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Abstract

Extreme events - that is, intense events so rare to be poorly represented in histor-

ical observational records - play a fundamental role in atmospheric processes, and

can have far reaching consequences ranging from impacts on society, economy, the

environment, as well as on the global water and energy budgets. However, character-

izing the statistical properties of such events is a challenging task, as (i) by definition

extremes are poorly sampled, and thus studying them often requires extrapolation

beyond the range of available observations, and (ii) extremes are often the result of

nonlinear and intermittent processes, which determine significant difficulties both in

predicting them and in studying their frequency of occurrence beyond the range of

observations. This dissertation focuses on new statistical methods specifically aimed

at characterizing extremes events in rainfall and boundary layer turbulence, including

contributions along three main lines of inquiry:

1. Developing extreme value models able to reduce estimation uncertainty in the

case of short rainfall time series. To this end, a non-asymptotic approach is

developed which, deviating from traditional extreme value theory, models the

entire distribution of rainfall magnitudes and frequency of occurrence. Using

compound distributions and the structure of latent-level Bayesian models, this
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framework accounts for the effects of low-frequency variability of rainfall statis-

tics on the tail decay of their probability distribution.

2. Characterizing the frequency of extreme values from remotely-sensed rainfall

estimates. This objective is approached by developing a downscaling technique

that allows comparing rainfall statistics across different spatial averaging scales,

and by constructing a model of the error so as to permit their validation over

poorly gauged locations. The framework developed here now allows for the

production of large-scale estimates of the frequency of extreme rainfall based

on satellite-derived rainfall datasets and their validation even in data-scarce

regions.

3. Investigating the dynamics of scalar quantities transported in the atmospheric

boundary layer, with a focus on fluxes of sensible heat and methane. In the

case of sensible heat, I studied to what extent the extreme values properties

of temperature fluctuations retain information on the turbulence generation

mechanism. In the case of methane, I focused instead on an inverse problem:

given the observed statistical properties of methane concentration fluctuations,

is it possible to infer the spatial intermittency of its source at the ground? In

both cases, I found that statistical properties of the scalar, including its extreme

v



value statistics, can be used to improve characterization of the turbulent flow

and of its boundary conditions.
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Chapter 1

Introduction

1.1 Background and Motivation

Extreme events are usually defined as those events so rare to be poorly represented

in historical observational records [Col01, DHF07]. From a physical perspective, they

can also be defined by individuating regions of the phase space of a system which are

rarely visited by the system’s trajectories [AK05]. Clearly, the definition of ”rarity”,

and thus the same definition of extreme event, depends in general on the observer’s

timescale, and on its willingness to wait ”long enough”. In the context of atmospheric

and hydrological processes, extreme events can have far reaching consequences rang-

ing from impacts on society, economy, the environment, as well as on the global water

and energy budgets. It is precisely the dynamics of these impacted physical systems

which dictates the range of waiting times we are interested in when studying extreme

values of a given process. Thus, the metric used to quantify the rarity of an event is

conventionally the average recurrence interval, or return time of that event. In this

dissertation I focus on the statistical modelling of two main phenomena: Rainfall on

the one hand, and the transport of scalar quantities in the atmospheric boundary

layer on the other. While both these phenomena are deeply rooted in the dynamics

of atmospheric turbulent flows, they also exhibit substantial differences. Notably,

the different range of temporal and spatial scales which are under investigation, and

the different nature of the available observations, ranging from high-frequency in-situ

measurements to large-scale remotely-sensed estimates. In both contexts, character-
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izing the frequency of such extreme events in atmospheric processes is a challenging

task due to the nonlinear, multiscale and chaotic nature of the physical processes in-

volved. For this reason, observations and statistical methods have been instrumental

in characterizing the variability of these processes, and in guiding the development of

phenomenological theories. As a representative example, recognizing the importance

of extreme fluctuations in energy dissipation rates led to one of the major devel-

opments in phenomenological theory of turbulence [LL59, Kol62, FD96]. Similarly,

drawing from its similarity with turbulence, the adoption of multifractal models for

rainfall led to significant advanced in describing the space-time fluctuations of rain-

fall fields [SL87, OG94, Mar05, NB15]. However, estimating statistical properties

of extremes remains in general a very challenging task, since data are ’scarce’ by

definition. Additionally, the complex nonlinear nature of the processes studied here

determines a basic difficulty in predicting the occurrence of future values, and in char-

acterizing their frequency beyond the range of observations. The overarching goal

of the work presented here is developing novel statistical technique to advance our

ability of characterizing rare fluctuations in both rainfall and scalar turbulence, and

in turn, use these predictive tools to obtain a deeper understanding of the physical

processes involved.

1.2 Overview

Toward this broad objective, my graduate work includes three main contributions.

First, a novel characterization of the probability distribution of daily rainfall ex-

tremes, aimed at optimizing the information contained in samples of limited length

[ZBM16, ZCM20]. Second, the development of a statistical technique to spatially

downscale, validate, and correct satellite-retrieved rainfall statistics, with a particu-
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lar focus over poorly gauged areas [ZM19, ZM20]. Finally, I investigated the nature

of turbulent fluxes in the atmospheric boundary layer (ABL), with a focus on the

exchange of both sensible heat [ZBK18] and methane [ZPGK20] with the surface.

Here I have studied the role of intermittency - either internal intermittency, as in

the case of temperature, or intermittency that is externally imposed by the bound-

ary conditions, as in the case of methane - in modulating the exchange of mass and

energy with the surface.

Therefore, this dissertation is structured along three main lines of inquiry - re-

spectively focusing on (a) the statistical modelling of daily rainfall extremes, (b) the

estimation of extreme values from remotely-sensed rainfall fields, and (c) the investi-

gation of scalar fluxes in boundary layer turbulence. Each of these components will

be discussed in two of the following Chapters:

� Chapter 2: A Non-Asymptotic Approach to Model the Frequency of Daily

Rainfall Extremes (Theme a)

� Chapter 3: Bayesian Hierarchical Modelling of Extreme Values of Environmen-

tal Time Series (Theme a)

� Chapter 4: Downscaling of Extremes Rainfall Statistics from Satellite Obser-

vations (Theme b)

� Chapter 5: Extreme Value Analysis of Remotely-Sensed Rainfall in Ungauged

Areas: Spatial Downscaling and Error Modelling (Theme b)

� Chapter 6: Extremes, Intermittency, and Time Directionality of Atmospheric

Turbulence at the Crossover from Production to Inertial Scales (Theme c)

� Chapter 7: Intermittent Surface Renewals and Methane Hotspots over Natural

Wetlands (Theme c)

3



The dissertation closes with Chapter 8, where the main results are discussed and

their intellectual merit is discussed with respect to future research directions.

1.2.1 Improving the Characterization of Daily Rainfall Ex-

tremes

Existing statistical models of extreme rainfall make use of only a limited fraction of

the available observations, such as annual maximum values or exceedances over high

thresholds. Discarding most of the available information is inefficient, and can hinder

the inclusion of information about the physical process that generates the observed

phenomena. With the objective of overcoming this limitation, I have worked on a

non-asymptotic approach to rainfall extremes which accomplishes two main tasks: i)

models the entire rainfall process as opposed to just the right tail of the distribution,

leading to a more efficient use of the data when only small samples are available, and

ii) meaningfully anchors the statistical inference to parameters which can be more

reliable to estimate. My work can explicitly model the inter-annual variability in the

distribution of rainfall magnitudes. I have shown that accounting for this variability

tends to yield probability distributions with ’heavier tails’ than one would otherwise

obtain, thus underlining the fundamental role of low-frequency climate variability in

controlling the observed frequency of intense precipitation events [ZBM16]. Building

upon this result, I have then developed a Bayesian formulation of this model for

precipitation extremes [ZCM20]. This improvement, while retaining the fundamental

structure of the model introduced in [1], improves (I) the quantification of uncertainty,

and (II) the inclusion of prior climatic information in the inference process, as made

possible by the Bayesian framework adopted. This approach has been extensively

tested and applied using a network of rainfall records over the Conterminous United
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States.

