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Abstract

Robotics has the potential to dramatically change society over the next decade.
Technology has matured such that modern robots can execute complex motions
with sub-millimeter precision. Advances in sensing technology have driven down
the price of depth cameras and increased their performance. However, the planning
algorithms used in currently-deployed systems are too slow to react to changing en-
vironments; this has restricted the use of high degree-of-freedom (DOF) robots to
tightly-controlled environments where planning in real time is not necessary.

Our work focuses on overcoming this challenge through careful hardware/software
co-design. We leverage aggressive precomputation and parallelism to design acceler-
ators for several components of the motion planning problem. We present architec-
tures for accelerating collision detection as well as path search. We show how we can
maintain flexibility even with custom hardware, and describe microarchitectures that
we have implemented at the register-transfer level. We also show how to generate
effective planning roadmaps for use with our designs.

Our accelerators bring the total planning latency to less than 3 microseconds,
several orders of magnitude faster than the state of the art. This capability makes it
possible to deploy systems that plan under uncertainty, use complex decision making
algorithms, or plan for multiple robots in a workspace. We hope this technology will

push robotics into domains and applications that were previously infeasible.
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Chapter 1

Introduction

The field of robotics faces many challenges in the push to deploy intelligent automation
solutions that go beyond the conventional “teach-and-repeat” paradigm. Motion planning
is one of the fundamental problems that this effort must overcome. The motion planning
task is to compute a path that allows a robot to move from its starting configuration to a
goal state. The motion plan must take into consideration the obstacles in the environment
in order to guarantee the path is collision-free. These obstacles may be inanimate objects,
other mechanical agents, or human beings. Besides being collision-free, other desirable
traits might be minimizing time spent, energy expended, or maintaining certain kinematic
invariants (such as maintaining the vertical orientation of a coffee mug during motion).
Conventional solutions may provide algorithmic guarantees such as probabilistic complete-
ness or even asymptotic optimality, but these algorithms are too slow to enable high-speed
robotic systems to react in real time. Indeed, we have reached a point where the robots
being built are capable of extremely complex, precise, and dexterous movements, but we
lack the ability to efficiently utilize them. This disconnect between the mechanical capabil-
ities of robots and our ability to make use of them is a significant barrier to expanding the
influence of robotics to new spaces. Currently, almost all industrial robots work in tightly
controlled and fenced-off environments that depend on work parts being in exactly the same

place and orientation every cycle, eliminating the need to plan motions at runtime.

1.1 The Need for Accelerated Motion Planning

Rapid motion planning is essential to introduce robots into settings where they must work
in unstructured environments or in proximity with humans. In order to be safe, these

robots must react to the environment in real time to avoid collisions. These requirements
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are formalized in ISO technical specification 15066 [1]. This standard provides guidance
for the deployment of robots to be co-located with humans. For example, it stipulates that
such “speed and separation monitoring” systems must assume that a human operator may
at any point begin moving towards it at a speed of 1.6 meters/second, and maintain an
appropriate distance accordingly [1].

Even without humans in the system, rapid motion planning is essential in manufactur-
ing and logistics environments, where the time spent to execute each step in the process
is crucial to profitability. As will be discussed in later chapters, conventional planning al-
gorithms require on the order of seconds to produce paths. Given that the motions made
by high-speed industrial robots are also on the order of seconds in duration, this has an
unacceptable effect on cycle time. Online planning can be avoided by sticking to teach-and-
repeat tasks, in which a robot is programmed to follow an exact sequence of trajectories
that have been calculated to be collision-free (validated in simulation or often even man-
ually). At runtime, the sensor-less robot blindly repeats its motion each work cycle. This
strategy results in brittle robotic systems that are expensive to maintain, as the robots
must be reprogrammed to accommodate even small changes in the workspace, but it is the

established status quo in almost all deployed industrial robotics systems.

High-speed motion planning is also crucial to make use of complex decision-making al-
gorithms (such as high-level task-space planning) that invoke motion planning hundreds or
thousands of times as a subroutine [2, 3, 4]. For example, a robot developing a strategy to
assemble a product involving 15 components may need to evaluate many thousands of mo-
tions before actually performing the first one. Due to the long latency of motion planning,
these applications have previously never been feasible in dynamic environments, where the
task plan may need to change at runtime. Our work focuses on developing hardware ac-
celerators for motion planning in the hopes of enabling these higher-level algorithms by

transforming motion planning into a for-free primitive.

