
Durability Queries on Temporal Data

by

Junyang Gao

Department of Computer Science
Duke University

Date:
Approved:

Jun Yang, Advisor

Pankaj K. Agarwal

Ashwin Machanavajjhala

Sudeepa Roy

Dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in the Department of Computer Science

in the Graduate School of Duke University
2020

Abstract

Durability Queries on Temporal Data

by

Junyang Gao

Department of Computer Science
Duke University

Date:
Approved:

Jun Yang, Advisor

Pankaj K. Agarwal

Ashwin Machanavajjhala

Sudeepa Roy

An abstract of a dissertation submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in the Department of Computer Science

in the Graduate School of Duke University
2020

Copyright c© 2020 by Junyang Gao
All rights reserved except the rights granted by the

Creative Commons Attribution-Noncommercial Licence

http://creativecommons.org/licenses/by-nc/3.0/us/

Abstract

Temporal data is ubiquitous in our everyday life, but tends to be noisy and often ex-

hibits transient patterns. To make better decisions with data, we must avoid jumping

to conclusions based on certain particular query results or observations. Instead, a

useful perspective is to consider “durability”, or, intuitively speaking, finding results

that are robust and stand “the test of time”. This dissertation studies durability

queries on temporal data that return durable results efficiently and effectively.

The focus of this dissertation is two-fold: (1) design meaningful and practical no-

tions of durability (and corresponding queries) on different types of temporal data,

and (2) develop efficient techniques for durability query processing. We first study

sequence-based temporal datasets where each temporal object has a series of values

indexed by time. Durability queries ask for objects whose (snapshot) values were

among the top k for at least some fraction of the times during a given time inter-

val; e.g., “from 2013 to 2016, United Airlines has the highest stock price among

American-based airline companies for at least 80% of the time.” Second, we consider

instant-stamped temporal datasets where each data record is stamped by a time in-

stant. Here, durability queries look for records that stand out among nearby records

(defined by a time window) and retain their supremacy for a long period of time; e.g.

“On January 22, 2006, Kobe Bryant dropped 81 points against Toronto Raptors, a

scoring record that since then has yet to be broken.” Finally, going beyond analyzing

historical data, we investigate the notation of durability into the future, where dura-

iv

bility needs to be predicted by performing stochastic simulation of temporal models.

For answering durability queries across these problem settings, we apply principled

approaches to design fast, scalable algorithms and indexing methods. Our solutions

broadly combine geometric, statistical, and approximate query processing techniques

to provide a meaningful balance between query efficiency and result quality, along

with theoretical worst-case (or average-case) guarantees.

v

To my wife, Yunqi.

To my parents, Xue and Wendong.

For their endless love, support and encouragement.

vi

Contents

Abstract iv

List of Tables x

List of Figures xi

Acknowledgements xiv

1 Introduction 1

2 Related Work 6

3 Durable Top-k Queries on Sequence-based Temporal Data 8

3.1 Introduction . 8

3.2 Related work . 10

3.3 Durable Top-k Queries with Fixed k 12

3.3.1 Baseline Methods . 13

3.3.2 Reduction to 3d Halfspace Reporting 15

3.4 Durable Top-k Queries with Variable k 19

3.4.1 Sampling-Based Method . 20

3.4.2 Index-Based Approach . 22

3.5 Coping with New Data . 36

3.6 Experiments . 38

3.6.1 Fixed-k Setting . 40

3.6.2 Variable-k setting . 43

vii

3.7 Conclusion . 56

4 Durable Top-k Queries on Instant-Stamped Temporal Data 58

4.1 Introduction . 58

4.2 Problem Statement and Preliminaries 65

4.3 Time-Prioritized Approach . 68

4.3.1 Time-Baseline Algorithm . 68

4.3.2 Time-Hop Algorithm . 70

4.3.3 Complexity Analysis of T-Hop 70

4.4 Score-Prioritized Approach . 74

4.4.1 Score-Baseline Algorithm . 75

4.4.2 Score-Band Algorithm (Monotone fff Only) 76

4.4.3 Score-Hop Algorithm . 79

4.4.4 Complexity Analysis of S-Hop 82

4.5 Expected Complexity . 84

4.5.1 Expected Answer Size . 85

4.5.2 Expected size of durable k-skyband 87

4.6 Experiments . 88

4.6.1 Experiment Setup . 88

4.6.2 Algorithm Evaluations . 92

4.6.3 DBMS-Based Implementations 98

4.6.4 Summary of Experiments . 100

4.7 Related Work . 101

4.8 Conclusion . 103

5 Durability Queries on Probabilistic Temporal Data 104

5.1 Introduction . 104

viii

5.2 Problem Formulation and Background 108

5.2.1 Problem Formulation . 108

5.2.2 Background . 110

5.3 Multi-Level Splitting Sampling . 112

5.3.1 Multi-Level Partitioning . 114

5.3.2 Sampler and Estimator . 115

5.3.3 Relationship between SRS and MLSS. 120

5.4 Extensions and Variants . 121

5.4.1 MLSS in General Form . 122

5.4.2 Variants of MLSS . 126

5.5 Optimizations . 127

5.5.1 Partition Plan Evaluation . 128

5.5.2 An Adaptive Greedy Partition Strategy 130

5.6 Experiments . 132

5.6.1 Experiment Setup . 133

5.6.2 MLSS vs. SRS . 137

5.6.3 MLSS Optimization . 140

5.6.4 Summary of Experiments . 144

5.7 Related Work . 145

5.8 Conclusion . 147

6 Conclusion 149

A Appendix 151

A.1 Full Proofs for Chapter 4 . 151

Bibliography 159

Biography 169

ix

List of Tables

3.1 Real and synthetic datasets used in experiments. 38

3.2 End-to-end CEL index construction times on various datasets. 56

4.1 Dataset summary . 87

4.2 Query Parameters (default value in bold) 89

4.3 Query time (in seconds) comparison on NBA-2 when varying τ . Post-
greSQL backend. 98

4.4 Query time (in seconds) comparison on NBA-2 when varying L. Post-
greSQL backend. 99

4.5 Query time (in seconds) comparison on different datasets. Dataset
size (measured by DBMS storage size) is shown in parentheses. Post-
greSQL backend. 99

5.1 Notations . 113

5.2 Query settings on different models. 136

5.3 Query answer comparisons on Queue Model. Results are averaged
over 100 runs with standard deviation. 137

5.4 Query answer comparisons on CPP Model. Results are averaged over
100 runs with standard deviation. 137

5.5 Query performance (single run) comparisons on RNN Model. 137

x

List of Figures

3.1 Example hki ptq (left) and Hk
i ptq (right). 15

3.2 A geometric representation of cntki px, yq. 17

3.3 Shearing Type-p0, 1q pieces of cntki px, yq to be axis-aligned. The original
coordinate space is on left and the transformed space on the right. . . 19

3.4 Illustration of three index-based methods. 23

3.5 Partitioning of K by a chosen subset K. Each k‹ P K is shown as a
circled point, and the interval of K that k‹ is enclosed by t and u. . . 30

3.6 Generating SynX from Syn. Here, an object is boosted twice (at
different times): once to top 20 and once to top 1. 39

3.7 Comparing query efficiency for methods for the fixed-k setting. Dataset
is Syn, with n “ 1M, m “ 5K, and σ “ 10. 43

3.8 Quality of approximate answers by various index-based methods; lnpkq „
N p3, 0.52q and K “ r1, 500s; uniform I. 44

3.9 Quality of approximate answers by various index-based methods; k „
N p50, 152q and K “ r1, 500s; uniform I. 45

3.10 Quality of approximate answers by CEL vs. COL on SynX with n “
1K, m “ 1K, σ “ 20; lnpkq „ N p3, 0.52q and K “ r1, 500s; uniform I. 46

3.11 Quality of approximate answers by CEL vs. COL on SynX with n “
1K, m “ 1K, σ “ 10; k „ N p50, 152q and K “ r1, 500s; uniform I. . . 47

3.12 Query execution times for various durable top-k solutions. Syn, n “
1M, m “ 5K, σ “ 10. 50

3.13 Index space for various durable top-k solutions. Syn, n “ 1M, m “

5K, σ “ 10; uniform I (relevant to only CEL). 50

xi

3.14 CEL index quality as a function of optimization time spent on assess-
ing expected error using Monte Carlo simulations during optimization;
same query workload as Figure 3.8. 53

3.15 Optimization time as a function of budget. Syn, n “ 1M, m “ 5K,
σ “ 10, K “ r9K, 10Ks . 54

4.1 A case study on finding durable noteworthy rebound performances
in NBA history. Red squares highlight results returned by different
queries, and line segments represent the durability time window. . . . 60

4.2 Data skipping in Time-Hop Algorithm. 69

4.3 Blocking mechanism in score-prioritized approach 74

4.4 Durability checks in S-Band and S-Hop. 78

4.5 Value distributions for synthetic dataset 89

4.6 Performance comparison as τ varies. 90

4.7 Performance comparison as k varies. 91

4.8 Performance comparison as |I| varies. 94

4.9 Performance comparison on Network-X as d varies. 95

4.10 Scalability test on IND and ANTI Syn-X. 96

4.11 Runtime distribution on 5d NBA data. 98

5.1 Simulation (t “ 200, β “ 15) of a root path using MLSS with splitting
ratio r “ 3. 115

5.2 A simple two-level case with level-skipping. Dashed path represents a
(discrete-time) series that directly goes from L0 to L2 without entering
L1. 121

5.3 Simulation (t “ 200, β “ 15) of a root path using MLSS based on level
partitions in temporal domain. 127

5.4 Tandem Queue with Poisson arrivals and Exponential service time. . 133

5.5 A stochastic process by LSTM-RNN-MDN. 134

5.6 Query efficiency on Queue Model . 138

5.7 Query efficiency on CPP Model . 138

xii

5.8 Query answer quality over time. 139

5.9 Trade-off between splitting ratio and MLSS’s overall efficiency on
Small Query. 141

5.10 Trade-off between splitting ratio and MLSS’s overall efficiency on Tiny
Query. 141

5.11 Trade-off between number of levels and MLSS’s overall efficiency on
Small and Tiny Query. 142

5.12 Efficiency of Greedy Level Partitions. 142

xiii

Acknowledgements

I would like to express my deepest appreciation to my advisor, Professor Jun Yang,

for his guidance, support, and encouragement through each stage of my PhD studies.

It has been an amazing five years working with him. I would also like to extend

my gratitude to Professor Pankaj K. Agarwal for being a great mentor. Jun and

Pankaj’s advice has always been insightful and prompt. I’m sincerely grateful for

their patience in shaping my taste of scientific research from the ground up, and in

showing me the right direction towards conducting rigorous research work. They

have always been the best role models for me, and will be constantly inspiring me

and motivating me as an independent researcher in the future.

Many thanks to Professor Ashwin Machanavajjhala and Professor Sudeepa Roy

for their service on my committee, and for their invaluable suggestions on my research

work and presentations.

Thanks should also go to Xin Luna Dong, Xian Li and Yifan Xu for hosting me at

Amazon Inc. for a fruitful internship during the beautiful Seattle summer in 2018. I

have had great pleasure of working with them, and learning how to conduct impactful

research in an engineering-research environment. I also want to thank Xiaomeng Ban

and You (Will) Wu from Google Inc. for their support and guidance throughout my

internship at Google in the summer of 2019. I wholeheartedly appreciate to all of you,

broadening and deepening my understandings of the industrial world and academia

world.

xiv

Many people played a decisive role in journey of my PhD studies. Special thanks

to Professor Guoliang Li for his guidance when I was an undergraduate student in

Tsinghua University. I thank him for inspiring me and leading me into the database

community. Thanks to the staff at Duke, especially Marilyn Butler, for their help

with all kinds of logistics, and keeping my life at Duke always well-prepared and

organized. I want to thank my fellow graduate students and friends at Duke. I

thank my office mate, Yuan Deng, for being a wonderful comrade along the way for

the past five years. Thanks to all my friends, to name a few, Yan Chen, Zhengjie

Miao, Stavros Sintos, Yuchao Tao, Yuhao Wen, Shengbao Zheng and Yuanjun Yao,

for your kindness and support.

I acknowledge the funding that I received from all parties. Thank the Duke

Graduate School, and the National Science Foundation.

Finally, I would like to dedicate this dissertation to my wife, Yunqi Li, and to my

parents, Xue Yang and Wendong Gao. I could not appreciate more for their endless

support and encouragement. None of this would have been possible without their

unconditional love in me.

xv

1

Introduction

Temporal data is ubiquitous in our everyday life, and looking forward, we can expect

more and more historical data to become available, as our economic, social and

scientific activities are increasingly captured in digitized forms. Given the abundance

of historical data and the underlying temporal information, a useful way of working

with temporal data is to consider “durability”, or intuitively speaking, finding results

that are robust and stand “the test of time”. Real data tends to be noisy and

often exhibits transient patterns. Incorporating durability on temporal data would

help to rule out noises and coincidences, and lead to better decision-making with

robustness and confidence. In addition, durability naturally can be interpreted into

many good qualities such as consistency, uniqueness and interestingness, etc. The

notions of durability are broadly applied in practice, especially in the field of media

and marketing (to make eye-catching headlines). Here are a few examples where

our understanding of statements based on temporal data can be strengthened by

integrating durability.

Example 1. “United Airlines has the highest stock price among American-based

airline companies on 2015.” To show that 2015 is not just an outlier for United

1

Airlines, we can add that: “From 2013 to 2016, United Airlines has the highest

stock price among American-based airline companies for at least 80% of the time.”

Durability reflects consistency over time. The latter statement apparently conveys

stronger messages for investors.

Example 2. “Kobe Bryant dropped 81 points in the game against Toronto Raptors

on Jan. 22, 2006.” While impressive by itself, this statement can be boosted by

adding a temporal context: “At that time, this record was the top-1 scoring per-

formance in the past 45 years of NBA history.” Naturally, the further back we can

extend the “durability” (while the record still remains top), the more convincing

the statement becomes. We can extend durability forward in time as well: “Since

2006, Kobe’s 81 points scoring performance has yet to be broken as of today.” This

kind of claims are popular in sports domain, and people are fascinated with those

long-lasting or even “unbreakable” records.

Example 3. “On Jan. 17, 2020, Google became the third publicly traded US tech

company to reach one trillion market capitalization.” Google is winning at the

moment, but how about the future? One can predict durability into the future: “In

the next ten years, what is the probability that Google will remain as one of the top 3

most valuable US tech companies?” Durability here shows how long (or, how likely)

a condition (that currently holds) remains valid looking forward into the uncertain

future.

Examples above show how durability helps make more meaningful decisions from

data, discover interesting facts in data, or make robust predictions against uncertain

future. These examples also illustrate many variants of the notions of durability. As

in Example 1, stock market is a sequence-based temporal dataset where each tem-

poral object (i.e., company) has a series of values indexed by time (i.e., daily stock

price). Under this setting, we consider durability as a fraction of the times (during

2

a given time interval) that an object whose (snapshot) values were among the top k.

In Example 2, NBA players’ scoring records is an instant-stamped temporal dataset

where each record is an individual entity 1 and is stamped by a time instant. Here,

durability is defined as the length of a time window where a record stands out and

retains its supremacy among other records in this time window. As Example 3 shows,

durability not only can be measured on existing historical data, which is certain, but

also can be applied to probabilistic data based on predictions or stochastic models.

It reflects the probability of a certain condition remaining valid in the future. We

acknowledge that there exists multiple interpretations of durability according to dif-

ferent data models and application scenarios. This dissertation mainly focuses on

these three types of durability as mentioned above. We hope our work could encour-

age researchers to explore more possibilities and interesting problems along the line

of durability on temporal data.

Given the notion of durability, users can ask what we will call “durability queries”

to find results with long durability from temporal data. Many durability queries are

fundamentally hard and tend to be complex in nature. As the above examples

show, it requires different combinations of selection, ranking and aggregation. It is

challenging to develop efficient algorithms that answer durability queries, especially

the ones with good theoretical performance guarantees in the worst case.

Contributions. This dissertation serves as a first step to systematically study

durability queries on temporal data. We identify three types of durability queries

that are popular in real-life applications, and develop a comprehensive suite of com-

putational techniques for efficiently answering these queries. Our algorithms run

significantly faster on most real temporal datasets compared to existing solutions,

and are also equipped with sound worst-case performance guarantees. It allows the

1 Though some records belong to the same player, we still consider each one of them as individual
game performance.

3

general public to reason about temporal data incorporating durability at increased

efficiency and effectiveness.

The rest of this dissertation is organized as follows.

In Chapter 2, we briefly review the previous studies regarding the notion of

durability and durability queries on temporal data. More detailed literature reviews

can be found in Related Work sections of Chapter 3, Chapter 4 and Chapter 5.

In Chapter 3, we first study durability queries on sequence-based temporal data,

which search for objects whose values were among the top k (based on snapshot values

at each timestamp) for at least some fraction of the times during a given interval. A

concrete instance is shown in Example 1. We present a suite of algorithmic techniques

for solving this problem, ranging from exact solutions where k is fixed in advance,

to approximate methods that work for any k and are able to exploit workload and

data characteristics to improve accuracy while capping index cost. This chapter is

based on joint work with Pankaj K. Agarwal and Jun Yang ([41] and [42])2, and is

reprinted with permission.

In Chapter 4, we consider durability queries on instant-stamped temporal data.

Under this setting, a useful way of finding interesting or exceptional records is to

explore how well they compare with other records that arrived nearby (defined by

a time window), and how long they retain their supremacy. In general, given a

sequence of instant-stamped records, suppose that we can rank them by a user-

specified scoring function f , which may consider multiple attributes of a record to

compute a single score for ranking. More formally, durability queries find records

whose scores were within top k among those records within a “durability window” of

given length, e.g., a 10-year window starting/ending at the timestamp of the record.

The parameter k, the length of the durability window, and the parameters of the

2 Junyang Gao is the lead author of the work, who designed, directed and coordinated the research,
and provided conceptual and technical contributions for all aspects of the work.

4

scoring function (which capture user preference) can all be given at the query time.

We propose new algorithms for solving this problem, and provide a comprehensive

theoretical analysis on the complexities of the problem itself and of our algorithms.

This chapter is based on joint work with Stavros Sintos, Pankaj K. Agarwal and Jun

Yang ([44])2, and is reprinted with permission.

Finally, we study durability queries on probabilistic temporal data and manage to

predict durability in the future with reliability in Chapter 5. Intuitively, the notion

of durability predicts how long (or, how likely) a condition that currently holds

will remain valid in the future. To handle temporal data uncertainty (especially

considering temporal dependence), we assume there exists a stochastic process (i.e.,

statistical temporal model or neural networks) that provides step-by-step predictions

of a temporal series into the future. Our solution adopts a Monte Carlo approach

to manage probabilistic temporal data and answer durability queries by simulating

multiple possible worlds. Yet going beyond the standard Monte Carlo approach, we

propose to apply a novel sampler and estimator, what we will refer to as “Multi-

Level Splitting Sampling”, that combine the idea from branching process theory [53]

and importance sampling [27, 47, 17]. Our proposed solution is proved to provide

significant simulation cost reduction compared to standard techniques in a variety

of tasks in practice – up to an order-of-magnitude query time speedup without loss

of answer quality. This chapter is based on joint work with Pankaj K. Agarwal and

Jun Yang.2

We conclude the dissertation in Chapter 6, and discuss some open questions and

future work.

5

2

Related Work

There is a connection between durability queries and queries in temporal databases [103]

where tuples in database or results generally carry “validity” intervals. The database

community has been devoted to studying temporal databases and its corresponding

queries in the past, ranging from temporal data warehousing [113], temporal in-

formation retrieval [94], to temporal aggregations [117, 114]. As a comparison, in

this dissertation, we formulate the notion of durability as a general concept on a

variety types of temporal data, and durability queries we considered also tend to

be more diverse and more complex in nature, as examples in Chapter 1, requiring

different combinations of selection, ranking, aggregation, and even predictions over

probabilistic data.

Several works have independently studied similar queries on temporal data1,

which can all be viewed as specific instances or variants of durability queries. For

example, Lee et al. [73] firstly considered the problem of computing consistent top-k

queries over time, which are essentially a special case of durability queries as in Ex-

1 Detailed literature review can be found in each Chapter. Here we only sketch the high-level
description of related work to give readers a broader perspective of the topic.

6

ample 1 and will be soon introduced in Chapter 3. Then, Wang et al. [108] further

extend the problem to the more general case as our setting. In another line of work,

the notion of durability is incorporated implicitly in different forms of presence. For

example, in [65] and [118], authors consider the notion of durability in the form of

prominent streaks in sequence data. A prominent streak is a long consecutive subse-

quence consisting of only large (small) values. Similarly, Jiang and Pei [64] studied

Interval Skyline Queries on time series, where durability (segments of time series

dominate others) is used as a dimension for skyline comparison. In this dissertation,

our goal is not simply to solve different types of durability queries. In general, the

key contribution of the proposed work, which sets it apart from previous studies, is

the demonstration of how to leverage the special semantics of time to offer richer

queries, more meaningful results, and better algorithms.

Going beyond traditional temporal data, durability queries also arise in a variety

of different domains. In the field of Information Retrieval, authors [78] have studied

the problem of finding versioned documents (i.e., web pages whose contents change

over time) that are consistently related to given keyword(s) search during a time

period. For dynamic graphs or temporal graphs, where graphs evolve over time and

are typically represented as a sequence of graph snapshots, [96] and [97] have studied

the problem of finding the (top-k) most durable (i.e., the longest existence) matches

of an input graph pattern query. More broadly, persistent homology in computational

topology [37] similarly represents the notion of durability as in temporal data. The

intuition is that more persistent features (detected over a wide range of spatial scales)

are more likely to represent true features of the underlying space.

7

3

Durable Top-k Queries on Sequence-based
Temporal Data

Time is the ultimate critic.

Stewart Stafford

3.1 Introduction

Example 1 demonstrated the usefulness and interestingness of a specific type of dura-

bility queries on sequence-based temporal data. Generally speaking, let us consider

a database of objects with time-varying attributes; i.e., a sequence of values over

time. At each time instant, we can find a subset of objects satisfying certain query

conditions in the current snapshot. To reflect durability, we could aggregate those

snapshot query results and return objects that satisfy the query condition with some

consistency over time. More specifically, given a period of time, a durability query

searches for objects that satisfy the query condition for at least a specific number of

time instants in the given time window.

8

In this chapter, we tackle “τ -durable top-k queries”, which instantiate the (snap-

shot) query condition as ranking/top-k, and have also been previously considered

in [108]. Given a database of objects with time-varying attributes, assume that we

can rank these objects for every time instant. Intuitively, a τ -durable top-k query

returns, given a query interval I, objects that rank among the top k for at least τ

fraction of the time instants in I. In our last example above, τ “ 0.8 and k “ 10.

We give a more formal problem statement below.

Problem Definition. Consider a discrete time domain of interest T “ t1, 2, . . . ,mu

and a set of objects labeled 1, 2, . . . , n, where each object i has a time-varying value

given by function vi : T Ñ R. Let D “ tvi | 1 ď i ď nu denote this time series

database.

Given time t P T and object i, let rankiptq denote the rank of i among all objects

according to their values at time t; i.e., rankiptq “ 1`
ř

1ďjďn 1rvjptq ą viptqs.

Given a non-empty interval ra, bq Ď T, we define durki pra, bqq, the durability of

object i over ra, bq (with respect to a top-k query), as the fraction of time during

ra, bq when object i ranks k or above; i.e., durki pra, bqq “ p
ř

tPra,bq 1rrankiptq ď ksq{pb´aq.

Given D, a non-empty interval I Ď T, and a durability threshold τ P r0, 1s, a

durable top-k query, denoted DurTopkpI, τq, returns the set of objects whose durability

during I is at least τ , i.e., DurTopkpI, τq “ ti P r1, ns | durki pIq ě τu.

Contributions. We present a comprehensive suite of techniques for answering

durable top-k queries. First, even in the simpler case when the query parameter k is

fixed and known in advance, application of standard techniques would lead to query

complexity linear in either the number of objects, or the total number of times objects

entering or leaving the top k during the query interval. We develop a novel method

based on a geometric reduction to 3d halfspace reporting [3], with query complexity

only linear in the number of objects in the result, which can be substantially less

9

than how many times they enter or leave the top k during the query interval.

When k is not known in advance, supporting efficient queries becomes more chal-

lenging. A straightforward solution is to extend the fixed-k solution and build an

index for each possible k, but doing so is impractical when there are many possible

k values. Instead, we consider two approaches for computing approximate answers:

sampling-based and index-based approximation. The sampling-based approach ran-

domly samples time instants in the query interval, and approximates the answer with

the set of objects that are durable over the sampled time instants (instead of the full

query interval). It provides a good trade-off between query time (number of samples

drawn) and result quality. The index-based approach selects useful information to

index in advance—much like a synopsis [29]—from which queries with any k can be

answered approximately. We frame the problem of selecting what to index as an

optimization problem whose objective is to minimize expected error over a query

workload, and explore alternative solution strategies with different search spaces.

This approach is able to achieve high-quality approximate answers with fast query

time and low index space.

3.2 Related work

Lee et al. [73] considered the problem of computing consistent top-k queries over time,

which are essentially a special case of τ -durable top-k queries with τ “ 1. The basic

idea of their solution is to go through the query interval and verify membership

of objects in the top k for very time instant. This process can be further sped

up by precomputing the rank of each object at every time instant and storing this

information in a compressed format. However, for long query intervals, this approach

is still inefficient as its running time is linear in the length of the query interval (as

measured by the number of time instants).

Wang et al. [108] extends the problem to the general case of τ ď 1. One key

10

observation is that in practice, between two consecutive time instants, the set of top

k objects is likely to change little. Their approach, called “TES”, precomputes and

indexes changes to top-k memberships over time (and only at times when actual

changes occur). Given a query interval, TES first retrieves the top k objects at the

start of the interval. Next, using its index, TES finds the next time instant when

the top-k set differs from the current, and updates the set of candidate objects and

how long they have been in the top k so far; those with no chance of meeting the

durability threshold (even assuming they are among the top k during the entire

remaining interval to be processed) can be pruned. The process continues until we

reach the end of the query interval. The time complexity of TES is linear in the

total number of times objects entering or leaving the top k during the query interval,

which can still be as high as k times the length of the query interval for complex

temporal data.

Durable top-k queries also arise in informational retrieval [78]. Given a set of

versioned documents (web pages whose contents change over time), a set of query

keywords Q and a time interval I, the problem is to find documents that are

consistently—more than τ fraction of the time over over I—among the most rel-

evant to Q. The focus of [78] is how to merge multiple per-keyword rankings over

time efficiently into a ranking for Q, based on the rank aggregation algorithm by

Fagin et al. [39]. The problem in our setting does not have this dimension of Q, so

we are able to devise more efficient indexes and algorithms. Finally, approximation

has not been addressed by any previous work above [73, 78, 108].

Returning τ -durable top-k objects is related to ranking temporal objects based on

their durability score during the query window, which leads to another line of related

work on ranking temporal data. Li et al. [76] first considered instant top-k queries,

which ranks temporal objects based on a snapshot score for a given time instant.

Then, Jestes et al. [63] studied a more general and robust ranking operation on

11

temporal data based on aggregation—for each temporal object, an aggregate score

(based on average or sum, for example) is first computed from the object’s time-

varying value over the query interval, and then the objects are ranked according

to these scores. Note that their problem is markedly different from ours: in our

problem setting, we cannot directly compute the durability score of an object without

examining all other objects’ values over the query interval. Nonetheless, given a

fixed k, we could precompute a time-varying quantity hki ptq “ 1rrankiptq ď ks for

each object i and treat the results as input to the problem in [63], with durability

defined using the sum of hki ptq over time. Indeed, one of the baseline methods we

consider in Section 3.3.1 for the simple case of fixed k, based on precomputed prefix

sums [54], uses essentially the same idea as the exact algorithm in [63]. The case of

variable k we consider requires very different approaches. While approximation was

also considered in [63], they focus on approximating each object’s time-varying value

with selected “breakpoints” in time. In contrast, because we cannot afford to index

hki ptq for all possible k values, we focus on how to select k’s to index in Section 3.4.2,

which is orthogonal to the approach in [63].

3.3 Durable Top-k Queries with Fixed k

This section considers the simpler case of durable top-k queries where the query

parameter k is fixed and known in advance; only the query interval I is variable.

Practically, this problem is less interesting than the case where k is variable and

known only at query time. Nonetheless, we study this problem because its solutions

can be used as a building block in solving the variable k case. We shall quickly go

over two baseline methods based on standard techniques, and then present in more

detail a novel method based on a geometric reduction. All these methods are exact.

Before presenting these methods, we introduce some notation. For each object

i, we define the time-varying indicator function hki ptq “ 1rrankiptq ď ks for t P T; its

12

value at time t is 1 when object i is among the top k at time t, or 0 otherwise. The

durability of object i over query interval I is simply the sum of this function over

t P I, divided by the length of I. According to this function, we can define for each

object i a partitioning of T into a list Iki of maximal intervals, such that:

• For each J P Iki , h
k
i ptq remains constant (either 1 or 0) for all t P J . We call J

a 1-interval if this constant is 1, or 0-interval otherwise.

• For each pair of consecutive intervals J and J 1 in Iki , h
k
i ptq ‰ hki pt

1q for all t P J

and t1 P J 1. In other words, 1-intervals and 0-intervals alternate in Iki , and each

of them is maximal.

Intuitively, |Iki |, the number of intervals in Iki , measures the “complexity” of hki ptq

and is basically (one plus) the number of times that object i enters or leaves the top

k. Give k, we write |Ik| “
řn
i“1|Iki | for the overall complexity of top-k membership

over time, or roughly, the total number of times that objects enter or leave the top

k over time. Given time interval I, we write |IkrIs| “
řn
i“1

ř

JPIki
1rJ X I ‰ ∅s for

the complexity of top-k membership over I.

Note that given k, computing Iki (equivalently, hki ptq) for all objects takes only

Opmnq (i.e., linear) time, assuming that data is clustered by time such that the

values of all objects at any time instant can be efficiently retrieved—even if they

may not be sorted by value, a linear-time (top-k) selection algorithm can compute

the membership of each object in the top k [16, 100]. If data is not clustered by

time, we simply sort first. All methods below require computing hki ptq and/or Iki for

all objects for index construction.

3.3.1 Baseline Methods

Prefix Sums. A simple method for finding the τ -durable top-k objects would be

to compute the durability of each object over the query interval and check if it is at

13

least τ . Instead of computing the durability an object i naively by summing hki ptq over

the query interval instant by instant, a standard method is to precompute and index

the prefix sums [54] for hki ptq, defined as follows: Hk
i p1q “ 0 andHk

i ptq “
ř

1ďt1ăt h
k
i ptq.

Then, we can compute the durability of object i over interval ra, bq using the prefix

sums at the interval endpoints; i.e., durki pra, bqq “ pH
k
i pbq ´H

k
i paqq{pb´ aq.

The prefix-sum function Hk
i ptq is piecewise-linear, as illustrated in Figure 3.1,

where each piece corresponds to a 1-interval (if the slope is 1) or 0-interval (if the

slope is 0). Thus, we need to store and index only the breakpoints in a standard

search tree (such as B+tree), which takes Op|Iki |q space and supports Hk
i ptq lookups

(and hence durability computation over any interval) in Oplog|Iki |q time, independent

of the length of the query interval. The same idea was used in [63].

In practice, unless |Iki | is large, it is feasible to simply store Hk
i ptq either as a

sparse array of time-count pairs sorted by time, or as a dense array of counts (where

the array index implicitly encodes the time), whichever uses less space. Doing so

does not change the asymptotic space or time complexity, but often results in more

compact storage.

Overall, given k, precomputing and indexing Hk
i for all objects only takes time

linear in the size of the database, and requires Op|Ik|q index storage. With this

method, although testing whether an object τ -durable is very efficient, we must still

check every object, so the running time of a durable top-k query is still linear in n,

the total number of objects.

Interval Index. In practice, when k ! n, many objects may never enter the top

k at any point during the query interval; the method above could waste significant

time checking these objects. To avoid such unnecessary work, we can apply another

standard technique: storing the 1-intervals for all objects in standard interval index

(such as interval tree) that supports efficient reporting of intervals overlapping a

14

0 2 4 6 8

t

0

0.5

1

1.5

2

h
ik
(t

)

0 2 4 6 8

t

0

1

2

3

4

5

H
ik
(t

)

Figure 3.1: Example hki ptq (left) and Hk
i ptq (right).

query interval (logarithmic in the number of indexed intervals and linear in the

number of result intervals). Given a query interval I, we use the index to find all

1-intervals that overlap with I, and simply go through these 1-intervals to compute

durabilities for objects associated with these intervals (those not entirely contained

in I require special, but straightforward, handling). Any object with 0 durability in

I will never come up for processing.

Overall, given k, precomputing and indexing 1-intervals for all objects takes time

linear in the size of the database, and requires Op|Ik|q index storage. The running

time of a durable top-k query over interval I is logarithmic in |Ik| but linear in |IkrIs|

(or the number of times objects enter and leave top k during I).

3.3.2 Reduction to 3d Halfspace Reporting

The two baseline methods each have their own weakness. In practice, durable top-k

queries tend to be selective—after all, they intend to find special objects. However,

the method of prefix sums has to examine every object (and hence runs in time linear

in n), while the method of interval index has to examine all 1-intervals during the

query interval (and hence runs in time linear in |IkrIs|). These methods can end up

examining substantially more objects beyond those in the actual result. Ideally, we

15

would like an algorithm whose running time is linear only in the number of actual

result objects. In this section, we present a novel reduction of durable top-k queries

(for a fixed k) to 3d halfspace reporting queries, which leads us to a theoretically

optimal data structure proposed in [3] that can be used to answer a durable top-k

query in time polylogarithmic in |Ik| and only linear in the number of result objects.

