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Abstract

Human supervisory control (HSC), in which operators indirectly control autonomous sys-

tems by sending and receiving commands, is a commonly-used scheme for various human-

automation interaction scenarios. While many studies have investigated how factors, such

as different levels of autonomy and interface designs, affect operator performance in HSC

scenarios, no previous research has quantitatively evaluated the impact of such factors

on operator strategies. Thus, this research focuses on developing a quantitative metric to

compare strategy models to determine whether changing specific factors in HSC scenarios

would affect operator strategies.

Previous studies have shown that operator strategies can be represented by operator

behavior patterns in conducting tasks and achieving goals. Given that hidden Markov

models (HMMs) can represent operator strategies, researchers can investigate impacts from

technology or process changes on operator strategies by comparing HMM strategy models.

However, no quantitative and systematic HMM strategy model comparison metric has been

proposed. To resolve this problem, this research uses the divergence distance measure to

develop a mesh comparison metric to comprehensively compare strategy models and obtain

quantitative model difference measures.

As a part of the comparison metric, the data quantity requirement for model develop-

ment is determined using a large external dataset from a typical HSC video game. Strategy

models were trained based on different data quantities and then compared to benchmark

models developed from the whole dataset. Comparison results show that a minimum of

30 data sequences can represent the whole population and be effectively used to model

operator strategies. Also, as another part of the metric, an observation alignment approach

is proposed to compare strategy models developed from different HSC scenarios with non-

equivalent training data elements.
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Utilizing this comparison metric, researchers can quantitatively measure differences

between strategy models. However, it is not clear how the magnitude of such comparison

measures maps to meaningful degrees of difference in HSC scenarios. To address this is-

sue, an initial baseline of strategy difference comparisons was established by comparing

strategy models developed from human-subject experiment sessions. Then, a continuum

of comparisons was generated to provide references for the magnitude of impacts from

different factors on operator strategies. Thus, researchers can apply changes in HSC sce-

narios and evaluate the impacts from such changes on operator strategies by measuring

differences between strategy models and referring to comparison baselines.

In summary, the contributions of this dissertation include 1) proposing an operator

strategy model comparison metric to quantitatively measure differences between operator

strategies modeled from HSC scenarios and 2) establishing strategy model comparison

references across multiple HSC scenarios with varying settings.
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Chapter 1

Introduction

1.1 Motivation

Human-automation interaction (HAI) studies how human operators interact with automa-

tion systems, such as robots and computer interfaces [1, 2, 3]. Specifically, HAI investi-

gates the way humans control, receive information from, and are affected by automation

systems [4]. With the development of automation technologies and artificial intelligence

[5, 6, 7, 8, 9, 10, 11], humans now interact with automation systems with sophistication

and on an increasing scale. While technology advances bring the benefits of increased effi-

ciency and autonomy, achieving optimal outcomes with a highly complex system is not an

easy task. Thus, an increasing number of studies and applications on human-automation

interaction have emerged to address human-automation-related challenges and to improve

the performance of human-in-the-loop systems [1, 2, 12, 13].

One of the most common human-automation interaction scenarios is driving a vehicle

with advanced driver-assistance systems (ADAS). ADAS provides a group of functions in

driving and parking for convenience and increased road safety [14, 15, 16]. In a scenario

with low-level autonomous ADAS, the driver controls important control components, such

as wheels and pedals, while ADAS performs auxiliary functions, such as cruise control and

lane departure warning [17, 18, 19]. In a high-level autonomous ADAS scenario, a human

operator is only asked to take control in case of an emergency [20, 21, 22]. As vehicle

autonomy progresses, HAI studies on ADAS have also evolved quickly. While earlier

work focused on the impact of traditional ADAS functionalities, such as collision warning

on driver’s attention [23], more recent work explores design and safety considerations of

broader interactions between the drivers and the technology [24, 25, 26, 27].
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Another common human-automation interaction scenario is air traffic control [28, 29,

30]. Increased air traffic in the last decades has created significant capacity and safety

problems [31, 29, 32]. A series of solutions have been introduced to provide air traffic

controllers with more accurate aircraft information and improve communications between

pilots and controllers [33, 34, 35]. However, the introduction of such concepts brings a ma-

jor paradigm shift in which autonomous technologies are allowed to perform safety-critical

tasks [36, 37, 38]. Thus, a thorough investigation is required for autonomous system de-

signs as well as human controllers’ operations while interacting with such systems.

In human-automation interaction scenarios, a central role humans undertake is known

as human supervisory control (HSC) [39, 40, 41]. HSC differs from the traditional inter-

actions with tools of no intelligence, during which humans make all decisions and perform

all sensing and control [42]. In HSC, humans remotely and indirectly interact with an

autonomous system through receiving and sending commands to a control interface and

complete high-level tasks through collaborative sensing and decision making [43]. The

HSC control scheme is commonly viewed as a closed-loop process illustrated in Figure

1.1. In this loop, human operators first send control commands to the control interface of

the system, which communicates to a computer, to initiate system interaction with real-

world tasks. Feedback from the tasks will be collected through sensors and transferred

back to the system. The operators will then receive such feedback via displays to infer the

state of the system and make decisions regarding further control actions.

Human supervisory control has been widely used in many applications, including re-

mote drone control, driver and ADAS interaction, and air traffic control [44, 45, 46]. How-

ever, many challenges and drawbacks of HSC have been observed over the years [39, 47].

Among the top challenges are information overload [48], decision biases [40], and tam-

pering with the role of automation [49]. To address those challenges, numerous studies

have emerged to investigate how humans interact with autonomous systems to improve

human operators’ performance while interacting with such systems [50, 51, 52]. Previous

2



Figure 1.1: Human supervisory control loop.

literature commonly focused on one or a few factors, such as task load [53], autonomy

level [54], and interface design [55], and proceed to investigate how those factors affect

operators’ performance as well as the risk associated with changing those factors.

One weakness we identified in the previous study is that they focused narrowly on

how changes in HSC scenarios influence operators’ performance but overlooked impacts

from such changes on operators’ underlying decision processes and behavior patterns that

result in those performance changes. Thus, other than directly measuring operators’ per-

formance, we argue that it is also important to study how HSC scenario changes impact

their decision processes and behavior patterns.

We considered operators’ decision processes in determining actions and behavior pat-

terns in conducting high-level tasks as operator strategies [56]. Both operator performance

and strategies are important aspects in HSC scenarios [40]. In such scenarios, operators

first make up their strategies by setting goals with different priorities, determining actions

to achieve those goals, and allocating attention to different actions. After that, they perform

various operations based on their strategies to complete tasks and achieve the final goal.
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To effectively incorporate operator strategies into the evaluation of HSC scenarios, op-

erator strategies need to be modeled, and the model should be measurable or quantitatively

comparable. With quantitative measures of changes in operator strategies, researchers can

evaluate the impact of changing factors on operator strategies. For example, if researchers

need to examine whether a new function on a drone supervisory control interface can

reduce inefficient decision making from its operators, researchers can compare operator

strategy models before and after applying such a function, and measure the quantitative

difference between strategies to estimate the impact of the new change.

However, no previous research has focused on quantitatively comparing operator strate-

gies in HSC scenarios. This question, therefore, arises as to how to investigate and com-

pare operator strategies to obtain meaningful strategy difference measures. Such a question

leads to the objectives and research questions in this dissertation.

1.2 Research Questions

The gap in current human-automation interaction and human supervisory control research

topics - comparisons of operator strategies in HSC scenarios with various settings - leads

to the objectives of this research: 1) describe operator strategies by building operator strat-

egy models, 2) develop a strategy comparison metric to quantitatively measure differences

between strategy models, and 3) explain practical meanings of strategy difference mea-

sures by establishing comparison references. Thus, these research objectives lead to the

following two research questions:

� How can operator strategies be quantitatively compared, or how are differences be-

tween operator strategies quantitatively measured, given strategy models?

� What are the practical meanings of the magnitudes of strategy model differences, or

how would changes in HSC scenarios affect operator strategies at different levels?
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Based on these research questions, the contributions of this research include 1) develop

a systematic operator strategy comparison metric, which can quantitatively and compre-

hensively measure differences between operator strategies modeled from various HSC

scenarios, and 2) establish a continuum of operator strategy comparisons to provide the

references of strategy model difference magnitudes and practical meanings of operator

strategy differences.

1.3 Thesis Organization

In order to address the research questions mentioned above, this thesis has been organized

into the following chapters:

� Chapter 1, Introduction: This chapter first introduces the human-automation inter-

action and human supervisory control scenarios, and then presents the main gap in

current research. Also, Chapter 1 presents the research questions with the contribu-

tions of this dissertation.

� Chapter 2, Background: This chapter provides more background information for the

human supervisory control with related research topics. Also, this chapter presents

existing methods of describing operator strategies in HSC scenarios, and specifically

explains how to utilize hidden Markov models (HMMs) to model operator strategies.

� Chapter 3, Operator Strategy Model Comparison Metric: This chapter describes the

operator strategy model comparison metric. It starts by illustrating the construction

of divergence meshes, then presents two important components of the metric, the

data quantity requirement and the observation alignment approach.

� Chapter 4, Quantitative Operator Strategy Comparison References: By utilizing the

operator strategy model comparison metric, this chapter presents a continuum of
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strategy model comparisons across multiple HSC scenarios with different settings to

provide baselines and references of strategy model comparisons. It also explains the

practical meanings of these references. Thus, researchers can refer to such baselines

and references to evaluate the magnitudes of impacts from specific changes in HSC

scenarios on operator strategies.

� Chapter 5, Conclusion: This chapter summarizes the two main contributions pre-

sented in Chapters 3 and 4. It also discusses the potential applications and the limi-

tations in the comparison metric and comparison references. Finally, future research

directions are also discussed.
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Chapter 2

Background

This chapter surveys previous work on human supervisory control (HSC) and operator

strategy modeling techniques in HSC scenarios. It starts with a review of human super-

visory control theory and presents related studies in describing, modeling, and comparing

operator strategies in HSC scenarios. The chapter later introduces hidden Markov models

(HMM) as a promising model for operator strategies. The HMM strategy model devel-

opment process is discussed in detail, followed by an example of such development for a

simulation-based drone control HSC scenario.

2.1 Human Supervisory Control

With the introduction of an automation system that can perform sensing and computation

automatically, such as a robot, the role of a human in a human-automation interaction sce-

nario changes from that of a direct in-the-loop controller to a position of a supervisory

controller. Human supervisory control (HSC) is a higher-level knowledge-based control

scheme, in which human operators interact with the intermediary of the autonomous sys-

tems through planning, monitoring, and intervening to drive the end effector of the au-

tomation system towards the desired state [57, 39, 43]. An HSC scenario operates in a

closed-loop fashion as illustrated in Figure 1.1. In such a loop, the operator sends con-

trol commands to a computer to remotely control real-world tasks and receive feedback

collected by sensors and displayed on interfaces. Operators in HSC scenarios are mainly

responsible for making higher-level decisions in conjunction with supportive autonomy.

HSC are widely used in transportation, energy, and defense realms [39, 58]. HSC

studies usually target a particular application or a system to improve reliability, efficiency,
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and reduce accidents for operators to control them. For example, Lind et al. proposed a

Multilevel Flow Modeling (MFM) and applied the model for designing displays for su-

pervisory control of industrial plants [59]. Farjadian et al. presented a supervisory control

architecture for pilot-autopilot collaboration to ensure resilient tracking performance in the

presence of anomalies [60], and many others [53, 54, 55]. Among the many HSC appli-

cations, drone or Unmanned Aerial Vehicle (UAV) control is an emerging scenario that

attracts a lot of research attention. With a small footprint and easy deployment, drones

have many potential applications in surveillance, research, and rescue [43, 61, 62, 63].