It is well established that application specific hardware can accelerate critical tasks in

addition to improving energy-efficiency. This has been demonstrated in situations such as



using an entirely custom supercomputer architecture for molecular dynamics simulation [5],
offloading deep neural network inference onto an ASIC [6], and web search augmented with a
reconfigurable fabric of FPGAs [7]. As robots and automation begin to enter unstructured
environments, having effective compute capability on these devices is critical for them
to navigate through changing environments in real time. Application specific compute
solutions are also attractive in the field of robotics because power is an important factor

when working with mobile (unconnected) robots, or a facility with many robots.

1.2 Contributions and Outline of this Thesis

The work we present in this thesis is focused on enabling real-time motion planning through
careful hardware/software co-design. We have developed custom architectures that accel-
erate various components of motion planning and have implemented these architectures to
the RTL level. These accelerators are not simple hardware implementations of known algo-
rithms; their design necessitated developing hardware-friendly algorithms and workflows.
We leverage aggressive precomputation, as well as the parallelism inherent in the motion
planning problem, to design architectures that achieve orders of magnitude speedup over

conventional solutions. The rest of this thesis is structured as follows:

— In Chapter 2, we provide a brief background in motion planning. We discuss the
main components and challenges involved in motion planning, as well as introduce
the conventional motion planning solutions. We also consider related work that has

attempted to accelerate motion planning.

— In Chapter 2.4 we introduce an architecture for accelerating collision detection.
Our first contribution utilized combinatorial circuits to encode the swept volume
of robotic motion. We present the underlying microarchitecture, and evaluate its
performance. This solution is very high performance with a low area footprint, but

has a procedurally-generated implementation specific to a single robotic application.



This property makes it appropriate for an FPGA-based platform, but unsuitable for

ASIC consideration.

In Chapter 4 we overcome some of the limitations inherent in our first work by
designing a programmable architecture that enables the accelerator to be targeted
to any robot and motion planning roadmap. In this second contribution we sacrifice
area and performance for flexibility. The microarchitecture is much more complex, so
we describe steps we take to mitigate this complexity. The resulting flexible design

is better suited to ASIC production.

In Chapter 5 we show that path search becomes the bottleneck in motion planning
once collision detection has been accelerated. We present an architecture for ac-
celerating path search that reduces the latency for this component of planning by
several orders of magnitude. Our implementation is flexible to different robots and
roadmaps, and leverages aspects of the path search problem that are specific to robot

motion planning.

All of our contributions in Chapters 2.4 to 5 require the a priori selection of a static
planning roadmap. In order to meet real-time demands, the static roadmap must
be robust to expected obstacles in the scenario. Moreover, because of limited hard-
ware resources, the roadmap must be relatively small, especially compared to those
generated by conventional planning algorithms. This final contribution in Chapter
6 details the problem of generating roadmaps that are robust to dynamic obstacles,

contain high-quality paths, and are compact enough to fit on specialized hardware.



Chapter 2

Motion Planning Background and Related
Work

This chapter gives an overview of the motion planning problem to provide the computer

architect with the context and domain knowledge relevant to this thesis.

2.1 Configuration Space

Motion plans must be specified in a format that completely defines the system of interest.
Such a format is known as a configuration space, and each point in configuration space
represents a unique pose of the particle, rigid body, or robot being studied. In a 1983,
Lozano-Perez introduced the usefulness of configuration space (cspace) in the field of robotic
motion planning [8]. This is a convenient and powerful framework in which to create paths,
in part simply because it is such a compact way of containing all necessary information. To
briefly illustrate, consider Figure 2.1. In a), it can be seen that the configuration space for
a particle in a 2-dimensional world consists of two translation coordinates. In this simple
example, that is all that is necessary to completely describe the system. In b), the particle is
now a 2D rigid body, and three parameters are thus needed. A point on the body is defined
as the reference verter, and a reference initial configuration is defined. A 2D translation
vector places the reference vertex at the specified position, a single rotation value gives
the rigid body its correct orientation, and the system becomes completely defined. In c),
it can be seen that in three-dimensional space, a rigid body’s configuration space has six
parameters. The first three are a translational vector that places the reference vertex in
space, and three independent rotation angles are necessary to completely define the body’s
orientation. In general, a rigid body in n-dimensional space requires n + (‘21) parameters

to define the system: an n-tuple translating the reference vertex, and (’21) independent
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Figure 2.1: a) A particle in 2D space is defined by just 2 parameters. b) A rigid body
in 2D space requires both a 2D translation vector, and a single rotation value, defined in
relation to a reference vertex and reference configuration. c¢) A rigid body in 3D space
requires a 3D translation vector, as well as roll, pitch, and yaw values'.