1.2.2 Downscaling and Validating Remote Sensing Rainfall

Datasets over Poorly Gauged Locations

Remote sensing datasets have become an essential source of information to study

the fluctuations of the water cycle at the global scale. However, in the case of in-

termittent and highly-variable processes such as rainfall, validation of these datasets

requires extensive measurement campaigns at the ground. In the case of rainfall, this

is a daunting task, given that large areas worldwide are poorly gauged, including, in

particular, arid regions, complex terrain areas, and developing countries. The goal is

to harness the potential of the Tropical Rainfall Measurement Mission (TRMM), and

now the Global Precipitation Measurement (GPM) mission to study rainfall extremes

over poorly instrumented areas worldwide. I have thus developed a framework for

spatially downscaling rainfall statistics obtained from satellite multi-sensor precipita-

tion estimates, and for comparing them with point gauge observations over extended

poorly-gauged areas [ZM19]. The method relies on the theory of stochastic processes

to describe the space-time variability of the precipitation process, and allows for

the comparison of statistics obtained from gridded precipitation datasets with their

counterparts obtained from a single measuring gauge at the ground, thus relaxing

the need for extensive field campaigns with multiple gauges. I then combined this

approach with a non-parametric model of the error aimed at inferring the perfor-

mance of remotely sensed rainfall datasets over ungauged locations, thus allowing for

predictions uniquely based on the local topography and climatic variables [ZM20].

Taken together, these results provide an innovative framework for estimating the fre-

quency of extreme events at the global scale from remotely sensed observations, and
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for extending their validation over ungauged locations.

1.2.3 Investigating Turbulent Fluxes in the Atmospheric Bound-

ary Layer

A significant component of my graduate work investigates the transport of scalar

quantities such as temperature and gases in the turbulent atmospheric boundary

layer. My first objective was inferring the signature of atmospheric stability (i.e., of

the interplay between buoyancy and shear forces in generating turbulence) on the

statistical properties of scalar quantities transported in the boundary layer. Interest-

ingly, from a campaign of sonic-anemometer measurements performed at the Duke

forest, I found that atmospheric stability has a clear signature both on the frequency

of extreme scalar fluctuations and on the symmetry of their time-evolution [ZBK18].

This finding parallels flight-crash dynamics recently observed in numerical simula-

tion of turbulent flows. I then turned my attention to studying the fluxes of methane

(CH4) originating from boreal peatlands, using data from a long-term measurement

campaign conducted in Finland [ZPGK20]. Natural fluxes of methane - a strong

greenhouse gas - are particularly difficult to characterize due to their sporadic be-

havior, as they not only occur by diffusion through the water table, but also through

plant transpiration and by the localized release of methane bubbles through the wet-

land surface. This peculiarity sets them apart from fluxes of other quantities such

as carbon dioxide and water vapor, and makes it difficult to correctly quantify the

magnitude of these fluxes and their seasonal variability with the standard eddy co-

variance technique. The dynamics of the ground source cast this again as an extreme

value problem, where relatively few short events account for a considerable fraction

of the overall fluxes. I have analyzed this problem by applying a partition scheme in
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the wavelet domain aimed at detecting the signature of ebullition in CH4 concentra-

tion time series. This information was then used to calibrate an intermittent surface

renewal scheme, which provides novel information on how CH4 source intermittency

impacts the gas transfer velocity.
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Chapter 2

A Non-Asymptotic Approach to Model

the Frequency of Daily Rainfall Extremes

Adapted from: Zorzetto, E., G. Botter, and M. Marani. ”On the emergence of

rainfall extremes from ordinary events.” Geophysical Research Letters 43.15 (2016):

8076-8082.

2.1 Introduction

Extreme Value Theory (EVT) [FT28, Gne43, Gum58] is a fundamental tool in the

study of many geophysical processes, such as the local and global hydrologic cy-

cle [KPN02], wind velocities [CH04], earthquake magnitudes [PSSR14], ecological

processes [KBP05], storm-surge marine levels [CT90], pollutant dynamics in the en-

vironment [ET09], and many others. In the classical EVT, extremes are defined as

”block maxima”, i.e. as the events with maximum magnitude x occurred over a

period of fixed lengeth (often one year). The n events occurring in each block are

assumed to be independent and their magnitude is assumed to follow the same par-

ent cumulative distribution F (x). Hence, block-maxima have cumulative distribution

Hn(x) = F (x)n. This expression is not directly applicable as n is the value assumed

by a random variable N . To obtain a closed-form expression for Hn(x), the classi-

cal EVT makes one of two possible assumptions. A first approach is to assume the

number of events per block to be ”large enough” (i.e. n!1), such that the succes-

sion Hn(x), upon proper renormalization, tends to an asymptotic distribution, H(x),
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which takes the form of the Generalized Extreme Value (GEV) distribution [VM36].

It has been noted that in many applications the number of events from which the

maximum value is selected is not nearly sufficient for this asymptotic hypothesis to

be valid [CH04, Kou04]. A second approach, termed Peak Over Threshold (POT)

method [BDH74, P+75] i) fixes a high intensity threshold, q, ii) assumes a Poisson

occurrence of events above the threshold, and iii) models the excess values over q

(assumed to be independent of the occurrence process) using a Generalized Pareto

Distribution (GPD) [DS90]. Also in this second approach, sometimes referred to

as Partial Duration Series [Ste93] the resulting EV distribution is GEV. Both these

classical EVT approaches lead to formulations which neglect a significant proportion

of the observations, as they fit the block-maxima distribution, H(x), using only the

block-maxima themselves, or a relatively small number of exceedances over a high

threshold. Effectively, both these approaches discard the information contained in

the bulk of the parent distribution F (x), along with most of the observations. Here

I refine and apply a statistical approach based on the assumption that the extreme

events are block maxima among a finite and stochastically variable number of ordi-

nary events. These are defined as the values obtained by the repeated sampling, in

each block, from an underlying and possibly time-varying distribution (e.g., all rain-

fall occurrences in a given year in the case of daily rainfall). This simple consideration

allows me to use the entire observational set to infer the distribution of extremes, by

means of a Metastatistical Extreme Value framework (MEV), with obvious statistical

adavantages. This approach is here applied to the relevant case of daily rainfall events

using a worldwide data set of long rainfall records and a Monte Carlo approach to

comparatively assess MEV and GEV high-quantile estimation uncertainties.
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2.2 Theoretical Framework

I propose the use of a Metastatistical Extreme Value (MEV) approach that relaxes

the limiting assumptions of the classical EVT by considering as random variables the

parameters defining the number of events and the probability distribution of event

magnitudes [MI15]. This leads to a compound distribution [Dub68] or superstatistics

[BC03, PVF06, BBIR13] for the distribution of the block maxima. In the MEV ap-

proach the variability of these parameters accounts for i) the random process of event

occurrence, which generates a finite and varying number of events in each block, and

ii) the possibly changing probability distribution of event magnitudes across different

blocks. The MEV approach accomplishes this by recognizing the number of events in

each block, n, and the values of the parameters, ~�, of the parent distribution F (x; ~�)

to be realizations of stochastic variables (N and ~Θ). The probability distribution of

block-maxima can now be defined, by use of the total probability theorem, by consid-

ering all possible values N and ~Θ, thereby yielding a MEV cumulative distribution

function:

�(x) =
1X
n=1

Z

~�

F (x; ~�)n g(n; ~�)d~� (2.1)

where g(n; ~�) is the joint probability distribution of N and ~Θ (discrete in N and

continuous in ~Θ), and Ω~� is the population of all possible values of the parameters.

