at a point (C0

and w0) using eqs. (4.10) and (4.11).

7. Numerical inversion of the MEVD non exceedance probability expression eq.

(4.18) to compute extreme value quantiles ĥ (Tr) for the desired return time.
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C.3 Notation Used in Chapter 4

i : instantaneous rainfall rate at a point [mm/hour]

Lx, Ly : effective linear dimensions of a TMPA pixel [km]

L : characteristic linear dimension of a TMPA pixel [km]

T : generic time integration interval [hours]

X : generic linear characteristic averaging scale [km]

U : advection speed [km/hour]

Td : (= 24 hours) daily time integration interval

h : daily rainfall accumulation at a point [mm]

hL : daily rainfall accumulation at the pixel scale [mm]

pr : yearly fraction of rainy days

µ2
r : mean of wet process [mm]

σ2
r : variance of wet process [mm2]

γ0(L) : variance function

β0(L) : intermittency function

β(L1, L2) : intermittency function between two generic scales

γ(L1, L2) : variance function between two generic scales

ρ(x, y) : auto correlation function at a point

d : distance between two points in space [Km]
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ρhL,h′L(d) : correlation of local averages

ρj : Pearson correlation between two TMPA time series at distance dj.

∆ : Integral variance function

F (h) : cumulative distribution function of ordinary rainfall

ζ(h) : cumulative distribution function of extreme rainfall

w : Weibull shape parameter

C : Weibull scale parameter [mm]

~θ : Generic set of parameters of the MEV distribution

N : yearly number of rainy days [days]

ε : auto correlation function scale parameter [km]

α : auto correlation function shape parameter

s : sample size [years]

Tr : return time [years]

FSE : fractional square error

SSE : sum of square errors

q : rainfall detection threshold [mm]

y : excesses over threshold [mm]

ng : number of resamplings for bootstrapping
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Appendix D

Appendix to Chapter 5

D.1 List of Symbols Used in Chapter 5

• S generic linear spatial scale, corresponding to spatial average over an area

S2.

• T generic integration time scale.

• L spatial scale of the QPE grid cell

• L0 spatial scale of rain gauge measurements

• h̃s daily rainfall accumulation magnitude at spatial averaging scale S.

• hs ordinary rainfall amount (realization) at scale S, i.e. rainfall magnitude

in excess of the threshold q.

• Hs ordinary rainfall amount (random variable).

• q threshold used to determine ordinary rainfall events.

• Ns average yearly number of events at the spatial scale S

• Nt number of daily rainfall observations in one year.

• prs wet fraction at spatial scale S

• ws Weibull shape parameter at spatial scale S

• Cs Weibull scale parameter at spatial scale S

253



• σ2
s variance of the rainfall process at spatial scale s

• β0 = β0(L) intermittency function

• γ0 = γ0(L) variance reduction function

• α shape parameter of the spatial correlation function

• ε transition parameter of the spatial correlation function

• d generic distance between two points in space

• ρs(s1, s2) = ρs(d) spatial correlation function at spatial scale s and distance

d

• ρhL,h′L correlation between local averages at scale L

• ρj areal-averaged correlation value sampled between grid cells located at dis-

tance dj

• SSE Sum of Squared Errors

• α(L) shape parameter of the correlation function obtained from fit to TMPA

gridded data

• ε(L) transition parameter of the correlation function obtained from fit to

TMPA gridded data

• αg shape parameter of the correlation function obtained from fit to rain gauge

data

• εg transition parameter of the correlation function obtained from fit to rain

gauge data
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• γ0,L variance reduction function computed from TMPA-fitted correlation

(areal-averaged).

• γ0,d variance reduction function computed from TMPA-downscaled correla-

tion.

• γ0,g variance reduction function computed from rain-gauge-fitted correlation.

• C0,g Weibull scale parameter at a point, from rain gauge data

• w0,g Weibull scale parameter at a point, from rain gauge data

• N0,g Yearly number of events at a point, from rain gauge data

• C0,d Weibull scale parameter at a point, from downscaling

• w0,d Weibull scale parameter at a point, from downscaling

• N0,d Yearly number of events at a point, from downscaling

• C0,c Weibull scale parameter at a point, corrected using the QRF error model.

