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Abstract

Robotics has the potential to dramatically change society over the next decade.

Technology has matured such that modern robots can execute complex motions

with sub-millimeter precision. Advances in sensing technology have driven down

the price of depth cameras and increased their performance. However, the planning

algorithms used in currently-deployed systems are too slow to react to changing en-

vironments; this has restricted the use of high degree-of-freedom (DOF) robots to

tightly-controlled environments where planning in real time is not necessary.

Our work focuses on overcoming this challenge through careful hardware/software

co-design. We leverage aggressive precomputation and parallelism to design acceler-

ators for several components of the motion planning problem. We present architec-

tures for accelerating collision detection as well as path search. We show how we can

maintain flexibility even with custom hardware, and describe microarchitectures that

we have implemented at the register-transfer level. We also show how to generate

effective planning roadmaps for use with our designs.

Our accelerators bring the total planning latency to less than 3 microseconds,

several orders of magnitude faster than the state of the art. This capability makes it

possible to deploy systems that plan under uncertainty, use complex decision making

algorithms, or plan for multiple robots in a workspace. We hope this technology will

push robotics into domains and applications that were previously infeasible.
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Chapter 1

Introduction

The field of robotics faces many challenges in the push to deploy intelligent automation

solutions that go beyond the conventional “teach-and-repeat” paradigm. Motion planning

is one of the fundamental problems that this effort must overcome. The motion planning

task is to compute a path that allows a robot to move from its starting configuration to a

goal state. The motion plan must take into consideration the obstacles in the environment

in order to guarantee the path is collision-free. These obstacles may be inanimate objects,

other mechanical agents, or human beings. Besides being collision-free, other desirable

traits might be minimizing time spent, energy expended, or maintaining certain kinematic

invariants (such as maintaining the vertical orientation of a coffee mug during motion).

Conventional solutions may provide algorithmic guarantees such as probabilistic complete-

ness or even asymptotic optimality, but these algorithms are too slow to enable high-speed

robotic systems to react in real time. Indeed, we have reached a point where the robots

being built are capable of extremely complex, precise, and dexterous movements, but we

lack the ability to efficiently utilize them. This disconnect between the mechanical capabil-

ities of robots and our ability to make use of them is a significant barrier to expanding the

influence of robotics to new spaces. Currently, almost all industrial robots work in tightly

controlled and fenced-off environments that depend on work parts being in exactly the same

place and orientation every cycle, eliminating the need to plan motions at runtime.

1.1 The Need for Accelerated Motion Planning

Rapid motion planning is essential to introduce robots into settings where they must work

in unstructured environments or in proximity with humans. In order to be safe, these

robots must react to the environment in real time to avoid collisions. These requirements
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are formalized in ISO technical specification 15066 [1]. This standard provides guidance

for the deployment of robots to be co-located with humans. For example, it stipulates that

such “speed and separation monitoring” systems must assume that a human operator may

at any point begin moving towards it at a speed of 1.6 meters/second, and maintain an

appropriate distance accordingly [1].

Even without humans in the system, rapid motion planning is essential in manufactur-

ing and logistics environments, where the time spent to execute each step in the process

is crucial to profitability. As will be discussed in later chapters, conventional planning al-

gorithms require on the order of seconds to produce paths. Given that the motions made

by high-speed industrial robots are also on the order of seconds in duration, this has an

unacceptable effect on cycle time. Online planning can be avoided by sticking to teach-and-

repeat tasks, in which a robot is programmed to follow an exact sequence of trajectories

that have been calculated to be collision-free (validated in simulation or often even man-

ually). At runtime, the sensor-less robot blindly repeats its motion each work cycle. This

strategy results in brittle robotic systems that are expensive to maintain, as the robots

must be reprogrammed to accommodate even small changes in the workspace, but it is the

established status quo in almost all deployed industrial robotics systems.

High-speed motion planning is also crucial to make use of complex decision-making al-

gorithms (such as high-level task-space planning) that invoke motion planning hundreds or

thousands of times as a subroutine [2, 3, 4]. For example, a robot developing a strategy to

assemble a product involving 15 components may need to evaluate many thousands of mo-

tions before actually performing the first one. Due to the long latency of motion planning,

these applications have previously never been feasible in dynamic environments, where the

task plan may need to change at runtime. Our work focuses on developing hardware ac-

celerators for motion planning in the hopes of enabling these higher-level algorithms by

transforming motion planning into a for-free primitive.

It is well established that application specific hardware can accelerate critical tasks in

addition to improving energy-efficiency. This has been demonstrated in situations such as
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using an entirely custom supercomputer architecture for molecular dynamics simulation [5],

offloading deep neural network inference onto an ASIC [6], and web search augmented with a

reconfigurable fabric of FPGAs [7]. As robots and automation begin to enter unstructured

environments, having effective compute capability on these devices is critical for them

to navigate through changing environments in real time. Application specific compute

solutions are also attractive in the field of robotics because power is an important factor

when working with mobile (unconnected) robots, or a facility with many robots.

1.2 Contributions and Outline of this Thesis

The work we present in this thesis is focused on enabling real-time motion planning through

careful hardware/software co-design. We have developed custom architectures that accel-

erate various components of motion planning and have implemented these architectures to

the RTL level. These accelerators are not simple hardware implementations of known algo-

rithms; their design necessitated developing hardware-friendly algorithms and workflows.

We leverage aggressive precomputation, as well as the parallelism inherent in the motion

planning problem, to design architectures that achieve orders of magnitude speedup over

conventional solutions. The rest of this thesis is structured as follows:

− In Chapter 2, we provide a brief background in motion planning. We discuss the

main components and challenges involved in motion planning, as well as introduce

the conventional motion planning solutions. We also consider related work that has

attempted to accelerate motion planning.

− In Chapter 2.4 we introduce an architecture for accelerating collision detection.

Our first contribution utilized combinatorial circuits to encode the swept volume

of robotic motion. We present the underlying microarchitecture, and evaluate its

performance. This solution is very high performance with a low area footprint, but

has a procedurally-generated implementation specific to a single robotic application.
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This property makes it appropriate for an FPGA-based platform, but unsuitable for

ASIC consideration.

− In Chapter 4 we overcome some of the limitations inherent in our first work by

designing a programmable architecture that enables the accelerator to be targeted

to any robot and motion planning roadmap. In this second contribution we sacrifice

area and performance for flexibility. The microarchitecture is much more complex, so

we describe steps we take to mitigate this complexity. The resulting flexible design

is better suited to ASIC production.

− In Chapter 5 we show that path search becomes the bottleneck in motion planning

once collision detection has been accelerated. We present an architecture for ac-

celerating path search that reduces the latency for this component of planning by

several orders of magnitude. Our implementation is flexible to different robots and

roadmaps, and leverages aspects of the path search problem that are specific to robot

motion planning.

− All of our contributions in Chapters 2.4 to 5 require the a priori selection of a static

planning roadmap. In order to meet real-time demands, the static roadmap must

be robust to expected obstacles in the scenario. Moreover, because of limited hard-

ware resources, the roadmap must be relatively small, especially compared to those

generated by conventional planning algorithms. This final contribution in Chapter

6 details the problem of generating roadmaps that are robust to dynamic obstacles,

contain high-quality paths, and are compact enough to fit on specialized hardware.
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Chapter 2

Motion Planning Background and Related
Work

This chapter gives an overview of the motion planning problem to provide the computer

architect with the context and domain knowledge relevant to this thesis.

2.1 Configuration Space

Motion plans must be specified in a format that completely defines the system of interest.

Such a format is known as a configuration space, and each point in configuration space

represents a unique pose of the particle, rigid body, or robot being studied. In a 1983,

Lozano-Perez introduced the usefulness of configuration space (cspace) in the field of robotic

motion planning [8]. This is a convenient and powerful framework in which to create paths,

in part simply because it is such a compact way of containing all necessary information. To

briefly illustrate, consider Figure 2.1. In a), it can be seen that the configuration space for

a particle in a 2-dimensional world consists of two translation coordinates. In this simple

example, that is all that is necessary to completely describe the system. In b), the particle is

now a 2D rigid body, and three parameters are thus needed. A point on the body is defined

as the reference vertex, and a reference initial configuration is defined. A 2D translation

vector places the reference vertex at the specified position, a single rotation value gives

the rigid body its correct orientation, and the system becomes completely defined. In c),

it can be seen that in three-dimensional space, a rigid body’s configuration space has six

parameters. The first three are a translational vector that places the reference vertex in

space, and three independent rotation angles are necessary to completely define the body’s

orientation. In general, a rigid body in n-dimensional space requires n +
(
n
2

)
parameters

to define the system: an n-tuple translating the reference vertex, and
(
n
2

)
independent
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(a)

(c)

(b)

Figure 2.1: a) A particle in 2D space is defined by just 2 parameters. b) A rigid body
in 2D space requires both a 2D translation vector, and a single rotation value, defined in
relation to a reference vertex and reference configuration. c) A rigid body in 3D space
requires a 3D translation vector, as well as roll, pitch, and yaw values1.

rotation angles. If a joint is added to the rigid body, an additional parameter is required

in the configuration space for each degree of freedom the joint introduces. For example,

consider a robotic arm with six joints. Such a system would require motion planning to

occur in a 12 dimensional space if each joint is a simple revolute joint that only introduces

one addition degree of freedom each. If the arm has a fixed base then we can eliminate the

translational and rotational components and reduce our system to the 6 degrees of freedom

contained in the joints.

1Yaw Axis.svg: Auawise derivative work: (https://creativecommons.org/licenses/by-sa/3.0)
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2.2 Components of Motion Planning

A motion plan completely specifies a path a robot can follow from a starting configuration

to a goal state without colliding with any obstacles. There are many approaches and

algorithms to create motion plans, but there are several fundamental tasks that must be

performed and are common to all approaches. We divide these tasks into four categories.

Perception is the use of a combination of sensors and processing to produce a model of

the environment. A common strategy is to construct a polygonal hull around environmental

obstacles made out of triangles, for example. In our work we assume sensors that produce

an occupancy grid. An occupancy grid is a data structure representing which regions of

space contain obstacles in a discretized view of the environment. Each discretized region of

space is termed a “voxel”, a 3D (volumetric) pixel. We leave the problem of constructing the

occupancy grid to the vast body of literature concerned with computer vision and sensing.

Roadmap construction is the creation of a graph-based discretization of a robot’s con-

figuration space. The most popular motion planning algorithms all use these constructs.

The typical graph theory abstractions are used to describe navigation in this space. Each

vertex in the graph is a point in the robot’s configuration space, and therefore completely

defines a specific pose of the robot, and each edge in configuration space represents a move-

ment between two poses. A graph of robot poses and movements is termed a “roadmap.”

Motion planning in this paradigm thus involves constructing and finding a path through a

roadmap that does not collide with any obstacles. If planning in a two dimensional space,

dense graphs with high coverage can be quickly constructed. The problem becomes quite

difficult, however, when working with robots with many degrees of freedom (many-DOF),

as it suffers from the same state space explosion problem present in many other fields. An

interesting robotic platform may have six to ten degrees of freedom, so the space that must

be explored is far too large to build a dense roadmap. Autonomous vehicles also make use

of roadmap-based planning techniques [9], and construction of roadmaps in this domain

simply involves different degrees of freedom and constraints. An example toy roadmap in

a two-dimensional space is shown in Figure 2.2.
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Figure 2.2: Roadmap showing how a path could be found from a starting configuration
(red square node) to the goal region (green oval) by sampling in configuration space and
avoiding obstacles (amorphous blue regions). This example illustrates planning in 2D, while
planning for most robotic arms takes place in a higher dimensional space.

Collision detection is determining if a motion or configuration of a robot is in collision

with itself or the environment. There are several ways to perform collision detection which

will be discussed in later sections. Collision detection can be interleaved with roadmap

construction, or performed after roadmap construction has finished. This step is quite

computationally expensive, and is the bottleneck in conventional planning algorithms [10].

The path search phase involves traversing the roadmap to check if a path from the

starting position to the goal exists, and to identify optimal paths using a cost function to

weight each edge. Search is often done using variants of A* or Dijkstra’s algorithm [11].

2.3 Planning with Probabilistic Roadmaps

The difficulty of creating plans for robots with many degrees of freedom has been extensively

studied. The challenge of planning in very large spaces is such that even the most widely

used algorithms are only probabilistically complete, with no guarantees on running time or
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memory required to solve a problem of fixed size. In their 1996 work, Overmars and Kavraki

[12] detail a process their two labs developed independently aiming to construct roadmaps

from which queries could produce motion plans. They focus on many-DOF robots and keep

their method general enough that researchers can adjust the algorithm to enable greater

performance by taking advantage of knowledge specific to a given scenario/application.

This paper is a seminal work in motion planning; we briefly discuss their algorithm here,

and how it relates to the strategies we’ve taken in our work.

The authors break up the Probabilistic Roadmap (PRM) workflow into two phases. The

computationally expensive learning phase involves the creation of a roadmap consisting of

possibly several unconnected graphs where all edges have been determined to be safe, and

a fast, inexpensive query phase where a path is (hopefully) found through the map to a

specified goal configuration. As long as the environment is unchanged, several of these

lightweight query calls can be made on the same roadmap. The query and learning phases

can also be interleaved if a roadmap must be grown after the initial learning period. The

learning phase is itself divided into two steps. The construction step creates a base roadmap

with a minimal number of cycles, and the expansion step enhances the connectivity of the

graph to deal with more difficult areas of configuration space.

The construction step of the learning phase follows an iterative process. In each iter-

ation, a random configuration Cnew is chosen by sampling values for all the independent

degrees of freedom in the robot’s configuration space. The first test done is to check whether

the obtained configuration is itself collision-free; if so, the node is added to the graph, oth-

erwise it is discarded and the next iteration begins. Next, a list of potential neighbor nodes

is assembled by choosing some distance function D(a, b) and associated threshold T; all

nodes n with D(n,Cnew) < T are added to the list. Working from the closest node in

the list to the furthest, each node n is tested with a local planner to see if the path from

Cnew to n is collision-free. The properties of the local planner are simply that it must be

deterministic, because only this path will be verified to be collision-free. During the query

phase the local planner must reproduce the exact same path as it did during the learning
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phase. Ideally, the local planner is also fast, because it is used at run time. A common

choice of local planner, which we use in our experiments, is simple linear interpolation along

all joint angles. This method results in straight line paths (in c-space), is deterministic,

and is extremely fast. Depending on the desired connectivity of the graph, one can add

edges from Cnew to a variable number of nodes from the potential neighbor list that are

determined to have collision-free connections; one approach is to add connections for all the

nodes that connect Cnew to a distinct connected component of the graph, thus merging

the two connected components. Ending conditions for the construction step can also be

tailored to fit specific application needs and could be a desired number of configurations

within a goal region or something as simple as a maximum number of total iterations.

The goal of the expansion step is to improve connectivity in hard regions of configuration

space. It is optional, and intended to improve the success rate of the query phase. The basic

idea is to keep track during the construction phase of how many times the local planner

found collisions between each node n and its potential neighbors. If Cj had many potential

neighbors but was in collision with almost all of them, this indicates that Cj is in a difficult

region of c-space. So one such strategy could be to define a hardness metric, and for every

Cj with a metric above a certain threshold, attempt to sample more configurations in its

neighborhood. In this manner, a higher degree of success may be obtained in the query

phase by improving the connectivity of the difficult regions. We mention this optional step

because in Chapter 6 we find that a human-guided expansion step can greatly increase the

performance of fixed roadmap.

The collision checking involved in both steps of the learning phase is the most expensive

part of the PRM process. Collision checking is normally done by representing both the

obstacles and robot with polygon meshes. Triangles are normally used to take advantage of

their (relatively) simple properties [13]. Collision checking then becomes checking whether

any of the triangles in the robot’s representation intersect with any of the triangles in

the obstacles representation (or if the robot collides with itself). Each representation may

consist of hundreds or even thousands of triangles, so many thousands or millions of triangle
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intersection tests may be necessary to check a single configuration of the robot. Collision

checking an edge is usually done by breaking the motion up into a sequence of configuration

milestones, and ensuring each step of the motion is collision-free. If a motion is broken up

into a hundred steps, then a hundred configurations must be checked (each one involving

thousands or millions of triangle-tests) to verify that the single edge is safe. Even in the

absence of obstacles, ensuring a motion does not result in a self-collision is non-trivial.

The query phase is a much simpler process. It simply involves finding paths between

given start and end configurations in the graph. Any graph search or shortest path al-

gorithm suffices. The same local planner is used to create the paths for motion between

configurations as was used during the learning phase. It can be run much faster this time,

however, because collision checking is not required during the query phase, as the paths

generated by the local planner are already guaranteed to be collision-free. In this manner,

as long as the environment has not changed since the learning phase, several queries can

be run at very low cost.

2.3.1 Optimal Path Planning Algorithms

PRM and the related RRT (rapid exploring random trees) are both only concerned with

path feasibility. The algorithms are sound in that they will never return invalid paths,

and are probabilistically complete in that while for a given number of samples neither is

guaranteed to return a path if one exists, as the number of samples approaches infinity,

the likelihood of not finding an existing path decays to 0 [14]. What these algorithms

do not do, however, is make any guarantee on the quality of the path found. In fact,

they can lead to highly suboptimal, unnecessarily long paths, and this tendency is not

attenuated by increasing the number of samples [12]. The second generation of probabilistic

planning strategies aimed to remove this deficiency by adapting the algorithms to constantly

improve path quality as the sampling process continues. In 2011, Karaman and Frazzoli

[14] proposed modifications to several probabilistic algorithms and proved that these new

algorithms, PRM* and RRT*, are asymptotically optimal.
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(a) (b)

(c)

Figure 2.3: a) State of an RRT planner after 5 nodes have been sampled, showing where
the next two samples will be. b) Roadmap after these two nodes are sampled in conventional
RRT yields a highly non-optimal path. c) When node 6 is sampled, the RRT* algorithm
rewires the connection (2,3) to (6,3), yielding a much better path to node 7 when it is
sampled.
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As an example of how these modifications work, consider RRT. RRT is very similar to

PRM, except that each time a node is sampled, it is only connected to the nearest feasible

neighbor instead of to all the neighbors within a certain radius or the k closest neighbors.

