Mixture-Averse Preferences and
Heterogeneous Stock Market
Participation

Todd Sarver

Duke University

September 9, 2016

ERID Working Paper Number 229

This paper can be downloaded without charge from the Social
Science Research Network Electronic Paper Collection:

http://ssrn.com/abstract=2837262

Economic Research Initiatives at Duke
WORKING PAPERS SERIES



http://ssrn.com/abstract=#2837262

Mixture-Averse Preferences and Heterogeneous Stock
Market Participation®

Todd Sarver!

First Version: September 7, 2011
Current Draft: September 9, 2016

Abstract

To study intertemporal decisions under risk, we develop a new recursive model
of non-expected-utility preferences. The main axiom of our analysis is called miz-
ture aversion, as it captures a dislike of probabilistic mixtures of lotteries. Our
representation for mixture-averse preferences can be interpreted as if an individual
optimally selects her risk attitude from some feasible set. The representation in-
cludes special cases where the choice of risk attitude takes the form of an optimal
selection of a reference point. We analyze the implications of the model for both
insurance and investment decisions. The main application of the paper shows that
mixture-averse preferences can generate endogenous heterogeneity in equilibrium
stock market participation, even when consumers have identical preferences and
even among wealthy households.
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1 Introduction

Intertemporal preferences of individuals are of central importance in many economic
interactions. They play a key role in the the determination of aggregate macroeconomic
variables and prices in financial markets. The explanatory power of models of dynamic
choice has been significantly improved in recent years by relaxing the assumption of
separability of preferences across states and time, as in Kreps and Porteus (1978), and
by incorporating various non-expected-utility preferences, as suggested by Epstein and
Zin (1989, 1990) and further pursued in the literature that followed.

The present paper contributes to this literature by using the general recursive frame-
work developed by Epstein and Zin (1989) to study a new class of dynamic risk prefer-
ences. The central axiom of our analysis is called mizture aversion, as it implies a dislike
of probabilistic mixtures of lotteries. Couched in the dynamic structure of our domain,
this axiom imposes restrictions on an individual’s willingness to trade current consump-
tion for uncertain improvements in future outcomes: Suppose an individual can give up
some consumption now in order to increase the probability of a better outcome tomor-
row. Our axiom requires that when the initial probability of the better future outcome is
higher, this trade becomes more attractive to the individual. In other words, increasing
the probability of a good outcome makes additional increases even more desirable.

To illustrate, imagine an individual can exert additional (costly) effort in the current
period that will increase the probability of a future promotion. Would this individual be
more willing to put forth effort if the initial chances of the promotion are low and could
be increased slightly, or when the initial probability is already high and could be made
certain? Assuming the marginal impact of current effort on the probability of promotion
is the same in each case, mixture aversion implies that the individual would exert greater
effort in the latter scenario.

As this example demonstrates, mixture aversion is closely related to the certainty effect
documented by Allais (1953), Kahneman and Tversky (1979), and others—individuals
typically assign a premium to increases in probability that lead to certainty. Our axiom
implies this property and also extends it to probabilities away from certainty; for example,
an individual may be willing to work harder for a promotion when her initial chances are
higher, even if it is impossible to make the promotion certain. Mixture aversion is also
connected to the literature on probabilistic insurance. As observed by Kahneman and
Tversky (1979) and Wakker, Thaler, and Tversky (1997), an individual’s willingness to
pay for insurance coverage that pays with only half probability in the event of a loss is
typically much less than half of the amount that she would be willing to pay for complete

'In the context of static risk preferences, mixture aversion is sometimes used to refer to quasiconvexity
of preferences in probabilities. As we discuss in Section 3.1, our axiom implies this condition and hence
it can be thought of as a stronger form of mixture aversion.



(certain) coverage.? While intuitive, this dislike of probabilistic insurance is difficult to
reconcile with expected-utility theory and many available non-expected-utility theories.?
Mixture-averse preferences are consistent with a dislike of probabilistic insurance. In
fact, in the case where premiums are paid one period in advance, this behavior is a direct

implication of our axiom.

We will use our model to study demand for financial assets such as equity and in-
surance. In our main application, we show that mixture-averse preferences provide a
rationale for low levels of stock market participation and for investment by some partici-
pating households only in low-risk (e.g., bond) portfolios, both of which are puzzling from
the perspective of most existing models. Mixture-averse preferences can also generate a
marginal willingness to pay for additional insurance coverage that increases at some levels
of coverage, which may help to explain the high prices some consumers pay to decrease
their insurance deductibles.

1.1 Preview of Results

Epstein and Zin (1989) provided a general recursive formula that can be used to em-
bed any risk preference developed in a static context into an infinite-horizon dynamic
environment. They proved that a value function for this recursive representation exists
whenever risk preferences satisfy suitable continuity properties. In Section 2, we begin
by introducing our framework and defining the Epstein-Zin representation formally.

Starting from this general Epstein-Zin formula, our analysis in Section 3.1 studies

4

the additional implications of the mixture aversion axiom.® To illustrate, consider a

simple consumption-savings problem with a gross return R; that is i.i.d. across time.

2There are several different formulations of the probabilistic insurance problem. Kahneman and
Tversky (1979) formulated the problem in a way that makes it incompatible with expected utility. Our
description of probabilistic insurance comes from Wakker, Thaler, and Tversky (1997), which connects
more directly with many real-world instances of risk of non-payment from an insurance policy.

3For example, Kahneman and Tversky (1979) showed that the preferences of the majority of subjects
in their probabilistic insurance problem were inconsistent with expected-utility theory. Their argument
can easily be extended to show that dislike of their formulation of probabilistic insurance is not compatible
with any preference that is quasiconcave in probabilities and risk averse. Interestingly, the only prominent
non-expected-utility model that has been shown to be consistent with aversion to probabilistic insurance
is risk-averse rank-dependent utility (see Segal (1988)), which turns out to be a special case of mixture-
averse preferences (see Section S.2 of the Supplementary Appendix).

4The assumption that preferences have the recursive structure described in Epstein and Zin (1989)
can be broken down into more fundamental assumptions: Chew and Epstein (1991) provided axiomatic
foundations for a version of the Epstein-Zin representation. Appendix A.l contains an axiomatic char-
acterization of the exact form of the Epstein-Zin representation used in this paper.



The representation for mixture-averse preferences has a value function of the form

V(w;) = max {u(ct) + Bsup E; [o(V(wit1))] } . (1)

Ct, W41 HED

In this recursion, the random variables ¢; and w1 evolve according to the constraint
wir1 = (wy — ¢;)Ryy1. The elements of the representation are a utility function u, a
discount factor §, and a set of nondecreasing functions ® that satisfies

sup ¢(z) = x (2)
ped

for every real number z in the domain. Equation (2) implies that this representation re-
duces to time-separable utility for deterministic problems; hence the model is completely
standard absent risk. However, when faced with uncertainty, the individual in our model
is able to alter her risk attitude through her selection of a transformation ¢. Since the
transformation is chosen to maximize utility, we refer to Equations (1) and (2) as the
optimal risk attitude (ORA) representation. In Section 3.2, we describe some parametric
special cases of the ORA representation that will be used in our applications, includ-
ing several which can be interpreted more specifically as models of endogenous reference
point selection.

While the optimization over risk attitudes in our representation might suggest that
the individual is risk loving (or in some sense less risk averse), in fact the opposite is true.
It follows as a corollary of our comparative statics result in Section 3.3 that any ORA
representation is more risk averse than time-separable expected utility with the same
u and (. Using the simple consumption-savings problem described above to illustrate,
Equation (2) implies that for any random wealth w1,

sup B [p(V(wi11))] < Et[SUP qb(V(th))} =B [V(wer1)).
peP ped

In particular, the ORA representation can generate high levels of risk aversion for small
gambles yet more moderate attitudes toward increases in risk when exposure is already
large. In Section 3.2, we illustrate this feature of the model using an insurance example.
We show that an individual may be willing to pay more for her last dollar of coverage
than her first, which can yield a high willingness to pay for reduced insurance deductibles.

Section 4 uses mixture-averse preferences to examine dynamic investment behavior
and asset returns. In Section 4.1, we discuss one of the most widely-documented and
puzzling patterns from household finance: Many households have little or no money
invested in equity. Recent theoretical and empirical work has made progress in explaining
the nonparticipation decisions of some households, but significant aspects of this puzzle of



limited stock market participation remain—such as limited participation by some wealthy
households. To shed new light on this behavior, in Section 4.2 we describe an economy
with a continuum of agents with identical ORA representations that are homothetic in
wealth.

In Section 4.3, we illustrate informally how heterogeneity in risk exposure can arise
endogenously in this economy, with some agents holding very little risk in equilibrium—
independent of their wealth. One segment of the population chooses a risk attitude that
is less sensitive to gains and losses and therefore holds greater consumption risk; the other
chooses a risk attitude that provides higher utility for low-risk allocations, but is more
sensitive to losses, and therefore holds very little consumption risk. Importantly, this is
not just one possible equilibrium, but rather is the unique equilibrium of this economy
for a range of parameter values.

In Section 4.4, we provide a calibration of the dynamic general equilibrium of this
economy that verifies these informal observations and quantifies the level of participation
and the resulting equity premium. Since our model can generate heterogeneity in par-
ticipation decisions even when agents have identical preferences, it is tractable enough
to permit a complete dynamic general equilibrium analysis. In contrast, all existing
preference-based explanations of the participation puzzle require preference heterogene-
ity to generate limited equilibrium stock market participation, and hence these models
tend to be restricted to partial equilibrium analysis.

Proofs are contained in the Appendix, and some supporting results and discussions
are further relegated to a Supplementary Appendix.

1.2 Related Recursive Models

Given the generality of the recursive formula developed by Epstein and Zin (1989), it
has limited empirical content absent additional restrictions on the permissible class of
risk preferences. Thus the benefit of their general representation is not that it provides a
specific functional form for use in applications, but rather that it provides a framework
for easily incorporating any model developed in the world of static risk into dynamic
environments.

The most widely-used special case of the Epstein-Zin representation is the infinite-
horizon formulation of Kreps and Porteus (1978) expected utility, which we will refer to
as Epstein-Zin-Kreps-Porteus (EZKP) utility (see Appendix A.2 for a formal definition).
As emphasized by Epstein and Zin (1989) and Weil (1989, 1990), this model permits
a separation between risk aversion and intertemporal substitution that is not possible
for standard time-separable expected utility. Despite its usefulness, EZKP utility is still
unable to resolve a number of anomalies associated with expected utility, such as the
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Figure 1. Relationship between mixture-averse (MA) preferences (ORA representation) and
other recursive risk preferences: risk-averse Epstein-Zin-Kreps-Porteus expected utility (RA-
EZKP), risk-averse rank-dependent utility (RA-RDU), betweenness (Bet), disappointment
aversion (DA), cautious expected utility (CEU).
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Allais paradox, the Rabin paradox, and the equity premium puzzle. These limitations
have motivated a large literature that studies various non-expected-utility theories within
the recursive framework of Epstein and Zin (1989).°

We summarize the relationship between the ORA representation and several of these
prominent theories in Figure 1. The connection to EZKP utility is established in Ap-
pendix A.2, where we show that EZKP utility is in fact a special case of the ORA
representation, provided the certainty equivalent is risk averse. The other connections
depicted in this figure follow from known results and are discussed in detail in Section S.2
of the Supplementary Appendix.

The rectangles in Figure 1 illustrate two properties of the certainty equivalents in
these representations that will be relevant for our applications: preference for diversifica-
tion (quasiconcavity of preferences with respect to random variables)® and risk aversion

For example, a parameterized special case of rank-dependent utility (Quiggin (1982); Yaari (1987);
Segal (1989)) was used by Epstein and Zin (1990); the disappointment aversion model of Gul (1991)
was used by Bekaert, Hodrick, and Marshall (1997) and Ang, Bekaert, and Liu (2005); other special
cases of betweenness preferences (Chew (1983); Dekel (1986)) were used by Epstein and Zin (2001) and
Routledge and Zin (2010).

6We should be careful to distinguish two related but distinct concepts. Quasiconcavity of preferences
in random variables is not directly tied to quasiconcavity of preferences in probabilities. Mixture aversion
implies quasiconvexity of preferences in probabilities (see Section 3.1) and is compatible with (but does
not imply) quasiconcavity of preferences in random variables. In this paper, we follow the convention of
referring to the latter property as “preference for diversification.” It is worth noting that this terminology
is slightly misleading, as is suggests that an investor whose preferences violate this property would not
choose to diversify her portfolio in order to reduce risk exposure. In many cases, risk aversion alone is



(monotonicity with respect to second-order stochastic dominance). Preference for diver-
sification is often considered a desirable property since it enhances analytic tractability.
However, it turns out that several applications of our model, including some properties of
demand for insurance (see Section 3.2) and equilibrium heterogeneity in asset market par-
ticipation (see Section 4), rely crucially on relaxing preference for diversification. At the
same time, it is often desirable (both for realism and technical simplicity) to maintain risk
aversion in such applications. Mixture-averse preference are unique among those depicted
in Figure 1 in their ability to separate these two properties. The aforementioned sections
and Section S.3 of the Supplementary Appendix investigate these issues in greater detail.

2 Preliminaries

2.1 Framework

For any topological space X, let A(X) denote the set of all (countably-additive) Borel
probability measures on X, endowed with the topology of weak convergence (or weak™*
topology). This topology is metrizable if X is metrizable. For any z € X let §, denote
the Dirac probability measure concentrated at x.

The setting for the axiomatic analysis is the space of infinite-horizon temporal lotter-
ies. This domain is rich enough to encode not only the atemporal distribution of con-
sumption streams but also how information about future consumption arrives through
time. For example, future wealth and hence future consumption may depend on the
returns to investments which are realized gradually over a sequence of interim periods.
Formally, let C' be a compact and connected metrizable space, denoting the consumption
space for each period.” A one-period consumption lottery is simply an element of A(C).
The space of two-period temporal lotteries is A(C' x A(C)), the space of three-period
temporal lotteries is A(C' x A(C x A(C))), and so on.

Extending this idea to the infinite horizon, the domain in this paper is a compact
and connected metrizable space D that can be identified (via a homeomorphism) with
Cx /(D). Epstein and Zin (1989) showed that such a space is well-defined.® Intuitively, a

sufficient to ensure the optimality of fully diversified portfolios (e.g., if asset returns are i.i.d.).

"While the axiomatic analysis will be restricted to compact spaces, the investment application in
Sections 4 will allow for the unbounded consumption space R. It is possible to generalize the axiomatic
analysis to infinite-horizon temporal lotteries that use a non-compact consumption space by imposing
bounded consumption growth rates; see Epstein and Zin (1989) for a formal description of such a frame-
work. However, this would result in additional technical complications and add little to the behavioral
insights of the current analysis.

8See also Theorem 2.1 in Chew and Epstein (1991). Similar constructions were employed by Mertens
and Zamir (1985) and Brandenburger and Dekel (1993) in the context of hierarchies of beliefs, and by
Gul and Pesendorfer (2004) to develop a space of infinite-horizon decision problems.



lottery over D returns consumption today together with another infinite-horizon temporal
lottery beginning tomorrow. Therefore, elements of D will typically be denoted by (¢, m),
where ¢ € C' and m € A(D). The primitive of the axiomatic model is a binary relation
>~ on the space D.

2.2 Epstein-Zin Preferences

In this section, we formally define the Epstein-Zin representation. Their model will serve
as the starting point for the analysis of mixture-averse preferences and the optimal risk
attitude representation in Section 3.1.

Definition 1 A certainty equivalent is a continuous function W : A([a,b]) — R that
satisfies W (0,) = z for all z € [a, b] and is monotone with respect to first-order stochastic

dominance.”

For any measurable value function V : D — [a, b] and any probability m € A(D), let

m o V=1 denote the distribution (on [a, b]) of continuation values induced by m.*°

Definition 2 An Epstein-Zin (EZ) representation is a tuple (V,u, W, ) consisting of a
continuous function V' : D — R that represents ~, a continuous and nonconstant function
u: C — R, a certainty equivalent W : A([a,b]) — R (where a = min V' and b = max V),
and a scalar € (0,1) such that, for all (¢,m) € D,

V(e,m) = u(c) + W (mo V).

In Appendix A.1, we provide a complete axiomatic characterization of the EZ repre-
sentation in Definition 2. Chew and Epstein (1991) provided a related characterization
of a representation that is not necessarily separable with respect to ¢ and m.'* Our ax-
ioms parallel their treatment, but strengthen their separability assumption by applying
conditions from Debreu (1960) in an intertemporal context. To focus on the most novel
aspects of our model of mixture-averse preferences, the starting point of the theorems in
the main text will be a preference 7~ with an EZ representation.

9A function W : A([a,b]) — R is monotone with respect to FOSD if for any u,n € /\([a, b)) satisfying
w([z,0]) > n([z, b)) for all x € [a,b], we have W (u) > W(n).

10This is standard notation for the distribution of a random variable. Intuitively, the probability that
m yields a continuation value in a set E C [a, b] is the probability that V' (¢,1) € E, which is moV ~}(E).

"They considered a mnonlinear aggregator of current consumption and the continuation value:
Vie,m) = (e, W(moV~1)).



3 Dynamic Mixture-Averse Preferences

3.1 Main Axiom and Representation Result

Our main axiom imposes a type of aversion to probabilistic mixtures of lotteries.

Axiom 1 (Mixture Aversion) For any c,c € C and m,m' € A(D),
(e, gm+gm') Z (¢\m) = (e,m) Z (¢, gm+ 3m).