• w0,c Weibull scale parameter at a point, corrected using the QRF error model.

• N0,c Yearly number of events at a point, corrected using the QRF error model.

• ηz Relative error between downscaled and gauge-estimated values of a quan-

tity (z = C,w,N or γ)

• y response variable in the quantile regression forest algorithm, realization of

the r.v. Y .

• x multivariate explanatory variable in the quantile regression forest algo-

rithm, realization of the r.v. X.
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• ωi weights for the QRF algorithm.

• k number of trees.

• θ vector describe the tree structure.

• σe standard deviation of elevation.

• µe mean elevation.

• H(m)
s annual maxima daily rainfall at spatial scale s (random variable).

• C(i)
s Weibull scale parameter estimated for year i at spatial scale s.

• w(i)
s Weibull shape parameter estimated for year i at spatial scale s.

• N (i)
s Yearly number of events estimated for year i at spatial scale s.

• pne non exceedance probability.

• Tr return time or average recurrence interval.

• M number of years in the rainfall record used for extreme value analysis.

D.2 List of Acronyms Used in Chapter 5

• TRMM Tropical Rainfall Measuring Mission

• TMPA TRMM Multisatellite Precipitation Analysis

• GPM Global Precipitation Measurement [Mission]

• IMERG Integrated Multi-SatellitE Retrievals for GPM

• CONUS Conterminous United States
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• QPE Quantitative Precipitation Estimates

• MEV Metatstatistical Extreme Value [Distribution]

• GEV Generalized Extreme Value [Distribution]

• QRF Quantile Regression Forest

• RF Random Forest

• POT Peak Over Threshold

• AM Annual Maxima

• HPD Hourly Precipitation Dataset

• NOAA National Oceanogaphic and Atmospheric Administration

• NASA National Aeronautics and Space Administration

• SGGC Set of gauged grid cells [used in the analysis]
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Appendix E

Appendix to Chapter 6: Stable

stratification and distortions of the

inertial subrange

In general, stable stratification limits the onset and extent of the inertial subrange

given its damping effect in the vertical direction [RMP15]. Here, I show that the

scales for which these effects are relevant occur at scales larger than the inertial

range examined here. The Ozmidov length scale [Ozm65] (originally suggested by

Dougherty [Dou61] in 1961), is defined as the scale above which buoyancy forces

significantly distort the spectrum of turbulence.

This length scale, sometimes labeled as the Dougherty-Ozmidov scale, can be

expressed as

L0 =

√
ε

N3
, (E.1)

where ε is, as before, the mean turbulent kinetic energy dissipation rate and N is the

Brunt Väisälä frequency, defined as

N =

√
g

T

dT

dz
. (E.2)

In the study used here, no information was provided about the actual mean potential

temperature gradient dT/dz. However, an approximated estimate of L0 for the runs

collected in case of stable atmospheric stratification may be conducted. Note that

only 4 runs follow this stability class as runs not meeting strict stationarity require-
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ments were excluded from the analysis (and they were mainly collected in unstable

atmospheric conditions). The mean dT/dz was computed using Monin- Obukhov

similarity theory as

dT

dz
= −

(
T ∗

Kvz

)
φT

( z
L

)
(E.3)

where kv = 0.41 is the von Karman constant, z = 5.1 m is the distance from the

ground, T ∗ = 〈w′T ′〉
u∗

, and for mildly stable stratification

φT = φm = 1 + 4.7
( z
L

)
. (E.4)

The mean turbulent kinetic energy dissipation rate was computed as

ε =
u∗3

kvz

(
φm −

z

L

)
(E.5)

Figure E.1(A) shows that the quantity

Is =
Iwu

∗φm
kvz

= constant ' 0.4 (E.6)

is almost constant across runs and exhibits a value slightly lower than the expected

0.4.