In the 3d halfspace reporting problem, we want to preprocess a set of points in

R3 in a data structure such that all points below/above a given query plane can be

reported efficiently. By duality [33], an equivalent formulation of the problem is to

store a set of planes in R3 such that all planes below/above a query point can be

reported efficiently.

Consider object i. Let cntki px, yq be the number of times that object i ranks within

the top k during rx, yq. We show that cntki px, yq can be represented by a bivariate

piecewise-linear function, with the domain of each piece being a rectangle of the form

ra, bqˆra1, b1q Ď T2, where both ra, bq and ra1, b1q are intervals in Iki and ra, bq precedes

or is the same as ra1, b1q; see Figure 3.2. There are a total of N “ |Iki |p|Iki | ` 1q{2

pieces. Note that:

• If ra, bq is a 1-interval, then cntki is linear in x with x-slope of ´1. Intuitively,

when x lies in a 1-interval, cntki px ` 1, yq will be one less than cntki px, yq, for

losing the contribution of 1 from time instant x. On the other hand, if ra, bq is

a 0-interval, then cntki does not change with x.

• If ra1, b1q is a 1-interval, then cntki is linear in y with y-slope of 1. Intuitively,

when y lies in a 1-interval, cntki px, y ` 1q will be one more than cntki px, yq, for

gaining the contribution of 1 from time instant y. On the other hand, if ra1, b1q

is a 0-interval, then cntki does not change with y.

Therefore, based on their domains, the linear functions can be classified into four

types p0, 0q, p0, 1q, p´1, 0q, and p´1, 1q below (here c “ cntki pa, a
1q):

16

Figure 3.2: A geometric representation of cntki px, yq.

ra1, b1q is 0-interval ra1, b1q is 1-interval
ra, bq is 0-interval Type p0, 0q: Type p0, 1q:

c c` py ´ a1q
ra, bq is 1-interval Type p´1, 0q: Type p´1, 1q:

c´ px´ aq c´ px´ aq ` py ´ a1q

Geometrically, as Figure 3.2 shows, cntki px, yq consists of Op|Iki |2q 3d pieces classi-

fied into the four types above. Now, imagine that in this 3d space, we put together all

such pieces for all n objects in our database. Note that DurTopkprx, yq, τq “ ti P r1, ns |

cntki px, yq ě τ ¨ py ´ xqu. From a geometric perspective, a DurTopkprx, yq, τq query is

specified by a point p “ px, y, τpy´xqq in 3d, and should return precisely those pieces

laying above or containing p—each such piece corresponds to a result object. With

the index structure and algorithm in [5], we can support this query in OpN polylogNq

space and OppolylogN ` |A|q time, where N “
řn
i“1|Iki |p|Iki | ` 1q{2, and |A| de-

notes the number of result objects. Note that OppolylogNq “ Oppolylog|Ik|2q “

Oppolylog|Ik|q.

A Practical R-tree Implementation. As practical alternative to the theoret-

ically optimal data structure from [5], we can index all pieces of cntki px, yq from all

objects in a single 3d R-tree. However, an obvious shortcoming of this approach is

that many such pieces—namely, those of types p0, 1q, p´1, 0q, and p´1, 1q)—are not

axis-aligned, so they have rather large and loose bounding boxes that lead to poor

17

query performance.

Taking advantage of the observation that the pieces of cntki px, yq have only four

distinct orientations, we propose a simple yet effective alternative that avoids the

problem of non-axis-aligned pieces altogether. We use four 3d R-trees, one to index

each type of cntki px, yq pieces for all objects. Within each R-tree, all pieces share the

same orientation and have boundaries parallel to each other’s, making them efficient

to index as a group (more details below). Then, a DurTopkprx, yq, τq query can be

decomposed into four 3d intersection queries, one for each of the R-trees.

In particular, for the R-tree indexing all Type-p0, 0q pieces, each piece is an axis-

aligned rectangle ra, bq ˆ ra1, b1q ˆ rc, cs, lying parallel to the xy-plane and vertically

positioned at c. To answer (the part of) DurTopkprx, yq, τq in this R-tree, we sim-

ply need to find all rectangles stabbed by an upward vertical ray originating from

px, y, τpy ´ xqq.

For an R-trees indexing pieces of a type other than p0, 0q, although the pieces

are not axis-aligned to begin with, we can apply a shear transformation to the 3d

coordinate space such that these pieces become axis-aligned and the query ray re-

mains vertical. Hence, indexing and querying these sheared objects becomes exactly

the same problem as in the R-tree for Type-p0, 0q pieces. For example, consider the

following shear transformation for Type-p0, 1q pieces, which takes a point px, y, zq to

»

–

1 0 0
0 1 0
0 ´1 1

fi

fl

»

–

x
y
z

fi

fl “ px, y, z ´ yq.

Under this shear transformation, a Type-p0, 1q piece would become an axis-aligned

rectangle ra, bq ˆ ra1, b1q ˆ rc ´ a1, c ´ a1s, parallel to the xy-plane and vertically

positioned at c ´ a1. The query ray would originate from px, y, τpy ´ xq ´ yq and

remain upward vertical. Figure 3.3 illustrates this transformation.

Shear transformations for other types can be similarly defined. We summarize

18

0

5

0

10

c
n
t ik

(x
,y

)

15

2

x

4

y

121086420

Query point (x,y,z)

Function z = c + (y-a')

0

1

0

2

3

c
n
t ik

(x
,y

)

4

5

2

x

1210

y

84 6420

Sheared query point (x,y,z-y)

Sheared function z = c - a'

Figure 3.3: Shearing Type-p0, 1q pieces of cntki px, yq to be axis-aligned. The original
coordinate space is on left and the transformed space on the right.

them below:

Type p0, 1q Type p´1, 0q Type p´1, 1q

Shear matrix

»

–

1 0 0
0 1 0
0 ´1 1

fi

fl

»

–

1 0 0
0 1 0
1 0 1

fi

fl

»

–

1 0 0
0 1 0
1 ´1 1

fi

fl

In sum, with four R-trees, we can process a DurTopkprx, yq, τq query as four 3d

queries intersecting a vertical query ray with vertically elevated axis-parallel rect-

angles. The total space complexity is OpNq, lower than the theoretically optimal

structure. While this approach no longer offers the same theoretical guarantee on

the query time, it uses only a simple, standard data structure, and is very efficient

in practice.

3.4 Durable Top-k Queries with Variable k

The problem when k is variable and known only at the query time is more interesting

and challenging than the case of fixed k. Naively, one could support variable k

by creating an index for each possible value of k, using one of the methods from

Section 3.3. However, doing so is infeasible when there exist many possibilities

for k. As discussed in Section 3.2, TES, the best existing solution, indexes all top-k

19

membership changes over time, and runs in time linear to the number of such changes

during the query interval. For data with complex characteristics, TES requires a large

index and still has high query complexity. In practice, users may be fine approximate

answers to durable top-k queries. For example, it may be acceptable if we return a

few durable top-55 objects when users ask for durable top-50 objects.

Hence, in this section, we study approaches that allow us answer DurTopkpI, τq

queries with variable k approximately and efficiently, with much lower space require-

ment.

Our methods come in two flavors: sampling-based and index-based. The sampling-

based approach is simple: we simply sample time instants in the query interval I

randomly, and use the durabilities of objects over the sampled time instants as an

approximation to their durabilities over I. The index-based approach aims at pro-

viding approximate answers efficiently using a small (and tunable) amount of index

space—preferably small enough that we can afford to keep the entire index in mem-

ory even for large datasets. To this end, this approach intelligently chooses the most

useful information to index, based on query workload and data characteristics. We

note that given k and an object i, hki may not be all that different from hk`1

i (i.e.,

how object i enters or leaves top k is likely similar to how it enters or leaves top

k ` 1); hence, remembering hki may provide a good enough approximation to hk`1

i .

Furthermore, not all k’s are queried with equal likelihood, and for some k’s and i’s,

hki has low complexity, and may in fact simply remains 0 throughout T. The index-

based approach uses these observations to guide its selection of what to index under

a space budget.

3.4.1 Sampling-Based Method

Given query interval I, the sampling-based method chooses a set of time instants IR

randomly from I. With a slight abuse of notation, let durki pIRq “ p
ř

tPIR
1rrankiptq ď

20

ksq{|IR|. For each t P IR, this method computes the top k objects at time t, and

keeps a running count of how many times each object has been seen so far. After

examining all IR, the method returns the objects appearing at least τ |IR| times, i.e.,

those with durki pIRq ě τ , as an approximate answer to DurTopKpI, τq.

With a sufficient number of sampled time instants, we can ensure that durki pIq and

durki pIRq are close with high probability, as the following lemma shows :

Lemma 1. Let IR be a set of randomly sampled time instants from I of size 1
2pετq2

lnp2k
δτ
q.

Then for any object i, with probability at least 1´ δ, |durki pIq ´ durki pIRq| ď ετ .

Proof. The key to the proof is the Chernoff-Hoeffding bound [56]. Fix an object i,

and let Xt be a random variable indicating whether t P I is chosen in IR; i.e., Xt “ 1

if t P IR or 0 otherwise. Let F “
ř

tPI Xth
k
i ptq “

ř

tPIR
hki ptq “ durki pIRq ¨ |IR|. Note

that ErF s “
ř

tPI ErXis ¨ h
k
i ptq “

|IR|
|I| ¨

ř

tPI h
k
i ptq “ durki pIq ¨ |IR|. Therefore,

Prr|durki pIq ´ durki pIRq| ě ετ s “ Prr|F ´ ErF s | ě ετ |IR|s .

Applying the Chernoff-Hoeffding bound, we have

Prr|durki pIq ´ durki pIRq| ě ετ s ď 2e´2|IR|pετq2 .

This is the single bound for object i. To make this condition hold for each object

we have seen in top-k over time, we also need apply the Union Bound. By setting

2e´2|IR|pετq2 ď δ{pk
τ
q, where k

τ
is the maximum possible size of τ -durable top-k objects

over any query interval. Solving for |IR|, we get |IR| “ 1
2pετq2

lnp2k
δτ
q.

The lemma guarantees that with sufficient samples, this method with return any

object with durki pIq ě p1 ` εqτ with probability at least 1 ´ δ; moreover, it will not

return any object durki pIq ă p1´ εqτ with probability less than δ.

The running time of this method is linear in the number of samples. However,

note from Lemma 1 that this number depends only on k, ετ and δ, and not on the

21

length of the query interval. Thus, this method shines particularly for large query

intervals, compared with a naive exact method that has to examine every time instant

in the query interval.

This approach works well if data is already clustered by time, and ordered for each

time instant (e.g., data on Billboard 200 music charts would be naturally organized

this way). Otherwise, this approach would require either sorting objects at sampled

time instants during query evaluation (which is slower) or pre-sorting objects and

remembering their ordering for every time instant (which takes more space).

3.4.2 Index-Based Approach

We now discuss an alternative approach that indexes a small amount of data in order

to answer durable top-k queries with variable k approximately. Let K denotes the

possible values of k that can appear in a query, which in the worst case can be on

the order of n, the number of objects. Indexing Hk
i (the prefix sums for hki) for each

object i and each k P K would be infeasible. Instead, given a storage budget, we

would like to choose a subset of possible pi, kq pairs and only index them instead.

In more detail, for each object i, we index Hk
i only for a subset Ki Ď K. As

discussed in Section 3.3.1, by storing the prefix sums Hk
i (which takes |Iki | space), we

can compute durki pIq quickly using simply two fast index lookups (which takes log|Iki |

time). But what happens when the query specifies a k value not in Ki? In this case,

we find some “substitute” k1 P Ki where hk
1

i “best approximates” hki (we will later

clarify what that means precisely later). Then, instead of checking durki pIq ě τ , we

would check whether durk
1

i pIq ě τ to decide whether to return object i.

We introduce some additional notation before going further. Let M Ď r1, ns ˆK

(where Ki “ tk | pi, kq P Mu) specify what pi, kq pairs to index. Note that we could

choose Ki “ ∅ for some i; in that case, we effectively “forget” object i altogether—

we would pay no indexing cost for i and it would not be returned by any query.

22

i

K

Data-oblivious

k

k1
i

K

Column-wise

k

k1
i

K

Cell-wise

kk1k1 k1

k1

Figure 3.4: Illustration of three index-based methods.

Let map : r1, ns ˆK Ñ K Y tKu specify the mapping function that directs queries to

appropriate indexed entries. Of course, if pi, kq P M , then mappi, kq “ k; otherwise,

mappi, kq returns some k1 P Ki as a “substitute.” If Ki “ ∅, we let mappi, kq “ K,

IKi “ ∅, and durKi pIq “ 0. The approximate answer to DurTopkpI, τq is given by the

following:

AkpI, τq “ ti P r1, ns | durk
1

i pIq ě τ where k1 “ mappi, kqu.

We consider three different methods that follow this index-based approach. They

differ in their strategy for selecting M and consequently their choice of map, as il-

lustrated in Figure 3.4. Here, the candidate pi, kq pairs to be indexed are shown as

square cells, and the selected ones are colored black. The simplest, data-oblivious

method chooses the same set of k values to index across all objects, regardless of data

distribution; given k, it simply maps k to the closest indexed k (for example, k “ 4

is mapped to 2 because 4 is closer to 2 than to 7). The other two methods are data-

driven in that they select their cells intelligently, based on data distribution—how

much space each cell takes to index and how well it approximates nearby cells in the

same row. Between these two data-driven methods, the simpler column-wise method

limits its choices of M to columns, and its map function returns the same substitute k1

for a given k consistently across all objects, like the data-oblivious method.1 Unlike

1 Although both methods index columns, for a chosen k, cells in the column corresponding
to objects that never enter top k during T are not indexed.

23

the data-oblivious method, however, its choices of M and map seek to minimize errors

on the given dataset (for example, k “ 4 may be mapped to 7 instead of 2 because

it may turn out that overall H7
i approximates H4

i better than H2
i does across i’s).

The more sophisticated cell-wise method is free to select individual cells to index

(as opposed to just columns), and its map function is “individualized” for each object

(for example, given the same k “ 4, it returns 2 for the first object, 1 for the second

object, 6 for the third, etc.).

Regardless of the method for choosing M (and map), durable top-k query process-

ing with our index-based approach is fast and has very low memory requirement. We

defer the discussion of how to compute map till later when discussing each method in

detail; assuming we have found the “substitute” k1 “ mappi, kq, to compute durk
1

i pIq, we

simply need two lookups in Hk1

i , which can be done in Oplog|Ik1i |q time with a small,

constant amount of working memory. Overall, the complexity is loosely bounded by

Opn‹ log|T|q, where n‹ ď n is the number of indexed objects, which is no more than

the number of objects that have ever entered top maxpKq. As we will see later, in-

cluding the cost of computing map does not change the complexity for data-oblivious

indexing and column-wise indexing, but adds Opn‹ log|K|q for cell-wise indexing.

In terms of index space, as mentioned at the beginning of Section 3.4, our index-

based approach allows the storage budget to be set as an optimization constraint.

Our experiments show that even for large datasets (e.g., n “ 1M and m “ 5k, with

billions of data points), to deliver fast, high-quality approximate answers, we only

need a small index (e.g., a couple of GB in size) that can easily fit in main memory.

If needed, our index structure also generalizes to the external-memory setting: the

prefix sums and map can be implemented as B+trees; the logarithmic terms in the

complexity analysis above would simply be replaced with B+tree lookup bounds.

Data-Oblivious Indexing. The data-oblivious method is straightforward. Let

24

K denote the set of k values being indexed. We simply define mappi, kq “ arg mink1PK |k´

k1|. By indexing the k values in K in an ordered search tree or array, we can look up

mappi, kq for any given k in Oplog|K|q time; the space is negligible. The overall index

space, consumed mostly by prefix sums, is
ř

kPK

řn
i“1|Iki | “

ř

kPK |Ik|. We choose K

such that this space does not exceed the budget allowed.

The choice of K depends on how much we know about the distribution of k in our

query workload. One may choose to index the most popular k values used in queries,

a geometric sequence of k values (reflecting the assumption that smaller k’s are more

frequently queries), or simply evenly spaced k values (reflecting the assumption that

all k P K are queried equally frequently), up to the budget allowed. We shall not

dwell on the choice of K further here, as Section 3.4.2 below will approach this

problem in a more principled manner.

Data-Driven Indexing. Before describing the two data-driven methods, we first

show how to formulate the problem of choosing what to index as an optimization

problem. Suppose that we know the distribution Q (multivariate in k, I, and τ)

describing the query workload. For simplicity, let us assume that Q is discrete (gen-

eralization to continuous τ is straightforward). Let K “ supppQKq be the support

of the marginal distribution of the query rank parameter k; in other words, k will

only be drawn from K. Similarly, let I “ supppQIq Ď tra, bq P T ˆ T | a ď bu be the

support of the marginal distribution of the query interval parameter I. Recall that

M Ď r1, ns ˆK specifies the pi, kq pairs to index, and AkpI, τq denotes the approxi-

mate query answer computing using M and mappi, kq. Let ωpMq denote the cost of

indexing M (e.g., in terms of storage cost). Given the database D, query workload

Q, and a cost budget B, our goal is to

maximize
M,map

n´ E
“

AkpI, τq a DurTopkpI, τq
‰

(3.1)

subject to ωpMq ď B. (3.2)

25

Here, AkpI, τq a DurTopkpI, τq denotes the error in the approximate answer AkpI, τq

relative to the true answer DurTopkpI, τq, and we minimize its expectation over Q.

Note that our objective function is non-negative, since n would be the worst-case

error.

The choice of the error metric a depends on the application. To make our

discussion more concrete, here we consider the case where it computes the size of

the symmetric difference between AkpI, τq and DurTopkpI, τq, i.e., the number of false

positives and false negatives. We show how to assess this error efficiently.

Assessing Errors. Let us first break down the error (size of the symmetric

difference) AkpI, τq a DurTopkpI, τq by contribution from individual objects. Given

k, I, τ , suppose mappi, kq “ k1. Let δipk, k
1; I, τq denote object i’s contribution to

error. Consider the two durabilities durki pIq and durk
1

i pIq computed with k and k1,

respectively. The key observation is that object i contributes to the error only if the

query threshold τ falls between these two durabilities. More precisely:

δipk, k
1; I, τq “

#

1, if τ P Γipk, k
1; Iq

0, otherwise

where τ1 “ durki pIq, τ2 “ durk
1

i pIq,

and Γipk, k
1; Iq “ pmintτ1, τ2u,maxtτ1, τ2us.

Intuitively, Γipk, k
1; Iq defined above establishes the“unsafe range” of τ for which

error could arise: if τ is no less (or strictly greater) than both τ1 and τ2, then object

i does not contribute to the error.

Therefore, given k and assuming mappi, kq “ k1, we can compute dipk, k
1q, object

i’s expected error contribution over Q (conditioned on k) as

dipk, k
1
q “ Erδipk, k

1; I, τq | ks “ Prrτ P Γipk, k
1; Iq | ks

“
ÿ

IPI

ÿ

τPΓipk,k1;Iq

ppτ, I | kq.

26

Computing dipk, k
1q for all possible pk, k1q pairs seems daunting. However, if we

assume that the distribution of k in Q is independent from I and τ , we can embed

K on a line and compute di as simple line distance, as shown by the lemma below.

Lemma 2. Assume that k is independent from I and τ in Q. Let Dipkq “ Prrτ ď durki pIqs.

Then Dipkq is non-decreasing in k, and dipk, k
1q “ |Dipk

1q ´Dipkq|.

Proof. The non-decreasing nature ofDipkq follows directly from the fact that durki pIq ď

durk
1

i pIq for any k1 ě k—if object i is among the top k at any time t, then it must be

among the top k1 ě k at t as well.

Let τ1 “ durki pIq and τ2 “ durk
1

i pIq. Then

Dipkq “ Prrτ ď τ1s “
ÿ

IPI

ÿ

τďτ1

ppτ, Iq,

Dipk
1
q “ Prrτ ď τ2s “

ÿ

IPI

ÿ

τďτ2

ppτ, Iq.

Noting that k is independent from I and τ , we clearly have

|Dipk
1
q ´Dipkq| “

ÿ

IPI

ÿ

τPpmintτ1,τ2u,maxtτ1,τ2us

ppτ, Iq

“ dipk, k
1
q.

The lemma above implies that, we could simply precompute and store Dipkq for

all k P K, which would allow us to compute dipk, k
1q efficiently for any pk, k1q pair.

Computation of Dipkq’s, which is only needed at the index construction time,

proceeds as follows. We first sort the entire dataset by time and value to produce

the top maxpKq objects with their ranks at each time instant. We then sort by object

and time to obtain the sequence of rank changes over time for each object. After

sorting, we can process each object i in turn. For each k P K, we scan object i’s

sequence of rank changes sequentially to compute the prefix sums Hk
i , which we store

27

in memory using Op|Iki |q space. Dipkq involves summing over all possible I and τ

values. With the prefix sums in memory, we can compute durki pIq efficiently given any

I; the same durki pIq then allows us to evaluate predicate τ ď durki pIq for any possible

τ value. Thus, the remaining expensive factor in computing Dipkq is enumerating

possible I values. Fortunately, there is no need to compute Dipkq’s precisely, because

after all, we are simply using them to estimate error for the optimization problem. In

practice, we use a Monte Carlo approach, sampling I from I to obtain approximate

Dipkq values. Our experiments in show that even with very low sampling rates, the

approximate Dipkq values still lead to index choices that have high-quality answers.

Finally, returning to the maximization objective in (3.1), we have

n´ E
“

AkpI, τq a DurTopkpI, τq
‰

“ n´
ÿ

kPK

˜

ppkq ¨
n
ÿ

i“1

dipk, mappi, kqq

¸

. (3.3)

Column-wise Indexing. The column-wise method makes several simplifying

assumptions to make the optimization problem easier to solve. First, we restrict

ourselves to selecting columns of cells from r1, ns ˆ K; i.e., we pick only K Ď K for

all objects and M “ r1, nsˆK. Second, we restrict map to return the same substitute

for a given k across all objects; hence, we would write mappkq instead of mappi, kq.

Third, we let ωpMq “ |K|, and we specify the budget B in terms of the number

of different k values we choose to index (as opposed to a more accurate measure of

index space).

Under these assumptions, we define dpk, k1q “
řn
i“1 dipk, k

1q as the expected

overall error in answer if we substitute k1 for k. Naturally, we define mappkq “

arg mink1PK dpk, k
1q; i.e., we map k to the substitute indexed in K that minimizes the

28

expected overall error. Now, the optimization problem becomes to

maximize
K

n´
ÿ

kPK

´

ppkq ¨min
k1PK

dpk, k1q
¯

(3.4)

subject to |K| ď B. (3.5)

Lemma 2, which applies to dipk, k
1q on an individual object basis, can be readily

extended to dpk, k1q, as the following shows.

Lemma 3. Assume that k is independent from I and τ in Q. Let Dpkq “
řn
i“1Dipkq.

Then Dpkq is non-decreasing in k, and dpk, k1q “ |Dpk1q ´Dpkq|.

Proof. Assume k1 ě k (the case of k ď k is analogous). By Lemma 2, dipk, k
1q “

Dipk
1q ´ Dipkq (we can remove | ¨ | as Di is non-decreasing). Hence, 0 ď dpk, k1q “

řn
i“1 dipk, k

1q “
řn
i“1Dipk

1q ´
řn
i“1Dipkq “ Dpk1q ´Dpkq.

Thus, we can embed K on a line and compute d as simple line distance. By

indexing the selected k values in K in an ordered search tree or array, we can look

up mappkq for any given k in Oplog|K|q time; the space is negligible.

This observation also implies that the optimization problem in (3.4)–(3.5) for the

column-wise method in has optimal substructure, as the following lemma shows.

Lemma 4. Assume that k is independent from I and τ in Q. Let OPTprk1, k2s, bq

denote the optimal solution2 for (3.4)–(3.5) with K “ rk1, k2s and B “ b. Then

OPT
`

rk1, k2s, b
˘

“ max
k1ăkďk2

"

OPT
`

rk1, k ´ 1s, b´ 1
˘

` OPT
`

rk, k2s, 1
˘

*

.

Proof. By Lemma 3, K can be embedded on a line. Choosing K Ď K would partition

K into consecutive intervals, one for each k‹ P K, such that for all k in this interval

2 For simplicity of presentation we assume that there are no ties for the optimal solution
here, but generalization to the case of ties is straightforward.

29

1 2 3 4 5 6 7 8 9

Figure 3.5: Partitioning of K by a chosen subset K. Each k‹ P K is shown as a
circled point, and the interval of K that k‹ is enclosed by t and u.

(which we shall refer to as the one covered by k‹), arg mink1PK dpk, k
1q “ k‹, as

illustrated in Figure 3.5.

Consider K “ OPTprk1, k2s, bq, and specifically, the largest element k‹ of K and

the interval rk, k2s that k‹ it covers. Clearly k‹ must be chosen by OPTprk, k2s, 1q, or

else replacing k‹ by OPTprk, k2s, 1q’s choice would yield a better solution. Similarly, it

is straightforward to show that Kztk‹u must be chosen by OPTprk1, k´1s, b´1q.

The above lemma immediately leads to a dynamic programming solution to the

optimization problem for the column-wise method, with time complexity Opk3
maxq,

where kmax “ maxpKq. Note that we incur this cost only at the index construction

time. The memory requirement for dynamic programming is the size of a 3d table

for storing optimal substructures, which is Opk3
maxq in our case. In practice, kmax

is usually not large compared with n, so we can perform dynamic programming

in memory. If this 3d table is too large for memory, we can store the 3d table

of optimal substructures as sequence of 2d tables organized along the dimension

of budget (b). By Lemma 4, it is not hard to see that our dynamic programming

procedure sequentially steps through b, so at any point during execution, we only

need three 2d tables (for b, b´1, and 1) in memory, reducing the memory requirement

to Opk2
maxq.

Despite the simplicity of the solution, the column-wise method suffers from a

rather restrictive space of possible solutions. First, map is not specialized for each ob-

ject; even though it minimizes overall error subject to this restriction, the substitute

k it produces may not be the best choice of every object. Second, indexing all entries

30

in one single column may already take a lot of space; therefore, under tight storage

constraints, the column-wise method may be forced to pick a few columns to index,

hurting accuracy.

Cell-wise Indexing. We now consider the more sophisticated cell-wise method,

which can select any individual cells to index (as opposed to just columns) and

customize its map function for each object. Specifically, we choose a set M of pi, kq

pairs to index from r1, ns ˆ K. Let Ki “ tk | pi, kq P Mu. We define mappi, kq “

arg mink1PKi dipk, k
1q, i.e., to minimize the expected error by substituting k with k1

for object i. By indexing the selected k values in Ki in an ordered search tree or

array, we can look up mappi, kq for any k in Oplog|Ki|q time. Finally, we define the

index storage cost as ωpMq “
ř

pi,kqPM |Iki |, since storing the prefix sums for entry

pi, kq takes |Iki | space (index storage for supporting map is negligible in comparison).

The optimization problem now becomes to

maximize
M

n´
n
ÿ

i

˜

ÿ

kPK

ppkq ¨ min
k1PKi

dipk, k
1
q

¸

(3.6)

subject to ωpMq “
ÿ

pi,kqPM

|Iki | ď B. (3.7)

We show the NP-hardness of this optimization problem by reduction from the

well-known knapsack problem.

Lemma 5. The optimization problem in (3.6)–(3.7) for the cell-wise method is NP-

hard.

Proof. First, recall the knapsack problem. Given a set of items 1, 2, . . . , n, each

associated with a non-negative weight wi and a non-negative value ui, and a budget

B, the knapsack problem finds a set of items Q Ď r1, ns that maximizes
ř

iPQ ui

subject to
ř

iPQwi ď B.

31

We show that the knapsack problem can be reduced to the optimization problem

for the cell-wise method. Consider an instance of the cell-wise indexing problem on

n time series where T “ r1, C1 ¨
řn
i“1 ui`C2s (where C1, C2 are non-negative constant

for scaling), I is fixed to be T, k is fixed to be 1, and τ is drawn uniformly from

r0, 1s. In other words, we only ask for τ -durable top-1 objects over the entire time

domain. If object i is selected (i.e., Ki “ t1u), then dip1, 1q “ 0; otherwise (Ki “ ∅),

dip1,Kq “ Dip1q “
şτi
0
ppτq dτ “ τi , where τi “ dur1ipTq.

We carefully construct n time series such that their top-1 memberships over T

satisfy the following two constraints: 1) for each object i, dur1ipTq “ ui
|T| ; 2) for each

object i, |I1i | “ C2 ¨
wi

řn
i“1 wi

.

The construction works as follows. For each object i, we allocate C1ui time

instants for it to be in the top-1, and we ensure that these time instants consist

of exactly C2 ¨
wi

řn
i“1 wi

non-adjoining intervals. It is not difficult to see that one

can always partition T to achieve this construction by introducing a dummy object.

More specifically, for each object i, we insert the dummy object C2 ¨
wi

řn
i“1 wi

´ 1 times

to break i’s single interval into |I1i | “ C2 ¨
wi

řn
i“1 wi

pieces. In total, we need insert

the dummy object into the timeline as breakpoints C2 times (including boundary

positions), i.e., |I1dummy| “ C2

With the data above, the knapsack problem is equivalent to

maximize
MĎr1,nsˆt1u

n´
n
ÿ

i

ˆ

min
k1PKi

dipk, k
1
q

˙

subject to ωpMq ď C2 ¨
B

řn
i wi

.

In a non-trivial case that budget B ď
řn
i wi, any set that contains this dummy

object is not feasible. Hence, the existence of the dummy object has no impact

on our optimization problem. Intuitively, if an item i is selected by the knapsack

problem, the objective function will gain ui and pay cost wi. On the other hand,

32

if an object i is selected to be indexed, it will decrease the expected error by ui
|T|

and consume C2 ¨
wi

řn
i wi

space. Since the knapsack problem is NP-hard, so is the

optimization problem for the cell-wise method.

Although the problem is NP-hard, the following lemma shows that its objective

function is monotone and submodular [95].

Lemma 6. The following function,

GpMq “ n´
n
ÿ

i

˜

ÿ

kPK

ppkq ¨ min
k1PKi

dipk, k
1
q

¸

(3.8)

(recall Ki “ tk | pi, kq P Mu) is a monotone and submodular set function; i.e., for

all M1 ĎM2 Ď r1, ns ˆK and θ “ pi, kq P pr1, ns ˆKzqM2, we have:

GpM1q ď GpM2q, and (3.9)

GpM1 Y tθuq ´ GpM1q ě GpM2 Y tθuq ´ GpM2q. (3.10)

Proof. G can be expressed as the sum of n functions: GpMq “ n´
řn
i“1FipKiq, where

FipKiq “ 1 ´ p
ř

kPK ppkq ¨mink1PKi dipk, k
1qq. The class of submodular functions is

closed under non-negative linear combinations. Hence, to prove G is submodular, it

suffices to prove Fi is submodular.

Given object i, for any k‹ P Ki, we define Φipk
‹ | Kiq “ tk P K | arg mink1PKi dipk, k

1q “

k‹u as the interval covered by k‹. Consider adding k1, k2 P KzKi to Ki. Let

S1 “ Φipk1 | KiYtk1uq and S2 “ Φipk2 | KiYtk2uq. First of all, it is clear that for all

k P KzpS1 Y S2q, mink1PKi dipk, k
1q “ mink1PKiYtk1u dipk, k

1q “ mink1PKiYtk2u dipk, k
1q “

mink1PKiYtk1,k2u dipk, k
1q; i.e., adding either k1 and k2 or both to Ki would not change

the expected error incurred for such k’s.

For k P S1 Y S2, we have

min
m“1,2

t min
k1PKiYtkmu

dipk, k
1
qu “ min

k1PKiYtk1,k2u
dipk, k

1
q,

max
m“1,2

t min
k1PKiYtkmu

dipk, k
1
qu ď min

k1PKi
dipk, k

1
q.

33

Adding up the equality and inquality above, we get

min
k1PKiYtk1u

dipk, k
1
q ` min

k1PKiYtk2u
dipk, k

1
q

ď min
k1PKiYtk1,k2u

dipk, k
1
q ` min

k1PKi
dipk, k

1
q.

Summing the inequality above for all k P K, weighted by probability ppkq, and

negating the inequality, we get

FipKi Y tk1uq ` FipKi Y tk2uq ě FipKi Y tk1, k2uq ` FipKiq.

Therefore, Fi’s and G are submodular. The proof for G’s monotonicity is trivial, and

hence omitted.

It was shown in [83] that a simple greedy algorithm provides a p1´1{eq-approximation

for maximizing a monotone submodular set function with cardinality constraint.

Sviridenko et al. further showed in [102] that a modification of the greedy algorithm

for solving the problem in [83] can also produce a p1´ 1{eq-approximation for maxi-

mizing a monotone submodular set function with knapsack constraint. The modified

greedy algorithm, shown as Algorithm 1, works as follows. In the first phase, we

enumerates all feasible subsets of size up to two, and remember the subset S1 that

maximizes G. In the second phase, we start with each feasible subset of size three,

and try to grow it greedily and repeatedly by adding a new element at a time, which

gives the largest improvement over G per unit cost. We remember the best subset

found in the second phase as S2. Finally, we return the better solution between S1

and S2.

Theorem 7. Let Mopt be the optimal solution to the cell-wise selection problem, and

M greedy be the solution returned by Algorithm 1. We have

GpM greedy
q ě p1´

1

e
q ¨ GpMopt

q.

34

Algorithm 1: Two-phase greedy algorithm.