Many challenges and problems still exist in HSC scenarios [47], and the root causes

trace back to both human operators and autonomous control systems. Some of the major

challenges include decision biases [40], trust and reliability [64], roles of automation and

multi-modal technologies [41]. Also, many factors can influence operator performances,

including individual differences, interface designs, and varying levels of autonomy [40, 47,

65]. Thus, many studies have been conducted for solving such issues by investigating how

various factors in HSC scenarios may affect operator performances [66, 58, 53].

Both operator performance and strategies are important aspects when evaluating an

HSC scenario [40]. During interactions with complex systems, such as drones, human op-

erator forms complex plans regarding work methodologies with the underlying autonomy.

In this process, operators develop strategies in terms of which, when, and how resources

should be utilized, in other words, they assign different priorities and allocate their at-

tention to different tasks, and determine actions to interact with control systems before

executing the task [63, 67, 68]. However, the importance of human strategy modeling

has been largely overlooked in previous studies. Instead, this research focuses on oper-

ator strategies and studies how changes in HSC scenarios will affect operator strategies.

Thus, it is important to understand and describe operator strategies as they illustrate funda-

mental behavior patterns how an operator conducts a certain task [56]. Unlike operators’

performance, which can be directly measured by task success rates and time consumption,
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operator strategies cannot be directly observed, so that modeling techniques are necessary

for studying operators.

2.1.1 Techniques for Modeling Operators

To date, many operator modeling techniques have been proposed at various abstraction

levels for the different subject of study [69, 70, 56, 71, 72, 73]. Summarized in Figure

2.1, operator modeling techniques can be categorized into low, middle, and high levels.

Low-level models focus on estimating operator cognitive processes and describing operator

cognitive structures. By using low-level models such as ACT-R [69] and GOMS [70],

researchers can describe how information is defined and processed by operators and predict

operator actions. However, these models cannot present operator behavior patterns and,

thus, have limited access to operator strategies in conducting tasks.

Figure 2.1: Different levels (architectures) of human operator models.

Middle-level models focus on the relations and cooperation between operators and au-

tonomous systems. Models, such as the hidden Markov model (HMM) [56] and the hid-

den Semi-Markov model (HSMM) [71], can benefit from their structures to reveal both

operator behavior patterns and operations. High-level models, including discrete event

simulation (DES) [72] and agent-based modeling (ABM) [73], focus on assessing effects

from each entity as well as subsystems in the whole system and investigating interactions

between all individuals in large-scale applications. Thus, middle-level operator model-

ing techniques are utilized in this research to model operator strategies because they can
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describe operator control strategies in interacting with autonomous systems.

As shown in Figure 2.1, both HMM and HSMM are middle-level models, which have

been widely used for describing operator strategies and behavior patterns [56, 71, 61, 74,

75]. The HMM is a two-layer stochastic model that describes a Markov process with

a higher layer of hidden system states and a lower layer of observable emissions from

each hidden state [76]. The hidden semi Markov model (HSMM) has a similar structure,

but the HSMM is based on a semi-Markov process instead of a Markov process. While

state transitions in an HMM only depend on the geometric probability values, transitions

in the HSMM depend on both transition probabilities and state durations. An HSMM is

generally more complicated than an HMM developed from the same dataset, because the

model training process for an HSMM requires a time component. Because of the high

complexity and the time component in HSMM models, they can be utilized as predictive

models for time-critical applications [77, 78].

However, because the HSMM has a more complex model structure than the HMM,

even though they share the same number of hidden states, the HSMM requires more data

for model training. More importantly, the time of state transitions is not an important aspect

and is not considered in this research. Thus, the HMM is usually preferred as descriptive

models for operator strategies in HSC scenarios [56, 79, 80, 62, 81]. In this case, the

HMM observations represent the interactions between operators and autonomous systems.

The HMM hidden states, which are weighted combinations of certain observations, and

transition probabilities among these states illustrate operator strategies.

2.1.2 Operator Strategy Models

Operator strategies can be further described as the organization of operators’ tactics used

for performing tasks with different priorities that forms missions and goals [82]. To pre-

cisely and effectively describe operator strategies is the first major step in this research.
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Understanding that this research focuses on quantitatively evaluating impacts from differ-

ent changes in HSC scenarios on operator strategies, a requirement for operator strategy

models is to have a mathematical representation so that differences between models can

be measured quantitatively. Further details of measuring strategy model differences are

illustrated in the next chapter.

The previous subsection introduces two common middle-level models, the HMM and

the HSMM, for describing operator strategies. Other than these two models, researchers

have also proposed other models for describing operator strategies and behavior patterns

[82, 83, 84, 85, 86, 87, 88, 89]. Gindele et al. utilized a partially observable Markov

decision process (POMDP) model to estimate driver strategies, especially the decision

making process, in driving scenarios with advanced assistance systems [83]. Authors con-

sidered traffic environment elements, such as traffic participants and lanes, in their models

to predict drivers’ actions and future poses of traffic participants. However, environmental

elements are not considered in our research, and we focus on diagnostic model structures

instead of model predictive abilities in order to measure model differences. Thus, while the

POMDP is an ideal model for estimating driver actions, it has limited capability to describe

driving strategies.

Pentland et al. proposed to use a set of dynamic models, such as Kalman filters, se-

quenced by a Markov chain to represent human strategies [86, 90]. Authors first separated

human strategies into two levels, small-scale and large-scale structures of human behav-

iors. Then they utilized Kalman filters to represent small-scale behaviors and a Markov

chain to represent large-scale behaviors by connecting these Kalman filters. Similar to the

HMM model structure, this framework also considered human strategies as a two-layer

structure. However, the structure of this framework was predefined by the authors rather

than trained using data-driven methods. Thus, the model framework proposed in this work

can only describe operator strategies in specific scenarios and cannot be generalized to

other HSC scenarios with different settings.
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Another study conducted by Frias-Martinez et al. reviewed various soft computing

techniques, such as fuzzy logic, neural networks, and genetic algorithms, for modeling

human behavior patterns [87]. Soft computing is considered as computational techniques

and models with tolerance of impression, uncertainty, and partial truth in authors’ work.

Authors presented several applications of using typical soft computing models. For ex-

ample, fuzzy logic can be used to mimic the process of human decision-making and infer

goals and plans, neural networks can be used in more complex scenarios with more human

and system inputs. However, the structures of these models are not directly interpretable

and explainable, and these models are usually used for prediction tasks. Thus, among

such quantitative models for modeling human strategies, the HMM is selected as strategy

models in this dissertation because of its high interpretability.

2.1.3 Operator Strategy Comparisons

Given techniques and methods for describing operator strategies, researchers can investi-

gate strategy differences by comparing resulting strategy representations. However, com-

parison methods can be different based on corresponding strategy modeling techniques.

While only limited previous work focused on studying differences in operator strategies

and behavior patterns [91, 92, 93, 94], these efforts inspire us to develop an operator strat-

egy comparison metric for HSC scenarios.

Previous research conducted by Haas et al. analyzed differences in individuals’ strate-

gies by studying external factors such as social, cultural, and institutional factors [91]. This

work considered individuals’ strategies as the combination of their behaviors, recognition

of hazards, and decision-making processes. The authors interviewed participants with two

occupations, including motorcyclists and mineworkers, with detailed questions about their

interactions with risky environments. Then, the authors formalized participants’ strategies

by parsing their answers based on external factors and referring to codebooks. As a result,
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the authors qualitatively described individuals’ strategies in interacting with risky environ-

ments and compared them to infer how external factors affect strategies in different envi-

ronments. While such a qualitative strategy comparison method can provide researchers

preliminary insights about the impacts from various factors, it cannot quantitatively mea-

sure differences between strategies and evaluate such impacts.

Markkula et al. reviewed different drivers’ strategies in on-road collision situations

and qualitatively compared these strategies for validating those strategy models [92]. First,

the authors pre-defined five categories for drivers’ near-collision strategies. Then, they

implemented and tested reviewed models on a driving scenario to investigate the effective-

ness of such models and the similarity between them. The authors concluded that those

models representing the pre-defined strategies were similar because they were capable of

predicting drivers’ actions during collision avoidance with similar success rates. While the

pre-defined strategy categories may shed light on drivers’ behavior states and characteris-

tics in collision situations, these categories were subjectively defined and selective. Thus,

objective strategy description and comparison methods are preferred to reduce subjectivity

in investigating similarities among operator strategies.

Research conducted by Traulsen et al. studied how individuals’ strategies update in

evolutionary games [93] by comparing strategies across different phases of the game. In

this work, the authors considered individuals’ actions as strategies and used individuals’

performance to evaluate strategies during the gaming process directly. Given the player

performance comparison results, which represent player strategy comparisons, the authors

found that the probability of player switching strategies increased as the payoffs from the

game vary in the later phase of the game. This topic is closely related to presenting differ-

ent strategies in evolutionary scenarios or different phases of interacting with autonomous

systems. However, utilizing individuals’ performance to evaluate and compare their strate-

gies is too high-level. Such a method cannot provide researchers insights about why one

strategy is better or more effective than another.
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These previous studies demonstrate different methods of comparing individuals’ strate-

gies and behavior patterns formalized by various models and representations. While qual-

itative strategy description and comparison methods are useful for exploratory purposes

such as examining factors, they cannot provide mathematical representations for operator

strategies and numerically measure strategy differences. So, researchers cannot quanti-

tatively evaluate impacts in HSC scenarios using qualitative methods. Similarly, subjec-

tive methods are not preferred because researchers’ subjectivity can introduce individuals’

biases, which can cause distorted strategy modeling and comparison results. Also, the

strategy model properties should be considered in strategy comparisons since these prop-

erties describe operators’ behavior states and decision processes. Therefore, a quantitative

model comparison method is needed to measure differences among strategy models. Re-

searchers can objectively investigate and evaluate how changes in HSC scenarios impact

operator strategies with such quantitative measures. Further details of the model compari-

son method are illustrated in the next chapter.

2.2 Hidden Markov Model (HMM)

The previous section presents the basic concept of human supervisory control scenarios and

existing techniques for modeling human operators at different levels. Also, the previous

section justifies the use of hidden Markov models for modeling operator strategies in this

research. This section starts with the introduction of the hidden Markov model structure

and how we can use HMMs to model operator strategies. Then this section illustrates the

HMM model development and selection process.
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2.2.1 HMM Structures and Applications

The hidden Markov model is a stochastic model that describes a Markov process with some

states and variables that are not observable [77, 95]. In a Markov model, all system vari-

ables, including system states and state transitions, are observable. However, in a hidden

Markov model, system states are not directly observable, and the only observable variables

are emissions and emission probabilities that are determined by hidden system states. Fig-

ure 2.2 illustrates a hidden Markov model with four observations, including O1, O2, O3

and O4, and three hidden states, S1, S2 and S3. Each hidden state S can be considered as

a weighted cluster of all observations, and all weights should equal 100%. HMM models

are used to represent both higher-level human operator behavior states and lower-level op-

erator interactions with human supervisory control systems in order to visualize the overall

structure of operator strategies.