This leads to a tree structure with the root at the starting configuration. The downside of

this algorithm is that it is greedy, in that it makes the best choice at sample time, which

may not remain optimal or even close to optimal later on. An example is shown in Figure

2.3a. The nodes in this figure are labeled in the order sampling occurred to show why

connections were established as shown up to node 5. For the sake of the example, assume

the next two nodes to be sampled are known. If nodes 6 and 7 are sampled while following

a basic RRT algorithm, the resulting path to node 7 will be highly sub-optimal, as only the

closest neighbor is considered for attachment, seen in Figure 2.3b. What RRT* changes is

each time a node is added to the graph, all pre-existing neighbors within a certain radius

are considered for rewiring if the current path to that neighbor is more costly than it would

be to go through the newly added node. In Figure 2.3c, pre-existing node 3 is seen to have

a shorter path if rewired to have newly sampled node 6 as its parent, and this results in

a shorter path to node 7 (the goal). This optimization does not change the coverage of

the tree, but creates much better paths at the cost of additional collision checking. The

authors prove that these enhancements do not change the complexity of the algorithms and

produce solutions that do in fact converge to optimality as the number of samples grows.

2.4 Parallelizing Planning Algorithms

There have been previous efforts to parallelize robotic planning algorithms. In one paper,

the authors investigate the use of the many cores of a GPU to perform collision checks

in parallel [15]. In particular, they look into the parallelization of RRT and RRT*. The

authors use CUDA to achieve parallelization in three dimensions in the collision checking

procedure.

The first dimension has to do with the way the swept volume is approximated by taking
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snapshots of the robot at several points along its motion between the two configurations.

For example, in collision checking the path between configurations C1 and C2 with a

discretization level of 100, the algorithm would calculate 100 intermediate configurations

along the (deterministic) path between C1 and C2, and collision check all these intermediate

configurations. If any of these are in collision with any obstacle, then the edge is unsafe. The

first dimension of parallelization in the author’s implementation is that each thread block

works on a different discretization point. So in the previous example, each pair-wise collision

check would spawn 100 thread blocks to examine different intermediate configurations.

Within each thread block, the authors designed their kernel such that a different thread

would collision check the robot against a single obstacle. If there were 16 obstacles in the

scene, each thread block would have 16 threads, each doing the collision detection between

a single obstacle and the robot.

The highest dimension of parallelization in this study was specific to RRT*, and is

not applicable to RRT. In RRT*, the algorithm strives for optimality by collision checking

each new sample with all neighbors within a certain radius in c-space before adding the

edge with the minimum total cost to the graph. The authors assign a different grid of

thread blocks to do the work for each of these pair-wise checks. To extend the previous

running example, assume a scene with 16 obstacles and a collision checking strategy with a

discretization level of 100. Now on a given iteration of RRT*, Cnew is sampled randomly.

The radius is chosen such that there are four potential neighbors for Cnew, consisting of

the set {C1,C2,C3,C4}. Each grid would handle a unique pairwise collision between

(Cnew,Cj). Then for this iteration, the kernel would launch four grids of thread blocks,

where each grid had 100 blocks (one for each discrete configuration in the movement), and

each block had 16 threads (one for each obstacle in the scene).

The authors report a speedup of their collision checking routine of around 10x; collision

detection, which had been taking up almost 99% of the computation time of the algorithm,

was now only taking up 80%. The authors do not directly explain why this speedup is not

nearly as high as the theoretical speedup from the available parallelism should have been,
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but they hint that costly memory transfer times may be to blame. The sequential nature

of the sampling process also probably reduced the available work to do at any given point

in time. This work brings planning latency down to hundreds of milliseconds, which is

an improvement over planning on general purpose CPUs, but still insufficient for real-time

planning.

There is one previous work on speeding up motion planning in custom hardware, but

it tries to directly accelerate existing algorithms, and has significant limitations. Atay and

Bayazit [16] recognize the high degree of parallelism inherent in the PRM algorithm [17] and

investigate using an FPGA to take advantage. The authors implement the learning phase

of the PRM algorithm in hardware and perform collision detection with triangle-triangle

intersection circuits. The design involved storing reference triangles for the robot on the

FPGA, and applying transforms to bring them to the correct location for a given query. The

authors quickly ran into hardware limitation issues since each intersection circuit is complex

and many thousands are needed. This limited them to consider only impractically simple

scenarios, where the robot was a single rectangular prism, since this can be represented

with only 12 triangles.

After publication of our designs presented in Chapter 2.4, an additional work investi-

gated custom hardware for collision detection. Dadu-P [18] draws on our work and takes

a similar approach., but stores edge data in memory rather than in circuits, enabling re-

configurability. Dadu-P also uses an octree of voxels instead of an occupancy grid. The

reliance on external memory transfer to bring in swept volume data causes a 25X latency

increase in collision detection compared to what we present in Chapter 2.4, and Dadu-P

did not attempt to accelerate path search.
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Chapter 3

Combinatorial Circuit-Based Collision
Detection Acceleration

From the previous section the PRM algorithm may seem like a sufficient solution. Com-

putation can be done up front in a slow learning phase, and then lightweight calls can be

made at runtime in the query phase. However, the roadmap is safe only as long as the

environment remains unchanged. Any change requires the connectivity of the roadmap to

be recomputed. There are variants of the PRM algorithm that try to minimize this recom-

putation cost, but it is still quite expensive. Since collision detection consumes 99% of the

time of building the roadmap, re-verifying safeness requires almost as much computation

as building the roadmap from scratch. This limitation is acceptable in tightly controlled,

precisely engineered, and caged-off workcells, but is unreasonable for robots that must

quickly plan in dynamic environments. Our initial work focused on precisely this problem:

designing a solution to enable planning to occur in real time for dynamic environments.

3.1 Direct Acceleration of Existing Algorithm

Our first strategy was to design a triangle-triangle intersection test accelerator. This was

the logical place to start; collision detection had been proven to be the bottleneck in mo-

tion planning, collision detection involves performing possibly millions of triangle-triangle

intersection tests, and there is a huge amount of parallelism in these tests to exploit [17].

Although there are several clever ways to reduce the amount of computation involved,

the simplest method of determining if two triangles ABC and DEF intersect in 3D space

is to test if any of the line segments (AB, AC, or BC) intersect with the triangle DEF and

the same for the segments of DEF against triangle ABC. Thus, a single triangle-triangle

intersection test can be decomposed into the logical disjunction of six line segment-triangle

intersection tests (which can conveniently be performed in parallel) [13].
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Figure 3.1: A line segment vs triangle test involves determining whether the point R at
which line PQ intersects the plane defined by ABC lies within the triangle ABC.

A line segment-triangle test is performed by taking the line segment and checking at

what point the line that extends the segment intersects with the plane of the triangle. For

the example shown in Figure 3.1, the equation to check at what point the line extending

PQ intersects with the plane specified by ABC is:

A + x(B-A) + y(C-A) = P + t(Q-P).

The variables t, x, and y can be calculated through the following equations (terms in bold

typeface can be precomputed, as will be explained later):

t =
(P −A) • [(B −A)××× (C −A)][(B −A)××× (C −A)][(B −A)××× (C −A)]

(P −Q) • [(B −A)××× (C −A)][(B −A)××× (C −A)][(B −A)××× (C −A)]
,

x =
(C −A)(C −A)(C −A) • [(P −Q)××× (P −A)]

[(B −A)××× (C −A)][(B −A)××× (C −A)][(B −A)××× (C −A)] • (P −Q)
,

y =
(A−B)(A−B)(A−B) • [(P −Q)××× (P −A)]

[(B −A)××× (C −A)][(B −A)××× (C −A)][(B −A)××× (C −A)] • (P −Q)
.

If t is less than zero or greater than one (the division can be avoided by simply comparing

the size of the numerator to the size of the denominator), then the line segment PQ does

not even intersect the plane of the triangle. If t falls between 0 and 1 and the following

inequalities hold:

0 ≤ x, y ≤ 1,

x + y ≤ 1,
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Figure 3.2: Interface for a triangle-triangle based collision detection accelerator (top left).
Accelerator takes as input all the triangles for each swept volume (SV) and obstacle. This
could be constructed by designing triangle-triangle functional units to efficiently perform
pairwise triangle tests (top right). Each functional unit would consist of six line segment
vs. triangle testers in parallel (bottom right).

then the line segment-triangle test returns true. A potential architecture to accelerate

this process is given in Figure 5. The interface accepts a stream of triangles representing

swept volumes and a stream of triangles representing obstacles. A single bit for each swept

volume is output, representing whether or not that swept volume is in collision. Internally,

the accelerator could contain many triangle-triangle functional units to conduct pairwise

checks in parallel, with each functional unit performing the six required line segment versus

triangle tests in parallel.

Hardware space limitations quickly became apparent when pursuing this strategy, so

we made several assumptions to reduce the complexity of the specialized functional units.

The first was to use fixed point arithmetic to avoid expensive floating point operations, as
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well as to use 9-bit numbers for the coordinates instead of 32. Second, we decided that

in order to reduce the amount of online computation needed, we would create a roadmap

ahead of time, which would allow the precomputation of many of the terms for the robot

triangles. In the equations for t, x, and y above, the clauses in bold could be calculated

ahead of time, assuming ABC represents a robot triangle and PQ is a line segment from

an obstacle.

Even with both these simplifications, the complete parallelization of the triangle-triangle

test requires 24 dot products and 7 cross products (the odd number of cross products

arises from a corner case that must be checked). This is equivalent to 114 multiplications,

48 additions, and 21 subtractions. The high hardware cost to parallelize a single test

was concerning. Indeed, we implemented our design and found that only a few tens (at

most) of triangle-triangle functional units would fit on our prototype FPGA board, which

was unacceptable for the throughput we desired. From this effort we learned that direct

acceleration of algorithms that depend on triangle-triangle intersection tests cannot provide

the performance and scalability we require.

3.2 Acceleration of Hardware-Friendly Algorithm

From the first design, we learned that what was needed was a co-designed algorithm to

go with custom hardware. Existing algorithms simply did not match well to hardware

acceleration. The next route we considered was to aggressively precompute not just some

amount of robot geometry, but a whole suite of collision data, and to memoize this data on

hardware for fast later access. We accomplish this by discretizing the stream of sensor data.

3D vision sensors typically output a “point cloud” identifying which points in continuous

space the sensor perceives as occupied. From this point cloud we create an occupancy

grid at some resolution, indicating the presence or absence of an obstacle point(s) within a

given region of 3D space. Instead of creating triangle meshes from the point cloud data at

runtime, we leverage the fact that a given occupancy grid resolution implies a finite number
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of possible obstacles. Expensive collision detection can be done for all edges in advance to

calculate which regions in space each movement collides with. The precomputed data can

be used to create a data structure for each edge that can be queried for membership of a

given obstacle voxel. This strategy represents a fundamental change to the PRM algorithm,

which typically builds a roadmap for the specific environment at hand.

Our algorithm is similar to an approach by Leven and Hutchinson [19], except they

went the opposite direction, creating data structures for each voxel that represented the

edges that should be invalidated if present. In effect we are trading a much larger amount

of up-front computation for a smaller amount of runtime work. Instead of having to

build/reconnect a roadmap each time the environment changes, we build a roadmap in

an obstacle-free environment and perform exhaustive collision detection once at design

time. Then at runtime we simply access the precomputed data to see how the obstacles in

a given environment affect the edges in the roadmap.

Because our goal is to achieve the highest degree of parallelism possible, we avoid storing

and accessing the precomputed data in memory elements in software. Instead, we encode

a binary representation for each discretized voxel and create logical circuits representing

the collision data for each edge. The actual circuit generated for a single edge can be seen

in Figure 3.3. Having a logical circuit representation made for an intuitive mapping to

hardware descriptive languages. The binary representation for any voxel is streamed over

this logic, and if that point is in collision, the circuit outputs true.

We augment the collision logic for each edge with additional circuitry to maintain a

limited amount of state regarding the task at hand. A given environment contains many

obstacle voxels. If even a single voxel is in collision with a swept volume, the edge rep-

resented by that swept volume must be removed from consideration. To achieve this, the

output of the logic function can be stored in a flip-flop after being OR’ed with the flop’s cur-

rently stored value, thus allowing many voxels to be streamed through, saving any positive

result since the last RESET. The basic structure of this collision detection circuit (CDC)

can be seen in Figure 3.4 along with the interface presented to the system. To interface
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Figure 3.3: The collision circuit generated for a single edge.
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Figure 3.4: The interface of a collision detection accelerator using precomputed data
(left). Each collision detection circuit (CDC) contains the logic for an edge, an OR gate,
and a flop (right). The variables A through O in the expanded Edge Logic block represent
binary voxel ID representations, as will be explained in Section 3.3.

with the accelerator, the host processor can send a RESET signal to instruct the accelerator

to clear all flops, followed by a stream of obstacle voxel data (encoded in a fixed-length

format), and finally a DONE signal, which initiates transfer of flop data back to the host.

Within our strategy of precomputing collision data there are several additional orthog-

onal design choices. For example, this strategy is agnostic to the configuration sampling

method. Precomputed roadmaps by definition sacrifice asymptotic completeness for the

sake of speed, so there is no need for sampling to be probabilistic. Indeed, any a priori

knowledge about probable obstacle or goal regions can be leveraged to select more useful

edges. In addition, the method of discretizing space can be adjusted to the case at hand to

create the most useful representation in the most compact form possible.

We now summarize the steps in our workflow:

Preprocessing Steps (done once, at design time):

1. Build the roadmap. For this stage, no collision checking is done except for self-

collisions and collisions with permanent features in the environment (e.g., the floor,
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ceiling, or a table that is always present). The goal of this step is to create a roadmap

with sufficient coverage for solving the expected motion planning problems at an

acceptable rate.

2. Discretize the working space of interest and collision check all edges of the roadmap,

creating sets of the voxels that each edge collides with.

3. Encode the voxels in a binary representation and formulate logic functions for each

edge. Use these logic functions to create RTL-synthesizable descriptions of the circuits

in Verilog/VHDL.

Online Query Steps (done each time a plan is needed):

1. Use data from perception sensors to populate an occupancy grid at the same level of

discretization at which the roadmap was collision checked.

2. Send all the voxels present in the occupancy grid to the accelerator and collect the

results (a bitmask representing which edges are in collision). Use the results to modify

the roadmap, setting the edges in collision to a cost of infinity.

3. Perform a graph search through the modified roadmap. A shortest path algorithm

such as Dijkstra’s can be used to find the shortest path through the map.

4. If a path is found, use the same local planner as in Design Step Two to guide the

robot along a safe path to the goal.

3.3 Implementation

We implemented our accelerator to solve problems for a high-DOF robotic arm. We used

an Altera Stratix V FPGA on Terasic’s DE5 prototyping board. The FPGA interfaces over

PCIe to an Intel Xeon 3.5 GHz 4-core processor with 16 GB of RAM.
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Figure 3.5: Physical layout of the pick-and-place experiment. The work table, four
Microsoft Kinects, and the base of the arm are all attached to the wooden frame. The arm
picks up colored blocks off the table and places them in bins on the side. The arm must
avoid the cardboard boxes, which serve as dynamic obstacles.

The arm we use is the Kinova Jaco2, chosen for its many degrees of freedom. The Jaco

arm has one shoulder, two elbows, three wrists, and three fingers. The shoulder and wrists

have an infinite range of rotation, while the first and second elbows have ranges of 275 and

325 degrees, respectively. The numerous wrists give the arm great dexterity.

We demonstrated on the pick-and-place use case since this problem is ubiquitous in

robotics applications. We placed the robotic arm in front of a table, and each scenario

challenged the robot to reach out to grab a toy block while avoiding obstacles and return it

to one of two bins on either side of its base, seen in Figure 3.5. Cardboard boxes, ranging

from 5-30 cm in each dimension, acted as obstacles.

In the remainder of this section, we discuss the implementation of each stage of the

workflow and the implications for the microarchitecture.

Design Step One: Building the Roadmap

As we knew hardware constraints would be a limitation, great care had to be taken to create

useful roadmaps of small size. To accomplish this, we made extensive use of the Klampt
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Table 3.1: Effect of changing resolution on logic element usage. The logic element usage
correlates roughly to the number of voxels with which each edge collides.

Bits Per Dimension 4 5 6

Logic Elements/Edge 45 160 700

Voxels Colliding/Edge 75 278 1100

robot modeling package [20]. We wanted a high rate of success for working environments,

so we followed a heuristic approach combined with probabilistic sampling. First, we created

a very large (100,000 edge) roadmap using the PRM* algorithm. Planning was done in an

environment with only permanent obstacles present.

Because the goals (toy blocks) would always be sitting on the table, we needed thorough

coverage of the space 4-8 inches above the table. To achieve this, we augmented the resultant

graph with a set of configurations just above the surface of the table. We also added shortcut

edges from the starting configurations to various spots over the table. These shortcut edges

both add useful cycles to the roadmap and also often provide very direct paths in the absence

of certain obstacles [21]. This large roadmap must then be processed to a more manageable

size. We used a heuristic procedure to iteratively prune the roadmap. In Chapter 6 we

detail how this procedure works, the requirements for an improved algorithm, and discuss

where this method falls short.

Design Step Two: Discretizing the Workspace and Collision

Checking

For the pick-and-place scenarios, the workspace was defined to be the area directly over the

table, extending 80 cm high. Once the area of interest is established, the next decision is

how exactly to discretize. For simplicity, we employed a simple uniform grid. We examined

a few different resolutions ranging from 4 to 10 bits in each dimension. The two competing

concerns are the desire to have enough resolution such that the occupancy grid is an accurate
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(a)

(b)

Figure 3.6: a) The workspace shown as uniformly discretized. b) A more sophisticated
approach can achieve space savings by selectively choosing critical regions to have high
resolution and allowing less important regions to be more coarse.
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representation of the actual environment, and the fact that the logic function for each edge

consumes more hardware as resolution increases. The logic element usage for several levels

of resolution is shown in Table 3.1. We chose five bits for each dimension as a good

middle ground that provided sufficient precision and also took up a reasonable amount

of FPGA resources. The table used in our experiments is 121 centimeters long and 60

centimeters deep, so with a 5 bit resolution/dimension, each block in the occupancy grid

is 3.75 × 1.875 × 2.5 cm. Figure 3.6a shows the discretized workspace. Figure 3.6b shows

a non-uniform, more sophisticated way that one could discretize. By using knowledge

about expected hard or easy/less-important regions, one can selectively increase or decrease

resolution to maintain performance while saving space in the logic functions. For the same

roadmap, the discretization strategy in Figure 3.6b takes up 27% less space on the FPGA,

at the cost of slightly higher design effort.

Each edge in the roadmap constructed in Design Step One is then collision checked

in Klampt in the environment containing the full occupancy grid of discretized space. For

each edge we create a set of the voxels in collision with that movement. If an edge intersects

any part of a voxel, that voxel is included in the set.