Input : Objective function G to maximize, additive cost function ω,
budget B, and candidate set U “ r1, ns ˆK

Output: A subset M‹ Ď U with ωpM‹q ď B

1 S1 Ð ∅; max1 Ð 0;
2 foreach M Ď U where |M | “ 1 or |M | “ 2 do
3 if ωpMq ď B then continue;
4 if GpMq ą max1 then
5 max1 Ð GpMq;
6 S1 ÐM ;

7 S2 Ð ∅; max2 Ð 0;
8 foreach M Ď U where |M | “ 3 do
9 if ωpMq ą B then continue;

10 S ÐM , I Ð UzS;
11 while I ‰ ∅ do

12 θ Ð max
θPI

GpS Y tθuq ´ GpSq
ωptθuq

;

13 if ωpS Y tθuq ď B then S Ð S Y tθu;
14 I Ð Iztθu;

15 if GpSq ą max2 then
16 max2 Ð GpSq;
17 S2 Ð S;

18 if GpS1q ě GpS2q then return S1;
19 else return S2;

Proof. Follows directly from Lemma 6 and [102].

In practice, enumerating all feasible subsets of size up to 3 can be expensive, so we

use a simplified greedy algorithm that starts with singleton subsets and tries to grow

them. It turns out that the simplified greedy algorithm still makes good choices that

lead to high query accuracy, as experiments shows. We also optimize the procedure

for finding the next greedy choice at each step using similar techniques in [111]. We

maintain a priority queue of all candidate pi, kq pairs, where k P K and i is any

object that has ever entered the top maxpKq. Although the memory requirement

in the worst case can be Opn|K|q, in practice only a small fraction of all objects

35

ever enter the top maxpKq. For example, our experiments reveal that even for large

datasets (e.g., n “ 1M, m “ 5k, with billions of data points and maxpKq “ 10k), the

entire cell-wise optimization algorithm runs comfortably in main memory. Finally,

note that we run this algorithm only at the index construction time.

3.5 Coping with New Data

We now briefly discuss how methods in this section handle arrival of new data at

the end of the time series. Here we focus on the more general case of variable k.

The sampling-based method (Section 3.4.1) requires no any special handling of new

data as it does not rely on indexing. The index-based methods (Section 3.4.2), on

the other hand, must update the index structures as data arrives. For data-oblivious

indexing (Section 3.4.2), since its choice of K does not depend on data, we simply

need to append to the prefix sum Hk
i for each object i and each k P K, based on

the new ranking of objects. However, for data-driven indexing (Section 3.4.2), which

decides what to index based on data characteristics, it is possible for old choices to

become suboptimal with new data arrival. Re-optimizing and rebuilding the index

with every new database state would be infeasible; hence, a different approach is

needed.

A nice property of durable top-k queries is its decomposability over time. To

answer a query over a time interval I, we can partition I into two sub-intervals I1

and I2, answer the query on I1 and I2 separately, and carefully combine the answers.

The following lemma provides the foundation for this approach:

Lemma 8. Consider two disjoint time intervals I1, I2 Ď T. Then, for any k and

object i,

durki pI1 Y I2q ď maxtdurki pI1q, dur
k

i pI2qu.

Proof. Let b1 (b2) denote the length of I1 (I2), and let a1 (a2) denote the number of

36

time instants in I1 (I2) when object i is among the top k. We have

durki pI1q “
a1

b1

, durki pI2q “
a2

b2

, and durki pI1 Y I2q “
a1 ` a2

b1 ` b2

.

durki pI1q ´ durki pI1 Y I2q “
a1b2 ´ a2b1

b2
1 ` b1b2

,

durki pI2q ´ durki pI1 Y I2q “
a2b1 ´ a1b2

b2
2 ` b1b2

.

From the two numerators above it is easy to see that at least one of durki pT1q ě

durki pI1 Y I2q and durki pT2q ě durki pI1 Y I2q must hold.

The above lemma implies that any object in the answer of a τ -durable top-k

query over I “ I1 Y I2 (where I1 X I2 “ ∅) must be in the answer of a τ -durable

top-k query over I1 or I2 (or both).

This observation naturally leads to the following approach to handling new data,

which leverage old index structures for queries while leaving them intact. Suppose we

have just constructed a data-driven index for our time series database up to time t.

As time progresses and new data arrives, instead of updating the existing index, we

index the data after time t in a “staging area.” Since this area is only for a relatively

small amount of newly arrived data, we can afford to store the prefix sums starting

after t for all possible pi, kq pairs. A query over an interval that either precedes t or

follows t can be answered by either the old index or the staging area, respectively.

A query over an interval I that spans t will be decomposed into two—one over

I X p´8, ts against the old index and the other over I X pt,8q against the staging

area. The union of results returned by the two subqueries will serve as our candidate

result set—Lemma 8 guarantees that every true result object will be returned by

at least one of the two subqueries (barring approximation error introduced by the

old index). We then further verify each candidate result object, which may require

37

Table 3.1: Real and synthetic datasets used in experiments.

n m
Dataset (# objects) (# time instants)

Stock 3537 2500
Billboard 7460 1721

Temp 6756 9999
Syn/SynX 1K–10M 1K–5K

accessing data beyond the old index, but the number of objects with this requirement

is naturally bounded by the result set size for the subquery on the staging area.

Once the staging area is full, we re-optimize and rebuild the data-driven approx-

imate index over entire time domain, effectively “extending” the old index to the

current time and clearing the staging area for future data. It is also possible to

design more elaborate schemes that maintain a sequence of indexes over time with

different space/accuracy trade-offs, but they are beyond this scope of this discussion.

3.6 Experiments

In this section, we comprehensively evaluate the performance of all our methods.

Section 3.6.1 compares the efficiency of various exact algorithms when k is fixed.

For general durable top-k queries when k is variable, Section 3.6.2 compares various

methods in terms of answer quality, query efficiency, and index space. For methods

that require elaborate preprocessing and optimization for index construction, we also

evaluate the efficiency of index construction.

Unless otherwise noted, all algorithms were implemented in C++, and all exper-

iments were performed on a Linux machine with two Intel Xeon E5-2640 v4 2.4GHz

processor with 256GB of memory.

We use both real and synthetic datasets, as summarized in Figure 3.1 and de-

scribed in detail below.

38

…

Top-20

Top-1
Top-2
Top-3

SYN

W
indow

 size d
Figure 3.6: Generating SynX from Syn. Here, an object is boosted twice (at
different times): once to top 20 and once to top 1.

Stock dataset contains daily transaction volumes of 3537 stocks in the United

States from 2000 to 2009, collected by Wharton Research Data Services.3 We treat

each stock as a temporal object, and there are 2500 time instants.

Billboard dataset, obtained from the BILLBOARD 200 website,4 lists weekly top-

200 songs for the past 30 years. However, we are more interested in the ranking of

artists as opposed to songs, as most songs remain popular only for a short duration.

Thus, for our experiments, we treat artists as temporal objects, and we define the

ranking of an artist in a week as the ranking of his or her top hit for that week.

The result dataset has 7460 objects (artists) and 1721 time instants (weeks with

rankings).

Temp dataset, from the MesoWest project [57], contains temperature readings

from weather stations across the United States over the past 20 years. For our

experiments, we selected stations with sufficiently complete readings over time. The

result dataset has 6756 objects (stations) and 9999 time instants (with temperature

readings for all stations).

Syn dataset refers to synthetic datasets with different sizes and distributions

that we generate for in-depth comparison of various methods. Each time series is

3 https://wrds-web.wharton.upenn.edu/wrds/

4 http://www.billboard.com/charts/billboard-200

39

generated by an autoregressive model [106], specifically, AR(1). The model is defined

by Xptq “ c` φXpt´ 1q ` εptq, where εptq is an error term randomly chosen from a

normal distribution with mean 0 and standard deviation σ, and c and φ are additional

parameters. The mean value of the series is c
1´φ

and the variance is σ2

1´φ2
. Tuning

σ, c, and φ allows us to experiment with different data characteristics. For our

experiments, we use φ “ 0.6 by default. To simulate real-life situations, we divide

n objects into three groups: elite (20% of all objects), mediocre (60%), and poor

(20%). Time series for objects from different groups are parameterized with different

c values: for an elite object, we draw c from N p90, 102q, normal distribution with

mean 90 and standard deviation 10; for a mediocre object, c „ N p50, 102q; for poor,

c „ N p10, 102q. We vary σ (in εptq) from 1 to 20 for different experiments; a larger

σ leads to more volatility in the time series and more rank changes.

SynX is a variant of Syn that allows us to control the top rank changes and their

durability more directly. We start with Syn with σ “ 20 above, and establish 20

additional target values in the top range of the value domain, as shown in Figure 3.6.

A window size parameter d controls the durability of top objects and complexity of

the dataset. For each one of the 20 target values, say, v, we break the time line into

|T|{d intervals of length d each; we vary d between 10 and 100 in our experiments.

For each such interval, we randomly pick an object, and add a constant offset to its

values during this interval such that the resulting average of these values becomes

v—in other words, we temporarily boost the object’s rank for the given interval.

When picking objects to boost, we make sure that any object can be boosted at

most once for any time instant.

3.6.1 Fixed-k Setting

We compare five methods for answering durable top-k queries when k is fixed and

known in advance: PREFIX, PREFIX-O, INTERVAL, RTREE, and TES. PREFIX

40

and INTERVAL are the two baseline methods based on prefix sums and interval

index, respectively, presented in Section 3.3.1. PREFIX-O is a variant of PREFIX

with the simple optimization of not indexing an object if it is never in top k (which

is also used by our index-based approach for the variable-k setting). RTREE is the

practical R-tree implementation of our method based on reduction to 3d halfspace

reporting, discussed in Section 3.3.2. TES is the state-of-the-art method from [108].

Note that TES is designed to handle variable k (up to a maximum); as k is known in

this case, for a fair comparison, we optimize TES by storing rank change information

only for the given k, resulting in a much simpler structure. Since all four algorithms

are exact, we focus on query efficiency.

We present the results of our experiments on one large synthetic dataset. Here,

we use Syn with one million objects, five thousand time instants, and σ “ 10. Results

reported in Figure 3.7 are obtained by averaging over 1000 random durable top-k

queries with randomly drawn query intervals.

Figure 3.7a compares the methods in terms of “pruning” power, or more precisely,

how many objects they examine to answer a query (note the logarithmic scale). We

set the query durability threshold τ “ 0.2 and try scenarios with k fixed at different

values. PREFIX always needs to examine all objects. The simple optimization

of PREFIX-O is surprisingly effective, and reduces the number of objects indexed

and examined by one to two orders of magnitude. INTERVAL and TES have the

same pruning power, as both examine objects that ever enter the top k during the

query interval. Their advantage over PREFIX-O is consistent although not dramatic.

Finally, RTREE reduces the number of objects considered by another one to two

orders of magnitude compared with PREFIX-O/INTERVAL/TES, or up to nearly

5 orders of magnitude compared with PREFIX. Saving is bigger when k is smaller.

In terms of query time, however, the comparison is more nuanced. Figures 3.7b

and 3.7c compare the query execution times of PREFIX, PREFIX-O, INTERVAL,

41

TES, and RTREE, for two different settings of k, as we increase the durability

threshold τ to make the queries more selective. First, in Figure 3.7b, where k “ 100

is relatively small, we see that PREFIX-O and RTREE are the fastest. PREFIX-O

is the fastest when queries are less selective (i.e., lower τ), but as queries become

more selective, RTREE becomes faster and eventually overtakes PREFIX-O. TES is

better than INTERVAL, though both pale in comparison to RTREE and PREFIX-

O, and do not benefit from more selective queries as RTREE does. The basic version

of PREFIX is the slowest here.

On the other hand, in Figure 3.7c, where k “ 5000 is relatively large, we see

that PREFIX-O becomes the clear winner among all methods—its performance is

unaffected by the change in k. PREFIX’s performance is also unchanged. However,

the other methods take a hit in performance, because a larger k generally reduces

opportunities for pruning (as seen in Figure 3.7a), so the computational overhead of

pruning and more complex index structures make them less attractive, even though

they still examine fewer objects than PREFIX.

Overall, we conclude that PREFIX-O offers solid, competitive performance in

practice, beating the theoretically more interesting RTREE except when queries are

extremely selective. Because of its performance and simplicity, we also use PREFIX-

O for our approximate index-based approach for handling the variable-k setting.

Note that in contrast to RTREE, the pruning power of PREFIX-O heavily depends

on data characteristics: for example, if every object appears in top-k at some time,

no objects will be pruned, resulting in performance similar to PREFIX. However, we

also note that the use of PREFIX-O by our index-based approach offers additional

protection from such boundary cases, because approximation still allows us to ignore

some objects that rarely ranked high, without significantly affecting accuracy.

42

10
0

10
2

10
4

10
6

average number of objects (log-scale)

100

500

1000

5000

10000

k

PREFIX PREFIX-O TES/INTERVAL RTREE

(a) Objects examined per query; τ “ 0.2

0.1 0.3 0.5 0.7 0.9
10

-4

10
-3

10
-2

10
-1

10
0

ti
m

e
 (

s
e
c
o
n
d
s
)

PREFIX INTERVAL TES RTREE PREFIX-O

(b) Time per query; k “ 100

0.1 0.3 0.5 0.7 0.9
10

-3

10
-2

10
-1

10
0

10
1

ti
m

e
 (

s
e
c
o
n
d
s
)

PREFIX INTERVAL TES RTREE PREFIX-O

(c) Time per query; k “ 5000

Figure 3.7: Comparing query efficiency for methods for the fixed-k setting. Dataset
is Syn, with n “ 1M, m “ 5K, and σ “ 10.

3.6.2 Variable-k setting

In this section, we continue to evaluate approximate methods for τ -durable top-k

queries with variable k. Section 3.4 proposed two approaches for computing ap-

proximate answers: sample-based and index-based. We first evaluate the alternative

methods for the index-based approach in terms of space and accuracy. Then, we

compare the best index-based method against the sample-based approach as well

as baseline and state-of-the-art approaches that produce exact answers. Finally, we

evaluate the index construction costs of our index-based methods.

43

1 2 3
number of intervals selected 1e4

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

F1
 sc

or
e

CEL
COL
DOS

(a) Stock

0.5 1.0 1.5
number of intervals selected 1e5

0.5

0.6

0.7

0.8

0.9

1.0

F1
 sc

or
e

CEL
COL
DOS

(b) Billboard

2 4 6
number of intervals selected 1e5

0.6

0.7

0.8

0.9

1.0

F1
 sc

or
e

CEL
COL
DOS

(c) Temp

0.0 0.5 1.0 1.5 2.0 2.5
number of intervals selected 1e6

0.5

0.6

0.7

0.8

0.9

1.0

F1
 sc

or
e

CEL
COL
DOS

(d) Syn, n “ 1M, m “ 5K, σ “ 10

Figure 3.8: Quality of approximate answers by various index-based methods;
lnpkq „ N p3, 0.52q and K “ r1, 500s; uniform I.

We use the standard F1 score (harmonic mean of precision and recall) to measure

the quality of approximate answers. The maximum possible F1 is 1, achieved when

both precision and recall are perfect. Since answer quality varies across query param-

eter settings, we experiment with various query workloads wherein query parameters

are drawn from different distributions. Unless otherwise noted, we let τ “ 1´x{100,

where lnpxq is drawn fromN p3, 0.52q and x is truncated to r0, 100s. We typically draw

k from normal or log-normal distributions, discretized and truncated to appropriate

ranges. Here, heavier-tailed log-normal distributions capture scenarios where users

44

0 2 4 6
number of intervals selected 1e4

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

F1
 sc

or
e

CEL
COL
DOS

(a) Stock

0.5 1.0 1.5 2.0
number of intervals selected 1e5

0.5

0.6

0.7

0.8

0.9

1.0

F1
 sc

or
e

CEL
COL
DOS

(b) Billboard

0.2 0.4 0.6 0.8 1.0
number of intervals selected 1e6

0.6

0.7

0.8

0.9

1.0

F1
 sc

or
e

CEL
COL
DOS

(c) Temp

0.0 0.5 1.0 1.5 2.0 2.5
number of intervals selected 1e6

0.5

0.6

0.7

0.8

0.9

1.0

F1
 sc

or
e

CEL
COL
DOS

(d) Syn, n “ 1M, m “ 5K, σ “ 10

Figure 3.9: Quality of approximate answers by various index-based methods; k „
N p50, 152q and K “ r1, 500s; uniform I.

likely query with high τ and small k, but they may still try larger k or lower τ more

often than a normal distribution would suggest. We typically draw the endpoints

of I uniformly at random, sometimes with interval length restricted to appropriate

ranges. Additional details will be given with the experiments. When constructing

the indexes, our index-based methods have the knowledge of the workload distribu-

tion, but not the actual queries used in the experiments. Unless otherwise noted, for

each experimental setting, we generate 1000 random queries from the workload and

report both average and standard deviation for F1 score and running time.

45

0.2 0.4 0.6 0.8 1.0 1.2
number of intervals selected 1e5

0.5

0.6

0.7

0.8

0.9

1.0

F1
 sc

or
e

CEL
COL

(a) d “ 100

0.25 0.50 0.75 1.00 1.25
number of intervals selected 1e5

0.5

0.6

0.7

0.8

0.9

1.0

F1
 sc

or
e

CEL
COL

(b) d “ 50

0.5 1.0 1.5
number of intervals selected 1e5

0.5

0.6

0.7

0.8

0.9

1.0

F1
 sc

or
e

CEL
COL

(c) d “ 20

0.5 1.0 1.5 2.0
number of intervals selected 1e5

0.5

0.6

0.7

0.8

0.9

1.0

F1
 sc

or
e

CEL
COL

(d) d “ 10

Figure 3.10: Quality of approximate answers by CEL vs. COL on SynX with
n “ 1K, m “ 1K, σ “ 20; lnpkq „ N p3, 0.52q and K “ r1, 500s; uniform I.

Approximate Index-Based Methods. Here we compare the three index-based

methods we proposed in Section 3.4.2: data-oblivious indexing (DOS), column-wise

indexing (COL), and cell-wise indexing (CEL). Note that all these methods allow the

index size to be adjusted, which affects their approximation quality. In the following

experiments, for DOS, we generate 8 geometric sequences, with ratios 1.2, 1.4, 1.6,

1.8, 2.0, 3.0, 4.0, and 5.0. Each sequence defines a subset of columns to index in K;

e.g., ratio of 2.0 would index k “ 1, 2, 4, 8, . . ., up to the maximum k possible. A

larger ratio implies fewer columns and hence a smaller index. For each these 8 DOS

46

0.2 0.4 0.6 0.8 1.0 1.2
number of intervals selected 1e5

0.80

0.85

0.90

0.95

1.00

F1
 sc

or
e

CEL
COL

(a) d “ 100

0.25 0.50 0.75 1.00 1.25
number of intervals selected 1e5

0.80

0.85

0.90

0.95

1.00

F1
 sc

or
e

CEL
COL

(b) d “ 50

0.5 1.0 1.5
number of intervals selected 1e5

0.80

0.85

0.90

0.95

1.00

F1
 sc

or
e

CEL
COL

(c) d “ 20

0.5 1.0 1.5
number of intervals selected 1e5

0.80

0.85

0.90

0.95

1.00

F1
 sc

or
e

CEL
COL

(d) d “ 10

Figure 3.11: Quality of approximate answers by CEL vs. COL on SynX with
n “ 1K, m “ 1K, σ “ 10; k „ N p50, 152q and K “ r1, 500s; uniform I.

index configurations, we produce a corresponding COL index with the same number

of columns (which does not guarantee the same index size, as different columns may

require different amounts of index space). Finally, we use 16 actual index sizes (in

terms of the number of intervals indexed)—obtained from the 8 DOS configurations

and the 8 COL configurations—as constraints to produce 16 CEL configurations

for comparison. Figures 3.8 and 3.9 compare the three index-based methods across

four datasets, Stock, Billboard, Temp, and Syn, in terms of the quality of their

approximate query answers. Results in these two figures differ in the distribution

47

of k in the query workload—k follows a log-normal distribution in Figure 3.8, but a

normal distribution in Figure 3.9; the endpoints of I are drawn uniformly at random

from the time domain. As seen in both figures, CEL consistently produces answers

with the highest-quality approximate answers. Even at the lowest space setting, CEL

achieves F1 scores of no less than 0.9 across datasets and query workloads. COL also

offers reasonably good quality, but not as good as CEL. COL is also not as frugal as

CEL or DOS in terms of space: when using the same number of columns as DOS,

COL tends to consume more space.5 DOS has unacceptably low F1 scores at low

space settings, but given more index space, F1 scores improve, as with other two

methods. In terms of the standard deviation in F1 scores, we see that DOS is also

the worst among the three methods; CEL again is the best, consistently delivering

high accuracy with very little variation among individual queries. Finally, between

Figures 3.8 and 3.9, we see that the accuracy under DOS and COL is more sensitive to

the distribution of k in the query workload than under CEL. For DOS and COL, log-

normal distribution used in Figure 3.8 is “harder” than the normal distribution used

in Figure 3.9, because the latter distribution is concentrated around fewer choices of

k (99.7% of the density would be within ˘3σ of the mean), hence making it easier

to pick columns to index.6 In contrast, CEL offers consistently excellent accuracy

in both figures, because it has more degrees of freedom in its choices to adapt to

different query distributions.

Next, we perform experiments to evaluate how well the three methods handle

data with increasing complexity (in terms of rank changes over time).

5 This behavior also explains why in Figure 3.8d, COL does seemingly worse than DOS: given the
same number of columns to index, COL in fact does offer higher accuracy than DOS, but it also
chooses columns that require more space, hence pushing its curve to the right of that of DOS.

6 An exception to this observation is that DOS has more trouble at low space settings under the
normal distribution than the log-normal. The reason is that in these experiments, we hard-coded
the sequences of k for DOS to index, independent of the distribution of k in the query workload;
some of these sequences happen to miss the high-density region of the distribution.

48

We use SynX with σ “ 20 and vary d, where a smaller d leads to more frequent

rank ranges. Figure 3.10 shows the results when k in the query workload follows

a log-normal distribution (as in Figure 3.8). We focus on comparing just COL

and CEL here because DOS is clearly inferior. In Figure 3.10, we see that, as d

decreases and rank change complexity increases (from left to right), the advantage

of CEL over COL widens significantly. As complexity grows, it becomes exceedingly

difficult (or simply impossible) for COL to find a set of columns and a single mapping

function that work for all objects—not only doe F1 scores drop, but the variance in

F1 scores over individual queries also increases. In contrast, CEL sees only very

little degradation in F1 score as complexity grows, and the variance remains low.

For example, when d “ 10, at the lowest space setting, CEL’s F1 score is 0.94, with

a standard deviation of 0.02, compared with COL’s F1 score of 0.71 and standard

deviation of 0.12.

To conclude this section, CEL is the best among our index-based methods. It

provides higher and more consistent accuracy across individual queries and on a

wide range of datasets, and its advantages over DOS and COL become even more

significant under lower space settings and for data with more complex characteristics.

Another practical advantage of CEL is that it provides a smoother control over the

space-accuracy trade-off than DOS and COL. DOS and COL allow the number of

columns to be tuned, but some columns require more space than others to index,

resulting in coarser and less predictable control over space. Moreover, DOS does not

guarantee that more columns will lead to higher accuracy. In contrast, the smoother

space-accuracy trade-off offered by CEL makes it easier to apply in practice.

CEL vs. Other Approaches. In this section, we compare CEL, our best ap-

proximate index-based method, with other approaches for answering durable top-k

queries in the variable-k setting: NAI, SAM, and TES. NAI is a baseline exact

49

20%|T| 40%|T| 60%|T|
0

1

2

3

4

5

6

7

ti
m

e
/s

e
c

NAI SAM TES CEL

(a) Varying length of I; K “ r5K, 6Ks

0-1K 3-4K 5-6K 7-8K 9-10K
0

1

2

3

4

5

ti
m

e
/s

e
c

NAI TES CEL

(b) Varying K; uniform I

Figure 3.12: Query execution times for various durable top-k solutions. Syn,
n “ 1M, m “ 5K, σ “ 10.

0-1K 3-4K 5-6K 7-8K 9-10K
0

2000

4000

6000

8000

10000

12000

14000

in
d
e
x
 s

p
a
c
e
 (

m
e
g
a
b
y
te

s
)

NAI/SAM TES CEL

Figure 3.13: Index space for various durable top-k solutions. Syn, n “ 1M, m “

5K, σ “ 10; uniform I (relevant to only CEL).

solution, which precomputes and stores the top-kmax membership at every time in-

stant, where kmax “ maxpKq is the maximum k that can be queried. To answer

a query, NAI sequentially scans all top-k memberships in the query interval, and

aggregates them to compute durability for each object it encounters. SAM is the

approximate, sampling-based approach introduced in Section 3.4.1; it materializes

exactly the same information as NAI. TES is our implementation of the state-of-

the-art exact solution from [108]. Since its query performance depends on the actual

data structures used, we take care to discount any possible dependency when taking

50

measurements for TES.7 As a result, TES query execution times reported here are

only a lower bound; actual times will be higher. Moreover, although TES is intended

as an external-memory solution, all indexes fit in memory in our experiments, so for

a fair comparison, we implement TES using internal-memory data structures and

ensure that all its data is memory-resident. For these experiments, we implemented

all approaches in Python.

Note that NAI and TES are exact, while CEL and SAM are approximate. For a

fair comparison, for CEL, we choose its index space budget such that CEL achieves

an F1 score of at least 0.97; for SAM, we target a similarly high accuracy guarantee

with δ “ 0.05 and ε “ 0.1 (Lemma 1), using about 2000 samples (exact number also

depends on the τ parameter in queries). We use a large synthetic dataset Syn with

five billion data points, and compare query efficiencies for different query workloads.

Figure 3.12a shows how the length of the query interval I influences query exe-

cution times of various approaches. Here, we draw I’s starting point randomly, and

make their lengths span 20%, 40%, or 60% of the entire time domain. We draw k

from N p5500, 1002q, truncated to r5000, 6000s. For NAI and TES, their execution

times generally increase with the query interval length. SAM’s times remain roughly

the same, because the number of random samples needed is a function of the desired

error bound, independent of the query interval length. Still, CEL is the fastest by a

wide margin, and its times are also independent of the query interval length.

Figure 3.12b shows how k influences the comparison of query execution times.

Here, we always draw I uniformly at random, but we change the distribution of k:

we start from N p500, 1002q truncated to r0, 1000s, and then shift this distribution

to the right in each setting, stopping finally at the range r9000, 10000s. We do not

7 TES uses a non-trivial data structure for reporting all rank changes within k during the query
interval, and we do not have access to its original implementation. Hence, for the execution times
of TES we report in these experiments, we simply exclude the time spent using our implementation
of this data structure altogether; of course, time spent by TES processing the reported changes is
still included.

51

report query execution times for SAM, because for small query intervals (say, those

with length less than 1000), random sampling is not applicable. From Figure 3.12b,

we see that NAI and TES times grow roughly linearly with k; both also exhibit large

standard deviations (shown as error bars), as their performance heavily depends on

the query interval length. In comparison, CEL’s times are consistently low (a small

fraction of a second) and largely unaffected by the query parameters.

Next, we compare the index space used by the various approaches in Figure 3.13,

as measured by the amounts of space consumed by Python data structures. The

query workloads are the same as those in Figure 3.12b. Note that the space consump-

tion of NAI/SAM (recall that they use the same data structure) and TES depend

on the maximum k they support. Hence, for each workload setting, we report two

space measurements: the higher one, shown as the red segment on top of the bar,

covers the entire range of k in the workload; the lower one covers only the lower half

of the range (meaning that half of the queries cannot be answered). For example,

when k „ N p500, 1002q truncated to r0, 1000s, we report the space consumed by

NAI/SAM and TES for kmax “ 1000 and kmax “ 500. CEL does not have such an

issue, as it does not assume a hard limit on k. From Figure 3.13, we see that overall,

larger k’s lead to larger index space for all approaches (although CEL can operate

under a specified space budget, recall that achieving the same high accuracy requires

more index space for larger k’s). NAI and SAM use the least amount of space, which

is not surprising as these methods rely less on preprocessing. TES consumes the

most space (about 13GB for K “ r9000, 10000s), which may not be acceptable as

an internal-memory solution. TES’s high space consumption can be explained by

its approach of indexing all object rank changes over time; if data exhibit somewhat

complex characteristics, indexing individual rank changes would carry a lot of over-

head compared with the more compact representation of NAI/SAM. In comparison,

CEL uses only 2.3GB on the highest k setting, which makes it more practical to store

52

100 101 102 103

time spent assessing errors (minutes)
0.5

0.6

0.7

0.8

0.9

1.0

F1
 sc

or
e

(a) Temp

101 102 103

time spent assessing errors (minutes)
0.5

0.6

0.7

0.8

0.9

1.0

F1
 sc

or
e

(b) Syn, n “ 1M, m “ 5K, σ “ 10

Figure 3.14: CEL index quality as a function of optimization time spent on assess-
ing expected error using Monte Carlo simulations during optimization; same query
workload as Figure 3.8.

the index in memory. We further note that our Python-based implementation is not

particularly memory-efficient. Thanks to CEL’s simple data structures, a C++ im-

plementation would reduce the memory footprint by about a factor of 2 (e.g., from

2.3GB to 1.18GB), where we can store each time instant or prefix sum with exactly 4

bytes, incurring far lower overhead than Python’s implementation of lists of integers.

To further demonstrate scalability of CEL, we test it on an even larger version

of Syn with 50 billion data points (n “ 10M, m “ 5K, and σ “ 10). In the query

workload, I is uniform and K “ r5000, 6000s. Under this setting, CEL only needs

3.6GB of index space to deliver F1 scores of at least 0.97, with mean query execution

time of 0.53 seconds (and a 0.03 standard deviation).

To summarize, CEL is both much faster and more space-efficient than TES.

Even for large datasets with billions of data points, CEL only needs a couple of GB

of memory to deliver fast, highly accurate results. While NAI and SAM require less

space, their query execution times are not competitive.

Index Construction. The two data-driven index-based methods, COL and

CEL, perform elaborate preprocessing and optimization during their index construc-

53

0 100 200 300 400 500

number of columns selected

0

50

100

150

200

ti
m

e
 (

m
in

u
te

s
)

(a) Dynamic programming for COL

0.4 0.6 0.8 1 1.2 1.4 1.6

number of cells selected 10
5

120

140

160

180

200

220

ti
m

e
 (

m
in

u
te

s
)

(b) Greedy for CEL

Figure 3.15: Optimization time as a function of budget. Syn, n “ 1M, m “ 5K,
σ “ 10, K “ r9K, 10Ks

tion step. In this section, we evaluate the performance of index construction for

these two methods and demonstrate their feasibility on large temporal datasets. Re-

call that in order for these methods to select what to index, they need to 1) estimate

expected error over the query workload, and 2) search for the optimal index that

minimize this error under a space constraint. Both tasks can be expensive. We now

take a closer look at these tasks before examining the end-to-end index construction

cost.

As discussed in Section 3.4.2, one of the ideas we use to speed up the task of

error estimation is Monte Carlo simulation, which samples from the query interval

distribution to estimate the expected error. To evaluate the effectiveness of this

strategy, we vary the number of samples drawn by the Monte Carlo simulation,

which translates into varying index construction times; intuitively, more samples

and longer running times produce more accurate estimates, which can potentially

lead to higher index quality. Figure 3.14 shows how index quality is affected by the

time spent on assessing errors (controlled by the number of Monte Carlo samples)

during optimization. We show results for CEL on Temp and Syn (with five billion

54

data points); results on other datasets and for COL are similar. The query workload

is the same as in Figure 3.8. We measure the index quality by the observed F1 scores

on 1000 random queries generated from the workload. For a fair comparison across

settings, we always give the optimization procedure the same space budget (used

by the longest time settings in Figure 3.14 to produce a sufficiently high F1 score).

Under settings with shorter times, less accurate error estimates can potentially make

the optimization procedure pick suboptimal indexes under the same space budget.

As shown in Figure 3.14, however, even when at fairly low sampling rates—which

translate to under 1.67 minutes spent on assessing errors for Temp or under 40

minutes for the much bigger Syn—we are able to deliver CEL indexes with qualities

comparable to those obtained under the longest time settings. In other words, the

Monte Carlo approach is quite effective in taming the cost of assessing errors while

ensuring the resulting index quality.

Next, we examine the costs of the optimization algorithms: dynamic program-

ming for COL (Section 3.4.2) and greedy for CEL (Section 3.4.2). Figure 3.15 plots

the optimization times of COL and CEL (excluding time spent on computing error

metrics) as functions of budget. The budget is in terms of the number of indexed

columns for COL, and in terms of the number of indexed cells for CEL. The un-

derlying dataset is Syn (n “ 1M, m “ 5K, σ “ 10). We further stress-test index

construction by enlarging the range of parameter k, drawing it from N p9500, 1002q,

discretized and truncated to r9000, 10000s. Compared with the experiments on real

datasets, the increases in the size of Syn and effective k value range together give

a multiplicative boost in the search space for CEL’s greedy selection algorithm, re-

sulting in a much more challenging optimization problem. The other query workload

settings are again the same as those for Figure 3.8. As we can see in Figure 3.15,

generally speaking, bigger space budgets result in longer optimization times, and

CEL optimization is more expensive than COL optimization. At a moderate bud-

55

Table 3.2: End-to-end CEL index construction times on various datasets.

Stock Billboard Temp Syn Syn
m ˆ n “ 5 billion m ˆ n “ 50 billion

6.05 minutes 38.56 minutes 1.97 hours 8.33 hours 16.3 hours

get settings for CEL, shown as the third data point in Figure 3.15(b), the resulting

indexes already have F1 scores of no less than 0.97, and require about 3.5 hours of

optimization time, which is practically feasible since it only happens during index

construction.