The probability distribution of the extremes thus arises from the full distribution of

the ordinary events (not just from a predetermined part of the tail), which is sampled

- each year - a variable number of times n. For this reason, the MEV approach ex-

ploits all the available observations defining the probability distributions of ordinary

events in each block, rather than censor the dataset to only include values from the

tail of F (x). It is interesting to note that if one assumes i) x to be the excess over

a high threshold q ii) F (x; ~�) to be a Generalized Pareto distribution (with fixed,
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deterministic parameters), and iii) n to be generated by a Poisson distribution, then

the GEV distribution is recovered as a particular case of the MEV distribution by

means of the POT approach. Rather than specifying the joint probability density

function (pdf) g(n; ~�), I obtain here an approximate expression for �(x) by substi-

tuting the expectations in eq. (2.1) with sample averages. I illustrate this derivation

with application to the relevant case of daily rainfall observed at a point. Following

Wilson and Toumi [WT05] and Marani and Ignaccolo [MI15], I adopt the Weibull,

or stretched exponential distribution [LS98], F (x;C;w) = 1 � e�( xC )
w

to model the

non-zero daily rainfall amounts (C and w being, respectively, the Weibull scale and

shape parameters). One can thus define the MEV-Weibull cumulative distribution

function as

�(x) =
1X
n=1

Z
C

Z
w

g(n;C;w) �
h
1� e�( xC )

win
dCdw (2.2)

The Weibull distribution, F (x;Cj; wj), is assumed to describe the observations

in each year on record (j = 1; 2; :::;M). A sample of yearly maxima distributions,

Hnj(x) = F (x;Cj; wj)
nj (where nj is the number of wet days in year j), can thus

be defined, and a sample-average approximation can be computed �(x) �= �m(x) =

1=M
P

j F (x;Cj; wj)
nj (Fig. 2.1). The discrete expression of the MEV-Weibull dis-

tribution thus reads:

�m(x) =
1

M

MX
j=1

"
1� e

�
�

x
Cj

�wj#nj
(2.3)

Convergence of (2.3) to (2.2) is ensured provided that (Cj; wj; nj) are sampled 8j

from their joint distribution g(N;C;w). I fit the Weibull distribution to observations

in each single year by means of the Probability Weighted Moments method (PWM),

which, compared to other methods (e.g. Maximum Likelihood, ML), attributes a

greater weight to the tail of the distribution. Moreover, the PWM method performs

well for small samples and is not very sensitive to the presence of outliers [GLM79].
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ML is, on the contrary, known to be a biased estimator of the Weibull parameters,

especially the shape parameter, for small samples [Sor06]. In the following I will often

consider the event magnitude, x̂, corresponding to a given value of the return period

of interest, which I obtain by numerically solving �m(x̂) = (Tr� 1)=Tr (�m(x) being

given by eq. (2.3)). I describe below extensive comparisons of MEV high-quantile

estimates with those obtained from the traditional Generalized Extreme Value dis-

tribution. I estimate GEV parameters using the most efficient and most commonly

used techniques: Maximum Likelihood (ML) [Col01], L-Moments [Hos90], the Peak

Over Threshold approach [DS90], and Mixed Methods [MS02]. The POT approach

was applied by selecting threshold values such that an average of 5 excesses/year are

used to fit the parameters. Overall, I find that, for this 37-station dataset, the POT

and L-moment methods yield the best estimates of GEV parameters (see Appendix

A for more details), whereas ML estimators exhibit a larger error standard deviation,

especially for smaller samples.

2.3 Data Sets

I gathered data from 37 rainfall records distributed globally and spanning different

rainfall regimes. Many of the records were extracted from NOAA’s Global Histori-

cal Climatology Network (GHCN) (ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/).

Particularly long time series were gathered independently (e.g. the Padova time se-

ries, the longest daily rainfall record worldwide, consisting of 272 years of observations

[MZ15]). See Table A.2 in Appendix A for a complete description of the data included

in the analysis. The stations span different climatic conditions, thus allowing to test

the ability of the MEV approach to capture observed extremes across a wide variety

of precipitation regimes. I restricted my analysis to time series with length exceeding
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100 years (mean length in the dataset is 135 years). Furthermore, only years with

less than 10% of missing daily data were considered, which implies that about 2:4%

of the years in the global data set were excluded from the analysis. I tested the abil-

ity of the Weibull distribution to describe observed daily rainfall for all the stations

considered using the Kolmogorov-Smirnov and Cramer Von Mises statistical tests.

The positive outcomes of the statistical tests performed for the different stations are

described in Appendix A (Figure A.3).

2.4 Monte Carlo Analysis of Model Performance

The possible presence of non-stationarity or of periodicities in observed rainfall records

adds an additional, and difficult to control, source of uncertainty in the compara-

tive evaluation of extreme value analyses [SK15]. Hence, I used a Monte Carlo ap-

proach which by construction removes possible non-stationarities in the observations,

while preserving the distribution of the rainfall accumulation values and number of

events/year present in the observed dataset. To this end, for each station in the

data set, I randomly reshuffle the observed numbers of wet days/year (nj’s), thereby

preserving their original distribution, but destroying any serial correlation that may

be present. Subsequently, I construct a m-year synthetic sample by randomly draw-

ing (without resubstitution) nj rainfall accumulation values (j = 1; :::;m) from the

original record. The resulting synthetic time series lacks any serial correlation and

preserves the original frequency distribution of rainfall depths. From each rainfall

sequence generated through the above procedure (with length, m years, equal to the

original observed time series), I extract the first s years to be used as a sample to fit

the EV distributions. The training sample size s is varied from 10 to 80 years with a

2-year step, to explore the range of commonly available sample sizes (see Fig. 2.2A).
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The remainder of the time series (m � s years) is then used to independently test

the MEV and GEV models performances. The selection of observed time series with

length exceeding 100 years allows me to use empirical frequencies as references for

the exceedance probabilities inferred through the EV models. The sample frequency

of an yearly maximum value, xi, is computed using the Weibull plotting position

formula as Fi = i=(m� s+ 1), and is assumed to be the best estimate of the actual

exceedance probability F (xi). i is the rank of xi in the list, sorted in descending

order, of the s�m yearly maxima available in the validation sub-set. I finally com-

pare x̂i = F�1(Fi) (where F�1(�) denotes the inverse of one of the EV distributions

to be tested) and xi to determine the estimation error for the 20 largest events in

each Monte-Carlo generated datasets. I repeat this bootstrap/reshuffling procedure

nr = 100 times for each observed time series, in order to obtain a large number of

realizations over which to average the root mean square error. The accuracy of the

empirical frequency estimates of the underlying probability improves with the length

of the time series and with the number of Monte Carlo realizations considered, and

decreases as the return period examined increases. For this reason I focus my atten-

tion on return times in the range 10-150 years. For every bootstrap realization, for

every sample size and return time (s; Tr), theoretical quantiles, x̂, were estimated

from the EV distributions being compared. Using the observational quantiles xobs

relative to the same Tri, the non-dimensional estimation error can be computed as

� = (x̂� xobs) =xobs. The values of �i obtained from each reshuffled series are then

averaged over all the Monte Carlo realizations (nr = 100) to obtain a global perfor-

mance metric:

� (s; Tr) =

"
1

nr

nrX
k=1

�
x̂k (s; Tr)� xobs;k (s; Tr)

xobs;k (s; Tr)

�2
# 1

2

(2.4)
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Figure 2.2 plots the ratio of �MEV to �GEV as a function of s and Tr, in which

data from all the stations have been pooled together. In order to obtain meaningful

statistics, individual values of the ratio of the RMSE’s computed from eq. (2.4) are

averaged over tiles in the plane (s; Tr) of size 20 yrs x 10 yrs.

2.5 Results

Figure 2.2B shows that MEV on average outperforms GEV when used to obtain

estimates for return periods exceeding the length of the sample used to fit the dis-

tribution. For the largest return periods, often of greatest practical interest, the

average MEV error is of the order of 50-60% the average GEV estimation error. This

result has broad implications, as most of the time series globally available only span

a few decades (Fig. 2.2A), while return periods of common interest are greater than

Tr = 100 years. The analysis of the ratio of the estimation errors as a function of

the dimensionless number Tr=s (Fig. 2.4B) clarifies this notion. While some scat-

ter exists, the average of �MEV =�GEV over bins of Tr=s values clearly indicates that

the MEV error tends to be smaller than the GEV error when Tr is greater than

the sample size (i.e., Tr=s > 1), attaining a 50% improvement for Tr=s indicatively

larger than 5. In absolute terms the average Root Mean Square Error for MEV and

Tr=s = 5 is roughly 20% (Fig. 2.4A). Figures A.1 and A.4 in Appendix A show simi-

lar results for the comparison with the POT and GEV-ML approaches. Additionally,

the comparison of the full distributions of the estimation errors for a common return

period and sample size confirms that the MEV approach leads to a significantly nar-

rower error distribution with a mode close to zero, as show in Figure 2.3 (see also

Table A.1 and Figure A.5 in Appendix A).
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2.6 Discussion

The MEV approach presents significant conceptual advantages with respect to tradi-

tional methods rooted in the EVT. It removes any asymptotic hypothesis and hence

does not require that a sufficiently large number of events/year takes place. The

hypothesis of a Poisson occurrence of events is also removed in the MEV approach,

the POT approach being retrieved as a special case. The use of a distribution with

varying parameters to describe the ordinary event intensities embeds the inter-annual

variability of the rainfall generation process, and paves the way to the natural incorpo-

ration of trends or multi-annual climatic oscillations. The MEV approach recognizes

that annual maxima do not necessarily come just from the tail of the underlying

parent distribution, a known limitation of the classical EVT [VLL15].