Figure 2.2: An example of a hidden Markov model structure.
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The HMM structure shown in Figure 2.2 can be formally described as a tuple [77, 96],

l = fS;O;A;Bg, in which, S = fS1;S2; � � � ;SNg represents N different hidden states, and

O = fO1;O2; � � � ;OMg represents M different observation types. A = fai jg is a N �N

transition probability matrix, in which ai j = PfSt+1
j jSt

ig, and B = fbikg is a N�M emission

matrix, in which bik = PfOkjSig, i; j 2 [1;N], k 2 [1;M]. The transition and emission

matrices connect all hidden states and observations of an HMM. The tuple l = fS;O;A;Bg

can be illustrated as:

S = fs1;s2; � � � ;sNg O = fo1;o2; � � � ;oMg

A =

26664
a1 � � � a1N

� � � � � � � � �

aN � � � aNN

37775B =

266666664
b11 b12 � � � b1M

b21 b22 � � � b2M

� � � � � � � � � � � �

bN1 bN2 � � � bNM

377777775
The HMM is widely used in the machine learning field, especially in speech recogni-

tion [76], image and video segmentation [97], biomedical image pattern recognition [98],

and development of human operator behavior models [99, 79, 56]. Rabiner published a

milestone study in HMM theory and applications, which illustrated the mathematical de-

tails of HMMs and provided many typical HMM structures [76]. He also investigated

the HMM model developing process, including model training and model selection algo-

rithms. Suzuki et al., developed a human driving behavior model using HMM to study

driver collision avoidance behaviors [99]. In their work, they treated human driving behav-

ior states as multiple simplified linear models, instead of specific cognitive representations,

to collect experiment data more directly and to understand the model better from a math-

ematical perspective. The HMM is an appropriate quantitative model for this research

because the HMM can efficiently capture information about higher-level human operator

behavior states and transition probabilities among such states from lower-level observa-

tions to represent operator strategies in HSC scenarios.
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2.2.2 HMM Model Training Process

As described in the previous subsection, researchers can utilize hidden Markov models to

model operator strategies. As shown in Figure 2.3, the observable actions from operators

can be represented by the observation layer in an HMM, and operator control strategies

can be represented by the hidden states and transitions among them.

The first important factor that impacts HMM structure is the model training method.

An HMM model can be trained via different methods, including supervised, smooth su-

pervised, and unsupervised learning [79]. Comparing these training methods, the results

showed that the unsupervised HMM model training provided the model with the highest

model likelihood [56]. Understanding that a higher model likelihood value represents a

model that is more likely to fit the data points, the unsupervised HMM model training is

preferred in this research. The unsupervised model training is a data-driven method, which

is also an expectation maximization (EM) algorithm, so that it can provide subjective strat-

egy modeling results.

Given that the unsupervised learning approach is preferred, the multi-sequence Baum-

Welch algorithm is utilized for training hidden Markov models [56]. Considering that

such an HMM training process requires various hidden state numbers as initialization, the

Bayesian information criterion (BIC), which is a widely-used model selection criterion, is

utilized as the model selection for determining the number of hidden states for an HMM

[100]. To avoid overfitting caused by adding parameters, the BIC penalizes the number of

free parameters based on the model likelihood value. The calculation of BIC values can be

represented as:

BIC =�2(logL)+ numParam� log(numObs) (2.1)

Here logL represents the log-likelihood value of models, numParam represents the num-

ber of free parameters, and numObs represents the number of observations in the training

process. In model selection, HMM models with lower BIC values are generally preferred.
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Figure 2.3: The connection between hidden Markov models and human supervisory con-

trol scenarios.

Another important factor in the model development process is the first order Markov

assumption. Evaluating the first order Markov assumption of the memorylessness property

is critical for applying HMM to develop operator strategy models. In human supervisory

control scenarios, the first order Markov assumption may not hold that the current higher-

level behavior state in operator strategy processes may only depend on the previous state,

or depend on several previous states [101]. The Bayesian information criterion (BIC) can

also be used for evaluating different Markov independent orders.

The difference in applying the first-order or higher-order Markov assumption in the

development of HMMs for operator strategy models was studied in Boussemart’s work by

comparing different models with different Markov independent orders [102]. In this study,

HMM models were developed based on certain human supervisory UAV control scenarios,

and BIC values of HMM models were compared to select a preferred Markov order. As a
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result, the HMM models with a second or third Markov independent order had significantly

higher BIC values than HMM models with the first-order Markov property. This finding

indicates that additional information captured in higher-order HMM models cannot balance

out the significant increase in the model complexity. Thus, the first-order HMM models

are preferred in the development of operator strategy models in human supervisory control

scenarios.

Specifically focusing on the BIC method, BIC curves generated from HMM training

processes may monotonically decrease or converge to certain values with the increase of

the hidden state number. The model with the most states, which may have the lowest BIC

value, may not be the most appropriate model since it cannot provide valuable implica-

tions about the clustered behavior states. To maintain the simplicity and interpretability

of descriptive models, the number of rate states (NRS) was applied to assist the BIC with

model selection by monitoring all rare states whose occurrence frequency was lower than

a threshold, which is usually 5% [74].

2.3 An Example of Strategy Model Development

Given the introduction of human supervisory control in the first section and the utilization

of hidden Markov models as operator strategy models in the second section, this section

presents an example of the strategy model development process in an HSC scenario, which

is a simulation-based human-subject experiment. Further details of this experiment are in

Appendices A and B.

2.3.1 The HSC Scenario for Data Collection

The data used for developing strategy models was collected from a human-subject experi-

ment conducted on the Security-Aware Research Environment for Supervisory Control of
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Heterogeneous Unmanned Vehicles (RESCHU-SA) platform [103], which is an extension

of the original RESCHU platform [104]. RESCHU-SA is a Java-based simulation plat-

form for a single-operator with multi-UAV supervisory control scenarios. It provides the

flexibility to design multi-tasking scenarios including both navigational and imagery anal-

ysis tasks. Moreover, this platform provides capability for simulating UAV GPS spoofing

attacks, in which hacked UAVs deviate from the originally assigned paths and destinations,

along with pop-up notifications that simulate autonomous GPS spoofing detection systems.

The primary objectives of operators using RESCHU-SA were to control multiple UAVs

to 1) determine whether UAVs were under GPS spoofing attacks, 2) perform imagery anal-

ysis tasks of counting road intersections when UAVs reached targets, and 3) ensure that

UAVs did not encounter hazard areas. While statistical analysis results of this experiment

provide high-level understanding of the factors that impacted operator performance, we

still need to further investigate the underlying nature of why such factors had certain ef-

fects on performance. Also, operator hacking detection strategies could not be inferred via

statistical results. Thus, operator strategy models are needed for further describing operator

behavior patterns and detection strategies in such UAV supervisory control scenarios.

2.3.2 General Strategy Model

The first step of the HMM training process for the general strategy model, which de-

scribes operator general strategies across experimental sessions, is observation selection.

In RESCHU-SA, every key stroke and mouse action was recorded, along with the system

status. In an HMM, the hidden higher-level behavior states are clusters of operator actions,

so the interaction data should be aggregations of observations based on a pre-defined gram-

mar. In this manner, there were 12 possible places for operators to click in RESCHU-SA,

which yielded 12 observations, as presented in Table 2.1.

The multi-sequence Baum-Welch algorithm, an unsupervised model training method
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was used in model training [77]. HMM model training results were then selected using the

Bayesian information criterion (BIC) [76, 100] and the number of rare states (NRS) method

[74] to achieve both high model likelihood values and reasonable model structures.

Table 2.1: Observations of HMM models from RESCHU-SA experiment interface

1 Add waypoint 2 Move waypoint 3 Delete waypoint 4 Move endpoint

5 Switch target 6 Engage task 7 Select UAV 8 Confirm info

9 Ignore info 10 UAV hacked 11 UAV not hacked 12 Adjust zoom

The general operator strategy HMM model was trained using observation sequences

with 12 different observations as shown in Table 2.1. Based on the model selection process

described in the previous section, the HMM model with 7 states had the lowest BIC value.

Also considering that the 7-state model did not have any rare states and the HMM models

with 8 or more states had at least one rare state, the general operator strategy model was

determined to be a 7-state HMM model, as shown in Figure 2.4a. The interpretation for

each hidden state was determined by the emission probabilities, shown as the histograms

in Figure 2.4b.

The first state was interpreted as “Manipulate Target” because it was mainly a cluster

of observations 4 (Move endpoint), 5 (Switch target), and 7 (Select UAV), which were

directly related to UAV target manipulations. The second state was interpreted as “Hack-

ing Detection” because this was the only state that had significant emission to observation

12 (Adjust zoom level), which indicated a typical operation of using cameras to compare

against the map. The third state was interpreted as “Select UAV” because its only major

emission was observation 7 (Select UAV). The fourth state was interpreted as “Manipulate

Waypoint” because it was a cluster of observations 1 (Add waypoint), 2 (Move waypoint),

3 (Delete waypoint) and 7 (Select UAV), which were directly related to waypoint manage-

ment. The fifth state was interpreted as “Engage Imagery Task” because its only major
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(a)

(b)

Figure 2.4: The general operator strategy HMM model with emission histograms. (a) The

7-state hidden state layer. (b) Emission histograms for each hidden state.
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emission was observation 6 (Engage task), indicating people were executing the intersec-

tion counting task. The sixth state was interpreted as “Hacking Decision” because it was

the only state that had major emissions to observations 10 (Consider UAV hacked) and 11

(Consider UAV not hacked) which were decisions for hacking events. The seventh state

was interpreted as “Initiate Hacking Detection” because it was the only state that had emis-

sions to observations 8 (Confirm Notification) and 9 (Ignore Notification) which indicated

the initiation of hacking detections.

The general operator strategy model represents the operator behavior states in nav-

igating UAVs, conducting imagery searches, and dealing with potential hacking events.

The first interesting fact shown in the model is that the UAV navigation (highlighted in

blue) and hacking detection (highlighted in yellow) functional groups can be distinguished

clearly based on the hidden state interpretations. The transitions between these two groups

represent the probabilities of switching functional groups in operator behavior states.

Two major state transitions, which start from the “Initiate hacking detection” state and

end at the “Hacking decision” state, in the general strategy model were highlighted and

shown in Figure 2.5. These two transitions represent major behavior state flows in partic-

ipant hacking detection strategies. The transition highlighted in yellow shows that some

participants focused on detecting hacking events that they did not transit to other states

in the navigation functional group. On the other side, participants who followed the pur-

ple transition switched between the two main functional groups during hacking detection

tasks. These major transitions illustrate potentially different ways that participants de-

tected hackings. In order to further investigate participants’ strategies in hacking detection

tasks, a hacking detection strategy model was developed on detection-related observation

sequences and discussed in the next section.

A previous study on the original RESCHU platform, which only dealt with the navi-

gation of the UAVs and did not have any hacking considerations [56], exhibited just four

similar states to those blue states in the navigation functional group in Figure 2.4. This
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Figure 2.5: Major behavior state transitions in the general strategy model.

is an important finding since it means that the addition of a new set of tasks did not dra-

matically change the underlying states, rather the added functionality of hacking detection

simply added more states. This suggests that at least in some supervisory control environ-

ments, functions may be modeled in a modular fashion, which would reduce the workload

in adapting older models as new functions are added.

Also, the general RESCHU-SA model in Figure 2.4 shows some potential inefficien-

cies in operator strategies. In the navigation functional set of states, the first state of “Ma-

24



nipulate Target” and the fourth state of “Manipulate Waypoint” have high self-transition

probabilities. These probabilities indicate that once operators entered these two behavior

states, they tended to conduct repeated operations. Such repeated operations indicate po-

tential inefficiencies that could be improved with future designs, such as assistant systems,

for the UAV supervisory control interface.