Design Step Three: Implementing Logic Functions on FPGA

At the end of Design Step Two, there is a set for each edge containing all the voxels with

which that edge collides. A binary representation for each voxel is easily derived since we

used a uniform grid in the discretization. We used these binary representations to create a

logic function for each edge. For example, if edge 147 collides with the voxels (1,3,5) and

(1,3,6), then the voxels are represented by:

00001 00011 00101

00001 00011 00110

The logic functions are then created by simply assigning a variable to each voxel bit (A

through O) and combining the two in disjunctive normal form. For this example, the result
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would be:

Edge147 =(!A&!B&!C&!D&E&!F&!G&!H&I&J&!K&!L&M&!N&O)||

(!A&!B&!C&!D&E&!F&!G&!H&I&J&!K&!L&M&N&!O).

In this simplistic example, the edge collides with only two obstacle voxels; each edge in the

actual roadmap may collide with hundreds or thousands of voxels, so the logic functions

can become quite large and take up the bulk of the area of the hardware design. Luckily,

there is significant redundancy in these equations, which Leven and Hutchinson [19] refer

to as “spatial coherence”. For example, the above equation can be simplified to:

Edge147 = (!A&!B&!C&!D&E&!F&!G&!H&I&J&!K&!L&M)&[(!N&O)||(N&!O)].

We took several actions to reduce the amount of hardware each edge consumes. Logic

minimization is a well-studied problem due to its usage in EDA tools. We used a version

of the popular espresso heuristic logic minimizer [22][23]. Espresso can accept as input a

set of truth tables, so the sets created in the previous step were converted to truth tables

by using the binary encoding of each voxel. We ran these truth tables through espresso in

groups of 16 to allow the tool to minimize the logic across edges as well. We then converted

the output to equivalent Verilog expressions; using espresso before converting to Verilog

enabled greater than 25% savings in logic utilization on the FPGA, even though all CAD

tools (Quartus in this case) do logic minimization of their own. It is likely even more benefit

could be realized by “smartly” grouping together edges that shared more in common with

each other. Selecting the best edges to group together is a challenging problem (
(
N
16

)
is

quite large when N is in the thousands) that will be the subject of future work.

Another important design issue is how to distribute the voxels to the CDCs. The board

communicates with the host computer over PCIe; as voxels are streamed over the bus to the

FPGA they are put into a dual-clocked FIFO, filling up at the bus frequency and draining

at the logic frequency. The initial design is in Figure 3.7a. The fifteen bits of each voxel

(five bits for each dimension, as discussed above) fan out from the FIFO to the logic for

each edge. Each edge’s logic function has an associated flip-flop. The input to the flop
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Table 3.2: Effect of changing hardware design on logic element usage, normalized to the
unbuffered design. All designs were uniformly discretized except the one mentioned.

Design Choice Logic Element Usage

Unbuffered 1.00

Unbuffered/Non-uniform 0.73

Individual Buffers 1.83

Buffers Shared(16) 1.31

Buffers Shared(32) 1.26

Buffers Shared(64) 1.23

is the OR of the edge logic output with the current value (seen in Figure 3.4). After the

input FIFO is drained, the results are fed into an output FIFO which transmits the collision

results back to the host computer.

This design is simple but difficult for the FPGA to route in time due to the high fan-out

of the input signals. Each input bit must fan out to thousands of CDCs, each of which has

several hundred clauses in its logic function. Even clocking the FPGA at 31.25 MHz (1/4

the frequency of the PCIe bus), only 1024 edges could fit on the FPGA. To alleviate this, we

investigated a slightly different design. Instead of fanning out the 15 bits of voxel data to all

CDCs, only five wires fan out. These five wires are multiplexed over three cycles to send the

full 15 bits of voxel data, accumulating the data in a shift register at each CDC. The flops

latching the results of the edge logic now need a signal to enable storage only every 3 cycles

when input data is valid. This design is in Figure 3.7b. Routing significantly improved

with this design, but at the cost of greatly increased logic utilization (an 83% increase).

FPGA CAD tools are somewhat opaque, but we believe the increase comes primarily from

fewer opportunities for the CAD tools to optimize/re-use logic clauses now that the CDCs

compute on unique sets of inputs, rather than from the additional structures introduced.

We found a middle ground between these design points that balances routing difficulty
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(a) (b)

(c)

Figure 3.7: a) The design unbuffered with high fan-out. b) Individual buffers for each
CDC. c) Multiple CDCs sharing a buffer.
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and logic utilization. Instead of allocating a buffer for each CDC, buffers are shared in a

hierarchical fashion between groups of CDCs. Figure 3.7c shows an example of this design.

Table 3.2 shows the difference in logic utilization/edge for the original case, the case of

each CDC having its own buffer, and of 16, 32, and 64 CDCs sharing a single buffer. These

adjusted strategies did not recover all of the logic savings of the unbuffered design, but they

were able to be compiled and routed much easier. The 32 edge/buffer design allowed 2500

edges to fit on the FPGA, which is more than sufficient for this prototype.

One potential concern about using this buffering technique is that it now takes three

cycles to process a point, instead of a single cycle. However, the decreased routing demands

of the strategy in Figure 3.7c allow it to be clocked at the same clock frequency as the PCIe

bus (125 MHz), compared to the unbuffered design at 1/4 the frequency. The total effect

of the more complex microarchitecture is thus both larger logic utilization and modestly

higher throughput at the same roadmap size.

Runtime Steps

Perception was done in our experiment with several Microsoft Kinects. These supply suf-

ficient accuracy for our purposes, are relatively cheap, and produce data in a convenient

format. An example of a discretized occupancy grid is shown in Figure 3.8. The occupancy

grid is then sent over PCIe to the FPGA and the resulting collision bitmask is collected.

The data coming back from the FPGA is a vector of which edges are in collision. For each

edge in collision, the cost in the roadmap is set to infinity to ensure this path will not be

taken during a query. The location of the goal is used to select suitable goal configurations

in the roadmap. We accelerated the selection process by precomputing forward-kinematic

transforms for all n configurations in the roadmap. This data is stored in a k-d tree that

can be very quickly accessed to find which configurations (if any) can be used as a suitable

destination for this problem scenario. This structure scales well, with searching the tree

taking only log(n) time.

A path can now be found using any graph search algorithm on the modified roadmap,
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Figure 3.8: A real example scenario (top), and the discretized occupancy grid (bottom).

using the arm’s current configuration as the starting node. We used an unoptimized Di-

jkstra’s shortest path algorithm with a heap implementation; faster techniques certainly

exist. Edge costs were calculated back in Design Step One and stored for rapid access.

If no non-infinite cost path is found to the goal configuration, then the graph has been

bisected by obstacles and there is no collision-free path through the precomputed roadmap.

In this (unlikely) case, one could fall back onto a conventional software planning routine

that has asymptotic completeness. In this way, the common case could be made fast, and

the uncommon case would still find a solution (if one exists).

3.4 Results

To determine the source of the speedup from our design, we wrote and evaluated a software

version of the same strategy. This implementation used the collision data collected in

Design Step Two above to create hashsets of the voxels in collision with each edge. Collision

detection in this implementation simply consists of querying obstacle voxels for membership

in all of the hashsets. The results of this test can be used to eliminate edges from the
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roadmap in exactly the same fashion as described above. The code was instrumented with

OpenMP directives to enable the CPU to take advantage of the inherent parallelism in the

strategy.

Given the simple and highly parallel nature of this algorithm, it also warranted testing

on a GPU. We implemented the same hash set strategy in CUDA and tested on an NVIDIA

Tesla K20 (which contains 2496 CUDA cores). Both the CPU and GPU implementations

were highly tuned for performance to enable fair comparisons.

To reliably time the speed of the various components of the now-heterogeneous system

controlling the robot, we fed 10,000 occupancy grids into the planner and took measure-

ments. With our processor, the total time between obstacle data being sent, and having

a motion plan to execute, is less than 650 microseconds (of which less than 25 is colli-

sion detection). Previously, collision detection has always been the bottleneck in planning

algorithms, but in this approach it is actually one of the fastest components. The vast

majority of the 650 microseconds to produce a plan is spent on operating system delays

and in the graph search phase. Most occupancy grids for the example scenarios contain

<750 voxels and, at the clock speed of 125 MHz, are processed by the FPGA in less than

25 microseconds. Traversing the k-d tree to find suitable destination configurations takes

10-20 microseconds. Modifying the roadmap with collision data to assign infinite cost to

colliding edges requires 50 microseconds. This leaves the latency for communication and

graph search. Subtracting the computation time from the round trip latency across the

FPGA yields 150 microseconds for communication. Unsophisticated drivers were used to

interface with the FPGA over PCIe, and this latency could be reduced. Communicating

the same data over PCIe with mature GPU drivers takes around 15 microseconds each way,

so the I/O is a feasible target for optimization. The longest step by far is Dijkstra’s shortest

path algorithm, which requires 425 microseconds in our implementation. It is likely that at

a relatively small roadmap size there are faster ways than Dijkstra’s to find a short path,

but that is not the focus of our work here.

The design-time steps are very slow compared to what is executed at runtime. The
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Table 3.3: The average time (in microseconds) required to perform collision detection
using the FPGA as a collision detection accelerator compared to using the same aggressive
precomputation to create hashsets for fast query on a CPU or GPU. Results here are for
roadmaps containing 2,500 edges.

Custom Hardware Precomputed Hashsets

FPGA CPU GPU

16 9,550 1,100

computationally expensive collision detection required to build the logic functions takes on

the order of 45 minutes, and heuristic roadmap pruning can take several hours. Both these

steps happen only once at design time, however, and thus are not a concern.

Table 3.3 shows data comparing the different methods of accelerating collision detection.

When running with 16 threads, the software hashset implementation takes less than 10

milliseconds to produce the collision data on the same roadmap used in the experiments

on the FPGA. When fully parallelized, the GPU hashset kernel spawns more than 500,000

threads and completes queries in less than 1.1 milliseconds for the same roadmap. NVIDIA’s

profiling tool nvprof was used to evaluate the memory transfer times. For the runtime

query transfers (transferring obstacle voxel data to GPU, and result data back to host),

communication happened in less than 15 microseconds each way. Transferring the actual

hashsets takes much longer, at 8 milliseconds, but this only needs to happen a single time,

after which many queries can be made.

These results demonstrate that significant benefit is gained by attacking the problem

from both sides. Our speedup comes from both the improved algorithm to reduce problem

complexity and a hardware implementation that can exploit more parallelism. Even though

the software hashset implementations achieve a large speedup compared to conventional

solutions, they do not scale as well as the custom hardware solution. Any given CPU/GPU

with a fixed number of hardware threads will experience a linear increase in compute time as

the number of edges grows in the roadmap. This effect can be seen in Figure 3.9 showing the
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Figure 3.9: Both CPU and GPU solutions scale linearly with respect to the number of
edges in the roadmap. The FPGA-architecture described in this paper, however, executes
completely in parallel, and thus has a latency independent of roadmap size. All results
reflect the latency to process occupancy grids of the same size.

performance of these solutions on roadmaps of increasing size. By contrast, the hardware

design is completely parallel and takes constant time to do the computation regardless of

the number of edges. The only obstacle in achieving this parallelism for huge roadmaps is

the fixed hardware budget.

Collision detection is only one part of motion planning, so we next consider the timing

of the motion planning process as a whole. Table 3.4 shows the time to generate a complete

motion plan using the FPGA, precomputed hashsets, and conventional solutions. Running

the PRM algorithm on the high performance workstation described above on the same

sample environments took 0.8 seconds to produce a solution. Rapidly Exploring Random

Trees (RRT) is a single-query probabilistic method that is slightly faster at 0.75 seconds.

Our approach produces motion plans three orders of magnitude faster than conventional

solutions running on CPUs and two orders of magnitude faster than current GPU methods.

Another advantage enjoyed by specialized accelerators is power efficiency. In order

to quantify power consumption, we wired a high-wattage current shunt resistor in series

with the DE5 board’s power supply to determine the peak power consumption of our design

while computing collisions for a 1024-edge roadmap. We used an oscilloscope to measure the
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Table 3.4: The time (in microseconds) required to produce motion plans using the FPGA
as a collision detection accelerator compared to using hashsets on either a CPU or GPU,
or conventional software approaches (run on a CPU). RRT is a single-query probabilistic
algorithm very similar to PRM, used more commonly when speed is a concern rather than
data-reuse. These numbers include time to perform a path search and the latency to
transmit data to and from the remote devices for the FPGA/GPU solutions. Although
the CPU and GPU can achieve impressive speed-ups using hashsets, these are on relatively
small graphs (2,500 edges), and these solutions scale linearly with roadmap size.

Custom Hardware Precomputed Hashsets Conventional Approaches

FPGA CPU GPU PRM RRT

650 10,000 1,600 815,000 756,000

voltage drop across the resistor during a collision detection query, which caused the board

power to increase from a nominal 12W to a peak 15W. The board has other components

contributing to this power consumption, so the FPGA would be some fraction of this. GPU

solutions, in contrast, are often much higher power. The Tesla K20 is rated for 225 W, and

it takes a longer time to execute than the FPGA, thus consuming far more energy.

3.5 Conclusions

This work is the first of our knowledge in the body of literature to focus on the use of

software/hardware co-design to accelerate motion planning algorithms. We showed that it

is possible to use custom hardware to bring motion planning as a whole to sub-millisecond

latency. Our solution achieved several orders of magnitude speedup over the current state

of the art. This opens up a whole new range of applications for real-time motion planning

where it was previously infeasible. In addition to quickly creating a plan, it also allows you

to rapidly verify that a currently executing path is still collision-free, maintaining safety

when working with high-speed robots.

There were several limitations to this work. The first is that while the strategy can be

applied to any robot, the actual hardware design is specific to a single robot/roadmap pair.
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This may be acceptable when using an FPGA-based platform, but it may be desirable to

use an ASIC to take advantage of lower power and lower unit cost. In many situations, it

would not be viable to make a custom chip specific to a single robot/roadmap. A more

useful design would allow some programmability, so the same hardware can accelerate

motion planning for a variety of problems. We address this limitation in Chapter 4. The

second limitation is that this approach only accelerates collision detection. We show that

if you bring collision detection latency to the microsecond range then shortest path search

becomes the bottleneck. This problem will only get worse as roadmap size increases. We

develop hardware accelerators for path search in Chapter 5.

A third limitation is the fixed roadmap. Unfortunately, having a fixed graph is unavoid-

able in order to leverage as much precomputation as we do. However, it can lead to the

system failing to report a path even when one exists. This situation could occur either due

to obstacles appearing too large due to the discretization, or simply if the roadmap created

at design-time does not contain enough edges or appropriate edges for the given scenario.

With the help of very simple heuristic pruning, we managed to generate compact roadmaps

with a success rate of greater than 98%. However, our test environment was relatively sim-

ple compared to other possible robotics applications. Even though we had a 98% success

rate, we made no guarantees on the quality of the path compared to any baseline. In more

challenging environments, it is likely that we will need a more sophisticated strategy to

create useful roadmaps, and industry adoption will likely require some quality standards.

This problem will be further discussed in Chapter 6.
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Chapter 4

A Programmable Architecture for
Accelerating Collision Detection

The contribution we present in this chapter is a novel programmable architecture to accel-

erate collision detection that can be targeted to any robotic application. First, we discuss

the need for flexibility, and why our first approach is not sufficient. We then introduce the

improved architecture and the microarchitecture, which we implemented down to Verilog.

We simulate the design for functional correctness as well as synthesize it in Synopsys to

obtain power/area/timing estimates.

4.1 The Need for a Programmable Architecture

The previous chapter work created a custom hardware microarchitecture [24, 25] and ac-

companying algorithm to accelerate collision detection. We performed exhaustive collision

detection ahead of time and used the data to create a specialized circuit for each motion

of the roadmap. The circuits are a way to memoize the collision detection results. The

microarchitecture is completely parallel, since there is a dedicated circuit for each edge of

the roadmap.

This design achieved significant improvements in latency over the previous state of the

art. However, a fundamental limitation of this microarchitecture is that there is no way

to adapt it to different robots or scenarios since the specialized circuits are generated for

specific motions and a specific robot; new Verilog must be generated for each change of the

robot or roadmap.

A programmable architecture is required to address these limitations. One obvious

application where the previous design falls short is pick-and-place. If the object being

manipulated is large enough that it expands the geometry of the robot (which is the case
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Figure 4.1: The effect of grasping an object on swept volume. On the top is a robot with
and without a grasped object. On the bottom are swept volumes for each when the robot
executes the same motion.
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for most industrial objects), then making a grasp fundamentally changes the configuration

space of the robot, and a different roadmap must be employed. The volume swept by

each motion is different, and some motions that were previously in the roadmap may now

result in a self-collision. This change is illustrated in Figure 4.1. Other robotic applications

involve actually changing the end-of-arm-tooling (EOAT) periodically, to complete different

parts of a process (perhaps changing from a suction gripper to a parallel-jaw gripper). This

limitation could be bypassed by using multiple accelerators or by splitting the hardware

resources of a single accelerator over two, three, or n roadmaps, but neither of these are

satisfactory solutions.

A flexible design also makes an accelerator better suited to developing an ASIC im-

plementation. This would allow larger roadmaps to be employed, due to more effective

hardware utilization. We could also take advantage of the higher frequency, lower power,

and lower unit-cost benefits of ASIC-hardening.

4.2 A Programmable Architecture

The design we presented in Chapter 2.4 uses precomputed collision sets to build a collision

detection circuit for each motion. The input to this circuit is a voxel’s binary ID number,

and the output is a single bit representing whether that motion is in collision with that voxel.

The circuit is logically the sum of products of each voxel ID number in the collision set,

and its size can be reduced using logic minimizers. A simplified diagram of this approach

is shown in Figure 4.2.

This microarchitecture is very simple and area-efficient, but not at all flexible. The goal

of this work is to accelerate collision detection in a programmable fashion. In order for an

architecture to be practical, it must be general enough for use in many scenarios by any

type of robot. In order to maintain performance, we maintain many aspects of the previous

work. In particular:

• We still rely on the construction of a fixed roadmap ahead of time. The roadmap is
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Set of Voxels:

Voxel1 ID = 0010

Voxel2 ID = 1001

Logical Expression:

(!A & !B & C & !D) || (A & !B & !C & D)

A

[4]

B

C

[1]
[2]

[6]
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F0
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1
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Figure 4.2: The architecture proposed in previous work creates specialized circuits to
perform collision detection [25, 24]. Each circuit is fundamentally the hardware sum of
products of the ID numbers of the voxels that collide with the given motion. The expression
is compressed with a logic minimizer to reduce its footprint. This figure contains a toy
example; in a real implementation each voxel would have many more bits in its ID number,
and each motion would collide with hundreds or thousands of voxels
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made large enough and redundant enough to be robust to obstacles. This allows suc-

cessive queries to be done rapidly in dynamic environments without reprogramming

the accelerator.