Finally, Figure 3.2 lists the end-to-end CEL index construction times for all our

real datasets and two large synthetic datasets. For Stock, Billboard and Temp, we

use the same query workload as in Figure 3.8. For Syn with 5 billion data points

(n “ 1M, m “ 5K, σ “ 10), we use the query workload as in Figure 3.15. For Syn

with 50 billion data points (n “ 10M, m “ 5K, σ “ 10), we use the same query

workload as the one used for this dataset in Section 3.6.2. As shown in Figure 3.2,

for real datasets, index construction can be completed within a couple of hours. For

the first Syn dataset, we can construct the index within 9 hours. For the second Syn

dataset that is 10 times bigger, we can construct the index under 17 hours. Even

for such large datasets, index construction time is acceptable considering that it is a

one-time cost. For all datasets, the constructed CEL index provides an F1 score of

no less than 0.97.

3.7 Conclusion

In this chapter, we have studied the problem of finding durable top-k objects in

large temporal datasets. We first considered the case when k is fixed and known

in advance, and proposed a novel solution based on a geometric reduction to the

3d halfspace reporting problem. We then studied in depth the general case where

56

k is variable and known only at query time. We proposed a suite of approximate

methods for this case, including both sampling- and index-based approaches, and

considered the optimization problem of selecting what to index. As demonstrated by

experiments with real and synthetic data, our best approximate method, cell-wise

indexing, achieves high-quality approximate answers with fast query time and low

index space on large temporal datasets.

57

4

Durable Top-k Queries on Instant-Stamped
Temporal Data

SUCCESS is not about HERE and
NOW. you must pass the TEST
OF TIME.

Mark Batterson

4.1 Introduction

In Chapter 3, we have introduced an interesting type of durability queries, namely

“τ - durable top-k queries”, on sequence-based temporal data. Such queries search for

temporal object with consistently exceptional performances over time; i.e., ranking

as top-k (in daily basis) for a large portion of times during a given time period. An

novel indexing method and corresponding query processing technique were proposed

to answer durability queries with low index space, fast query time and high quality

answers.

In this Chapter, we continue to explore durability queries, generalizing from state-

58

ment as in Example 2, on instant-stamped temporal data. Formally, instant-stamped

temporal data consists of a sequence of individual records, each timestamped by a

time instant which we call the arrival time, and ordered by the arrival time. Such

data is ubiquitous in a rich variety of domains; i.e., sports statistics, weather mea-

surement, network traffic logs and e-commerce transactions. Analysis of durability

on instant-stamped temporal data is a useful part of the toolbox for anybody who

works with historical data, and can be particularly helpful for journalists and mar-

keters to identify newsworthy facts and communicate their impressiveness to the

public.

In this chapter, we consider “τ -durable top-k queries” for finding instant-stamped

records that stand out in comparison to others within a surrounding time window.

Though sharing the same name as the durability query we introduced in Chapter 3,

τ here represents the time duration of records’ consistent dominance, as opposed to

τ a percentage of times in previous work.

In general, each record may have multiple attributes (besides the timestamp)

whose values are relevant to ranking these records. We assume that there is a user-

specified scoring function f that takes a record as input, potentially considers its

multiple attributes, and computes a single numeric score used for ranking. Intuitively,

a τ -durable top-k query returns, given a time duration τ , records that are within

the top k during a τ -length time window anchored relative to the arrival time of the

record. How the window should be positioned relative to the arrival time depends

on the application; our solution only stipulates that the relative positioning is done

consistently across all records. In practice, we observe most statements in media

involving durability either ends the window at the arrival time of the record (i.e.,

looking back into the past) or begins the window at the arrival time of the record

(i.e., looking ahead into the future). Generally speaking, each record returned by

our durable top-k corresponds to a statement about the record that highlights the

59

1988.4.22

1992.3.4

1994.1.22

1996.3.26

2001.1.31

2002.3.24

2006.12.15

2010.11.12

2015.11.3

2018.3.21

26

28

30

32

34

36
Oakley

Mutombo

Wallace

Duncan

Rodman

Rodman

Mutombo Love

Bynum Howard

(a) Rebound highlights

1988.4.22

1992.3.4

1994.1.22

1996.3.26

2001.1.31

2002.3.24

2006.12.15

2010.11.12

2015.11.3

2018.3.21

26

28

30

32

34

36
Oakley

Love

Howard

Duncan

(b) durable top-k query

1988.4.22

1992.3.4

1994.1.22

1996.3.26

2001.1.31

2002.3.24

2006.12.15

2010.11.12

2015.11.3

2018.3.21

26

28

30

32

34

36

Mutombo

Oakley

Rodman

Duncan

Love

(c) Tumbling Window Top-k

1988.4.22

1992.3.4

1994.1.22

1996.3.26

2001.1.31

2002.3.24

2006.12.15

2010.11.12

2015.11.3

2018.3.21

26

28

30

32

34

36

HowardBynum

Drummond

(d) Sliding Window Top-k

Figure 4.1: A case study on finding durable noteworthy rebound performances in
NBA history. Red squares highlight results returned by different queries, and line
segments represent the durability time window.

durability of its supremacy. For instance, the Kobe Bryant statement in Example 2

is based on one record returned from a durable top-k query where k “ 1, τ “ 45

years (looking back) or τ “ 15 years (looking forward), and ranking is done by a

simple f that just returns player’s total points in a single NBA game.

Note that there are different ways for capturing the notion of durability in queries,

including some types that have been studied in the past. To understand why we

choose our definition of durable top-k queries, we examine the alternatives with a

simple concrete example.

60

Example 4. Suppose we are interested in finding exceptional rebounds performances

(by individual players in individual games) in NBA history—particularly, those that

stood out as the top record (or tying for the top record) in a 5-year time span.

Figure 4.1.1 plots all relevant records (i.e., no fewer than 27 rebounds by a single

player in a single game) in entire NBA history. We consider the following three

queries to accomplish our task; the latter two have been widely studied in the stream

processing and top-k query processing literature. Note that in this example k “ 1.

• Durable top-k (our query): This is the query that we propose. For each record,

we look back in a 5-year window ending at the timestamp of the record, and

check whether the record has the top score among all records within this win-

dow. Figure 4.1.2 highlights the records (red squares) returned by our query;

for each result record, we also show its durability window (as a line segment),

i.e., a 5-year window ending at the record for which it remains on the top.

• Tumbling-window top-k: This query first partitions the timeline into a series of

non-overlapping, fixed-sized (5-year) windows, and then returns the top record

within each time window. The placement of the windows is up to the user

and can affect results. Results for one particular placement of the windows are

shown in Figure 4.1.3.

• Sliding-window top-k: This query slides a 5-year window along the timeline,

and returns the top record for each position of the sliding window. Figure 4.1.4

highlights a few representative sliding windows, as well as the top records during

these windows.

All these queries are able to uncover some meaningful durable top records; i.e., for

any data record pX, Y, Zq marked as a red square in Figure 4.1, we can claim “player

X grabbed Y rebounds in a game on date Z, which is the best in some 5-year span.”

61

First, the durability aspect adds to the impressiveness of the statement. Second, the

combination of durability and ranking helps reveal interesting records that would

otherwise be ignored if we simply filter the records by a high absolute value. For

instance, all three queries find (Duncan, 27, 2009) as a durable top-1 record. While

this record may not seem impressive by number alone, it was indeed the top-1 from

2002 to 2010. This is an interesting observation to mention, as it reflects a trend

(relatively low rebounds of all players) during that era of NBA.

However, there are some notable differences among the results found by these

queries.

• Tumbling-window vs. our query: The general observation is that the results of

tumbling-window are highly sensitive to the choice of window placement. In

Figure 4.1.3, tumbling-window picks (Mutombo, 29, 2001) and the other two

performances with 29 rebounds as they were the best ones during 2000-2005,

but there were more impressive performances right before them, unfortunately

leaving the impression that they stood out only because the windows were

cherry-picked. Furthermore, if we choose to place all windows slightly to the

right such that the last window ends with the most recent arrival time, (Rod-

man, 34, 1992) will be eliminated by (Oakley, 35, 1988), and (Duncan, 27,

2009) will be overlooked since it is shadowed by (Love, 31, 2010). Overall,

because of high sensitivity to window boundaries, tumbling-window runs the

risk of omitting important records as they happen to be overshadowed by some

other records in the same window, and picking less interesting records as they

happen to be the top ones in that specific window.

• Sliding-window vs. our query: Sliding-window is not susceptible to window

placement, but it effectively considers all possible window placements, and it

returns the union of all top records for each such placement. This approach

62

leads to possibly many records that are not as meaningful in practice. In

Figure 4.1.4, sliding-window apparently returns overwhelmingly more results

compared to our query, which makes it less applicable to mining most note-

worthy records. Even more unnatural is the fact that as we slide the window

along the timeline, a record can come in and out of the result; i.e., there is

no continuity. To illustrate, suppose we are interested in durable top-2 records

with 5-year windows, and let us focus on Drummond’s 29 rebounds perfor-

mance on 2015.11.3 (highlighted in Figure 4.1.4). It is surrounded by two

top performance (Howard, 30, 2018) and (Bynum, 30, 2013). Sliding-window

will return this record when the window is positioned at 2014-2019, but not

when positioned at 2013-2018; however, the record will be returned again when

the window moves to 2012-2017. Such discontinuity makes the results rather

unnatural to interpret.

In comparison, our query does not have the issue of sensitivity to window placement

or that of difficulty of interpretation, because we assess each record in a 5-year

window that leads up to its own timestamp. Thus, our query result records can be

consistently interpreted as having durability “within the past 5 years” and clearly

communicated to the audience. The results from the other two queries would have

be qualified with rather specific durability windows, 1 which may be perceived as

cherry-picking. In general, we argue that consistency and simplicity of our query

makes it more applicable to journalists, marketers, and data enthusiasts alike who

seek result that are easily explainable to the public.

Although the above example ranks records by just a single attribute, its argument

1 A related question is whether we can post-process the results of the sliding-window query to
obtain the results to our query; e.g., filtering those result records in Figure 4.1-(4) to get those in
Figure 4.1-(2). Unfortunately, such an approach, which we consider as one of the baselines in our
experiments, is prohibitively slow when dealing with large temporal datasets, as we shall show in
later sections.

63

can be easily extended to the more general case where ranking is done by a user-

specified scoring function that combines multiple attribute values into a single score.

Contributions. Our contributions are as follows:

• We propose to find “interesting” records from large instant-stamped temporal

datasets using durable top-k queries. Compared with other query types related

to durability, our query produce results that are more robust (i.e., less sensitive

to window placement than tumbling-window) and more meaningful (i.e., easier

to interpret than sliding-window).

• We propose a suite of solutions based on two approaches that process “promis-

ing” records in different prioritization order. We provide a comprehensive the-

oretical analysis on complexities of the problem and of our proposed solutions.

• Our solutions are general and flexible. They do not require any specific scoring

function f , but instead assume a well-defined building block for answering top-

k queries using f , which can be “plugged into” our solutions and analysis. We

give some concrete example of f and the building block later in this section. In

particular, f can be further parameterized according to user preference; these

parameters, along with I, k, and τ , can be specified at query time, making our

solutions flexible and suitable for scenarios where users may explore various

parameter setting at run-time (either interactively or automatically).

• We show that the query time complexity of our best algorithms is proportional

to Op|S|` k
P |I|
τ

T

q in the worst case, where |S| is the answer size. Furthermore,

we prove that the expected answer size of a durable top-k query |S| is Opk
P |I|
τ

T

q

under the random permutation model (where the data values can be arbitrar-

ily distributed but arrival order is random); this result implies that our best

algorithms are in a sense optimal because this complexity term is essentially

linear in the output size.

64

• Extensive experiments on both real and synthetic data, with various combina-

tions of query parameters and data dimensionalities, demonstrate the efficiency

our methods over baseline solutions. Our best solutions can be up to 2 orders

of magnitude faster in practice.

Chapter Overview. In a nutshell, our proposed algorithms 1) visit promising

records in some manner, and 2) check the durability (with respect to a top-k query)

for each record we visit. Techniques for improvement mostly focus on how to effi-

ciently identify candidate records and eventually reduce the total number of dura-

bility checks in the second phase. Our proposed algorithms come in two flavors:

time-prioritized and score-prioritized, introduced in Section 4.3 and Section 4.4, re-

spectively. The time-prioritized solution traverses and finds candidate records se-

quentially along the timeline, while the score-prioritized solution greedily chooses

unvisited candidates with the maximum score (with respect to f). Though in differ-

ent manners, we show in later sections that these two solutions actually equivalently

reduce and bound the size of candidate records (or, the number of durability checks).

More interestingly, in Section 4.5, we further demonstrate that the bound is propor-

tional to the answer size of a durable top-k query, which means our algorithms run

faster when the query is more selective, e.g., with smaller k or longer durability τ .

Section 4.6 experimentally evaluates all our proposed solutions. We review related

work in Section 4.7 and conclude in Section 4.8.

4.2 Problem Statement and Preliminaries

Problem Statement. Consider a dataset P with n records, where each record p P

P has d real-valued attributes and is represented as a point pp.x1, p.x2, . . . , p.xdq P Rd.

For simplicity, we consider a discrete time domain of interest T “ t1, 2, . . . , nu, and

let p.t P T denote the arrival time of p. All records in P are organized by increasing

65

order of their arrival time. Given a non-empty time window W : rt1, t2s Ď T, let

P pW q denote the set of records that arrive between t1 and t2; i.e., P pW q “ tp P P |

t1 ď p.t ď t2u.

Assume a user-specified scoring function maps each record p to a real-valued

score, f : Rd Ñ R. Given a time window W “ rt1, t2s, a top-k query Qpk,W q

asks for the k records from P pW q with the highest scores with respect to f . Let

πďkprt1, t2s,) denote the result of Qpk,W q; i.e., for @p P πďkprt1, t2s,), there are no

more than k ´ 1 records q P P prt1, t2sq with fpqq ą fppq.

For simplicity of exposition, we consider durability windows ending at the arrival

time of each record throughout the paper (i.e., the “looking-back” version), but our

solution can be extended to the more general case where the windows are anchored

consistently relative to the arrival times (including the “looking-ahead” version).

We say a record p is τ -durable2 if p P πďkprp.t ´ τ, p.ts,). That is, p remains in the

top-k for τ time during rp.t ´ τ, p.ts. We are interested in finding records with long

durability. Given a query interval I and a durability threshold τ P r1, |T|s, a durable

top-k query, denoted DurToppk, I, τq, returns the set of τ -durable records that arrive

during I; i.e., DurToppk, I, τq “ tp P P pIq | p P πďkprp.t´ τ, p.ts, uq.

Scoring Function and Top-k Query Building Block. As discussed earlier, our

proposed algorithms and complexity analyses are applicable to any user-specified

scoring function f as long as there exists a “building block” that can answer basic

(non-durable) top-k queries under f . This building block can be a “black box”: the

novelty and major contribution of our algorithms come from its ability to reduce and

bound the number of invocations of the building block, totally independent of how

the building block operates itself. Of course, the overall algorithm complexity still

depends on the efficiency of the building block. For a function f , we consider that an

2 If τ is obvious from the context, we drop τ from the definition, i.e., we say that a record is
durable.

66

index of size Opspnqq can be constructed in Opupnqq time that answers top-k queries

with respect to f in Opqpnq ` kq time, where n is the data size and sp¨q, up¨q, qp¨q are

functions of n.

In this paper, we are more interested in top-k queries on a subset of data specified

by a time window W given at query time; i,e., computing Qpk,W q that reports the

k records in P pW q with the highest scores with respect to f . With a slight care, the

top-k query building block can be used to solve this problem by paying a logarithmic

factor in index size, query time and construction time. That is, for a function f we

can construct an index of size Opspnq log nq in Opupnq log nq time so that for given

k,W , Qpk,W q can be computed in Oppqpnq ` kq log nq time.

Here, we give some concrete examples of f that are widely used in real-life appli-

cations, for which efficient top-k query building blocks exist. Consider the following

class of scoring functions parameterized by u, which captures user preference:

• linear : fppq “
řd
i“1 ui ¨ p.xi,

• linear combination of monotone scoring functions : fppq “
řd
i“1 ui ¨ hpp.xiq,

where h is a monotone function; i.e., hp¨q “ logp¨q,

• cosine: fppq “ 1
|p||u|

řd
i“1 ui ¨ p.xi,

where u is a real-valued preference vector and fu denotes that the scoring function

f is parameterized by u. We refer to this class of functions as preference functions.

Top-k queries using such class of scoring functions (preferably in the above three

forms) have been well studied over the past decades both in computational geometry

[3, 22, 80, 4, 9, 19] and databases [20, 116, 58, 61]. For example, for preference

functions above, there is an index with upnq “ Opnq, spnq “ Opnq, and qpnq “

Opn1´1{td{2uq, skipping polylogpnq factors.

As mentioned above, users can replace the scoring block with other functions

(i.e., non-linear or non-monotone). The centerpiece of our algorithm and analysis,

67

which bounds the number of invocations of the top-k query building block, remains

unchanged. But in that case, the complexity of the building block will affect the

overall complexity bound. We choose these functions because 1) they are widely

used in real-life applications that require ranking and 2) they are both linear and

monotone, so preference top-k can be efficiently answered (using the same index).

Sliding-Windows and Baseline Solution. Recall from the discussion in Ex-

ample 1 (Figures 4.1-(2) and 4.1-(4)) that there is a connection between our problem

and the sliding-window version, which has been well studied [82, 66, 32]. Indeed,

one of our baseline solution is adopted from [82] with incremental top-k main-

tenance over sliding windows. However, the standard sliding-window technique is

more suitable for data streams, where it is necessary to linearly scan incoming data.

Instead, our query analyzes static historical data. The linear complexity of sliding

windows becomes infeasible especially when dealing with large temporal datasets.

The limitation hence motivates our solutions in later sections. Experimental results

demonstrate our proposed algorithms’ significant efficiency gain (up to 2 orders of

magnitude) over sliding-window baselines.

4.3 Time-Prioritized Approach

The time-prioritized approach is straightforward: we visit records in time order and

check their durability. We start with a baseline approach (Section 4.3.1) and pro-

pose an improved version (Section 4.3.2) using the observation that we can skip

many unpromising records in practice. What is more interesting is how this simple

improvement leads to provably substantial reduction in complexity (Section 4.3.3).

4.3.1 Time-Baseline Algorithm

We start with a baseline solution, referred to as Time-Baseline or T-Base. T-Base

shares the same spirit as the solution proposed in [82], where authors studied the

68

t

τ

t1t2t3t4

τ

sc
or

e

Figure 4.2: Data skipping in Time-Hop Algorithm.

problem on how to continuously monitor top-k queries over the most recent data in

a streaming setting. The main idea is to incrementally maintain the top-k set over

continuous sliding windows. We start with the right endpoint of query interval, and

sequentially slide a τ -length window backwards along the timeline. For each sliding

window rt ´ τ, ts, we need the top-k result to check whether the record (arriving

at time t) is τ -durable. With two adjacent windows W1 “ rt ´ τ, ts and W2 “

rt´ τ ´ 1, t´ 1s, top-k results could be updated incrementally, if the expired record

(e.g., P rts) is not a top-k on W1. Otherwise, we need to compute the top-k on

window W2 from scratch to guarantee correctness. The procedure repeats until we

visit all records in the query interval I.

Next, we analyze the query time complexity of T-Base. There are only two

types of records: durable or non-durable. After visiting each durable record, we

need to issue a top-k query. After visiting each non-durable record, we only need

to incrementally update the current top-k set with new incoming record in Oplog kq

time. Assuming a top-k query can be answered in O
`

pqpnq ` kq log n
˘

time, then

T-Base runs in O
`

|S|pqpnq ` kq log n ` n log kq
˘

, where |S| is the answer size. This

algorithm takes super-linear time (on the number of records in the query interval).

Next, we show a solution with sub-linear query time.

69

4.3.2 Time-Hop Algorithm

It is not hard to see that the durable top-k query can be viewed as an offline version

of the top-k query in the sliding-window streaming model. Hence, the baseline

algorithm introduced above does not best serve our needs. Since the entire data is

available in advance, the manner of continuous sliding window wastes too much time

on those non-durable records. After all, a meaningful durable top-k query should be

selective.

Before describing the algorithm, we illustrate the main idea using an example for

k “ 3, shown in Figure 4.2. By running a top-3 query Qp3, rt1 ´ τ, t1sq, consider the

record p arriving at t1 (black circle) is not τ -durable; i.e., p R πď3prt1 ´ τ, t1s,). We

know the current top-3 set contains records (red squares) that arrive at t4, t3 and t2.

Then, no records arriving between t2 and t1 would be τ -durable and we can safely

hop from t1 to t2. This simple and useful observation simplifies the query procedure,

and allows larger strides for sliding windows.

Now, we present our algorithm Time-Hop (T-Hop) (the pseudocode can be found

in Algorithm 2). For each record we visit with timestamp ti, we run a top-k query

in rti ´ τ, tis (Line 4). If the record is not durable, we slide the window back to the

most recent arrival time of records, say tj, in the current top-k set (Line 9), skipping

the non-durable records between tj and ti. Otherwise, if a durable record is found,

we slide the window backwards by 1 (Line 7) as usual. Note that if we adopt the

look-ahead version of durability, we just need to reverse the traversal order (and

time-hopping) on timeline as well.

4.3.3 Complexity Analysis of T-Hop

For the Time-Hop algorithm, the time complexity purely depends on the number of

top-k queries called in the query procedure. We provide a worst-case guarantee on

the number of top-k queries performed, as shown by the lemma below

70

Algorithm 2: T-Hop pk, I, τq

Input: P , k, τ , and I : rt1, t2s.
Output: DurToppk, I, τq

1 Initialize answer set: S Ð ∅, top-k set: πďk Ð ∅;
2 tcurr Ð t2;
3 while tcurr ą“ t1 do
4 πďk Ð Qpk, rtcurr ´ τ, tcurrsq;
5 if P rtcurrs P πďk then
6 S Ð S Y P rtcurrs;
7 tcurr Ð tcurr ´ 1;

8 else
9 tcurr Ð most recent arrival time of records in πďk;

10 return S;

Lemma 9. The total number of top-k queries performed by the Time-Hop algorithm

is O
`

|S|` k
P |I|
τ

T˘

.

Proof. We start with a high-level sketch of the full proof.

For each record we visit in T-Hop, a top-k query is called for a durability check.

If the record is not τ -durable, we refer it to as a “false check”. Otherwise, we

add it to the answer set. Hence, we only need to bound the total number of false

checks. We decompose the total number of false checks into a set of disjoint τ -length

windows, and derive an upper bound of false checks that happen in such a window.

In particular, let ρ be a window of length τ and let Sρ be the τ -durable records in ρ.

We divide the false checks in ρ into two types. If a false check appears immidiately

after a τ -durable record (found by the algorithm) then this is a type-1 false check.

Otherwise it is a type-2 false check. From the definition, the number of type-1 false

checks in ρ is OpSρq. Furthermore, we show that after finding i type-2 false checks

in ρ, a top-k query (that is called for durability check) can only find k ´ i records

in ρ. In that way we show that the number of type-2 false checks is Opkq. Given a

query interval I, there are at most
P |I|
τ

T

disjoint τ -length sub-intervals. We conclude

that the number of top-k queries is O
`

|S|` k
P |I|
τ

T˘

.

71

Now we elaborate the full proof.

let I “ ra, bs and ρ “ rb´τ, bs. Let Sρ “ SXρ, i.e., the set of solution points with

timestamp in ρ. We show that the number of false checks in ρ is Op|Sρ|`kq. Without

loss of generality, assume that for any pair of points pi, pj with i ă j, pi.t ă pj.t.

We consider two types of false checks in ρ. If the algorithm finds a false check

immediately after a solution point then this is a type-1 false check. Otherwise it is a

type-2 false check. From the definition, the number of type-1 false checks is bounded

by Op|Sρ|q. Next we show that the number of type-2 false checks in ρ is bounded

by Opkq. If the number of points in ρ is less than k then the result follows, so we

assume that |P rb´ τ, bs| ą k.

Recall that if the algorithm visits a point p it computes the top-k elements in

rp.t´ τ, p.ts. Let Up be the list of the top-k items in rp.t´ τ, p.ts. Let Zp “ Up X ρ,

be the list of these top-k elements that lie in ρ. Generally we refer to Zp as a Z list.

At the beginning of the algorithm assume that we find the top-k elements in ρ, so

we have a list Z with |Z| “ k. We show the following two observations. i) Each time

that the algorithm finds a type-2 false check the new Z list of top-k points in ρ has

cardinality at least one less than the previous list. ii) The cardinalities of the Z lists

as we run the algorithm in ρ are never increasing. If we show (i), (ii) we could argue

that after the algorithm finds k type-2 false checks in ρ, the Z list will be empty and

the algorithm will visits a point out of ρ.

Let Zr be the current list as defined above. The algorithm visits the point with

the largest timestamp in Zr, say p, which is a type-2 false check. Let Zp “ Up X ρ

be the new list. We compare the new list Zp with the old list Zr. Notice that every

point q R Zr with time q.t P rb ´ τ, p.ts has fpqq ă fppq (1), otherwise Zr would

not be in the correct top-k list. Furthermore, p is a false check because there are

at least k points in rp.t´ τ, p.tq with score more than the score of p, (2). From (1),

(2) it follows that Zp Ă Zr. Hence, the cardinality of the new Z list is less than the

72

cardinality of the previous Z list. In addition, notice that there are at least k ´ |Zp|

points in rp.t´ τ, b´ τ s with scores greater than the score of p, and generally greater

than the score of any point in P rb´ τ, p.tszZp, (3).

In order to complete the proof we need to show what is the new Z list when

the algorithm visits a series of solution points. Assume that Zp is the current list

(or the initial one) and the algorithm visits Zp’s point with the larger timestamp.

Assume that the algorithm finds a series of solution points, where j of them belong

in Zp. Notice that j ě 1. Let q be the type-1 false check that the algorithm visits

(after the series of solution points) and let Zq be the new list. We need to show

that |Zq| ď |Zp|. We assume that q R Zp (if q P Zp then notice that Zq Ă Zp

so the result follows). Recall from (3) that there are at least k ´ |Zp| points with

timestamp rp.t ´ τ ą q.t ´ τ, b ´ τ s and with score greater than the score of q. We

call these points A. Moreover, there are |Zp| ´ j points in Zp with timestamp in

rb ´ τ, q.tq and with score greater than the score of q. We call these points B. We

have |Zq| ď |B| ` pk ´ |A| ´ |B|q “ k ´ |A| “ |Zp|. Hence, we conclude that there

are Opkq type-2 false checks and the total number of false checks in ρ is Op|Sρ| ` kq.

There are
Q

|I|
τ

U

intervals of length τ in I so the total number of false checks is

Op|S| ` k
Q

|I|
τ

U

q.

Overall, with an efficient top-k module, T-Hop answers a durable top-k query

DurToppk, I, τq in O
`

p|S|` k
P |I|
τ

T

qpqpnq ` kq log n
˘

time. Compared to T-Base, T-Hop

runs in sublinear query time (assuming that the ratio
P |I|
τ

T

is not arbitrarily large),

i.e., the running time does not have a linear dependency on the number of records in

I. Our experimental results in Section 4.6 suggests that T-Hop is one to two orders

of magnitude faster than T-Base in practice.

Notice that the number of top-k queries performed by T-Hop depends on |S| and

73

t

p1
p2

p3

τ
τ

τ

1 2 3 2 1

sc
or

e

Figure 4.3: Blocking mechanism in score-prioritized approach

k
P |I|
τ

T

. Ideally, we would like to argue that the number of top-k queries is Op|S|q.

In theory, the term k
P |I|
τ

T

can be arbitrarily large comparing to |S|. In Section 4.5.1

we study the expected size of S in a random permutation model where a set of n

scores, chosen by an adversary, are assigned randomly to the records. In such a case

we show that the expected size of S is roughly Opk
P |I|
τ

T

q, meaning that in practice

we expect that the number of top-k queries we execute are asymptotically equal to

|S|.

4.4 Score-Prioritized Approach

One weakness of time-prioritized approach is that it does not pay much attention to

scores and simply visit records sequentially along the timeline (with hops). Though

Lemma 9 shows that T-Hop visits Op|S| ` k
P |I|
τ

T

q records in the worst case, it still

potentially visits many low-score and non-durable records and ask more top-k queries.

In contrast, the score-prioritized approach visits candidate records in descending

order of their scores because records with high scores have a higher chance of being

durable top-k records. Furthermore, these high-score records can also serve as a

benchmark for future records, enabling a “blocking mechanism” to prune candidates.

Before describing the algorithms, we illustrate the main idea using an example

shown in Figure 4.3. Suppose we answer a durable top-3 query with τ by visiting

records in descending order of their scores: p1, p2 and p3, and all three records are

74

durable ones. p1 has the highest score in the entire query interval, any record that

lies in the τ -length time interval rp1.t, p1.t ` τ s will be dominated by p1, which we

refer to as being “blocked” by p1. Similarly, p2 (the second highest score) and p3 (the

third highest score) also block a τ -length interval starting from their arrival times.

The time axis is partitioned into intervals by endpoints of all blocking intervals.

In Figure 4.3, the number under each interval shows how many records block this

interval. Notice the bold red interval, where any record in this interval lies in three

blocking intervals after processing p1, p2 and p3. Since there are already three records

with higher score than any record in this interval, it can not have any τ -durable top-

3 record, and we can safely remove this time interval from consideration. As we

continue adding blocking intervals, eventually every remaining record in the query

interval will be blocked by at least three blocking intervals. The algorithm can

now stop because no more durable top records can be found. The procedure is

straightforwardly applicable to look-ahead version of durability, by simply reversing

the direction of blocking intervals.

We describe three algorithms in the following sections. They differ on how the

high-score records are found and how the blocking intervals are maintained.

4.4.1 Score-Baseline Algorithm

We start with a baseline method (S-Base) of score-prioritized approach, which sorts

records in the query interval in descending order of their scores. Given k, τ and a

query interval rt1, t2s: (1) Sort all records in time interval rt1 ´ τ, t2s in descending

order of scores. (2) For each record p in sorted order: If p.t P rt1, t2s and p lies in

less than k blocking intervals, add p to answer set; Otherwise, continue. In any case,

add a blocking interval rp.t, p.t` τ s.

Since all blocking intervals have the same length τ , we only need to maintain

the left endpoints of such intervals (using a balanced binary search tree) to find

75

Algorithm 3: S-Band pk, I, τq

Input: P , k, τ , and I.
Output: DurToppk, I, τq

1 S Ð ∅, Γ Ð ∅;
2 Compute C Ă P by finding durable k-skyband set;
3 Sort C in descending order of scores;
4 for p P C do
5 if p lies in ă k blocking intervals in Γ then
6 πďk Ð Qpk, rp.t´ τ, p.tsq;
7 if p P πďk then
8 S Ð S Y tpu;
9 else

10 for q P πďk ^ q is not visited do
11 Γ Ð ΓY trq.t, q.t` τ su;

12 Γ Ð ΓY trp.t, p.t` τ su;

13 return S;

intersection counts. The number of blocking intervals is Opnq. Hence, insertion and

query can both be finished in Oplog nq time. The sorting takes Opn log nq time so

the overall query time complexity of S-Base is Opn log nq.

Next we describe two better algorithms that avoid sorting all records in the query

interval.

4.4.2 Score-Band Algorithm (Monotone fff Only)

If we could quickly find a small set of candidate records C, which is guaranteed to

be a superset of the answers; i.e., S Ď C, then we could get a faster algorithm by

only sorting C. It is well-known that the k records with the highest score, with

respect to any monotone scoring functions, belong to the k-skyband.3 Hence, if a

record p is τ -durable for a top-k query (with respect to a monotone f), then p must

also be τ -durable for the k-skyband; i.e., p is in the k-skyband for the time interval

3 For @p, q, P P , p dominates q if p is no worse than q in all dimensions, and p is better than q
in at least one dimension. k-skyband contains all the points that are dominated by no more than
k ´ 1 other points. Skyline is a special case of k-skyband when k “ 1.

76

rp.t ´ τ, p.ts. This observation enables us to construct an offline index about each

record’s duration of belonging to the k-skyband, and efficiently produce a superset

C of answers to durable top-k queries. Note that the score-band algorithm has its

limitation, since the k-skyband technique only applies to monotone scoring functions.

Index. Score-Band algorithm needs additional index for finding candidate set C,

which we refer to as “durable k-skyband”. Suppose the value of k is known. For each

record p, we compute the longest duration τp that p belongs to the k-skyband. Then

we map each record p into the “arrival time - duration” plane as a two-dimensional

point, p̃ “ pp.t, τpq. We then index all such points in the 2D plane using a priority

search tree [34] (or kd-tree, R-tree in practice). To answer DurToppk, I, τq, we first

ask a range query with the 3-sided rectangle I ˆ rτ,`8s. The set of points that

fall into the search region is the superset to actual answers of durable records. This

index can be constructed in Opn log nq time, has Opnq space and the query time is

Op|C|` log nq in order to get the set C.

In general case, notice that we do not know the value of k upfront, i.e., a query

has k as a parameter, so we cannot construct only one such index. There are two

ways to handle it. If we have the guarantee that k ď κ0 for a small number κ0 then

we can construct κ0 such indexes with total space Opnκ0q. Otherwise, if k can be

any integer in r1, ns, we can construct Oplog nq such indexes (priority search trees),

one for each k “ 20, 21, . . . , 2logn, so the space is Opn log nq. Given a durable top-k

query we first find the number k̄ with k ď k̄ ď 2k, and then we use the corresponding

index to get the superset C. In this case, C contains the records that are τ -durable

to the k̄-skyband, so S Ď C.