Two hidden states, “Hacking Detection” and “Initiate Hacking Detection”, in the hack-

ing detection functional group also revealed potential problems with self-transitions. The

time consumption in hacking detection was negatively correlated with the hacking detec-

tion success rate (Pearson=-0.375, p=0.001). Thus, the longer the person spent investi-

gating a potential hacking event, the less likely a successful detection would occur. This

result was surprising because as people gather more information, they should be able to

increase their probability of successful detection. This result then led us to develop more

detailed HMMs about operator hacking detection strategies in order to shed more light on

this unexpected result. These more specific HMMs are detailed in the following section.

2.3.3 Hacking Detection Model

The HMM in Figure 2.4 provides an overall view into how operators approached the nav-

igation and imagery tasks, while also dealing with hacking events. However, since this

model does not provide enough details about how operator formed strategies for dealing

with the hacking events, we elected to focus on those operator interactions from the begin-

ning to the end of each hacking event. The resulting hacking detection model was trained

based on 10 observations instead of the original 12 observations, as shown in Table 2.2.

In the revised training dataset, original observations of “Confirm notification” and “Ignore

notification” were combined into “Perceive hacking”, and “Consider UAV hacked” and

“Consider UAV not hacked” were combined into “Detection decision”.

As shown in Figure 2.6a, the resulting hacking detection strategy model is a 6-state
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Table 2.2: Observations of the hacking detection strategy model

1 Add waypoint 2 Move waypoint 3 Delete waypoint 4 Move endpoint

5 Switch target 6 Engage task 7 Select UAV 8 Perceive hacking

9 Detect decision 10 Adjust zoom

HMM based on a model selection process similar to the one used for the general operator

behavior model. The interpretation for each hidden state was determined by the emission

probabilities shown in Figure 2.6b. Although the observations were slightly different, the

interpretation criteria were similar to the general behavior model. The six hidden states

were interpreted as 1) the start state of Perceive Hacking; 2) Select UAV; 3) Adjust Target;

4) Engage Imagery Task; 5) Adjust Waypoint; and 6) the end state of Hacking Decision.

The 56.8% transition from the END state to the START state represents overlapping hack-

ing detections where operators finished a hacking detection and then on to immediately

start another hacking event.

Two major behavior state transitions in the hacking detection HMM model are pre-

sented based on transition probabilities, as shown in Figure 2.7. Such transitions are con-

sidered as hacking detection operation flows because they began with the START state, in

which operators perceived hacking events, to the END state, in which operators made de-

tection decisions. The first major flow, indicated by blue arrows, has an intermediate state

of “Adjust waypoint” between the start and the end state. The second major flow, shown

by red arrows, has two intermediate states of “Adjust target” and “Select UAV”. These

two major operation flows suggest two dominant hacking detection strategies, termed

“waypoint-oriented strategy” and “target-oriented strategy”.

In the waypoint-oriented strategy, operators tended to manipulate UAV waypoints, in-

cluding adding and moving waypoints, to detect hacking events. In this hacking detection

strategy, operators typically either manipulated or introduced waypoints to investigate the
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(a)

(b)

Figure 2.6: The hacking detection strategy HMM model with emission histograms. (a)

The 6-state hidden state layer. (b) Emission histograms for each hidden state.
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Figure 2.7: Major behavior state transitions in operator hacking detection strategies.

potential differences in the scene between the camera view and the surrounding map area.

Operators who used this strategy usually fixated on comparing the effects of turning the

UAV and the appearance of the ground in the camera feed to that expected while turning

based on the map. This is considered as a dynamic strategy because motion was a key

element in the determination of location.

In the target-oriented strategy, operators tended to directly switch UAV targets to detect

hacking events. In this strategy, operators typically focused on the specific landmarks that

the UAVs would fly over, such as unusual intersections or buildings. This is considered as

a static strategy because operators would wait until the UAV reached a place of interest to
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make a hacked or not hacked decision. Both strategies revealed inefficiencies, primarily

through the self-transition probabilities. For example, in the waypoint-oriented strategy,

62% of people stayed in this state, repeatedly adding, moving, and deleting waypoints.

Similarly, 37% of people repeatedly redirected vehicles to other targets, suggesting an

inefficient target selection process. These inefficiencies could potentially be made better

with advanced decision support.

The occurrence frequency and percentages of the waypoint- and target-oriented strate-

gies for each participant was obtained by applying the hacking detection HMM model to

each participant’s data using the Viterbi algorithm [76]. Based on the occurrence percent-

age of the adjust waypoint and adjust target states, participants were classified into different

hacking detection categories. As shown in the Table 2.3, participants were classified into

four categories, including 1) waypoint strong dominant strategy; 2) waypoint weak domi-

nant strategy; 3) target weak dominant strategy; and 4) target strong dominant strategy. The

population of each strategy category was approximately one fourth of the total participant

population. However, no strategy dominated in terms of performance.

Table 2.3: Participant classification based on different hacking detection strategies

Index Strategy Number Percentage

1 Waypoint strong dominant 10 27.8%

2 Waypoint weak dominant 7 19.4%

3 Target weak dominant 11 30.6%

4 Target strong dominant 8 22.2%

Overall, the scenario strategy model, derived using RESCHU-SA-based experiments,

shows 7 major human operator behavior states for supervision of UAVs that could be sub-

ject to hacking events. In this model, two functional groups emerged, including a hacking
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detection group with three states and a UAV navigation group with four states. Also, the

6-state hacking detection strategy model allowed us to investigate operator hacking detec-

tion strategies in detail. Two major strategies can be observed from the model, including

waypoint-oriented and target-oriented strategies. These diagnostic operator strategy mod-

els highlight that effective strategies can be inefficient. Further work can determine why

people adopt different strategies and whether additional technology-based assistance can

be used to improve operator strategies.

In summary, the operator strategy models in this section illustrate how operator strate-

gies in conducting supervisory control tasks can be modeled through the use of HMMs.

By utilizing HMM models, researchers can describe operator strategies in various HSC

scenarios with different settings. In this case, researchers can evaluate if applying certain

changes, such as adding a support system or modifying a control interface, will affect oper-

ator strategies by comparing resulting strategy models. Thus, the following chapters focus

on the model comparison process and the practical meaning of model difference measures.

2.4 Chapter Summary

This chapter presents the background of this dissertation. This chapter starts with a sec-

tion that introduces human supervisory control, which is a typical control scheme in the

human-automation interaction. This section also reviews common techniques for modeling

human operators. Specifically, hidden Markov models have been utilized in this research

as operator strategy models. The second section of this chapter illustrates the structure of

hidden Markov models and the model training and selection process. The last section in

this chapter demonstrates an example of strategy model development from an HSC sce-

nario of multiple drone control. In this example, a general strategy model and a hacking

detection model are presented.
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Chapter 3

Operator Strategy Model Comparison Metric

This chapter describes the details of the operator strategy model comparison metric, which

is the first main contribution of this dissertation. The first section starts with a review

of common methods of comparing HMM models and explains the divergence distance

measure utilized in this dissertation in detail. Then, this section introduces the construction

of a divergence mesh, which is an extension of the divergence distance measure and can

provide more comprehensive model difference measures.

The subsequent sections in this chapter present two important parts of the model com-

parison metric. The first part describes the data quantity prerequisite for effectively mod-

eling operator strategies and conducting strategy model comparisons. The second part

details the observation alignment approach, which requires modification of data elements

to compare strategy models with non-equivalent model observations.

3.1 Development of Divergence Meshes

This section presents the principle and calculation of the divergence distance measure,

which is a commonly used HMM difference measurement method. This section also

presents the development process of divergence meshes, which can provide more com-

prehensive comparison results for HMM models. Lastly, this section provides an example

of the interpretation of comparison results using a divergence mesh.
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3.1.1 HMM Model Difference Measures

Researchers compare HMM models to evaluate the underlying differences between the

datasets that lead to such models. Other than qualitative model comparisons of state in-

terpretations and model structures between HMM models, many quantitative HMM model

difference measurement methods have been proposed for various applications, including

the investigation of HMM development, HMM classification, and sensitivity tests on HMM

model parameters [105, 106, 107].

Among these model comparison methods, two model difference measurement methods

widely utilized to quantitatively investigate the similarities between HMM models include

the divergence distance measure [108] and the co-emission probability distance measure

[107]. Specifically, the divergence measure focuses more on the model fitting probability

aspect of different HMM models applied to the same given data sequences, while the co-

emission measure emphasizes the quantitative distance between HMM model data vectors

in a high dimensional space.

The divergence distance method measures the difference between the model fitting

probability of a pair of HMMs [108]. The representation of the divergence measure can be

defined as:

D(l1kl2) =
1

num
j log(P(Oalljl1))� log(P(Oalljl2))j (3.1)

In the equation above, D(l1kl2) is the divergence value calculated from the difference

of model fitting likelihood on the dataset Oall between l1 and l2, which represent the first

and second HMM model respectively. Specifically, Oall is the combination of both models’

training datasets, and num is the total number of data points, or observations, in Oall .

Figure 3.1 presents the calculation process of a divergence value between two models

developed from two different scenarios. Starting with data collection from HSC scenarios,

HMM strategy models are trained based on collected data batches. Then an evaluation

dataset is combined from training data batches of both models. The HMM models are
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Figure 3.1: The divergence distance measure calculation process.

applied to the evaluation dataset to obtain model fitting probability values. Based on such

model fitting probabilities, the divergence value can be calculated to quantitatively present

the difference between these two models. The theoretical minimal divergence value is 0

based on the calculation shown in Equation (3.1). In this case, two HMM models share the

same model fitting probability on a certain evaluation dataset, which means that the two

models present the information of the underlying data patterns of the evaluation dataset at

the same abstract level. Also, the upper bound of the divergence measure is unlimited so it

can present model differences across a large value range.

The divergence measure has been utilized in many HMM-based applications to quanti-

tatively measure differences between HMM models [109, 110, 111, 112, 113, 114]. HMM

models have been widely used from the early stage of the speech recognition field [76], and

Rabiner et al. used divergence measure to compare HMM recognition models to isolate

digits and words in speech signals [109]. Yu et al. also used this method to distinguish data

pattern models of HMMs [113]. The divergence measure can provide HMM model differ-

ence measures in a large scope, which starts from zero. Thus, researchers can evaluate the

magnitude of HMM model differences in a wide range.
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The second model difference measurement method is the co-emission probability dis-

tance measure, which focuses on the geometric distance between two HMM models. The

geometric distance is considered as the angle of data vectors between two model data

batches in a high dimensional space. The co-emission probability of two models also

presents the generalizability of the models across given datasets [107]. The co-emission

probability of two HMM models is defined as:

A(l1;l2) = ∑
OM2O

Pl1(OM)Pl2(OM) (3.2)

Similar to the divergence distance method, l1 represents the first HMM model and l2

represents the second HMM model. OM is a sub-sequence of all observation sequences O,

which is also a combined evaluation dataset. Thus, Pl (OM) represents the probability of

an HMM model fitting a given data sequence OM. Then, the summation of the product of

such model fitting probability values of sub-sequences from both models is considered as

the co-emission probability of such two specific HMM strategy models on an evaluation

dataset. The calculation process is illustrated in Figure 3.2.

Using the co-emission probability, the similarity between two HMM models, l1 and

l2, is defined as:

S(l1;l2) = A(l1;l2)=
p

A(l1;l1)A(l2;l2) (3.3)

Here, A(l1;l2) is the co-emission value between models l1 and l2. And A(l1;l1),

A(l2;l2) are co-emission values within either model l1 or l2. Such a similarity measure-

ment follows the calculation of cosine similarity, which is represented using a dot product

and magnitudes of two vectors:

similarity = cosq =
A �B
kAkkBk

=
∑

n
i=1 AiBiq

∑
n
i=1 A2

i ∑
n
i=1 B2

i

(3.4)

Based on the definition of the cosine similarity, a similarity value of 1 means two tested

models share the exact same structure, and a similarity value of 0 indicates orthogonality

or decorrelation between two models. Thus, the co-emission similarity measure, which
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Figure 3.2: The co-emission probability measure calculation process.

presents the magnitude of how models are similar or different, generates a quantitative

outcome range of 0 to 1.