• We still leverage extensive preprocessing to avoid runtime computation. The roadmap

is exhaustively collision-checked in a discretized view of the environment. However,

instead of using the precomputed data to create application-specific circuits as in

Figure 4.2, we use it to create configuration files which are used to program the

accelerator at runtime.

• At runtime the perception system must still produce the occupancy grid that repre-

sents which regions of space in the discretized environment are occupied by obstacles.

We stream this data structure to the accelerator, and it outputs a vector indicating

which edges are in collision. For all motions in collision, the corresponding edges

must be temporarily removed from the roadmap until the environment changes.

4.2.1 Voxel-Based Microarchitecture

Our first attempt at a programmable microarchitecture was very simple. During the pro-

gramming phase, the user sends the precomputed collision data to the accelerator. Each

motion in the roadmap is assigned to an edge module that is essentially a “templated”

sum of products. Instead of hardcoded logic functions, the individual terms contain latches

to enable any set of voxels to be checked. To achieve parallelism and make the collision

checking latency independent of the number of edges, there is a sea of these programmable

collision detection circuits, one for each motion in the roadmap.

During this programming phase, each voxel that each motion collides with is sent to the

collision detection accelerator, and the voxels are latched in the appropriate edge circuits.

The circuit for a single edge can be seen in Figure 4.3. During the runtime phase, the

collision detection accelerator streams in voxel IDs and distributes them to all the individual

edge circuits. Each edge circuit compares that voxel ID against all of its latches, and
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Figure 4.3: A programmable collision detection circuit for a single motion that collides
with up to n voxels. During the programming phase, precomputed collision data are sent to
the circuit and stored in the latches, orchestrated by the control logic appropriately setting
the enable wires. At runtime, obstacle voxels are streamed across and compared with the
latched voxels. If any voxels match, the circuit outputs true.
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outputs true if there is any match, which means that specific edge is in collision. The

collision detection accelerator aggregates the edge circuit results and outputs a bit vector

representing which motions in the currently programmed roadmap are in collision.

This microarchitecture is conceptually simple, easy to validate, and achieves our goal

of programmability. However, several challenges are introduced with this feature. Each

motion collides with a different volume of space and thus a different number of voxels. This

is a problem when implementing a programmable circuit, since we must make the circuits

large enough to accommodate edges of various sizes. We can achieve hardware efficiency by

creating a sea of variable-sized programmable collision detection circuits. The programming

phase then involves a strategic mapping of edges in the roadmap to appropriate collision

detection circuits based on the number of voxels with which they collide.

A more important difficulty with this design is the large amount of hardware required.

Two main factors cause this strategy to require more hardware resources than a hardcoded

design. The state required to store the collision data (and achieve programmability) is

significant. If a motion collides with 1,000 voxels, and each voxel is represented with 15

bits, then that single edge consumes 15,000 bits of state, which is quite costly even when

using simple latches. The second factor is the inability to use logic minimizers to reduce the

size of the circuits, as can be done when working with hard-coded logical expressions. There

is a significant amount of redundancy in the expressions both within individual edges and

between edges that have overlapping swept volumes. If building a specialized circuit, this

redundancy can be exploited to drastically reduce the complexity of the logical expression

and reduce the hardware resources its implementation requires. These savings are lost in

the programmable case, even though the redundancy is still present.

4.2.2 Boxified Collision Detection

The voxel-latch strategy allows arbitrary combinations of voxels to form the swept volume

of an edge. In practice, the voxels of a swept volume are connected and form continuous

volumes. The fact that there is order present in the description of a swept volume implies
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that there should be ways to compress the data. An alternative to explicitly storing a

representation of each individual voxel included in a swept volume could be to store repre-

sentations of continuous voxels present. In particular, rectangular prisms (for convenience

referred to as “boxes”) can be represented with only the coordinates of a pair of opposite

corners of the box. This can achieve large savings because the state required to store a box

is equivalent to the state needed to store two voxels. So each box must only cover more

than two of the original voxels to reduce state. This strategy is similar to the common tech-

nique in computer graphics of using axis-aligned bounding boxes (AABBs) in that it takes

advantage of the simple geometric properties of rectangular prisms [13]. However, AABBs

cover a large amount of superfluous volume, and are insufficient if dexterous movements

are required in cluttered spaces. We need a more precise solution.

In order to make use of a box-based representation instead of individual voxels, a

collection of boxes must be found that includes all of the original voxels. This is analogous

to the set cover optimization problem. In the set cover problem, there is a set of elements

called the “universe” and a collection of subsets of the universe. The optimization version

of the problem involves finding the minimum number of subsets whose union equals the

universe. In our case, the swept volume is the universe, and the collection of subsets includes

all possible rectangular prisms that overlap with this swept volume. We want to find the

minimum number of boxes needed to cover the swept volume in order to reduce the state

required by the design. The set cover optimization problem is NP-hard, so we must use an

approximate solution [26].

We take a greedy approach to this problem. We first select the box which covers the

largest number of voxels in a discretized version of the swept volume without including any

extraneous voxels. We remove the covered voxels from the universe (covered voxels become

‘don’t cares’ in subsequent iterations, since boxes can overlap), and recurse until all of the

voxels from the original set are covered. We implemented this strategy on a roadmap with

50,000 edges. We found that for a 15-bit resolution each swept volume collides with a mean

of 2,000 voxels. Our approximate solution to this version of the set-cover problem required
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a mean of 127 boxes to perfectly cover the swept volume (no extra volumes included).

The problem becomes more interesting when considering another tradeoff. If we relax the

perfect cover requirement and it is acceptable for the box representation to include some

number of voxels that were not present in the original swept volume, the number of boxes

needed can decrease significantly.

The problem now has multiple dimensions to consider. As a hard constraint, we must

cover at least the original swept volume. Under that constraint, we attempt to both mini-

mize the number of boxes required to achieve this cover while balancing the number of extra

voxels included. We implement a second greedy process to the algorithm to incorporate

this optimization. After the greedy set-cover described above, we run the result through

a series of greedy merges. At each iteration the algorithm chooses the two boxes which,

when merged, results in the smallest additional volume added to the set. The efficacy of

this algorithm is discussed in more detail in Section 4.3.

Being able to store representations of boxes as opposed to individual voxels is only

useful if the hardware to check for membership in a box is sufficiently simple to justify this

change. Logically, checking if a voxel lies within a box consists of six comparisons. If the

vertex of the box closest to the origin is (x1, y1, z1) and the vertex of the box farthest from

the origin is (x2, y2, z2), then checking if the voxel located at (vx, vy, vz) is within the box

is checking that the following inequalities hold:

x1 ≤ vx ≤ x2, y1 ≤ vy ≤ y2, z1 ≤ vz ≤ z2.

This task can be accomplished in one cycle with six comparators in parallel, or fewer

comparators can be multiplexed to use less area. In this work we use six comparators

to maximize performance. Figure 4.4 shows the simplicity of this circuit. During the

programming phase, the corners of the box are stored in the latches shown. At runtime,

incoming voxels are compared against the saved values, and the results ANDed.

Figure 4.5 illustrates how the representation of the swept volume for a single motion

in a roadmap changes with these different strategies. Figure 4.5a shows the actual swept

volume. Figure 4.5b includes all the individual voxels for the motion. If a hard-coded cir-
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Figure 4.4: Collision detection circuitry for a single box. During programming, the
coordinates of opposite corners are latched. At runtime, incoming voxels are compared
against the corners to see if they fall within the box. The circuit output for each motion is
the logical OR of many such boxes.

cuit is constructed specifically for this swept volume, the motion consumes around 10,000

transistors. If designing a programmable circuit that represents each voxel explicitly as

described above, it requires over 660,000 transistors, an increase of over 65x. This same

swept volume can be described perfectly using 87 boxes instead of individual voxels, shown

in Figure 4.5c. The necessary structures for this strategy consume just under 85,000 tran-

sistors. If we allow a 10% increase in volume and represent the edge with only 38 boxes

(Figure 4.5d), we can bring the cost down to 36,000 transistors, less than a 4x increase over

the hardcoded circuit.

Because we are boxifying the pre-computed swept-volume collision data and not the

dynamic obstacles present in any given runtime query, a large number of small obstacles

does not degrade the quality of paths. The volume a robot sweeps through space as it

moves is by definition contiguous, and so it lends itself well to the boxification during the

precomputation phase.

A potential limit of the aggressive boxification strategy would be in applications that

cannot tolerate any loss in resolution, perhaps in robotic surgery. In these cases, boxification
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Figure 4.5: (a) The swept volume created by the motion of a robotic arm. (b) This same
swept volume represented by voxels. (c) The volume as covered by 87 boxes without any
additional volume inclusion. (d) The volume covered by only 38 boxes if a 10% volume
increase is allowed.

can still be used, but the parameter for acceptable added volume can be set to 0%. Even

at this setting, boxification provides an 85% footprint savings over an uncompressed swept

volume.

4.3 Results

We used the Synopsys toolchain and the NanGate 15 nm Open Cell Library [27] to synthe-

size our design and obtain performance, area, and power estimates. The following numbers

are for an implementation with 32,000 edges. We target an ASIC implementation for a

number of reasons. With programmability now inherent in the microarchitecture, using

a reconfigurable platform such as an FPGA incurs high overhead without benefit. By

targeting an ASIC we can achieve larger roadmap sizes at the same area. An ASIC imple-

mentation means we can also take advantage of better power efficiency, higher frequency,

and lower unit-cost.

Since the collision detection microarchitecture is completely parallel with respect to

the edges in the roadmap, its latency in terms of cycles is identical with our previous

contribution, and depends solely on the number of obstacle voxels it must process. For

the random pick-and-place environments we sampled, there was an average of 750 obstacle

voxels, which means collision checking takes an average of 750 cycles, since each voxel
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Figure 4.6: As the box detector budget decreases, the volume added increases. At a box
budget of 64, the average increase in swept volume is just 11% (left). Histograms of the
number voxels composing each edge (middle), and the number of boxes in a representation
that allows a 10% volume increase (right).

requires only a single cycle to process. The Synopsys toolchain indicates the design can

be clocked at 1 GHz, which means collision detection on average consumes less than a

microsecond.

The area consumed by the 32k edge design is just under 400mm2, with an estimate of

just under 2 billion transistors. As a coarse contrast, the Stratix V used for the implemen-

tation of our first contribution consists of 3.8 billion transistors. Using the reconfigurable

FPGA fabric to store the hard-coded circuit design, we were constrained by both routing

availability and lookup tables to roadmaps of less than 3k edges. This illustrates the area

efficiency benefits of ASIC-hardening. Synopsys estimates the power consumption of the

design to be 30 Watts.

There are also several aspects of our boxification strategy for performing collision detec-

tion that must be evaluated. The first is the technique of aggressively reducing the number

of boxes in the swept volume representation in the pursuit of reduced hardware cost. Using

our algorithm described in Section 4.2.2, we performed a sweep of the parameter space

on a 50,000 edge roadmap to evaluate the trade-off between the hardware budget and the

increase in volume of the representation. This tradeoff is visualized in Figure 4.6. We

found the average number of boxes to exactly represent the original voxelized volume is
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127. However, with a box budget of only 64, the average volume of each representation

increases by just 11%. It is important to note that this optimization is safe, since volume

is only added, never removed, so a colliding motion will never erroneously be flagged as

available. Given that the size of each box representation is equivalent to two voxels, it is

clear that representing volumes with boxes is vastly more efficient than with voxels.

Another question is how often this more coarse representation causes a degradation in

the ability of the microarchitecture to find paths. We tested a 50,000-edge roadmap against

5,000 sampled pick-and-place environments using both an individual voxel representation

and a boxification strategy that allowed a 10% increase in volume. Allowing the 10% in-

crease in volume caused an increase in failure rate of only 0.13%. Of the remaining paths,

the average path length increased by 0.59%. This small penalty is more than offset by

the 50% decrease in hardware cost compared to a perfect cover using boxes. These results

show that our strategy of performing collision detection with box representations effectively

reduces the hardware resources required as well as maintains path quality in our example

scenario; future work will have to test this strategy on different robots, discretization reso-

lutions, and applications.

4.4 Conclusion

In the previous chapter we developed a specialized architecture to accelerate collision de-

tection. It achieved the desired latency, but was limited to small roadmap sizes, and its

implementation was completely specific to a single robot/roadmap pair. This prevented the

architecture from being targeted to an ASIC, and made it difficult to apply to applications

with changing configuration spaces. In this chapter we presented a contribution that over-

comes both of these limitations. This architecture can achieve larger roadmap sizes, and

through a programming phase can be targeted to different robots, roadmaps, and changing

configuration spaces.
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Chapter 5

Hardware-Accelerated Shortest Path

Search

The contributions we present in this chapter are a pair of architectures to accelerate graph

search in the context of motion planning. We discuss the importance of path search in

motion planning and why we should accelerate it. We then introduce an architecture

to accelerate path search for a specific planning roadmap. This design could be used in

conjunction with the collision detection framework described in Chapter 2.4. We also

present a programmable path search accelerator that can be used with the programmable

collision detection accelerator from Chapter 4. We simulate the designs for functional

correctness as well as synthesize them in Synopsys to obtain power/area/timing estimates.

5.1 The Need for Hardware-Accelerated Path Search

Although path search is not the bottleneck in conventional motion planning algorithms, it

can become the slowest phase if collision detection is sufficiently accelerated. In Chapter

2.4 we showed that after implementing our accelerator, graph search became the slowest

component by several orders of magnitude. This problem only gets worse as the planning

roadmaps get larger.

Having the entire motion planning pipeline operate in the microsecond range is essential

in several applications. When planning for an autonomous vehicle in uncertain environ-

ments with unpredictable agents it may be difficult or impossible to know exactly where

all the obstacles are going. In these cases, you may create a model of possible agent be-

haviors and run motion planning hundreds or thousands of times while sampling possible

outcomes. If the planning latency is in the millisecond time frame, this risk-aware planning

51



would have an infeasible latency in the seconds. If we can achieve microsecond latency for

motion planning, then this becomes a feasible strategy to accommodate uncertainty while

being able to maintain a millisecond-level reactivity.

In one recent work that focused on perception latency, the authors investigate the

benefits of event cameras to enable drones to avoid collisions with oncoming objects [28].

They show that the difference between millisecond latency and microsecond latency makes

a difference for high performance drones making evasive maneuvers [28]. This latency is

also required for more complex decision making algorithms [2, 3, 4] that may invoke motion

planning thousands of times as a subroutine.

Because graph search is such a broadly applicable problem, previous work has sought

to accelerate it, but no prior work is fast enough for our purposes. Several papers have used

GPUs to speed up the processing of large graphs but do not achieve real-time performance

and are high power [29, 30, 31]. As will be shown in Section 4.3, GPU solutions are

not sufficient to bring the shortest path latency in line with accelerated collision detection.

There has also been work on specialized processors for accelerating shortest path algorithms.

Bondhugula [32] accelerates a block-variant of the Floyd-Warshall algorithm. Sridharan [33]

designed a parallelized version of Dijkstra’s algorithm, and Takei [34] extended this with

large scale graph processing in mind. These approaches achieve insufficient performance

for our goals because they rely on slow memory accesses and do not exploit properties of

the path search problem that are specific to robot motion planning.

5.2 Accelerating a Specific Roadmap

Our first effort to accelerate shortest path was for a fixed robot roadmap, similar to our

first work on collision detection. The approach we took is a dataflow architecture designed

to perform the Bellman-Ford algorithm. The architecture consists of a topology of nodes

we refer to as Bellman-Ford Compute Units connected to form the same structure as the

fixed roadmap.
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Algorithm 1 Bellman-Ford Pseudocode

Input: G = (V, E), src
Initialize: dist[]← {inf}, next hop[]← {null}
1: dist[src] B 0
2: not complete B true
3: while not complete do
4: not complete B false
5: for < v1, v2, weight > in E do
6: if dist[v1] + weight < dist[v2] then
7: dist[v2] B dist[v1] + weight
8: next hop[v2] B v1
9: not complete B true

10: end if
11: end for
12: end while
13: return dist, next hop

The Bellman-Ford algorithm is a single source shortest path algorithm. First, all nodes

except the source are initialized to a cost of infinity. At each iteration, every node checks

each neighbor for a better shortest path, by adding the neighbor’s current cost to the

source to the neighbor’s edge weight. Pseudocode is shown in Algorithm 1. This algorithm

is commonly used in a distributed manner to implement the Routing Information Protocol,

with the difference that whole routing tables are communicated, instead of just neighbor

costs [35]. Previous work on improving the average-case complexity of SSSP search has

resulted in newer algorithms such as delta-stepping [36], but these algorithms do not lend

themselves as intuitively to an efficient hardware implementation, and the bounds are not

as promising on general graphs [37].

In our approach, each node in our spatial architecture is a Bellman-Ford Compute Unit

(BFCU). In this hardcoded implementation, the behavior of each BFCU is quite simple.

Each BFCU has a register storing its current best cost and is physically connected to its

logical neighbors. When the valid bit on a neighbor’s connection is set, the node will add

that neighbor’s edge weight to the incoming cost, and see if this results in a lower cost than

is currently stored. If so, the new cost is written to the register, and the information is

propagated by setting its own valid bits and sending the new cost to its neighbors. If the
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new cost is not an improvement, the message is discarded. There is also a register to store

each BFCU’s next hop, and some control logic to enable extraction of the path.

An advantage of this design is that there is very little data to transfer, since the net-

work topology and edge weights are baked into the architecture. This makes transferring

cost updates very simple. Communication between the collision detection modules is also

straightforward and involves a single bit for each edge, indicating whether that edge is in

collision. For an edge that is in collision, each associated BFCU simply sets a bit indicating

they should not use that edge until the next reset. Upon reset, collision bits and best

cost/next hop registers are re-initialized and another query can be made.

This design has a very small footprint. We wrote Verilog for the BFCUs and Verilog-

generating scripts that parse a roadmap description file, instantiate the correct number of

BFCUs, and create the connections between them to match the topology of the roadmap.

We synthesized the design using the NanGate 15 nm Open Cell Library in the Synopsys

toolchain to obtain power, area, and timing estimates. Since the amount of work being

done each cycle is so small, the design met timing all the way up to 2.5 GHz, but we will

report data from 1 GHz since it is likely this would share a clock domain with the collision

detection accelerator. For roadmaps of various sizes this design shows a linear relationship

between the area required and the number of nodes. This is shown in Figure 5.1.