Query Algorithm. We refer to this score-prioritized approach using durable k-

skyband candidates as Score-Band algorithm, or S-Band. Full algorithm is sketched

in Algorithm 3 and described below. Given k, I, τ , we first retrieve the candidate

77

t

p4

p3
p2

p1

p5

τ

sc
or

e

Figure 4.4: Durability checks in S-Band and S-Hop.

set C using the durable k-skyband index as shown above. Then we sort C and visit

records in descending order of their scores. For each record p we visit, we first check

the number of blocking intervals that p lies. If p lies in less than k blocking intervals,

it is a promising candidate and we run a top-k query on time interval rp.t ´ τ, p.ts

for durability check. If p is indeed τ -durable, we add p to answer set. Otherwise, we

need to add a blocking interval for each record returned by the top-k query (if we

have not done so yet), since they all have higher scores than p. On the other hand,

if p already lies in at least k blocking intervals, we can simply skip it. In the end, we

add the blocking interval rp.t, p.t` τ s for p.

We can see that S-Band works similarly to S-Base. The only difference is that

for a record that is blocked less than k times, we still have to execute a top-k query

to check whether the record is τ -durable (Line 6). This step of durability check is

necessary. Though some records are guaranteed to be non-durable (i.e., not captured

by C with durable k-skyband), they can still block other records (with lower scores)

to be durable ones. Consider a concrete example in Figure 4.4 where black dots

represent candidate records in C and red squares represent records that are not in

C. S-Band would only visit p1, p4 and p5. At the time we visit p4, there is only one

blocking interval (introduced by p1). However, p2 and p3 actually have higher scores

than p4. By running a durability check query on p4, we can discover these missing

records and add corresponding blocking intervals (Line 10-11) for better pruning

power in future steps.

78

Complexity. The query time complexity of S-Band can be decomposed into

three parts: 1) a range search query to find candidate set C; 2) sort C according

to their scores; 3) find durable records from sorted C sequentially. Summing up

the above, the overall query time complexity of S-Band is O
`

|C|pqpnq ` kq log n
˘

,

assuming that a top-k query can be answered in Opqpnq ` kq time. In the worst

case |C| “ Opnq since all points can lie in the k-skyband. In Section 4.5 we show

that using the probabilistic model in [13] (where the coordinates of the points are

randomly assigned) the expected size of C is Opk
P |I|
τ

T

logd´1 τq. Due to the blocking

mechanism, in practice we expect that the number of top-k queries will be smaller.

However, notice that we always need to sort all records in C which might make S-

Band much slower due to the size of C that increases (in expectation) exponentially

on the dimension d.

4.4.3 Score-Hop Algorithm

The data reduction strategy of S-Band offers adequate benefits for improving the

overall running time on datasets in low dimensions (ď 5). However, the query

overhead on searching and sorting candidate records becomes a huge burden on

high-dimensional data, as it is well-known that the size of k-skyband tends to explode

(or equivalently, records in high-dimensional space tends to stay in k-skyband for a

longer duration) in high-dimensional space. Furthermore, S-Band requires additional

index and only applies to monotone scoring functions. To overcome the drawbacks

of S-Base and S-Band, we propose another approach that does not require sorting

and has better worst case guarantee. The main idea is that there is no need to sort

records in advance; we can find the record with the next highest score one by one as

we find durable records. With the help of blocking mechanism, we can skip certain

time intervals when we find the next highest score record, despite the fact that there

might be some high-score records in such intervals. This procedure has an analogy to

79

Algorithm 4: S-Hop pk, I, τq

Input: P , k, τ , and I : ra, bs.
Output: DurToppk, I, τq

1 H Ð ∅, S Ð ∅, Γ Ð ∅;
2 for rli, ris : disjoint τ -length intervals in I do
3 Mi Ð Qpu, k, rlr, risq;
4 H.push(Mi.pop());

5 while H ‰ ∅ do
6 pj Ð H.pop();
7 if pj lies in ă k blocking intervals in Γ then
8 πďk Ð Qpu, k, rpj.t´ τ, pj.tsq;
9 if pj P πďk then

10 S Ð S Y tpju;
11 else
12 for q P πďk ^ q is not visited do
13 Γ Ð ΓY trq.t, q.t` τ su;

14 M´
j Ð Qpk, rlj, pj.t´ 1sq;

15 M`
j Ð Qpk, rpj.t` 1, rjsq;

16 H.push(M´
j .top()), H.push(M`

j .top());

17 else
18 if Mj ‰ ∅ then
19 H.push(Mj.pop());

20 Γ Ð ΓY trpj.t, pj.t` τ su;

21 return S;

the Time-Hop algorithm, since we effectively skip certain records while we traverse

records in descending order of their scores, as we taking a hop in the score-domain.

Query Algorithm. We refer to this solution as Score-Hop algorithm, or S-Hop.

The full description of the algorithm is shown as follows, and also in Algorithm 4.

Given a query interval I “ ra, bs, we partition the interval into a set of disjoint

τ -length sub-intervals: ra, a` τq, ra` τ, a` 2τq, . . . , ra`
X |I|
τ

\

τ, bs. Let rli, ris be the

i-th sub-interval, and in each interval we find the k records with the highest score,

denoted Mi. We construct a max-heap H over all the top-1 records from all sub-

intervals. Besides that, each node in H also keeps the original interval rli, ris and

80

the set Mi associated with the record. We repeat the following until H is empty.

We take and pop the top record from H. Let p be that record originated from Mj.

Then p will be processed in the following two cases: 1) If p lies in at least k blocking

intervals, we update H by pushing the next top record in Mj (if there is any). 2) If p

lies in less than k blocking intervals, we update H as follows. Assume that rlj, rjs is

the corresponding sub-interval of Mj (or p). We first split rlj, rjs into two non-empty

intervals rlj, p.t´ 1s and rp.t` 1, rjs. Then, run a top-k query on rlj, p.t´ 1s to get a

new top-k set M´
j . Similarly, get another new set M`

j from rp.t` 1, rjs. We replace

the old set Mj with M´
j and M`

j , along with its corresponding interval rlj, p.t ´ 1s

and rp.t ` 1, rjs, respectively. Finally, we update H by pushing the current top

records from M´
j and M`

j into the heap. It is worth mentioning that the hopping

movement happens at Line 18: we effectively skip certain intervals by not updating

the max-heap and stop asking top-k queries on its sub-intervals.

Compared to S-Band, S-Hop does not have a strong dependency on the dimension

of the data (only the running time of the top-k queries depends on the dimension)

and makes better use of the blocking mechanism. In the end, we only find and process

high-score records as we need instead of acquiring a full sorted order of records in

advance, which leads to better worst case theoretical guarantees and faster query

time. Experimental results in Section 4.6 demonstrate that S-Hop can be 1 to 2

orders of magnitude faster than S-Band on high-dimensional (ě 10) datasets.

Correctness. The following lemma proves the correctness of S-Hop; full proof

can be found in Appendix A.1.

Lemma 10. Given k, I and τ , the Score-Hop algorithm returns the correct answer

for durable top-k query.

Proof (Sketch). Let S˚ be the τ -durable records in I. We show that S Ď S˚ and

S˚ Ď S. The algorithm always checks by running a top-k query if a record should

81

be in the solution (line 8 of Algorithm 4) so S Ď S˚.

Next we prove S˚ Ď S. The algorithm visits the records in descending (score)

order so it is not possible that a record p P S˚ lies in at least k blocking intervals

before the algorithm visits p. We also need to prove that the algorithm does not

miss any durable record in a sub-interval rlj, rjs that corresponds to an empty Mj.

If |P prlj, rjsq| ď k then the result follows. Otherwise, we argue using induction that

each time when the algorithm finds a record pj in Mj that is contained in at least

k blocking intervals, any timestamp in the sub-interval rlj, pj.ts lies in at least k

blocking intervals. Hence, if Mj is empty, any timestamp in rlj, rjs lies in at least k

blocking intervals and no other durable records are in rlj, rjs.

4.4.4 Complexity Analysis of S-Hop

The query complexity analysis of S-Hop is non-trivial and needs more care. There are

three main sub-procedures in S-Hop: find next highest score record, top-k queries

for durability check and blocking mechanism. As presented above, the first two

components both rely on multiple top-k queries. We first show a worst-case guarantee

on the total number of top-k queries called in the algorithm. For simplicity, we only

sketch the proof. See Appendix A.1 for full proofs.

Lemma 11. The total number of top-k queries performed by the Score-Hop algorithm

is Op|S|` k
P |I|
τ

T

q.

Proof (Sketch). As we had in the proof of Lemma 9 we need to bound the number

of false checks. Let p be a false check and let p1 be the record with the largest

timestamp in Qpk, rp.t ´ τ, p.tsq. We say that p is assigned to p1. If p1.t ă a, where

a is the timestamp such that I “ ra, bs, then we assign p to a. We first show that

at the moment that we find the false check p the corresponding record p1 can only

have one of the following three properties: i) it lies in at least k blocking intervals,

82

ii) p1 P S and it lies in at most k´ 1 blocking intervals, iii) p1 “ a. If p1 has property

ii) then p is a type-1 false check. Otherwise, p is a type-2 false check.

We first bound the number of type-1 false checks. Notice that after a type-1 false

check p is assigned to p1 then all timestamps in the sub-interval rp1.t, p.ts lie in at

least k records. So if another false check q later in the algorithm is assigned to p1,

again, then q can only be a type-2 false check. Hence, the type-1 false checks are

bounded by Op|S|q. In order to bound the type-2 false checks we assume a window

ρ of length τ in I. We make the following key observation: At the moment that we

find a type-2 false check p, it lies in at most k ´ 1 blocking intervals while p1 lies in

at least k blocking intervals, so there should be a blocking interval rl, rs, where its

right endpoint lies between p1.t and p.t, i.e., p1.t ď r ď p.t. (Notice that if p1 “ a is

assigned more than once then it also lies in at least k blocking intervals.) Using this

observation along with other properties of the false checks we can show that after

finding k type-2 false checks in ρ, each timestamp in ρ will lie in at least k blocking

intervals. Hence, the algorithm will not run any other top-k query in ρ. Since there

are
P |I|
τ

T

disjoint τ -length sub-intervals in I we can bound the total number of type-2

false check by Opk
P |I|
τ

T

q. Overall, the number of false checks along with the durable

records in I is Op|S|` k
P |I|
τ

T

q.

The lemma above also shows that the number of different sets Mj that are created by

the algorithm is Op|S|`k
P |I|
τ

T

q. For each set we can visit at most k records so in total

the algorithm may visit Opkp|S|` k
P |I|
τ

T

qq records 4. Each top(), or pop() procedure

takes Oplog nq time so in total we need Opkp|S|` k
P |I|
τ

T

q log nq to visit these records.

Furthermore, recall that we need Oplog nq time to check if a record lies in at least k

4 We note that the algorithm may visit some records, that lie in at least k blocking intervals, more

than once. The upper bound Opkp|S| ` k
P |I|
τ

T

qq counts all the times that the algorithm visits a
record. We can modify the algorithm so that it does not visit the same record twice but that would
make the description of the algorithm more complicated without decreasing the overall asymptotic
complexity.

83

blocking intervals (using a binary search tree) so we also spend Opkp|S|`k
P |I|
τ

T

q log nq

time for the blocking mechanism. Notice that this running time is dominated by the

time to answer Op|S|`k
P |I|
τ

T

q top-k queries, so S-Hop answers a durable top-k query

in O
`

p|S| ` k
P |I|
τ

T

qpqpnq ` kq log n
˘

time (with an efficient top-k query procedure in

Opqpnq ` kq).

As it turns out, hopping in time-domain (T-Hop) and in score-domain (S-Hop)

gives us the same complexity bound. But in practice, S-Hop is more conservative

in asking top-k queries compared to T-Hop, due to the candidate pruning brought

by blocking mechanism. This make S-Hop runs faster than T-Hop when the top-k

query itself is expensive; i.e., a larger k or on high-dimensional datasets.

4.5 Expected Complexity

In the previous sections we presented two types of algorithms (time-prioritized and

score-prioritized) to answer durable top-k queries with the same worst-case guaran-

tees on their query time. In particular we showed that their query times depend

on k
P |I|
τ

T

and |S|. In this section, we go beyond the worst-case analysis and an-

alyze their performance in a more “expected” sense. Most importantly, we show

in Section 4.5.1 that the expected size of |S| is roughly k
P |I|
τ

T

if the scores of data

records are drawn randomly from an arbitrary distribution (which can be picked by

a powerful adversary with the advance knowledge of the query parameters). This

result essentially establishes that, under this model, our best algorithms are in a

sense optimal because their complexity is expected to be linear in the output size.

Secondly, in Section 4.5.2, to study the expected complexity of Score-Band algorithm

in Section 4.4.2 by bounding the expected size of τ -durable k-skyband candidate set

C using the same probabilistic model used in [13] to bound the expected number of

skyline points.

84

4.5.1 Expected Answer Size

Consider a set of n records P with pi.t “ i, for pi P P . We analyze the expected

size of a query output when the score of records are assigned in a semi-random

manner, where the data values can be arbitrarily chosen and then they are assigned

in a random order to the records. More formally, we consider a random permutation

model (RPM). Let X “ x1 ă x2 ă . . . ă xn be a sequence of n arbitrary non-negative

numbers chosen by an adversary, and let σ be a permutation of t1, . . . , nu. We set

fppiq “ xσpiq, i.e., the score of record pi is xσpiq, where σpiq is the image of i under

σ. As argued in [8], the random permutation model is more general than the model

in which all scores are drawn from an arbitrary unknown distribution, so our result

holds for this model as well. The random permutation model has been widely used in

a rich variety of domains and considered as a standard for complexity analysis; i.e.,

online algorithms [48, 77, 81], discrete geometry [7, 6, 52], and query processing [8].

Our main result is the following.

Lemma 12. In the random permutation model, given k, τ and I, we have E r|S|s “

k |I|
τ`1

.

Proof. For a record pi P P pIq, let Xi be the random variable, which is 1 if pi is a

τ -durable record, and 0 otherwise. Thus, E r|S|s “ E r
ř

iXis . Using the linearity of

expectation, E r
ř

iXis “
ř

i E rXis “
ř

i Pr rXi “ 1 s .

Thus our goal is to compute Pr rXi “ 1 s : the probability that there are less than

k records in rpi.t ´ τ, pi.tq with score larger than fppiq. Let P τ
i “ tpi´τ , . . . , pi´1u.

For a subset Q Ă P τ
i , let AQ be the binary random variable, which is 1 if all records

in Q have score greater than fppiq and all records in Q “ P τ
i zQ have score less than

fppiq. We have

Pr rXi “ 1 s “
k´1
ÿ

l“0

ÿ

QĂP τi ,|Q|“l

Pr rAQ s . (4.1)

85

We estimate Pr rAQ s as follows. Let V Ă X with |V | “ τ`1. We first bound the

conditional probability Pr rAQ | V s such that the records in P τ
i Y tpiu are assigned

scores from V . We consider all possible permutations of V and count only those

cases where the records in Q have larger value than fppiq, and the records in Q have

values less than the value of fppiq. Notice that the permutations that satisfy this

property must assign the first l largest values of V to Q, then the pl ` 1q-th largest

value to pi and the rest τ ´ l smaller values of V to Q. Under such assignment,

any permutations of values in Q and Q are valid cases. Hence, the number of valid

permutations are l!pτ ´ lq!, while the number of all possible permutations of V are

pτ ` 1q!. We have

Pr rAQ | V s “
l!pτ ´ lq!

pτ ` 1q!
“

1

τ ` 1

1
`

τ
l

˘ . (4.2)

Since (4.2) holds for all V , Pr rAQ s “
1

τ ` 1

1
`

τ
l

˘ . Substituting this in (4.1), we

obtain

Pr rXi “ 1 s “
k´1
ÿ

l“0

ˆ

τ

l

˙

1

τ ` 1

1
`

τ
l

˘ “

k´1
ÿ

l“0

1

τ ` 1
“

k

τ ` 1
(4.3)

Finally,

E r|S|s “
ÿ

i

Pr rXi “ 1 s “ k
|I|
τ ` 1

. (4.4)

Combining Lemma 12 with the analysis of Sections 4.3.3 and 4.4.4, we con-

clude that in a random permutation model the expected query time complexity of

both Time-Hop and Score-Hop algorithms is Op|S|pqpnq ` kq log nq, or equivalently

O
`

k
P |I|
τ

T

pqpnq`kq log n
˘

, where Opqpnq`kq reflects the time complexity of answering

a top-k query. In Section 4.6, our experimental results on real and synthetic datasets

both confirm this finding.

86

Table 4.1: Dataset summary
Dataset Dimensionality Size (# records)
NBA-X 1,2,3,5 1M

Network-X 2,3,5,10,20,30,37 5M

Syn-X 2 1M,2M,5M,10M,20M,50M

4.5.2 Expected size of durable k-skyband

In this subsection we bound the expected size of τ -durable k-skyband records, de-

noted by C, from Section 4.4.2 in a probabilistic model similar to the previous case.

Recall that the size of C affects the running time of the S-Band algorithm.

Let P “ tp1, . . . , pnu with pi.t “ i. We use the same random model as in [13]

where (the attributes of) records are randomly generated. The following lemma

bounds the expected size of C.

Lemma 13. In the random model as in [13], given k, τ and I, we have E r|C|s “

Opk |I|
τ

logd´1 τq.

Combining Lemma 13, the analysis of Section 4.4.2 and an efficient top-k query

procedure runs in Opqpnq ` kq time, the expected query time complexity of Score-

Band algorithm is O
`

k
P |I|
τ

T

pqpnq ` kq log n logd´1 τ
˘

. It shows that the expected

complexity of Score-Band algorithm can be higher than Time-Hop or Score-Hop

algorithm by a factor of at most logd´1 τ . Experimental results in Section 4.6 also

confirm this finding as we vary the data dimensionalities. The curse of dimensionality

makes Score-Band algorithm perform worse even compared to other simple baselines.

Again, Time-Hop and Score-Hop are both generally applicable to arbitrary user-

specified scoring functions, while Score-Band only works for monotone functions.

87

4.6 Experiments

4.6.1 Experiment Setup

Datasets. We use two real-life datasets and some synthetic ones, as summarized

in Table 4.1 and described below:

NBA5 contains the performance of each NBA player in each game from 1983

to 2019, with in total „ 1 million individual performance records on 15 numeric

attributes. Records are naturally organized by date and time, and we break ties

(e.g., performances of different players in the same game) arbitrarily. We choose

some subsets of 15 attributes to create datasets with different dimensions collectively

referred to as “NBA-X”: NBA-1 selects only 3-point-made; NBA-2 captures the

points and assists; NBA-3 chooses points, assists, rebounds; NBA-5 includes five

dimensions: points, assists, rebounds, steals and blocks.

Network6 is the dataset from KDD Cup 1999. This dataset contains „ 5 million

records with 37 numeric attributes that describe network connections to a machine,

including connection duration, packet size, etc. Records have unique timestamps and

are ordered by these timestamps. Since these attributes have different measurement

units, we scale the value of each dimension using Min-Max normalization. To study

the impact of data dimensionalities on query efficiency, we choose the first 2, 3, 5,

10, 20, 30 and 37 attributes from the full dimensions to create 7 different datasets

collectively referred to as “Network-X”, where X represents the dimensionality of

the dataset.

Syn is a synthetic two-dimensional dataset that is used for scalability test on

proposed solutions. We generate Syn with independent (IND) and anti-correlated

(ANTI) data distributed in a 2D unit square. For IND data, the attribute values

5 NBA datasets were collected from https://www.basketball-reference.com/

6 https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

88

https://www.basketball-reference.com/
https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

(a) IND (b) ANTI

Figure 4.5: Value distributions for synthetic dataset

Table 4.2: Query Parameters (default value in bold)
Parameter Range

k 5, 10, 15, 20, 25, 30, 35, 40, 45, 50
τ 1%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%
|I| 10%, 20%, 30%, 40%, 50%, 60%, 70% 80%
d 1, 2, 3, 5, 10, 20, 30, 37

of each tuple are generated independently, following a uniform distribution. ANTI

data are drawn from the portion inside the positive orthant of an annulus centered

at the origin with outer radius 1 and inner radius 0.8, representing an environment

that most of the records gather in k-skyband. Figure 4.5 illustrates the sample value

distributions of IND and ANTI. The full size of Syn is 50 million and each data point

has an unique arriving time. We further choose several subsets of Syn with 1, 2, 5,

10 and 20 millions of records. The set of synthetic datasets are collectively referred

to as “Syn-X”, where X represents data size.

Query Parameters. Table 4.2 summaries the query parameters under investi-

gation, along with their ranges and default values. Among these, the query interval

length |I| and the durability τ is measured as percentage of dataset size n. When

varying query interval length, we always fix the right endpoint of the interval to be

89

(a) Performance on NBA-2 as τ varies.

(b) Performance on Network-2 as τ varies.

Figure 4.6: Performance comparison as τ varies.

the most recent timestamp in dataset and only move the left endpoint.

Implementations & Evaluation Metric. To make the discussions concrete and

concise, we choose a linear and monotone preference scoring function throughout the

experimental section in the simple form: fppq “
řd
i“1 ui ¨ p.xi, where u is a user-

specified preference vector and ui is the (non-negative) weight for i-th attribute of a

record. At query time, user need to specify u as one of the input parameters. Since

the focus of this chapter is not to develop the best possible index for top-k queries

Qupk,W q, our implementation of the top-k building block simply adopts a tree index

(on the time domain of P), and answer Qupk,W q in a straightforward top-down

90

(a) Performance on NBA-2 as k varies.

(b) Performance on Network-2 as k varies.

Figure 4.7: Performance comparison as k varies.

manner with a branch-and-bound method. This index offers adequate performance

in our experiments, but it can certainly be replaced by more sophisticated index with

better worst-case guarantees, without affecting the rest of our proposed solution.

Using the building block of top-k queries described above, we further implement

T-Base (Section 4.3.1), T-Hop (Section 4.3.2), S-Base (Section 4.4.1), S-Band (Sec-

tion 4.4.2) and S-Hop (Section 4.4.3). Performance of various methods are evaluated

using the following two metrics: number of top-k queries and overall query time (in

millisecond). For each query parameter setting, we run the query 100 times with

100 different randomly generated preference vectors, and report the average with

91

standard deviation.

All methods were implemented in C++, and all experiments were performed on

a Linux machine with two Intel Xeon E5-2640 v4 2.4GHz processor with 256GB of

memory.

4.6.2 Algorithm Evaluations

According to the theoretical analysis of our algorithms in previous sections, the

query efficiency depends on the length of durability window τ , the value of k, the

length of query interval I, the data dimensionality d and the data size n. For fair

evaluation and comparison of algorithm efficiency, we designed a set of variable-

controlling experiments such that each time we only vary one query parameter of

interest and fix the others to default values.

Comparison of Algorithms when Varying τ . In Figure 4.6, we investigate the

performance of all durable top-k solutions, as we vary durability τ . Figure 4.6-1-

(a) shows the query efficiency comparison on NBA-2. The sorting based solution

S-Base is the slowest, as it requires fully sorting all records in the time interval of

length |I| ` τ . T-Base is faster than S-Base and mostly independent of τ . All the

rest solutions, T-Hop, S-Hop and S-Band, become more efficient as we increase τ ,

or equivalently, when query is more selective. This finding confirms our analysis

in Section 4.5 that the query efficiency bounds of Hop-based solutions and S-Band

both depend on the answer size, which is Opk |I|
τ
q. T-Hop and S-Hop nearly perform

the same, while S-Band can be slightly faster. When the query is highly selective

(τ is half of the length of entire time domain), they are 1-2 orders of magnitude

faster compared to T-Base and S-Base, respectively. Similar trends can be seen in

Figure 4.6-2-(a), where we test algorithms on a larger dataset Network-2. The only

difference is that baseline solutions (T-Base and S-Base) are more expensive and the

efficiency difference between baseline solutions and T-Hop/S-Hop/S-Band is even

92

larger (up to 3 orders of magnitude).

Next, we take a closer look at T-Hop, S-Hop and S-Band in Figure 4.6-1-(b),

which compares the number of top-k queries needed for these three advanced algo-

rithms. For S-Hop, the total number of top-k queries is decomposed into two parts:

top-k queries for durability check (unshaded region of a green bar) and top-k queries

for finding the next highest score record (shaded region). For S-Band, we also plot

the size of durable k-skyband candidate set C on top the figure as red circled line,

reflecting the overhead cost of sorting C for S-Band. Now it is clear that the main

reason why T-Hop/S-Hop/S-Band becomes faster when τ is large is that fewer top-k

queries are needed. A more selective query with larger τ also makes the candidate

set C of S-Band smaller, demonstrating the effectiveness of using durable k-skyband

to identify promising candidates. On the other hand, we can see that S-Hop and

S-Band ask fewer top-k queries than T-Hop, demonstrating the pruning power of

blocking mechanism in score-prioritized solutions. This figure also explains why S-

Band runs slightly faster than S-Hop and T-Hop on NBA-2 in this case, as S-Band

requires the least number of top-k queries and the overhead cost on sorting candidate

set C is relatively small on two-dimensional data. Again, similar trends can be found

in Figure 4.6-2-(b).

Comparison of Algorithms when Varying k. Next, we study the effect of k

on efficiency. Results are shown in Figure 4.7. When we increase k, not only need we

ask more top-k queries (see Figure 4.7-1-(b) and Figure 4.7-2-(b)), but a top-k query

itself also becomes more expensive. Thus in both Figure 4.7-1-(a) and Figure 4.7-

2-(a), we can see that all algorithms (except S-Base) are slower when k is larger.

Especially when k reaches 50, top-k computations become the dominant factor on

overall efficiency, and the differences among the various algorithms diminish. Still, S-

Band and S-Hop have slight advantages over T-Hop on larger k, as they use blocking

93

(a) Performance on NBA-2 as |I| varies.

(b) Performance on Network-2 as |I| varies.

Figure 4.8: Performance comparison as |I| varies.

mechanism to prune candidate records and are more conservative in asking expensive

top-k queries.

Comparison of Algorithms when Varying |I|. In Figure 4.8, we compare the

performance of proposed algorithms as we vary the query interval length |I|. In terms

of efficiency, Figure 4.8-1-(a) and Figure 4.8-2-(a) show that T-Hop/S-Hop/S-Band

is much faster than baseline solutions T-Base and S-Base, especially on the large

dataset Network-2. On the other hand, we also find that our proposed algorithms

scale better with |I| than with k (recall Figure 4.7). The reason is that the time

complexities of T-Hop/S-Hop and S-Band are quadratic in k but only linear on |I|

94

(a) (b)

Figure 4.9: Performance comparison on Network-X as d varies.

(recall Lemma 12 and Lemma 13). In terms of number of top-k queries, in Figure 4.8-

1-(b) and Figure 4.8-2-(b), it is not surprising to see that all proposed solutions ask

more top-k queries as |I| increases. The relative performance of various algorithms

is consistent with previous experiments where we varied τ or k.

Comparison of Algorithms when Varying d. In this section, we study the

effect of data dimensionality d on algorithm performances. Since the sorting-based S-

Base is clearly inferior to other algorithms, here we only test T-Base, T-Hop, S-Band

and S-Hop on Network-X with varying dimensions. Results are shown in Figure 4.9.

Let us first take a look on Figure 4.9-2. We can see that the number of top-k queries

for all proposed algorithms stays stable as we increase dimensionality. This finding

again confirms our theoretical analysis that the number of top-k queries (or, answer

size) depends only on k |I|
τ

and is independent of dimensionality d. On the other hand,

we can see that the size of candidate set C for S-Band rockets in high dimensions,

and can be up to 4 orders of magnitude larger than the size of actual promising

records. The sorting overhead on such huge candidate sets is already too big. Then,

let us go back to Figure 4.9-1. The query time of T-Base, T-Hop and S-Hop slowly

increases as we increase dimensionality, because top-k queries on high-dimensions

95

(a) IND

(b) ANTI

Figure 4.10: Scalability test on IND and ANTI Syn-X.

become more expensive, yet they ask roughly the same number of top-k queries

regardless of dimensionality. While S-Band still performs well on low-dimensional

data (less than 5 dimensions), in higher dimension S-Band becomes dramatically

worse, even taking as much time as T-Base on Network-37.

Scalability. Finally, we use the two-dimensional synthetic dataset Syn-X to test

the scalability of the proposed algorithms as we vary the input size from 1 million

to 50 million. Figure 4.10 summarizes the results. As the input size increases,

we also increase the query interval length proportionally (so it remains at a fixed

percentage of the data size). As shown in Figure 4.10-1, we can see that T-Hop,

96

S-Hop and S-Band scale well on large IND datasets, and S-Band again performs

slightly better than T-Hop and S-Hop. The running time of S-Base increases on larger

datasets simply because we are also making the query interval longer. Figure 4.10-

1-(b) further illustrates that the total number of top-k queries asked by different

algorithms is also independent from the data size. A larger dataset only makes

top-k queries more expensive. Although the size of candidate set |C| increases on

larger IND datasets, its growth rate here is much lower than its growth rate when

varying dimensionality d in Figure 4.9. Overall, on IND synthetic data, |C| is only

about 4-5 times bigger than the actual answer size, which will not incur a big sorting

overhead for S-Band. However, the situation is much different for ANTI Syn-X. As

shown in Figure 4.10-2, in terms of query efficiency, T-Hop and S-Hop still scale well,

but S-Band now becomes much more expensive because of the data distribution of

ANTI. Most records in ANTI data would gather in k-skyband, resulting in C up to 3

orders of magnitude larger than the actual answer size (see Figure 4.10-2-(b)), which

hurts the performance of S-Band. The efficiency of S-Band has a strong dependency

on the candidate set C, or more generally, the data distribution. In contrast, the

performance of T-Hop and S-Hop in this case is nearly independent of both size and

distribution of data; it is only linear to the answer size.

Query Time Distribution over Different Real Datasets. Figure 4.10 already

clearly illustrates the performance difference of S-Band on IND and ANTI synthetic

data, demonstrating the effect of data distributions on S-Band’s query efficiency.

Here, we further compare T-Hop, S-Hop and S-Band on real data, and study how

data distributions would influence their performance in practice. We use NBA as the

main data source, and select 20 combinations of 5 dimensions randomly chosen out

of the 15 attributes, e.g., (points, assits, rebounds, steals, blocks), (points, assits,

steals, blocks, 3-pointers-made), etc. These resulting 20 datasets have the same

97

Figure 4.11: Runtime distribution on 5d NBA data.

Table 4.3: Query time (in seconds) comparison on NBA-2 when varying τ . Post-
greSQL backend.

τ (as % of |T |) 10% 20% 30% 40% 50%
T-Hop 0.46 0.28 0.18 0.12 0.1
T-Base 2.2 1.9 1.8 1.7 1.7

dimensionality (5) but exhibit different distributions. We run queries with default

settings on each dataset, and plot the running time distribution for all datasets.

Results are shown in Figure 4.11. We can see that S-Band takes longer time on

average, and also has a wide span on query time. This finding again confirms that S-

Band is highly sensitive to underlying data distributions. In contrast, running times

of T-Hop and S-Hop are centered in narrower value ranges, showing their robustness

to data distributions and further demonstrating their advantages over S-Band on

real data.

4.6.3 DBMS-Based Implementations

To demonstrate the generality of proposed solutions and its possibility of integrating

into a DBMS, we further test the algorithms utilizing PostgreSQL [1] as the backend

DBMS. More specially, we load the datasets NBA-2, Syn-500M (IND) and Syn-500M

98

Table 4.4: Query time (in seconds) comparison on NBA-2 when varying L. Post-
greSQL backend.

L (as % of |T |) 10% 20% 30% 40% 50%
T-Hop 0.1 0.16 0.17 0.2 0.26
T-Base 0.46 0.93 1.3 1.6 2

Table 4.5: Query time (in seconds) comparison on different datasets. Dataset size
(measured by DBMS storage size) is shown in parentheses. PostgreSQL backend.

Dataset NBA-2 (0.05 G) Syn-IND (30 G) Syn-ANTI (30 G)
T-Hop 0.28 1.9 2.3
T-Base 1.9 773 787

(ANTI) into PostgreSQL tables. The table schema consist of numeric attributes

of the records and an additional column representing arriving time instant. For

algorithm implementations, we code T-Hop and T-Base as stored procedures using

PL/Python with PostgreSQL’s native support operators.7 Besides data tables, we

also create corresponding index tables to support efficient top-k records retrieval. The

index table is similar to the tree-based index as we used for previous experiments,

providing sufficient data reduction for answering range top-k queries. Again, the

top-k module can certainly be replaced by more sophisticated index with better

performance, without affecting the rest of our proposed solution.

Tables 4.3 and 4.4 show the results of testing T-Hop and T-Base on the smaller

NBA-2 dataset with the same query setting as before, varying durability τ and query

interval length L to compare query efficiencies. Similar conclusions can be drawn

here. T-Base always pays linear cost (continuous sliding windows) to visit all records

in the query interval. Thus, the running time is linear to L (Table 4.4), and nearly

independent of τ (Table 4.3). In comparison, T-Hop’s complexity is linear to the

answer size, which makes it run faster as query becomes more selective (smaller L

7 The other proposed solution, S-Hop, requires a more delicate query procedure and data structures
(recall Algorithm 4). Hence it is more suitable to implement S-Hop as a wrapper function outside
the DBMS, instead of a stored procedure.

99

or larger τ). Overall, T-Hop is at least 10ˆ faster than T-Base.

In Table 4.5, we increase the dataset size up to 500M records, which takes around

30 Gigabytes of disk space in PostgreSQL. Running default queries in such cases, we

can see that T-Hop is more than 100ˆ faster than T-Base, bringing down the query

time from nearly 12 minutes to just 2 seconds. T-Hop also apparently scales well on

large datasets, since the complexity is mostly linear to the answer size. The query

time increase solely comes from the more expensive top-k module. On the contrary,

the continuous sliding-window nature of T-Base makes it prohibitively slow when

dealing with large amounts of temporal data.