The co-emission measure has also been used in some HMM model comparisons [115,

116, 117, 118]. Jagota et al. used HMMs to model bioinformatic data sequences and com-

pare resulting HMM models with the co-emission measure to determine the differences

between data sequences [115]. Another similar work conducted by Soding et al. also used

the co-emission measure to compare HMM protein models to investigate the similarity be-

tween models and the homology of models [118]. Since the value range of co-emission

measures is from 0 to 1, if the difference between models is not large, the co-emission mea-

sures will be squeezed into a small value range close to 1 according to the cosine property.

In this case, it would be hard for researchers to evaluate the magnitude of model difference

measures.
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3.1.2 Development of Divergence Meshes

Given that the divergence distance measure provides a quantitative outcome value range

that is larger than the co-emission probability measure, the divergence measure is used

as the main HMM model comparison calculation method in this research. Further, this

outcome range allow us to evaluate the magnitude of model differences in a wider range.

As mentioned in the previous chapter, a model selection process is required in the model

development to determine the optimal model structure to present operator behavior states

and control strategies. The model selection result can be selective, and other model struc-

tures trained from the same data batch also contain information at different abstract levels.

Thus, the approach of developing divergence meshes is proposed in this research to obtain

comprehensive model comparison measures.

The main idea of the divergence mesh approach is to consider all possible model struc-

tures developed from data batches in model comparisons. For instance, model comparisons

are conducted between datasetsO1 andO2, which both containM different observations.

If two datasets have different numbers of observations, an observation alignment process,

which is discussed in the following section, is required before developing HMM models.

Based on the HMM model development process described in the previous chapter,M � 1

models will be trained with 2 toM hidden states respectively on both datasets. If only

the optimal model structure is considered in model comparison, then we will only have

one divergence value representing the difference between these two models. If all model

structures are considered, then we can have(M � 1) � (M � 1) comparisons and divergence

values for plotting a divergence mesh.

A typical divergence mesh is shown in Figure 3.3. This divergence mesh is plotted

based on model comparisons between two data batches, each of which contains 15 types of

observations. Thus, the two horizontal axes, which are based on both data batches respec-

tively, represent a different number of hidden states of resulting HMM models. Such mod-
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Figure 3.3: An example of a divergence mesh.

els contain operator strategy information at different abstract levels with different model

structures. The vertical axis represents the magnitude of divergence values. In this case, a

3D divergence mesh can be plotted with(15� 1) � (15� 1) = 196 divergence values.

A divergence mesh can provide a comprehensive comparison of the underlying data

patterns between two data batches by considering all possible resulting model structures

rather than a single divergence value calculated from two optimal models. The average

divergence value of a divergence mesh illustrates the general difference between two sets

of models. The 3D shape of the mesh, including the changing trend of divergence values,

shows how different model structures affect the divergence measure.

For the divergence mesh example shown in Figure 3.3, the average of all 196 diver-

gence values is 0:0568, which can generally be considered as a low divergence value (the

detailed quantitative model comparison baselines will be introduced in the next chapter).
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An interesting fact about this mesh is that the comparisons on the diagonal show much

lower divergence values than the comparisons on the side. This fact indicates that models

from these two data batches with the same or similar number of hidden states would be

quantitatively more similar than models with much different model structures. This result

is expected because models with the same or similar model structure contain operator strat-

egy information at a similar abstract level. In general, all divergence values on this mesh

are lower than 0:2, which can be considered as low divergence values.

3.2 Data Quantity Requirement

This section describes the process of determining the minimal data quantity required by

HMM operator strategy model development by utilizing the model comparison concept

and generating divergence meshes. Strategy models developed from datasets with suf�-

cient data quantities can avoid in�uences from individual variances and present the general

operator strategies in HSC scenarios.

3.2.1 Analysis Approaches

Researchers and practitioners who design systems where humans team with autonomous

systems often need to know the strategies that users of such systems develop. For safety-

critical systems, designers need to know whether such strategies align with the system

designer's intent and if resulting interaction strategies are safe and effective. While hidden

Markov models (HMMs) have commonly been used to represent such strategy models,

this modeling process can be affected by many factors including the size and number of

individual datasets. For example, human-in-the-loop experimental data is notoriously hard

to collect, so understanding the minimal information set that is needed for such models

would guide such data collection efforts.
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In this section, the impact of data quantity on modeling operator strategies in a human-

autonomy teaming supervisory control scenario is investigated using HMM models. We

focus on the divergence measure [108] and the divergence mesh approach mentioned in the

previous section for model comparisons to determine the minimum number of observation

sets needed. HMM models are used as strategy models in this section [77]. Recall from the

previous chapter that the HMM structure can be represented as a tuple,l = f S;O;A;Bg,

in whichSrepresents hidden states,O represents observations, andA andB represent tran-

sition and emission probability matrices, respectively [96]. As mentioned in the previous

chapter, HMM models are trained using the unsupervised multi-sequence Baum-Welch

algorithm [77, 96].

For HMM-based applications in HSC scenarios, it is unclear how model quality is

affected by data quantity. By data quantity, we mean the number of sets of observations,

equivalent to the number of subjects needed for an HMM analysis. While more data is

generally better in modeling, there is a cost-bene�t tradeoff between obtaining enough

data in HSC applications. It may be, for example, cost-prohibitive to obtain large datasets

on air traf�c controllers under controlled conditions to investigate a new air traf�c control

display. However, when using unsupervised learning models, insuf�cient data could lead

to under�tting [119, 120]. This section attempts to quantify the minimum data quantity for

HMMs to model operator strategies in HSC applications.

In order to determine a minimum suf�cient data quantity for approximating the strate-

gies of a population, some previous work has suggested the sample data size should be a

certain proportion of the whole data quantity [121, 122]. Such sampling criteria require

and depend on prior knowledge of the population, which is not typically available in HSC

settings. Similarly, other work has also proposed criteria for determining the minimal data

quantity based on statistical analysis [123, 124]. However, these methods focus on data

size for qualitative approaches such as interviews and surveys, but not for unsupervised

learning models like HMMs. Thus, the primary focus of this section is to determine the
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minimum data quantity for effectively and precisely developing diagnostic models in a

representative HSC scenario.

Many HMM model comparison metrics have been applied to HMM-based modeling

scenarios to quantitatively measure the difference between HMM models [105, 125, 106].

In this section, we utilize the divergence measure metric to compare HMM strategy models,

which measures the difference between the model �tting probability of a pair of HMMs

[108]. The representation of the divergence measure can be found in Equation (3.1). Based

on the divergence values of the comparisons between HMM strategy models developed

from different training data quantities, we can infer the approximate minimum sets of data

needed for modeling general operator strategies.

3.2.2 Data Generation

To develop strategy models, a large dataset of action sequences in an HSC application is

needed. Given that databases of large HSC experiments are not publicly available like that

of air traf�c controllers, we utilized a public large dataset of StarCraft II gaming sessions

in this research [126]. StarCraft II is a real-time strategy (RTS) game, which is similar to

many real-world applications of supervisory control such as air traf�c control and military

planning scenarios. In this game, the player's goal is to defeat other players by conducting

several high-level tasks, including gathering resources, developing buildings and technolo-

gies, and navigating units to battle. The StarCraft II game is an effective HSC proxy since

players indirectly control all units via a keyboard and a mouse (a control interface) to con-

duct high-level tasks under time pressure. The order and transition of player commands,

which constitute observable states, can illustrate players' in-game strategies.

StarCraft II replay �les were accessed from Blizzard Entertainment's of�cial website

(https://starcraft2.com/en-us/). Replay �les contain compressed information of games, in-

cluding 1) game duration in seconds, 2) the name of the game map, 3) the role players
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selected, 4) players' number of actions per minute (APM), 5) players' matchmaking rating

(MMR), which is an of�cial measure of players' skill-levels, and 6) players' game results

in terms of wins or losses [126]. We leveraged the application programming interface

(API) provided by Blizzard Entertainment (https://github.com/Blizzard/s2client-proto) to

import replay �les to the StarCraft II game and parse players' action sequences.

Because the entire database consists of over 500,000 replays with over 100 million data

points, we �ltered the replays to obtain a dataset that was similar in length and complexity

(i.e., number of observations) to that generated by the widely used HSC research experi-

mental platform of RESCHU-SA [127, 128, 62]. The collected StarCraft action sequences

were based on speci�c criteria, including: 1) a single map (out of over 20 maps), called

Triton LE, 2) a single role (out of three roles), called Terran, and 3) replays that lasted more

than 300 seconds with more than 100 actions. In total, we parsed 2000 replays as the �nal

dataset, in which each replay contains about 380 actions, on average.

Based on the action list embedded in the API, we converted raw actions into 15 primary

observations, as shown in Table 3.1. We clustered raw actions with the same group name

but different targets or objects into a single observation to reduce unnecessary model train-

ing complexity. For example, “BuildArmory”, “Build Assimilator”, and “BuildBunker”

are all raw actions that represent building in-game constructions or units, so these were

termed “Build”. Also, “TrainCarrier”, “Train Drone”, and “TrainMothership” are raw

actions that represent producing and generating in-game battle units, so these actions were

termed “Train”. Given these conversions, the �nal dataset contained 2000 parsed data

sequences with the 15 observations shown in Table 3.1.

3.2.3 Model Development and Comparison Process

Once the 2000 StarCraft II game replays were selected, we then developed a series of

models with differing numbers of sets of observations and compared them quantitatively to
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Table 3.1: Observations in the StarCraft II game

Index Observation Description

1 Train Generate or build units

2 Attack Send units to attack enemies

3 Build Make or build constructions

4 Effect Maintain units, including repair and charge

5 Morph The transformation of units

6 Cancel Cancel current action

7 Unload Unload from certain units or constructions

8 Lift Select certain constructions and transport

9 Land Settle certain constructions

10 Stop Terminate auto progress

11 Burrow Hide units underneath the surface

12 Harvest Gather resources

13 Rally Prede�ne destinations after generating units

14 Trainwarp Generate special units

15 Hallucinate Set hallucination effects on units

discover the stability and reliability of the HMM modeling technique for representing HSC

strategies. As shown in Table 3.1, models will not have more than 15 hidden states because

states represent weighted clusters of observations. The minimum number of hidden states

for any model is two because transitions between at least two states are necessary to present

transitions among players' behavioral states as a part of players' strategies.

In order to compare models built from different quantities of data, we parsed 2000 game

replay data sequences into 9 different groups with different data quantities (5, 10, 20, 30,
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50, 100, 200, 500, 1000 replays). Then for each data quantity, we randomly selected 30

batches of sequences for model development in order to capture variance in individual

player strategies. Thus, for each 30-sequence data batch, we developed HMM models with

all possible numbers of hidden states, from 2 to 15 states, utilizing the multi-sequence

Baum-Welch algorithm [77]. For example, randomly selecting 30 batches of 100 replay

sequences from the original 2000 sets of observations forms 14 clusters of HMMs (from

2 to 15 hidden states), each with 30 models. This overall model training procedure can

be referred to as Algorithm 1. The dataset of 2000 replays is treated as a special data

group. A set of HMM models with 2 to 15 hidden states was developed for these 2000 data

sequences to represent the ground truth of HMM strategy models across all players.