The estimated values of the dimensionless Ozmidov number L0/ (Iwu
∗φm) are

reported in Figure E.1(B). L0 decreases with increasing stability ζ as the effect of

buoyancy is felt by eddies of sizes progressively smaller. However, the values of the

Ozmidov scale are consistently larger than the integral scale of the flow Iw for the

4 stable runs here. Hence, ignoring distortions caused by stable stratification on

inertial subrange scales for the aforementioned 4 runs may be deemed plausible.
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A B 

Figure E.1: (A) Quantity Is and its expected value 0.4 (black horizontal line) for
the 4 stable runs in the dataset. (B) Normalized Ozmidov length for the same runs.
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[PAMP00] Fernando Porté-Agel, Charles Meneveau, and Marc B Parlange. A
scale-dependent dynamic model for large-eddy simulation: application
to a neutral atmospheric boundary layer. Journal of Fluid Mechanics,
415:261–284, 2000.

[PBAM13] N Peleg, M Ben-Asher, and E Morin. Radar subpixel-scale rainfall
variability and uncertainty: lessons learned from observations of a dense
rain-gauge network. Hydrology and Earth System Sciences, 17(6):2195,
2013.

[PC93] SB Pope and Emily SC Ching. Stationary probability density functions:
An exact result. Physics of Fluids A: Fluid Dynamics, 5(7):1529–1531,
1993.

[PDR93] ERLP Pattey, RL Desjardins, and P Rochette. Accuracy of the relaxed
eddy-accumulation technique, evaluated using co 2 flux measurements.
Boundary-Layer Meteorology, 66(4):341–355, 1993.

[Per61] DD Perlmutter. Surface-renewal models in mass transfer. Chemical
Engineering Science, 16(3-4):287–296, 1961.

[PG14] Satya Prakash and RM Gairola. Validation of trmm-3b42 precipitation
product over the tropical indian ocean using rain gauge data from the
rama buoy array. Theoretical and applied climatology, 115(3-4):451–460,
2014.

281



[PJCM10] Lisbeth Pedersen, Niels Einar Jensen, Lasse Engbo Christensen, and
Henrik Madsen. Quantification of the spatial variability of rainfall based
on a dense network of rain gauges. Atmospheric research, 95(4):441–454,
2010.

[PK13] Simon Michael Papalexiou and Demetris Koutsoyiannis. Battle of ex-
treme value distributions: A global survey on extreme daily rainfall.
Water Resources Research, 49(1):187–201, 2013.

[PKC+11] A Porporato, PR Kramer, M Cassiani, E Daly, and J Mattingly. Local
kinetic interpretation of entropy production through reversed diffusion.
Physical Review E, 84(4):041142, 2011.

[PKL+17] Angeline G Pendergrass, Reto Knutti, Flavio Lehner, Clara Deser, and
Benjamin M Sanderson. Precipitation variability increases in a warmer
climate. Scientific reports, 7(1):1–9, 2017.

[PKM13] SM Papalexiou, D Koutsoyiannis, and C Makropoulos. How extreme is
extreme? an assessment of daily rainfall distribution tails. Hydrology
and Earth System Sciences, 17(2):851–862, 2013.

[PLW10] Ming Pan, Haibin Li, and Eric Wood. Assessing the skill of satellite-
based precipitation estimates in hydrologic applications. Water Re-
sources Research, 46(9), 2010.

[PM19] Simon Michael Papalexiou and Alberto Montanari. Global and regional
increase of precipitation extremes under global warming. Water Re-
sources Research, 55(6):4901–4914, 2019.

[PMF+18] Nadav Peleg, Francesco Marra, Simone Fatichi, Athanasios Paschalis,
Peter Molnar, and Paolo Burlando. Spatial variability of extreme rainfall
at radar subpixel scale. Journal of Hydrology, 556:922–933, 2018.

[PMH+13] Olli Peltola, Ivan Mammarella, Sami Haapanala, George Burba, and
Timo Vesala. Field intercomparison of four methane gas analyzers suit-
able for eddy covariance flux measurements. Biogeosciences, 10(6):3749–
3765, 2013.

[PMPA16] Satya Prakash, Ashis K Mitra, DS Pai, and Amir AghaKouchak. From
trmm to gpm: How well can heavy rainfall be detected from space?
Advances in Water Resources, 88:1–7, 2016.