Classical EVT shows that extremes can only exhibit three types of tail behaviours

(upper bounded, exponential, power-law tailed), which becomes manifested in the

value of the GEV shape parameter [FT28, VM36, Kou04], a conceptually impor-

tant implication of the classical EVT requiring further discussion. This fat (power-

law) vs. thin (exponential) tail asymptotic dichotomy is conceptually suggestive

and practically relevant, such that one wonders if it is negated by the MEV-Weibull

approach, which seems to invariably yield a thin-tailed behaviour dictated by the

exponential nature of the Weibull distribution. However, the Weibull distribution

has been noted to exhibit a sub-exponential tail when w < 1, with a behaviour which

is intermediate between an exponential (w = 1) and a power-law [LS98, Sor06].

Furthermore, I note that the combination of exponential distributions with differ-

ent decay parameters in a metastatistical framework can lead to power-law tails

[Dub68, BC03, PVF06, GMFG+10]. For example, in the present MEV formulation

one can show that (see Appendix A for the details), when only the scale parameter
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of the Weibull distribution varies stochastically, the MEV distribution can assume a

power-law form, i.e., a heavier tail than the underlying Weibull distributions in eq.

(2.3). Hence, I conclude that the MEV-Weibull formulation, even though it is based

on stretched-exponential building blocks, can reproduce thin- as well as fat-tailed

extreme value distributions. The adoption of a single Weibull distribution to de-

scribe all daily events within each year implies that seasonality and different rainfall

generation mechanisms are not explicitly resolved. Recent work on flood frequency

analysis [MS02, VS10] indeed suggests that power-law tails may artificially emerge

from a mixture of probability distributions associated to different rainfall-generating

mechanisms. However, this interpretation is not fully in contrast with my approach,

which explains thick-tailed extremes by the metastatistical mixing of distributions of

the same type, but with stochastic parameters.

2.7 Conclusions

Analysis of extremes in several ultra-centennial daily rainfall records shows that the

MEV approach on average outperforms traditional GEV methods when the return

period of interest is longer than the length of the observational time series available.

The GEV distribution does provide accurate descriptions of the specific samples

used to fit it, as shown by the high goodness of fit obtained when the performance

is evaluated on the same data used for its calibration (see Figure A.2 in Appendix

A), but, compared to the MEV approach, it fails to properly generalize and capture

the underlying statistical properties of the population. The MEV approach, on the

contrary, uses information from the bulk of the distributions of ordinary values, and

is able to more effectively capture the characters of the population of extremes,

such that the estimated high quantiles are less sensitive to the specific sample used
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for �tting. In conclusion, I argue that the MEV approach should be preferred to

the GEV distribution, especially when small samples are available and high-quantile

extremes are to be estimated.

Figure 2.1 : Conceptual representation of the MEV approach applied to daily rainfall
EV analysis. Yearly values of the Weibull parameters (in blue and orange) and of the
number of wet days (in green) de�ne the cumulative distribution of maximum yearly
rainfall as Hn (x) = F (x; C; w)n (grey distributions on the left, and their projections
in black on the vertical xy plane in foreground). The MEV distribution (in red in
the vertical xy plane in the foreground), accounting for the stochastic variability in
C, w and n, is obtained by averaging over the empirical frequency distribution of the
parameters.
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Figure 2.2 : Comparative performance of MEV and GEV distributions. (A) Fre-
quency distribution of sample sizes from the NOAA-NCDC global daily rainfall
dataset. (B) Ratio � MEV =� GEV , of the Root Mean Square Errors of quantile es-
timates from the MEV-Weibull and GEV-LMOM approaches as a function of return
period and size of the sample in our dataset. Individual� MEV =� GEV values from
each site are pooled together and averaged over rectangular tiles on an uniform grid
(with sides � T r = 10 years and � s = 20 years). TheT r=s = 1 line is indicated as a
reference. The MEV distribution outperforms the GEV distribution in the blue area.
Areas in white contain no data.
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Figure 2.3 : Distribution of the relative error � = ( x̂ � xobs) =xobs for GEV-LMOM
and MEV distributions. � was computed over all the available stations and Monte
Carlo realizations (nr = 100). The return time is Tr = 50 years and the sample
sizes = 30 years (close to the mean length of the time series in the NOAA-NCDC
global dataset). The mode of the MEV error is nearly zero, and the error distribution
exhibits a smaller spread compared to the frequency distribution of the GEV error.
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Figure 2.4 : Performance of the MEV and GEV distributions as a function of the
dimensionless parameterT r=s. (A) Root Mean Square Error � MEV , obtained from
100 Monte Carlo generations. Points denote values from single realizations, while
red closed circles represent averages over bins of width 0:5 units. Colors denote the
density (points/unit area of the plot, computed over circles of �xed radius) of the
values falling in each area of the scatter plot (blue indicating the lowest density and
yellow the highest one). (B) Ratio � MEV =� GEV of the Root Mean Square Errors
obtained with the MEV and GEV approaches.
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Chapter 3

Bayesian Hierarchical Modelling of

Extreme Values of Environmental Time

Series

Adapted from: Zorzetto, E., A. Canale, and M. Marani. "Bayesian non-asymptotic

extreme value models for environmental data." Manuscript submitted to Bayesian

Analysis.

3.1 Introduction

The quantitative modelling of extreme events is of paramount importance in sev-

eral disciplines, such as water science, geology, engineering, and �nance, to name a

few. In these contexts extremes are often de�ned as the maximum values observed

in each year, or, more in general, asblock maxima(BM). This approach avoids (by

neglecting them) having to explicitly tackle issues related to seasonality, and intro-

duces a unit of time to de�ne the frequency of occurrence of extremes over time

scales of applicative interest. This traditional approach has proven very fruitful and

has generated a large theoretical body related to the max-stability property of the

Generalized Extreme Value (GEV) distribution [FT28, Gne43, VM36, Col01]. An

alternative modelling approach is based on de�ning extremes as exceedances over a

high threshold, described through the theory developed by Balkema and De Haan

[BDH74] and Pickands [P+ 75]. Both approaches are asymptotic in nature.
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In the Block Maxima approach, GEV is the non-degenerate distribution obtained

for block maxima, after proper normalization, in the limit of an in�nite number of

independent and identically distributed (i.i.d) events in each block [FT28, Gne43],

result later extended to the case of weak dependence structure [Lea83, LLR12]. Based

on the value of its shape parameter, often denoted as� 2 R, the GEV family includes

three possible limiting distributions for the block maxima: a double exponential

(Gumbel, or EV1, for � = 0), a heavy-tailed (Fre�chet, or EV2, for � > 0), and an

upper bounded (inverse Weibull or EV3, for � < 0) distribution.

Conversely, in the Peaks Over Threshold (POT) framework, the Generalized

Pareto Distribution (GPD) is derived as a model for excesses over threshold, in the

limit of the threshold tending to the upper end point of the underlying random vari-

ables' support [Dav84, Smi84, DS90]. This approach was later also extended to the

case of dependent sequences [Lea83, Smi92, BT98]. The GEV and GPD parametric

models, respectively derived through the BM and POT frameworks, are deeply con-

nected. In particular, by modelling the magnitude of threshold excesses with a GPD

and their frequency of occurrence through a Poisson point process, again one obtains

GEV as a model for the block maxima [DS90, Col01], with a parameter� equal to the

corresponding GPD shape parameter. For a comprehensive introduction, see [Col01],

[DHF07] and [EKM13].

Threshold models generally lead to a more e�cient use of the data compared to the

BM approach. However, the selection of the threshold is a relevant issue in this case,

and a contrast exists between the desire of including as much data as possible in the

EV model, while at the same time satisfying the asymptotic assumption, which would

require the adoption of a high threshold. Therefore in general the optimal threshold

selection requires a tradeo� between bias and variance of the resulting estimator

[EKM13]. Several techniques have been developed for informing this decision [see

23



Dup99, Col01, EKM13, WT12].