rotation angles. If a joint is added to the rigid body, an additional parameter is required
in the configuration space for each degree of freedom the joint introduces. For example,
consider a robotic arm with six joints. Such a system would require motion planning to
occur in a 12 dimensional space if each joint is a simple revolute joint that only introduces
one addition degree of freedom each. If the arm has a fixed base then we can eliminate the
translational and rotational components and reduce our system to the 6 degrees of freedom

contained in the joints.
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2.2 Components of Motion Planning

A motion plan completely specifies a path a robot can follow from a starting configuration
to a goal state without colliding with any obstacles. There are many approaches and
algorithms to create motion plans, but there are several fundamental tasks that must be

performed and are common to all approaches. We divide these tasks into four categories.

Perception is the use of a combination of sensors and processing to produce a model of
the environment. A common strategy is to construct a polygonal hull around environmental
obstacles made out of triangles, for example. In our work we assume sensors that produce
an occupancy grid. An occupancy grid is a data structure representing which regions of
space contain obstacles in a discretized view of the environment. Each discretized region of
space is termed a “voxel”, a 3D (volumetric) pixel. We leave the problem of constructing the

occupancy grid to the vast body of literature concerned with computer vision and sensing.

Roadmap construction is the creation of a graph-based discretization of a robot’s con-
figuration space. The most popular motion planning algorithms all use these constructs.
The typical graph theory abstractions are used to describe navigation in this space. Each
vertex in the graph is a point in the robot’s configuration space, and therefore completely
defines a specific pose of the robot, and each edge in configuration space represents a move-
ment between two poses. A graph of robot poses and movements is termed a “roadmap.”
Motion planning in this paradigm thus involves constructing and finding a path through a
roadmap that does not collide with any obstacles. If planning in a two dimensional space,
dense graphs with high coverage can be quickly constructed. The problem becomes quite
difficult, however, when working with robots with many degrees of freedom (many-DOF),
as it suffers from the same state space explosion problem present in many other fields. An
interesting robotic platform may have six to ten degrees of freedom, so the space that must
be explored is far too large to build a dense roadmap. Autonomous vehicles also make use
of roadmap-based planning techniques [9], and construction of roadmaps in this domain
simply involves different degrees of freedom and constraints. An example toy roadmap in

a two-dimensional space is shown in Figure 2.2.
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Figure 2.2: Roadmap showing how a path could be found from a starting configuration
(red square node) to the goal region (green oval) by sampling in configuration space and
avoiding obstacles (amorphous blue regions). This example illustrates planning in 2D, while
planning for most robotic arms takes place in a higher dimensional space.

Collision detection is determining if a motion or configuration of a robot is in collision
with itself or the environment. There are several ways to perform collision detection which
will be discussed in later sections. Collision detection can be interleaved with roadmap
construction, or performed after roadmap construction has finished. This step is quite
computationally expensive, and is the bottleneck in conventional planning algorithms [10].

The path search phase involves traversing the roadmap to check if a path from the
starting position to the goal exists, and to identify optimal paths using a cost function to

weight each edge. Search is often done using variants of A* or Dijkstra’s algorithm [11].

2.3 Planning with Probabilistic Roadmaps

The difficulty of creating plans for robots with many degrees of freedom has been extensively
studied. The challenge of planning in very large spaces is such that even the most widely

used algorithms are only probabilistically complete, with no guarantees on running time or



memory required to solve a problem of fixed size. In their 1996 work, Overmars and Kavraki
[12] detail a process their two labs developed independently aiming to construct roadmaps
from which queries could produce motion plans. They focus on many-DOF robots and keep
their method general enough that researchers can adjust the algorithm to enable greater
performance by taking advantage of knowledge specific to a given scenario/application.
This paper is a seminal work in motion planning; we briefly discuss their algorithm here,

and how it relates to the strategies we’'ve taken in our work.