The same linear trend holds for power, which at 1 GHz was approximately 0.02 mW

for each BFCU. This means that for a roadmap of 16,384 (214) nodes, a hardcoded shortest

path accelerator would be around 1.6 mm2 and consume less than 400 mW. The total

execution time of the module scales with the number of hops across the graph. In the worst

case, this grows linearly with the number of nodes in the graph. The common case shows

much slower growth. For graphs with around 16k nodes, experiments show our module

would complete in less than 1 microsecond.

This work brought the latency of shortest path down to the same order of magnitude

as hardware accelerated collision detection. This would allow the two phases of motion

planning to be pipelined, generating motion plans at a very high throughput.
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Figure 5.1: The hardware resources needed to accelerate specific roadmaps scales linearly
with the number of nodes.

5.3 Programmable Shortest Path Acceleration

The main challenge in designing a programmable architecture to accelerate graph processing

is to achieve a design that can handle any expected graph topology, avoid costly memory

accesses, and has reasonable resource requirements. Previous work in accelerating graph

search has been for more general applications where very few assumptions can be made

about the expected input. Our key insight is that since our strategy involves a precomputed

static roadmap, we can guarantee certain properties such as its maximum degree, maximum

edge weight, and maximum path cost.

Bounding these quantities enables us to design much more compact and efficient storage

structures and datapaths than if we allowed for arbitrary graphs. The approach we take

in this work is to extend the dataflow architecture to perform the Bellman-Ford algorithm

described previously. We augment the BFCUs with additional programmable state, and

implement a sea of physical nodes connected via a low-cost interconnection network used

to achieve reconfigurable logical topologies.

Operation of the path search microarchitecture falls into three phases. A preprocess-
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ing phase involves creating a mapping from the logical graph to the physical hardware

resources. The programming phase configures the data structures of the architecture with

the necessary information about the graph at hand. During the runtime phase, the dis-

tributed Bellman-Ford algorithm runs to calculate the shortest path. We first describe the

design and behavior of our programmable Bellman-Ford Compute Units (BFCUs). We

then explain how we handle changing roadmap topology with an application-specific inter-

connection network. Next, we discuss the interface between the path search accelerator and

the rest of the system (both collision detection accelerator and host), and the preprocessing

necessary to find a good mapping of logical graph to physical resources.

5.3.1 Programmable BFCU Microarchitecture

The functionality of the BFCU discussed here is very similar to what is presented in Section

5.2. The primary difference is the addition of programmable tables describing the roadmap,

instead of these properties being baked into the circuitry. Now each compute unit must

store the physical addresses of its logical neighbors, so that update messages can be sent

to the correct location. The edge weights to each of these neighbors are stored in another

table. These tables are filled once during the programming phase, and can be reused many

times until switching to a different graph.

Each BFCU also has a register storing its current best cost to the destination. (We

treat Bellman-Ford as a single-destination rather than a single-source algorithm.) These

registers are all initialized to a maximum value which represents infinity. To start the

shortest path search, the BFCU to which the destination node was mapped is updated to

a cost of zero. The destination vertex then iterates over its neighbor table, and sends to

each neighbor a message with its cost (zero) added to that neighbor’s edge weight. When

the neighbor receives this message, it compares this new cost with its current cost. If the

new cost is less than its current cost, then several things happen. First, the vertex updates

its best cost register as well as its next hop pointer. Second, it begins iterating over its

own neighbor table to find the physical addresses of its neighbors, and sends each of them
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a message with its cost added to that neighbor’s edge weight. Figure 5.2 shows the basic

microarchitectural layout of the Bellman Ford Compute Circuit.

The decision to send values post-addition instead of pre-addition may seem incidental,

but it is important. Receiving a post-addition value allows the BFCU to evaluate whether

to process or discard the message in a single cycle, rather than waiting a cycle to access the

table with neighbor weights, doing an addition, and then comparing (this would require

additional state to save messages arriving during the table lookup). Even though processing

a new best cost and iterating over the neighbor table takes several cycles, each BFCU can

maintain a throughput of one message each cycle. If the BFCU is in the process of walking

through the table to send updates when it receives a new cost update message, there are

two possibilities. If the new cost is an improvement, then the as-of-yet unsent messages on

this table walk are stale, so the iteration can be aborted and restarted with the new cost.

If the new cost is not an improvement, the message is discarded. The uninterrupted ability

to handle a message in each cycle eliminates the need for input buffers in the BFCU and

means the network can count on being able to eject a message at each BFCU every clock

cycle, which will be important when discussing the interconnection network.

Aside from cost update messages, the BFCUs handle two other types of messages as

well. If the BFCU receives a next hop query, it responds with the address of the neighbor

from which it received its best cost. This class of message allows the path itself to be

extracted. The BFCU can also receive a best cost query, to which it responds with the

current value of its best cost register.

Several design choices must be made to keep the size of the BFCU small enough that

the reconfigurable architecture can scale to large graph sizes. We can leverage properties of

our specific application to inform the design. If each node is allowed to have an unbounded

number of logical neighbors, for example, the neighbor address table would need to be

large. The strategy we use involves precomputing a roadmap, so we can guarantee that

each node will have at most four neighbors without affecting the quality of the roadmap.

This limitation can be overcome if necessary by logically splitting a node with too many

57



neighbors into multiple nodes connected with an edge weight of zero. Similar decisions must

be made with maximum path cost and edge weight, to bound the size of adders, interconnect

width, and registers. Graph edge costs can be scaled to respect these constraints. If an

edge is truly needed with a cost greater than the register size allows, it can be represented

as two (or more) edges in serial with costs such that the sum is the desired value. The

architecture can also accommodate both directed and undirected graphs.

Distributed Bellman-Ford algorithms often implement a split-horizon advertisement

policy to allow the network to more effectively deal with failed links [35]. In our architec-

ture, collisions (which are effectively failed links in the roadmap) are communicated before

graph search begins, removing the need to keep a split horizon for that reason. Advertising

a more costly route back to a node’s next hop still unnecessarily occupies network band-

width. However, our simulations show these redundant messages have a negligible impact

on performance (less than 1% increase in path search completion time). This allows us to

keep complexity down by not implementing a split horizon.

These decisions all help keep the increase of the area footprint of each BFCU to a

reasonable level even when adding reconfigurability. Each node requires around 6,000 tran-

sistors. Of this, 70% is comprised of programmable state, while the rest is combinational

logic. This modest size makes it feasible to implement the number of compute nodes needed

to solve challenging problems. Figure 5.2 shows the basic microarchitectural layout of the

reconfigurable Bellman Ford Compute Unit, and Algorithm 2 summarizes the behavior it

implements.

5.3.2 Interconnection Network Microarchitecture

In order to execute the Bellman-Ford algorithm, each BFCU needs to be able to communi-

cate with its logical neighbors. However, because the microarchitecture must be reconfig-

urable, this communication must happen over a network so that the sea of physical BFCUs

can emulate the behavior of the desired graph topology. The network enables the BFCU to

abstract away communication issues and behave as if it is actually connected to its logical
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Figure 5.2: Each Bellman Ford Compute Unit (BFCU) has a table of the physical
addresses of its logical neighbors, and a table of their edge weights. Behavior described
below.

Algorithm 2 Behavior of Bellman-Ford Compute Node

1: for each msg received do
2: if msg.type == COST UPDATE then
3: if msg.cost < best cost then
4: best cost B msg.cost
5: next hop B msg.source
6: for each < neighbor, edge weight > do
7: send(best cost + edge weight)
8: end for
9: end if

10: else if msg.type == COST QUERY then
11: send(best cost)
12: else
13: send(next hop)
14: end if
15: end for
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Figure 5.3: Router microarchitecture for our on-chip network. Direction ordered routing
along with static in-flight priority effectively decouples the X and Y directions. Arbitration
logic is minimal, and only four total buffer entries in the router are required.

neighbors, even though they may not be physically adjacent.

This network must also be efficient both in space and power since a useful design

must accommodate roadmaps with thousands of nodes. We based our network on the

low-cost router microarchitecture proposed by Kim [38]. The microarchitecture emphasizes

simplicity as a first-class constraint to enable scaling to large network sizes. We first explain

how this router works, and then present how we make a number of application-specific

optimizations to take advantage of properties of our traffic patterns and message sizes.

The crossbar switch is where most of the area is consumed in a typical router. The

complexity of a crossbar is quadratic both in terms of ports and link width. The benefits

from this design stem from partitioning the router into separate components for the X

and Y directions and implementing a direction-ordered routing protocol. In each router,

priority is given to in-flight messages that are continuing in the same direction. This allows

messages that arrive from and are continuing to travel on the X direction to pass through
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the X partition of the router without interacting with any of the components of the Y

partition (and vice-versa).

Aside from the crossbar, router input buffers also account for a significant portion of

on-chip network power and area. The static priority given to in-flight messages makes

arbitration logic trivial, enabling the router to operate in a single cycle. Kim uses this

to bring down the number of input buffer entries to two at each port. Maintaining two

entries allows back-to-back flits to flow uninterrupted, since the two entries cover the credit

return latency [38]. The only other buffer that Kim proposes is a “turning” buffer that

fully decouples the two routing directions. When a message arrives at the correct column,

it is placed in the buffer to open up resources in the X direction. This necessarily incurs a

minimum one cycle turning latency.

When implementing this network for our application, we noted several opportunities for

optimization. The first is that because inter-BFCU messages are very small, each message

can be composed as a single flit. Since each message is a single flit, multiple flits rarely

travel back-to-back. This allows us to maintain performance with only a single buffer entry

at each port, since we do not need to cover credit return latency. Each output direction

of the router has a single associated credit. The credit starts at 1 and is decremented

when sending a message in that direction. The credit is returned out of band directly from

the neighboring router once that message has vacated the buffer entry in the neighbor.

Implementing this single buffer entry scheme reduces the area by 40%.

Upon further examination, the intermediate turning buffer also appeared to be under-

utilized. Instead of helping throughput by freeing resources in the East/West direction, it

was simply introducing a turning penalty without benefit. We found that performance was

virtually unchanged when removing the turning buffer entirely. This is partly because of

the low traffic the distributed Bellman-Ford algorithm creates, and also because the BF-

CUs can service a message every cycle, so a message very rarely stalls in an input buffer

waiting to be ejected (only if two messages arrive for the same vertex simultaneously). This

optimization enabled us to further reduce the size of the router by directly connecting the
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East and West input buffers to the North/South/Ejection muxes.

Additionally, the properties of our distributed Bellman Ford algorithm allow us to avoid

implementing any starvation avoidance protocol, as is typically required with this router

[38]. Because new messages in this network are only generated as the algorithm progresses

(when better costs are received), a stall at any location in the network is algorithmically

guaranteed to eventually cause the rest of the network to quiesce. The quiescence frees up

whatever resources are needed for the messages to continue. Our simulations show that

these stalls are extremely rare. The microarchitecture for our router is seen in Figure 5.3.

The design consumes 7,500 transistors. About 65% of this is the four single-entry input

buffers, which shows the importance of reducing the buffer demands of each individual

router.

5.3.3 Preprocessing Phase

Key to the strategy of our programmable network is the ability to achieve good performance

with a wide variety of logical roadmaps. In order to accomplish this, we must smartly

map our logical roadmap configurations to physical BFCUs. To minimize communication

latency, logical neighbors are ideally mapped to physically neighboring BFCUs, but this is

not always possible due to the roadmap’s topology. The physical network of BFCUs is a

2D mesh, while it is unlikely the logical roadmap is planar given that it is created in the

high-dimensional configuration space of the robot.

We use a simulated annealing approach to obtain an acceptable solution to this map-

ping problem during a preprocessing phase. Simulated annealing is a classic technique to

search for the optimum of a complicated state space. First, the logical vertices are ran-

domly assigned to locations on the physical mesh. The system is initialized with a certain

“temperature” and cooling rate. At each iteration, the system attempts to transition into

a neighbor state. We generate neighbor states by randomly selecting a vertex (vertex A).

We pick one of this vertex’s logical neighbors (vertex B), and randomly select a physical

location in the neighboring vicinity of vertex B. The neighbor state is constructed by swap-
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ping vertex A with whatever logical vertex is currently mapped to this location. If this new

state decreases the system’s energy (in our problem defined as the mean physical distance

between logical neighbors), it is accepted. If it increases the system’s energy, it is accepted

with a probability that depends on the current temperature of the system. The higher the

temperature, the more likely the system will accept higher energy neighbor states. Accept-

ing higher energy states allows the algorithm to find its way out of local minima. Each

iteration, the temperature decreases exponentially at the cooling rate. Annealing took on

the order of seconds to minutes, depending on the parameters used.

5.3.4 Programming and Runtime Interface

The usage model we envision for this architecture involves three phases. During the prepro-

cessing phase described previously the user generates and stores various configuration files

relevant to different robot/roadmap combinations. Upon switching to a new combination,

the accelerator goes through a programming phase, during which control messages flow

through the network that send necessary address and edge cost information to each BFCU.

Reprogramming is not necessary in between queries due to changes in the environment.

For these changes (such as the obstacles or goal having moved) a soft-reset restores edges

that were flagged as in-collision and the next query can begin immediately.

During the runtime phase the host computer sends perception data to the accelerator,

along with source and destination node IDs. The perception data is a stream of which

voxels are present in the current environment. The collision detection accelerator calculates

which motions are safe and upon completion sends the results to the path search accelerator

(without further host-accelerator communication). The path search accelerator modifies the

roadmap accordingly by eliminating edges in collision. The path search accelerator then

runs and returns a path to the host. The dataflow of the overall architecture including the

collision detection accelerator is seen in Figure 5.4.

The interface between the path search and the collision detection modules occurs at

points on the interconnection network that we call “control nodes”. The control nodes are
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Figure 5.4: The overall dataflow of our architecture. Dotted arrows indicate commu-
nication that happens during the programming phase, and solid arrows indicate runtime
communication.

located on the perimeter of the interconnection network, as seen in Figure 5.5. The collision

detection circuits send a bit vector representing which motions (graph edges) are in collision

to the control nodes. For each motion in collision, the control nodes send messages to the

BFCUs assigned to the vertices on either side of the edge, indicating that the BFCU should

not use that edge for the next query.

The control nodes are also responsible for collecting the path itself upon completion.

To this end, parameters are set (during the programming phase) to direct the control nodes

how to assess the status of the shortest path search. These include the number of cycles to

wait before starting to probe the source vertex’s best cost, as well as the conditions that

indicate completion. These conditions can be determined with static analysis, as will be

discussed more in Section 4.3.

The size of the control nodes is dominated by the storage required to hold the mapping

of edge ID to physical addresses of the involved configurations. This mapping enables the

control nodes to forward the collision detection results to the appropriate places on the

network. If a 128 x 128 mesh is implemented, then each control node consumes almost

190,000 transistors, almost all of which is the mapping table.
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Figure 5.5: The path search architecture consists of a sea of BFCUs on a custom inter-
connection network. Control nodes sit on the side of the network and are responsible for
interfacing to the rest of the chip.

5.4 Results

For our evaluation we generate roadmaps of various sizes for the six degree-of-freedom Jaco

II robot arm made by Kinova. We run experiments on sampled environments consisting of

randomly placed and sized obstacles and different source/destination pairs. We tested the

behavior of the systems solving problems for roadmaps ranging from 4k to 256k edges, but

our area and timing numbers will focus on a 128 x 128 implementation solving problems

for a 16k-vertex, 32k-edge roadmap. Previous work has shown this size is sufficient to solve

challenging problems in the robotics space [11]. We used the Synopsys toolchain and the

NanGate 15 nm Open Cell Library [27] to synthesize our design and obtain performance,

area, and power estimates.

It should be noted that our results are not unique to the specific application or robot

used. Our design can be used in any roadmap-based planning task; this type of planning is

used in a wide range of robotic applications including autonomous driving [9], automated

inspection [39], and automated machine-tending [40]. We have tested and used different

iterations of our accelerator with four different robots, a range of end-of-arm-tooling, and

in a variety of scenarios with consistent results. We present results for the Jaco because it
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Figure 5.6: Results from simulation showing the distribution of path search completion
times for 5,000 trials.

is one of the most widely-used robots in research labs.

To test the effectiveness of our path search microarchitecture, we wrote a cycle-accurate

simulator for our interconnection network and the associated BFCUs. Although we have

Verilog for the design and tested functional correctness on smaller implementations with an

RTL simulator, running thousands of timing experiments for a 16,384-vertex implementa-

tion in an RTL simulator is time-prohibitive. The simulator allowed us to quickly explore

the design space while developing the microarchitecture as well as efficiently profile the final

result.

For the 16k-vertex graph, the mean time to completion is 360 cycles. In addition to

the speed of the graph search itself, one aspect of our microarchitecture that must be

evaluated is our method of detecting search completion. Figure 5.6 shows the probability

of completion at various times for two sizes of roadmap, simulated over 5,000 sampled

environments. Using a static analysis of the data to select parameters, we configure the

path extraction module during the programming phase to identify completion. For the

16k-vertex graph, the strategy correctly identifies completion over 99% of the time. This

comes at an average overhead of 270 extra cycles.
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Table 5.1: Breakdown of design size by component for a 128x128 implementation
of our architecture.

Component Area (mm2)
Transistor

Estimate (M)

Collision Detection 397 1990
Network Routers 24 122
BFCUs 19 97
Control Nodes 10 48
Total 450 2260

This method is acceptable because while it is not strictly guaranteed that the path

search will have completed running when the path is retrieved, it will never return an

invalid path. In the less-than 1% of cases where completion was not correctly identified in

the example above it simply returns a slightly sub-optimal path. If this is not appropriate

for certain applications, the algorithm is guaranteed to quiesce at a rate bounded by the

number of vertices in the graph, and a more conservative parameter setting can be used.

Summing the time to both complete path search and detect completion with high

accuracy yields a mean of 630 cycles. However, as is common in accelerator design, moving

data around takes just as much time as the computation. There is additional overhead

of 950 cycles to communicate collisions to the BFCUs and actually extract the path. If

we include from Chapter 4 the mean time to perform collision detection, the total average

latency is 2,330 cycles from the time the first obstacle voxels arrive, to the time a path is

ready for output. Synthesis in Synopsys indicates the accelerator could easily be clocked

at 1 GHz, so this equates to a 2.3 microsecond latency. This latency is roughly five orders

of magnitude faster than conventional sampling-based planners.

The breakdown of area on the chip is given in Table 5.1. For completeness we include

numbers for both a programmable collision detection accelerator (as described in Chapter

4), as well as a programmable Bellman Ford accelerator. The table gives numbers both

in terms of area and transistor estimate, in an attempt to make comparisons agnostic to

technology size.
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Figure 5.7: Comparison of scaling behavior for shortest path using our proposed accel-
erator, Nvidia’s graph analytics API, and a CPU-based shortest path library.