Axiom 1 puts structure on the individual’s willingness to trade current consumption
for changes in the probability of future outcomes. Using current consumption to measure
the value of changes to the probability assigned to the lotteries m and m/, this axiom
implies that the benefit of increasing the probability that m’ is the relevant lottery from
zero to one-half is (weakly) less than the benefit of increasing the probability from one-
half to one.'? Equivalently, thinking of Axiom 1 as a restriction on the marginal rate of
substitution for (non-infinitesimal) changes in current consumption and future probabil-
ities, it implies that current consumption is an inferior good: The individual becomes
more willing to increase the probability weighting of a preferred lottery at the expense

of current consumption as the baseline probability of that lottery increases.!

For one interpretation of this axiom, consider an individual who can take steps to
mentally prepare herself for the uncertainty that she faces. Her planning is the simplest
when the future is known (the lottery over future outcomes is degenerate), whereas
greater uncertainty about the future makes planning more difficult. In particular, taking
the mixture between two lotteries m and m’ complicates her planning process. Therefore,
it is intuitive that her value for increasing the weighting of m’ from zero to one-half is less
than half of her value for increasing it from zero to one. In contrast, an individual whose
preferences respect the axioms of standard time-separable expected utility would assign
the same value to an increase in the probability of m’ regardless of its current weighting,
and thus would satisfy Axiom 1 as well as its converse.

Our utility representation is defined as follows.

12To be precise, Axiom 1 considers the mixture %m + %m' of the two lotteries m and m/. Thus
uncertainty about which will be the relevant lottery (m or m’) and the uncertainty in the lottery itself
are both resolving a the same time.

13In traditional demand problems, versions of supermodularity have been used to study normal and
inferior goods. Formally, Axiom 1 is equivalent to the definition of (7}, A})-quasisubmodularity from
Quah (2007) for A = 1/2 and i equal to the consumption dimension of C' x A(D). When the other
axioms of the Epstein-Zin representation are also assumed, it can be shown that this notion of gau-
sisubmodularity is satisfied for all A € [0,1], a stronger condition that Quah (2007) referred to as
Ci-quasisubmodularity. This property is stronger than the traditional definition of quasisubmodularity
studied by Milgrom and Shannon (1994), which holds trivially for any additively-separable function.



Definition 3 An optimal risk attitude (ORA) representation is a tuple (V,u, ®, 5) con-
sisting of a continuous function V' : D — R that represents 27, a continuous and non-

constant function u : C' — R, a collection ® of continuous and nondecreasing functions
¢ : |a,b] - R (where a = min V' and b = max V'), and a scalar 5 € (0,1) such that

V(e,m) =u(c) + ﬁsup/ o(V(e,m)) dm(é,m), (3)
¢€® JD
for all (¢,m) € D, and
Zlelg o(x) =z, Vz € la,b]. (4)

We will sometimes write Equation (3) more compactly by treating V' as a random
variable defined on the space D and using the expectation operator:

V(c,m) =u(c) + BsupE,, [o(V)].

ped

Note that the value function V is included explicitly in the definition of the ORA represen-
tation. Using similar techniques to Epstein and Zin (1989), we show in Section S.5 of the
Supplementary Appendix that a value function exists for any (u, ®, 8) as in Definition 3.

The interpretation of Axiom 1 in terms of mental preparation also extends to the ORA
representation. An individual may mentally prepare herself for different future outcomes
or different levels of risk, which corresponds to a choice of ¢ in this representation.'*
A larger set of transformations ® implies greater flexibility in this planning and hence
greater ability to tailor her risk attitude to the uncertainty that she faces (cf. our com-
parative risk aversion result in Section 3.3). Several examples of the ORA representation
that lend themselves to more specific interpretations of this mental preparation in terms

of anticipation and loss aversion are explored in Section 3.2.

We now state our main representation result.

Theorem 1 Suppose = has an Epstein-Zin representation (V,u, W, 3).1> The following
are equivalent:

14The selection of a risk attitude in our representation is similar in spirit to models of consumption
commitments and adjustment costs. For example, the choice of physical commitments, such as mortgage
agreements or purchases of durable consumption goods, impacts risk preferences for future wealth (see
Grossman and Laroque (1990); Gabaix and Laibson (2001); Chetty and Szeidl (2007, 2016)). Even
more closely related, both conceptually and technically, are Kreps and Porteus (1979), Machina (1984),
and Ergin and Sarver (2015), who studied the revealed-preference implications of commitments that are
unobservable or psychological in nature. Maccheroni (2002) developed a model of maxmin under risk
that had a very different interpretation but also relied on similar techniques.

15Equivalently, suppose - satisfies Axioms 2-7 in Appendix A.1.

10



1. The relation - satisfies Aziom 1.
2. The certainty equivalent W in the EZ representation of 2~ is convex in probabilities.

3. The relation 7, has an optimal risk attitude representation (V,u,®, ).

To avoid any confusion about terminology, we should note that the term mixture
aversion has also been used to refer to the related property of quasiconvexity in probabil-
ities. As is evident from the preceding theorem, Axiom 1 (together with the other axioms
of the Epstein-Zin representation) implies quasiconvexity in probabilities.!® Our axiom
imposes additional structure beyond quasiconvexity that delivers the interpretable and
parsimonious representation in Theorem 1, while still maintaining sufficient generality to
permit the behavior in applications that we set out to explain.

We conclude this section with a sketch of the proof of Theorem 1. The intuition for
why mixture aversion implies convexity of the certainty equivalent in probabilities should
be clear from our discussion of the axiom. The basic intuition for why condition 2 implies
3 comes from standard duality results. Since W is convex, it can be expressed as the
supremum of some collection of affine functions. Since any affine function on A([a, b))
can be given an expected-utility representation, this implies there exists a collection ® of
continuous functions ¢ : [a, b] — R such that, for any u € A(a,b]),

—sup/ o(x) du(x (5)

PP

Moreover, since the certainty equivalent satisfies W (d,) = x, we have supycq ¢(7) = z for
all = € [a,b]. Using the change of variables formula, it follows that for every (¢,m) € D,

V(e,m) = u(c) + W (mo V1)

+5sup/ b(z) d(m o V1) ()

ocd

—I—Bsup/ o(V(¢,m))dm(¢,m).

pcd

The only missing step in this sketch is showing that the collection ® contains only
nondecreasing functions. The proof of this property follows from a result presented

6 Formally, risk preferences satisfy quasiconvexity if (¢,m) = (¢, m’) implies (¢,m) = (c,am + (1 —
a)m'). While any utility representation that is convex in probabilities satisfies quasiconvexity, it is also
well known that the converse is not true: There are many preferences that are quasiconvex in probabilities
that cannot be given a convex utility representation (e.g., betweenness preferences other than those that
satisfy independence), and therefore such preferences will violate Axiom 1. See Cerreia-Vioglio (2009)
for a representation result for the class of all continuous and quasiconcave static risk preferences; a dual

version of his representation could be used to represent quasiconvex risk preferences.

11



in Section S.1 of the Supplementary Appendix: We show that if a convex utility rep-
resentation W respects a stochastic dominance order, then there exists a collection of
expected-utility functions ® that generates W and respects the same dominance order.
In particular, since a certainty equivalent W is by definition monotone with respect to
FOSD, this result implies there exists a collection ® satisfying Equation (5) such that
each ¢ € ® is nondecreasing.

3.2 Parametric Examples and Some Properties of the Model

In this section, we describe several special cases of the optimal risk attitude certainty
equivalent. These parametric examples will be used to illustrate some of the results in
subsequent sections, and they will also be used in our application.

Suppose the collection ® consists of transformations ¢(x|y, ) that are indexed by a
pair of parameters v € I" and 6 € ©. The first parameter could be interpreted as a target
or anticipated utility level, and the second parameter determines risk aversion. Formally,
we assume that I' is an interval of real numbers that contains the range of V', and we
impose the following restrictions on the parameterized transformation function:

o(x]y,0) < x, with equality if z =,

o(aly,0') < lal,0), if ¢ > 6. (6)

The following examples satisfy these conditions.

Example 1 (Smooth Transformation) For v € R and 6 > 0, consider the parame-

terized function 1

Beb ) =7+ 5 — 5 exp(6(z — 7)) )

Example 2 (Kinked Transformation) For v € R and 0 € [0, 1], consider the param-
eterized function

(8)

o(z|y 9):{74_(1_9)(33—’}’) if >

Y+ A +0)(z—7) ifz<n.

In the simplest class of examples, 6 is a fixed parameter and the individual optimizes
only over 7. The set of transformations is therefore ® = {¢(:|v, ) : v € T'}, which implies
the certainty equivalent can be written as

W (1) = sup / oz, 0) dp(z). (9)

vyel

Note that this collection ® satisfies Equation (4) in the definition of the ORA represen-
tation by the first restriction in Equation (6). Moreover, as we will establish formally in

12
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(a) Example 1: smooth risk attitude (b) Example 2: kinked risk attitude
transformation function transformation function

Figure 2. Special cases of the parametric certainty equivalent in Equation (9).

Section 3.3, the second condition in Equation (6) implies that increasing 6 leads to an
increase in risk aversion. Figure 2 illustrates the transformation functions in Examples 1

and 2 for fixed 6.

Before proceeding to the more general parametric form of the certainty equivalent
that will be used in our applications, we discuss some connections to other models and
an interesting interpretation of the decision-making process that might give rise to these
functional forms. The examples described above are special cases of what Ben-Tal and
Teboulle (1986, 2007) referred to as the optimized certainty equivalent, which is the special
case of Equation (9) where

w0 =swp o+ [ ol =) dute) (10)

veER

for some increasing and concave function ¢ that satisfies ¢(0) = 0 and ¢(z) < z.'" Ben-
Tal and Teboulle (2007, Examples 2.1 and 2.3) also observed several useful properties
of the preceding examples that will be related to our analysis. They showed that the
certainty equivalent defined by Equations (7) and (9) turns out to be the certainty equiv-
alent of an exponential expected-utility function. This connection is a special case of a
more general relationship that we examine in Appendix A.2: Epstein-Zin-Kreps-Porteus
(EZKP) expected utility is a special case of the ORA representation, provided the cer-
tainty equivalent is risk averse. Ben-Tal and Teboulle (2007) also showed that for any
probability distribution p, taking v = median(u) maximizes Equation (9) when ¢(z|v, 6)
takes the form in Equation (8).'®

17See also Gollier and Muermann (2010) for a related utility representation.
8Moreover, it can be shown that the certainty equivalent defined by Equations (8) and (9) is a special
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One interpretation of certainty equivalents of the form in Equation (10) involves an-
ticipatory utility and the optimal choice of future reference points. The choice of v in
this certainty equivalent can be interpreted as anticipating some future utility level. The
first term ~ in the maximization problem captures the anticipatory utility associated
with looking forward to this future utility.! The term ¢(x — ) inside the integral can
be interpreted as the value of gains or losses relative to the reference level . Thus ex-
ante anticipation forms a reference level for subsequent outcomes, and gains and losses
are measured relative to this reference point. For example, looking forward to a fu-
ture promotion may bring enjoyment in and of itself, but also heighten the feelings of
disappointment if the promotion is not received.?’

Some of the most novel implications of our model are obtained from examples that
extend beyond the form given in Equation (9). In that specification, the value of 6 is
fixed; however, 0 itself may be a choice variable in the formula for the certainty equivalent.
For example, an individual may be able to reduce her sensitivity to risk, but at some
psychological cost. Formally, let © be any subset of real numbers, let 7 : © — R be a
cost function that satisfies infycg 7(0) = 0, and define a collection of transformations by

®={¢(:|,0)—7(0) :v€T,0 € O}.

The resulting certainty equivalent can be written as

) = supsup { [ otel,6)dute) — 7). (1)
0cO ~el

When this certainty equivalent is applied to the transformation functions from Examples 1

and 2, one interpretation along the lines discussed above is that the choice of 6 corresponds

to the intensity of anticipation of the future utility level v, where sensitivity to gains and

losses and anticipatory utility (now given by v —7(#)) are both increasing in 6 (assuming

7(0) is decreasing in 0).

For a concrete example of the behavior associated with the certainty equivalent in
Equation (11), consider how an individual’s marginal willingness to pay for additional
insurance coverage changes with her existing level of coverage. When an insurance policy

case of the dual model of Yaari (1987): W(p) = [z d(go F,)(x) where F), is the cumulative distribution
for the measure p and g(a) = (1 + 6)a for @ < 1/2 and g(a) = (1 — 0)a + 6 for o > 1/2.

9The conscious choice of anticipation in this interpretation should not be confounded with models
that treat “anticipation” as uncontrollable anxiety or enjoyment about the future (e.g., Loewenstein
(1987); Caplin and Leahy (2001); K8szegi (2010); Epstein (2008)).

20Existing approaches to modeling reference dependence assume that reference points are directly de-
termined by the status quo (e.g., Markowitz (1952); Kahneman and Tversky (1979); Barberis, Huang,
and Santos (2001)) or future expectations (e.g., Gul (1991); K6szegi and Rabin (2006, 2007); Masatli-
oglu and Raymond (2016)). Our interpretation of Equation (10) suggests a new alternative whereby
individuals exert direct influence on their future reference points through their choice of anticipation.
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covers a significant portion of any losses, the individual may have a high marginal will-
ingness to pay for additional coverage that would make the policy complete (or nearly
complete) and allow her to avoid loss altogether (see Sydnor (2010)). It is also conceiv-
able that her marginal willingness to pay for small increases in coverage is less at some
lower levels of coverage. Intuitively, an individual who is only mentally preparing herself
for a small loss has a strong incentive to pay to keep her loss small, whereas an individual
who has already resigned herself to the possibility of a large loss might place lower value
on marginally reducing her exposure. The following stylized example shows how such
behavior is possible within our model.

Example 3 (Reservation Price for Insurance) Suppose the individual has wealth
w and faces a loss of amount L with probability 7 < 1/2. Suppose the individual
evaluates uncertain future wealth using the certainty equivalent defined by Equations (8)
and (11) for © = {6,0,}, where 0 = 0; < 6, < 1 and 0 = 7(6;) < 7(61).2' Let P(y)
denote this individual’s maximum willingness to pay (reservation price) for y € [0, L]
dollars of insurance coverage paid in the event of a loss. Using array notation for the
resulting lotteries over future wealth, it is easy to show from the functional form in
Equation (8) that

Ply) =W w—L+y W w—L 7
w 1—m w 1—m

s ot )0} g ot~ )0
max {¢(w L+ Wy‘w, 6) 7(0) max ¢(w ™ ‘w, 6) 7(0) ¢,
where the second equality follows because w is the median outcome of these lotteries and
hence v = w is optimal as noted previously. Figure 3 illustrates the function P(y).??

Example 3 is useful for illustrating both similarities and differences between the ORA
representation and existing models. Like many other preferences that satisfy first-order
risk aversion (see Segal and Spivak (1990)), an individual with the preferences described
in this example is willing to purchase full insurance coverage even at an actuarially
unfair rate. However, this example also generates a marginal willingness to pay for
insurance that is increasing at some levels of coverage. While such behavior seems quite

21This example focuses on the certainty equivalent applied in a static decision problem for ease of
exposition. It could equivalently be formulated using risk about future consumption within a (dynamic)
ORA representation with u(c) = c.

22For ease of exposition, we assumed that the only nonlinearity in the transformation ¢(z|y, 8) is the
kink at x = «. The implication of this assumption is that marginal willingness to pay for insurance
is monotonically nondecreasing in the level of coverage. A more realistic example might impose strict
concavity of the transformation function at all wealth levels. The implication would be that marginal
willingness to pay for insurance is strictly decreasing in the level of coverage except for at those levels
at which the optimal 6 is changing, resulting in a discrete increase in marginal willingness to pay.
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Figure 3. Reservation price for insurance from Example 3.

plausible, we are not aware of any existing models that can induce this demand pattern
without simultaneously violating risk aversion: As we show formally in Section S.3 of the
Supplementary Appendix, marginal willingness to pay for additional insurance coverage
must be decreasing in the level of coverage for any risk preference that satisfies preference
for diversification (quasiconcavity in random variables). Moreover, none of the non-
expected-utility preferences commonly used in the literature can relax preference for
diversification without also violating monotonicity with respect to second-order stochastic
dominance.?® It seems overly restrictive that these two facets of choice should be so tightly
linked, especially in the context of insurance decisions where risk aversion plays such a
prominent role.

Relaxing preference for diversification (without violating risk aversion) also plays a
central role in our application to stock market participation in Section 4. In that section,
we use an ORA representation with a certainty equivalent defined by Equations (7) and
(11). As we show in Appendix A.2, this specification can equivalently be expressed as a
generalization of Epstein-Zin-Kreps-Porteus expected utility:

1
V(e,m) = u(c) + Bsup {—5 log (E,, [ exp(—0V)]) — 7(8)} . (12)
0cO
This connection will make it easy to compare our model to the benchmark of EZKP
utility (the case where © = {#}) and to show why the generalization to nonsingleton
© is necessary for our results. This extension of expected utility is also motivated by
experimental evidence (from decision problems with a finite outcome space) that finds

23In contrast, since all of the transformation functions in Example 3 are concave, the preference
respects SOSD. See Theorem S.1 in Section S.1 of the Supplementary Appendix for a generalization of
this observation to any stochastic order.
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the majority of the violations of the expected-utility axioms occur around the boundary
of the probability simplex (see Harless and Camerer (1994) for a detailed discussion and
an aggregation of numerous earlier studies). Taking © = {0.,0y} for 6, < 0y and
0 =17(0y) < 7(0;) in Equation (12) is consistent this evidence: 6 will be optimal for
lotteries involving significant risk, whereas the individual will switch to g for lotteries
near the corners of the simplex.?*

3.3 Uniqueness and Comparative Risk Aversion

In this section, we describe the uniqueness properties of the ORA representation and
provide a comparative measure of risk aversion.