4.6.4 Summary of Experiments

In sum, we conclude that the Hop-based algorithms, T-Hop and S-Hop, are the best

solutions for answering durable preference top-k queries. They scale well on large

datasets as well as to high dimensions, and most importantly, their query time com-

plexity is proportional to the answer size. This property makes T-Hop and S-Hop

run even faster when the query is highly selective; i.e., smaller k or larger τ , which

tend to be the more practical and meaningful query settings that people would use

in real-life applications. While S-Band is also a reasonable approach, its perfor-

mance depends highly on the data characteristics (faring poorly in high dimensions

and for certain distributions). S-Band also requires additional offline indexing for

finding durable k-skyband candidates. Overall, as demonstrated by experiments on

both real and synthetic data, efficiency and robustness of Hop-based solutions make

them more attractive solutions. Even on very large and high-dimensional datasets,

T-Hop/S-Hop only need less than a second to return durable top records for any

given preference, which enables interactive data exploration. Finally, T-Hop can be

efficiently implemented inside a DBMS; for large datasets (tens of Gigabytes), it is

able to bring down the query time to just a couple of seconds, from more than 10

100

minutes required without our solution.

4.7 Related Work

The notion of “durability” on temporal data has been studied by previous works,

but they consider different definition of durability and/or different data models from

ours. In [65] and [118], authors implicitly considered “durability” in the form of

prominent streaks in sequence data, and devised efficient algorithms for discovering

such streaks. Given a sequence of values, a prominent streak is a long consecutive

subsequence consisting of only large (small) values. An example prominent streak

would be “This month the Chinese capital has experienced 10 days with a maximum

temperature in around 35 degrees Celsius – the most for the month of July in a

decade.” One important observation is that prominent streaks are skyline in two

dimensions– streak interval length and minimum value in the interval. Their solutions

hence focused on generating limited promising streak candidates and then performing

skyline operator on candidates. Their algorithms can also be extended to find general

top-k, multi-sequence and multi-dimensional prominent streaks. Jiang and Pei [64]

studied Interval Skyline Queries on time series, which can be viewed as another type

of “durability” when segments of time series dominate others.

Another line of durability-related work on temporal data are represented by [73,

108, 41] and [78]. Consider a time-series dataset with a set of objects, where the data

values of each object are measured at equal time interval; i.e., stock markets. At each

time instance t, Objects are ranked according to their values at t. Authors in these

work considered the definition of “durability” as the fraction of time during a given

time window when an object ranks k or above. For example, a durable query here

would ask for “stocks that were among the top 5 most heavily traded for at least 80%

of the trading days during the last quarter of 2017”. This line of work mainly focused

on how to efficiently aggregate rankings (rank ď k or not) over time. In [73], the

101

authors proposed a compacted format using bit maps to store rankings per object at

each timestamp. [108] proposed to only remember rank changes between consecutive

timestamps of each object under the assumption that ranks of temporal objects tend

to stay stable over time. Gao et al. [41] considered use prefix sum to accumulate the

total times that an object ranks k or above (given a specific value of k) for constant

time durability computation. To cap storage, authors proposed to select only a

small portion of prefix sums such that it can maximize the accuracy of approximate

answers according to given query distributions. [78] applied durable top-k searches

in document archives, finding the set of documents that are consistently among the

most relevant to a set of keywords throughout a given time interval. Under this

setting, the difficulty is how to merge multiple per-keyword relevance scores over

time efficiently into a single rank among others.

Durable queries also arise in dynamic graphs or temporal graphs, where graphs

evolve over time and are typically represented as a sequence of graph snapshots. For

example, in [96] and [97], authors considered the problem of finding the (top-k) most

durable matches of an input graph pattern query; that is, the matches that exist

for the longest period of time. The main focus is more on the representations and

indexes of the sequence of graph shots, and how to adapt classic graph algorithms

in a time-varying setting.

Interestingly, persistent homology in computational topology [37] similarly repre-

sents the notion of durability as in temporal data. More persistent features (detected

over a wide range of spatial scales) are more likely to represent true features of the

underlying space rather than artifacts of sampling, noise, or particular choice of

parameters.8

Besides durability, Mouratidis et al. [82] studied the problem of continuously

monitoring top-k results over the most recent data in a streaming setting. Our

8 https://en.wikipedia.org/wiki/Persistent_homology

102

https://en.wikipedia.org/wiki/Persistent_homology

baseline solution used in Section 4.6 shares the same spirit as algorithms in [82] for

incrementally maintaining top-k results over consecutive sliding windows.

4.8 Conclusion

In this chapter, we have initiated a comprehensive study into the problem of finding

durable top records in large instant-stamped temporal datasets by running durable

top-k queries. We proposed two types of novel algorithms for efficiently solving

this problem, and provided in-depth theoretical analysis on the complexity of the

problem itself and of our algorithms. As demonstrated by experiments on real and

synthetic data, our best solutions, Time-Hop and Score-Hop, find interesting durable

top records in under a second on large and high-dimensional datasets, and can be

up to 2 orders of magnitude faster than existing baselines.

103

5

Durability Queries on Probabilistic Temporal Data

The longer you can look back, the
farther you can look forward.

Winston Churchill

5.1 Introduction

Chapter 3 and Chapter 4 discuss durability queries with ranking operations on

sequence-based temporal data and instant-stamped temporal data, respectively. One

commonality between these two works is that they both analyze existing historical

temporal data. Going beyond, as Example 3 shows, the notion of durability can be

also extended into the future, where we do not have the temporal data exactly, but

only in probabilistic representations.

In this chapter, we study the problem of answering another type of durability

queries, which is in the form of statistical prediction queries, on probabilistic tem-

poral data. Intuitively, the notion of durability predicts how long (or, how likely) a

condition that currently holds will remain valid in the future.

104

When predicting the future, people naturally ask such kind of queries, general-

izing from Example 3. For instance, business analysts might ask durability queries

for risk assessments: “what is the probability that our financial product will keep a

30% profit margin in the next quarter?” or “what is the probability that our client

will not have a default on his mortgage loan in the next five years?” In some critical

design and testing scenarios, e.g., self-driving cars, we can also see durability queries:

“what is the probability that a Tesla in full auto-pilot mode has no misjudgements

within 500 miles during rainy days?” As can be seen from aforementioned examples,

there are two technicalities of durability prediction queries. First, our query predicts

the future, where the underlying data can only be probabilistic or inferred from ex-

isting historical data. Query processing over probabilistic data poses new challenges

compared to that on deterministic data. Second, temporal dependence broadly ex-

ists in temporal data, especially in domains like financial market or user behaviors

where the present is believed to have strong dependence on the recent past. This

distinguishes our work from previous studies on query processing over probabilistic

databases [89, 31, 101, 60, 115, 59, 46], where data uncertainty is only considered

independently for each individual object (e.g., attribute-level or tuple-level). To deal

with data uncertainty and temporal dependence, we assume there exists a stochastic

process that probabilistically represents the future, where it provides step-by-step

forward predictions of a temporal series into the future. Such models are commonly

used in practice for temporal data modelling and prediction, ranging from classic sta-

tistical models like Auto-Regressive model (AR) [99] and Markov Chains [69], to more

complex deep learning models such as the Recurrent Neural Network (RNN) [93, 67]

and its variants [55].

Given any stochastic process that allows generation of future data, 1 we can an-

1 How to choose and derive a suitable and accurate stochastic process from historical data is an
interesting and important problem, but beyond the scope of this paper.

105

swer durability queries by running Monte Carlo simulations [14] and estimating the

probability that a certain event happens. However, it is well known that the standard

Monte Carlo (MC) technique, i.e., Simple Random Sampling, suffers from its ineffi-

ciency to produce reliable estimate, especially when dealing with small probabilities.

Considering the practical use cases of durability queries, where people are more inter-

ested in looking for robust and consistent behaviors in the future, the query answers

are mostly small probabilities (that breaks the current condition). Such nature of

durability queries further amplifies the drawbacks of the standard MC. As pointed

out in multiple literature [72, 85], the relative error of standard MC increases to in-

finity as the underlying probability approaches 0, resulting in prohibitively expensive

cost for these scenarios.

To meet the challenges of durability queries on probabilistic temporal data, this

chapter proposes an alternative sampling approach that shares the same merits as

the standard MC, such as simplicity and generality, but provides significant efficiency

improvement. The basic idea of our approach is similar to importance sampling [92]

that directs simulation efforts more towards the target. Given a stochastic process

that exhibits some continuity and dependency on the past, an important observa-

tion is that processes whose states are “closer” to the target have relatively higher

probabilities to finally reach the target. Motivated by this observation, our approach

would set several intermediate goals between the starting point and the target, and

continuously reward the simulations that reach these milestones by running addi-

tional simulations that continue from these states. By doing this, our approach

effectively directs the simulations towards the desired sampling distribution and al-

locates more simulation effort to those “promising” simulation traces. Note that

we could achieve this goal simply by running simulations based on the underlying

temporal model, which generally views the model as a black-box and minimizes our

solution’s dependence on the model to the greatest extent possible.

106

To summarize, we have made the following contributions:

• We propose to apply an alternative sampling approach called Multi-Level Split-

ting Sampling (MLSS) for durability query processing. The new solution com-

bines the idea from importance sampling and branching process theory. We

prove how the new sampler leads to an unbiased estimator and analytically

derive its variance complexity.

• We go beyond the standard MLSS, which has been well studied but has certain

restrictions, and propose a novel and general MLSS procedure, making it widely

applicable to any stochastic process. We also prove the unbiasedness of general

MLSS and analyze its variance.

• We further present an adaptive greedy strategy that automatically search

for (near-) optimal parameters of MLSS with small search overhead, simply

through simulations. The proposed approach frees users from time-consuming

parameter tuning process when using MLSS in practice.

• Extensive experiments on various real-life applications, involving both classic

statistical models and complex deep learning models, demonstrate the efficiency

of our solutions over existing standard techniques. Our best solution provides

up to an order-of-magnitude query time speedup, without sacrificing of answer

quality.

To the best of our knowledge, this work is among the first to study durability

queries (or more generally, statistical prediction queries) from generative temporal

models. Though this chapter mainly focuses on durability query processing, our

proposed techniques are general and can be straightforwardly applied to efficiently

answer broader types of statistical queries (with small probabilities) that involve

Monte Carlo simulations.

107

The rest of the chapter is organized as follows. Section 5.2 formally defines

durability queries, and reviews several key concepts and existing solutions to the

problem. Section 5.3 elaborates the standard MLSS, including a sampler and esti-

mator together with its complexity analysis. Section 5.4 further introduces a novel

and general MLSS procedure. Section 5.5 discusses MLSS’s empirical optimizations

and presents an adaptive greedy strategy to automatically search for (near-) optimal

parameters of MLSS. Section 5.6 experimentally evaluates our solutions. Finally, we

review related work in Section 5.7 and conclude in Section 5.8.

5.2 Problem Formulation and Background

5.2.1 Problem Formulation

We now formally define the problem of durability queries.

Stochastic Process. Consider a discrete time domain of interest T “ t1, 2, 3, . . . u

and a discrete-time stochastic process tvtutě0 with state space X . For @t P T,

vt “ fpXtq, where f : X Ñ R is a deterministic value function. In general, the

state Xt contains any necessary information for the computation of vt; e.g., previous

values/states and other auxiliary variables. The stochastic process develops in time

according to probabilistic rules, i.e., conditional distributions of the form,

PrrXt | Xt´1,Xt´2, . . . ,Xt´ks ,

for integer k P r1, t ´ 1s. We showcase several common and concrete examples of

stochastic process as follows.

1. Auto-Regressive Model or AR(p) model:

fpXtq “
p
ÿ

i“1

φifpXt´iq ` εt,

where φ and ε are model parameters, and p is the order of the model. The

conditional distributions are explicitly controlled by these parameters.

108

2. Discrete-time Markov Chains is a special case of stochastic process that satisfies

the Markov property:

PrrXt | Xt´1,Xt´2, . . . s “ PrrXt | Xt´1s ,

where the probability of each state depends only on previous state.

3. Recurrent Neural Networks:

Xt „ o

ˆ

gpht´1,Xt´1; θq; θ

˙

,

where ht´1 is the state of the hidden layer(s) at time t ´ 1, op¨q and gp¨q are

activation functions, and θ is the set of model parameters. The conditional dis-

tributions (RNN cell’s output) are explicitly controlled by network’s structure

and trained parameters.

It is worth mentioning that throughout the chapter we generally do not assume any

prior information on the stochastic process and its corresponding model; i.e., model

parameters or transition probability matrix. The only interactions with the model

that we require are simply simulations.

Durability Queries. Consider a time duration t P N`, denote SP “ tv0, v1, . . . , vt´1u

as a realization of the probabilistic temporal series, called sample path, with length

t by step-by-step simulations according to the stochastic process. Given a value

threshold β P R, let Tβ “ inftt1 ě 0 | vt1 ě βu; i.e., a random variable denoting the

first time when the probabilistic temporal series reaches (or above) β. Given t and β,

a durability query Qpt, βq asks for the probability that a probabilistic temporal series

crosses boundary of β before time t for the first time; i.e, Qpt, βq :“ PrrTβ ă ts. In

general, however, we cannot exactly answer the query (as we cannot even access the

109

ground truth given a complex stochastic process2), but only estimate the quantity

τ “ PrrTβ ă ts with certain quality guarantee; i.e., a tight confidence interval or

small relative error. More specifically, our solution should output an estimator τ̂

for τ , together with a quality measurement. In real-life applications, the user could

specify a quality requirement of the estimate and the algorithm should continuously

update the result as time goes on, until it reaches the desired level. Alternatively,

the user may also specify a time limit on the durability query processing, and the

algorithm should return the best estimate obtained within the time limit, together

with a quality measurement.

5.2.2 Background

Durability queries are deeply connected to a classic problem in statistic community,

called First-Hitting Time or First-Passage Time in stochastic system [30, 90, 110].

Similar problems related to first-hitting time are also independently studied in very

diverse fields, from economics [98] to ecology [40]. We briefly introduce several

existing techniques for durability queries or generally for first-hitting time problem

here, and lay the foundation for later sections.

Analytical Solution. As mentioned above, there exists exact analytical solu-

tions for some basic and simple stochastic processes [51], e.g., Random Walks, AR(1)

model, to name but a few. However, real applications often require more complex

structures. For instance, Compound-Poisson process is a well known stochastic model

for risk theory in financial worlds. In [112], authors derived an analytical solution for

such stochastic processes. However, the exact solution itself is very complicated, in-

volving multiple integrals that still require numerical approximations. In general, the

analytical solution to first-hitting problem is model-specific and may not even exist

2 For some simple probabilistic temporal series; e.g., an auto-regressive model, or AR(p), there
exists analytical solution to answer the query Qpt, βq. But in general, we can only estimate the
ground truth through simulations.

110

for most applications, thus cannot be directly used for durability query processing.

Simple Random Sampling (SRS). Answering durability queries through Monte

Carlo simulations is the most general approach. Simple random sampling is the

standard Monte Carlo technique. To answer durability query Qpt, βq, we randomly

simulate n independent sample path SPi “ tv0, v1, . . . u according to the underlying

stochastic model. For each sample path, we define a label function indicating whether

the first-hitting time of path SPi is smaller than t:

lpSPiq “

#

1, TβpSPiq ă t

0, otherwise

where TβpSPiq denotes the first-hitting time of sample path SPi. Then, an unbiased

estimator of SRS is

τ̂srs “

řn
i“1 lpSPiq

n
, (5.1)

with estimated variance

yVarpτ̂srsq “
τ̂srsp1´ τ̂srsq

n
(5.2)

We use SRS as the main baseline solution throughout the chapter. The major draw-

back of SRS is the “blind search” nature – randomly simulates sample paths and just

hopes that they could reach the target. For durability queries with small ground truth

probability τ , SRS would waste significantly much simulation effort on those sample

paths that never cross the value boundary.

Importance Sampling (IS). Importance sampling is one of the most popular

variance reduction techniques for Monte Carlo simulations. It is a special case of

biased sampling, where sampling distribution systematically differs from the under-

lying distribution in order to obtain more precise estimate using fewer samples. Let

us use the following concrete example for better illustration. Consider an AR(1)

111

model as the underlying stochastic process fpXtq “ c ` φ1fpXt´1q ` εt, where c, φ1

are constant parameter and εt is independent Gaussian noise, i.e., εt „ Np0, σq for

@t. The transition probability for AR(1) model is controlled by noise distributions.

Given the time threshold t, the random variable of interest lpSP q has probability

density pplq „
śt

i“1Np0, σq. SRS draws i.i.d samples from p and use Eq(5.1) as an

unbiased estimation. By contrast, IS draws samples from an instrumental distribu-

tion q, and an unbiased estimator is

τ̂is “
1

n

n
ÿ

i“1

pplpSPiqq

qplpSPiqq
lpSPiq. (5.3)

How to choose a good instrumental distribution q is critical for the success of IS.

An iterative approach called Cross-Entropy(CE) method [35, 91] is widely used for

importance sampling optimization. However, IS typically requires known information

of the model as a priori; e.g., model parameters or state transition probabilities. This

requirement can be impractical for some complex temporal processes, not to mention

general black-box models that we consider in this chapter.

In general, all existing solutions as we reviewed above have its own limitations,

and are not desirable for general durability query processing. In next section, we

introduce a novel sampling approach that combines the best from both worlds – as

general as SRS while as efficient as IS.

5.3 Multi-Level Splitting Sampling

Since generating too many paths that do not hit the value threshold can be a waste

of simulation cost, it is natural to design a sampling procedure that more frequently

produces paths that reach the target. For that reason, we introduce Multi-Level

Splitting Sampling (MLSS) as an efficient alternative to existing solutions. Intu-

itively, MLSS creates an artificial drift of the simulations toward the target threshold.

112

Table 5.1: Notations
t Time threshold of the simulation.
β Value threshold of the simulation.
r Splitting ratio; or number of copies.
m Number of levels

SP
A sample path simulated

from a stochastic temporal model.
Li The i-th level. Lm is the target level.

ni

Number of first-time entrance state into Li.
n0 is the number of root paths,

nm is the number of hits to the target.

pi
(conditional) Level crossing probability

from level Li´1 to Li.

It rewards those sample paths that go in the “right” direction by splitting them into

multiple copies. An important observation is that a path that has already reached

β1 (smaller than β but close to β) has higher probability to hit the target β, thus

more simulation efforts should be spent on the promising partial paths instead of

blindly starting a new path from scratch. It is worth mentioning that the idea of

MLSS can be traced back to 1951 and has been studied by several authors in statistic

community [68, 45]. Their discussions mainly focus on using MLSS on discrete-time

Markov Chains with certain assumptions (will elaborate soon). For completeness, we

introduce standard MLSS in the following section. The interested readers can refer

to [72, 45] for a similar but more comprehensive introduction of MLSS. However, the

standard MLSS has its restriction. In Section 5.4, we propose a novel and general

form of MLSS that can be widely applied to any stochastic process.

Before diving into details of MLSS, we first introduce the basic idea of multi-level

partition for estimating the probability τ . We then describe the sampling procedure,

derive an unbiased estimator for MLSS, and finally present the variance analysis.

113

5.3.1 Multi-Level Partitioning

Assume the starting value for the temporal series is β0 (β0 ă β). In the multi-level

partitioning setting, we partition the interval rβ0, βs into m disjoint sub-intervals with

boundaries β0 ă β1 ă ¨ ¨ ¨ ă βm “ β, effectively resulting in m levels where the i-th

level Li “ rβi, βi`1q for i ă m. The first level L0 “ rβ0, β1q is the starting level for all

sample paths and the destination level is defined as Lm “ rβm,`8q. An important

assumption for multi-level partitioning is that the probabilistic temporal series (more

specifically, any sample path generated from the stochastic process) has to reach Li

before it reaches Li`1, for @i ď m. Formally, let TLi “ inftt1 ě 0 | vt1 P Liu;

i.e., a random variable denoting the first time that the series enters level Li. And

Ξi “ tSP | TLipSP q ă tu; i.e., the set of all possible paths whose first hitting time

to Li is smaller than t. We assume that

Ξm Ă Ξm´1 Ă ¨ ¨ ¨ Ă Ξ1 Ă Ξ0. (5.4)

We refer to the above containment relationship as the “no level-skipping” assump-

tion. In Section 5.4, we further discuss MLSS in a more general setting where

there exists level-skipping.3 Given the above assumption, we define the probabil-

ity pi “ PrrΞi | Ξi´1s for i ą 1, called level crossing probability. Then, we can

decompose the target probability τ following the law of total probability,

τ “ PrrΞms

“ PrrΞm | Ξm´1s ¨ ¨ ¨PrrΞ2 | Ξ1sPrrΞ1 | Ξ0sPrrΞ0s

“

m
ź

i“1

pi.

(5.5)

Overall, we try to decompose the event with probability τ (especially when τ is

small) that hard to achieve into a series of more attainable objectives (with larger

3 In discrete time, it is possible that a series jumps from a lower value to higher value crossing
multiple levels between consecutive time instants.

114

Figure 5.1: Simulation (t “ 200, β “ 15) of a root path using MLSS with splitting
ratio r “ 3.

level crossing probabilities pi). We will show how such decomposability admits a new

sampling approach in next sections.

5.3.2 Sampler and Estimator

MLSS Sampler. In a nutshell, MLSS works in rounds of stages, estimating the

decomposed probability pi “separately” between consecutive levels. For each level

Li, we maintain a counter ni denoting the number of sample paths that first enter

the level Li. In the first stage, we start the simulation of a path from the initial level

L0, which we refer to as the “root path”, and increment the counter n0 by 1. We

continue the simulation up to time t:

1. If the sample path does not enter the next level L1, we stop and start a new

round of simulation for the next root path.

2. Otherwise, we increment the counter n1 by 1 and split the root path into r

independent copies at the first time it enters L1, where r is a constant called

splitting ratio. Assume the hitting time is t1, we define the state Xt1 of sample

path as the entrance state to L1. All splitting copies from the original path

115

will use the same entrance state Xt1 as starting point for future simulations.

Then in the next stage, for each of the splitting offspring of the root path, we

recursively follow the similar procedure as described above: simulate the path up

to time t; if it reaches the next level, increment the counter of that level, split

and repeat; If not, finish the simulation at time t. The simulation of a root path

stops when we finish the simulations of all its splitting offspring - either enters the

target level Lm or runs until the time t. Figure 5.1 illustrates a concrete example

of the simulations of one root path. Here we have t “ 200, β “ 15, a set of levels

L0 “ r0, 6q, L1 “ r6, 10q, L2 “ r10, 15q, L3 “ r15,`8q and splitting ratio r “ 3. The

root path (red line) starts from L0 and enters L1 at timestamp 133. Then it splits

into 3 copies (black lines) and continues the simulations forward. Two out of the

three splitting paths (from L1) enter L2 and each of them further splits into three

more copies (blue lines), respectively. Finally, one out of the six splits (from L2)

enters the target level L3. All other copies (that do not have the chance to split) run

till time t and stop. Following the above procedure, we sample and simulate n0 root

paths until the stopping criteria is met (will discuss in next section).

MLSS Estimator. Using the counters we have maintained through MLSS for

each level, we have p̂1 “
n1

n0

, p̂2 “
n2

rn1

, . . . , p̂m “
nm

rnm´1

. The estimator for MLSS is

τ̂mlss “
m
ź

i“1

p̂i “
n1

n0

n2

rn1

¨ ¨ ¨
nm

rnm´1

“
nm

n0rm´1
. (5.6)

Note that the p̂i’s are not necessarily independent. Despite the fact that we run

independent simulations for each splitting copies of root paths, they share the same

history of their common ancestor. But interestingly, we can prove that τ̂mlss is an

unbiased estimator of τ , showing by the following proposition.

116

Proposition 14. Under the “no level-skipping” assumption (5.4), using the Multi-

Level Splitting Sampling with m levels and a splitting ratio r, τ̂mlss is an unbiased

estimator of τ ; that is, Erτ̂mlsss “ τ .

Proof. Consider any level Li, let Si denote the set of entrance states of all possible

paths that enter Li, and Sji be a sample entrance state of Si. Then, for each Sji ,

we can define a Bernoulli random variable variable Xi`1pS
j
i q „ Bernoullip∆ijq with

probability ∆ij, denoting Bernoulli trials of a path (whether it reaches the next level

Li`1 starting from state Sji in Li). Note that ∆i is a random variable with respect

to the hitting probability from level Li to Li`1, and ∆ij is a sample value (of ∆i)

based on entrance state Sji . An important observation is

Er∆is “ pi`1, (5.7)

that is, the expectation of success probability (of entering Li`1) over all entrance

states in Li equals pi`1, which is the probability that a path enters Li`1 conditioning

on its entrance to Li.

Now assume that during MLSS procedure, we have ni entrance states in Li:

S1
i , S

2
i , . . . , S

ni
i . For each of them we split and simulate r independent copies and

watch whether they hit the next level Li`1. Recall that the observations of each

Sji is a Bernoulli variable with probability ∆ij, thus the number of hits to Li`1

contributed by state Sji follows a binomial distribution as Bpr,∆ijq. Combining ni

states together, we have the following formula of counter ni`1:

ni`1 “

ni
ÿ

j“1

r
ÿ

k“1

Xi`1pS
j
i q „

ni
ÿ

j“1

Bpr,∆ijq. (5.8)

Since ni`1 conditions on ni and the sampled entrance states, we further have

117

Erni`1 | nis “ E
„

Erni`1 | ni, S
1
i , S

2
i , . . . , S

ni
i s

plaw of total expectationq

“ E
„

Er
ni
ÿ

j“1

Bpr,∆ijq | ni, S
1
i , S

2
i , . . . , S

ni
i s

pby Eq(5.8)q

“ Er
ni
ÿ

j“1

r ¨∆ijs “ nirEr∆is

“ nirpi`1. (by Eq(5.7))

(5.9)

Applying this to p̂i`1 results in

Erp̂i`1 | nis “ Er
ni`1

rni
| nis “

Erni`1 | nis

rni
“
nirpi`1

rni
“ pi`1 (5.10)

Finally, unconditioning on ni by law of total expectation,

Erp̂i`1s “ E
„

Erp̂i`1 | nis

“ Erpi`1s “ pi`1. (5.11)

Next, we prove that Erp̂1p̂2 ¨ ¨ ¨ p̂ms “ Erp1p2 ¨ ¨ ¨ pms by induction on m. First, we

know that at the starting level all root paths are independently simulated, thus it

is obvious that p̂1 is an unbiased estimator for p1; that is, Erp̂1s “ p1. Then, let us

assume that Erp̂1p̂2 ¨ ¨ ¨ p̂m´1s “ p1p2 ¨ ¨ ¨ pm´1. Hence, we have

Erτ̂mlsss “ Erp̂1p̂2 ¨ ¨ ¨ p̂ms

“ E
„

p̂1p̂2 ¨ ¨ ¨ p̂m´1Erp̂m | nm´1s

(law of total expectation)

“ Erp̂1p̂2 ¨ ¨ ¨ p̂m´1pms (by Eq(5.9))

“ Erp̂1p̂2 ¨ ¨ ¨ p̂m´1spm

“ p1p2 ¨ ¨ ¨ pm “ τ, (by assumption)

(5.12)

118

which finishes the induction and proves that τ̂mlss is an unbiased estimation of τ .

Variance Analysis. Now let us derive the (estimated) variance of the MLSS

estimator τ̂mlss. Assume that we have sampled and simulated n0 root paths, then

the variance of our estimate is

Varpτ̂mlssq “ Varp
nm

n0rm´1
q “

Varpnmq

n2
0r

2pm´1q
. (5.13)

Recall that root paths from the starting level L0 are independent of each other. Since

the number of hits to the target level (that is, nm) all comes from the offspring of

those n0 root paths, we can further decompose the variance term into

Varpnmq “
n0
ÿ

i“1

VarpYiq “ n0VarpY1q, (5.14)

where Yi denotes the number of hits to the final target contributed by the root path

i and VarpYiq “ VarpYjq for any i, j ă n0. Finally, we have

Varpτ̂mlssq “
VarpY1q

n0r2pm´1q
. (5.15)

It is hard to derive an analytical expression for VarpY1q in the multi-level splitting

setting because there are many dependencies caused by splitting and sharing. How-

ever, we can easily estimate VarpY1q through the simulations using the standard

variance estimator

s2
“

řn0

i“1pYi ´ Ȳ q
2

n0 ´ 1
. (5.16)

Combining it together, we have an unbiased estimation of the variance of MLSS

estimator as follows:

yVarpτ̂mlssq “
s2

n0r2pm´1q
. (5.17)

119

5.3.3 Relationship between SRS and MLSS.

The following proposition shows the close connection between SRS and MLSS.

Proposition 15. Simple random sampling is a special case of Multi-Level Splitting

Sampling with splitting ratio r “ 1.

It is not hard to prove the above statement. As r “ 1, τ̂mlss “
nm
n0

“ τ̂srs.

Similarly, Varpτ̂mlssq “
VarpY1q

n0

“
τsrsp1´ τsrsq

n0

“ Varpτsrsq.

Proposition 15 also gives us more insights on why MLSS could be a more efficient

sampling procedure than SRS.

• Splitting Mechanism: SRS (or equivalently, MLSS with no splitting) always

simulates a sample path up to time t. As discussed earlier, it could end up with

a large portion of simulation cost wasted on paths that do not hit the boundary.

In contrast, the splitting mechanism effectively makes the simulations more

focused on those promising candidate paths. Though on average, MLSS has a

higher per-root-path simulation cost than SRS, it potentially reduces the total

number of root paths required, by producing more hits to the target.

• Multi-Level Partitioning: Another simulation-efficient feature of MLSS is the

multi-level partitioning of the value threshold. Recall Eq(5.5) that τ can be

decomposed into the product of a series of conditional probabilities by multi-

level partitioning. Compared to τ , pi’s are larger probabilities. In other words,

considering the simulations between levels, we create hits (either to the next

level or to the final target) with higher probability, which further potentially

avoids the waste of simulations on those non-hitting paths.

However, we still need careful considerations to apply MLSS in practice for the

best performance; e.g., how to select splitting ratio r, how many partitions of levels

120

Figure 5.2: A simple two-level case with level-skipping. Dashed path represents a
(discrete-time) series that directly goes from L0 to L2 without entering L1.

do we need and how to decide the boundaries of partitions. There are many trade-

offs among those choices. We discuss how to solve for the optimal setting of MLSS

that minimizes the simulation cost in Section 5.5.

5.4 Extensions and Variants

In previous section, we elaborate the main idea and sampling techniques of the stan-

dard MLSS, and lay the theoretical foundations for its unbiased estimation (Propo-

sition 14) and variance computation (Eq(5.15)) under the “no level-skipping” as-

sumption (recall Eq(5.4)). However, given a discrete-time stochastic process, the as-

sumption may not always be practical in real-life applications. A noisy and volatile

temporal series with large value fluctuation between consecutive timestamps (e.g.,

stock prices) could easily break the assumption. Sometimes a bad level partitioning

(e.g., level boundaries are placed too close to each other) also creates level-skipping.

To go beyond the constraints and make MLSS widely applicable in practice, we

present a novel and general MLSS procedure in the following section, and introduce

some interesting variants of MLSS.

121

5.4.1 MLSS in General Form

For concreteness but without loss of generality, let us consider a simple case with

two levels and with possible level-skipping, shown as Figure 5.2. There are two types

of paths hitting the value boundary: solid line path (with no level-skipping) and

dashed line path (skip from L0 to L2). With abuse of notation, let p0,1 “ p1 and

p1,2 “ p2 (recall Eq(5.4) and Eq(5.5)). The numbers in subscript simply represent

the transition between levels. These probabilities represents the normal case as we

discussed in Section 5.3. However, with the existence of level-skipping, we need to

introduce an additional probability p0,2 denoting the chance of level-skipping. Hence,

the ground truth hitting probability consists of two parts:

τ “ p0,1p1,2 ` p0,2. (5.18)

Sampler, Estimator and Variance. The sampling procedure is largely similar

to standard MLSS as in Section 5.3: (1) path (recursively) splits into r copies the

first time it enters into a higher level; and (2) maintain entrance counters n0, n1, n2

for L0, L1, L2. The only difference is that we decompose counter n2 (number of hits to

the target) as n2 “ n
pnsq
2 `n

npsq
2 , where n

pnsq
2 is the number of hits from non-skipping

paths while n
psq
2 is the number of hits from level-skipping paths. Then, our estimator

also consists of the estimations of these two parts,

τ̂mlss “
n
pnsq
2

n0 ¨ r
`
n
psq
2

n0

(5.19)

Proposition 16. In general, using the Multi-Level Splitting Sampling with 2 levels

and a splitting r, τ̂mlss is an unbiased estimator of τ ; that is Erτ̂mlsss “ τ .

Proof.

Erτ̂mlsss “ Er
n
pnsq
2

n0 ¨ r
s ` Er

n
psq
2

n0

s

122

In Proposition 14, we have proved that Er
n
pnsq
2

n0 ¨ r
s “ p0,1p1,2 “ p1p2. It is also clear

that Er
n
psq
2

n0

s “ p0,2. Thus, Erτ̂mlsss “ p0,1p1,2 ` p0,2 “ τ .

The variance of general MLSS is complicated and needs more care. Let us still

focus on the simple two-level case. We have,

Varpτ̂mlssq “

Var

ˆ

n
pnsq
2

˙

n2
0r

2
`

Var

ˆ

n
psq
2

˙

n2
0

.