The wide popularity enjoyed by approaches based on the GEV distribution led

much of the extreme-value literature to focus on the block-maxima alone, or on few

values above a high threshold, discarding and neglecting the 'ordinary values' from

which these large events are extracted. In turn, this caused the widely accepted

traditional Extreme Value Theory (EVT) 1) to be based on asymptotic results, to

avoid the need of specifying details about the underlying distributions of the 'ordinary

events', and 2) to focus only on few selected events, thereby 'wasting' most of the

available information.

These issues have been receiving an increasing attention in recent times. Hydro-

logical applications of EV models have shown that the number of yearly events is

rarely su�ciently large for the asymptotic argument to hold [Kou04, MI15]. More-

over, for some parent distributions commonly used in a wide class of environmental

applications, the actual extreme value distribution has been noticed to converge to

its theoretical limiting form at a slow rate [CH04]. This is for example the case

of the Weibull parent distribution, a parametric model widely adopted to describe

several natural processes|such as wind speeds [HC14] and rainfall accumulations

[WT05]|or in economics [LS98].

A more practical problem is related to the estimation of the GEV distribution

shape parameter,� , which controls the nature of the tail of the distribution. When

applied to precipitation data, maximum likelihood and L-moments estimates of�

from block-maxima and POT techniques can be markedly biased depending on the

size of available samples, and this can lead to an underestimation of the probability

of large extremes in the case of small samples [Kou04, PK13, SK14]. This issue can

be mitigated by use of sample statistics that are more e�cient and robust than tra-

ditional ones [HW87], or, following a Bayesian approach, by penalizing the likelihood
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function with 'Geophysical Prior' distributions for � [MS00a, CPS03]. However, the

limits, both conceptual and practical, of an approach that on the one hand heavily

censors the data and, on the other, su�ers by estimation bias and uncertainty, remain.

Another limitation of the traditional EVT which has been recently pointed out is

related to the assumption of a single and invariable parent distribution [MI15]. In fact,

many phenomena display changes in the event magnitude generation process that

are imperfectly known and predictable due to the complexity of the system. In these

circumstances the assumption of a time-independent form of the parent distribution

can be questionable. Examples of this type of issues can be found in many Earth-

system processes and variables, such as rainfall intensity [MI15, MNAM18], 
ood

magnitudes [MMV20], wind speeds, and tropical storm intensities [HSM20].

Overall, though mitigated by advanced estimation approaches, the above limi-

tations can have wide implications in the many applications requiring the accurate

estimation of large quantiles, i.e. quantiles characterized by return times|average

recurrence intervals|larger than the length of observed samples.

Recent contributions attempt to �ll some of the gaps discussed above. Some

of these contributions have focused on including the entire parent distribution of

events in EV modelling, by using mixture of distributions [FHR02], by extending

a GPD model to the entire range of observed values while retaining a Pareto tail

[TAO06, PT13, NHRH16], by combining splines with an algebraic tail decay [HNZ19],

or by use of a parametric family of distributions to model the entire range of ordinary

values [MI15, JRM+ 19].

The case of variable parent distribution has recently been tackled with the intro-

duction of the Metastatistical Extreme Value Distribution (MEVD), a non-asymptotic

extreme value approach in which a compound parametric distribution describes the

entire range of ordinary values, with parameters varying across blocks [MI15, ZBM16,
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MNAM18, ZM20]. The main rationale behind the introduction of MEVD is describ-

ing the superposition of dynamics occurring over a wide range of time scales by

use of compound distributions, i.e., by allowing the parameters of the distribution

describing afast dynamics to vary on a separate, much slower time scale.

Building upon the MEVD, here I introduce a Bayesian hierarchical model for ex-

treme events which models the entire distribution of observed values, and explicitly

incorporates the variability of their parent distribution across blocks. Latent vari-

able models arise naturally in the Bayesian framework [GCS+ 13] and in the context

of extremes have been widely used to develop spatial models [DPR+ 12, BHRM18]

and to describe the temporal dependence of excesses over thresholds [BG14, BG16].

Here I harness the 
exibility of Bayesian hierarchical modelling to account for the

low-frequency variability in the underlying physical processes generating the data

observed in di�erent blocks, and to connect this variability with the tail properties

of their extreme value statistics.

The use of Bayesian methods to model extremes of environmental data is quite

general and successful [CT96, CPS03, FG18] and is particularly useful in the common

case in which one has to rely on relatively short observational time series but has

relevant and reliable expert prior information of the physical processes involved|as

discussed in Section 3.2.3.

The Chapter is organized as follows: In Section 3.2 I introduce the general struc-

ture of the hierarchical model and subsequently specialize it to the analysis of rainfall

data with a focus on informative prior speci�cations. In Section 3.3.2 the proposed

formulation is empirically tested and compared to Bayesian implementations of stan-

dard extreme value models via a comprehensive simulation study. In Section 3.4 an

application to a large data set related to daily rainfall measured over the United

States is described. The Chapter ends with a a �nal discussion.
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3.2 A Hierarchical Bayesian Extreme Value Model

3.2.1 Notation and general formulation

The proposed Bayesian Hierarchical Model for Extreme Values (HMEV) is formulated

by denoting asnj the number of events observed over thej -th block of time (j =

1; : : : ; J , with J the number of blocks in the observed sample) andx ij the magnitude

of the i -th event within the j -th block (i = 1; : : : ; nj ). The magnitudes of thenj

events occurring within a block are assumed to be realizations of independent and

identically distributed (i.i.d.) random variables X ij , with common parametric cdf

F (�; � j ). � j 2 � is the possibly multivariate unknown parameter vector and f (�; � j )

the related probability density function. Under this framework, the block maxima

Yj = max i f X ij g have cdf

� j (y) = Pr( Yj � y) = F (y; � j )n j : (3.1)

In the following I de�ne a generative hierarchical model for the data at hand. A

graphical representation of its structure is illustrated in Figure 3.1. I letnj be a

realization of a random variable with probability mass function (pmf)p(n; � ), where

� is an unknown vector of parameters. I further assume that latent� j 's exist that

are i.i.d. realizations of a random variable with probability density functiong(�; � ),

where � is an unknown vector of parameters. With the convention that the symbol

� means \is a realization of a random variable having pdf/pmf," I can write the

following hierarchical model,

nj j � � p(nj ; � ); � j j � � g(� j ; � ); x ij j nj ; � j � f (x ij ; � j ) for i = 1; : : : ; nj :

(3.2)
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� 0 � nj

� 0 � � j

x ij

j 2 f 1: : : Jg

i 2 f 1: : : nj g

Figure 3.1 : Hierarchical structure of the model described in equations (3.2){(3.3).
Grey dots represent observed variables.

Following a Bayesian approach, the hierarchical representation of the model is com-

pleted by eliciting suitable distributions, representing one's prior beliefs, for the un-

known parameters� and � ,

� j � 0 � � � (� ; � 0); � j � 0 � � � (� ; � 0): (3.3)

In equation (3.3) � 0 and � 0 represent suitable prior hyperparameters. Comments

and suggestions about their elicitation are reported in Section 3.2.3. Denoting as

x the collection of all x ij 's and asn the collection of all the nj 's, I indicate with

�( �; � j x ; n; � 0; � 0) the posterior distributions of (�; � ) 2 
.

The main goal of extreme value analysis can be summarized in estimating the cdf

in (3.1) or one of its functionals. This can be be done marginalizing out (3.1) with

respect to the distributions of � j and nj [MI15], obtaining the following expression

(3.4), whereh is function of the model's parameters� and � :

h(y; �; � ) =
N tX

n=0

Z

�
F (y; � )ng(� ; � )p(n; � )d�: (3.4)
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whereN t is the maximum number of events in a block (e.g.N t = 366 days in the case

of yearly blocks and daily observations of an environmental variable such as rainfall).

A Bayesian estimator of (3.4) can then be obtained by integration over the posterior

distribution of the model parameters� and � :

�̂ (y) = E[h(y; �; � )jx ij ; nj ] =
Z



h(y; �; � )�( �; � j x ; n; � 0; � 0)d�d�: (3.5)

Other functionals of interest such as the variance, or the probability intervals corre-

sponding to given quantiles, can be calculated accordingly. As customary in extreme

value analysis, for an event of given intensityy I am interested in estimating the

correspondingreturn time Tr , or its average recurrence interval, which is de�ned in

terms of the cumulative distribution function as T̂r (y) = f 1 � �̂ (y)g� 1: Conversely,

the return level ŷ associated with a given non exceedance probabilityp0, or return

time Tr 0 = 1=(1 � p0), is obtained as ŷ = � � 1 (1 � 1=Tr 0), where � � 1 (�) denotes

the quantile function obtained by inverting the non exceedance probability function

de�ned by eq. (3.5).