Most of the elements of the representation will be identified either uniquely or up to an
affine transformation. However, there is one technical issue associated with identifying the
set of risk attitudes ® in the representation. Since this set is subjective (i.e., unobserved),
it is possible that there are some extremely pessimistic or risk averse transformations that
are feasible for the individual but that she would never find optimal for any lottery. For
example, if ¢ < ngS (pointwise) for some ngS € @, then it can never be determined from the
individual’s preferences whether or not ¢ is in fact feasible for the individual; since this
transformation is dominated, her choices can be rationalized both by including ¢ in ®
and excluding it.

Due to the impossibility of identifying the exact set of feasible risk attitude transfor-
mations, it is natural to focus on one of two canonical sets of transformations: a minimal
set in the sense that no transformations can be dropped from ® without altering the
implied ranking of some pair of lotteries, or a maximal set in the sense that no trans-
formations can be added without altering the ranking of some pair of lotteries. The
results in this section are based on the second approach and identify and compare max-
imal sets of transformations. This will permit a simple and intuitive characterization of
comparative risk aversion whereby a less risk averse individual has a larger set of feasible

transformations.?°

24This special case of our representation is similar in spirit to, and shares some properties with, the
u~v preferences studied by Neilson (1992), Schmidt (1998), and Diecidue, Schmidt, and Wakker (2004),
which ascribe one utility function v to certain outcomes and another Bernoulli utility index w to risky
outcomes. However, unlike u-v preferences, the representation in Equation (12) is continuous and respects
first-order stochastic dominance.

25 Another reason for focusing on maximal sets is that there are some technical issues involved in trying
to identify a minimal set of transformations, primarily due to the fact that the set of lotteries on an
interval has an empty interior within the space of all signed measures. However, in Section S.1 of the
Supplementary Appendix, we apply a result from Cerreia-Vioglio, Maccheroni, and Marinacci (2015) to
characterize a set of transformations ® that is minimal in the sense of admitting the smallest possible
set of expected-utility preferences.
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Definition 4 Let (V,u,®,5) be an optimal risk attitude representation. The mazimal
extension of ® is the set ®* of all continuous and nondecreasing functions ¢ : [a,b] — R
(where @ = min V' and b = max V') such that, for any m € A(D),

/ (V (& ) dm(é, i) < sup / H(V(é, 7)) dm(é, ).
D (f;G‘I) D
The ORA representation is mazimal if & = d*.26

The next result formalizes the uniqueness properties of the ORA representation.

Theorem 2 Two ORA representations (Vi,uy, Py, f1) and (Va, ug, $o, Po) represent the
same preference if and only if 51 = B2 and there exist scalars a > 0 and X € R such that

1. Uy = Qquy + /\(1 — ﬁl),

2. There exists a bijection [ : ®F — ®} such that for any ¢, € O and ¢o = f(¢P1),

Ga(ax + N) = api(z) + N\, Vz e Vi(D).
These conditions imply that Vo = aVy + .

Theorem 2 shows that, modulo an affine transformation, two maximal ORA repre-
sentations of the same preference must be identical. A direct proof of this result is not
provided, since the theorem follows immediately by applying Theorem 3 below to two
representations of the same preference.

We now turn to the comparative measure of risk aversion. A more risk averse indi-
vidual is intuitively more prone to reject a temporal lottery in favor of a deterministic
consumption stream, as the following definition from Chew and Epstein (1991) formal-

izes.2"

Definition 5 The relation Z; is more risk averse than 7=, if, for any (¢,m) € D and
C = (007017C2,...) S CN,
(c,m) Z1 ¢ = (¢,m) 2 C.

26 An alternative definition of the maximal extension is also possible. It is a standard result that a
set of linear functions generating a convex function can be made maximal by taking its closed, convex,
comprehensive hull (i.e., the smallest superset that is closed, convex, and contains all pointwise dominated
functions). For example, see Theorem 3 in Machina (1984).

27It is immediate from the construction in Epstein and Zin (1989) that CN can be embedded as a
subset of D.
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The following result specializes the characterization of comparative risk aversion from
Chew and Epstein (1991) for Epstein-Zin representations to the ORA representation.

Theorem 3 Suppose the relations 721 and 75 have ORA representations (Vi,uy, @1, 1)
and (Va,us, ®o, o), respectively. Then =1 is more risk averse than 7o if and only if
B1 = Ps and there exist scalars o > 0 and A € R such that

1. Uy = Uy + )\(1 — 61>,

2. There exists an injection [ : ®7 — O such that, for any ¢1 € ®F and ¢ = f(¢1),

Go(ax + N) = api(z) + A, Va e V(D).
These conditions imply Vo > aVi+ X, with equality for deterministic consumption streams.

This result shows that, modulo an affine transformation, the maximal extension of
the set of transformations @7 of a more risk-averse individual must be a subset of the set
&3 of the less risk-averse individual. Intuitively, having more ways of tailoring one’s risk
attitude to the lottery being faced decreases risk aversion.

Theorem 3 makes it easy to compare many parametric special cases. For example,
holding fixed u and g, if each feasible transformation in ®; is bounded above (pointwise)
by some transformation in ®,, then the maximal extension for the first set is a subset
of that of the second, ®; C ®3. The following corollary lists the implications of this
observation for some of the examples considered in Section 3.2.

Corollary 1 Suppose the relations 751 and 7Zo have ORA representations (Vi,uy, @y, 1)
and (Va, ug, ®o, 52), respectively, and suppose that uy = us and By = [s.

1. If @y contains the identity function, ¢p(x) = x, then -1 is more risk averse than .

That is, any ORA representation is more risk averse than time-separable expected
utility.?s

2. Suppose as in the certainty equivalent in Equation (9) that ®; = {¢(|v,60;) : v € '},
where ¢(x|v,0) satisfies Equation (6). Then 751 is more risk averse than s if and
only if 01 > 6.

3. Suppose as in the certainty equivalent in Equation (11) that ®; = {¢(-|y,0) —7:(0) :
v € IO € O}, where ¢(x|y,0) satisfies Equation (6) and infgee 7:(0) = 0. If
71(0) > 15(0) for all 8 € O, then 71 is more risk averse than Zo.

28If @, contains the identity function, then Va(c,m) = ua(c) + BoEm [Va].
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4 Heterogeneous Stock Market Participation

4.1 Empirical Facts and Existing Explanations

In this section, we show that the optimal risk attitude representation may help to shed
some new light on several puzzling patterns related to household stock market partici-
pation and asset allocation decisions, as well as equilibrium asset prices. We begin by
describing two key empirical facts, explaining how they will be accommodated in our
model, and giving an overview of the successes (and shortcomings) of existing models in
addressing these facts.

Fact 1: Many households have limited or no participation in equity markets.

FAact 2: Although participation is positively correlated with wealth, a nontrivial fraction
of wealthy households hold little or no public (or private) equity.

There is a large literature in household finance documenting these and other patterns
in stock market participation (e.g., Mankiw and Zeldes (1991); Haliassos and Bertaut
(1995); Heaton and Lucas (2000)). Importantly, Heaton and Lucas (2000) showed that
while private business assets substitute for public equity for some households, around 10%
of wealthy households hold neither. As noted by Campbell (2006, page 1564), “Limited
participation among the wealthy poses a significant challenge to financial theory and is
one of the main stylized facts of household finance.” It is true that there has been an
increase in the level of stock market participation in recent years, primarily in the form
of retirement savings and investment in mutual funds. Even so, as of 2007 only 51.5%
of US households had any direct or indirect holdings of stock, and the average share of
financial assets held in equity was 52.7% (Guiso and Sodini (2013, Tables 1 and 2)).

In the following sections, we will examine these facts through the lens of the optimal
risk attitude representation. We will consider an economy with a continuum of agents
with identical preferences that are homogeneous in wealth. Using the utility specification
described in Equations (7) and (11), we find that heterogeneity in risk exposure arises en-
dogenously in the dynamic general equilibrium of this economy. The intuition behind our
results is relatively straightforward: When agents can optimize over their risk attitudes
(subject to some mental cost), they endogenously sort into different types in equilibrium.
One segment of the population will choose a risk attitude that is less sensitive to gains
and losses and therefore will hold greater consumption risk; the other will choose a risk
attitude that is more sensitive to losses and will hold very little consumption risk. Since
mentally preparing for greater risk exposure comes at a psychological cost in our repre-
sentation, inducing a fraction of the population to hold a large amount of risk requires
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significant compensation in the form of a larger expected return. In this way, our model
will generate both heterogeneous participation and a large equity premium.

The “participation puzzle” described above has received significant attention in recent
years, and a number of potential explanations have been proposed. We summarize them
below and discuss the similarities and differences from our approach.

EXPLANATION 1: Expected utility with heterogeneity in risk aversion.

Heterogeneity in risk aversion in the population will obviously generate differences in
the level of investment across agents. However, closely related to the equity premium
puzzle (Mehra and Prescott (1985)), the question is whether the levels of risk aversion
required to generate low levels of investment by a large fraction of the population are
reasonable. The consumption of stockholders is more volatile and more correlated with
stock market returns than that of nonstockholders, and hence the equity premium be-
comes less of a puzzle when attention is restricted to consumers who invest in the stock
market (see Mankiw and Zeldes (1991); Attanasio, Banks, and Tanner (2002); Brav,
Constantinides, and Geczy (2002); Vissing-Jorgensen (2002); Vissing-Jorgensen and At-
tanasio (2003)). At the same time, these papers observe that there remains a deeper
puzzle of explaining why so many households hold little or no stock, as the level of risk
aversion required to rationalize their choices would be even higher than estimates based
on aggregate consumption.

EXPLANATION 2: Participation costs.

Participation costs, in the form of monetary expenses associated with investing or
informational costs associated with choosing an optimal portfolio of stocks, can provide
a partial resolution of the participation puzzle. A number of studies have found that
plausible values of entry costs and ongoing participation costs can rationalize the non-
participation decision of many households (e.g., Vissing-Jgrgensen (2003); Gomes and
Michaelides (2005)). Another important benefit of participation cost models is that they
predict that participation increases with wealth. However, these models still fail to ex-
plain the lack of participation or minimal risk exposure of some wealthy households, as
their benefit from equity investing would dwarf any reasonable value for the participation
cost (Vissing-Jorgensen (2003); Briggs, Cesarini, Lindqvist, Ostling (2015)).

We view our model as complementary to the participation-cost approach. Since the
ORA representation used in this section is homogeneous in wealth, our predictions re-
garding heterogeneous participation in no way rely on wealth effects. In Section 4.5.1,
we discuss how an extension of our model that combines mixture-averse preferences with
modest participation costs can explain why risk exposure covaries positively with wealth,
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yet even slight heterogeneity in costs or preferences in the population would lead some
wealthy households to either not participate in the stock market or hold very conservative
portfolios.

EXPLANATION 3: First-order risk aversion or ambiguity aversion.

Other preference-based models have been used to address the participation decisions
of wealthy households. These models invoke first-order risk aversion as an explanation for
why some households would avoid an actuarially favorable investment opportunity such
as the stock market. For example, Ang, Bekaert, and Liu (2005) used the disappointment
aversion model of Gul (1991) to study a dynamic asset allocation problem and determined
the critical values of the disappointment aversion parameter that lead to nonparticipation.
However, Barberis, Huang, and Thaler (2006) observed that the presence of background
risk (e.g., uninsurable idiosyncratic income risk) makes it difficult for models of first-order
risk aversion to explain nonparticipation in the stock market using reasonable parameter

values.??

Their suggested remedy was to assume loss aversion together with narrow
framing of portfolio risk, meaning that gains or losses in the stock market are evaluated
separately from overall consumption risk. In Section 4.5.2, we discuss why our model is
unlikely to be subject to their critique and thus narrow framing is not needed to generate
low participation levels. To the contrary, we will show that existing results about the
impact of background risk on the risk attitudes of expected-utility maximizers imply that
moderate background risk would only serve to decrease the optimal level of investment

of households in our model.

Ambiguity aversion has also been proposed as an explanation for nonparticipation in
the stock market. It is well known from the work of Dow and Werlang (1992) and Epstein
and Wang (1994) that ambiguity aversion can lead to portfolio inertia at the risk-free
portfolio, and therefore heterogeneity in perceived ambiguity can generate nonparticipa-
tion by some agents. More recent work by Epstein and Schneider (2007) has explored
how learning under ambiguity can influence stock market participation, and they showed
that this mechanism may explain part of the increase in participation rates in recent
years.®® Ambiguity aversion and mixture aversion are in many ways complementary—as

29Barberis, Huang, and Thaler (2006) showed that introducing background risk decreases the aver-
sion to exposure to stock market risk for the disappointment aversion model, to the point where the
disappointment aversion parameters required for nonparticipation in the stock market would also imply
rejection of a 50-50 gamble with a loss of $10,000 and a gain of $20,000,000 at a wealth level of $100,000.
They argued that their negative result extends broadly to models that rely on first-order risk aversion
to obtain nonparticipation. Safra and Segal (2008) made the related observation that Rabin’s paradox
extends to a broad class of non-expected-utility preferences when sufficient independent background risk
is introduced.

30 Another likely explanation for rising participation rates is a decrease in informational and monetary
costs to investing (e.g., see the discussion in Guiso and Sodini (2013, page 1454)).
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was the case with participation costs—in that each is ideally suited to address different
aspects of household behavior. For example, ambiguity aversion provides a sensible ra-
tionale for underdiversification and the home bias (e.g., Epstein and Miao (2003); Boyle,
Garlappi, Uppal, and Wang (2012)), neither of which has an obvious connection to our
model. On the other hand, the optimal risk attitude representation can generate low
levels of stock market participation and low portfolio weights on stock for many partici-
pating households even in familiar environments or after long histories, where ambiguity
would arguably play a less significant role in investment decisions.

Due to the complexity of dynamic models with heterogeneous preferences, the extant
literature on preference-based explanations of the participation puzzle has been restricted
almost exclusively to partial equilibrium analysis, taking the data-generating process for
asset returns as given and solving for the participation and asset allocation decisions of
a single agent. The few papers that have conducted general equilibrium analysis (typi-
cally within a one or two period framework) have reported somewhat mixed results. For
example, Cao, Wang, and Zhang (2005) showed that increasing the ambiguity dispersion
among investors leads simultaneously to a decrease in the participation rate and a de-
crease in the equity premium.?! Chapman and Polkovnichenko (2009) observed similar
implications for increases in the dispersion of risk aversion parameters for a variety of
non-expected-utility preferences (including disappointment aversion and rank-dependent
utility). These results suggest that more research is needed to determine the suitability
of these models for jointly explaining the participation rate and asset returns.

This is perhaps the most important point of departure of the ORA model from the
previous literature: It can generate equilibrium heterogeneity in participation decisions
even when agents have identical and homogeneous preferences. Although our model will
not permit representative agent analysis (see Section 4.3), these conditions imply that
equilibrium analysis does not require tracking the distribution of wealth across agents.
Consequently, the model is tractable enough for us to conduct a complete dynamic general
equilibrium analysis of both market prices and the distribution of participation decisions,
taking only the dividend and consumption processes as primitives. This makes it pos-
sible to easily evaluate the performance of the ORA representation as a model of both
nonparticipation and asset pricing.

4.2 Setting and Risk Preferences

Consider an economy in which aggregate consumption growth follows a first-order Markov
process. The current state of the economy z; € Z is observed by each individual in the

31The intuition behind their result is that greater dispersion in ambiguity implies there is a subset of
the population that becomes much more tolerant of ambiguous payoffs and is therefore willing to invest
more heavily in stock even at a lower premium.
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economy at the start of period ¢, where Z is finite. We assume that the state is i.i.d.
across time, and is distributed according to the probability measure P. Thus the model
precludes intertemporal correlation between current and future states. This assumption
is certainly restrictive, and is made in order to simplify the analysis and focus attention
on the endogenous heterogeneity in risk bearing that arises in equilibrium. A natural next
step for future study is to incorporate persistence of shocks and other types of correlation
across time into this analysis.

Denote the aggregate consumption endowment by e;, and let A\;;; denote aggregate
consumption growth between period ¢t and t 4+ 1: e;417 = A\ip16;. Consumption growth is
determined by the state, i.e, \jy1 = A(2z441) for some function A. We assume a continuum
of consumers, with the consumption of consumer ¢ € [0, 1] at time ¢ denoted by ¢;;. The
feasibility constraint in the economy requires that

1
/ Cit di = €¢, Vt.
0

The distribution of ownership of the endowment allocation is not important for any of
the results that follow, as long as it is absolutely continuous with respect to the Lebesgue
measure on the unit interval of consumers.

Suppose that markets are complete and there exists a pricing kernel M, such that
the period ¢ price of any random asset paying x;+1 in period ¢ + 1 is p; = E[M; 4112441
Given the independence of consumption growth across time, one might conjecture that the
pricing kernel is stationary and depends only on the period ¢+ 1 state: M 41 = M (z141)
for some function M. We will verify that this indeed the case in equilibrium. Under
these assumptions, the time t budget constraint for a consumer with wealth w; is then

Ct + E[th+1] = Wy, (13)

where ¢; € Ry and w41 € RZ.

The consumers in the economy have mixture-averse preferences, where the instanta-
neous utility function in the optimal risk attitude representation is

u(c) = (1 = f)log(c)

and the certainty equivalent is given by Equations (7) and (11). Since we are now
considering random variables (rather than probability distributions), we change notation
slightly to avoid confusion and write R (rather than W) to denote the operator mapping
from random variables to their certainty equivalents. Each consumer therefore has the
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following value function for wealth w;, conditional on the pricing kernel M:

V(ws M) = max {(1—5)log(er) + ARV (wrias M) . (14)

where the maximization is subject to the budget constraint in Equation (13), and

R(V(wiy1; M)) = maxmax E [gb (V(wps1; M)

7.6) = 7(6)]

0c® ~eR
for 11
o(aly,0) =7+ 75 — gexp(=b(z —7)).
Recall also that mingeg 7(f) = 0. This is a necessary restriction for R to be a certainty
equivalent.??