Algorithm 1 Model Training among Data Groups with Different Data Quantities
1: procedure MODEL TRAINING PROCESS

2: Q = f 5;10;20;30;50;100;200;500;1000g

3: for each p 2 Q do

4: for i  1 to 30do

5: Randomly select theith data batch ofp replays

6: for n  2 to 15do

7: Train an HMMl pin with n states on theith data batch ofp replays

8: Record the modell pin

9: return . Finish model training

In order to compare the �delity of each set of models for the different data quantities,

we focus on model comparisons across 9 data groups (from 5 to 1000 replays). The overall

comparison process is illustrated as Algorithm 2. Speci�cally, for each pair of resulting

HMM models, we utilized their training data batches described in the previous subsec-

tion as an evaluation dataset to calculate divergence values to quantitatively present the

difference between them [108].
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Algorithm 2 Model Comparison among Data Groups with Different Data Quantities
1: procedure MODEL COMPARISONPROCESS

2: Q = f 5;10;20;30;50;100;200;500;1000g

3: for each p;q 2 Q do

4: for each i; j 2 [1;30] do

5: Combine datasetsOpi andOq j to Opi+ q j

6: for eachn;m2 [2;15] do

7: CalculateD(l pinkl q jm) onOpi+ q j

8: Obtain an average divergence mesh ofD(l pkl q)

9: based onD(l pnkl qm) by averaging overi; j

10: Record the meshD(l pnkl qm)

11: return . Finish model comparison

For divergence comparison between two HMM models, the minimum possible value

is zero based on the divergence calculation shown in Equation (3.1). In this case, two

models share the same model structure and produce the same �tting probability from the

evaluation dataset. Although there is no upper limit of a divergence value, divergence

values less than 0:1 are usually considered small and divergence values larger than 0:3

are usually considered large [81]. In this effort, small divergence values indicate a high

similarity level between the model structures of two sets of HMM models and illustrates

that operators' behavior patterns and strategies between two datasets are similar.

The data quantity level comparison is presented as the �rst “f or” loop (line 3) in Al-

gorithm 2 for every combination of two data groups with data quantities ofp andq. When

p 6= q, the comparison focuses on how different data quantities affect the difference of

players' general strategies extracted respectively from two data groups. Whenp = q, the

comparison focuses more on how model complexity affects the similarity between models

developed from the same quantity of data.

44



The model structure level comparison is illustrated as the second and third “f or” loop

(lines 4 and 6) in Algorithm 2. As mentioned in the description of Algorithm 1, a set of 14

HMM models with hidden state numbers from 2 to 15 are trained respectively on each data

batch. Thus, at this comparison level, 14� 14= 196 comparisons are conducted for a pair

of data batches. For comparing two HMM models, we �rst combine their model training

datasets into an evaluation dataset, which is theOall in Equation (3.1) or theOpi+ q j in

Algorithm 2. Then we obtain the number of data points, which isnumin Equation (3.1), in

the combined dataset and compute the model �tting probability,P(Oall jl 1) andP(Oall jl 2),

for calculating the divergence value,D(l 1kl 2).

Given that we have 30 data batches in each data quantity, divergence values between

two speci�c model structures are averaged to represent the difference measure. While

comparing data quantities ofp andq (whenp 6= q) with 30 batches respectively, we have

30� 30= 900 batch combinations in total, and for each combination, we have 196 diver-

gence values,D(l pinkl q jm);n;m2 [2;15]. Thus, for a speci�c model structure combination

n andm, the average,D(l pnkl qm), of 465 divergence valuesD(l pinkl q jm); i; j 2 [1;30] is

used for such a speci�c setting with variable ofp;q;n;m. For a special case ofp = q, the

total number of batch combinations isC2
30 = 435 to avoid comparisons between the same

data batch and model structure. In other words, a restriction ofi 6= j will be considered for

obtaining the average divergence values fromD(l pinkl q jm); i; j 2 [1;30] whenp = q.

Noting that the ground truth data group of 2000 replays only has one data batch, the

average divergence values are calculated from 1� 30 = 30 resulting values compared to

other data groups with 30 batches. By averaging divergence values over batches, we can

account for the variance in players' strategies. Once these values are calculated, we can

plot a divergence mesh for a comparison of two data groups.

For example, Figure 3.4 illustrates the divergence mesh that can be plotted for all

196 comparisons between 1000 and 2000 replay data quantity groups. HMM models are

trained with different numbers of hidden states for both data groups on each data batch, so
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Figure 3.4: A divergence mesh example of the comparison between models developed

from 1000 and 2000 replays. Each of the 196 points includes 30 comparisons.

the X and Y-axes represent the number of states in models from the two data groups re-

spectively. The Z-axis, the vertical axis, represents the divergence values calculated from

a combination of two models with certain model structures. For example, the �rst model,

l 1000;n= 15, developed from a data batch of 1000 replays has a model structure of 15 hid-

den states, and the second model,l 2000;n= 2, developed from the ground truth data batch of

2000 replays, has a 2-state structure. Then, as shown in Figure 3.4, the divergence value

between these two models,D(l 1000;n= 15kl 2000;n= 2), is about 0:162. In total, a divergence

mesh contains 196 such divergence values. Since the mesh is in three dimensions, the

shape of the mesh or the changing trend of values based on hidden state numbers can also

illustrate the relation between model structures.

Understanding that the minimum divergence value is 0 based on Equation (3.1), the

smaller the divergence is, the higher the similarity between a pair of HMM models. Simi-
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larly, the smaller the average distance between a mesh and the X-Y horizontal surface, the

higher the similarity between the underlying players' behavior patterns and strategies from

a pair of data batches. In the Figure 3.4 example, if models have more than 8 states, they

share high similarity since the upper right corner of the mesh is close to a horizontal sur-

face and has divergence values lower than 0:05. We propose that HMM models are similar

and stable in these regions of low and consistent divergence metrics.

3.2.4 Analysis Results

Once divergence distance model comparisons were computed for all possible pairwise

comparisons of HMM models created with 5, 10, 20, 30, 50, 100, 200, 500, 1000, and

2000 replays, we plotted them to investigate the variation tendencies across the meshes, as

shown in Figure 3.5. From such variation trends, we can investigate the potential impact

from the number of data sequences on the stability of the strategy modeling technique and

also determine the minimum required number of data sequences.

As shown in Figure 3.5, for all numbers of data sequences, we compared corresponding

models and plotted divergence meshes respectively. The upper-right half of Figure 3.5 con-

tains divergence meshes, and given the diagonal symmetry, the lower-left half represents

average values and boxplots of divergence values for the corresponding meshes.

Trends in a Single Mesh

A divergence mesh presents the comparisons between strategy models with different num-

bers of hidden states from two data batches. From the distance between different portions

of a mesh and the horizontal X-Y surface, we can interpret how different model structures

affect a model's ability to capture players' general strategies. To better understand such

comparisons, three divergence meshes, shown in Figure 3.6, are selected from Figure 3.5

for further investigation.
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Figure 3.5: Divergence meshes with average values of all comparisons between different

data groups with different quantities.

The divergence mesh in Figure 3.6a represents comparisons between models from 2-15

hidden states developed from the data group of 2000 replays. Since the 2000-replay data

group represents ground truth, this divergence mesh is the benchmark comparison with an

average divergence value of 0:0553, the lowest among all meshes. Such a low average

value is expected because the 2000 replay group contains all data for all individuals.

One interesting observation is the diagonal-valley shape of Figure 3.6a. Such a shape

indicates that if two models from the 2000-replay dataset share similar model structures
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(a) (b)

(c)

Figure 3.6: Divergence meshes of 5 and 2000-replay datasets. (a) 2000 and 2000-replay

mesh. (b) 5 and 2000-replay mesh. (a) 5 and 5-replay mesh.

(number of hidden states), they share high similarity with divergence values under 0:01.

However, as the comparison moves further away from the diagonal, the divergence between

the two models increases. At the extreme, comparing a 2 hidden state model to a 15 state

model yields a divergence metric of more than 0:15, meaning the models represent widely-

differing player strategies. As noted, in the upper right region above 8 hidden states, the

valley disappears. Such a change is veri�ed by a t-test on the divergence values for blocks

above and below the 8-state mark with a signi�cance level ofa = 0:05 (p < 0:001). This

suggests that regardless of the number of states, HMM models with 8 or more hidden states

capture similar abstract strategy information. In other words, people who exhibit 8 or more
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abstract clusters of behaviors adopt very similar strategies in executing their tasks.

Figure 3.6b illustrates comparisons between data groups with 5 (minimum) and 2000

(maximum) replays. This mesh is clearly different from Figure 3.6a with increasing values

and no valley along the diagonal seen in the 2000 replay comparison (Figure 3.6a). The

mesh in Figure 3.6b has an average divergence of 0:2107, the highest among all meshes

shown in Figure 3.6. Such a high value indicates relatively low model similarity, sug-

gesting that models developed from data batches with only 5 replays cannot accurately

represent the player strategies seen in the 2000 replay set. This is not surprising given

that 5 observations cannot capture the variability that a 2000 dataset can. Thus, the high

divergence value of this mesh supports the fact that models developed from these two data

groups are different.

In addition to the high divergence shown in Figure 3.6b, the tilted shape of the mesh

shows that comparisons with 2000-replay models with 6 or fewer states have smaller di-

vergence values than models with 8 or more states. Given that 5-replay models cannot

precisely capture players' strategies, this fact indicates that 2000-replay models with over-

simpli�ed model structures cannot present players' strategies well.

Figure 3.6c illustrates the divergence mesh comparison of 5-replay models, with rela-

tively low divergence values at an average of 0:0920. The relative �at shape of the mesh

in Figure 3.6c indicates that models generated from low numbers of observations share

high similarity regardless of hidden state numbers. However, when compared to the �at

region in Figure 3.6a, the 2000 replay comparison models above 8 hidden states have an

average divergence of 0:0180, which is 80:4% lower than 0:0920. Thus, while models

generated from 5 replays may be similar to one another, they are not as similar as models

generated from 2000 replays. The question then becomes how many replays are needed to

approximate the mesh in Figure 3.6a. This answer then forms the basis of understanding

the minimum number of data sequences needed to generate effective strategy models.
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Mesh Pairwise Comparisons

The average value of all divergence points on a mesh can quantitatively illustrate the differ-

ence between players' strategies and action patterns captured from the models developed

from two data groups with different data quantities. Thus, differences between average

mesh divergence values can indicate how much data is needed to effectively train HMM

strategy models. As shown in the lower-left half of Figure 3.5, each boxplot of divergence

values represents model comparisons between a pair of data groups.

Not surprisingly, the divergence values on the diagonal decrease from 5 replay compar-

isons to the ground truth data at 2000 comparisons. These numbers should be the lowest

since the models with the same numbers of states are compared to one another. The off-

diagonal comparisons should grow with increasing difference between data quantities. For

instance, the divergence mesh average of 5 vs. 5 replays is 0:0920, with the average value

increasing to 0:1897 for the comparison of 5 vs. 100 replays, and then to 0:2107 for 5 vs.

2000 replays. This more than 200% average increase suggests that when the data quantities

are small, resulting HMM models are generally different from models developed from data

groups with large data quantities. However, such a large increasing trend is not obvious in

data groups of 30 or more replays. The mesh average of 30 vs. 30 replays is 0:0572, and

the average of 30 vs. 2000 replays is 0:0642, an increase of less than 12%. Similarly, for

datasets with 50, 100, or more replays, their off-diagonal values are much smaller.