The authors break up the Probabilistic Roadmap (PRM) workflow into two phases. The
computationally expensive learning phase involves the creation of a roadmap consisting of
possibly several unconnected graphs where all edges have been determined to be safe, and
a fast, inexpensive query phase where a path is (hopefully) found through the map to a
specified goal configuration. As long as the environment is unchanged, several of these
lightweight query calls can be made on the same roadmap. The query and learning phases
can also be interleaved if a roadmap must be grown after the initial learning period. The
learning phase is itself divided into two steps. The construction step creates a base roadmap
with a minimal number of cycles, and the ezpansion step enhances the connectivity of the

graph to deal with more difficult areas of configuration space.

The construction step of the learning phase follows an iterative process. In each iter-
ation, a random configuration Cpew is chosen by sampling values for all the independent
degrees of freedom in the robot’s configuration space. The first test done is to check whether
the obtained configuration is itself collision-free; if so, the node is added to the graph, oth-
erwise it is discarded and the next iteration begins. Next, a list of potential neighbor nodes
is assembled by choosing some distance function D(a, b) and associated threshold T; all
nodes n with D(n, Cpew) < T are added to the list. Working from the closest node in
the list to the furthest, each node n is tested with a local planner to see if the path from
Chew to n is collision-free. The properties of the local planner are simply that it must be
deterministic, because only this path will be verified to be collision-free. During the query

phase the local planner must reproduce the exact same path as it did during the learning



phase. Ideally, the local planner is also fast, because it is used at run time. A common
choice of local planner, which we use in our experiments, is simple linear interpolation along
all joint angles. This method results in straight line paths (in c-space), is deterministic,
and is extremely fast. Depending on the desired connectivity of the graph, one can add
edges from Cpew to a variable number of nodes from the potential neighbor list that are
determined to have collision-free connections; one approach is to add connections for all the
nodes that connect Cpew to a distinct connected component of the graph, thus merging
the two connected components. Ending conditions for the construction step can also be
tailored to fit specific application needs and could be a desired number of configurations

within a goal region or something as simple as a maximum number of total iterations.

The goal of the expansion step is to improve connectivity in hard regions of configuration
space. It is optional, and intended to improve the success rate of the query phase. The basic
idea is to keep track during the construction phase of how many times the local planner
found collisions between each node n and its potential neighbors. If C; had many potential
neighbors but was in collision with almost all of them, this indicates that Cj is in a difficult
region of c-space. So one such strategy could be to define a hardness metric, and for every
C; with a metric above a certain threshold, attempt to sample more configurations in its
neighborhood. In this manner, a higher degree of success may be obtained in the query
phase by improving the connectivity of the difficult regions. We mention this optional step
because in Chapter 6 we find that a human-guided expansion step can greatly increase the

performance of fixed roadmap.

The collision checking involved in both steps of the learning phase is the most expensive
part of the PRM process. Collision checking is normally done by representing both the
obstacles and robot with polygon meshes. Triangles are normally used to take advantage of
their (relatively) simple properties [13]. Collision checking then becomes checking whether
any of the triangles in the robot’s representation intersect with any of the triangles in
the obstacles representation (or if the robot collides with itself). Each representation may

consist of hundreds or even thousands of triangles, so many thousands or millions of triangle

10



intersection tests may be necessary to check a single configuration of the robot. Collision
checking an edge is usually done by breaking the motion up into a sequence of configuration
milestones, and ensuring each step of the motion is collision-free. If a motion is broken up
into a hundred steps, then a hundred configurations must be checked (each one involving
thousands or millions of triangle-tests) to verify that the single edge is safe. Even in the

absence of obstacles, ensuring a motion does not result in a self-collision is non-trivial.

The query phase is a much simpler process. It simply involves finding paths between
given start and end configurations in the graph. Any graph search or shortest path al-
gorithm suffices. The same local planner is used to create the paths for motion between
configurations as was used during the learning phase. It can be run much faster this time,
however, because collision checking is not required during the query phase, as the paths
generated by the local planner are already guaranteed to be collision-free. In this manner,
as long as the environment has not changed since the learning phase, several queries can

be run at very low cost.