To facilitate the interpretation of our results relative to the existing literature, it is
useful to note an equivalent formulation of the model. If we let hy(z) = — exp(—0x) for
0 € O, then Corollary 2 in Appendix A.2 implies that we can express R as

R(V(wes1; M)) = max { g (E[ho(V(wei1; M))]) = 7(60)}

(15)

= e { o (B exp(-6V (uis M)]) ~ 70)

Note that Equation (15) reduces to the standard Epstein-Zin-Kreps-Porteus (EZKP)
certainty equivalent if © = {0} and 7(0) = 0. The equilibrium analysis in Section 4.4
will include the special case of EZKP utility for comparison. Our results will show
that the maximization with respect to 6 leads to several significant differences from
EZKP preferences: First, having multiple # permits individuals to be very averse to
small gambles while at the same time exhibiting reasonable risk attitudes for larger
gambles. Second, equilibrium in this economy often involves heterogeneity in the choice
of 6 and hence differences in consumption risk across consumers, even when they are
ex-ante identical.

Standard techniques can be applied to prove the existence and uniqueness of the value

320ne could obtain similar heterogeneity in participation by using the kinked transformation functions
from Equation (8). This alternative specification could be useful for incorporating first-order risk aver-
sion. However, our choice of certainty equivalent is convenient for several reasons: First, it shows that
first-order risk aversion is not needed to generate a fraction of the population that holds minimal risk
exposure. Second, it is smooth and therefore permits techniques based on differentiation. Third, it al-
lows the model to make realistic predictions about the impact of incorporating uninsurable idiosyncratic
income risk (see Section 4.5.2).
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function for this problem. Moreover, the value function takes the form
V(wy; M) = A(M) + log(wy) (16)

for a constant A(M) that depends on the pricing kernel. Additional details and a proof
of these claims can be found in Section S.4.1 of the Supplementary Appendix.

4.3 Illustration of Equilibrium

In this section, we provide an informal description of the three possible types of equilib-
rium that can arise in this model. For ease of illustration, the discussion will initially
focus on equilibrium in a static (one-period) model. We then proceed to describe how
equilibrium in our infinite-horizon model has a similar structure. Formal statements of
the equilibrium conditions for the three cases are relegated to Section S.4.2 in the Sup-
plementary Appendix, which also contains a summary of the numerical procedure that
will be used in Section 4.4.

4.3.1 Benchmark: Static Model

For ease of illustration, we first consider a simple model with a single period, two states,
and two types. This section will therefore focus on the following simple specification:

7 = {Zl,Zh} 0= {QL,HH}, ‘9H > ‘9L

0 if0=0
e() < e(z") o) =" ' 1
>0 if0=0,.

We have dropped time subscripts for the one-period analysis in this section. Assume
each of the continuum of consumers has equal (unit) ownership of the endowment (this
assumption is made for ease of exposition but is not imposed in the analysis in the
following section). Thus a consumption allocation ¢ = (¢(2!), ¢(z")) is affordable given
the pricing kernel M if

E[Mc| = E[Me].

Assume each consumer evaluates a random consumption allocation ¢ by applying the

certainty equivalent in Equation (15) to the logarithm of ¢(z):*®

R(log(c)) = max {log (E [0_9]_%> - 7'(9)} :

0c{0r.0u}

33To make this analysis as representative as possible of the infinite-horizon model, we treat consump-
tion just as we would treat future wealth in the general model. Given the log form of the value function
in Equation (16), we therefore apply the certainty equivalent R to log(c) rather than to c.
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Thus, for fixed 6, each consumer evaluates uncertain consumption using a CRRA cer-
tainty equivalent with a coefficient of relative risk aversion of # + 1. However, since # can
vary with the risk being faced, this preference will violate the expected-utility axioms.
Intuitively, for small gambles it will be optimal to choose # in order to avoid the utility
cost 77, > 0; when faced with larger risks, a consumer may then find it optimal to select
01, to decrease the sensitivity to this more uncertain outcome.

Figure 4 illustrates the indifference curves of a consumer with the risk preferences
described above. Note that 0 is optimal for allocations near the certainty line, whereas
01, is optimal for allocations where the level of consumption differs greatly between states.
This figure also illustrates the equilibrium allocations and budget lines for three possible
cases. In cases 1 and 2, all consumers choose the same type in equilibrium (0, and 0y,
respectively) and consume their endowment: c(z) = e(z) for z € {z!, 2"}. In these first
two cases, the equilibrium allocation and prices are the same for our economy with a
continuum of consumers as they would be for an economy with a single representative
agent with the same preferences.

The distinctive part of our analysis arises in case 3, where equilibrium necessarily
involves heterogeneous types, with some consumers selecting 05 and others ;. As is
evident from Figure 4, preferences are not quasiconcave in the consumption allocation,
and therefore equilibrium may not exist in a representative agent economy (non-existence
would be an issue precisely in case 3). However, for our economy with a continuum of
consumers, the theorem of Aumann (1966) ensures the existence of an equilibrium.3!
The crux of his theorem is that the average (i.e., integral) of the (possibly non-convex)
upper-contour sets of individual preferences is convex. The economic interpretation of this
mathematical condition is central to our application: Rather than every consumer keeping
their endowment, there may be welfare improvements associated with heterogeneous
allocations that lead to the same average aggregate consumption. Equilibrium in case 3
takes this form, with consumers who select type 6}, choosing allocation ¢y, and consumers
who select type 0y choosing allocation cp,,. Note that these two allocations give the same
utility, which is strictly higher than the utility from consuming the endowment e. The
fraction of consumers selecting each of these types and allocations is determined by the
market-clearing condition: e = awcy, + (1 —a)cy,, where « is the fraction of the population
that selects type 0.

34A related result for a large but finite economy in which consumers’ preferences are permitted to
violate quasiconcavity can be found in Starr (1969), who showed that divergence from equilibrium shrinks
with the number of consumers.
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(c) Case 3: Heterogeneous types

Figure 4. Three possible cases of equilibrium illustrated for a static model with two states.
In cases 1 and 2, equilibrium consumption is identical for each consumer and proportional to
the aggregate endowment. In case 3, type 61 consumers choose allocation cg, and type 0
consumers choose allocation ¢y, . The fraction of consumers selecting each type is determined
by the market-clearing condition.
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4.3.2 Equilibrium in the Infinite-Horizon Model

Equilibrium in the infinite-horizon model will also fall into one of the three cases illus-
trated informally for the static model: In each period, consumers will either all select the
same type in equilibrium (6, or 6), or there will be heterogeneity in the choice of type.
We defer the details of how to solve for the pricing kernel and check the market-clearing
conditions in each of these cases to Section S.4.2 in the Supplementary Appendix, but
we present the numerical results of our equilibrium analysis in the following section.

4.4 Calibration

In this section, we numerically solve the infinite-horizon model. We will highlight several
key features of individual risk attitudes and market equilibrium for various parameter val-
ues: heterogeneity in market participation and risk exposure, asset returns, and attitudes
toward small and large idiosyncratic gambles.

4.4.1 Parameter Values

Recall that aggregate consumption growth is determined by a state which is i.i.d. across
time. Assume there are two states, Z = {z!, 2"}, and each occurs with equal probability:
P(2Y) = P(2") = 0.5 (we relax this assumption in Section 4.4.3). Aggregate consumption
satisfies e;11 = A(z441)e;. For ease of comparison to existing results, we calibrate the
model using the same mean and standard deviation for aggregate consumption growth
as in Mehra and Prescott (1985):

M) =p—o, MM =p+o

for 4 = 1.018 and o = 0.036. We will also analyze the returns of an asset that pays a
stream of dividends {d;}. The growth rate of dividends satisfies d; ;1 = A4 (2;41)d;, where

N () = p — oy, M (M) = p+ og

for o4, = 0.10.

There is a continuum of consumers with identical preferences. Each consumer has
a value function V(wy; M) for wealth (conditional on the pricing kernel) that satisfies
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Equations (13), (14), and (15). We consider the following simple specification:
@Z{QL,HH}, 9H>8L

=0 if0=20
7(9): TH 1 H
>0 iff=20r.

Several values of 0y, 0y, and 7, will be considered in Table 1.

As part of the calibration of the model, we also describe the attitudes toward 50-50
gambles of various scales for the different parameter values under consideration. Examin-
ing the gains needed to compensate for losses ranging from small to large provides another
gauge of the overall risk attitudes associated with different specifications, and hence of
whether parameter values generate reasonable behavior outside of this specific investment
application.®® Similar explorations have been used to evaluate the choice of parameters
in other models (e.g., Epstein and Zin (1990); Kandel and Stambaugh (1991)).

Imagine a consumer is offered a one-time gamble over future wealth at some initial
period t. Inserting the explicit formula for the value function from Equation (16) into
Equation (15), the consumer evaluates the random future wealth w;; resulting from this
gamble according to

R(V(wy1; M) = A(M) + max {log <E [w; 1] _%) — 7(9)} : (17)

We will use Equation (17) to evaluate atemporal wealth gambles in the calibration results
that follow.36

4.4.2 Numerical Results

Table 1 summarizes our results. For comparison, the first two columns of the table
describe EZKP utility with coefficients of relative risk aversion (0 +1) equal to 4 and 18,
respectively. The last three columns describe different parameter values for the optimal
risk attitude representation.

Panel A in the table describes the gains needed for an individual to accept an atempo-
ral 50-50 gamble for various possible loss values when initial wealth is $300,000. Panel B
describes the consumption growth rates of each type 0 € {0;,0g} that is selected by

35There are many estimates of what constitute reasonable values for the coefficient of relative risk
aversion in a CRRA expected-utility model; however, one cannot rely on these estimates since the risk
attitude of individuals with ORA preferences may change with their exposure to risk.

36Epstein and Zin (1989, Section 5) were the first to demonstrate that, assuming the stochastic process
driving the economy is i.i.d. across time, the certainty equivalent in a recursive non-expected-utility model
also represents the preferences over timeless wealth gambles.
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some segment of the population in equilibrium. We write A\g(z) to denote the consump-
tion growth rate of type 6 consumers in the current period: \g(z) = ¢;441(2)/ciy for
any consumer ¢ who selects type 6 in period ¢t. In addition to describing the mean and
standard deviation of consumption growth for each type, the last row of this panel indi-
cates the fraction of current aggregate wealth held by consumers who choose type 6, or,
equivalently, the fraction of the current period aggregate endowment consumed by type

0, consumers.?”

Panel C indicates the equilibrium values of the pricing kernel and asset returns. In
this panel, R/ denotes the gross risk-free rate and R denotes the gross return on an asset
paying the stochastic dividend stream {d;}. While not the main focus of the calibration
exercise, the results in this panel illustrate that the model generates a moderate equity
premium for reasonable parameter values.

Turning to the first specification in the table, note that EZKP1 generates reasonable
aversion to the largest gambles in Panel A, but it is almost risk neutral for small gambles.
It also only generates an equity premium of 1.4%. In contrast, specification EZKP2
assumes a coefficient of relative risk aversion of 18 and generates a more realistic equity
premium of 5.9%.% However, the gambling behavior for this specification highlights the
concerns about assuming such a large coefficient of risk aversion. The individual will reject
any gamble in which she will lose over $20,000 (7% of wealth) with even odds, regardless
of the size of the possible gain that could be won.? These specifications of EZKP utility
provide a parametric illustration of a paradoxical implication of expected utility that was
shown by Rabin (2000) to hold more generally: Any expected-utility preference must have
either implausibly low aversion to small gambles or excessive aversion to large gambles.

Specification ORA1 improves the risk attitudes for binary gambles over both EZKP1
and EZKP2: It increases the risk aversion for small gambles relative to these specifica-
tions, while drastically reducing the extreme risk aversion of EZKP2 for large gambles.
At the same time, it maintains a moderately large equity premium of 4.4%.4°

37Just as in the single-period illustration from Section 4.3.1, in a heterogeneous-type equilibrium in
the infinite-horizon economy, the fraction «a of aggregate wealth held by consumers who choose type 67,
is pinned down by the market clearing condition, in this case applied to consumption growth rates rather
than levels: A(2) = alg, (2) + (1 — a)Ag,, (2) for z € {2!, 2"}, See Section S.4.2 in the Supplementary
Appendix for details.

381t is well known that EZKP utility with a high degree of risk aversion can generate a large equity
premium. The calibration in specification EZKP2 is consistent with the estimate from Kocherlakota
(1996, page 51) that a coefficient of relative risk aversion of 17.95 will satisfy the Euler equation for the
equity premium.

39Gimilar observations related to large-scale idiosyncratic risks (e.g., occupational earnings risk) led
Mehra and Prescott (1985), Lucas (2003), and others to argue that the coefficient of relative risk aversion
should be bounded above by 10.

400ne caveat in interpreting these results is that the simple two-state stochastic process in our analysis
implies perfect correlation between consumption and asset returns. Imposing more realistic correlation
between aggregate consumption and returns tends to lower the equity premium in most models.
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Table 1. Calibration Results: EZKP and ORA Models
The table has results for two specifications of the EZKP model and three specifications of the ORA model.
Consumption and dividend growth rates are summarized in Section 4.4.1, Rf denotes the risk-free rate,
and R denotes the gross return on asset paying the stochastic dividend stream {d;}.

Risk-Preference Model

EZKP1 EZKP2 ORA1 ORA2 ORA3
Oy 3.000 17.000 25.000 25.000 100.000
0r. - — 3.000 4.000 3.000
T — — 0.020 0.025 0.020
Bt 1.010 1.010 1.010 1.010 1.010

Panel A: Binary 50-50 Gambles
Loss Gain that leads to indifference for initial wealth $300,000
$100 100.13 100.60 100.87 100.87 103.48
$400 402.14 409.84 414.37 414.37 462.37
$1,000 1,013.51 1,063.85 1,094.95 1,094.95 1,518.31
$2,000 2,054.80 2,273.08 2,420.72 2,420.72 9,254.96
$5,000 5,357.20 7,170.61 8,995.81 8,995.81 18,991.43
$10,000 11,539.60 27,901.22 26,396.79 32,281.88 26,396.79
$20,000 27,302.60 %) 45,692.48 58,228.29 45,692.48
$30,000 50,274.57 %) 75,052.03 110,405.61 75,052.03
Panel B: Equilibrium Consumption Growth by Type
/\gH(zl) 0.9820 0.9820 0.9927 0.9880 1.0011
/\gH(zh) 1.0540 1.0540 1.0277 1.0342 1.0095
E(Xoy,) 1.0180 1.0180 1.0102 1.0111 1.0053
a(Nay) 0.0360 0.0360 0.0175 0.0231 0.0042
/\gL(zl) - - 0.9346 0.9399 0.9374
)\gL(zh) - — 1.1709 1.1919 1.1576
E(Xo,) — — 1.0527 1.0659 1.0475
a(Me,) - - 0.1182 0.1260 0.1101
% type 0, - - 18.36 12.55 30.04
Panel C: Pricing Kernel and Asset Returns

M(2h) 1.1149 1.5508 1.4047 1.5192 1.3796
M(zh) 0.8400 0.4339 0.5700 0.4633 0.5934
Rf 1.0231 1.0077 1.0128 1.0088 1.0137
E(R) 1.0374 1.0667 1.0567 1.0645 1.0550
o(R) 0.1019 0.1048 0.1038 0.1046 0.1036
E(R) — R 0.0143 0.0590 0.0439 0.0557 0.0413
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Panel B illustrates the heterogeneity in consumption risk for the two segments of
the population under ORA1. Just over 18% of the aggregate wealth in the population
is held by consumers who choose type ;. The consumption growth rate Ay, for this
fraction of the population has a standard deviation of 0.1182, over three times that of
aggregate consumption growth. The majority of the population chooses type 6y, and
the consumption growth rate Ay, for this segment of the population has a standard
deviation of 0.0175, roughly half that of aggregate consumption. Thus a significant
portion of aggregate risk is consolidated in a small segment of the population. Moreover,
the additional risk borne by type 6, consumers is compensated by a substantially higher
expected consumption growth rate—1.05 (5%) rather than the expected consumption

growth rate of 1.01 (1%) for type 8y consumers.*!

These results are consistent with the observed patterns of investment summarized
in Section 4.1. There has traditionally been a small segment of the population that
invests in the stock market, with the majority of the population investing primarily in
low-risk and low-return savings instruments. We should be careful to point out that
our model predicts that even type 6y consumers continue to bear some consumption
risk. However, as we discuss in Section 4.5.1, since the utility difference between the
equilibrium allocation with minimal risk exposure and one with no exposure to stock
market risk is relatively small, introducing modest participation costs could drive some
of these consumers completely out of the market—even those with relatively high wealth.

The last two columns illustrate the impact of changing parameters in the ORA rep-
resentation. Specification ORA2 increases the values of 6 and 7. The result is an
increase in the equity premium, up to 5.6%, and a decrease in the fraction of the popu-
lation choosing type #;, and holding greater consumption risk, down to under 13%. For
this specification, aversion to large gambles on the scale of $30,000 (10% of wealth) be-
comes overly large, although still more reasonable than for EZKP2. Specification ORA3
illustrates the impact of instead increasing . This generates a high level of risk aver-
sion for small-scale gambles, but the attitude toward very large gambles is the same as
under ORA1. It is interesting to note that due to changes in equilibrium consumption
heterogeneity, the equity premium actually decreases slightly for this specification.

4.4.3 Comparative Statics of Participation and Risk Sharing

We now examine how risk sharing in the population responds to changes in fundamen-
tals. There are many possible changes to aggregate uncertainty that have been considered

41 Cross-sectional differences in expected returns due to differences in portfolio allocations have been
suggested as one potential driver of wealth inequality. However, our model lends a very different welfare
interpretation to these differences, since the portfolio choices of type 0y and 65 consumers yield the
same ex-ante utility.
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in the literature, including changes to the conditional expectation and the conditional
volatility of consumption growth. In this section, we continue to focus on a consumption
growth process that is i.i.d. across time and examine a particular change to its (uncon-
ditional) distribution. To facilitate comparison to existing results, we maintain the same
mean and standard deviation of consumption growth and only vary its skewness.