[PN15] Olivier P Prat and Brian R Nelson. Evaluation of precipitation estimates
over conus derived from satellite, radar, and rain gauge data sets at daily
to annual scales (2002–2012). Hydrology and Earth System Sciences,
19(4):2037–2056, 2015.

282



[PRD07] A Porporato, JR Rigby, and E Daly. Irreversibility and fluctuation
theorem in stationary time series. Physical Review Letters, 98(9):094101,
2007.

[PRLV17] O Peltola, M Raivonen, X Li, and T Vesala. Technical note: Comparison
of methane ebullition modelling approaches used in terrestrial wetland
models, biogeosciences discuss, 2017.

[PSSR14] V.F. Pisarenko, A. Sornette, D. Sornette, and M.V. Rodin. Charac-
terization of the tail of the distribution of earthquake magnitudes by
combining the gev and gpd descriptions of extreme value theory. Pure
Appl. Geophys., 171(8):1599–1624, 2014.

[PT94] Dean Prichard and James Theiler. Generating surrogate data for time
series with several simultaneously measured variables. Physical Review
Letters, 73(7):951, 1994.

[PT13] Ioannis Papastathopoulos and Jonathan A Tawn. Extended generalised
pareto models for tail estimation. Journal of Statistical Planning and
Inference, 143(1):131–143, 2013.

[PVF06] Amilcare Porporato, Giulia Vico, and Philip A Fay. Superstatistics
of hydro-climatic fluctuations and interannual ecosystem productivity.
Geophysical Research Letters, 33(15), 2006.

[RCBC96] G Ruiz-Chavarria, C Baudet, and S Ciliberto. Scaling laws and dissi-
pation scale of a passive scalar in fully developed turbulence. Physica
D: Nonlinear Phenomena, 99(2):369–380, 1996.

[Rey12] AM Reynolds. Gusts within plant canopies are extreme value processes.
Physica A: Statistical Mechanics and its Applications, 391(21):5059–
5063, 2012.

[RICI87] Ignacio Rodriguez-Iturbe, David Roxbee Cox, and Valerie Isham. Some
models for rainfall based on stochastic point processes. Proceedings of
the Royal Society of London. A. Mathematical and Physical Sciences,
410(1839):269–288, 1987.

[RKL+20] Terhi Riutta, Aino Korrensalo, Anna M Laine, Jukka Laine, and Eeva-
Stiina Tuittila. Interacting effects of vegetation components and water
level on methane dynamics in a boreal fen. Biogeosciences, 17(3):727–
740, 2020.

[RMP15] C Rorai, PD Mininni, and A Pouquet. Stably stratified turbulence in
the presence of large-scale forcing. Physical Review E, 92(1):013003,
2015.

283



[RMPG13] William B Rossow, Ademe Mekonnen, Cindy Pearl, and Weber
Goncalves. Tropical precipitation extremes. Journal of Climate,
26(4):1457–1466, 2013.

[RRN+01] Fernando M Ramos, Reinaldo R Rosa, Camilo Rodrigues Neto, Mauri-
cio JA Bolzan, Leonardo D Abreu Sá, and Haroldo F Campos Velho.
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[SGF17] Carsten Schaller, Mathias Göckede, and Thomas Foken. Flux calcu-
lation of short turbulent events–comparison of three methods. Atmo-
spheric Measurement Techniques, 10(3):869–880, 2017.

[SHL08] Fengge Su, Yang Hong, and Dennis P Lettenmaier. Evaluation of trmm
multisatellite precipitation analysis (tmpa) and its utility in hydrologic
prediction in the la plata basin. Journal of Hydrometeorology, 9(4):622–
640, 2008.

284



[SK14] Francesco Serinaldi and Chris G Kilsby. Rainfall extremes: Toward
reconciliation after the battle of distributions. Water resources research,
50(1):336–352, 2014.

[SK15] F. Serinaldi and C.G. Kilsby. Stationarity is undead: Uncertainty domi-
nates the distribution of extremes. Adv. Water Resour., 77:17–36, 2015.

[SKFG19] Carsten Schaller, Fanny Kittler, Thomas Foken, and Mathias Göckede.
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