In total, a 16k-vertex design is 450 mm2 and requires around 2.3 billion transistors.

The majority of space is taken up by the collision detection circuits. The next largest

components are the network routers, which are dominated by the four single-entry buffers.

Synopsys estimates the power consumption of the accelerator to be 35 watts. Similar to

the area results, the majority of the power is consumed by the collision detection circuits,

and the programmable network accounts for the rest.

Figure 5.7 shows the scaling behavior of our Bellman-Ford accelerator at different

roadmap sizes and illustrates the need for this custom hardware solution. Having dedi-

cated hardware for each node allows the performance to scale linearly with the average

number of hops through the graph. Along with our custom hardware solution, we show the

performance of shortest path search on a CPU and GPU. The CPU is a 4-core Haswell i7

(16 GB RAM) running the shortest path implementation in Klampt [20], a well-optimized

robotics software package. The GPU is running shortest path using the nvGraph graph

analytics API [41] on a Tesla K80. Because our microarchitecture involves tightly cou-

pling the shortest path with collision detection, while the GPU involves communication
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over PCI-e, no data movement overhead was included for either to be fair (so this figure is

strictly concerned with compute time). Even so, the compute time for the GPU is actually

slower than the CPU for small graph sizes, crosses over around 32,000 edges, and remains

several orders of magnitude slower than our accelerator. This demonstrates that in order

to bring the latency of shortest path to the same order of magnitude as accelerated collision

detection, a custom hardware solution is needed.

5.5 Conclusions

In this chapter we presented several novel architectures for accelerating path search. One

is a very compact and efficient design to enable acceleration of a specific roadmap. This

is applicable in domains with very high volume of robots doing the same task, such as

autonomous driving. A second design enabled programmability. This flexible microarchi-

tecture consists of a programmable fabric of computing elements that allows fast calculation

of shortest paths using a distributed Bellman-Ford strategy. To our knowledge, these are

the first accelerators for path search that focus on the needs and characteristics of the mo-

tion planning application. Tightly coupling the collision detection accelerator into either

fabric brings the total motion planning latency down an additional two orders of magnitude

over our previous work that only accelerates collision detection [25, 24].

Being able to perform collision detection and shortest path in under 3 microseconds

combined makes it possible to plan under uncertainty or to use complex decision making

algorithms. Either of these may invoke motion planning thousands of times as a subroutine

[2, 3, 4]. Our architecture allows robots to adjust to dynamic environments in real time, and

does not constrain users to adhere to a single use-case. Both collision detection and shortest

path search are critical in a myriad of fields such as molecular dynamics simulation, gaming,

autonomous vehicles, and augmented/virtual reality. Our architecture provides a general

framework for accelerating these tasks that could be used in many such latency-sensitive

applications.
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The main limitation that remains is that the strategy still depends on generating effec-

tive fixed roadmaps ahead of time. Widely used algorithms such as PRM are only effective

at handling the current set of obstacles, and do not provide any way to reason about their

robustness if the environment changes. This is the open question that will be addressed in

the next chapter.
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Chapter 6

Roadmap Generation in Dynamic,
Semi-Structured Environments

In this chapter we introduce a new method for roadmap generation that can effectively be

used with our accelerators. We first discuss the need for intelligent roadmap generation

techniques. We then review existing approaches to this problem, and discuss why they are

insufficient. We show how we can apply work done in the graph theory and data-mining

communities to the robotic motion planning problem. We present a new framework for

treating motion planning roadmaps as unreliable networks, with links that can fail at any

point in time. We leverage the work done in other fields, adapting data-mining algorithms

to generate compact roadmaps from these unreliable networks. We also introduce a set of

benchmarks that can be used not only to evaluate our roadmap generation techniques, but

any motion planning task.

6.1 The Need for Intelligent Roadmap Generation

The previous three chapters have described how to accelerate various components of motion

planning by designing novel hardware architectures. These architectures create highly

parallel and efficient dataflow paths that enable computation of collision detection and

shortest paths without costly memory accesses and branches. However, the designs we have

presented all leverage extensive precomputation. They minimize the size of the problem

that must be solved at runtime by assuming that the user can construct a roadmap during

configuration of the system.

Construction of a roadmap ahead of time avoids the need to explore high dimensional

configuration spaces for each query, when trying to minimize latency. Moreover, it allows

the precomputation of expensive collision checks. This effectively turns runtime collision
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detection into set lookups, as described in Chapters 2.4 and 4, instead of costly geometric

intersection tests. This has the effect of significantly reducing the amount of hardware

needed to perform collision detection. Having a known roadmap also allows for an efficient

dataflow architecture for path search, as seen in Chapter 5.

The downside of relying on this precomputation is that at runtime the accelerator is

limited to a fixed roadmap. Conventional software planners rely on the ability to sample

additional nodes ad infinitum to attain probabilistic completeness and probabilistic opti-

mality [42, 14]. Using a fixed roadmap in the manner we have discussed does not have this

option. Our method is conservative in that it will never return a path that is in collision,

but it is possible that it will report failure even when a path exists. This can happen for

a number of reasons. Obstacles present in the environment may bisect the precomputed

roadmap so that no path can be found from the start to the goal, even though paths may

exist if considering the entire free configuration space. The discretization of the environ-

ment causes obstacles to appear slightly larger than they are, so it is also possible that

a path through the roadmap is safe, but is falsely thought to be in collision. Finally, the

precomputed roadmap may not contain good coverage in the areas that the current query

demands; even if no obstacles are present, the roadmap may not have any nodes close

enough to consider an acceptable goal. If any of these situations occur, our strategy could

always fall back on a software planner to regain probabilistic completeness. However, this

would negate much of the performance benefits of specialized hardware, so this must be a

highly uncommon case. We require a solution that will generate roadmaps that will find

high quality paths with high probability.

Most importantly, our roadmap generation techniques must also generate roadmaps

that are compact enough to fit on our specialized hardware. It is easy to obtain robust

performance on roadmaps that are allowed to have an unbounded size (such as those gen-

erated with PRM*). However, the problem is more challenging when trying to achieve

this good performance on a budget. The collision detection and shortest path accelerators

we presented in the last two chapters have the capacity for 32k edge, 16k node roadmaps.
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Regardless of what the exact number is, any hardware accelerator of a fixed size with a

real-time latency requirement is limited to solving problems of a certain maximum com-

plexity.

Even without considering dedicated motion planning hardware, having unnecessarily

large roadmaps is undesirable for a number of reasons. Graphs with hundreds of thousands

or millions of edges are costly to store and load from memory. The roadmap may need to

be communicated to mobile robots over a lossy medium such as a wireless network, where

huge data structures are not ideal. Most importantly, large graphs take longer to query in

software, so smaller graphs are more desirable to bring down the planning latency.

6.2 Robotics-Specific Related Work

There are motion planning algorithms already employed by the robotics community that

produce compact data structures. The tree-based algorithms such as RRT and RRT* are

designed to quickly produce small solutions [43, 14]. Unfortunately these are single-query

roadmaps that are unsuitable for applications where there are many possible start and

ending positions. The trees are also by definition sparse graphs, and would not be robust

to the presence of dynamic obstacles, since their acyclic nature makes them easy to bisect.

There has been some interest in how to generate small multi-query roadmaps, and this

line of work is the most relevant from the robotics community. Bekris notes [44] that the

commonly used planning algorithms such as PRM and PRM* often produce exceedingly

large roadmaps. This is a direct side effect of the randomized strategy the algorithms use

for exploration of configuration space. Although randomness is necessary to achieve their

probabilistic completeness guarantees, it has the effect of adding nodes and edges that

may be in uninteresting or unimportant regions of the environment. The effect is especially

pronounced with the variants that guarantee asymptotic optimality as well as completeness,

since these planners must be run for even longer to find paths that approach optimality

[45].
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Bekris proposes the use of graph spanner algorithms to extract subgraphs of a more

reasonable size from very large roadmaps [44]. A graph spanner is a graph with the same

set of nodes as the original graph, but only a subset of edges, while maintaining the con-

nectedness of each connected component [46]. A t-spanner is a special class of spanner with

the property that for all pairs of vertices (u,v), the shortest path between u and v in the

spanner is no more than t-times the shortest path between u and v in the original graph

[47]. There can be many possible t-spanners for a given graph. The smallest t-spanner

would obviously result in the fastest query time, but unfortunately the problem of finding

the smallest t-spanner of a graph is NP-hard [48].

Bekris and Marble employ a randomized algorithm that approximates a (2k-1)-spanner

with a time complexity polynomial with respect to k and the number of nodes in the original

graph [44]. They found that actual path degradation was much less than the worst case

bound of the algorithm. They later extended this work by modifying the k-PRM* algorithm

to add fewer edges during construction of the graph [45]. Bekris also proposed a visibility-

based criterion to determine whether or not a node should be included in the subgraph

[49]. This makes use of the fact that planning algorithms often create roadmaps that

have unnecessary node-density in “easy” regions of configuration space while finding ways

through the difficult regions. In this work, coverage must still be maintained throughout all

configuration space, but roadmaps can be created with fewer nodes than if using a graph

spanner.

The Sparse Roadmap Spanner (SPARS) algorithm simultaneously builds up a light-

weight roadmap and a more dense roadmap for comparison [50]. The dense version is

built up with a vanilla PRM-style approach where each new sample node is connected to

all neighbors within a delta-ball. The sparse roadmap includes visibility checks to ensure

coverage of C-space is maintained, as well as ensuring quality does not degrade compared

to the dense graph by more than a fixed amount. The authors show that this approach

creates roadmaps with a bounded path degradation between arbitrary nodes compared

to the optimal paths found in the dense graph. They also show that asymptotically the
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algorithm will continue to add new nodes to the sparse graph with probability 0 [50, 51].

This demonstrated it was possible to have a finite data structure obtain path qualities

that were a bounded factor from optimal, something even more traditional algorithms like

PRM* do not provide [52].

Like our work, the graph spanner line of work is focused on creating a compact data

structure for multi-query use. However, the motivating scenarios behind it differ from

the challenges that we are facing. Bekris identifies four main properties he would like his

smaller roadmaps to have. He wants the small roadmaps to produce paths of high quality

(the paths should not be much longer than the path in the larger roadmap). The small

roadmaps should have good connectivity, and remain connected if the larger roadmap is

connected. Bekris also wants to maintain equivalent coverage of the configuration space

as in the larger roadmap. Finally, the smaller roadmap should achieve the desired size, to

allow for fast query [50].

The difference between our needs and those that Bekris’ line of work addresses are

that the characteristics of connectivity and coverage in his work are defined in the context

of static environments. The scenarios in which roadmaps are currently used for multiple

queries are ones in which the obstacles are fixed, and just the start and end robot poses

change. In this framework, the user can take advantage of the preprocessing of the PRM and

simply run shortest path queries to generate each plan. In the setting where the obstacles

can move, collision detection must be performed again. When being done in software,

performing collision detection for the roadmap is almost as expensive as rebuilding the

roadmap from scratch. The visibility based nature of the SPARS algorithm only takes

into account a fixed set of obstacles, and does not take into consideration the possibility of

dynamic obstacles that may change position. For this reason, it may believe it has sufficient

coverage and connectivity in an area because of a specific instantiation of obstacles, when

in fact it is not robust at all to other instantiations. Furthermore, spanner algorithms do

not leverage any semantic knowledge about what areas of configuration space are more

important than others. They maintain coverage and connectivity throughout configuration
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Figure 6.1: A roadmap with edge (u,v) being considered for contraction to midpoint p
(left). The edges resulting from the proposed contraction (right). This contraction would
not be legal if there were obstacles causing the new edges to be in collision.

space, when it may be the case that there are large regions of configuration space where it is

acceptable to completely lack coverage, allowing a more effective utilization of a fixed-size

graph budget.

In another line of work, Shaharabani et al. [53] investigate the feasibility of reducing

the size of roadmaps through an algorithm they name “Roadmap Sparsification by Edge

Contraction.” The idea behind this work is that if a pair of (connected) nodes (u, v)

share multiple neighbors in common, several edges can be removed by contracting the edge

between u and v. Consider the example in Figure 6.1. Edge (u,v) is being considered for

contraction to midpoint p. If successful (the new edges are collision free), this contraction

reduces the number of edges in the roadmap by three, and the number of nodes by one.

The authors present two metrics for evaluating the sparse graph created by their algo-

rithm. The first is path degradation, defined by how much longer the paths returned by

the new roadmap are compared to the old (larger) map. The second is the compression

factor, or how much less space is required to store the roadmap. The authors were able to

achieve compression factors on the order of 10-30, with path lengths increasing by less than

10%. The ideas discussed in this work are very interesting but have limited application here

for several reasons. Like most multi-query roadmaps, their model assumes an unchanging

obstacle environment. In this setting it is easier to trim edges and vertices away from a

roadmap without affecting quality since you know a priori exactly where the obstacles are,
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but this becomes a much more difficult problem if the obstacles can move around. This is

a similar deficiency to the graph spanner line of work. This technique also relies on ver-

tices having many shared neighbors in common in order to achieve high space reductions,

which means the initial roadmap must not only be large but quite dense to realize large

compression gains.

6.3 Planning Roadmaps as Unreliable Graphs

With no directly applicable work in the robotics literature, we began looking for analogous

problems in other areas. Fortunately, the data structures used in motion planning are not

unique. Since motion planning roadmaps are just graphs, we began searching the much

larger corpus of research concerning general graph theory.

The main deficiency in the robotics literature was the lack of any consideration of

dynamic obstacles and the impact they would have on the ability of the roadmap to suc-

cessfully find motion plans. In our use-case of a fixed roadmap, we must perform collision

detection for each query, invalidate the motions that are unsafe, and hopefully find a path

through the remaining roadmap to the goal. If we abstract away from the roadmap the

ideas of robot configurations, motions, obstacles, and collision detection then we are simply

left with a graph where some of the edges may not be available during any given problem

instantiation. Our goal is to take this into account when constructing the roadmap such

that it has an acceptably high chance of solving each motion planning challenge.

In graph theory, this construct is known as an uncertain, unreliable, or probabilistic

graph (depending on the application domain). To avoid confusion with the probabilistic

roadmaps algorithm, we avoid the term probabilistic graph and refer to uncertain or un-

reliable graphs. The first use of these unreliable graphs was in the context of physical

network analysis. The field wished to model the effects of redundant components on overall

reliability in complex systems [54]. In these studies, overall system reliability is defined as

the chance of there being a path from the input node to the output node given that each
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edge (representing a component) is unreliable. From that beginning, the scope of research

expanded to study more general problems such as those facing communications networks

and power distribution. More recently, these techniques have been used by the data mining

community to make sense of the vast amounts of noisy data gathered via social network

analysis and gene sequencing. To the best of our knowledge, we are the first in the robotics

community to employ this framework to treat the roadmap generation problem as having an

unreliable graph with a certain probability of link failure, and trying to leverage knowledge

of that probability to create robust, compact roadmaps.

6.4 Unreliable Graph Background/Related Work

Research in this space relies on what is termed the “possible world” semantics of unreliable

graphs [55]. This framework treats each edge as a random variable and assumes indepen-

dence between edges. If edges are undirected, you then have a Markov network that can

be sampled from. If a sample is drawn for each unreliable edge, then one “possible world”

from this distribution can be constructed. For very small graphs, this means that one could

iterate over all possible worlds, see which of these possible worlds maintains a property of

interest, and make inferences about the system as a whole. In a graph where the uncer-

tainty lies in the presence or absence of each edge, there are 2E possible worlds to test,

making this brute force approach infeasible for all but the simplest graphs.

The computational complexity of these problems was first rigorously studied by Michael

Ball [56, 57, 58]. Ball defines an unreliable network as a stochastic binary system whose

state (up or down) is a function of the states of its unreliable components. He noted that

exact analysis of the reliability of these general networks was limited to less than 50 nodes

[58]. Ball shows that calculating the chance that two nodes are connected in an unreliable

network (with arbitrary network topology) is #P-complete, and is in fact also NP-hard

[58]. If you severely constrain the network topology, the problem becomes more tractable

at the cost of decreased flexibility in network design. The most common class of simplified
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graph topologies is the series-parallel graph, whose topology makes it very easy to efficiently

analyze [58]. A two terminal graph is series parallel if it can be formed by the following

rules [59]:

1. A graph with two vertices (s, t) joined by a single edge is series parallel with terminals

being s and t.

2. Let G1 and G2 be series parallel graphs with terminals (s1, t1), (s2, t2), respectively.

Then the graph H = G1
⋃
G2 is series parallel if it is constructed by either:

(a) Placing the two graphs in series, with t1 being merged into s2, and the new

terminals being (s1, t2).

(b) Placing the graphs in parallel by merging s2 into s1 and t2 into t1, with the new

terminals being (s1, t1).

6.4.1 The Most Reliable Subgraph Problem

The data mining field investigates questions very similar to those we need in robotic motion

planning. They deal with very large data sets that may contain many uncertain connec-

tions. Effective analysis of these data sets involves pruning away unlikely or unimportant

connections, while maintaining critical structures. The resulting smaller data set is easier

to store, transmit, and ideally has lost a minimal amount of information during compres-

sion. In a 2007 paper the task is formalized as the Most Reliable Subgraph Problem [60].

The authors introduce the problem of identifying which connections are most important

for the reliability of the system, and which ones can discarded without a significant impact

on reliability. System reliability is defined as the probability that a special set of vertices

known as terminal vertices remain connected.

Along with minimizing loss in reliability, this problem also has the goal of bringing the

size of the graph down by a specific amount. Given an unreliable graph G = V,E and

a set of terminals T ⊆ V , where each edge in E can fail with some probability, the most

reliable subgraph problem is to find the subgraph H = V ′, E′. The subgraph H should
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have the properties that V ′ ⊆ V , E′ ⊆ E, and |E| − |E′| >= K, where K is the desired

reduction in number of edges. Lastly, it should maintain that T ⊆ V ′, and it should

maximize the probability that the terminals in T are connected [60]. This last property

can be formalized by stating that for any other subgraph H’ with at most |E| −K edges,

Rel(H) ≥ Rel(H ′), where Rel(G) is the reliability of graph G. This version of the task is

known as the k-terminal reliability problem. When k = 2 it is known as the two-terminal

reliability problem, and when k = |V | it is known as the all-terminal reliability problem.

6.4.2 Monte Carlo Pruning Algorithms

Unfortunately, extracting the most reliable subgraph is a challenging problem. Hintsanen

[60] showed that the k-terminal most reliable subgraph problem (MRSP) is NP-hard. Just

as Ball noted when studying the computational complexity of determining reliability of a

fixed graph (a counting problem), Hinstanen notes that the complexity of extracting the

most reliable subgraph (an optimization problem) can be simplified by constraining graph

topology [60]. In fact, Hinstanen gives a polynomial-time algorithm for the k-terminal

MRSP for series-parallel graphs.