3.2.2 A speci�c formulation of HMEV for modelling daily

rainfall

I now discuss how the model structure presented above can be applied to mod-

elling extreme values of environmental time series. Here I provide a speci�cation of

the HMEV for modelling the frequency of annual maxima daily rainfall accumula-

tions, based on the general hierarchical structure outlined in Section 3.2.1. To this

end, I need to specify parametric models for event magnitudes and occurrence, and

elicit suitable prior distributions for their unknowns parameters. In this process, I

seek to harness information on the physical processes generating the data and in-
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clude it in the Bayesian pipeline. Several parametric families have been employed

to model rainfall accumulations, including the exponential [RICI87], gamma [SN14],

Weibull [WT05], lognormal and Pareto [PKM13], or mixtures of Gaussian distribu-

tions [LL13]. Generally, the choice of the model for a particular application is merely

based on some goodness of �t assessment, without seeking a physical justi�cation for

the choice of the distribution. However, physical arguments have been provided sug-

gesting the body of the daily rainfall distribution should follow a gamma distribution

[SN14, NSSB17, MVN19], and suggesting its right tail should decay as a stretched

exponential (i.e., Weibull) distribution [WT05]. Since the focus of this work is on ex-

treme values, I brie
y review the latter argument and show how physical insight can

be incorporated into the present Bayesian speci�cation. Wilson and Toumi[WT05]

noted that precipitation accumulations can be characterized as the product of three

independent random variables, namely the average vertical air mass 
ux through a

moist level, the air speci�c humidity, and the precipitation e�ciency, i.e., the fraction

of the vertical water vapor 
ux which is precipitated out as rainfall during each event.

As these are all average quantities, it is assumed that, by the central limit theorem,

their respective distributions can be approximated by Gaussians. By the theory of

extreme deviations [Sor06, FS97], it can then be shown that, in the upper part of

the distribution (i.e., for large enough rainfall accumulations), the product of a �nite

number K of standard normal random variables is approximately a stretched expo-

nential or Weibull distribution with a shape parameter equal to 2=K , whereK = 3

is the number of variables in the present case. Therefore, not only this argument

supports the choice of the stretched exponential distribution to model heavy rainfall

accumulations, but additionally provides an indication on the value of its shape pa-

rameter. This argument provides valuable prior information to be exploited in our

Bayesian hierarchical model.
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Consistently with this argument, I model the magnitudes of daily rainfall accumu-

lations x ij in year j with a 2-parameter Weibull distribution with parameter vector

� j = ( 
 j ; � j ) and pdf

f w(x; 
 j ; � j ) =

 j

� j

�
x
� j

� (
 j � 1)

exp
�

�
�

x
� j

� 
 j
�

(3.6)

where� j > 0 and 
 j > 0 denote the scale and shape parameters respectively.

To allow for the inter-block variability discussed in Section 3.2.1, I assume that the

latent variables � j � g� (� j ; � � ; � � ) and 
 j � g
 (
 j ; � 
 ; � 
 ) are independent and have

Gumbel pdfs, a 
exible yet parsimonious 2-paramater model allowing for possible

asymmetry.

g� (� j ; � � ; � � ) =
1
� �

exp
�

�
� j � � �

� �
� exp

�
�

� j � � �

� �

��
; (3.7)

g
 (
 j ; � 
 ; � 
 ) =
1
� 


exp
�

�

 j � � 


� 

� exp

�
�


 j � � 


� 


��
(3.8)

Next, I need to specifyp(�; � ) in equation (3.2). It is well known that the rain-

fall process often tends to be overdispersed at the interannual time scale [ET10].

This consideration would suggest a choice ofp(�; � ) allowing a variance-to-mean ratio

greater than one, to 
exibly represent the possible presence of clustering. However,

I show in the following that the distribution of nj chie
y a�ects the probability dis-

tribution of extreme events, (3.4), through its mean value only. To show this, let us

rewrite (3.4) in terms of the survival probability function S(y; � ) = 1 � F (y; � ),

h(y; �; � ) =
N tX

n=0

Z

�
[1 � S(y; � )]ng(� ; � )p(n; � )d�; (3.9)

by expanding [1� S(y; � )]n in a Taylor series around zero [1� S(y; � )]n = 1� nS(y; � )+
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O (S(y; � )), and by retaining only the linear term in the expansion|as justi�ed for

large values ofn and extreme quantiles (i.e., forS(y j � ) ! 0)|one �nds:

h(y; �; � ) '
N tX

n=0

p(n; � )
Z

�
g(� ; � )d� �

N tX

n=0

np(n; � )
Z

�
S(y; � )g(� ; � )d�

= 1 � E � [n]
Z

�
S(y; � )g(� ; � )d�: (3.10)

This expression depends on the distribution ofnj only through its expected value

conditional to the sample of observednj . I therefore argue for the adoption of a

minimalistic model, the binomial distribution, with a success probability� 2 (0; 1)

and number of trials N t equal to the block size (e.g.,N t = 366 in our application

to annual maximum daily rainfall). This rationale is also supported by practical

applications of Poisson processes of extremes [S+ 89] and of MEVD, showing that the

speci�c distribution adopted for the nj 's does not signi�cantly a�ect the estimation

of large extremes as long as the average is correctly reproduced [MZAM19, HSM20]

3.2.3 Prior elicitation

One of the main advantages of introducing a hierarchical model describing the entire

distribution of daily rainfall accumulations is the possibility of eliciting priors directly

on the underlying distribution of the observed \ordinary" eventsx ij and on the dis-

tribution of nj , rather than on the distribution of block maxima. By doing so, in

particular, I avoid the di�culty of prescribing a prior directly on the shape parameter

� of the annual maxima distribution, which is the main challenge in the inference on

EV models, and to which it is di�cult to attribute physical meaning. Studies at the

global [PK13] and continental scale [PAFG18] showed that the shape parameters of

extreme value models can vary signi�cantly in space and is particularly di�cult to
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estimate reliably [e.g. Col01], especially for small samples [SK14]. However, here I

argue that using the entire distribution of daily rainfall provides inferential advan-

tages, and allows for the inclusion of additional physical insight on the process at

hand.

For what concerns the speci�c parametric family for� � (�; � 0), with � = f � � ; � � ; � 
 ; � 
 g,

I opt for independent inverse gamma distributions, but other choices of 2-parameters

distributions such as gamma lead to a similar model 
exibility and to qualitatively

similar results. What is crucial is the speci�cation of the values of the parameters

of the above distributions according to the physical understanding of the precipita-

tion process. Prior belief on the typical intensity of the events,� � , is not di�cult

to obtain empirically for a given location as the climatological mean. Furthermore,

the physical argument outlined in Section 3.2.2 enables one to assume a priori that

the inverse gamma prior distribution for � 
 is centered around 2=3. Note that if

additional physical insight is available on the types of storms characterizing the site

of interest, or from similar sites, this prior elicitation could be further re�ned, e.g.,

based on studies of the value of
 over large geographic areas [PAFG18].

For the latent Gumbel scale parameters� � and � 
 , quantifying the variability of

the Weibull parameters between blocks, I also choose informative distributions with

expectations equal to 25% and 5% of the respective location parameters (� � and

� 
 ). This choice re
ects the notion that I expect signi�cant variability in the scale

parameter across years|here quanti�ed as 25% of its mean value |but, conversely,

I do not expect the shape parameter to vary as much, as its expected value should be

more strongly constrained by the general physical nature of precipitation processes.

Of course di�erent precipitation types can occur in di�erent proportions in di�erent

years, and, since I do not model these components explicitly, I should include their

e�ect in possible variations of the scale parameters. Guided by these considerations,
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I choose a latent scale parameter for the variability of the Weibull shape parameter

equal to 5% of its prior expected value.

Sometimes, information can be available on the relative frequency of di�erent

precipitation mechanisms, for example as obtained through satellite or radar mea-

surements. In this case, the prior location value of� � could be for example increased

in settings characterized by higher inter-annual variability of the relative frequency

of di�erent precipitation types, as suggested in [MZAM19].