First, n
psq
2 can be viewed as a binomial variable with n0 trials and probability p0,2;

i.e., n
psq
2 „ Bpn0, p0,2q. Thus Var

`

n
psq
2

˘

“ n0p0,2p1 ´ p0,2q. Second, the quantity

n
pnsq
2 conditions on the number of paths without skipping (n1), which it is also an

random variable throughout the sampling procedure. We cannot just break it up as

in standard variance analysis. Instead, we should do a conditioning on number of

non-skipping paths and use the law of total variance:

Var
`

n
pnsq
2

˘

“ Var

ˆ

Ernpnsq2 | n1s

˙

` E
„

Varpn
pnsq
2 | n1q

“ Varpn1rp1,2q ` Ern1VarpY1qs

(Recall Eq(5.9) and Eq(5.14))

“ r2p2
1,2Varpn1q ` Ern1sVarpY1q

“ r2p2
1,2n0p0,1p1´ p0,1q ` Ern1sVarpY1q.

(n1 „ Bpn0, p0,1q)

Hence,

Var
`

n
pnsq
2

˘

n2
0r

2
“ p2

1,2

p0,1p1´ p0,1q

n0

` p0,1
VarpY1q

n0r2
(5.20)

123

Putting it all together, we have

Varpτ̂mlssq

“ p2
1,2

p0,1p1´ p0,1q

n0

` p0,1
VarpY1q

n0r2
`
p0,2p1´ p0,2q

n0

.
(5.21)

In practice, we can use p̂0,1 “
n1

n0

as an unbiased estimation for p0,1. Similarly,

p̂0,2 “
n
psq
2

n0

and p̂1,2 “
n
pnsq
2

n1r
as unbiased estimations for p0,2 and p1,2, respectively.

VarpY1q can be estimated by s2 as Eq(5.16) suggests. Again, it is not hard to find

that the variance term we derived in Eq(5.15) is a special case of the above equation

when there is no level-skipping, i.e., p0,2 “ 0 and p0,1 “ 1.

General MLSS with m Levels. Now let us move to a more general setting

that there are m levels with possible level-skippings. Let G “ pV,E, ψq be a directed

graph representing the transitions among m levels for a stochastic process, where

V “ tL0, L1, . . . , Lmu, E “ tpLi, Ljq | @i ă j ď mu and ψ denotes the set of

all possible paths between any two vertices in G. A path is a sequence of edges

pe0, e1, . . . , ek´1q Ď E for which there is a sequence of vertices pL0, L1, . . . , Lkq Ď V

such that ei “ pLi, Li`1q for i “ 0, 1, . . . , k ´ 1. Specifically, we are more interested

in a subset of paths starting from vertex L0 and ending at vertex Lm, denoted by

ψpL0, Lmq Ď ψ. Then, the durability probability can be written as the following:

τ “
ÿ

ψiPψpL0,Lmq

Prrψis , (5.22)

where Prrψis is the probability that the temporal process follows the level transitions

by path ψi and hits the target. As for estimator, we again use the counters collected

from each level during the sampling procedure, resulting in the following unbiased

estimator for τ :

τ̂mlss “
ÿ

ψiPψpL0,Lmq

n
pψiq
m

n0 ¨ r|ψi|´1
, (5.23)

124

where n
pψiq
m is the number of hits to the target contributed by sample paths that

follows the level transitions of ψi.

Proposition 17. In general, using the Multi-Level Splitting Sampling with m levels

and a splitting ratio r, τ̂mlss is an unbiased estimator of τ ; that is, Erτ̂mlsss “ τ .

The proof can be straightforwardly derived from the proofs of Proposition 14 and

Proposition 16, thus omitted.

The size of possible paths from L0 to Lm, ψpL0, Lmq, is at most 2m´1. We can

see that our discussions in Section 5.3 with “no level-skipping” assumption is just

a special case of the general MLSS, 1 out of 2m´1 possible cases. It is very hard

to deliver analytic expressions for variance term in general m levels MLSS because

of the dependencies among splitting paths due to the sharing of their history. But

our discussions in Section 5.4.1 (from Eq(5.19) to Eq(5.21))) already showcase the

variance derivations for a simple two-level case. The variance analysis for using m

levels will be very complex but similar to the two-level case. We leave this part as

one of the future work.

Though MLSS in general form still provides an unbiased estimation (recall Propo-

sition 17), the variance of MLSS estimator becomes way more complicated, e.g.,

Eq(5.21), resulting in the decrease of its sampling efficiency. Not only is there vari-

ance caused by number of hits to the target among different root paths, but a multi-

nomial variance due to the different level transition paths (up to 2m´1) from L0 to

Lm. The latter variance could be potentially very large because of the inherent un-

certain nature of stochastic process, especially when there are many level transition

possibilities (i.e., a very volatile temporal process). Hence, in the very general case,

MLSS may not have a clear benefit over SRS, or might be even worse than SRS in

some cases. We recommend that the best working scenarios for MLSS should be the

case where there is no level-skipping, as in Section 5.3. It is better to first analyse

125

the temporal data (and its underlying stochastic process) that we are working with.

If the process itself is very noisy and fluctuate much over time, then the standard

SRS might be a safer choice.

5.4.2 Variants of MLSS

The idea of Multi-Level Splitting Sampling is general, and can be instantiated into

different but similar forms. In this paper, we focus on the instance of MLSS (Sec-

tion 5.3 and Section 5.4) that is more suitable for durability query processing. The

interested readers can refer to [72] and [45] for a more comprehensive perspective on

splitting-based sampling approach. In this section, we briefly introduce two interest-

ing variants of MLSS.

Splitting Ratio. In our implementation of MLSS, we assume the splitting ratio

r is a pre-defined constant number. However, this is not a hard constraint. Users

can pick different number of splitting ratios for different levels during the sampling

procedure, and we still have an unbiased estimator as the following:

τ̂mlss “
nm

n0

śm
i“2 ri

, (5.24)

where ri is the splitting ratio for level Li. The corresponding variance expression is,

Varpτ̂mlssq “
VarpY1q

n0

śm
i“2 r

2
i

. (5.25)

Furthermore, splitting ratios can be adjusted or learned throughout the sampling pro-

cedure on-the-fly as we gain more knowledge based on previous simulations, enabling

an adaptive version of MLSS for potentially more efficient and robust performances.

Similar ideas have been successfully applied to importance sampling for significant

efficiency improvement [79]. How to design an efficient adaptive MLSS remains an

interesting and challenging future work.

126

Figure 5.3: Simulation (t “ 200, β “ 15) of a root path using MLSS based on level
partitions in temporal domain.

Level Partitions. As in Section 5.3.1, we formally introduce the notion of multi-

level partitioning in the value domain. Again, the definition of “levels” can also be

general. For instance, in Figure 5.3, we illustrate the simulation of a root path using

MLSS (r=3) based on level partitions in temporal domain. The MLSS method,

together with its sampler, estimator and variance analysis, are largely independent

on users’ choice of level partitions. Mathematically speaking, the notion of levels is

simply a set of conditions determining when a sample path should be splitted.

Nonetheless, on the other hand, the choice of levels is critical for the overall effi-

ciency of MLSS, since it directly controls the “incentive mechanism”. The definition

of levels should reward and lead simulations towards the “right” directions in order

to improve sampling efficiency. Users can pick the more suitable version of levels

based on their temporal models, applications and queries.

5.5 Optimizations

There is still one missing piece of MLSS: how to choose parameters? More specifically,

how many levels do we need, and given the number of levels, how to properly divide

level partitions? In this section, we first present an empirical evaluation metric

127

for MLSS with different parameter settings, and then introduce an adaptive greedy

partition strategy that automatically searches for the (near-) optimal parameters of

MLSS, i.e., number of levels and level partitions.4

5.5.1 Partition Plan Evaluation

From previous studies in statistic community, authors [72] showed an analogy be-

tween MLSS (with fixed splitting ratio) and branching process theory [53], and con-

cluded that the optimal setting for MLSS is to make crossing probabilities between

consecutive levels roughly the same, called a “balanced growth.” That is, consider

MLSS with m levels,

p1 “ p2 “ ¨ ¨ ¨ “ pm “ p “ τ 1{m. (5.26)

Under this setting, from standard branching process theory, we have

Varpτ̂mlssq “
mp1´ pqp2m´1

n0

. (5.27)

The above expression indicates that given the fixed number of root paths, more

levels lead to smaller variance. However, in the meantime, more levels lead to more

expensive simulation cost of a root path because of the exponential splitting growth

of a root path through the levels. Our optimization goal, using MLSS as approximate

query processing technique, is not just to minimize variance. Instead, we hope to

minimize the variance in a fixed amount of the time. Since, ultimately, the query

time using MLSS is determined by the variance of the estimator. A smaller variance

in unit time directly leads to less simulation cost for answering durability query.

Though the “balanced growth” strategy is a reasonable guideline to partition the

space, it is still not clear how to choose the right number of levels.

4 For simplicity and solution efficiency, we only consider MLSS with no level-skipping assumption
(recall discussions in Section 5.3).

128

To meet the new criteria, we present the following evaluation metric. Consider

a level partition plan s, which consists of a set of values what we call “partition

boundaries”; that is, s “ tv | v P pβ0, βqu. Given a fixed amount of simulation

budget, say t time, we have simulated nt root paths (including all its splitting copies).

Note that nt is a random variable depending on the total time t and the average

simulation time cs of a root path using partition plan s. We define an evaluation

function for s in terms of variance of estimator τ̂mlss by nt:

evalpsq “ Varp
n
ptq
m

ntrm´1
q, (5.28)

where n
ptq
m denotes the total number of target hits within t time. In this case, m =

|s| + 1, denoting the total number levels induced by plan s. Since nt is a random

variable, we should express the variance term conditioning on nt, and use the law of

total variance and the decomposition trick in Eq(5.15):

evalpsq “ E
„

VarpY1q

ntr2pm´1q
| nt

` Var

ˆ

Er
n
ptq
m

ntrm´1
| nts

˙

(5.29)

Given nt, Er
n
ptq
m

ntrm´1
s “ τ , thus the second term in the above equation is 0. Recall

that Y1 is a random variable denoting the number of target hits from a root path.

Given nt and partition plan s, VarpY1q becomes a constant. Hence, the first term in

the equation becomes
VarpY1q

r2pm´1q
Er1{nts. The term Er1{nts can be roughly estimated

by 1{
t

cs
“ cs{t. Finally, the evaluation function of a partition plan s is

evalpsq “
VarpY1q

r2pm´1q

cs
t
. (5.30)

Ideally, given a fixed amount of time t, we hope to solve for partition plan s

that minimizes the objective evalpsq. However, this optimization problem is hardly

129

solvable analytically, since VarpY1q and cs are themselves variables when the plan s

changes. But fortunately, we can optimize the objective empirically, as VarpY1q and

cs can be estimated through the MLSS simulations. Eq(5.16) provides an unbiased

estimator for VarpY1q, and cs can also be estimated simply dividing t by the number

of simulations of root path within time t. In this way, we can start with a candidate

pool of partition plans. For each candidate, we run MLSS simulations for the same

amount of time t as trial runs to estimate the objective evalpsq, and finally pick the

best candidate who produces the minimum value.

5.5.2 An Adaptive Greedy Partition Strategy

To empirically optimize MLSS, it is prohibitively expensive to run trial simulations

for all feasible partition plans and splitting ratios. In this section, we present a

heuristic greedy strategy that works well in practice to automatically search for

(near-) optimal MLSS parameters.

The main idea of our strategy is to adaptively and recursively partition the space –

place the partition boundaries one by one and always partition the level with smaller

level crossing probability. The intuition behind our greedy behavior is two-fold: (1)

A level with smaller level crossing probability means that this level is the “obstacle”

blocking sample paths reaching the target. Partition such levels would focus the

simulation resources more on success paths; (2) as we recursively bisect levels with

smaller crossing probability, it automatically moves towards a “balanced growth”

situation where crossing probabilities from all levels are roughly the same. Recall

our discussion in Section 5.5.1; this behavior has already been confirmed by [72] to

have a better sampling efficiency.

Full description of the algorithm is shown in Algorithm 5. Throughout the pro-

cedure, we adaptively make two decisions: what is the optimal number of levels, and

how to optimally produce such number of levels? At the beginning, we start with the

130

Algorithm 5: Adaptive Greedy Partition.

Input : A value interval I “ rβ0, βs.
Output: A partition boundary set B “ tv | v P rβ0, βsu.

1 B Ð ∅;
2 opt eval Ð INT MAX //remember the minimum evaluation value so far;
3 vlo Ð β0, vhi Ð β;
4 for round i “ t1, 2, ¨ ¨ ¨ u do
5 Uniformly generate a value set C “ tv | v P pvlo, vhiqu as candidates for

the i-th partition boundary;
6 e˚ “ min

vPC
evalpB Y vq;

7 v˚ “ arg min
vPC

evalpB Y vq;

8 if e˚ ă opt eval then
9 B Ð B Y v˚;

10 opt eval Ð e˚;
11 Find the level rβi, βjspβi, βj P B, βi ă βjq, induced by B and I, that

has the smallest level crossing probability pi,j;
12 vlo Ð βi, vhi Ð βj;

13 else
14 break;

15 return B;

original interval rβ0, βs (Line 1). Then we place the partition boundary one by one,

recursively bisecting the value intervals, until a stopping condition is met (Line 4-14).

In the loop, we first generate a set of candidate boundaries (Line 5) and then use

the empirical evaluation approach, as elaborated in Section 5.5.1, to find the optimal

partition boundary (Line 6 and Line 7). Finally, we need to update our partition

plan and decide when to stop the procedure. If the current best evaluation is better

the previous, we continue to add a new partition boundary (Line 8-12). Note that

here we need to greedily pick the next interval with smallest crossing probability to

partition (Line 11-12). Otherwise, if the current best evaluation is already worse

than the previous, there is no need to further add more partition boundaries to the

plan, since more levels lead to exponential growth of splitting paths and would incur

more expensive simulation cost overall.

131

Given the aforementioned empirical optimization framework, it saves users from

the time-consuming manual parameters tuning process when applying MLSS in prac-

tice. Users only need to pick a reasonable splitting ratio (will further justify the choice

of splitting ratio in Section 5.6.3) in advance, and our optimization framework will

take care of the rest. Interestingly, even though the splitting ratio is a pre-defined

constant, our optimization strategy also implicitly allows tuning the splitting ratio

as well by exploring different number of levels, since a level with a larger splitting

ratio can be approximated by multiple levels with the constant splitting ratio.

We conclude this section with a rough complexity analysis of our greedy strategy.

Assume our algorithm runs up to m rounds and for each round we generate |C|

candidates. Overall, we need Opm|C|q number of partition plans to try and evaluate.

Compared to the baseline solution that tries all possible partition plans for each

number of levels, which is up to p|C|mq plans in total, the greedy solution provides

a similar quality of plan, but with significant efficiency improvement. An additional

benefit of our empirical optimization solution is that all the trial runs of MLSS are

not “wasted.” Since each trial simulation, no matter which plan it follows, returns

an unbiased estimator. So in the meantime we are picking the optimal parameters,

we are also building up towards a reliable estimation for the query.

5.6 Experiments

In this section, we comprehensively and quantitatively evaluate the performance of

our proposed solutions. Section 5.6.1 elaborates the experiment setup, including

datasets, evaluation metrics and implementation details. Section 5.6.2 presents an

overall comparison between the proposed solution MLSS and the standard Monte

Carlo technique SRS on a variety types of durability queries with different underlying

stochastic processes. Finally in Section 5.6.3, we focus on fine-tuning the MLSS

procedure, and evaluates the proposed empirical optimization framework.

132

Figure 5.4: Tandem Queue with Poisson arrivals and Exponential service time.

5.6.1 Experiment Setup

Stochastic Processes and Datasets. We select three stochastic temporal pro-

cesses that are commonly used in practical applications.

1. Tandem Queues: As shown in Figure 5.4, we have a queueing systems with tan-

dem queues, which is the simplest non-trivial network of queues in queueing theory [28].

The process is the following. Customers come into Queue 1 following a Poisson

distribution with Poispλq. Queue 1 services each customer following an Exponen-

tial distribution with Exppµ1q, and then sends customers into Queue 2. Queue 2

services each customer by another Exponential distribution with Exppµ2q before

customers leave the system. We consider the number of customers in Queue 2

as a stochastic process, and always start with an empty system (i.e., two empty

queues). In our experiments, we set λ “ 0.5, µ1 “ µ2 “ 2. Though in simple form,

queueing system is the foundation for many real world problems [84], to name a

few, birth-death process, supply chains, transportation scheduling and computer

networks analysis [71].

2. Compound-Poisson Process: A Compound-Poisson Process (CPP) can be

described by the following stochastic process U “ tUptqutě0:

Uptq “ u` ct´ Sptq, (5.31)

where Sptq is a compound Poisson process with jump density λ and jump dis-

tribution F , and u, c ą 0 are constants. This type of process is commonly used

133

Figure 5.5: A stochastic process by LSTM-RNN-MDN.

in financial world for risk management and financial product design [10]. Intu-

itively, imagine a insurance policy with u as initial surplus and c as users’ monthly

payment. The compound Poisson process Sptq represents the aggregate claim pay-

ments up to time t. Then the overall stochastic process U shows the net profit of

this insurance policy. In our experiments, we set Poisson jump density λ “ 0.8 and

use uniform distribution Unip5, 10q as jump distribution. For constants, u “ 15

and c “ 4.5.

3. Recurrent Neural Networks: As shown in Figure 5.5, we train a Recurrent

Neural Networks (RNN) with Long-Short Term Memory (LSTM) and Mixture

Density Network (MDN) [15] using Google’s 5-year daily stock prices from 2015

to 2020. The LSTM-RNN-MDN structure has proven its success on many real

life tasks of probabilistically modelling and generating sequence data, for instance,

language models [12], speech recognition[49], hard-writings analysis[50] and music

composition [36]. In our network, we use two stacked RNN layers, 256 LSTM

units per RNN layer, and a 2-dimensional mixture layer with 5 mixtures. During

training phase, we trained the model for sequence length of 50, and for 100 epochs

with a batch size of 32.

Evaluation Metric. Performance of different methods are evaluated using the

following two metrics: total number of simulation steps (recall that a sample path

134

is simulated step-by-step using a stochastic process) and total simulation time. In

our experiments, we run sampling procedures until the estimation satisfies certain

quality measurement. Specifically, we use two quality measurements throughout the

experiment section:

1. Confidence Interval: Confidence interval (CI) is a statistical measurement for

point estimate. It shows how likely (or how confident) that the true parameter

is in the proposed range. There is no universal formula to construct CI for an

arbitrary estimator. However, if a point estimator µ̂ takes the form of the mean

of n independent and identically distributed (i.i.d.) random variables with equal

expectation µ, then by the Central Limit Theorem and Normal Approximation,

an approximate 1-α CI of µ can be constructed by:

rµ̂´ zα{2

c

σ2

n
, µ̂` zα{2

c

σ2

n
s, (5.32)

where zα{2 is the Normal critical value with right-tail probability α{2, and σ2 is the

variance of estimate. By default, to obtain reliable query answers, we require that

all estimations should have a 1% CI with 95% confidence level (i.e., zα{2 “ 1.96).

Unfortunately, the standard CI as in the above equation has its limitation. When

the true probability µ is very close to 0 or 1, where the Normal Approximation

assumption does not hold, the CI guarantee would break.

2. Relative Error: Relative Error (RE) measures the variance (of estimate) as a

relative ratio to the true probability, defined as follows:

RE “

?
σ2

µ
, (5.33)

where µ is the true probability and σ2 is the variance of estimate. This is not

feasible to calculate directly in practice, since we do not know the true probability

135

Table 5.2: Query settings on different models.
Query Type Medium Small Tiny Rare

Queue Model
t : 500
β : 20

t : 500
β : 26

t : 500
β : 40

t : 500
β : 45

CPP Model
t : 500
β : 300

t : 500
β : 350

t : 500
β : 450

t : 500
β : 500

RNN Model -
t : 200
β : 1550

t : 200
β : 1600

-

µ before the query. But in practice, we can roughly estimate the ground truth

probability, and use that to fairly compare the RE ratio among different methods.

Unlike CI, RE is widely applicable in any scenarios.

In sum, throughout the experiment section, we evaluate durability queries with differ-

ent ground truth probabilities. For queries that have small-to-moderate probability

(i.e., ą 0.05), we use Confidence Interval as the quality measure. For queries that

have tiny probability (i.e., 10´4 to 10´2), we use Relative Error as the alternative

measure.

Implementations. All stochastic temporal models and proposed solutions were

implemented in Python3. More specifically, for neural network’s construction and

training, we use Keras [26] (back end by TensorFlow [2]). For MLSS, we use split-

ting ratio r “ 3 and a “balanced-growth” level-partition plan (recall discussions in

Section 5.5.1) as the default experiment setting. For simplicity and efficiency consid-

erations, we make sure that the selected stochastic processes and our level partitions

will not incur “level skipping.” Thus, the MLSS sampler, estimator and variance

formula used in all experiments are the ones describe in Section 5.3. All experi-

ments were performed on a Linux machine with two Intel Xeon E5-2640 v4 2.4GHz

processor with 256GB of memory.

136

Table 5.3: Query answer comparisons on Queue Model. Results are averaged over
100 runs with standard deviation.

Query Type Medium Small Tiny Rare

SRS
17.2%
˘ 0.5%

5.1%
˘ 0.5%

0.15%
˘ 0.03%

0.04%
˘ 2e´5

MLSS
17.9%
˘ 0.4%

5.5%
˘ 0.5%

0.17%
˘ 0.02%

0.04%
˘3e´5

Table 5.4: Query answer comparisons on CPP Model. Results are averaged over 100
runs with standard deviation.

Query Type Medium Small Tiny Rare

SRS
15.5%
˘ 0.5%

5.3%
˘ 0.5%

0.24%
˘ 0.02%

0.03%
˘3e´5

MLSS
15.6%
˘ 0.4%

5.3%
˘ 0.5%

0.26%
˘ 0.01%

0.03%
˘4e´5

5.6.2 MLSS vs. SRS

In this section, we comprehensively compare the performance of MLSS and SRS. For

each stochastic temporal model, we design four types of durability queries: Medium,

Small, Tiny and Rare, denoting the quantity of the (estimated) true answer proba-

bility of the queries. Detailed query parameters are summarized in Table 5.2.

Estimations and Overall Efficiency. We first demonstrate the answer quality,

i.e., unbiasedness, of MLSS. For each model and for each type of query, we repeatedly

run SRS and MLSS 100 times, respectively, and average the returned answers along

with empirical standard deviations. Results are summarized in Table 5.3 (Queue

Table 5.5: Query performance (single run) comparisons on RNN Model.
Query Type Small Tiny

SRS
2.6%

1,009,431 steps
3.8 hours

0.51%
7,262,735 steps

33.7 hours

MLSS
1.9%

196,913 steps
0.75 hour

0.45%
804,035 steps

3.9 hours

137

Medium Small Tiny Rare

query type

10
5

10
6

10
7

10
8

10
9

to
ta

l
n

u
m

b
e

r
o

f
s
im

u
la

ti
o

n
 s

te
p

s

SRS

MLSS

(a) Simulation steps

Medium Small Tiny Rare

query type

10
0

10
1

10
2

10
3

q
u

e
ry

 t
im

e
 (

s
e

c
o

n
d

)

SRS

MLSS

(b) Query time

Figure 5.6: Query efficiency on Queue Model

Mediaum Small Tiny Rare

query type

10
5

10
6

10
7

10
8

10
9

to
ta

l
n

u
m

b
e

r
o

f
s
im

u
la

ti
o

n
 s

te
p

s

SRS

MLSS

(a) Simulation steps

Medium Small Tiny Rare

query type

10
0

10
1

10
2

10
3

q
u

e
ry

 t
im

e
 (

s
e

c
o

n
d

)

SRS

MLSS

(b) Query time

Figure 5.7: Query efficiency on CPP Model

Model), Table 5.4 (CPP Model) and Table 5.5 (RNN Model). As shown in these

tables, the answers returned by SRS and MLSS, on all types of queries and on all

models, are essentially the same. Even though they are not exactly the same, the

differences are well contained by the standard deviation. This findings confirmed our

analysis and proof in Section 5.3 about MLSS’s unbiased estimation.

Next, let us compare the query efficiency between SRS and MLSS. We time

the query until its answer (estimation) achieves certain quality measurement. For

Medium and Small queries, we require the final estimation has a 1% confidence

138

(a) Queue Model, Small Query,
CI

(b) CPP Model, Tiny Query, RE(c) RNN Model, Tiny Query, RE

Figure 5.8: Query answer quality over time.

interval with at least 95% confidence. For Tiny and Rare queries, we require the

final estimation has a 10% relative error (compared to the true probability). As

shown in Figure 5.6 (Queue Model) and Figure 5.7 (CPP Model), MLSS generally

runs significant faster than SRS (note the log scale on y-axis). For Medium and Small

queries, we can see a 40% to 60% query time reduction brought by MLSS. For Tiny

and Rare queries, MLSS runs 10x faster than SRS, without loss of answer quality. As

discussed earlier in Section 5.3.3, the main advantage of MLSS to SRS is the ability

to focus and encourage simulations that move towards the target. This property is

especially helpful for those durability queries with lower probability, since MLSS can

better distribute simulation efforts to promising paths hitting the target, instead of

blindly wasting time on those failure paths (which would be a large portion of the

total) as SRS did. Again, results in Figure 5.6 and Figure 5.7 are averaged over 100

runs. Standard deviations are shown as error bars on top of the bar charts. We

observe similar query efficiency improvement on the more complex RNN model. In

Table 5.5, for Small and Tiny queries (which are more commonly asked in practice)

on RNN model, there is a roughly 80% to an order-of-magnitude query time reduction

provided by MLSS.

Overall, we can see that MLSS clearly surpasses SRS across different models and

on different types of commonly asked durability queries in practice, providing query

139

speedup from 40% up to an order-of-magnitude, without sacrificing answer quality.

Query Performance over Time. To take a closer look at the query performance

comparison of MLSS and SRS, we monitor the query answers and its quality (CI or

RE) over time, and plot the convergence of estimations on single run of MLSS and

SRS, respectively. See Figure 5.8 for details. In Figure 5.8-(1), we run a Small query

on Queue model and use CI as estimation quality measure. For better illustration,

CI intervals are interpreted as a percentage to the true probability such that it

will be centered at 0. The grey ribbon in the plot shows the desired region for a

reliable estimate (true probability with 1% CI). Symmetric red lines and blue lines

demonstrate how the CIs of MLSS and SRS converge over time, respectively. Red

dotted line and blue dotted line are the estimate of MLSS and SRS over time. It

is clear that MLSS converges faster than SRS on estimation quality, which is the

main reason why MLSS is a more efficient sampling procedure or query processing

technique than SRS. On the other hand, we can also see that the estimates (red

dotted line and blue dotted line) from MLSS and SRS are always nicely contained

by its corresponding CI, showing the statistical guarantees brought by CI. We observe

similar behaviors on CPP model (Figure 5.8-(2)) and RNN model (Figure 5.8-(3)).

Here we use run Tiny queries on these two models and use RE as quality measure.

Similarly, the time that MLSS needs for a reliable estimate (10% RE, dashed line in

the plot) is significantly shorter than that of SRS.

In sum, Figure 5.8 demonstrates the fast convergence of MLSS’s sampler and

estimator, which further explains the reason why MLSS can be notably efficient

than SRS in general.

5.6.3 MLSS Optimization

In previous sections, we have shown the dominance of MLSS over SRS across a vari-

ety of models and query types. We now focus more on MLSS itself, and investigate

140

1 2 3 4 5 6 7

splitting ratio

0

0.5

1

1.5

2

to
ta

l
n

u
m

b
e

r
o

f
s
im

u
la

ti
o

n
 s

te
p

s

10
6

SRS

MLSS

(a) Queue Model

1 2 3 4 5 6 7

splitting ratio

0

0.5

1

1.5

2

2.5

to
ta

l
n

u
m

b
e

r
o

f
s
im

u
la

ti
o

n
 s

te
p

s

10
6

SRS

MLSS

(b) CPP Model

Figure 5.9: Trade-off between splitting ratio and MLSS’s overall efficiency on Small
Query.

1 2 3 4 5 6 7

splitting ratio

0

1

2

3

4

to
ta

l
n

u
m

b
e

r
o

f
s
im

u
la

ti
o

n
 s

te
p

s

10
7

SRS

MLSS

(a) Queue Model

1 2 3 4 5 6 7

splitting ratio

0

0.5

1

1.5

2
to

ta
l
n

u
m

b
e

r
o

f
s
im

u
la

ti
o

n
 s

te
p

s
10

7

SRS

MLSS

(b) CPP Model

Figure 5.10: Trade-off between splitting ratio and MLSS’s overall efficiency on
Tiny Query.

how sampling parameters of MLSS affect its overall efficiency and how to efficiently

fine-tune MLSS in practice. More specifically, there are two parameters to decide

when using MLSS – splitting ratio and level partitions. We first study the relation-

ship between splitting ratio and the overall efficiency, and then move to the level

partitions. Finally, we experimentally validate our greedy level partition strategy

introduced in Section 5.5 and Algorithm 5, and compare it to the theoretical opti-

141

2 3 4 5

number of levels

0

2

4

6

8

10

to
ta

l
n
u
m

b
e
r

o
f
s
im

u
la

ti
o
n
 s

te
p
s

10
5

SRS

MLSS

(a) Queue Model, Small

2 3 4 5

number of levels

0

2

4

6

8

10

to
ta

l
n
u
m

b
e
r

o
f
s
im

u
la

ti
o
n
 s

te
p
s

10
5

SRS

MLSS

(b) CPP Model, Small

2 3 4 5 6 7 8

number of levels

0

0.5

1

1.5

2

2.5

3

3.5

to
ta

l
n
u
m

b
e
r

o
f
s
im

u
la

ti
o
n
 s

te
p
s

10
7

SRS

MLSS

(c) Queue Model, Tiny

2 3 4 5 6 7 8

number of levels

0

2

4

6

8

10

12

14

to
ta

l
n
u
m

b
e
r

o
f
s
im

u
la

ti
o
n
 s

te
p
s

10
6

SRS

MLSS

(d) CPP Model, Tiny

Figure 5.11: Trade-off between number of levels and MLSS’s overall efficiency on
Small and Tiny Query.

(a) Queue Model (b) CPP Model

Small Tiny

query type

0

0.2

0.4

0.6

0.8

1

ra
ti
o
 t
o
 S

R
S

 b
a
s
e
lin

e
 (

%
) 1009431 7262735

SRS MLSS-OPT MLSS-G MLSS-G-Partition

(c) RNN Model (single run)

Figure 5.12: Efficiency of Greedy Level Partitions.

mal results. By default, we report average numbers over 100 trials, and standard

deviations are shown as error bars on top of the plot.

Optimal Splitting Ratios. Figure 5.9 and Figure 5.10 show a clear trade-off

between splitting ratio and simulation efforts (to achieve reliable estimate; i.e., 1%

CI on Small Query and 10% RE on Tiny Query). To be fair, for splitting ratio from

1 to 7, we all use the “balanced growth” level partition strategy with four levels; that

is, the crossing probabilities between consecutive levels are roughly the same. Note

that when splitting ratio is 1, MLSS is equivalent to SRS. As shown in Figure 5.9

and Figure 5.10, the first bar (splitting ratio is 1) on both plots matches with the

SRS baseline (dashed line). This finding further confirms the relationship between

MLSS and SRS as proved in Proposition 15. It is not hard to understand the trade-

off. After all, a large splitting ratio directly leads to more splitted sample paths

142

through the simulation process, not to mention that root paths are exponentially

copied by the splitting ratio through multiple levels. We can see a clear difference of

the optimal splitting ratio between Small Query and Tiny Query, where the latter

prefers a larger value since it will potentially create more hits to the target (which

is harder to achieve). But interestingly, we can also observe that the optimal choice

of splitting ratio (across different models and queries) seems fall in a narrow range

around 3. This is the reason why we fix splitting ratio as 3 as the default setting for

MLSS.

Optimal Number of Levels. Figure 5.11 shows the relationship between the

number of levels and the overall efficiency on Queue Model and CPP Model with

Small and Tiny Query, respectively. Here we fix splitting ratio as 3, and for different

number of levels, we always adopt the “balanced growth” level partitions. Again,

SRS baseline is shown as dashed lines on top of the plots. As these plots suggest,

there is also a trade-off between the number of levels and the overall efficiency. Recall

the optimal theoretical result about “balanced growth” we introduced in Section 5.5

- Eq(5.26) and Eq(5.27). More levels lead to smaller variance, but more levels also

exponentially boost the splitting sample paths in each level of the simulations, which

results in the aforementioned trade-off. On the other hand, we observe that there does

not seem to exist an universal optimal number of levels across models and queries.

For example, Small Query (Figure 5.11(1)-(2)) prefers fewer levels while Tiny Query

(Figure 5.11(3)-(4)) requires 5 to 6 levels to achieve optimal performance. This

finding is consistent with the observations as we have on optimal splitting ratio from

Figure 5.9 and Figure 5.10 that (compared to Small Query) Tiny Query requires

more frequent target hits to achieve better performance.

Greedy Level Partitions. After obtaining a better understanding of the factors

that affect MLSS’s overall efficiency, finally, we provide a practical solution for effi-

143

ciently fine-tuning MLSS in practice based on our proposed greedy partition strategy

introduced in Algorithm 5. Figure 5.12 shows the effectiveness (optimality of level

partitions) and efficiency (overall simulation efforts) of the proposed greedy strategy.