2.3.1 Optimal Path Planning Algorithms

PRM and the related RRT (rapid exploring random trees) are both only concerned with
path feasibility. The algorithms are sound in that they will never return invalid paths,
and are probabilistically complete in that while for a given number of samples neither is
guaranteed to return a path if one exists, as the number of samples approaches infinity,
the likelihood of not finding an existing path decays to 0 [14]. What these algorithms
do not do, however, is make any guarantee on the quality of the path found. In fact,
they can lead to highly suboptimal, unnecessarily long paths, and this tendency is not
attenuated by increasing the number of samples [12]. The second generation of probabilistic
planning strategies aimed to remove this deficiency by adapting the algorithms to constantly
improve path quality as the sampling process continues. In 2011, Karaman and Frazzoli
[14] proposed modifications to several probabilistic algorithms and proved that these new

algorithms, PRM* and RRT*, are asymptotically optimal.
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Figure 2.3: a) State of an RRT planner after 5 nodes have been sampled, showing where
the next two samples will be. b) Roadmap after these two nodes are sampled in conventional
RRT yields a highly non-optimal path. ¢) When node 6 is sampled, the RRT* algorithm
rewires the connection (2,3) to (6,3), yielding a much better path to node 7 when it is
sampled.



As an example of how these modifications work, consider RRT. RRT is very similar to
PRM, except that each time a node is sampled, it is only connected to the nearest feasible
neighbor instead of to all the neighbors within a certain radius or the k closest neighbors.
This leads to a tree structure with the root at the starting configuration. The downside of
this algorithm is that it is greedy, in that it makes the best choice at sample time, which
may not remain optimal or even close to optimal later on. An example is shown in Figure
2.3a. The nodes in this figure are labeled in the order sampling occurred to show why
connections were established as shown up to node 5. For the sake of the example, assume
the next two nodes to be sampled are known. If nodes 6 and 7 are sampled while following
a basic RRT algorithm, the resulting path to node 7 will be highly sub-optimal, as only the
closest neighbor is considered for attachment, seen in Figure 2.3b. What RRT* changes is
each time a node is added to the graph, all pre-existing neighbors within a certain radius
are considered for rewiring if the current path to that neighbor is more costly than it would
be to go through the newly added node. In Figure 2.3c, pre-existing node 3 is seen to have
a shorter path if rewired to have newly sampled node 6 as its parent, and this results in
a shorter path to node 7 (the goal). This optimization does not change the coverage of
the tree, but creates much better paths at the cost of additional collision checking. The
authors prove that these enhancements do not change the complexity of the algorithms and

produce solutions that do in fact converge to optimality as the number of samples grows.

2.4 Parallelizing Planning Algorithms

There have been previous efforts to parallelize robotic planning algorithms. In one paper,
the authors investigate the use of the many cores of a GPU to perform collision checks
in parallel [15]. In particular, they look into the parallelization of RRT and RRT*. The
authors use CUDA to achieve parallelization in three dimensions in the collision checking

procedure.

The first dimension has to do with the way the swept volume is approximated by taking
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snapshots of the robot at several points along its motion between the two configurations.
For example, in collision checking the path between configurations C; and C, with a
discretization level of 100, the algorithm would calculate 100 intermediate configurations
along the (deterministic) path between C1 and Cg, and collision check all these intermediate
configurations. If any of these are in collision with any obstacle, then the edge is unsafe. The
first dimension of parallelization in the author’s implementation is that each thread block
works on a different discretization point. So in the previous example, each pair-wise collision
check would spawn 100 thread blocks to examine different intermediate configurations.
Within each thread block, the authors designed their kernel such that a different thread
would collision check the robot against a single obstacle. If there were 16 obstacles in the
scene, each thread block would have 16 threads, each doing the collision detection between

a single obstacle and the robot.

The highest dimension of parallelization in this study was specific to RRT*, and is
not applicable to RRT. In RRT*, the algorithm strives for optimality by collision checking
each new sample with all neighbors within a certain radius in c-space before adding the
edge with the minimum total cost to the graph. The authors assign a different grid of
thread blocks to do the work for each of these pair-wise checks. To extend the previous
running example, assume a scene with 16 obstacles and a collision checking strategy with a
discretization level of 100. Now on a given iteration of RRT*, Cpew is sampled randomly.
The radius is chosen such that there are four potential neighbors for Cpew, consisting of
the set {Cy,Cg2,C3,Cy4}. Each grid would handle a unique pairwise collision between
(Chew Cj). Then for this iteration, the kernel would launch four grids of thread blocks,
where each grid had 100 blocks (one for each discrete configuration in the movement), and
each block had 16 threads (one for each obstacle in the scene).