Let 7 denote the probability of state z'.

In the analysis in Table 1, this value was
fixed at m = 0.5. We now consider the impact of varying this probability while holding
fixed the first and second moments of consumption and dividend growth. Specifically,

growth rates take the following values:

1—
=u—0o z A =p+o

1—
MN(Z) = p—og n (") = p+ Ud\/

Using the parameter values from specification ORA1, Figure 5 illustrates the impact

(18)

of changing skewness on the expected value and standard deviation of the consumption
growth rates of each type, on the distribution of types in the population, and on asset
returns. As 7 increases, aggregate consumption growth transitions from being skewed to
the left to being skewed to the right. In response to this change, the fraction of aggregate
wealth held by type 05 consumers decreases while simultaneously the consumption risk
held by these consumers increases. The standard deviation of Ay, spikes to roughly 9
times that of aggregate risk as m approaches 0.91, and once 7 exceeds this threshold all
consumers select type #y and hold identical portfolio allocations.

While these comparative statics concern changes in the unconditional distribution of
an i.i.d. process, they are suggestive that the ORA model may provide a mechanism to
understand intertemporal variation in investment levels and movements in and out of the
stock market. If consumption growth follows a stationary Markov process with state-
dependent mean, standard deviation, or skewness, one might expect the equilibrium
participation rate to change with the current state. Extending our analysis to more
general stochastic processes and relating its predictions to recent studies on the dynamics
of household portfolio decisions is an obvious area for future exploration.

4.5 Discussion and Extensions
4.5.1 Participation Costs

As we noted earlier, the combination of mixture-averse preferences with participation
costs can be used to further refine the predictions of our model. The analysis in the
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previous section showed that consumers who select type 0y in equilibrium invest signif-
icantly less in stocks, and their utility gain from these investments are relatively small
given their high level of local risk aversion (recall that utility for low-risk allocations is
equivalent to that of an EZKP utility maximizer with a coefficient of relative risk aversion
of 8y + 1). This implies that the level of participation costs required to induce nonpar-
ticipation within the ORA model will be much lower than previous estimates based on
expected-utility preferences.

An important consequence of this observation is that, even for wealthy households,
much more moderate financial or informational costs can lead to nonparticipation, which
allows our model to address one of the most puzzling facts from household finance. More-
over, since the required costs are small, slight cross-sectional variation in risk aversion or
participation costs can generate the combination of complete nonparticipation by some
households, small but positive investment in stocks by some households, and high levels
of investment by others, where the portion of wealth invested in stocks is positively (but
not perfectly) correlated with wealth. We leave the formal analysis of this extension as
an important direction for future research.

4.5.2 Idiosyncratic Income Risk

As we discussed in Section 4.1, one difficulty for models that rely on first-order risk
aversion to explain nonparticipation is that the introduction of background risk tends
to significantly decrease the aversion to stock market risk for such preferences, making
it harder to rationalize nonparticipation using reasonable parameter values. This obser-
vation motivated Barberis, Huang, and Thaler (2006) to incorporate narrow framing of
stock market risk into their model of participation.

Interestingly enough, this property of models with first-order risk aversion differs
dramatically from the implications of background risk for expected utility: For CRRA
expected-utility preferences, the introduction of independent background risk only serves
to increase effective risk aversion and hence to decrease the optimal investment in stocks
(see Gollier and Pratt (1996)). In fact, the asset-pricing literature has used incomplete
consumption insurance (in the form of persistent idiosyncratic income shocks) to generate
greater aversion to stock market risk in order to help explain the level of the equity
premium (see Constantinides and Duffie (1996); Brav, Constantinides, and Geczy (2002)).

Narrow framing is unlikely to be needed to generate realistic predictions with our
model. Based on existing theoretical results for expected utility, it is easy to see that
introducing small or moderate amounts of background risk into the ORA model will simi-
larly increase aversion to stock market risk and decrease the optimal level of investment in
stocks. Assuming the amount of background risk is not sufficiently large to change the op-
timal risk attitude @, consumers in our model behave exactly like CRRA expected-utility
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maximizers, and hence the comparative statics results in Gollier and Pratt (1996) apply.
However, there is an important caveat to this argument: If the amount of background
risk is sufficiently large, then consumers who would otherwise choose the risk attitude 0y
may switch to choosing 6, thereby decreasing their local risk aversion. Determining the
relevant scale of uninsurable idiosyncratic risk in relation to our model is an empirical
question that is beyond the scope of the present paper.

4.5.3 Optimal Expectations and Speculative Behavior

In the ORA representation, the individual optimizes her risk attitude for any given dis-
tribution of future outcomes. There is a literature that considers the dual problem of
optimizing beliefs for a fixed utility function (e.g., Brunnermeier and Parker (2005); Gol-
lier and Muermann (2010); Bénabou and Tirole (2011); Macera (2014)). The models
in this literature usually predict distortions of future behavior in response to changes
in current beliefs, or require distortions of current behavior as a form of self-signaling.
These features are in sharp contrast to our model of dynamically-consistent choice.

The differences between these two approaches allows each to address slightly different
questions. For example, Brunnermeier and Parker (2005) showed that optimal expecta-
tions can generate endogenous heterogeneity in investment behavior in equilibrium, where
ex-ante identical consumers select opposing beliefs and take stock market positions that
bet against each another. Optimal expectations can thus help to explain speculative in-
vestment behavior. Our application addresses a different type of heterogeneity, namely,
greater risk bearing by one segment of the population. Exploring the interactions be-
tween optimal beliefs and optimal risk attitudes is a potentially interesting avenue for
further research.
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A Epstein-Zin and Kreps-Porteus Preferences

A.1 Epstein-Zin Representation Result

In this section, we provide an axiomatic characterization of the Epstein-Zin representation in
Definition 2. As noted in the main text, the axioms in this section will parallel the treatment
in Chew and Epstein (1991), but strengthen their separability assumption.

The first three axioms are entirely standard.
Axiom 2 (Weak Order) The relation - is complete and transitive.
Axiom 3 (Nontriviality) There exist ¢, € C and m € A(D) such that (¢,m) = (¢/,m).

Axiom 4 (Continuity) The sets {(c,m) € D : (¢,m) > (¢/,m")} and {(¢,m) € D : (¢,m) <
(d,m')} are open for all (¢',m') € D.

The following stationarity axiom is also standard for recursive utility models. It states that
the preference between any pair of alternatives remains the same if those alternatives are pushed
back one period into the future.

Axiom 5 (Stationarity) For any c,é¢,é € C and m,m' € A(D),

(&,m) Z (&,m') <= (¢,0em)) 2 (60 )
The following axiom applies the separability condition of Debreu (1960) to all triples of
consumption today, consumption tomorrow, and the lottery following tomorrow’s consumption.

Axiom 6 (Separability) For anyc,d,é,¢ € C and ,m' € A(D),

1. (¢, 0(em)) 2 (€3 0(a ) if and only if (¢, mn) 2 (¢ 0@ mry)-

2. (¢,0(m)) Z (s 0mr)) if and only if (¢, 8z my) 2 (¢, 0(& mry)-

Condition 1 in Axiom 6 says that the comparison of ¢ today and ¢ tomorrow versus ¢’
today and ¢ tomorrow is the same regardless of the lottery (7 or 7/) following tomorrow’s
consumption. Likewise, condition 2 says that comparison of ¢ today and lottery m following
tomorrow versus ¢’ today and 1/ following tomorrow is the same for any consumption tomorrow
(¢ or ¢). Note that Axiom 6 only applies to temporal lotteries in which the one-step-ahead
continuation is deterministic. Intuitively, in the case of deterministic consumption streams,

Definition 2 reduces to a standard time-separable intertemporal utility function.
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The next axiom ensures that preferences respect the first-order stochastic dominance order
on A(D). Recall that in the case of monetary gambles, FOSD roughly corresponds to increasing
the probability of better monetary outcomes. The same is true in this setting, with (&, m’)
being a better continuation path than (¢,m) following current consumption ¢ if and only if

(e, 5(ef,m/)) z (e 5(é,m))-42

Axiom 7 (FOSD) For any c € C and m,m' € A(D), if for all (¢,7) € D,
m({(é/7m,) (e 5(6',m')) z (e 5(a,m))}) > m/({(éf’m/) (e, 5(@/,m’)) z (e, 5(e,m))}),
then (c,m) = (¢, m').*3
The following result characterizes the Epstein-Zin representation from Definition 2.

Proposition 1 The relation 7, satisfies Azioms 2-7 if and only if it has an Epstein-Zin rep-
resentation (V,u, W, 3).

A.2 The Independence Axiom and EZKP Utility

It is immediate from the ORA representation that mixture-averse preferences are a generaliza-
tion of time-separable expected utility—simply let ® contain the identity mapping. Perhaps
less obvious is the relationship with recursive Kreps and Porteus (1978) utility, formally defined
as follows.

Definition 6 An Epstein-Zin-Kreps-Porteus (EZKP) representation is a tuple (V, u, h, ) con-
sisting of a continuous function V' : D — R that represents -, a continuous and nonconstant

function v : C — R, a continuous and strictly increasing function h : [a,b] — R (where
a=minV and b = max V), and a scalar 8 € (0, 1) such that, for all (¢,m) € D,

V(e,m) = u(c) + Bh (En[h(V)]).

The commonly used (and empirically more relevant) case of EZKP utility is where h is a con-
cave transformation, and therefore risk aversion is increased relative to time-separable expected
utility. This case of EZKP utility will be shown to satisfy mixture aversion. In this section, we
establish the relationship using the axioms as well as directly from the representations.

EZKP utility is the special case of the Epstein-Zin representation where the certainty equiv-
alent takes the expected-utility form. It therefore satisfies a version of the independence axiom.

42When preferences are continuous, this first-order stochastic dominance assumption is equivalent
to the “recursivity” axiom that has appeared in various forms in the literature on dynamic preferences,
including Chew and Epstein (1991): (¢, d(em)) Z (¢, (e 0mry) = (¢, ad(em)+(1—a)m) Z (¢, adzr )+
(1 —a)m).

“3Implicit in this axiom is the assumption that the set {(¢/,7) : (¢, 0(e ) Z (€, 0(em))} is Borel
measurable for each (¢,7m) € D. However, if the continuity axiom is imposed, then each of these sets is
closed and hence measurable.
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Axiom 8 (Independence) For any c € C, m,m',m” € A(D), and o € (0,1),

(e,m) = (e,m') = (c,am+ (1 —a)m”) = (c,am’ + (1 — a)m”)

The following proposition characterizes the EZKP representation and shows the class of
representations that are compatible with both independence and mixture aversion. The tech-
niques needed for the first part of this result are essentially the same as those used by Kreps
and Porteus (1978) in a finite horizon setting and Chew and Epstein (1991) for nonseparable
preferences in the infinite horizon domain.

Proposition 2 Suppose = has an EZ representation.** Then ¥ satisfies Aziom 8 if and only
if it has an EZKP representation (V,u, h, ). Moreover, = also satisfies Aziom 1 if and only if
h is concave.

Proposition 2 shows that risk-averse EZKP preferences (i.e., those represented using concave
h) are a subset of mixture-averse preferences. The following result further illustrates the con-
nection by describing the parametric functional form of the ORA representation corresponding
to EZKP utility.

Proposition 3 Suppose h : [a,b] — R is differentiable,*> concave, and h' > 0. Then for any
measurable function V : D — [a,b] and m € A(D),

. - h(V) — h(7)
B (B [B(V)]) = max B |7+ =37

Morevoer, the right-hand side is mazimized by v = h=' (E,[R(V)]).

The following corollary highlights the particular case of this equivalence that is used in our
investment application in Section 4.%6

Corollary 2 Forv € R and § € © C Ry, define ¢(x|vy,0) as in Equation (7), and suppose
T : © — R satisfies infgcg 7(0) = 0. Then for any measurable function V : D — [a,b] and
m € A(D),

1
Slelg ’Sylelg E,. [(ﬁ(V\’y, 0) — 7'(9)] = Slelg {—9 log (Em [exp(—HV)]) — 7'((9)} )

44 Equivalently, suppose = satisfies Axioms 2-7 in Appendix A.1.

45Differentiability is only assumed for expositional simplicity. If h is not differentiable at a point -,
then h’(y) in Proposition 3 can be replaced by any scalar « in the superdifferential of h at ~, that is,
any « greater than the right derivative of A and less than the left derivative.

46This result can also be proved using the observations in Example 2.1 in Ben-Tal and Teboulle (2007).
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B Proofs

B.1 Proofs of Proposition 1 and Theorem 1

Lemma 1 The relation - satisfies weak order, nontriviality, continuity, stationarity, and sepa-
rability (Aziom 2-6) if and only if there exist continuous and nonconstant functions uj : C' — R
and ug : A(D) — R and a scalar f € (0,1) such that the following hold:

1. The function V : D — R defined by V(c,m) = ui(c) + ua(m) represents 7.
2. For every (¢,m) € D, uz(d(em)) = B(u1(¢) + uz(m)).

Proof: The necessity of weak order, nontriviality, and continuity are immediate. It follows
from condition 2 that for any ¢, ¢ € C and m € A(D),

V(e,0(emy) = ui(c) + Bui(é) + Buz(m) = ui(c) + BV (&,m).

The necessity of stationarity and separability follow directly from this expression.

For sufficiency, the first step is obtain an additively separable representation on a restricted
domain. Note that in addition to the separability conditions listed in Axiom 6, stationarity
(Axiom 5) implies that (c, 6z m)) Z (¢, ) if and only if (¢/, 8z m)) 2 (¢, 6@ ry). Therefore,
the assumed axioms are sufficient to apply Theorem 3 of Debreu (1960) to obtain continuous
functions f: C - R, g: C — R, and h : A(D) — R such that

(¢, 0em)) T (<0 mry) <= f(c) +g(&) + h(in) > f() + g(¢) + h(). (19)

Note that the previous equation only gives a partial representation for 2~. However, by station-
arity,

(é,?’h) r>\: (élam/) — (C, 5(6,7?1)) i: (C7 (é/,m/))

dem) % (& 0em) (20)
= 9(0)+ h(m) > 9(&) + h(),

and hence g and h give an additive representation for 7. In particular, the combination of
Equations (19) and (20) implies

g(c) + h(demy) = 9(c') + M i)
= fle) +19(¢) + h()] > f(c) + [g(¢) + h(1)]

Using the uniqueness of additively separable representations (see Debreu (1960) or Theorem
5.4 in Fishburn (1970)), the above implies there exist § > 0 and a1, as € R such that:

glc) =Bf(c)+a, Veel

(21)
h(beam) = Blg(e) + h(m)] + oz, V(é,m) € D
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Define uy : €' — R and up : A(D) — R by ui(c) = g(c) + % and uz(m) = h(m). Then, claims
1 and 2 follow directly from Equations (20) and (21).

It remains only to show that 8 < 1. Following a similar approach to Gul and Pesendorfer
(2004), this can be established using continuity. By nontriviality, there exist ¢*, ¢, € C such

that ui(c*) > ui(cs). Fix any m € A(D) and, with slight abuse of notation, define sequences
{d,} and {d/,} in D as follows:*"

dp = (c*,...,c",m) and dl, = (Cey. -y Cx, )
———
n n
By the compactness of D, there exists {n} such that the subsequences {dy, } and {d;, } converge
to some d and d’ in D, respectively. By continuity, V' (dp, ) — V(d) and V(dy,, ) — V(d'), where
V is defined as in condition 1. Therefore, the difference V' (d,, ) — V(d,, ) converges to some real
number. However, since u; and uo were shown to satisfy condition 2,

ng—1 ne—1
V(dn,) - (Z Bur(c*) + B Dug(m ) (Zﬁm () + B Hug(m ))
=0
ng—1

= 3 Bl (e) — w(en).
=0

Since this difference converges to a real number, it must be that g < 1. |

Lemma 2 Suppose 77 is represented by V(c,m) = ui(c) + ug(m) where up : C — R and us :
A(D) — R are continuous,®® and 7 satisfies stationarity. Then, = satisfies FOSD (Axiom 7)
if and only if, for any m,m' € A(D),

moV 1 ([z,00)) >m oV [z,0)), Vz € V(D) = uz(m) > ug(m’). (22)

Proof: To see that FOSD implies Equation (22), consider any two measures m, m’ € A(D)
such that
mo V= ([z,00)) > m o V7([z,00)), Vz € V(D).

Fix any (¢,7) € D, and let x = V(¢,7). By stationarity, (c, d( m)) 5 (¢, 0(em)) if and only if
V(&,m') > V(¢,m) = x. Therefore,

m({(&, 1)+ (¢, 8(er ) 2 (€, 8em))}) = m o V7 ([z,00))
>m' o V7 ([z,00))

=m/({(&,m') : (¢, 0@ m)) Z (¢, 0m)})-

4TMore precisely, d; = (c*,m), da = (c*,d4,), and so on.
48Continuity is not necessary for this result; measurability of u; and uy are sufficient.
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Since this condition holds for all (¢,7m) € D, the FOSD axiom implies (¢, m) - (¢,m’). Thus
uz(m) > ug(m’). The argument that Equation (22) implies the FOSD axiom is similar. [

Lemma 3 Suppose =

~

is represented by V(c,m) = ui(c) + uz(m) where u; : C — R and
ug : A(D) — R are nonconstant and continuous. Then, - satisfies mizture aversion (Axiom 1)
if and only if ug is convex.

Proof: To see the necessity of the mixture aversion axiom, suppose uo is convex and
ur () + ua(m) < ui(c) +us (m+ im/). Then,

ur () —ur(c) <ug (Am+ 3m’) — ua(m) < ua(m’) —ug (3m + im'),

where the last inequality follows from the convexity of ug. Hence, uj(c) + us (%m + %m’ ) <
Ul (C) + UQ(m/).