For the more general and interesting case of arbitrary graph topology, Hinstanen pro-

vides a greedy heuristic that can be performed for the two-terminal case in polynomial time,

with no guarantees or bounds on sub-optimality [60]. The heuristic follows a Monte-Carlo-

like approach, taking advantage of the possible world semantics. First, the two-terminal

reliability of the original graph G = V,E is estimated (since even determining two-terminal

reliability is NP-hard). For each edge e ∈ E there is an associated probability pe that the

edge has failed or not. Flipping a coin for each edge to determine its status comprises one

trial. For each trial, the two terminals are checked for connectedness. Performing a number

of trials gives an approximation of the reliability of the original graph. This process is then

repeated for each edge e on G′ = V,E′ where E′ = E \ e. Any edge e whose removal does

not impact reliability can be removed immediately since this implies that no acyclic path

can be found between the terminals that utilizes e. After this step, the edge which affected
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reliability the least is removed. The process then begins iterating by calculating the impact

on this subgraph of removing each remaining single edge, selecting the one with the least

impact, and repeating.

Although this algorithm is straightforward to implement, it has several deficiencies.

First is the obvious fact that following the heuristic does not find the most reliable subgraph,

and is not even guaranteed to find a good approximation of the optimal solution. Aside from

the unbounded sub-optimality, it has the added difficulty of running a very large number of

Monte Carlo simulations. The complexity of the algorithm is O(N |E|2 + K(|E|+ log|E|))

where N is the number of trials needed during each iteration. It is unclear how large N

must be to provide a good approximation of the reliability, which is what guides the pruning

procedure. For graphs with hundreds of thousands of nodes it seems N would need to be

quite large in order to accurately follow the greedy process.

6.4.3 Incremental Construction Algorithms

Toivonen et al. [59] later presented several improved algorithms for the extraction of reliable

subgraphs for the two-terminal and k-terminal versions of the problem. These approaches

differ from Monte-Carlo pruning algorithms in that they successively build up larger graphs

from paths determined to be useful rather than iteratively removing edges. The first pro-

posed algorithm is named “Best Paths Incremental”, or BPI. The premise behind BPI is

that it tries to find the most probable/reliable paths between the two terminals. These paths

are sorted in terms of reliability, and combined in decreasing order to build up a subgraph.

Once the number of edges in the subgraph exceeds the desired edge budget, Monte-Carlo

pruning can be used for several iterations to meet the space requirement [59]. This algo-

rithm can be performed relatively efficiently because finding the most reliable paths between

terminals is far easier than finding a most reliable subgraph. The probability pe associated

with each edge is simply transformed into weight we = − log(pe). From here, there are

many algorithms that can produce the k-shortest paths with a polynomial time complexity

[61]. The BPI algorithm has a complexity of O((|E| − K)(k2|V |2 + k|V ||E|) log(k|V |)),

81



Figure 6.2: Two possible paths that could be added to the subgraph in the next iteration.
Pa has a higher path reliability, but does not add as much redundancy to the graph as Pb.

where k is the number of best paths that are needed to create a subgraph of the desired

size (|E| −K).

Hintsanen et al. propose a solution to the k-terminal version of the most reliable

subgraph problem using a framework like Best Paths Incremental (BPI) as the inspiration.

They first note that BPI is much easier to implement, faster to run, and provides better

paths than simple Monte Carlo pruning, but that its main drawback is that each incremental

path is greedily added based solely on its individual reliability, and not the effect adding the

edge would have on the whole subgraph’s reliability [62]. An example of this distinction is

shown in Figure 6.2. This figure shows that even though candidate path Pa has a reliability

of 0.95 (simply calculated by
∏
e∈Pa

p(e)) which is higher than the 0.90 reliability of Pb, Pb

has a much higher effect on subgraph reliability since it adds more independent links. The

problem comes back to the fact that calculating graph reliability is more challenging than

calculating the reliability of a single path; as mentioned before, computing graph reliability

is NP-hard. There are an exponential number of possible paths we could add, so we have

an exponential number of NP-hard problems to solve.

The authors propose a clever algorithm to approximate the problem. They divide their
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solution into a path sampling and subgraph construction phase [62]. Given a current set of

paths C (which form a subgraph), the challenge in the path sampling phase is to find the

candidate path P that maximizes R(C ∪ P ). They do this by iterating over all the paths

currently in the subgraph, producing “realizations” of its edges until the path fails. A

realization is produced by flipping a coin for each edge, and determining if it is available for

the current query. Once all paths have failed, the best path from among the un-failed edges

of the original graph is added. The subgraph construction phase involves selecting from

among the sampled paths in C a subset of paths C’ that will meet the desired edge budget,

while maximizing reliability [62]. Testing all possible combinations of paths is infeasible,

so the authors adopt some heuristics.

The main difference in the author’s solution for the two terminal and k-terminal problem

is that instead of the first phase sampling candidate paths, it samples candidate spanning

trees that connect all terminals [63]. Producing a spanning tree is more involved than

producing a path, especially since the graph is uncertain and the spanning trees should

have good reliability. To do this, first (k2 − k)/2 candidate trees are initialized, each with

the most reliable pairwise path between two of the query nodes.

This algorithm provides a good starting point for how to think about the k-terminal

subgraph extraction problem, but lacks several desirable properties. The most important

deficit is that it does not consider any form of path quality other than reliability. This

reflects the authors’ background in data mining. They are concerned with uncertain con-

nections between pieces of data, and not unreliable links that have an additional cost

metric associated with them. We will modify this algorithm to incorporate the additional

constraint.

6.5 Application to Motion Planning Roadmaps

When confronted with our fixed hardware budget, we explored and modified several of these

techniques to produce roadmaps. For the purpose of our discussion, we divide the roadmap
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generation problem into two phases.

1. Generation of the baseline graph is necessary for any subgraph algorithm. We need

some initial roadmap to either prune down, or to simply compare against as we build

up our compact roadmap. The baseline graph will serve as an ideal benchmark and

is expected to be quite large. The exact size is not important, and will depend on

the application; in challenging scenarios more edges are needed than in simpler ones.

Given infinite storage space or hardware budget, the baseline graph is the structure

that would be chosen to plan from. The baseline serves both as the input to the

subgraph algorithm, and as a comparison to judge effectiveness.

2. The baseline graph B is likely both too slow to efficiently query in software and too

large to create a dedicated hardware implementation. Let W be a generator of sample

environments, from which we can draw example environments that include obstacles,

goals, and starting position. Creating this generator will require the problem scenario

be parameterized in terms of all its properties. Our next task is to generate a compact

graph from B using a specified edge budget K and the generator W . Given these

inputs, the algorithm should output a graph G = V,E where |E| ≤ K. For a given

environment drawn from W , G should be able to produce a collision-free plan with

high probability, if a path would have existed in B. Furthermore, the quality of

paths should be maintained such that the cost for a solution in a given environment

through G is comparable to the cost through B.

6.5.1 Baseline Graph Generation

Generation of the baseline graph is not our primary focus, so we briefly describe it here.

We experimented with two main strategies to generate large roadmaps to seed subgraph

algorithms. Both involve first modeling the static portion of the environment. This is done

so that computation is not wasted by considering in the large roadmap portions of the

workspace that are always in collision. The first strategy is to simply run a conventional
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sampling-based planner such as PRM or PRM* until the graph reaches a specified size.

This has the advantages of providing uniform coverage in the robot’s configuration space,

and of being a completely general approach.

There are several downsides of relying on a sampling based planner to generate the

initial baseline graphs. Depending on the kinematics of the robot, uniform coverage in

configuration space may not equate to uniform coverage in the robot’s 3D task-space. More

importantly, sampling based planners do not take into account any semantic knowledge

about the task of interest. While general, failing to leverage this information means that

sampling-based planners create roadmaps that have many poses and motions in areas that

are completely irrelevant to the application, and may not have especially dense coverage in

critical areas.

An alternative is to augment or entirely create a roadmap using knowledge of the robot’s

task, anticipated obstacles, and workflow. For example, if a robot is being installed to spot

weld a part, but the part is subject to some variability in its presenting location, then

you can select an assortment of 6-dof tool poses (xyz, rpy) covering the expected range

of locations of the part. Inverse kinematics can be used to convert these tool poses to

robot configurations, and they can be added to the roadmap. The number of iterations

needed from a sampling-based planner to achieve equivalent density in the same area would

be enormous. A similar strategy could be used to add additional grasp poses over a bin

for a pick-and-place task, additional scanning poses for an automated inspection task,

etc. An example of what this may look like for a pick-and-place task is shown in Figure

6.3. An additional benefit of this strategy as it pertains to subgraph algorithms is that a

classification of the terminal nodes happens as a side-effect of this process. The primary

downside of this approach is that it is not general. Some amount of knowledge about the

application of interest is needed to seed the process. This is acceptable because this entire

phase is done offline before installation, so this time is not on the critical path.

One of our first experiments illustrated the difference between these techniques for

baseline graph generation. Two baseline graphs were generated. One was generated by
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Figure 6.3: In a pick and place scenario there may be a known area of the workspace where
the goals are expected to be present (left). We can leverage this knowledge by sampling
extra grasp configurations in this region, and augmenting the baseline graph (right).

running the PRM algorithm until the roadmap contained 100,000 edges. The other was

also generated using the PRM algorithm, with the exception that the first 250 nodes were

not chosen randomly, but were a set of grasp poses chosen above a table for a pick and

place task. After these initial 250 nodes, the PRM algorithm was continued until this graph

also had 100,000 edges. We implemented a naive Monte-Carlo type approach to prune each

baseline graph. We next created a generator of random pick and place tasks. Some parts of

the environment would remain constant, such as the table and the fixed-base of the robot,

while the locations of the goal and obstacles on the table, the number of obstacles, and

their size were all given distributions that could be drawn from.

In order to discover which parts of the roadmap were not contributing to its efficacy, we

generated 10,000 pick-and-place environments. For each of these 10,000 environments, the

PRM was queried to find the shortest collision-free path to the goal. If a solution was found,

each edge in the resulting path was stored. After doing this for the 10,000 environments,

we had a structure showing which edges were being used in paths frequently, which were
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Figure 6.4: The probability of finding a plan when pruning a baseline graph generated
solely with PRM (red) or a PRM augmented with extra grasp samples in the picking area
(blue).

being used some of the time, and which edges were never used. This enabled us to prune

the roadmap by deleting the edges that were never used or used infrequently. This process

was done iteratively, profiling and pruning to create subgraphs of a range of sizes, from less

than 100 edges to the full 100,000. The resulting subgraphs were then tested by querying

each with 1,000 additional random scenarios and calculating a success rate. The results are

shown in Figure 6.4. The results show that for both of the baseline graphs, useful subgraphs

can be extracted that have less than 1% of the number of edges. However, the roadmap

with the additional density of grasp samples can achieve higher success rates at the same

edge budget. For the rest of our work, we used baseline graphs that were augmented with

increased density in important parts of the workspace.

6.5.2 Extracting Reliable Subgraphs

We drew heavily on the work of Hintsanen et al. [63] on the k-terminal subgraph problem

to guide our strategy. We made several modifications to their algorithm to adapt it to

meet the needs of the motion planning problem. Next we review the modified algorithm

workflow, while outlining the differences in application need and characteristics, and explain
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the changes we made.

Estimating Edge Reliability

Let the baseline graph be designated G = V,E. All of the reliable subgraph extraction

methods found in the literature assume as input that each edge e ∈ E in the baseline graph

has an associated probability 0 ≤ pe ≤ 1. When generating possible worlds, a value v

is drawn from a uniform distribution over [0, 1] for each edge; if pe ≥ v, then the edge is

included in that world. In Hintsanen’s work, these probability values represent uncertainties

that different genes are connected to each other in metabolic or regulatory pathways. In the

motion planning problem they represent each edge’s reliability, or likelihood of not being

in collision for a given query.

This representation makes estimating pe logically straightforward, though computa-

tionally slow. We take our generator of sample environments, W , from which we can draw

example environments, to create some number of sample obstacle sets (we use 10,000). We

collision check the set of e ∈ E for each of these. We sum the number of times that each

edge was collision-free, and divide it by the number of trials run. If W is an unbiased

generator of obstacles, then this provides an unbiased estimator of pe for each edge. Be-

cause past research has not focused on multi-query motion planning roadmaps in dynamic

environments, we are not aware of any previous work that has attempted to estimate edge

reliability in this manner.

Defining Source/Sink Terminal Nodes

One fundamental aspect where the motion planning problem has different characteristics

than prior work on this problem is in the definition of terminal nodes. Hintsanen’s prior

work on the k-terminal subgraph problem defines a single class of terminal nodes, and

tries to maximize reliability in the subgraph between all terminals. However, we note

that in motion planning there are often two or more classes of terminal nodes. We make

modifications to the algorithm to accommodate source and sink terminals, and the change
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is extensible to a greater number of classifications as well.

This change is helpful because it makes the problem much more tractable. When

considering only a single set K of terminal nodes, K ⊂ V, k = |K|, the number of

pairwise reliabilities that the algorithm must maximize is
(
k
2

)
. In Hintsanen’s work, they

were considering only a small number of terminals, with k usually less than 10, so this was

not a problem. In robotics applications however, we may have a single source terminal

but need 500 sink terminals to handle variation in goal location. This would require over

100,000 pairwise combinations if using the algorithm as proposed by Hintsanen. However, in

our applications we do not care at all about maximizing reliability between sink terminals,

and only need to maintain source → sink reliability. This can be achieved with only 500

pairwise combinations. In industrial robotics there are often a set of “teach waypoints”

that the robot must go to as part of a work cycle. These positions may move the arm out

of the way to allow a 3D camera to perform part localization, for a conveyor belt to move

in the next part, or to perform a grasp. These can provide the terminals as input to the

algorithm. For this work we assume two sets of terminal nodes S and D, with the following

invariants:

· S ⊂ V

· D ⊂ V

· S ∩D = ∅

· S ∪D = K

· In the possible world with all edges in the baseline graph G present, then for each

pairwise combination u, v, where u ∈ S and v ∈ D, there exists a path from u to v

through G

Sampling Candidate Trees

One of the largest differences between our application needs and those of Hintsanen is that

we must consider not only subgraph reliability, but the quality of the paths the subgraph
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contains. Each edge has not only an associated reliability, but also an associated weight that

is usually a function of how long it takes the robot to traverse that edge. To accommodate

this, at different points in the algorithm we search for shortest paths using different cost

functions. Let Rel() indicate a cost function that considers the reliability of each edge,

given by Rel(e) = −log(pe). This is the only metric considered by Hintsanen. We introduce

another cost function Dist() which indicates the cost to traverse the edge.

As seen in Algorithm 3 lines 1 to 3, initialization occurs in the same way as Hintsanen

[63], except that instead of starting a new tree for every terminal pair, we only include

pairs from source terminals to sink terminals. For each pair, the most reliable path is

used to initialize a tree. We then enter the main loop of the tree sampling phase, which

is terminated once we have built up a specified number of “complete” trees. A tree is

considered complete if it contains all the source and sink terminals. Hintsanen et al. note

that while the number of candidate trees sampled does have a positive effect on their results,

benefits begin to diminish when sampling more than 50 complete trees, and we see similar

results in our work.

In each iteration of the sampling phase, we first produce a realization of the uncertain

baseline graph, and label each edge as available or failed for this iteration (line 6). After

producing a realization, we search for an “intact” tree to extend (line 8). A tree is considered

intact if all of its edges lie in the available set (Ea) in this realization. Only extending intact

trees tends to bias the algorithm to produce robust trees.

The process of extending a tree is shown in Algorithm 4. If there are source terminals

absent in the tree, then a random source terminal out of the missing set is chosen, along

with a random destination terminal out of the set already present in the tree; if all the

source terminals are already contained in the tree, then one of them is randomly chosen

along with one of the destination terminals that is absent (lines 1 to 5). When extending

trees, we select best paths among the available set of edges using their distance-based cost

function, instead of reliability. This is in contract to Hintsanen et al., who only consider

reliability in their study. We find that even though we do not use reliability as a cost
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metric for finding best paths, the resultant subgraphs still have high reliability (due to the

stochasticity of the algorithm, only edges with high reliability are often in the available

set). Before searching for a best path, we also temporarily set the cost of each edge that

is already in the tree being extended to zero. This biases the algorithm to extend the tree

using paths that add a fewer number of edges to the tree.

One major modification we make to the algorithm here is in introducing epochs to the

sampling phase. The average reliability of the edges in our application is significantly higher

than those investigated by Hintsanen. This has the effect that a subset of edges were being

added to many candidate trees, despite there being good alternatives with only slightly

higher costs, that could have added useful redundancy in the rare case that the best path

experiences a cut event due to obstacles. We counter this effect by allowing edges from the

baseline graph to be used in extensions once per epoch. Once used, they are temporarily

removed from the baseline graph (line 14). If an extension fails to find a path through the

reduced graph in a given realization, then the epoch is reset, and all the original edges are

restored to the baseline graph (line 11). We find that this change to the sampling algorithm

increases the number of unique edges in the complete trees by 18%.

If no trees are intact, Hintsanen suggests to initialize a new tree with a path that is

intact in the current realization. However, we find that since in our application we have

many more terminals than considered by Hintsanen, our trees end up much larger (in the

thousands of edges), and so there is much less chance that a tree is fully intact in a given

realization. We also begin the algorithm with many more trees from the outset, so there is

less need to start new trees in the middle of the algorithm. To account for this difference,

we make a change. Instead of creating new trees, we “repair” the oldest incomplete tree

when we encounter a situation with no intact trees. If the oldest incomplete tree still has

paths between all the source and destination terminals it contains, we consider it already

repaired and we extend it. Otherwise, we find paths through the available edges from the

source to the sink terminals it contains, add the corresponding edges to the tree, and then

extend it.
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After extending a tree, we check if it now contains all the terminals from the orig-

inal baseline graph. If it does, the tree is considered complete, and it is moved to the

CompleteTrees set. Once this set has reached the size specified as input, the incomplete

trees are discarded, and the complete trees are used in the next phase of the algorithm. We

swept the parameter space and find no additional benefit in sampling more than |S| ∗ |D|

number of complete trees.

Selecting Trees to Construct Subgraph

The next step is to select a subset of the trees sampled. This phase of the algorithm takes

as input an edge budget along with the collection of complete trees sampled, and outputs

a subgraph. Hintsanen et al. [63] focus only on maximizing reliability, so we present

here a modified algorithm that we find maintains reliability while also selecting trees with

high-quality paths.