The authors report a speedup of their collision checking routine of around 10x; collision
detection, which had been taking up almost 99% of the computation time of the algorithm,
was now only taking up 80%. The authors do not directly explain why this speedup is not

nearly as high as the theoretical speedup from the available parallelism should have been,
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but they hint that costly memory transfer times may be to blame. The sequential nature
of the sampling process also probably reduced the available work to do at any given point
in time. This work brings planning latency down to hundreds of milliseconds, which is
an improvement over planning on general purpose CPUs, but still insufficient for real-time
planning.

There is one previous work on speeding up motion planning in custom hardware, but
it tries to directly accelerate existing algorithms, and has significant limitations. Atay and
Bayazit [16] recognize the high degree of parallelism inherent in the PRM algorithm [17] and
investigate using an FPGA to take advantage. The authors implement the learning phase
of the PRM algorithm in hardware and perform collision detection with triangle-triangle
intersection circuits. The design involved storing reference triangles for the robot on the
FPGA, and applying transforms to bring them to the correct location for a given query. The
authors quickly ran into hardware limitation issues since each intersection circuit is complex
and many thousands are needed. This limited them to consider only impractically simple
scenarios, where the robot was a single rectangular prism, since this can be represented

with only 12 triangles.

After publication of our designs presented in Chapter 2.4, an additional work investi-
gated custom hardware for collision detection. Dadu-P [18] draws on our work and takes
a similar approach., but stores edge data in memory rather than in circuits, enabling re-
configurability. Dadu-P also uses an octree of voxels instead of an occupancy grid. The
reliance on external memory transfer to bring in swept volume data causes a 25X latency
increase in collision detection compared to what we present in Chapter 2.4, and Dadu-P

did not attempt to accelerate path search.
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Chapter 3

Combinatorial Circuit-Based Collision
Detection Acceleration

From the previous section the PRM algorithm may seem like a sufficient solution. Com-
putation can be done up front in a slow learning phase, and then lightweight calls can be
made at runtime in the query phase. However, the roadmap is safe only as long as the
environment remains unchanged. Any change requires the connectivity of the roadmap to
be recomputed. There are variants of the PRM algorithm that try to minimize this recom-
putation cost, but it is still quite expensive. Since collision detection consumes 99% of the
time of building the roadmap, re-verifying safeness requires almost as much computation
as building the roadmap from scratch. This limitation is acceptable in tightly controlled,
precisely engineered, and caged-off workcells, but is unreasonable for robots that must
quickly plan in dynamic environments. Our initial work focused on precisely this problem:

designing a solution to enable planning to occur in real time for dynamic environments.

3.1 Direct Acceleration of Existing Algorithm

Our first strategy was to design a triangle-triangle intersection test accelerator. This was
the logical place to start; collision detection had been proven to be the bottleneck in mo-
tion planning, collision detection involves performing possibly millions of triangle-triangle
intersection tests, and there is a huge amount of parallelism in these tests to exploit [17].
Although there are several clever ways to reduce the amount of computation involved,
the simplest method of determining if two triangles ABC and DEF intersect in 3D space
is to test if any of the line segments (AB, AC, or BC) intersect with the triangle DEF and
the same for the segments of DEF against triangle ABC. Thus, a single triangle-triangle
intersection test can be decomposed into the logical disjunction of six line segment-triangle

intersection tests (which can conveniently be performed in parallel) [13].
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Q

Figure 3.1: A line segment vs triangle test involves determining whether the point R at
which line PQ intersects the plane defined by ABC lies within the triangle ABC.

A line segment-triangle test is performed by taking the line segment and checking at
what point the line that extends the segment intersects with the plane of the triangle. For
the example shown in Figure 3.1, the equation to check at what point the line extending

PQ intersects with the plane specified by ABC is:
A + x(B-A) + y(C-A) = P + t(Q-P).