An independent weakly informative beta prior for the binomial rate parameter for

nj concludes the prior elicitation. I found that eliciting an informative prior for nj

is not as important as for the other parameters is the model, as (i) inference on the

single-parameter distribution fornj is more robust than inference of the distribution

of x ij even for very small sample sizes, and (ii) the HMEV estimates are primarily

a�ected by the expected value of thenj 's distribution rather than by its higher-order

moments. The speci�c values of the prior parameters used in the in the remainder

of the article are summarized in Table B.1 in Appendix B.

3.2.4 Posterior computation and posterior predictive checks

Given the complex structure of the models described in previous sections, it is clear

that an analytical expression for the posterior distribution of the parameters or for

�̂ (y) in (3.5) is not available and numerical procedures are needed. Here I chose to

approximate the posterior distribution with Markov Chain Monte Carlo (MCMC)

and speci�cally using aHamiltonian Monte Carlo approach exploiting the 
exibility

of the Stan software [CGH+ 17].

The implementation of the hierarchical model and related prior described in Sec-

tion 3.2.2 is trivial under Stan and is provided as a standalone R package. In all the
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following examples, I runnc = 4 parallel chains, with ng = 2000 iterations in each

chain. I discard the �rst half of each chain to account for the burn-in e�ect. The

�nal sample on which I perform inference is therefore based onB = ncng=2 = 4;000

draws.

Using MCMC I can make inference on any functional of the posterior distribution,

calculating, at each iteration of the sampler, the current value of the functional of

interests. For example, if the cumulative probability of block maxima approximating

(3.4) is the target, one should compute at the generic iteration

� (b)(y) =
1

M g

M gX

j =1

F (y; � j
(b))n ( b)

j (3.11)

where� (b)
j and n(b)

j for j = 1; � � � ; Mg are drawn from the related posterior predictive

distributions for each block, andM g is a number of future blocks| M g = 50 in our

application. Therefore, the Monte Carlo approximation of the posterior expectation

(3.5) is

�̂ MC (y) =
1
B

BX

b=1

� (b)(y): (3.12)

Note that (3.11) approximates the functionalh(z; �; � ) where� and � are the param-

eters describing the inner level of the hierarchical model and the averaging operation

in (3.11) is performed on the values of� j and nj . Conversely, (3.12) is obtained by

averaging over theB draws from the posterior distribution thus accounting for the

posterior uncertainty of the � and � parameters.

To assess whether the parametric assumptions of the proposed HMEV provide a

good �t to the observed data, it is important to perform posterior predictive checks

[GCS+ 13] comparing relevant quantities|such that yi , nj , or x ij |with their cor-

responding posterior predictive densities. Although the posterior predictive distri-
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butions are not analytically available, it is straightforward to simulate new data

from them by leveraging the MCMC samples of the parameters and the hierarchical

representation of the model reported in Figure 3.1. I recommend to focus on the

distribution of block maxima, and, given the interest in consistent estimates of the

probability of large extremes, particularly on its right tail.

3.3 Simulation Study

3.3.1 Description

To assess the empirical performance of the proposed HMEV model, and to compare it

with standard alternative methods, I performed an extensive simulation study. Dif-

ferent synthetic data sets have been generated under four scenarios characterized by

speci�c event magnitude distributions: Generalized Pareto (GP), Gamma (GAM),

Weibull (WEI) with constant parameters in each block, and a dynamic Weibull model

in which the variable scale and shape parameters in each block follow Gumbel distri-

butions (WEI G). While the latter speci�cation re
ects the structure of the proposed

hierarchical model, the other 3 scenarios represent model misspeci�cations and will

be used to assess the rubustness of the proposed formulation to the speci�c distri-

bution of event magnitudes. Common to all scenarios, the number of events in each

block is drawn from a beta-binomial distribution with mean� n = 100 events/block,

variance equal to� 2
n = 150, and N t = 366 block size. This choice represents the case

of overdispersion commonly observed in rainfall and other environmental time series

[ET10]. Each of theRs = 100 replicated data set consists of two independent time

series of lengthsM train and M test blocks, which are respectively used for training and

testing the di�erent EV models. Here I �x M test = 500 yearly blocks, and train the
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di�erent models focusing on sample size values ofM train = 20 and 50 years, represen-

tative of many geophysical datasets. Table B.2, reported in Appendix B, describes

the speci�c values of the parameters used to generate the synthetic data.

The competing methods used to benchmark HMEV are Bayesian implementa-

tions of the classical generalized extreme valued distribution (GEV) and peak over

threshold (POT) Poisson point process models, whose details, including prior spec-

i�cations, are reported in Appendix B. In order to perform a fair comparison, also

these competing models are estimated under a Bayesian approach, using informative

priors. In particular, for both models the prior distribution for the shape param-

eter is centered around the value 0:114, determined from investigations of rainfall

records at the global scale [PKM13], and has a standard deviation of 0:125, yield-

ing a distribution close to the Geophysical prior suggested by Martins and Stedinger

[MS00a].

To evaluate the predictive accuracy of the di�erent competing methods in esti-

mating the true distribution of block maxima, I use di�erent criteria measuring both

the global goodness of �t and the uncertainty in estimating the probability of ex-

treme events. The log pointwise predictive density (lppd) [GCS+ 13] computed both

for the in-sample data and for the out-of-sample data is often used as a measure of

global performance of the models. An alternative measure is the logarithm of the

pseudo-marginal likelihood (lpml), a convenient index that directly accounts|at no

additional computational cost|for a leave-one-out cross validation measure [GD94].

Notably, since the lpml approximates the expected log pointwise predictive density,

the di�erence between the in-sample lppd and the lpml represents the number of

e�ective parameters of a model [see e.g., VGG17] and thus will be used to quantify

over�tting.

Since the focus of this work is the right tail of the distribution of the block
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maxima, here I introduce an additional index that measures predictive performance

for quantiles above a given non exceedance probability. To this end, I introduce the

Fractional Square Error (FSE)

FSE =
1

mT

M xX

j =1

1I( ~T ;1 ) (Tj )

vu
u
t 1

B

BX

b=1

�
� (b) � 1 (pj ) � yj

yj

� 2

; (3.13)

where� (b) � 1
(�) refers to the quantile function of the speci�c model at theb-th MCMC

iteration, 1IA (x) is the indicator function that equals 1 ifx belongs toA, and Tj is the

empirical return time of yj de�ned as Tj = (1 � pj )� 1, with pj = rank( yj )=(M x + 1).

M x is the length in blocks of the sample of annual maxima used to compute the FSE.

In the in-sample and out-of-sample validation performed here,M x = M train andM x =

M test respectively. The valuemT represents the number of observations in the test

set with empitical return time equal to or larger than ~T, i.e. mT =
P M x

j =1 1I( ~T ;1 ) (Tj ).

Therefore, the FSE represents an average measure of a standardized distance between

model-estimated quantiles and empirical quantiles for return times larger than~T. In

the following analysis I compute this measure for values of the return time larger

than ~T = 2 years, thus focusing on the range of exceedance probability of interest in

many practical applications.

To separately assess the precision and the variability of extreme value quantile

estimates obtained from di�erent models, I employ two additional measures, namely

their average bias and the average width of the 90% posterior predictive credible

intervals de�ned, respectively as

bq =
1

mT

M xX

j =1

1I( ~T ;1 ) (Tj )
1
B

BX

b=1

 
� (b) � 1

(pj ) � yj

yj

!

� q90 =
1

mT

M xX

j =1

1I( ~T ;1 ) (Tj ) ( q̂95 (pj ) � q̂5 (pj )) ;

(3.14)
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Figure 3.2 : Fractional square error computed for the 4 di�erent model speci�ca-
tions for in-sample data (upper panels) and for out-of-sample data (lower panels),
computed for a sample size of 50 years.

where the quantitiesq̂95 (pj ) and q̂5 (pj ) are the upper and lower bounds of the pos-

terior credibility interval for the quantile � (b) � 1
(pj ) estimated taking the empirical

quantiles over theB MCMC draws.

3.3.2 Results

The results of the simulation study are illustrated in Figures 3.2{3.5. Speci�cally,

Figure 3.2 shows the empirical distribution of the FSE over theRs = 100 synthetic

samples, training the model using 50 years of simulated data. The POT method

appears to outperform the annual-maximum GEV in all cases examined, except in

the case of WEIG speci�cation, where arguably the inter-block variability of thex ij

distribution determines a variable rate of threshold exceedance, as well as a variable

distribution of the excess magnitudes over the �xed threshold. While exhibiting a

generally higher FSE for in-sample testing, HMEV cleary outperforms the competi-

tors in the GAM, WEI, and WEI G scenarios in terms of out-of-sample performance.
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(a)

(b)

Figure 3.3 : Mean bias (a) and mean credibility interval width (b) for the 4 di�erent
model speci�cations for in-sample data (upper panels) and for out-of-sample data
(lower panels), computed for a sample size of 50 years.
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In the GP scenario, POT remains the best model even in the case of out-of-sample

testing.