To statistically determine the difference between divergence value distributions in di-

vergence meshes, a series of pairwise comparisons was conducted between all other data

quantities vs. 2000-replay meshes, as well as the 2000 vs. 2000-replay mesh. Under-

standing that the 2000 vs. 2000-replay mesh is a comparison within the same data batch,

the values on the diagonal of this mesh are all zeros because those values represent diver-

gence measures between the same model structures. Thus, the diagonal values were not

considered in pairwise comparisons to avoid skewing comparison results.
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Table 3.2: Divergence mesh paired Wilcoxon Sign-Rank Test results

paired comparison between 2000 vs.

2000-replay mesh and
z-score p-value

5 vs. 2000-replay mesh 11:2954 < 1:0� 10� 9

10 vs. 2000-replay mesh 8:4107 < 1:0� 10� 9

20 vs. 2000-replay mesh 4:7604 1:93� 10� 6

30 vs. 2000-replay mesh 2:7736 0:0055

50 vs. 2000-replay mesh 2:1554 0:0311

100 vs. 2000-replay mesh 0:9442 0:3451

200 vs. 2000-replay mesh 1:3053 0:1918

500 vs. 2000-replay mesh 1:3236 0:1856

1000 vs. 2000-replay mesh 0:9765 0:3288

The paired Wilcoxon Sign-Rank Test results in Table 3.2 show that comparisons among

the 2000-replay data group and data groups with small data quantities, including 5, 10, and

20 replays, models are signi�cantly different between the benchmark comparison of 2000

vs. 2000 replays (family-wise signi�cance level ofa = 0:05=9 � 0:0055). However, for

data groups with 30 and larger data quantities, their comparisons with the 2000-replay

group are not signi�cantly different. This result indicates that HMM strategy models de-

veloped from data batches with 30 or more replays (data sequences) are not statistically

different from the benchmark models trained from 2000 replays. Thus, for this dataset,

30 sequences can be considered as a suf�cient data amount for effectively training HMM

models to present operators' strategies.
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Analysis Conclusion

HMMs can be useful abstractions of supervisory control operator behaviors, giving insight

into the plans and strategies that people form when working with autonomous systems in

order to meet shared goals. However, the number of operators studied in the building of

such models could affect the reliability and generalizability of any resulting HMM mod-

els. To determine how undersampling of operators could affect outcomes and the minimum

number of observations needed to form stable HMMs, we parsed a large dataset of Star-

Craft II game replays to develop and compare HMM models based on 15 observations.

Using divergence values that measure probabilistic similarities between two models,

we systematically reduced a 2000 player dataset to demonstrate how models built from

fewer data sequences compared to those built from all the data. Based on these model

comparison results, we concluded that 30 data sequences produced models that were not

statistically different from models built with 2000 data sequences. Understanding such

a data quantity threshold can reduce the experimental burden and the costs of collecting

human-in-the-loop data. While such knowledge can be used prospectively, it can also be

used retrospectively to evaluate such a decision. Furthermore, models of current data can

be compared against this data to determine degrees of similarity.

In addition to examining the role of data quantity in the development of HMMs for

humans teaming with supervisory control systems, we also demonstrated how meshes of

divergence values from the comparison of two models can indicate model stability. This

effort further illustrated that meshes with low and consistent divergence values indicate

model stability, where changes in the number of hidden states do not cause signi�cant

changes in divergence values. Also, given that the StarCraft II game has several well-

de�ned tasks, one possible limitation of this work is the generalizability of the result to

other HSC scenarios and other diagnostic models. Thus, further studies are necessary to

investigate these issues.
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3.3 Observation Alignment Approach

This section introduces another important part of the strategy model comparison metric,

the observation alignment approach. HSC scenarios with different interfaces or high-level

tasks will generate different interactions between operators and control systems. Such

interactions are considered as the HMM observations in the strategy model development

process. However, when researchers try to compare models between two datasets with

different numbers of observations, non-equivalent observations can cause mathematical

issues in the model comparison process. Similarly, if researchers try to investigate the

impacts of certain changes before and after a scenario on operator strategies, they face the

same problem of non-equivalent observations caused by potential observation changes in

comparing strategy models. Thus, we propose an observation alignment approach, which

aligns observations to the same number by reducing observation types or clustering certain

observations, for operator strategy model comparisons with non-equivalent observations.

3.3.1 Basic Concept and Analysis Approaches

The fundamental concept of observation alignment is to match observations, or data types,

from two datasets by using the same indices to represent observations. The detailed pro-

cess of aligning observations depends on the similarity between the HSC scenarios that

generate the two datasets. If two scenarios share a similar interface, then the two resulting

datasets may share some observations. In this case, the dataset with a larger number of

observations should reduce or cluster observations that are unique in this dataset to match

the observations in the other dataset. If two scenarios have different interfaces, then the re-

sulting datasets may have different observations. Then, we propose that researchers align

observations based on the occurrence percentage rankings. In this section, we demon-

strate an example of the observation alignment process for model comparisons between

two human-subject experiments conducted on two interfaces.
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The �rst experiment was conducted on the Research Environment for Supervisory

Control of Heterogeneous Unmanned Vehicles (RESCHU) platform [104, 127], which is

shown in Figure 3.7. RESCHU is a simulation-based platform that allows a single operator

to control multiple UAVs in a supervisory control scenario. It includes both UAV naviga-

tional and imagery analysis tasks where operators focus on the map area when navigating

UAVs and shift their attention to individual vehicle cameras when a UAV reaches a target

[104]. Further experimental details are presented in Appendix C.

The second experiment was conducted on the RESCHU-SA interface as shown in Fig-

ure 3.8. A summary of the RESCHU-SA experiments is introduced in Section 2.3.1, and

further details are presented in Appendices A and B. The RESCHU-SA interface provides

three main tasks, including the two tasks in the RESCHU interface and an additional UAV

hacking detection task. Thus, these two interfaces share observations generated from the

navigational and imagery tasks, and the RESCHU-SA interface has observations for the

hacking detection task.

As shown in Table 3.3, the RESCHU interface generates 7 observations, which are

shared with the RESCHU-SA interface, and the RESCHU-SA interface generates addi-

tional 3 observations. Speci�cally, observations 1, 2, and 3 are directly related to the UAV

navigational task, and observations 4, 5, and 6 are related to the imagery surveillance task.

Observations 8 to 10 are related to the UAV hacking detection task, in which operators

need to determine if UAVs are hacked and navigated to unexpected destinations.

Since these two interfaces generate different numbers of observations, we need to align

observations to compare HMM models developed from them. The goal of this observation

alignment approach is to reduce observations from the RESCHU-SA interface in order to

match the observations from the RESCHU interface. In other words, this method modi�es

the observation selection criteria for RESCHU-SA datasets. Since the hacking detection

task is a unique task in the RESCHU-SA interface, observations related to this task are

clustered to reduce the total observation number.
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Figure 3.7: The RESCHU interface.

Figure 3.8: The RESCHU-SA interface.
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Table 3.3: Observations from the RESCHU and RESCHU-SA experiment platforms

Shared observations in both interfaces

1 Add waypoint 2 Move waypoint 3 Delete waypoint

4 Move endpoint 5 Switch target 6 Engage task

7 Monitor UAV

Unique observations in the RESCHU-SA interface

8 Perceive hacking 9 Detection decision 10 Adjust zoom level

Based on the HMM model notation mentioned in Section 2.2, assume that modell 1

is developed from RESCHU experiments withM1 = 7 observations and modell 2 is de-

veloped from RESCHU-SA experiments withM2 = 10 observations. Thus, the �rst model

has fewer observations than the second model. To align such observations, data points in

thel 2 training dataset, which isOl 2
, need to be re-screened to match theM1 observations.

3.3.2 The Viterbi Propagation with Observation Reduction

With this observation reduction approach, the number of observations inl 1 and l 2 are

aligned toM1 such that the datasetOl 2
is reformulated toM1 types of observations asOl 1

.

Thus, the emission matrices ofl 1 andl 2 share the same number of columns,M1. Applying

l 1 andl 2 to a one-dimensional sequenceOseq1 = ( o1;o2; � � � ;ot), the Viterbi propagation

in Equation (3.1) can be updated for both models.

Vl 1:t;st = max
st2S1

(bl 1:st ! ot � al 1:st� 1! st �Vl 1:t� 1;st� 1
) (3.5)

Vl 2:t;st = max
st2S2

(bl 2:st ! ot � al 2:st� 1! st �Vl 2:t� 1;st� 1
) (3.6)

Given that both models containM1 types of observation, they share the same expectations

of emission probabilities.
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In an HMM model, a higher number of hidden states could lead to a lower expectation

of state transition probabilities and a highly differentiated model structure with a higher

model complexity. However, a high hidden state number could cause high corresponding

emission probabilities. Thus, regardless of the number of hidden states, different model

structures would only have limited in�uence on the product ofast� 1! st �Vt� 1;st� 1 if models

share the same number and type of observations.

Therefore, the difference in model likelihood values between both HMM models in

Equations (3.5) and (3.6) would only be affected by the underlying patterns in the dataset,

rather than by the Viterbi algorithm propagation process. In this case, the divergence mea-

sure value, which is directly calculated from log(P(Oall jl 1)) and log(P(Oall jl 2)) , will

re�ect the quantitative measure of the similarity level between the two models more pre-

cisely. Thus, the observation reduction method preserves information from the original

observation at a different abstract level by re-selecting observations. While this method

will not signi�cantly affect the resulting model development and comparison processes

based on the theoretical analyses, a sensitivity test is needed for justi�cation.

3.3.3 The Observation Reduction Sensitivity Test

To understand the reliability of such an observation reduction approach, a sensitivity test

was conducted to evaluate how collapsing observations impacted the overall divergence

distance metric by utilizing the strategy model comparison metric and developing diver-

gence meshes. Considering that collapsing observations may cause loss of information, it

is necessary to ensure that collapsing certain observations will not signi�cantly change the

divergence metrics.

Data sequences collected from the RESCHU-SA experiments were categorized into

two data batches based on the order of experimental sessions. The sensitivity test was

conducted on these two data batches. Given that the hacking detection task was uniquely
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embedded in the platform, we combined hacking detection-related observations based on

different levels of abstraction. In order to understand the impact of collapsing the data

from 10 to 7 observations, the revised data selection criteria for 7, 8, and 9 observations

are shown in Table 3.4.

Table 3.4: Observation reduction criteria for the sensitivity test

7 observations 8 observations 9 observations 10 observations

1 Add waypoint

2 Move waypoint

Same as 7

observations

Same as 7

observations

Same as 7

observations

3 Delete waypoint

4 Move endpoint

5 Switch target

6 Engage task

7
Hacking

detection
Monitor UAV Monitor UAV Monitor UAV

8 -
Hacking

detection

Hacking

detection
Perceive hacking

9 - -
Adjust zoom

level

Detection

decision

10 - - -
Adjust zoom

level

With the revised observation-reduced criteria shown in Table 3.4, HMM strategy mod-

els with all possible numbers of hidden states were retrained on the realigned datasets using

the same methods discussed in the model development section. Then, visualizations of di-

vergence measures between the HMM models were created following the divergence mesh
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development process. Such divergence meshes were composed of divergence values from

all possible combinations of model comparisons based on the different number of hidden

states, or model structures.

As shown in Figure 3.9a, two divergence meshes represent the 7 and 10 observation

model comparisons from the two RESCHU-SA data batches with corresponding observa-

tion reduction criteria. The 8 and 9 states were omitted for clarity but shared the same

space. Quantitatively, the ranges of the average divergence values of these four meshes are

all within 0:02� 0:05 as shown in Figure 3.9b. Mann-Whitney tests with a family-wise

signi�cance level of� 0:008(0:05=6) were conducted on the divergence values between

the two meshes. The statistical results show that the distribution of divergence values of

both 8 and 9 observation meshes are signi�cantly lower than the divergence distribution in

the 10 observation mesh (p < 0:001 for both comparisons). However, the value distribu-

tion in the 7 observation mesh is not signi�cantly different from the 10 observation mesh

(p = 0:017> 0:008).