To show sufficiency, suppose that - satisfies mixture aversion. Since up is nonconstant, fix
c*,c. € C such that ui(c*) > ui(cy). First, consider any m,m’ € A(D) such that |ug(m) —
up (3m+ 3m) | < ui(c*) —ui(ce). Then, since C' is connected and u; is continuous, there exist
¢, € C such that

ur(d) —ui(c) = up (3m + im') — ua(m).
This implies (¢/,m) ~ (¢, sm~+ im/), and hence (¢, m’) = (¢, ym+4m’) by the mixture aversion
axiom. Therefore,

us(m') —ug (3m + $m’) > ui () —ui(c) = uz (3m+ 3m’) — uz(m)
_— %UQ(m) + %UQ(m/) > Uy (%m + %m') .
Now, take any m, m’ € A(D). Define a function ¢ : [0, 1] — R by ¢(a) = ug(am+(1—a)m’).
This function is continuous by the weak® continuity of us, and since its domain is compact,
1 is therefore uniformly continuous. Thus, there exists 6 > 0 such that |a — /| < § implies

[h(a) — ()] < ui(c*) —ui(es). By the preceding arguments, this implies ¢ is midpoint convex
on any interval [@,@’] C [0,1] with |&@ — &’| < 4, that is, for any «, o’ € [a, &'],

Lp(a) + Jla’) > ¥ (o + ba').
It is a standard result that any continuous and midpoint convex function is convex. Thus, ¥
is convex on any interval [, a’] C [0, 1] with |& — &'| < 4. This, in turn, is sufficient to ensure
that v is convex on [0, 1]. Therefore, for any « € [0, 1],

auz(m) + (1 = aJuz(m’) = (1) + (1 — a)1h(0) = ¢(@) = uz(am + (1 — a)m’).

Since m and m’ were arbitrary, us is convex. |
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Lemma 4 Suppose V, uy, us, and B are as in Lemma 1, and suppose V' and ug satisfy Equa-
tion (22). Then, there exists a function W : A(V (D)) — R such that uz(m) = W (mo V1)
for all m € A(D). Moreover,

1. W(bg) =z for all x € V(D).
2. W is weak™* continuous and monotone with respect to FOSD.

3. If ug is convex, then W is convex.

Proof: Proof of existence of W : First, note that since V' is continuous and V(D) is compact,
any Borel probability measure on V(D) can be written as mo V! for some m € A(D) (Part 5
of Theorem 15.14 in Aliprantis and Border (2006)), that is,

{(moV~:me A(D)} = A(V(D)).

Fix any pu € A(V(D)). Let W(u) = %ug(m) for any m € A(D) such that p = m o V1. There
exists at least one such m by the preceding arguments. In addition, if 4 = mo V=t =m/ o V!
for m,m’ € A(D), then ug(m) = ug(m’) by Equation (22). Thus W is well defined, and by
construction, us(m) = W (mo V1) for all m € A(D).

Proof of 1: By condition 2 in Lemma 1, uz(d(z)) = BV (¢, m) for every (¢,7m) € D, and
hence
W Sy (eam) = W (S(esmy o V) = %W@(am)) = V(e,m).

Proof of 2: To see that W is weak* continuous, take any sequence {py} in A(V(D)) that
converges to some p € A(V(D)). It suffices to show that there exists a subsequence {,, } such
that W (pn,) — W(u).2 For each n, take any m, € A(D) such that u, = m, o V=1 Since
A(D) is compact and metrizable, there is a subsequence {m, } converging to some m € A(D).
By the continuity of V,

w* 1 w* _
Mp, —> M == [l = My, 0V L2 s movV—h

This implication follows directly from the definition of weak* convergence, or see Part 1 of
Theorem 15.14 in Aliprantis and Border (2006). Thus, 4 = m o V~!. Since uy is weak*
continuous,

W (pny) = guz(mn,) = gua(m) = W(p).
Therefore, W is weak* continuous. To see that W is monotone with respect to FOSD, suppose
w,n € A(V(D)) satisfy p([z,b]) > n([z,b]) for all z € [a,b] = V(D). Take any m,m’ € A(D)
such that g = mo V="' and n = m/ o V=1, Then, Equation (22) implies us(m) > uz(m’), and
hence W(u) > W(n).

49Tf W is not continuous at a point u, there exists € > 0 and a sequence {u,} converging to u such
that |W () — W (u)| > € for every n. This sequence has no subsequence with the convergence properties
described above.
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Proof of 8: Suppose uy is convex. Fix any p,n € A(V(D)) and o € (0,1). Take any
m,m’ € A(D) such that g =mo V! and n = m’ o V~!. Then,

ap+(1—a)n = (am+ (1 - a)m') oV,
and hence
Wi(ap+ (1 —a)n) = %uQ(am + (1 —a)m')
< agua(m) + (1= o) gus(m') = aW () + (1 — ) W (),

establishing the convexity of W. |

Proof of Proposition 1: The necessity of the axioms is straightforward. To establish
sufficiency, suppose - satisfies Axioms 2-7. By Lemmas 1, 2, and 4, there exists a continuous
function V' : D — R, a scalar 8 € (0, 1), a continuous and nonconstant function v : C' — R, and
a weak™® continuous function W : A(V(D)) — R such that

V(e,m) = u(c) + W (mo V1), V(e,m) € D.

Moreover, W(d,) = z for all € V(D), and W is monotone with respect to FOSD. Finally,
since V' is continuous and D is compact and connected, V(D) = [a, b] for some a,b € R. |

Proof of Theorem 1: Proof of 3 = 1: The necessity of Axiom 1 is straightforward.
Proof of 1 = 2: By Lemmas 3 and 4, the certainty equivalent W is convex.

Proof of 2 = 3: Apply Part 1 of Corollary S.1 in the Supplementary Appendix to conclude
there exists a collection ® of continuous and nondecreasing functions ¢ : [a,b] — R such that

R
ped

Using the change of variables formula, for every (¢, m) € D,
V(e,m) =u(e) + BW(mo V1)

- +ﬁam/\¢ d(m o V=1)(x)

ped

= +ﬁsup/¢ (&,10)) dm(é,1h).

ped

In addition,
sup ¢(z sup/qﬁ ) ddz( W(éz) ==

pcd pcd
for all z € [a, b]. [
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B.2 Proof of Proposition 2

Suppose 7, has an Epstein-Zin representation (V,u, W, ). Since - also satisfies the expected-
utility axioms when restricted to lotteries m € A(D), there exists a continuous function f :
D — R such that E,,[f] > E,[f] if and only if (¢,m) = (¢, m'). (The particular ¢ is irrelevant
by the separability of the EZ representation.) Therefore, W(m o V=) > W(m/ o V1) if
and only if E,,[f] > E,,[f], and hence there exists a monotone transformation h such that
h(W(moV~Y)) = E,[f] for all m € A(D). Continuity of h follows from continuity of f and W
and connectedness of the domain. Since W is a certainty equivalent, W () © V= =V(e,m)
for any (¢,m) € D, and hence

h(V(e,m)) = h(W (8(emy o V1)) = B, [f] = fle,m).

Thus, f = h oV, which implies W (m o V=1) = h=Y(E,,[h(V)]) for any m € A(D).

To prove the second claim, note that m — E,,[h(V)] is a linear function of m. Therefore,
h=YE,,[h(V)]) is convex in m if and only if h~! is convex, i.e., h is concave. Since Axiom 1
corresponds to the convexity of the certainty equivalent by Theorem 1, this completes the proof.

B.3 Proof of Proposition 3

The concavity of h implies that h(z) — h(y) < h/(y)(z — 7) for any v,z € [a,b]. Rearranging

terms yields
h) = h() _

Wiv)  —
with equality if ¥ = z. For any y € h([a, b]), letting z = h~!(y), this implies

v+y‘gﬁ)gh*@»

with equality if ¥ = h~!(y). The results follows by taking y = E,,[h(V)].

v+

B.4 Proof of Theorem 3

It is immediate that if V5 > aVi + A, with equality for deterministic consumption streams,
then 77; is more risk averse than 7Z3. For the other direction, first note that for any ORA
representation (V,u, ®, 3) and any ¢ = (co, c1,c2,...) € OV,

Vi)=Y Bulc).
t=0

The following lemma shows that the range of V on D is the same as its range when restricted
to deterministic consumption streams in CY. As a consequence, it is possible to construct
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a measurable mapping from any continuation value in V(D) to a deterministic consumption
stream that gives the same continuation value.

Lemma 5 Fiz any ORA representation (V,u,®,3). There exist c,c* € C such that, for any

(¢c,m) € D,
. i 5U(C*) <V(e,m) < 1 i 5

Therefore,

V(D) = V(CY) = [1@7 uﬁ;)}

and there exists a measurable function g : V(D) — CN such that V(g(z)) = x for all x € V(D).

Proof: By the continuity of V' and the compactness of D, there exist (ci, my), (c*,m*) € D
such that, for all (¢,m) € D,

V(cw,ms) < V(e,m) < V(c",m").
Since each ¢ € ® is nondecreasing,

V(c*,m*) =u(c*) + Bsup Ep+[¢(V)] < u(c’) +  max V(e,m) =u(c*) + sV (c*,m").

PpED (e,m)eD
Rearranging terms gives
u(c*
V(e*,m") < 1 E ;
A similar argument gives
qf(_c*; < V(ew, my),

which proves the first claim. Since C' is connected and V' is continuous, it follows that V(D) =

V(CN) = [4e) 4],

The existence of a function g : V(D) — C such that V(g(z)) = z for all € V(D) follows

immediately from the range condition above. That g can be chosen to be measurable is less
trivial, but follows from Theorem 18.17 in Aliprantis and Border (2006). [

Continuing the proof of Theorem 3, the definition of more risk averse applied to deterministic
consumption streams implies that, for any c,c’ € cN,

Vi(c) = Vi(e) = Va(c)) = Va(e). (23)

Note that we have not established that the preferences over deterministic consumption streams
is the same for these two individuals, since Vi(c¢’) > Vi(c) does not necessarily imply Va(c') >
Va(c). However, the following lemma shows that given the separable structure of the represen-
tations, this is in fact implied.
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Lemma 6 Fiz any two ORA representations (Vi,u1, ®1,51) and (Va, ug, 2, f2). Suppose that,
for any c,c’ € CN, Vi(c') > Vi(c) implies Va(c') > Va(c). Then B1 = B2 and there exist a > 0
and X € R such that uz = auy + A(1 — 31). Hence, for any c € CN, Va(c) = aVi(c) + .

Proof: First, show that u; and us are ordinally equivalent. Let c,,c¢* € C be such that
uz(c*) > wua(cy). Such consumption values exist by the nontriviality axiom. Now fix any
e,d € C. If up(c) > uy(c) then us(c’) > ug(c). This follows by applying Equation (23) to
the consumption streams ¢ = (¢,¢,¢,...) and ¢’ = (¢,d,,...). Also, if ui(c’) > ui(c) then
uz(c’) > uz(c). To see that this must hold, choose t € N sufficiently large that

U1 (C’) + Biul(c*) > up(c) + ﬁful (C*)
By Equation (23) this implies
uz(¢') + Byuz(cx) > ua(c) + Pruz(c?).

Since ug(c*) > wug(c.) this implies ug(¢’) > wug(c), as claimed. Thus we have shown that
ur(d) > ur(ec) <= wua(cd) > ua(c).

Next, fix any consumption streams ¢ = (cg, ¢1,¢2,...) and ¢ = (¢, ¢}, ¢, ...). We need to
show that Vi (c’) > Vi(c) implies Va(c’) > Va(c). Suppose to the contrary that Va(c’') = Va(c).
By the continuity of u; and the connectedness of C, there exists a consumption stream ¢’ =
(cg,cf,ch,...) such that ui(c]) < ui(c;) for some ¢t € N, ¢}, = ¢, for all ¢’ # ¢, and Vi(c/) >
Vi(c”) > Vi(c). Since u; and ug are ordinally equivalent, this requires that ua(c)) < wua(c})
and hence Va(c”) < Va(c’') = Via(e), contradicting Equation (23). Thus we have shown that
Vi() > Vi(e) <= Va(e) > Va(o)

Since these representations are ordinally equivalent for all deterministic consumption streams,
it follows from the uniqueness of additively separable representations (see Debreu (1960) or
Theorem 5.4 in Fishburn (1970)) that 81 = f2 and there exist &« > 0 and v € R such that
ug = auy + . Let A =~/(1 — (1), and hence us = auy + A(1 — S1). [ |

Fix any (c,m) € D, and let z = Vi(c,m). Define g1 : V(D) — CY and go : Va(D) — CN
as in Lemma 5. Note that (¢,m) ~1 g1(x). Since 771 is more risk averse than Z5, this implies
(¢,m) Z2 gi(x). Thus, by Lemma 6,

Va(e,m) > Va(g1(2)) = aVi (91 (2)) + A = aVi (e, m) + X

More explicitly, letting 8 = 81 = [,

uz(c) + B sup / ¢(Va(e,m)) dm(é,m) > aui(c) + o8 sup / o (Vi(e,m)) dm(é,m) + A.
¢ped2 J D ¢ed1 JD
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Since ug = auy + A\(1 — ), this implies that for any m € A(D),

sup / ¢(Va(é,1m)) dm(é,m) > o sup / o (Vi(é,m)) dm(é,m) + A (24)
»ed2 J D ¢edP1 J D

Suppose ¢ € 7, and define ¢9 : Vo(D) — R by

(1) = a¢1<x — A) A

o
To establish condition 2, it must be shown that ¢2 € ®5. By definition,

[ oritem) e < sw [ S0 ) dmiew, vme D). @)
D ped, /D

Note also that for any (¢,m) € D,

Va(é,m) = Va(g2(Va(é,m))) = aVi(ga(Va(é,m))) + A. (26)

=a / 61 (Vilga(Va(e,m))) ) dm(é, ) + A (by Equation (26))
D
= a/ ¢1(Vi(é,m)) dm(é,m) + A (change of variables)
D
< a sup / gZB(Vl(é, m)) dim(e,m) + A (by Equation (25))
pcd /D
< sup / o (Va(,1m)) din(é,1n) (by Equation (24))
pe®, v/ D
= sup / (ﬁ(Vg(gg(Vg(é, Th)))) dm(¢é,m) (change of variables)
pedy /D
= sup / &(Vg(é, m)) dm(é,m). (by Equation (26))
pcdy v D

Since this is true for any m € A(D), we have shown that ¢o € ®5. Therefore, there is an
injection f : ®7 — @3 defined by

Fon(a) = aon (-2 4

for © € Vo(D). This establishes condition 2 and completes the proof.
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Supplementary Appendix for

MIXTURE-AVERSE PREFERENCES AND HETEROGENEOUS
STOCK MARKET PARTICIPATION

S.1 Local Expected-Utility Analysis

When applying optimal risk attitude model, one important consideration is how proper-
ties of the set of transformations ® in the representation relate to properties of the cor-
responding risk preference. In this section, we show that the certainty equivalent for an
ORA representation respects a stochastic order if and only if each of the transformations
¢ € ® also respects this order. This result is similar in spirit to the local expected-utility
analysis introduced in the influential paper by Machina (1982). After presenting the main
theorem of this section, we will make precise connections to Machina’s results and the
many generalizations and extensions that appeared in the literature that followed. We
will also described how the expected-utility core recently developed by Cerreia-Vioglio,
Maccheroni, and Marinacci (2015) can be related to the ORA representation.

The main result of this section applies to any convex utility representation on a set of
lotteries A(X), where X is any compact metric space. Of particular interest is the special
case where X is an interval, e.g., a set of monetary outcomes or the set of continuation
values for an ORA representation. We first state a general definition of stochastic orders
generated by sets of functions.

Definition S.1 Let C be a set in the space of real-valued continuous functions C'(X) for
some compact metric space X. The order >¢ on A(X) generated by C is defined by

WEen e / o) dpu(z) > / o) dn(x), ¥ € C.

A function W : A(X) — R is monotone with respect to the order >¢ if p >¢ n implies
W (p) = W(n).

This definition includes as special cases all of the stochastic orders typically used in
economics. For example, if X is a subset of the real numbers, the first-order stochastic
dominance order is generated by taking C to be the set of all nondecreasing continuous
functions; the second-order stochastic dominance order is generated by taking C to be
the set of all nondecreasing and concave continuous functions; and so on.

For any set C of continuous functions in C'(X), let (C) denote smallest closed convex
cone containing C and all the constant functions, that is, (C) is the closed convex hull of
the set of all affine transformations of functions in C. It is easy to see that the stochastic



order generated by (C) is the same as the stochastic order generated by C. The following
result shows that a convex function respects the order generated by a set C if and only if
it can be expressed as the supremum of some subset of (C).

Theorem S.1 Suppose W : A(X) — R for some compact metric space X, and suppose
C C C(X). The following are equivalent:

1. W s is lower semicontinuous in the topology of weak convergence, convezr, and
monotone with respect to the order >¢.

2. There exists a set of functions ® C (C) such that

W) =sup [ otz) du(z). (5.1)
ocd
The following corollary of Theorem S.1 takes X = [a,b] and relates monotonicity

with respect to first-order stochastic dominance (FOSD) and second-order stochastic
dominance (SOSD) to properties of the local utility functions. Part 1 of this corollary is
applied to the set of continuation values [a,b] = V(D) in the proof of Theorem 1 to show
that a recursive representation with a convex and FOSD-monotone certainty equivalent
can be given an optimal risk attitude representation.

Corollary S.1 Suppose W : A([a,b]) — R is lower semicontinuous in the topology of
weak convergence and convex. Then:

1. W is monotone with respect to FOSD if and only if it satisfies Equation (S.1) for
some collection ® of nondecreasing continuous functions ¢ : [a,b] — R.