To gain a deeper understanding of this general behavior, Figure 3.3a reports the

results of the two measures introduced in (3.14). Generally, the best performance

for the bias appears to be speci�cation dependent, as is the case for the FSE, while

for what concerns the width of the credibility interval, the HMEV is consistently

the most e�cient procedure, producing narrower credibility intervals. I note that

the latent level temporal variability of the � j confer to HMEV a tail behavior which

is intermediate between the lighter constant-parameter Weibull tail, and the Pareto

model, as shown by the overestimation / underestimation of the posterior predictive

quantiles in these two limiting cases.

The bias of the di�erent models does not appear to vary signi�cantly from in-

sample to out-of-sample testing, suggesting than the di�erence observed in the FSE

is primarily controlled by the variability of the di�erent estimates.

To visualize this global behavior, Figure 3.4 shows a representative example of

the performance of the methods. Speci�cally, it reports the quantile versus return

time plots obtained for the di�erent methods applied to a single dataset generated

according to the WEIG speci�cation, with the yearly number of eventsnj � Bin (� ),

with � = 0:3. The results obtained for training datasets of 20 (panel a) and 50

(panel b) years show that HMEV yields quantile estimates characterized by narrower

credibility interval and is characterized by a tail behavior which is lighter tailed

compared to the other methods. Note that both the GEV and POT models, despite

the informative prior used, appear to be more sensitive to the largest observations

in the training samples and tend to overestimate the true function. This behavior is

expected given the limited length of the training samples used here (20 to 50 years of

data), which are however representative of sample sizes commonly available in many
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Figure 3.4 : Quantiles predicted by the GEV (red), POT (green), and HMEV (blue)
models based on training sets of 20 years (a) and 50 years (b) Lines show the expected
value of the quantile for a given return time, while dashed lines represent the 5%-95%
credibility intervals. Circles represent the observed return time of in-sample block
maxima. The black lines report the quantiles computed from the true HMEV model.

applications in geophysics, engineering and environmental sciences. Representative

plots for the remaining scenarios (model misspeci�cation) are reported in Appendix

B.

Note that the in-sample and out-of-sample tests illustrated in Figures 3.2 and 3.3

are characterized by di�erent sample sizes. Therefore, the absolute di�erence between

in-sample and out-of-sample metrics is not directly interpretable as a measure of

over�tting. Therefore, to better quantify over�tting I study the e�ective number of

parameters in each model, estimated as the di�erence between the in-sample lppd and

the log posterior marginal likelihood, shown in Figure 3.5. HMEV displays a lower

e�ective number of parameters in most of the speci�cations considered, suggesting

that it is dramatically less prone to over�tting. While this behavior appears more

markedly for two of the four data speci�cations (WEI and GAM ), it is worth noting

that this advantage increases when considering sample sizes smaller thanM train = 50

years examined here, as shown in Appendix B.
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Figure 3.5 : E�ective number of parameters for the 4 di�erent model speci�cations,
evaluated for a sample size ofM train = 50 years of simulated data.

3.4 Application to the United States Historical

Climatological Network Data

In this Section I analyze a rich collection of daily rainfall time series extracted from the

United States Historical Climatological Network (USHCN) data. The data are freely

available from the National Centers for Environmental Information (NCEI) of the

National Oceanic and Atmospheric Administration (NOAA) [MDK+ 12, MDV+ 12].

The USHCN data set consists of 1218 long daily rainfall records covering the Conter-

minous Unites States (CONUS), with a signi�cant fraction of the available records

being longer than 100 years. This caracteristic makes this dataset particularly useful

for the purpose of assessing the performance of this method by using only a por-

tion of the data for the model �t, keeping the remainder as out-of-sample validation

data. Moreover, since the CONUS spans a range of di�erent climatic regimes, this

datasets allows me to test the robustness of the model structure adopted here to

di�erent climates and precipitation types, which are expected to impact both the

distribution of the x ij and their arrival rate. The records characterized by non-blank

quality 
ag were removed from the analysis, as well as the years characterized by more
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Figure 3.6 : Rainfall time series measured at the New York Central Park (NYCP)
station from 1969 to 2018 (Station ID USW00094728). (a), Time series of all daily
rainfall accumulations, (b) annual maxima values only, (c) autocorrelation function
of the daily rainfall accumulations,and (d) scatter plot of pairs of succeeding non-zero
rainfall values.

than 30 daily missing observations. Therefore, for the subsequent analysis I select

only stations with at least 100 years of record with enough non-missing, non-
agged

observations, for a total of 479 stations.

3.4.1 New York Central Park station analysis

As a benchmark application I carefully discuss the results of the anlysis of the

longest station in our data set, which was recorded in Central Park, New York City,

from 1869 to 2018, for a total of 150 years of continuous observations (Station ID

USW00094728). The entire series of daily event magnitudes as well as the 150 annual

maxima values recorded at this station are reported in the top panels of Figure 3.6.

Inspection of the autocorrelation function| panel c) of Figure 3.6|suggests that
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Figure 3.7 : Posterior predictive distributions for the logarithm of the annual maxi-
mum daily rainfall accumulations (a), yearly number of events (b) and logarithm of
non-zero daily rainfall events (c) computed by �tting HMEV to a 50-years sample
extracted from the New York City time series. Black lines show the density of the
observed values (obtained by kernel density estimation), while the light blue line show
the kernel density estimates for 100 draws from the posterior predictive distributions.

the daily rainfall accumulations are not heavily correlated. However, when dealing

with rainfall accumulations at shorter time scales, or in di�erent climatic conditions,

serial dependence may need to be accounted for when applying extreme value mod-

els based on the i.i.d. assumption. Hence, as commonly done in practice (see, e.g.,

[CNN07, MNAM18]), prior to model �tting I decluster the time series, by computing

the autocorrelation of the daily magnitudes and determining the time lag� c in which

the correlation decays belowc = 0:1. Then, each rainfall record is declustered by only

keeping the largest accumulation value observed within a neighborhood of length� c.

After this selection of pseudo-independent events, data are analyzed following

the approach described in Section 3.2.2, with the same prior elicitation discussed in

Section 3.2.3. Examination of the posterior predictive distributions for the annual

maxima, number of events, and daily rainfall magnitudes, reported in Figure 3.7,

shows that the pdfs of these variables are overall satisfactorily captured by HMEV.

Note that a discrepancy appears for small values of daily rainfall magnitudes, where
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the censoring of actual values associated to the sensitivity of the instrument|0.3

mm here|introduces a threshold in the observed accumulations|clearly visible in

panel d) of Figure 3.6. Despite this discrepancy for small magnitudes, the overall pdf

of daily values, and in particular its right tail, appears to be satisfactorily captured

by HMEV.

The considerable length of this particular time series allows me to explore the

sensitivity of extreme value estimates to the speci�c sample used to train the model.

In Figure 3.8 I compare extreme value quantiles obtained from the HMEV, GEV, and

POT models trained on just the �rst 20 years or the �rst 50 years on record, respec-

tively. Models estimates di�er, with HMEV exhibiting|as previously observed from

our simulation study|narrower credibility intervals with respect to POT and GEV

models. HMEV predicts values slightly smaller than the Pareto model, but presents

an overall good agreement with the empirical frequencies associated to the annual

maxima extracted from the entire record (150 years of data). Interestingly, estimates

from the GEV and POT models tend to fall between the frequencies computed from

the training sets and those from the entire 150 year time series, showing their greater

dependence on the speci�c training set used. This is shown even more clearly by the

large di�erences, for GEV and POT estimates, between panel a) and panel b): when

the length of the training set is increased such estimates signi�cantly change, whereas

HMEV estimates remain relatively insensitive to the increased available information.

3.4.2 Full USHCN data analysis

Building upon the insight gained from the simulation study I now turn my attention

to quantifying the predictive ability of di�erent models using real observations from

a larger set of stations, and repeating the analysis for di�erent sample sizes in order
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