We initialize the subgraph with the tree that contains the fewest number of unique edges.

Because each candidate tree is complete, the subgraph begins already having (unreliable)

connections to every terminal. During each iteration of the selection phase, we produce a

realization of the edges from the baseline graph. We then search through the remaining

candidate trees to find the one that maximizes an incremental quality metric. During this

search, we also remove any candidate tree that has no unique edges compared to the growing

subgraph (lines 5 to 7). The quality metric is calculated by iterating over each pair of source

and destination terminals. The cost of the best path between them in this realization is

calculated both through the current tree as well as the subgraph. If the current tree offers a

cost improvement in the cost of the current path, the amount of the improvement is added

to a running sum. The total improvement in all the paths is divided by the number of

unique additional edges this tree would bring to the subgraph if they were merged.

After finding the tree that maximizes this quality metric, we remove it from the set of

complete trees, and add it to the subgraph. The algorithm terminates when either the edge

budget has been exceeded, or the set of complete trees has been exhausted. If the latter
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Algorithm 3 SampleTrees
Let E(G) provide the edges associated with G, and V(G) the vertices associated with G,
whether G is a path, tree, or graph

Let Ea, Ef ← RealizeEdges(E) indicate producing a possible world by drawing from a
uniform distribution for each edge, and placing the failed links in Ef and the available links
in Ea

Let P ← PathSearch(E, u, v, func()) indicate searching for the shortest u → v path
through edges E using the specified cost function as the metric for the search, and placing
the resultant path in P

Let E ← ResetEpoch() indicate restoring all the original edges from the baseline graph
to E

Input: Baseline graph G = (V,E), Source terminals S, Sink terminals D, Cost function
Rel() that considers the reliability of each edge, Cost function Dist() that considers
the cost to traverse each edge, Number of complete trees to sample N

Initialize: Trees← ∅, CompleteTrees← ∅
1: for each pair of terminals < u, v > where u ∈ S, v ∈ D do
2: P ← PathSearch(E, u, v,Rel())
3: Add P as a new candidate tree to Trees
4: end for
5: while |CompleteTrees| < N and |Trees| > 0 do
6: Ea, Ef ← RealizeEdges(E)
7: for each T ∈ Trees do
8: if E(T ) ⊂ Ea then
9: ExtendTree(T, S,D,E,Ea)

10: if S ⊂ V(T ) and D ⊂ V(T ) then
11: remove T from Trees and place in CompleteTrees
12: end if
13: continue at line 5
14: end if
15: end for
16: RepairTree(Trees[0], S,D,E,Ea)
17: ExtendTree(Trees[0], S,D,E,Ea)
18: if S ⊂ V (Trees[0]) and D ⊂ V (Trees[0]) then
19: remove Trees[0] from Trees and place in CompleteTrees
20: end if
21: end while
22: return CompleteTrees
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Algorithm 4 ExtendTree

Input: T, S,D,E,Ea

1: S′ ← S \V(T )
2: if |S′| > 0 then
3: Randomly select u ∈ S′ and v ∈ D ∩V(T )
4: else
5: Randomly select u ∈ S and v ∈ D \V(T )
6: end if
7: Set Dist(e) to 0 for all e ∈ E(T )
8: P ← PathSearch(Ea, u, v,Dist())
9: Restore original Dist(e) for all e ∈ E(T )

10: if P == ∅ then
11: E ← ResetEpoch()
12: else
13: Add the nodes and edges in path P to T
14: E ← E \E(P )
15: end if

Algorithm 5 RepairTree

Input: T, S,D,E,Ea

1: for each pair of terminals < u, v > where u ∈ S ∩V(T ), v ∈ D ∩V(T ) do
2: if PathSearch(Ea ∩E(T ), u, v, Dist()) == ∅ then
3: P ← PathSearch(Ea, u, v,Dist())
4: if P == ∅ then
5: E ← ResetEpoch()
6: continue at line 1
7: end if
8: Add the nodes and edges in path P to T
9: E ← E \ E(P )

10: Ea ← Ea \ E(P )
11: end if
12: end for
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occurs, the sampling phase can be re-run with tuned inputs intended to provide a larger

number of candidate trees and unique edges.

Algorithm 6 SelectTrees
Let P,C ← PathSearch(E, u, v, func()) indicate searching for the shortest u → v path
through edges E using the specified cost function as the metric for the search, and placing
the resultant path in P , the cost of the shortest path in C

Input: CompleteTrees, E, S, D, Dist(), Edge Budget B
Initialize: SubGraph with the tree in CompleteTrees with fewest edges
1: while |E(Subgraph)| < B and |CompleteTrees| > 0 do
2: Ea, Ef ← RealizeEdges(E)
3: BestScore← 0, BestTree← ∅
4: for each T ∈ CompleteTrees do
5: if E(T ) ⊂ E(Subgraph) then
6: Remove T from CompleteTrees
7: continue on line 4
8: end if
9: sum← 0

10: for each pair of terminals < u, v > where u ∈ S, v ∈ D do
11: P,C ← PathSearch(E(T ) ∩ Ea, u, v,Dist())
12: P ′, C ′ ← PathSearch(E(SubGraph) ∩ Ea, u, v,Dist())
13: if (C ′ − C) > 0 then
14: sum← sum + (C ′ − C)
15: end if
16: end for
17: score← sum/|E(T ) \ E(Subgraph)|
18: if score > BestScore then
19: BestScore← score
20: BestTree← T
21: end if
22: end for
23: remove BestTree from CompleteTrees and add its edges and nodes to SubGraph
24: end while
25: return SubGraph

6.6 Benchmarks for Experimentation

One of the challenges in developing an accelerator for robotics is that the field has a well-

known lack of standardization when it comes to system evaluation [64, 65]. In contrast to

benchmark-driven sectors such as computer architecture and computer vision, the robotics
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(a) An example instance of
the machine-tend scenario.

(b) An example solution of
the machine-tend scenario.

(c) An example roadmap for
the machine-tend scenario.

Figure 6.5: The machine-tend scenario tries to capture the characteristics common in
industrial machine tending tasks. These applications often involve a robotic arm reaching
into the enclosed space of a machine to remove machined/processed parts, and then insert-
ing new raw work stock. We include the UR5 robot which is popular for machine tending.
In this scenario we define the task as the UR5 reaching into the machine and placing new
stock at a randomly defined location. A successful motion for an instantiation is defined as
bringing the work part within 1 cm and 5 degrees of the indicated location and orientation.

community has not reached agreement about a set of benchmarks that should be used to

measure new ideas and methods. We developed four distinct scenarios that can be used

to evaluate robotic planning strategies. Each one uses a different robot to accomplish a

different task. We parameterize each scenario and provide a random environment generator

so that users can produce unique training and test sets for each scenario. These environment

generators have been bundled as a ROS package for distribution to the robotics community

as a whole. We also provide sample code so that users can see how to make queries in

the environments using already available open-source planning frameworks. Figures 6.5

to 6.8 briefly describe each benchmark. We show some example baseline graphs, but the

illustrations are for less dense and/or incomplete baseline graphs, since the high density

of vertices and connections makes the baseline graphs used in our experiments hard to

visualize.
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(a) An example instance of the
plate-grab scenario.

(b) An example baseline graph for the plate-grab
scenario.

Figure 6.6: The plate-grab scenario is a more domestic task. It involves a JACO robot
reaching to grasp a plate in a dishwasher. The robot is randomly placed along any of the
three sides of the dishwasher, with one plate being randomly selected as the “goal” plate.
We define acceptable goal positions as the palm of the robot facing any part of the rim of
the goal plate, with the palm being between 0.5 to 4 cm away from the rim.

(a) An example instance
of the shelf-place sce-
nario.

(b) An example solu-
tion.

(c) An example baseline graph for
the shelf-place scenario.

Figure 6.7: The shelf-place scenario models the challenges of picking and placing objects
on cluttered shelves, common in both domestic and logistic applications. We use the Fetch
robot here, since it contains a prismatic torso joint that allows the robot a large amount
of height-flexibility. The scene generator populates a random number of shelves at random
heights, and populates them with clutter, along with a specific goal location (indicated as
a red disk). Success for this scenario is defined as bringing the can in the Fetch’s hand to
within 2 cm of the goal position, oriented vertically.
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(a) An example instance of the power-
strip scenario.

(b) An example baseline graph for the power-
strip scenario.

Figure 6.8: The power-strip scenario involves a UR3 robot reaching to place a plug into a
power strip, without colliding with the wires already present. The power strip is randomly
placed around the robot, and is randomly populated with other plugs. One of the free
receptacles is labeled the goal (indicated in red), and success is defined as bringing the
plug-in-hand to 1-3 cm above the goal receptacle.

6.7 Experiments and Results

We began our experiments by generating training and test samples for each scenario. We

use the scenario generators to generate 10,000 environments of each benchmark for training

purposes, and a separate 1,000 environments for testing. We then generated a baseline graph

for each benchmark, and performed collision detection on the 10,000 training environments

to calculate a reliability for each edge, indicating the likelihood the edge will be available

for a given query. This serves as the necessary input to the different phases of the subgraph

algorithm we describe above. We also chose for all the benchmarks a cost function Dist()

that is simply the L2 norm of the vector between the two configurations. We define a

subset of the nodes in each baseline graph to act as source and sink terminals. We then

ran SampleTrees to collect |S| ∗ |D| complete trees. After obtaining the candidate complete

trees, we ran the SelectTree phase of the algorithm with a range of edge budgets for each

benchmark. At this point we have a set of subgraphs of a range of sizes all generated

from the same baseline graph. We next use the set of environments designated as the test

set and make queries through these environments using the the baseline graph and all the
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subgraphs for that benchmark, collecting relevant data. For each benchmark, we present

results on two primary metrics. The first is the decrease in path feasibility. This captures

the increase in the likelihood that a subgraph could not find a path between a pair of

terminals when a path existed in the baseline graph.

One of the first things we noticed when testing our subgraph strategy on these differ-

ent benchmarks is that in the machine-tend scenario, the UR5 is not robust to dynamic

obstacles in between it and the opening to the machine. For this reason, the machine-

tend scenario is the only one without dynamic obstacles, having only the goal location

vary between queries. This is because we found that with anything obstructing the narrow

passageway, our baseline roadmaps were bisected most of the time. Upon seeing this, we

tried running conventional sampling-based planners such as RRT and RRTConnect in these

scenarios, but they also failed to find a plan within 1 minute of computation time. These

results indicate that having dynamic obstacles when picking up stock is likely fine, but

having them near a narrow passageway is not a feasible application. It is likely that the

kinematics of a 7-DOF arm would allow one to perform better in this situation.

Because this benchmark does not have dynamic obstacles, the effective reliability of

all edges in the baseline graph becomes 1. The subgraph problem then reduces to simply

finding subgraphs with the fewest number of edges that contain the highest quality paths

between terminals. The results for this benchmark can be seen in Figure 6.9. Because this

scenario does not have dynamic obstacles, we only present numbers on the effects on path

quality. Path quality is unchanged until we decrease the edge budget below the number of

unique edges in the union of the shortest paths between each pair of source/sink terminals.

The plate-grab scenario was somewhat better suited for our algorithm. The open space

above the dishwasher means that there is an area that can afford to be pruned without

suffering effects on path feasibility. We only see dramatic increases in failure rates when

the edge budget decreases to the point where the “approach edges” that enable direct

connections to terminal nodes begin to be excluded from the subgraph. This increases the

likelihood that terminal nodes will be bisected by the other clutter in the dishwasher and
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Figure 6.9: Results from the machine-tend scenario. The baseline graph had approxi-
mately 100,000 edges and 400 terminals.

decreases success rate. Effects on path quality remain modest until reducing the size of the

roadmap below 40,000.

The shelf-place benchmark was the most challenging of those with dynamic obstacles.

It presented difficulties because often the goal location was behind or very close to other

objects on the shelves. The baseline graph of 5 million edges had only a 64% success rate.

This benchmark also suffered the most from increases in path failure rate. Trying to have

a single roadmap cover the entire shelf assembly may be infeasible. In the future we hope

to leverage the ability to reprogram our accelerators with different roadmaps. Using this

feature, we could divide the shelf assembly into 10-15 regions, and program our accelerator

for the specific region relevant for the query.

The power-strip scenario was the easiest among those with changing obstacle position.

The baseline graph was able to successfully query just over 95% of the test set, and even

sampling a subgraph of just 20,000 edges from the baseline graph of 2,000,000 edges had

less than a 6% effect on failure rate (an increase to 5.3% from 5%), and an average path

length increase of less than 5%.
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Figure 6.10: Results from the plate-grab scenario. The baseline graph had approximately
2 million edges, 5,000 terminals, and a 78% success rate.

Figure 6.11: Results from the shelf-place scenario. The baseline graph had approximately
5 million edges, 11,000 terminals, and a 64% success rate.

Figure 6.12: Results from the power-strip scenario. The baseline graph had approxi-
mately 2 million edges, 3,000 terminals, and a 95% success rate.
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Chapter 7

Conclusions

Contributions and Insights

The primary concepts guiding our research into the acceleration of robotic motion planning

have been parallelism and precomputation. Where possible, we have tried to exploit as much

hardware parallelism as possible by designing architectures that fully “unroll” the problems.

For collision detection, this involved dedicating a collision detection module for each edge in

the roadmap. In Chapter 2.4 this was a combinatorial circuit that represented the collision

data for an edge as a complex Boolean expression. In Chapter 4 we added flexibility and

scalability to the design by implementing a programmable architecture with novel collision

data compression techniques. This allows the design to be targeted to different robots or

applications as the situation demands. In both of these designs, the parallelism in the

microarchitecture enables an incoming voxel to be collision checked by all edges in parallel,

making the time to perform collision detection independent of the number of edges in

the roadmap. To the best of our knowledge, no prior work has fully parallelized collision

detection in this way.

In both designs we also minimized the size of the run-time problem by leveraging as

much precomputation as possible. We exhaustively collision check each edge in our roadmap

in a discretized space, constructing a swept volume for each motion. Doing these expensive

geometric collision checks ahead of time effectively turns runtime collision detection into

set lookups, enabling the simple microarchitectures described in Chapters 2.4 and 4.

For calculating shortest paths, exploiting parallelism involved implementing dataflow

architectures to execute the Bellman-Ford algorithm. In Chapter 5 we presented designs

tailored to a specific roadmap, as well as a programmable version. In both versions, we

achieve parallelism by creating a physical Bellman-Ford compute unit for each node in the
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roadmap. Having dedicated compute hardware for each node allows the speed of com-

pletion to scale solely with the length of the path to be discovered. We take advantage

of precomputation here as well, by performing simulated annealing to find a high-quality

mapping of logical nodes onto our programmable architecture, so that logical neighbors

are close on the physical network. To the best of our knowledge, ours in the first work

to implement a custom accelerator for graph search specifically optimized for the motion

planning problem.

In Chapter 6 we explore the precomputation necessary to generate high-quality roadmaps

for use on our accelerators. We present a new framework for treating motion planning

roadmaps as unreliable networks. We show how by generating representative random envi-

ronment generators, we can analyze individual edge reliability. Using work from the data-

mining community as a guide, we develop a subgraph algorithm that considers not only

path reliability, but also maintains path quality. We show that this algorithm can produce

roadmaps of appropriate sizes for our accelerator that can solve interesting problems.

Construction of a roadmap ahead of time avoids the need to explore configuration spaces

at runtime, when trying to minimize latency. Importantly, it also makes runtime planning

in our framework independent of the number of degrees of freedom of the robot. This

property is critical when working with robots with more than 7 joints.

In the course of our exploration of motion planning techniques in robotics, we observe

that solutions fall onto a spectrum of generality, and the choice of where to fall on the

spectrum is usually based on desired performance and a certain tolerance for complexity.

On one end of the spectrum is conventional industrial automation. This type of automation

involves manually teaching a set of waypoints, and programming a robot to repeat a single

trajectory through these waypoints. In these applications the system often has no sensors

at all, or a minimum set of sensors to detect catastrophic failure. This type of solution is

not general at all, and is extremely brittle. Any robustness to change comes from clever

mechanical design of structural jigs and end-effectors. However, these solutions maximize

performance in the common case, and keep complexity to an absolute minimum; the number
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of components to maintain or that could fail is as low as possible.

On the other end of the spectrum are most solutions proposed by academia. They strive

for total generality and completeness. Sampling based motion planners fall into this cate-

gory. They can solve any solve-able motion planning problem given enough computation

time, and do not require any manual teaching of the robot. However, the inputs to this

type of training add a significant amount of complexity to the system. Users need accurate

CAD models of their robot and environment; this can be a burden because the end-effector

may change, the realities of cable management mean there may be flexible tubes hanging

off the robot, and other fixtures around the robot may be adjusted periodically. These

solutions may provide some asymptotic optimality guarantee, but with realistic computa-

tional constraints, will produce solutions of far less quality than what could be accomplished

by a human technician. For these reasons, these techniques are almost never adopted by

industry.

In our work we try to bridge the gap between these two extremes. We propose strategies

that allow the user to leverage a priori knowledge of the task at hand to construct useful

roadmaps. Our work shows this enables us to make better use of limited hardware budgets.

The strategy is not completely general, but can achieve runtime performance that is closer

to conventional automation, and also robust to changing environments.

In this body of work we have shown that it is possible to use custom hardware to bring

motion planning as a whole to the low-microsecond latency. Our solutions achieve several

orders of magnitude speedup over the current state of the art. Being able to perform

collision detection and shortest path in under 3 microseconds makes it possible to plan

under uncertainty, use complex decision making algorithms, or plan for multiple robots in

a workspace. We hope this technology will push robotics into domains and applications

that were previously infeasible.
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Future Work

The main opportunities for extension of our work lie in improving hardware scalability

and the performance of roadmap generation. It seems likely that with clever resource

allocation we could handle larger roadmaps on the same size accelerator without incurring

much performance degradation. For example, we implemented a completely parallelized

microarchitecture for the Bellman-Ford algorithm. However, early simulation we have done

indicates we could achieve similar performance while allowing multiple logical roadmap

nodes to multiplex a single physical Bellman-Ford Compute Unit. There is also great

potential in more sophisticated strategies for both baseline graph generation, and subgraph

sampling.

105



Bibliography

[1] J. A. Marvel and R. Norcross, “Implementing speed and separation monitoring in col-
laborative robot workcells,” Robotics and Computer-Integrated Manufacturing, vol. 44,
pp. 144 – 155, 2017.

[2] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel, “Combined task
and motion planning through an extensible planner-independent interface layer,” in
Robotics and Automation (ICRA), 2014 IEEE International Conference on, pp. 639–
646, IEEE, 2014.
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