The variables t, x, and y can be calculated through the following equations (terms in bold

typeface can be precomputed, as will be explained later):

(P—A)e[(B—A4)x(C—A)]

T PoQe(B-A)x (C-A)

L, (C=Ae[(P=Q)x(P=A)
(B-A)x(C-A)]+(P-Q)
,_(A=B)e[(P-Q)x (P~ A)
(B=A)x (C—A)]e(P-Q)

If t is less than zero or greater than one (the division can be avoided by simply comparing
the size of the numerator to the size of the denominator), then the line segment PQ does
not even intersect the plane of the triangle. If t falls between 0 and 1 and the following
inequalities hold:

0<x,y<1,

r+y<1,
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Figure 3.2: Interface for a triangle-triangle based collision detection accelerator (top left).
Accelerator takes as input all the triangles for each swept volume (SV) and obstacle. This
could be constructed by designing triangle-triangle functional units to efficiently perform
pairwise triangle tests (top right). Each functional unit would consist of six line segment
vs. triangle testers in parallel (bottom right).

then the line segment-triangle test returns true. A potential architecture to accelerate
this process is given in Figure 5. The interface accepts a stream of triangles representing
swept volumes and a stream of triangles representing obstacles. A single bit for each swept
volume is output, representing whether or not that swept volume is in collision. Internally,
the accelerator could contain many triangle-triangle functional units to conduct pairwise
checks in parallel, with each functional unit performing the six required line segment versus

triangle tests in parallel.

Hardware space limitations quickly became apparent when pursuing this strategy, so
we made several assumptions to reduce the complexity of the specialized functional units.

The first was to use fixed point arithmetic to avoid expensive floating point operations, as
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well as to use 9-bit numbers for the coordinates instead of 32. Second, we decided that
in order to reduce the amount of online computation needed, we would create a roadmap
ahead of time, which would allow the precomputation of many of the terms for the robot
triangles. In the equations for t, x, and y above, the clauses in bold could be calculated
ahead of time, assuming ABC represents a robot triangle and PQ is a line segment from

an obstacle.

Even with both these simplifications, the complete parallelization of the triangle-triangle
test requires 24 dot products and 7 cross products (the odd number of cross products
arises from a corner case that must be checked). This is equivalent to 114 multiplications,
48 additions, and 21 subtractions. The high hardware cost to parallelize a single test
was concerning. Indeed, we implemented our design and found that only a few tens (at
most) of triangle-triangle functional units would fit on our prototype FPGA board, which
was unacceptable for the throughput we desired. From this effort we learned that direct
acceleration of algorithms that depend on triangle-triangle intersection tests cannot provide

the performance and scalability we require.

3.2 Acceleration of Hardware-Friendly Algorithm

From the first design, we learned that what was needed was a co-designed algorithm to
go with custom hardware. Existing algorithms simply did not match well to hardware
acceleration. The next route we considered was to aggressively precompute not just some
amount of robot geometry, but a whole suite of collision data, and to memoize this data on
hardware for fast later access. We accomplish this by discretizing the stream of sensor data.
3D vision sensors typically output a “point cloud” identifying which points in continuous
space the sensor perceives as occupied. From this point cloud we create an occupancy
grid at some resolution, indicating the presence or absence of an obstacle point(s) within a
given region of 3D space. Instead of creating triangle meshes from the point cloud data at

runtime, we leverage the fact that a given occupancy grid resolution implies a finite number
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of possible obstacles. Expensive collision detection can be done for all edges in advance to
calculate which regions in space each movement collides with. The precomputed data can
be used to create a data structure for each edge that can be queried for membership of a
given obstacle voxel. This strategy represents a fundamental change to the PRM algorithm,

which typically builds a roadmap for the specific environment at hand.

Our algorithm is similar to an approach by Leven and Hutchinson [19], except they
went the opposite direction, creating data structures for each voxel that represented the
edges that should be invalidated if present. In effect we are trading a much larger amount
of up-front computation for a smaller amount of runtime work. Instead of having to
build /reconnect a roadmap each time the environment changes, we build a roadmap in
an obstacle-free environment and perform exhaustive collision detection once at design
time. Then at runtime we simply access the precomputed data to see how the obstacles in

a given environment affect the edges in the roadmap.

Because our goal is to achieve the highest degree of parallelism possible, we avoid storing
and accessing the <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>