2. W is monotone with respect to SOSD if and only if it satisfies Equation (S.1) for
some collection ® of nondecreasing and concave continuous functions ¢ : [a,b] — R.

Corollary S.1 is a variation of the main local expected-utility results from Machina
(1982). Machina’s approach was to assume Fréchet differentiability of the function W
and relate the global properties of W to the local properties of its derivative. A number of
papers have since explored relaxations of this differentiability assumption. Most recently,
Cerreia-Vioglio, Maccheroni, and Marinacci (2015) showed that Machina’s results can be
extended to any Gateaux differentiable utility function and any integral stochastic order
(as in Definition S.1). Since the ORA representation is in general not differentiable, these
results will not suffice for the analysis in this paper. Theorem S.1 and Corollary S.1
complement the existing literature by showing that one can relax differentiability to the
much weaker requirement of lower semicontinuity when dealing with convex functions."

50Local expected-utility results for convex functions have also been obtained elsewhere, but under the
assumption of differentiability or else stronger forms of continuity. For example, Machina (1984) consid-
ered convex and Fréchet differentiable functions and therefore was able to apply many results from his
prior work (Machina (1982)). Chatterjee and Krishna (2011) relaxed the assumption of differentiability
and obtained several local expected-utility results for concave and Lipschitz continuous functions.



Theorem S.1 also provides a way of relating the ORA representation to the expected-
utility core analyzed by Cerreia-Vioglio (2009), Cerreia-Vioglio, Dillenberger, and Ortol-
eva (2015), and Cerreia-Vioglio, Maccheroni, and Marinacci (2015).5!

Definition S.2 The ezpected-utility core of a function W : A([a,b]) — R is the binary
relation > on A([a,b]) defined by

u>n <= Wap+ (1—a)v) >W(an+ (1 —a)v), Vae (0,1],Vv € A([a,b]).

It follows immediately from this definition that > is consistent with W in the sense
that
p>n = W) >W(n).

If W satisfies independence,® then the converse is also true and hence I> is a complete and
transitive binary relation on A([a, b]) that is represented by W. However, if W does not
satisfy independence, then > is necessarily incomplete. As discussed in Cerreia-Vioglio,
Maccheroni, and Marinacci (2015), the expected-utility core B> is the largest relation that
is consistent with W and satisfies independence.

Applying the results of Cerreia-Vioglio, Maccheroni, and Marinacci (2015) together
with Theorem S.1 gives the following corollary.”

Corollary S.2 Suppose W : A([a,b]) — R is continuous in the topology of weak conver-
gence and convex. Let > denote the expected-utility core of W. Then:

1. There exist a collection of continuous functions C such that >=>¢, i.e.,
b b
pen = [ o dut) 2 [ ole)dnw). woec.

2. If a collection of continuous functions ® satisfies Equation (S.1) for W, then C C
(D).
3. There exists a collection of continuous functions ®™ that satisfies Equation (S.1)

for W and satisfies (C) = (™).

Parts 1 and 2 of Corollary S.2 come from Cerreia-Vioglio, Maccheroni, and Marinacci
(2015, Lemma 1). For part 3, note that u >¢ n implies W(u) > W(n). Therefore,

51The expected-utility core is the risk counterpart of the revealed unambiguous preference relation
studied by Ghirardato, Maccheroni, and Marinacci (2004), Cerreia-Vioglio, Maccheroni, Marinacci, and
Montrucchio (2011), and Ghirardato and Siniscalchi (2012).

52Gay that W satisfies independence if W () > W (n) implies W(ap + (1 — a)v) > W(an+ (1 — a)v).

53] thank David Dillenberger for suggesting the connection to the expected-utility core and Simone
Cerreia-Vioglio for detailed comments about how to formalize this result.



Theorem S.1 implies there exists a set ®™ C (C) that satisfies Equation (S.1).°* Note
that parts 2 and 3 of this result together imply that (&™) C (®) for any set of continuous
functions ® that satisfies Equation (S.1). Thus the expected-utility core provides a way
of identifying a set of transformations that is minimal in terms of the associated set of
expected-utility preferences.

S.2 Related Non-Expected-Utility Preferences

In this section, we discuss the relationship between the optimal risk attitude represen-
tation and other non-expected-utility theories. The conclusions of this discussion are
summarized in Figure 1 of the paper.

S.2.1 Probability Weighting and Rank-Dependent Utility

An important alternative to expected utility is the rank-dependent utility model (see, e.g.,
Quiggin (1982), Yaari (1987), Segal (1989)). For a probability measure 1 € A([a, b]), the
certainty equivalent for rank-dependent utility takes the form

Wi =1 ([ ) dtge £y )

where h : [a,b] — Ris continuous and strictly increasing, F), is the cumulative distribution
function for the measure p, and ¢ : [0,1] — [0,1] is continuous, strictly increasing,
and onto. The function g in the representation permits distortions of the cumulative
probabilities. If g(p) = p for all p € [0,1], then the expression above reduces to the
certainty equivalent for expected utility. However, when g(F),(z)) > F,(z) for some x, the
probability of obtaining an outcome below x is distorted upward, capturing the intuition
that low probability bad events may be overweighted. Reweighting of probabilities also
played an important role in the prospect theory of Kahneman and Tversky (1979) and
Tversky and Kahneman (1992).

Chew, Karni, and Safra (1987) showed that a rank-dependent utility preference is risk
averse (dislikes mean-preserving spreads) if and only if both h and g are concave. In this
case, the certainty equivalent W is a convex function (see Wakker (1994, Observation 2)
or Chatterjee and Krishna (2011, Proposition 4.6)). The argument is as follows: For
concave g,

9(Foper1-ayy(@)) = 9(@Fu@) + (1~ a)Fy(2)) > ag(Fu(0)) + (1 - a)g(Fy(a))

54Theorem 1 in Cerreia-Vioglio, Maccheroni, and Marinacci (2015) provides a similar result to part 3
of this corollary for Gateaux differentiable functions: If W is Gateaux differentiable, then (VIV) = (C).
The ORA representation is in general not differentiable, and hence the connection between the dual
representation of W and the set C representing the expected-utility core instead relies on Theorem S.1.




for all = € [a,b]. Since h is increasing, this FOSD relationship between the transformed
distributions implies

[ p@)d(go Faomn)@) < a [ hiz)dige F)(a) + (1= a) [ hiz)dlge Fy)(o)

Finally, concavity of h implies ™! is convex, which yields the convexity of W. Since
any recursive model with a convex certainty equivalent can be expressed as an ORA
representation by Theorem 1, this shows that recursive risk-averse rank-dependent utility
preferences are a special case of mixture-averse preferences.

In a recent paper, Masatlioglu and Raymond (2016) found a somewhat surpris-
ing relationship between rank-dependent utility and a model of endogenous reference
points developed by Készegi and Rabin (2006, 2007). They showed that whenever the
choice-acclimating personal equilibrium (CPE) concept for reference point formation from
Készegi and Rabin (2006, 2007) leads to risk preference that respects first-order stochastic
dominance, that preference conforms to rank-dependent utility. The implication for our
model is that any CPE representation that respects both FOSD and SOSD also satisfies
mixture aversion.

S.2.2 Disappointment Aversion, Betweenness, and Quasicon-
cave Risk Preferences

Another important class of non-expected-utility preferences are the betweenness prefer-
ences developed by Chew (1983) and Dekel (1986). One of the more widely-used special
cases of betweenness preferences is the disappointment aversion model of Gul (1991).
Grant, Kajii, and Polak (2000, Lemma 2) showed that any betweenness preference that
has a convex representation must be an expected-utility preference. Thus, in a dynamic
setting, the only overlap of recursive betweenness preferences and mixture-averse prefer-
ences is EZKP expected utility.

Another intriguing related model is the cautious expected utility representation re-
cently proposed by Cerreia-Vioglio, Dillenberger, and Ortoleva (2015). The certainty
equivalent for this model is the minimum of a set of expected-utility certainty equiv-
alents. This representation has a nontrivial intersection with betweenness preferences
that includes risk-averse disappointment aversion preferences. However, since cautious
expected utility preferences are quasiconcave with respect to lotteries, they only overlap
with mixture-averse preferences in the case of linear indifference curves, i.e., between-
ness preferences. Therefore, by the previous observations, the intersection of recursive
cautious expected utility and mixture-averse preferences is again EZKP utility.



S.3 Preference for Diversification

In this section, we consider random variables defined on some fixed probability space.®

We will use  to denote a random variable and p; to denote the distribution of that
random variable. As stated in the paper, a risk preference with a certainty equivalent
W satisfies preference for diversification if it is quasiconcave with respect to random
variables.

Definition S.3 A certainty equivalent W : A([a,b]) — [a,b] exhibits preference for
diversification (PD) if, for any random variables  and g and any « € [0, 1],

Wpz) > Wing) = Wttai+a-a)g) = Wlkg).

Preference for diversification is a useful property of a model of risk preferences for
several reasons: Together with homotheticity of preferences, PD permits representative
agent analysis; it also implies the sufficiency of first-order conditions in maximization
problems (e.g., portfolio choice). However, while each of these arguments supports PD as
enhancing the analytic tractability of economic models, neither speaks to its descriptive
realism, and in the paper we observed several important reasons for relaxing this condi-
tion. In Section 4, we showed that relaxing PD permits heterogeneity in stock market
participation even when agents have identical preferences. In this section, we show that
obtaining the properties of demand for insurance discussed in Section 3.2 also requires
violating PD. We then discuss the connection between PD and risk aversion.

S.3.1 Preference for Diversification and Insurance Demand

Suppose, as in Example 3 from Section 3.2, that an individual has wealth w and faces
a loss of amount L with probability 7. Let P(y) denote this individual’s maximum
willingness to pay (reservation price) for y € [0, L] dollars of insurance coverage paid in
the event of a loss. The following property relates the willingness to pay for additional
insurance to the existing level of coverage.

Definition S.4 An individual has a nonincreasing marginal willingness to pay for in-
surance coverage if P(y + ¢) — P(y) is nonincreasing in y for every y,e > 0 such that
y+e<L.

In Section 3.2, we argued that the above definition may be overly restrictive and that
violations of this property may better match observed insurance choices—people often
accept large increases in premiums in order to reduce their insurance deductibles (Sydnor
(2010)). We also showed that the ORA representation can permit a marginal willingness

55Note that we are presuming that the probability measure is known, and therefore we are still working
within a framework of objective risk, as opposed to subjective beliefs.



to pay for additional insurance coverage that increases at some levels of coverage (while
still maintaining risk aversion). In contrast, the following result shows that any risk
preference that satisfies preference for diversification must exhibit nonincreasing marginal
willingness to pay for insurance.

Proposition S.1 If the certainty equivalent W for an individual’s risk preferences ex-
hibits preference for diversification, then this individual has a monincreasing marginal
willingness to pay for insurance coverage.

The implications of Proposition S.1 are immediate in the case of expected utility. If
an individual does not have a nonincreasing marginal willingness to pay for insurance
coverage, then she must violate preference for diversification. For an expected-utility
maximizer, preference for diversification is satisfied if and only if her Bernoulli utility
function is concave. Thus in order to have a marginal willingness to pay for insurance
coverage that increases at some levels of coverage (e.g., near full coverage), the individual
must violate risk aversion. The next section shows that this conclusion also extends to
many non-expected-utility models.

S.3.2 Preference for Diversification and SOSD

The connections between preference for diversification and risk aversion (monotonicity
with respect to SOSD) has been well documented for a number of models. Dekel (1989)
showed that preference for diversification implies risk aversion for any risk preference. He
also showed that the converse is true for preferences that are quasiconcave in probabilities.
The following proposition summarizes his result as well as related observations for rank-
dependent utility from Chew, Karni, and Safra (1987).

Proposition S.2 1. (Dekel (1989)) If W is quasiconcave in probabilities and respects
SOSD, then it satisfies preference for diversification.

2. (Chew, Karni, and Safra (1987)) If W is a rank-dependent utility certainty equiv-
alent and it respects SOSD, then it satisfies preference for diversification.

Note that Proposition S.2 applies to all of the risk preferences discussed in Section S.2.
Thus, other than our model of mixture-averse preferences, most of the non-expected-
utility preferences considered in the literature are encompassed by this result. The only
prominent theory that we are aware of that is not covered by this result is the quadratic
utility model of Chew, Epstein, and Segal (1991). To our knowledge, it remains an open
question whether quadratic utility can violate PD while still respecting SOSD.



S.4 Derivations Used in the Investment Application

In this section, we provide some supporting results for the investment application in
Section 4. First, we establish the existence and functional form of the value function for
consumers’ preferences. Second, we describe the precise equilibrium conditions for the
economy for each of the three cases, and we provide the formulas for asset returns. These
conditions will also serve as the basis of the numerical analysis in that section.

S.4.1 Properties of the Value Function

For ease of reference, we repeat Equations (13), (14), and (15) from the paper:

¢+ E[thﬂ] = wy, (S.2)
V(wsM) = max { (1= B)log(e) + ARV (wii: M) }. (S.3)
1
R(V(wis1; M)) = max {—5 log (E[ exp(—0V(wi1; M))]) — 7(0)} . (S.4)

Since equilibrium may involve heterogeneity in the choice of @, it is useful to define
the value of the optimization problem conditional on choosing risk attitude 8 € © in a
given period:

Vo(ws; M) = max {(1 — ) log(ct) — 6% log (E[ exp(—0V (w115 M))]) — 7(9)} 7

(S.5)
subject to the budget constraint in Equation (S.2). Thus
V(wy; M) = max Vy(wy; M).
9o

The following proposition summarizes the relevant properties of V and V, that will be
used in the equilibrium analysis in Section S.4.2.

Proposition S.3 For any pricing kernel M : Z — Ry, there exists a unique value
function V for the problem described in Equations (S.2), (S.3), and (S.4). This value
function takes the form

V(wg; M) = A(M) + log(wy),

where

A(M) = log(1 = 8) + - f 5 lo8(5) + % max {log (E [M%} _031) . T(e)} .



Moreover, the mazimizing consumption and state-contingent future wealth in the condi-
tional (on 0 € ©) optimization problem in Equation (S.5) are

Cot = (1 - ﬂ)wh

0

wou1(2) = B B[ Mot ] M (z) o,
and therefore Vy takes the form
Va(u M) = BAM) + (1 = §) log(1 - B) + log(5)
+ Blog (IE {M*] _> — Br(6) + log(w,).

0

The proof of Proposition S.3 is contained in Section S.6.3. For this particular specifi-
cation, the existence of the value function follows from the theorem of Blackwell (1965).%

S.4.2 Equilibrium Conditions and Numerical Procedure

Equilibrium in the model falls into one of three cases. These correspond roughly to the
three cases described in the static context in Section 4.3 and depicted in Figure 4, but
adapted to deal with consumption growth rather than consumption levels. As we explain
at the end of this section, checking each of these possible cases is precisely the numerical
procedure used in the calibration in Section 4.4:

1. All consumers choose 6 = 61, in equilibrium: Combining the two optimality condi-
tions from Proposition S.3, the each consumer i € [0, 1] must satisfy

0 —1 1
City1(2) = Beir E [MTL“} M(z) 7c+1.

Aggregating across consumers, this implies the following relationship between ag-
gregate consumption growth and the pricing kernel:

0 —1 1
A(z) = GE [MW] M(z) 7,
The solution to this equation is®”

M(z) = BE[A] T (A(2)) =0, (S.6)

56Tt is worth noting that, as with most recursive non-expected-utility models, the usual techniques
from Blackwell (1965) can only be applied in a very restricted set of special cases of the ORA model.
Fortunately, for other homogeneous specifications, recent results by Marinacci and Montrucchio (2010)
can be used to establish the existence and uniqueness of the value function (see also Theorem 7 in Sarver
(2012) which builds on their results).

STEquation (S.6) illustrates that when consumption growth is i.i.d. across time and all consumers select
the same type 0r, the pricing kernel is the same as for time-separable expected utility with a coefficient
of relative risk aversion 07, + 1 and discount factor 3 = BE[A=%2]~1. This formula could also be obtained



To check whether or not this is in fact an equilibrium, we need to determine
whether 6}, is actually optimal given these prices. Note that by Proposition S.3,
Vo, (wy; M) > Vy,, (wy; M) holds if and only if

0r+1 0 +1

e—TLE[Mezﬁl]_ > E[Mw?il]_ K (S.7)

If this condition is satisfied, then we have found an equilibrium. If not, then there
is not an equilibrium in which all consumers choose 6 = 6;,.

2. All consumers choose 8 = 0y in equilibrium: The analysis is similar to the previous
case. To satisfy the consumer optimality conditions given aggregate consumption
growth, the pricing kernel must be

M(z) = BE[A%] 7 (\(2))"OntD), (S.8)

If these prices satisfy Vy,, (we; M) > Vy, (wy; M), which is equivalent to

0 +1 0r,+1

" > eTLE[Meiil}_ e (S.9)

E[Meffil} )

then we have found an equilibrium. If not, then there is not an equilibrium in which
all consumers choose 8 = 0.

3. Consumers are heterogeneous, with some choosing @ = 61, and some choosing 0 = 0y
in equilibrium: If both 6, and 0y are optimal, then they must give the same
indirect utility. This gives our first equilibrium restriction on prices: Vy, (wy; M) =
Vo, (we; M) or, equivalently,

0r,+1 Op+1

eTLE[Meiﬂ_ g :]E[Mﬂffilr n (S.10)

We use individual optimality and market clearing conditions to give our second
restriction. Let o € (0, 1) denote the fraction of time ¢ wealth held by consumers
who choose type ;. Then the total time ¢t consumption by type #; consumers is
aey, and the total time ¢ consumption by type 6y consumers is (1 — a)e;. By the
consumers’ optimality conditions, total consumption of these two groups at time
t + 1 are as follows:

0 —1 1
type 0, consumers: aﬂetE[MTLH} M(z) 7+t

oy 1-1
type 0y consumers: (1 — a)ﬁetE[MT}il} M(Z)_QH%

by appealing to the results of Kocherlakota (1990), who observed the equivalence of the equilibrium
conditions for EZKP utility and time-separable expected utility (with a different discount factor) in i.i.d.
environments.