Thus, although the observation reduction criteria of 8 and 9 observations may change

the underlying patterns in datasets and affect model comparisons with the original dataset

of 10 observations, the reduction criteria of 7 observations only introduce a limited in�u-

ence on the divergence measures. In this case, all hacking detection related observations

could be collapsed to a single observation. In other words, the observation selection crite-

rion for RESCHU-SA experiment models can follow the 7-observation rule instead of the

original 10 observations without signi�cant loss of information.

Thus, this section presents the observation alignment approach for comparing operator

strategy models developed from similar HSC scenarios with non-equivalent observations

by reducing observation types and re-parsing data into a higher level of abstraction. A sen-

sitivity test was conducted based on a dataset collected from the RESCHU-SA experiment

to show the potential impact of reducing observations related to a speci�c task.
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(a)

(b)

Figure 3.9: The observation reduction sensitivity test. (a) Divergence meshes based on

observation reduction criteria. (b) Boxplots of divergence values.
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3.4 Chapter Summary

This chapter presents the development of the operator strategy model comparison met-

ric, which is the �rst main contribution of this dissertation. The purpose of building

such a comparison metric is to comprehensively and quantitatively measure the differ-

ence between HMM-based operator strategies extracted from HSC scenarios. By utilizing

this comparison metric, researchers can quantitatively measure the magnitude of potential

impacts from scenario changes on operator strategies in order to evaluate such changes.

Speci�cally, a data quantity prerequisite and an observation alignment approach are de-

scribed in this chapter as two important parts of the comparison metric.
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Chapter 4

Quantitative Operator Strategy Comparison
References

The previous chapter presents the operator strategy model comparison metric based on

the divergence measure with two prerequisites of the data quantity requirement and the

observation alignment approach. This comparison metric provides researchers quantitative

measures of differences between strategy models developed from various HSC scenarios

with different settings. However, the practical meaning of the magnitudes of quantitative

model difference measures is still not clear to researchers. For example, it is not known

whether the average divergence distance value represents a signi�cant, or a negligible,

impact on operator strategies in HSC settings. Thus, comparison references are needed as

baselines for researchers.

This chapter provides quantitative strategy comparison references by developing and

comparing operator strategy models from multiple HSC human-subject experiments with

certain factor changes, such as different operator groups, similar control interfaces with

additional tasks, and different scenarios. With such resulting references, researchers can

quantitatively evaluate whether speci�c changes in their HSC scenarios can signi�cantly

affect operator strategies and the possible magnitude of the impacts. This chapter �rst

presents the development of the strategy model comparison baselines, which represent

general operator individual strategy variances across HSC scenarios. This chapter also

presents a continuum of strategy model comparisons to generate a continuous reference

metric covering different changes in HSC scenarios for researchers.
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4.1 Comparisons 1 and 2

This section presents the strategy model comparison baseline. This reference is developed

between two data batches collected from two human-subject experiments respectively with

the same participants and the same control interface with repeated settings. Thus, this

reference is expected to present the least difference between operator strategies since the

same operators executing the same tasks align with the human notation of sameness. Then

this baseline will be compared to increasingly different scenarios.

4.1.1 Data Generation and Experiment Sessions

In order to establish comparison references, model training data for such a continuum

of strategy model comparisons was collected from human-subject experimental sessions

where participants controlled multiple drones to conduct high-level tasks using two differ-

ent interfaces [127, 128, 62, 129]. Experimental sessions were conducted on the RESCHU

interface [104], shown in Figure 3.7, and the RESCHU-SA interface [62], shown in Fig-

ure 3.8. Their interfaces are introduced in Section 3.3, and other detailed descriptions

about both interfaces and experimental sessions are illustrated in Appendices A, B, and C.

Speci�cally, four experimental sessions were conducted using the RESCHU-SA interface.

The visualization shown in Figure 4.1 illustrates all strategy model comparisons related

to RESCHU and RESCHU-SA experimental sessions. Four comparisons between strat-

egy models were conducted to quantitatively measure the differences in operator strategies

across these experimental sessions as listed in Table 4.1.

In addition to these four comparisons, an extra model comparison was also conducted

to explore operator strategy differences with different interfaces and tasks. Such a com-

parison was between the StarCraft II game mentioned in Chapter 3 and the RESCHU-SA

interface. Thus, as listed in Table 4.1, �ve strategy model comparisons are included in the

continuum in this chapter.
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Figure 4.1: Comparisons between RESCHU and RESCHU-SA experimental sessions.

In the �rst comparison between Sessions 1 and 2 within the RESCHU-SA interface,

strategy models were compared with the same interface, tasks, and participants. Thus,

the expectation of the divergence measure of this comparison would be the least. This

comparison is considered as the baseline for no signi�cant difference in strategy model

comparisons. This baseline also presents the strategy variety introduced by participants'

individual variance.

For the second comparison among Sessions 1, 2 and 3, we compared the same interface

and same task, but with different groups of operators. Our expectation was that this com-

parison would only yield a slightly increased divergence measure because of the potential

variance brought by different operators. The third comparison was between Sessions 3

and 4, which shared the same participants and tasks, but with slightly modi�ed interfaces.
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Table 4.1: Comparisons between experimental sessions and interfaces

Comparison Scenario settings Corresponding sessions

1 Same participants, tasks, interface Session 1 vs. Session 2

2
Different participants, same tasks

and interface
Sessions 1+2 vs. Session 3

3
Same participants and tasks,

modi�ed interfaces
Session 3 vs. Session 4

4
Different participants, additional

task, related interfaces
RESCHU vs. RESCHU-SA

5
Different participants, task,

interfaces
StarCraft II vs. RESCHU-SA

Session 4 provided a decision support system, which was not embedded in other sessions,

to assist participants in UAV hacking detection tasks. The expectation of this comparison

was to have a higher divergence measure than the baseline and the second comparison.

The fourth comparison, which was between the RESCHU and RESCHU-SA inter-

face, was expected to present a larger divergence measure than the third comparison. Be-

cause the RESCHU-SA interface is a modi�ed version of the RESCHU interface, and the

RESCHU-SA interface provides an additional task of UAV hacking detection. The �fth

comparison, which was between the StarCraft II game and the RESCHU-SA interface,

was expected to have the highest divergence measure among these comparisons because

the participant groups, interfaces, and tasks were all different such that the resulting strat-

egy models were expected to be signi�cantly different.

The visualization of the hypothesis of quantitative strategy model comparisons with

increasingly different scenarios is shown in Figure 4.2, in which the horizontal axis repre-
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Figure 4.2: The model comparison hypotheses based on increasingly different scenarios.

sents the relative magnitude of model comparisons. These hypotheses are veri�ed in this

chapter with quantitative magnitude measures.

4.1.2 Model Comparison Results

HMM strategy models were developed based on observations, which were parsed from op-

erator actions, collected during experiment sessions as listed in Table 2.2. As mentioned in

the background section, HMM models were trained using the unsupervised multi-sequence

Baum-Welch algorithm [77], which is a common expectation-maximization (EM) algo-

rithm. Speci�cally, to increase the con�dence of the training results, more than 100 ran-

domly generated initializations were used in the HMM model training process for each

speci�c model structure with a certain number of hidden states, and the resulting model

with the highest data �tting likelihood was selected.

To quantitatively determine the baseline, or the “zero” benchmark point, of strategy

model differences, we focused on comparing the two experimental sessions conducted on

the RESCHU-SA interface with the same participants as highlighted in the red rectangle in

Figure 4.3. Speci�cally, the 10 RESCHU-SA interaction observations, shown in Table 2.2,
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Figure 4.3: The baseline comparison and the comparison with different participant groups.

were used for this comparison and divergence meshes were plotted. Understanding that

the RESCHU-SA interface provides three primary tasks of the UAV navigational task, the

imagery analysis task, and the UAV hacking detection task, we consider that the minimum

hidden state number in model comparisons is 3. Also, given that hidden states represent

abstract cognitive groupings, the maximum number of hidden states should not be greater

than the number of observation types, which is 10.

Similar to the baseline comparison, we compared strategy models developed from Ses-

sions 1, 2, and 3 using the strategy model comparison metric to evaluate the potential

impact of different participant groups on operator strategies. As highlighted in the yellow

rectangle in Figure 4.3, the �rst set of strategy models were developed from the combined

dataset of Sessions 1 and 2, and the second set of models were developed from Session 3.
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Figure 4.4: Divergence value meshes for the baseline comparison and the comparison with

different participant groups.

While Sessions 1 and 2 shared the same group of participants, Session 3 had another group

of participants. Thus, the comparison between strategy models developed from these two

data batches illustrate the magnitude of the potential impact of different participants on

operator strategies.

As shown in Figure 4.4, we plotted both meshes for these two comparisons, which

shared an average divergence value of 0:045 with SD (standard deviation) = 0:029 and

SD = 0:033, respectively. Thus, the baseline for strategy model comparisons without any

changes in the HSC scenario can be considered as an average divergence value of 0:045.

The two meshes in Figure 4.4 are interlaced and cannot be distinguished clearly. A non-
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parametric Mann-Whitney test with a signi�cance level ofa = 0:05 was conducted and

showed no signi�cant difference between these two divergence value distributions(p =

0:768). Given that both experiments had more than 35 participants, the high similarity

between these two comparisons indicates that different participant groups introduce limited

variability in participant overall strategies between experimental sessions with the same

interface and tasks. These results align with the experimental data in that there was no

signi�cant difference in overall participant performance. Thus, this divergence mesh result

establishes the baseline that in terms of human-in-the-loop strategies in an HSC scenario,

what it means to be similar or have no impact from factor changes can be roughly measured

at 0:045 using the strategy comparison metric.

4.2 Comparison 3

This section presents a strategy model comparison between Sessions 3 and 4 with the

same participants and tasks, but slightly different interfaces. While both Sessions 3 and 4

are conducted on the RESCHU-SA interface, Session 4 provides a decision support system

for participants to assist them with the UAV hacking detection task. This comparison is

expected to have a larger divergence measure than the baseline. Also, this comparison

result can provide insights into the effectiveness of such a support system.

4.2.1 Scenarios with Different Interfaces and an Assistant Tool

The visualization of the comparison between Sessions 3 and 4 is shown in Figure 4.5. Ses-

sion 3 repeated the experimental settings in Sessions 1 and 2, but with a different group of

participants. Session 4 shared the same participants with Session 3, and Session 4 also re-

peated the three major tasks provided by the RESCHU-SA interface. Further experimental

details of Sessions 3 and 4 can be found in Appendix B.
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Figure 4.5: Model comparisons between different interfaces with an assistant tool.

It is worth noting that in Session 4, the RESCHU-SA interface was embedded with a

decision support system, which could provide suggestions and simplify the procedure of

detecting potential UAV hacking events for participants. This decision support system was

developed based on participants' hacking detection performance and hacking event loca-

tions in Sessions 1 and 2 since all these experimental sessions shared the same simulated

map as shown in Figure 3.8. The difference on the map area when participants received

UAV hacking noti�cations is illustrated in Figure 4.6.

In Sessions 1, 2, and 3, when hacking noti�cations occurred and participants acknowl-

edged the noti�cation, the map area remained the same. Participants were required to

select noti�ed UAVs and determine potential hackings by themselves. Figure 4.6a illus-

trates an example of a noti�ed UAV without any extra support. In Session 4, when the
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