10



Market clearing requires that these sum to e;;; or, equivalently,

0 1-1 1 oy 71-1 1
Az) = afE [Mew} M(2) %7 + (1 - o)BE [MQHH} M(z) . (S.11)
If Equations (S.10) and (S.11) are both satisfied, then we have found an equilibrium.

Note that Equation (S.11) implies that E[MA] = . In the two-state version of the

model used in the calibration in Section 4.4 with Z = {z!, 2"}, it can be shown that a
partial converse is also true: If E[MA] = f then Equation (S.11) is satisfied for some
a € R. This observation permits the numerical problem for this case to be reduced to
solving an equation of a single variable. Specifically, we adopt the following numerical
procedure:

1. Check for an equilibrium as in case 1 as follows: Define M as in Equation (S.6) and

check if Equation (S.7) is satisfied. If that fails, then proceed to step 2.

. Check for an equilibrium as in case 2 as follows: Define M as in Equation (S.8) and
check if Equation (S.9) is satisfied. If that fails, then proceed to step 3.

. Find an equilibrium as in case 3 as follows: Since the solution to Equation (S.10)
is only pinned down up to a constant, look for a solution of the form

- p if z =2
M(Z)Z{ n

1 if z = 2",

for p > 1. Then let
15} N
M(z) = ———=M(z).
(2) B[V (2)

Since M is a scalar multiple of M it satisfies Equation (S.10), and by construction
it satisfies E[MA] = 8. Thus it satisfies Equation (S.11) for some « € R. Finally, it
can be shown that if there is not an equilibrium as in case 1 or 2, then we necessarily
have a € (0,1) and hence the market clearing condition is satisfied. Thus we have
found a heterogeneous-type equilibrium.

S.4.3 Asset Returns

In this section, we derive the formulas for asset returns for the calibration in Section 4.4
using the equilibrium pricing kernel. By the definition, the period ¢ price of any random
asset paying x4y in period ¢ + 1 is p; = E4[M;4412441]. The risk-free rate is therefore
given by

1

1=E[M,,. Rl oo Rl = —— .
[ b t} ! Ei[M; 444]

11



Since the equilibrium pricing kernel is stationary and satisfies M;;; = M(z:41), the
risk-free rate is constant and is given by the unconditional expectation R/ = 1/E[M].

Consider now an asset that has a dividend growth given by dyy1 = A%(241)d;. The
price of this asset satisfies

pf =E; [Mt,t+1(pg+1 + dt—&—l)}-

The price/dividend ratio therefore satisfies

d d
DPi P+ dis1 diy1
4 E, [Mt,t+1<dt+1 d, + d, )} .

Since the state is i.i.d. across time and the equilibrium pricing kernel is given by M, ;11 =
M (z41) at every period t, there is a constant price/dividend ratio p that solves this
equation:
p=E[MX(p+1)] = L =E[Mr].
p+1
The return on this asset is given by
d
pf+1 +diyr Zi—ﬁdtd_tl dil_tl

4 - d
Py
2 T

The return is therefore time invariant and satisfies

4 p+1\  M(2)
R(z)—)\(z)( P )-E[M)\d].

S.5 Existence of a Value Function

The value function V' is included explicitly in the definition of the ORA representation.
However, it may be desirable to obtain such a value function from the other parameters
(u, @, B) of the representation. Using similar techniques to Epstein and Zin (1989), the
following result shows that this is possible.?®

Proposition S.4 Suppose f € (0,1) and u : C — R is a continuous and nonconstant
function. Let [a,b] = u(C) where —o0 < & <b < 400, and let a = 1%5,b = 125. Let ®
be any collection of continuous and nondecreasing functions ¢ : [a,b] — R that satisfies

SUPyeqp ¢(z) = x for all x € [a,b]. Then, there exists a bounded and lower semicontinuous
function V' : D — [a,b] that satisfies Equation (3).

58 As with most other recursive non-expected-utility models, it is not possible to apply the standard
techniques from Blackwell (1965) to prove existence of a value function.
%Since C' is compact and connected and u is continuous, u(C) is a closed and bounded interval in R.

12



For the ORA representation to be well-defined, the functions ¢ € ® must be defined
everywhere on the set V(D). However, if V' is not known and needs to be determined
from the other parameters of the representation (u, ®, 3), then the relevant domain of the
functions ¢ € ® is not known a priori. Nonetheless, Proposition S.4 shows that the range
of V' can be determined from the range of u, and hence it suffices to consider functions ¢
defined on this interval [a,b]. In particular, if u > 0 (u < 0, respectively) then it suffices
to define each ¢ on Ry (R_, respectively).

There are two noticeable gaps in Proposition S.4. First, it does not ensure the unique-
ness of the function V. Second, it does not ensure that the function V' is continuous,
only lower semicontinuous. There are similar limitations to the existence results in Ep-
stein and Zin (1989). Since resolving these issues is not central to the analysis in this
paper, obtaining a stronger version of this result is left as an open question for future
research. However, it is worth noting that in the case of homothetic preferences, as in
the application in Section 4, it is possible to ensure both uniqueness and continuity of
the value function using recent results from Marinacci and Montrucchio (2010) (see also
Proposition S.3 and Footnote 56).

S.6 Proofs

S.6.1 Proof of Theorem S.1

Theorem S.1 will be proved by means of a separation argument. Since >¢=2>, it
is without loss of generality to assume that C is a closed convex cone in the space of
continuous functions C'(X) that contains the constant functions. Let ca(X) denote the

set of all signed (countably-additive) Borel measures of bounded variation on the compact
metric space X. Consider the following subset of ca(X):

K= {M € ca(X) / 6(x) du(z) > 0 for every ¢ c} | (S.12)

Note that K is a cone in ca(X). In addition, since the constant functions identically
equal to 1 and —1 are both in C, u(X) = 0 for all u € K. The following lemma makes
some other simple observations about K that will be used in the proof of the proposition.

Lemma S.1 The set K defined in Equation (S.12) is a weak™ closed convex cone in
ca(X), and for any u,n € AN(X),

w=>en < pu—neckK.
Proof: For any ¢ € C, the set
K, = {,u € ca(X) : /gzﬁ(x) du(z) > O}

13



is weak™ closed and convex. Since K = Nyec Ky is the intersection of closed and convex
sets, it is also closed and convex. The equivalence in the displayed equation follows di-
rectly from the definition of >¢. [ |

Continuing the proof of Theorem S.1, it is immediate that 2 implies 1. To prove that
1 implies 2, it suffices to show that for any p € A(X) and any o < W (), there exists
a function ¢, , € C such that a < [ ¢, .(z)du(z) and [ ¢, q(z)dn(z) < W(n) for all
n € A(X). Then, letting

D = {Gua:peNX),a< W},

it follows directly that
W) =sup [ o) du(z).

peD
Fix any g € A(X) and any o < W (u). The proof is completed by showing the

existence of a function ¢, , as described above. This is accomplished using a separation

argument similar to standard duality results for convex functions (see, e.g., Ekeland and
Turnbull (1983) or Phelps (1993)). The epigraph of W is defined as follows:

epi(W) ={(n,1) € AX) xRt > W(n)}

Since W is convex with a convex domain A(X), epi(W) is a convex subset of ca(X) x R.
Moreover, as a weak™ lower semicontinuous function with a weak* closed domain, it is a
standard result that epi(1V) is a closed subset of ca(X) x R.% Now, define a set K, as
follows:

Ky = ({0} + K) x {a} = {u+viv e K} x {a)

By Lemma S.1, K, is a closed and convex subset of ca(X) x R. Establishing the
following claim allows the separating hyperplane theorem to be applied.5!

Claim S.1 For a < W(u), the set epi(W) — K, o is convez, and (0,0) ¢ cl(epi(W) —

K, o).
Proof of claim: First, note that K, , Nepi(W) = 0. To see this, take any (n,t) €
K, . Then, by definition, ¢ = o and n — p € K. If n ¢ A(X), then it is trivial that

(n,t) ¢ epi(W). Alternatively, if n € A(X), then Lemma S.1 implies n >¢ p. In this case
W(n) > W(p) > o =t, so again (n,t) ¢ epi(W). Thus, K,, and epi(W) are disjoint,
closed, and convex sets.

50The set ca(X) x R is endowed with the product topology generated by the weak* topology on ca(X)
and the Euclidean topology on R.

61 Although epi(W) and K u,a are disjoint, closed, and convex sets, standard separation theorems
require that at least one of the sets either be compact or have a nonempty interior. Therefore, a slightly
more involved argument is required here.

14



Since K, , and epi(WW) are convex and disjoint, epi(WW) — K, , is convex and (0,0) ¢
epi(W) — K. Since W is weak™ lower semicontinuous and has a weak® compact domain
A(X), it attains a minimum value W. Therefore, epi(WW) can be written as the union of
the following two sets:

By = epi(W) N (A(X)
By = epi(W) N (A(X)

W, W (w)]) ={(nt) € AX) xR W () >t > W(n)}

X
< W (1), +00)) = {(n,1) € A(X) x R : ¢ = max{ W (n), W (i)}
As the intersection of a closed set and a compact set, B; is compact, and as the in-
tersection of two closed sets, Bs is closed. Since the difference of a compact set and a
closed set is closed, By — K, is closed. Since By — K, , C epi(W) — K, ,, this set
does not contain (0,0). Also note that for every (v,t) € By — K, ,, it must be that
t > W(p) —a > 0. Therefore, By — K, o C ca(X) x [W(u) — o, +00), a closed set
not containing (0,0). Thus, epi(W) — K, is contained in the union of the closed sets

By — K, and ca(X) x [W(u) — a, +00), each of which does not contain (0, 0). |

Continuing the proof of Theorem S.1, note that ca(X) x R is a locally convex Haus-
dorff space (Theorem 5.73 in Aliprantis and Border (2006)). Therefore, the separating
hyperplane theorem (Theorem 5.79 in Aliprantis and Border (2006)) implies there exists
a weak™® continuous linear functional F': ca(X) — R and A € R such that

F(v)+ Xt < F(0)+ X0 =0, Y(,t) € epi(W) — K,a.

For any (n,t) € epi(W) and v € K, we have (u+ v,a) € K, , and therefore (n — p —
vt —a) € epi(W) — K,,,. Thus

Fn)4+ M < F(p)+ F(v)+ X, Y(n,t) € epi(W), Vv € K. (S.13)

Taking (n,t) = (u, W(p)) and v = 0, it follows that AW (u) < Aa. Since av < W(u),
this implies A < 0. Therefore, setting v = 0 in the Equation (S.13), conclude that for all
n e AX),

F F
F(n) + AW (n) < F() + da = W(y) > 52 4 Z 4 q.

Consider the weak™ continuous linear functional 7 — —@ defined on ca(X). Since the
weak™ topology on ca(X) is generated by C(X), every weak® continuous linear functional
on ca(X) corresponds to some 1 € C'(X) (Theorem 5.93 in Aliprantis and Border (2006)).
In particular, there exists ¢ € C'(X) such that — ") = [Y(x ) for all n € ca(X).

Define ¢, o € C(X) by ¢pa(r) =¢(z) + @ +a for reX. Then, for every 1 € A(X),

0> [ v i)+ 22 +a = [ [ue)+ 52+ o] dota) = [ bale) dnlo
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In addition,
/¢ua d,u F(u %—FO&ZO&.

The final step in the proof is to show that ¢,, € C. Fix any v € K, and note that
rv € K for all r > 0. Therefore, Equation (S.13) implies

F(p)+ AW (p) < F(p) + F(rv) + A
= F(u) +rF(v) + Aa.
For this to be true for every r > 0, it must be that F(v) > 0. That is, [¢(z)dv(z) >0
for all v € K. Thus there is no v € ca(X) such that

/2/1(:6) dv(z) <0 and /(b(a:) dv(z) >0, V¢ € C.

An infinite-dimensional version of Farkas’ Lemma (Corollary 5.84 in Aliprantis and Bor-
der (2006)) therefore implies ¢ € C. Since C is a convex cone that contains all constant
functions, conclude also that ¢, , € C. This completes the proof.

S.6.2 Proof of Proposition S.1

Fix any w, L, and any y, 3’ € [0, L]. By definition, the individual is indifferent between
insurance coverage y at premium P(y) and insurance coverage 3 at premium P(y'):

w (" D) = (e )

:W(w—L T )
w l1—m

Preference for diversification therefore implies that for any a € [0, 1],

(1 e T Y ().

Since W respects FOSD, this implies P(ay + (1 — a)y’) > aP(y) + (1 — a)P(y'), so
P is concave. Thus the individual has a nonincreasing marginal willingness to pay for
insurance coverage.

S.6.3 Proof of Proposition S.3

Note that for any function f : Rf — R and any « € R, the certainty equivalent in Equa-
tion (S.4) satisfies R(f + o) = R(f) + a.. Therefore, the value function operator defined
by the right side of Equation (S.3) satisfies the conditions of the theorem of Blackwell
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(1965), which ensures the existence and uniqueness of the value function V(wy; M) for
any M : Z — Ry ,.

We will verify that the functional form V(wy; M) = A(M) + log(w,) satisfies the
recursion in Equation (S.3). Assuming this form of the value function and substituting
into Equation (S.5) gives

Vo(wy) = max {(1 — ) log(ct) + Blog (E [w;fl}_%) — pr(0) + BA(M)}, (S.14)

ct€R4
W41 ERJZr

where the maximization is subject to Equation (S.2). Applying standard Lagrangian
optimization techniques to this problem gives the following maximizers:

CG,t = (1 - ﬁ)wh

_0_

-1
weir1(2) = pw E [MGH] M(z) o+,

Note that these solutions imply

Substituting these solutions into Equation (S.14) therefore yields

Vo(wy; M) = (1 — B8)log((1 — B)w;) + Blog(Bwy)

_0+1
0

+ Blog (E [Mm] 9) — B7(0) + BA(M)
= BA(M) + (1 — ) log(1 — ) + Blog(f)
+ [log (IE [M%] ) ) — B7(0) + log(wy).

0

This will establish that Vy has the form claimed in the statement of the proposition, once
it is verified that V' takes the form assumed above. To see that the latter is true, note
that

V(wg; M) = max Vo (wy; M)

= BA(M) + (1 = B)log(1 — B) + Blog(p)

0

+ B max {log <IE [Mm] _6;1) - 7(9)} +log(w).

Therefore, the assumed form V(wy; M) = A(M) + log(w;) satisfies the recursion in Equa-
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tion (S.3) if

A(M) = log(1 = 8) + - f 5 lo8(5) + % max {log (E [M%} J) - T(e)} .

We have thus established all of the claims in the statement of the proposition.

S.6.4 Proof of Proposition S.4

As in the statement of the proposition, let [a, l;] =u(C) and a = 1%,6 ﬁ Let L

denote the space of all lower semicontinuous functions from D to [a, b]:
L=A{f:D —Ja,b]: f is lower semicontinuous}.

Define an operator T on L by

Tf(c,m) = u(c) + Bsup /D 6(£(2,)) dm(é, i),

ocd

for (¢,m) € D.

The first step is to show that T'f € L for all f € L, and hence T': L. — L. Fix any
f € L. Since f is bounded by a and b and each ¢ is nondecreasing, it follows that

o(a) < /D B(F(, 1)) dm(é,in) < 9(b), V¥m € A(D), ¢ € .

Taking the supremum of each expression and using the property sup cq () = x gives

a < sup/ ¢(f(é, 77%)) dm(¢,m) < b.
¢€® J D

Since (1 — f)a < u(c) < (1 — B)b for all ¢ € C, this implies a < T'f < b. Next,
the lower semicontinuity of f implies that ¢ o f is lower semicontinuous for all ¢ € ®,
since each ¢ is continuous and nondecreasing. This in turn implies that the mapping
m [, ¢(f(é,m))dm(¢,m) is lower semicontinuous (see Theorem 15.5 in Aliprantis
and Border (2006)). It is a standard result that the supremum of any collection of lower
semicontinuous functions is lower semicontinuous. Together with the continuity of w,
conclude that T'f is lower semicontinuous. Hence T'f € L for all f € L.

The proof is completed by showing that T has a fixed point V' € L. To show the
existence of a fixed point, first construct a sequence as follows: Let Vj(c, m) = a for all
(¢,m) € D, and let V,,,; = TV, for all n € N. Since each ¢ € ® is nondecreasing, it
follows immediately that T" is monotone: f < g implies T'f < T'g. Note that V; < V5,
since V] < g for any g € L by definition. Thus V5 = TV}, < TV, = V5. Proceeding by
induction, V,, < V41 for all n € N. Since {V,,} is an increasing sequence of bounded
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functions, it converges pointwise to some function V' : D — [a,b]. Moreover, since V is
equal to the supremum of the collection of lower semicontinuous functions {V,, : n € N},
it is lower semicontinuous. Hence V' € L.

The last step is to show TV = V. Since V,, < V for all n, monotonicity of the
operator T implies V,.y = TV, < TV. Taking limits gives V' < TV. To establish
the opposite inequality, note first that for any m € A(D) and ¢ € &, the mapping
[ [, o(f(e,m)) dm(é,m) is continuous in the product topology (i.e., the topology of
pointwise convergence) by the dominated convergence theorem. This implies the mapping
f = Tf(c,m) is lower semicontinuous for all (¢,m) € D. Thus V,, — V implies

TV (e,m) <liminf TV, (¢,m) = liminf V,,;1(c,m) = V(c,m),

n

for all (¢,m) € D. Hence TV =V, which completes the proof.
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