For better visualizations, we normalize all data as ratios relative to the SRS base-

line. Hence in all plots, SRS is shown as the blue bars with ratio 1, and the total

number of simulation steps are shown on top of the bar. Red bars (MLSS-OPT) are

MLSS with “balanced growth” setting and with optimal number of levels (according

to results in Figure 5.11). Yellow bars (MLSS-G) are MLSS with the partition plan

returned by our proposed greedy algorithm, and brown bars (MLSS-G-Partition)

show the search overhead of greedy partition algorithm. Overall, across all three

models and different types of queries, the greedy algorithm is able to automatically

search for the near-optimal setting of MLSS – the simulation cost by MLSS-G is not

so far away from the optimal (MLSS-OPT), and is still significantly lower than SRS

with a 60% to an order-of-magnitude improvement. More importantly, the search

overhead (MLSS-G-Partition) of the greedy algorithm is only 10% to 30% compared

to the overall simulation cost. Considering that the greedy strategy does not need

any information in advance and can automatically search for partition plans, it is

a reasonable approach to try in practice if users do not have related knowledge of

the model or the query. An interesting by-product of Figure 5.12 is that it also

experimentally validates the theory of “balanced growth” setting suggested in [53].

5.6.4 Summary of Experiments

In conclusion, we first demonstrate MLSS’s strong dominance over SRS across differ-

ent stochastic processes and different types of queries. In general, we observe a query

time speedup from 50% (Medium-to-Small queries) up to an order-of-magnitude

(Tiny-to-Rare queries), without sacrificing answer quality. Next, we further inspect

MLSS and investigate factors that affect its overall efficiency. Finally, we present

144

a greedy strategy that frees users from time-consuming and tedious parameter op-

timizations. With nearly no information needed in advance, the proposed greedy

strategy automatically searches for near-optimal setting (according to the empiri-

cally evaluations introduced in Section 5.5.1) simply through simulations. Our ex-

perimental results confirm the effectiveness and efficiency of the greedy algorithm —

near-optimal query efficiency with only 10% to 30% search overhead of the overall

simulation efforts. Nonetheless, the greedy strategy is an alternative remedy if users

have no knowledge about the stochastic model or queries. Domain knowledge of

the underlying models would definitely be helpful to facilitate the parameter tuning

process, but is beyond the scope of this paper.

5.7 Related Work

The closest line of work to ours is query processing over probabilistic databases [31]:

range search queries[23, 25, 104, 105], top-k queries [46, 59, 60, 89, 101, 115], join

queries [24, 70] and skyline queries [86]. But there is a fundamental difference between

these previous studies and our problem. In this paper, we consider query processing

on probabilistic temporal data, where temporal dependence is not neglectable when

modelling data uncertainty. To meet the new challenge, we propose to model prob-

abilistic temporal data by stochastic processes. As a comparison, previous work on

probabilistic databases mainly focuses on the static (snapshot) data, where data un-

certainty is considered independently for individuals. Another similar line of work is

MCDB and its variants [62, 11, 87, 18]. Unlike probabilistic databases, MCDB does

not have strong assumptions about uncertainty independence, but generally embod-

ies data uncertainty with user-defined variable generation (VG) functions. The use

of VG functions is analogous to the way that we handle probabilistic temporal data

with stochastic processes. Moreover, MCDB’s solutions are simulation-based too.

The only difference is that our work tweaks sampling procedure to improve sampling

145

efficiency while MCDB focuses on making standard Monte Carlo simulations run

faster inside a database management system. In [38], authors used Markov Chains

to present uncertain spatio-temporal data and studied how to answer probabilistic

range queries. However, their solutions are specific to Markov Chains and requires

the transition probability matrix as a priori information. By contrast, our tech-

niques are generally applicable to a variety of stochastic processes, and are largely

independent on the underlying model itself.

Regarding durability queries, there are several papers exploring the notions of

durability on temporal data. In [73, 74, 107, 41], authors consider durability as

a fraction of times (that satisfies certain conditions) over a (temporal) sequence of

snapshot data, and answer queries to return the top k objects with highest durability.

In [65, 118, 64], authors view durability as the length of time interval. They pro-

posed that, on the two-dimensional space coordinating by durability and data values,

skyline queries can discover interesting insights or facts from temporal data that are

robust and consistent. Though in different forms, these papers studied durability on

existing historical data, which is certain. To the best of our knowledge, our work is

among the first to extend the notion of durability into the future, where data can

only be probabilistic.

Sampling-based techniques and algorithms play an increasingly important role

in the era of big data, ranging from data cleaning [109, 79], integration [75] and

evaluation [43], to approximate query processing [21, 62] and visualizations [88].

Some of the work, e.g., [79, 75], share the same idea as ours – going beyond uniform

sampling and improving sampling efficiency by properly granting (problem-specific)

importance to positive samples. The goal of this line of work is to reduce the total

number of samples required without hurting the answer quality. However, in many

real-life applications, the actual cost of assessing selected samples (especially that

involves manual work, i.e., labeling and annotation) might not be uniform. Thus,

146

the more accurate cost measurement of sampling-based solution in such application

scenarios should be the actual cost (time or money) observed from practice, instead

of just the number of samples. Based on this consideration, some cost-aware sam-

pling schemes [43] are proposed to practically alleviate the pain of expensive manual

work. Another direction is algorithm design for sampling-based solutions. For ex-

ample, MCDB [62] introduced the concept of tuple-bundle computations to make

sampling-based query procedure run faster inside a database management system.

In [88], based on online sampling-scheme, authors proposed an optimal incremental

visualization algorithm to support rapid and error-free decision making.

Finally, our work also has a deep connection to two classic problems in statistic

community: first hitting time [90] and rare event simulation [17]. In statistics, first

hitting time (also known as first passage time or survival analysis) is an important

feature of stochastic or random process, denoting the amount of time required for

a process (starting from an initial state) to reach the threshold for the first time.

As mentioned in previous sections, it has a wide applications in very diverse do-

mains [40, 98]. Rare event simulation is the scenario that the probability of the

event is low, say, order of 10´3 or less. In such cases, the standard Monte Carlo

approach would fail to provide reliable estimate in an efficient manner. Importance

sampling and splitting-based sampling [45] are two popular variance reduction tech-

niques for rare event simulations. In this paper, we propose to apply Multi-Level

Splitting Sampling, which is based on splitting-based sampling, as a query processing

technique to efficiently answer durability queries on probabilistic temporal data.

5.8 Conclusion

In this chapter, we have initiated to study the problem of answering durability queries

on probabilistic temporal data. We apply stochastic process to model probabilistic

temporal data, handling data uncertainty with temporal dependency, and adopt

147

a Monte Carlo approach to answer statistical queries. We propose a novel query

processing technique, based on Multi-Level Splitting Sampling, that can efficiently

answer durability queries with reliability. We further present an empirical optimiza-

tion framework that can optimally tune the proposed sampling procedure with little

overhead cost. As demonstrated by experiments on a variety of stochastic models

and real life applications, our best solution provides up to an order-of-magnitude

query time speedup compared to the standard technique, without sacrificing answer

quality.

148

6

Conclusion

Many interesting and practical queries arise from temporal data when incorporating

the notion of durability. This dissertation specifically focuses on a set of challenging

problems concerning durability queries on temporal data, ranging from two common

types of temporal data (sequence-based and instant-stamped) to probabilistic tem-

poral data (generated by a stochastic temporal model). In particular, we provide

meaningful and practical interpretations of durability and its corresponding queries

on different types of temporal data, and develop efficient and provable techniques for

durability query processing.

This dissertation has taken several steps to initiate a systematic study on dura-

bility queries on temporal data. Our work not only provides novel insights to the

problem from an algorithmic perspective, but also opens up many opportunities

towards a unifying framework for durability queries and an end-to-end interactive

temporal data analytical system.

As we have shown previously, many durability queries that arise in practice are

fundamentally complex, as they often require different combinations of ranking, ag-

gregation, or even solving optimization problems. Previous research [41, 108, 73,

149

78, 44, 65, 76, 64], including this dissertation, have studied various problems that

can be seen as specific instances of durability queries, but there lacks a unifying

framework for durability queries that would allow us to abstract above the myriad of

ad-hoc solutions and identify reusable algorithmic building blocks for broader classes

of durability-related problems. How to design such a general framework for dura-

bility queries that unifies common variants of the problem and reusable algorithmic

techniques still remains a challenging problem.

On top of the aforementioned framework, there exists the possibility to build an

end-to-end interactive temporal data analytical system for the general public. On

the one hand, our proposed solutions already achieve interactive-level query response

time on large temporal datasets up to the scale of hundreds of millions of records.

On the other hand, a unifying and more fundamental understanding of durability

queries would further enable a fully automatic pipeline of temporal data analysis –

data digesting, query type inference, query processing and result visualization.

To conclude, this dissertation provides a comprehensive and in-depth study into

the problem of durability queries on temporal data. We specifically tackle several

interesting and challenging durability queries that commonly arise from practical

scenarios, and provide efficient query processing techniques with provable worst-case

guarantees. While we are still steps away from a unifying framework of durability

queries and a fully automatic end-to-end interactive temporal data analytical sys-

tem, this dissertation has shown considerable promise of a durability-oriented path

towards better utilizations of the temporal information behind data, which empowers

the general public to harness the increasing value of temporal data.

150

Appendix A

Appendix

A.1 Full Proofs for Chapter 4

We first introduce some useful notation. Let densptq be the density of a timestamp t,

i.e., the number of blocking intervals that contain t. Notice that densptq is changing

as we execute the algorithm. If a point pi is blocked by at least k records, i.e.,

densppi.tq ě k, at line 7 of Algorithm 4 then we call it an “auxiliary point”. Overall,

we have that a point can be a solution point, a false check (we run a top-k query but

the point does not belong in the solution), or an auxiliary point.

We first start with a lemma that will be useful later.

Lemma 18. Let Mi be a set that is empty after the algorithm considering a (aux-

iliary) point from Mi with density at least k, and let rli, ris be its corresponding

sub-interval. Then one of the two cases hold: The density of each timestamp in

rli, ris is at least k or the algorithm has visited all points in P prli, risq.

Proof. If |P prli, risq| ď k then the algorithm visits all points in P prli, risq, since we

always consider the top-k points in rli, ris. If |P prli, risq| ą k then we show that when

Mi is empty every timestamp in rli, ris has density at least k.

151

We prove the following argument by induction: When the algorithm visits a new

auxiliary point pj in a set Mj then any timestamp in rlj, tjs has density at least k.

Let p1 be the first auxiliary point that the algorithm finds and let Mi1 be the set

that it belongs to. Since p1 is an auxiliary point we have that denspp1.tq ě k at the

moment we visit p1. Furthermore, notice that the algorithm did not consider any

other point in rli1 , p1.ts in a previous iteration so we can argue that the density of

every point in rli1 , p1.ts is at least k. In addition, notice that it is not possible to

find any solution point or any false check in rli1 , p1.ts in the future. As a result, if we

visit p1 again in the future it will be an auxiliary point in a set with left endpoint

the same li1 timestamp. Let ph´1 be an auxiliary point that the algorithm visits

in set Mih´1
and let assume that any point in rlih´1

, ph´1.ts has density at least k.

Let ph be the next auxiliary point that the algorithm visits and let assume that it

belongs in a set Mih . First assume that the algorithm has visited ph in a previous

iteration. Let Mf be the set that contained ph when the algorithm first visited ph.

At the moment when the algorithm first visited ph, we had that denspph.tq ě k and

from the induction hypothesis we have that every timestamp in rlf , ph.ts had density

at least k. Hence, there was no other solution point or false check in rlf , ph.ts in

the future. That means that lf “ lih and so it holds that every point in rlih , ph.ts

has density at least k. Next, assume that this is the first time that we visit the

auxiliary point ph. If this is the first auxiliary point in Mih we have that the density

of every point in rlih , ph.ts has density at least k because denspph.tq ě k and there

is no subinterval that starts in rlih , ph.ts. Then, we study the case where ph is not

the first auxiliary point that the algorithm finds in set Mih . Let pu be the auxiliary

point in Mih with the largest timestamp just before the algorithm found ph. From

induction hypothesis we know that the density of every point in rlih , pu.ts is at least

k. If ph.t ď pu.t then rlih , ph.ts Ď rlih , pu.ts so any point in rlih , ph.ts has density at

least k. The last case to consider is when ph.t ą pu.t. Since denspph.tq ě k, and since

152

there is no sub-inerval that starts in plu, ph.tq we have that every point in rlu, ph.ts

has density at least k. We conclude that the density of every timestamp in rlih , ph.ts

is at least k.

Now we are ready to prove our lemma. If |P prli, risq| ą k and Mi is empty it

means that the algorithm has already considered k auxiliary points in rli, ris. Let pu

be the auxiliary point in Mi with the largest timestamp. From the induction we have

that the density of every point in rli, pu.ts is at least k. Furthermore, the algorithm

has visited k auxiliary points and hence it has added at least k blocking intervals

with left endpoint in rli, pu.ts. All the intervals we add have length τ and ri ´ li ď τ

so all timestamps in the interval rpu.t, ris have density at least k. We conclude that

the density of each point in rli, ris is at least k.

Full proof of Lemma 10.

Proof. Let S˚ be the durable points in I. We show that S Ď S˚ and S˚ Ď S showing

that S “ S˚. The algorithm always checks by running a top-k query if a point should

be in the solution (line 8 of Algorithm 4) so S Ď S˚.

Next we show the other direction. The algorithm visits the points in descending

(on score) order so it is not possible that a point p P S˚ is blocked by at least k

records before the algorithm visits p. Before we argue that S˚ Ď S we also need

to make sure that the algorithm does not miss any durable point in a sub-interval

rlj, rjs that corresponds to an empty set Mj. In Lemma 18 we showed that all

timestamps in rlj, rjs have density at least k so there is no additional solution point

in this sub-interval. Hence S˚ Ď S, and overall we conclude that S “ S˚.

Let pi be a false check that the algorithm just found, and let P 1i be the top-k

points in rpi.t ´ τ, pi.tq, as we had in the algorithm. Let p1i be the point in P 1i with

the largest timestamp. We say that pi is assigned to p1i. If pi.t
1 ă a, where a is the

153

timestamp such that I “ ra, bs, then pi is assigned to a. The next lemma follows

from the definition.

Lemma 19. Assume that the algorithm just found the false check pi. After adding

all the blocking intervals from P 1i we have that the density of every timestamp in

rp1i.t, pi.ts is at least k.

We show the next lemma which is useful to bound the number of false checks.

Lemma 20. Let pi be a false check and p1i be the point that it is assigned to. Before

adding the k blocking intervals from all points in P 1i (as defined above) we have that

either denspp1i.tq ě k, or p1i P S and denspp1i.tq ă k, or p1i “ a.

Proof. If p1i.t ă a then from the definition p1i is a. (Notice that if we find more

than one false checks that are assigned to a then denspaq ą k, so this case can be

considered the same as denspp1i.tq ą k.)

Next, we assume that p1i.t ě a. We prove the lemma by contradiction. Let p1i be

a point that does not belong in S and denspp1i.tq ă k. Notice that fpp1iq ą fppiq.

Since p1i is not in S it can be either: a false check, an auxiliary point, or a point

that the algorithm has not visited before. If p1i is a false check then from Lemma 19

we have that denspp1i.tq ě k at the moment that we found p1i for first time, which

is a contradiction. If p1i is an auxiliary point then from Lemma 18 we have that

denspp1i.tq ě k, which is a contradiction. If p1i is a point that the algorithm has not

considered before then there are two cases: a) p1i belongs in an interval rlj, rjs of a set

Mj that we have removed from M because we have already visited its top-k points.

From Lemma 18 we know that denspp1i.tq ě k, which is a contradiction. b) p1i belongs

in an interval rlj, rjs of a set Mj that there still exists in H. Since fpp1iq ą fppiq it

means that pi is not the point with the highest score among the sub-intervals that

are not removed from M , which is a contradiction.

154

In any case we proved that either p1i has density at least k, or p1i has density less

than k and p1i P S, or p1i “ a.

Full proof of Lemma 11.

Proof. If a false check pi is assigned to a solution point with density less than k then

we call it type-1 false check. Otherwise, it is a type-2 false check.

Let pi be a type-1 false check so we have that p1i P S and denspp1i.tq ă k. After

adding all the k segments from P 1i we have that denspp1i.tq ě k. The next time that

p1i will be assigned by another false check the density of p1i will be at least k so it will

be a type-2 false check. Hence, it is straightforward to bound the number of type-1

false checks, which is at most Op|S|q.

Next we focus on type-2 false checks. Let rl, rs be one of the initial disjoint τ -

length windows from line 2 of Algorithm 4. We show that after finding k type-2 false

checks in rl, rs the density of all timestamps in rl, rs is at least k. If that is the case

then the algorithm will not find any other false check in rl, rs.

Let t be any timestamp in rl, rs. We show that densptq ě k after finding k type-2

false checks in rl, rs. If one of the false checks in rl, rs lies on t then we already have

that densptq ě k. Let assume that the algorithm finds k1 type-2 false checks in rl, tq

and k2 type-2 false checks in pt, rs, where k1 ` k2 “ k. If k1 ě k then densptq ě k.

So, the interesting case is when k1 ă k and k2 ě 1. Let χ be the total number of

blocking intervals that the algorithm has added having their right-endpoint in rt, rs

after finding all the k type-2 false checks in rl, rs, and let X be the set of those

intervals. We have that densptq ě k1 ` χ. We show that k1 ` χ ě k or equivalently

k2 ď χ.

Let pi be a type-2 false check that the algorithm just found in pt, rs. Let p1i be

the point that pi is assigned to, as we defined above. If p1i.t ď t then we immediately

have that densptq ě k after adding the at most k new segments from the set P 1i

155

(Lemma 19), so this case is not interesting. (Notice that if p1i.t ă a, before p1i is set

to be a, then this is always the case since t ě a).

Now, we assume that for each pi which is a type-2 false check in pt, rs, it holds

that p1i.t P pt, pi.tq. The main idea to prove that k2 ď χ is the following: Each time

that the algorithm finds a type-2 false check in pt, rs we find an unmarked interval

in X and we mark it. In particular, we show that there always be such an unmarked

segment in X with its right endpoint in rp1i.t, pi.tq. Since pi is a type-2 false check

we have that denspp1i.tq ě k and densppi.tq ă k, at the moment that the algorithm

visits pi (before adding the at most k segments from P 1i). Let Z1 be the current

blocking intervals with right endpoint in rp1i.t, pi.tq and z1 “ |Z1|. Let Z2 be the

current blocking intervals with left endpoint in pp1i.t, pi.ts, and z2 “ |Z2|. Let B

be the current blocking intervals with left endpoint in rpi.t ´ τ, pi.ts. We have that

densppi.tq ă k ô |B| ă k, (1). We also have denspp1i.tq ě k ô |B| ´ z2 ` z1 ě k,

(2). From (1), (2), we have that z1 ą z2 ô z1 ě z2 ` 1. Notice that the false checks

with time instance ď p1i.t cannot mark a segment in Z1 because of the description

of the marking process. Furthermore, a previous false check with timestamp at the

right of pi.t cannot mark a segment in Z1: Let pj be a false check that the algorithm

found in a previous iteration in ppi.t, rs and let p1j be the point that it is assigned to.

If p1j.t ą pi.t then the marking process does not mark any segment in Z1. Otherwise,

if p1j.t ď pi.t then the density of all points in rp1j.t, pi.ts Y rpi.t, p
1
j.ts would be at

least k after the algorithm adds the segments from P 1j , which is a contradiction

because densppi.tq ă k when we visit pi. Hence only false checks in pp1i.t, pi.ts can

mark segments in Z1. Recall that Z2 are the current segments with left endpoints in

pp1i.t, pi.ts. Even if all segments in Z2 were created by type-2 false checks and even if

all of them mark segments from Z1, we showed that z1 ě z2 ` 1, so we can always

find a new unmarked segment in Z1. Notice that any segment in Z1 has its right

endpoint in rp1i.t, pi.tq and since all the segments have length τ , they contain t and

156

hence they belong in X. Each time that we find a type-2 false check in pt, rs we mark

a new segment in X, so k2 ď χ and we conclude that densptq ě k.

Recall that t can be any point in rl, rs, so we showed that after finding k type-

2 false checks in rl, rs the density of every timestamp in rl, rs is at least k. As a

result, the algorithm will not find any other false check in rl, rs. There are at most
P |I|
τ

T

disjoint τ -length windows in I so the number of type-2 false checks is bounded

by Opk
P |I|
τ

T

q The overall number of false checks along with the solution points is

Op|S|` k
P |I|
τ

T

q.

Full proof of Lemma 13.

Proof. We show the result extending the main ideas from [13]. Let P pIq “ tpj`1, . . . , pj`Lu.

For pi P P pIq, let Xi be a random variable which is 1 if pi P C, and 0 oth-

erwise. From linearity of expectation we have that E r|C|s “ E
”

řj`|I|
i“j`1Xi

ı

“

řj`|I|
i“j`1 E rXis “

řj`|I|
i“j`1 Pr rXi “ 1 s. We focus on computing Pr rXi “ 1 s. Let

Pi “ P prpi´τ .t, pi.tsq “ tpi´τ , . . . , pi´1, piu. By independence we have that the prob-

ability of each point in Pi to be in the k-skyband of Pi is the same, so we can compute

Pr rXi “ 1 s by first finding the expected size of the k-skyband in Pi and then divide

it by the number of points, τ ` 1.

Let Bi be the k-skyband of the τ ` 1 points Pi. Let Vj Ă N for 1 ď j ď d, with

|Vj| “ τ ` 1 such that Vj contains the values that are assigned to the j-th coordinate

of the points in Pi. We compute E r|Bi| | V1, . . . , Vds. Let Apτ `1, dq be the expected

size of the k-skyband of a set P̄ with τ `1 points in Rd in the d-dimensional random

permutation model. Notice that Apτ ` 1, dq “ E r|Bi| | V1, . . . , Vds. We compute

Apτ ` 1, dq as follows. From linearity of expectation we can compute the probability

that a point in P̄ belongs in the k-skyband and take the sum of them, Apτ ` 1, dq “
ř

p̄PP̄ Pr
“

p̄ P k-skyband of P̄
‰

. Assume that a point p̄ P P̄ has the g-th largest first

157

coordinate among the points in P̄ . Notice that this can happen with probability 1
τ`1

.

Since the first coordinate of the g-th point (p̄) is greater than the first coordinates of

g´1 points it cannot be dominated by any of those. Therefore, the g-th point belongs

in the k-skyband if and only if its remaining d´1 coordinates belong in the k-skyband

among the points in P̄ with the g-th through the pτ ` 1q-th largest first coordinate.

The probability that the g-th point is in the k-skyband is, by independence, the

expected number of the k-skyband in the remaining points and coordinates, which is

Apτ `1´g`1, d´1q, divided by the total number of the remaining points in the set

which are τ`1´g`1. Notice that Apk1, yq “ k1 for k1 ď k and any y. Hence, we have

Apτ`1, dq “
řτ`1
j“1

řτ`1
g“1

1
τ`1

Apτ`1´g`1,d´1q
τ`1´g`1

“ 1
τ`1

řτ`1
j“1

řτ`1
J“1

ApJ,d´1q
J

“
řτ`1
J“1

ApJ,d´1q
J

.

Notice that Apx, yq is monotonically increasing in x, so if x1 ď x2, then Apx1, yq ď

Apx2, yq. Furthermore, we note that Apτ ` 1, 1q “ k since in one dimension the

top-k points belong in the k-skyband. We have, Apτ ` 1, dq “
řτ`1
J“1

ApJ,d´1q
J

ď

Apτ ` 1, d´ 1q
řτ`1
J“1

1
J
ď Apτ ` 1, d´ 1qOplog τq. Iterating this recurrence on d until

Apτ ` 1, 1q “ k gives the upper bound Apτ ` 1, dq “ Opk logd´1 τq.

We conclude that E r|Bi| | V1, . . . , Vds “ Opk logd´1 τq. Notice that Pr rV1, . . . , Vd s “

1

p n
τ`1q

d and all possible sets of V1, . . . , Vd are
`

n
τ`1

˘d
so we have that E r|Bi|s “

Opk logd´1 τq, and Pr rXi “ 1 s „ Opk logd´1 τq
τ`1

. Overall we conclude that E r|C|s “
řj`|I|
i“j`1 Pr rXi “ 1 s “ Opk|I|

τ
logd´1 τq.

158

Bibliography

[1] PostgreSQL, 2019. https://www.postgresql.org/.

[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng.
TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.
Software available from tensorflow.org.

[3] P. Afshani and T. M. Chan. Optimal halfspace range reporting in three di-
mensions. In Proceedings of the twentieth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 180–186. Society for Industrial and Applied Math-
ematics, 2009.

[4] P. K. Agarwal, L. Arge, J. Erickson, P. G. Franciosa, and J. S. Vitter. Efficient
searching with linear constraints. Journal of Computer and System Sciences,
61(2):194–216, 2000.

[5] P. K. Agarwal, S.-W. Cheng, and K. Yi. Range searching on uncertain data.
ACM Transactions on Algorithms (TALG), 8(4):43, 2012.

[6] P. K. Agarwal, S. Har-Peled, H. Kaplan, and M. Sharir. Union of random
minkowski sums and network vulnerability analysis. Discrete & Computational
Geometry, 52(3):551–582, 2014.

[7] P. K. Agarwal, H. Kaplan, and M. Sharir. Union of hypercubes and 3d
minkowski sums with random sizes. In 45th International Colloquium on
Automata, Languages, and Programming (ICALP 2018). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2018.

[8] P. K. Agarwal, N. Kumar, S. Sintos, and S. Suri. Range-max queries on un-
certain data. Journal of Computer and System Sciences, 94:118–134, 2018.

[9] P. K. Agarwal and J. Matoušek. Dynamic half-space range reporting and its
applications. Algorithmica, 13(4):325–345, 1995.

159

https://www.postgresql.org/

[10] H. Albrecher, J.-F. Renaud, and X. Zhou. A lévy insurance risk process with
tax. Journal of Applied Probability, 45(2):363–375, 2008.

[11] S. Arumugam, F. Xu, R. Jampani, C. Jermaine, L. L. Perez, and P. J. Haas.
Mcdb-r: Risk analysis in the database. Proceedings of the VLDB Endowment,
3(1-2):782–793, 2010.

[12] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin. A neural probabilistic
language model. Journal of machine learning research, 3(Feb):1137–1155, 2003.

[13] J. L. Bentley, H.-T. Kung, M. Schkolnick, and C. D. Thompson. On the average
number of maxima in a set of vectors and applications. Technical report,
CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER
SCIENCE, 1977.

[14] K. Binder, D. Heermann, L. Roelofs, A. J. Mallinckrodt, and S. McKay. Monte
carlo simulation in statistical physics. Computers in Physics, 7(2):156–157,
1993.

[15] C. M. Bishop. Mixture density networks. 1994.

[16] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan. Time
bounds for selection. J. Comput. Syst. Sci., 7(4):448–461, 1973.

[17] J. Bucklew. Introduction to rare event simulation. Springer Science & Business
Media, 2013.

[18] Z. Cai, Z. Vagena, L. Perez, S. Arumugam, P. J. Haas, and C. Jermaine.
Simulation of database-valued markov chains using simsql. In Proceedings of
the 2013 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’13, page 637–648, New York, NY, USA, 2013. Association for Com-
puting Machinery.

[19] T. M. Chan. Three problems about dynamic convex hulls. International Jour-
nal of Computational Geometry & Applications, 22(04):341–364, 2012.

[20] Y.-C. Chang, L. Bergman, V. Castelli, C.-S. Li, M.-L. Lo, and J. R. Smith.
The onion technique: indexing for linear optimization queries. In ACM Sigmod
Record, volume 29, pages 391–402. ACM, 2000.

[21] S. Chaudhuri, B. Ding, and S. Kandula. Approximate query processing: No
silver bullet. In Proceedings of the 2017 ACM International Conference on
Management of Data, pages 511–519, 2017.

[22] B. Chazelle, L. J. Guibas, and D.-T. Lee. The power of geometric duality. BIT
Numerical Mathematics, 25(1):76–90, 1985.

160

[23] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Evaluating probabilistic
queries over imprecise data. In Proceedings of the 2003 ACM SIGMOD inter-
national conference on Management of data, pages 551–562, 2003.

[24] R. Cheng, S. Singh, S. Prabhakar, R. Shah, J. S. Vitter, and Y. Xia. Efficient
join processing over uncertain data. In Proceedings of the 15th ACM interna-
tional conference on Information and knowledge management, pages 738–747,
2006.

[25] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. S. Vitter. Efficient indexing
methods for probabilistic threshold queries over uncertain data. In Proceedings
of the Thirtieth international conference on Very large data bases-Volume 30,
pages 876–887, 2004.

[26] F. Chollet et al. keras, 2015.

[27] W. G. Cochran. Sampling techniques. John Wiley & Sons, 2007.

[28] R. B. Cooper. Queueing theory. In Proceedings of the ACM’81 conference,
pages 119–122, 1981.

[29] G. Cormode, M. N. Garofalakis, P. J. Haas, and C. Jermaine. Synopses for mas-
sive data: Samples, histograms, wavelets, sketches. Foundations and Trends in
Databases, 4(1-3):1–294, 2012.

[30] D. R. Cox and H. D. Miller. The theory of stochastic processes, volume 134.
CRC press, 1977.

[31] N. Dalvi, C. Ré, and D. Suciu. Probabilistic databases: diamonds in the dirt.
Communications of the ACM, 52(7):86–94, 2009.

[32] G. Das, D. Gunopulos, N. Koudas, and N. Sarkas. Ad-hoc top-k query answer-
ing for data streams. In Proceedings of the 33rd international conference on
Very large data bases, pages 183–194. Citeseer, 2007.

[33] M. de Berg, O. Cheong, M. J. van Kreveld, and M. H. Overmars. Computa-
tional geometry: algorithms and applications, 3rd Edition. Springer, 2008.

[34] M. De Berg, M. Van Kreveld, M. Overmars, and O. Schwarzkopf. Computa-
tional geometry. In Computational geometry, pages 1–17. Springer, 1997.

[35] P.-T. De Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein. A tutorial on
the cross-entropy method. Annals of operations research, 134(1):19–67, 2005.

[36] D. Eck and J. Schmidhuber. A first look at music composition using lstm
recurrent neural networks. Technical report, 2002.

161

[37] H. Edelsbrunner and J. Harer. Computational topology: an introduction. Amer-
ican Mathematical Soc., 2010.

[38] T. Emrich, H.-P. Kriegel, N. Mamoulis, M. Renz, and A. Zufle. Querying
uncertain spatio-temporal data. In 2012 IEEE 28th international conference
on data engineering, pages 354–365. IEEE, 2012.

[39] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for mid-
dleware. Journal of computer and system sciences, 66(4):614–656, 2003.

[40] P. Fauchald and T. Tveraa. Using first-passage time in the analysis of area-
restricted search and habitat selection. Ecology, 84(2):282–288, 2003.

[41] J. Gao, P. K. Agarwal, and J. Yang. Durable top-k queries on temporal data.
Proceedings of the VLDB Endowment, 11(13):2223–2235, 2018.

[42] J. Gao, P. K. Agarwal, and J. Yang. Durable top-k queries on temporal data.
Technical report, Duke University, 2018. http://www.cs.duke.edu/~jygao/

2018-GaoAgarwalYang-durable_topk.pdf.

[43] J. Gao, X. Li, Y. E. Xu, B. Sisman, X. L. Dong, and J. Yang. Efficient
knowledge graph accuracy evaluation. Proceedings of the VLDB Endowment,
12(11):1679–1691, 2019.

[44] J. Gao, S. Sintos, P. K.Agarwal, and J. Yang. Durable top-k instant-stamped
temporal records with user-specified scoring functions. Technical report, Duke
University, 2020. https://users.cs.duke.edu/~jygao/VLDB2020_full.pdf.

[45] M. J. J. Garvels. The splitting method in rare event simulation. 2000.

[46] T. Ge, S. Zdonik, and S. Madden. Top-k queries on uncertain data: on score
distribution and typical answers. In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of data, pages 375–388, 2009.

[47] P. W. Glynn and D. L. Iglehart. Importance sampling for stochastic simula-
tions. Management science, 35(11):1367–1392, 1989.

[48] G. Goel and A. Mehta. Online budgeted matching in random input models
with applications to adwords. In Proceedings of the nineteenth annual ACM-
SIAM symposium on Discrete algorithms, pages 982–991. Society for Industrial
and Applied Mathematics, 2008.

[49] A. Graves, A.-r. Mohamed, and G. Hinton. Speech recognition with deep
recurrent neural networks. In 2013 IEEE international conference on acoustics,
speech and signal processing, pages 6645–6649. IEEE, 2013.

162

http://www.cs.duke.edu/~jygao/2018-GaoAgarwalYang-durable_topk.pdf
http://www.cs.duke.edu/~jygao/2018-GaoAgarwalYang-durable_topk.pdf
https://users.cs.duke.edu/~jygao/VLDB2020_full.pdf

[50] A. Graves and J. Schmidhuber. Offline handwriting recognition with mul-
tidimensional recurrent neural networks. In Advances in neural information
processing systems, pages 545–552, 2009.

[51] G. Grimmett, G. R. Grimmett, D. Stirzaker, et al. Probability and random
processes. Oxford university press, 2001.

[52] S. Har-Peled and B. Raichel. On the complexity of randomly weighted mul-
tiplicative voronoi diagrams. Discrete & Computational Geometry, 53(3):547–
568, 2015.

[53] T. E. Harris. The theory of branching process. 1964.

[54] C.-T. Ho, R. Agrawal, N. Megiddo, and R. Srikant. Range queries in OLAP
data cubes, volume 26. ACM, 1997.

[55] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural compu-
tation, 9(8):1735–1780, 1997.

[56] W. Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American statistical association, 58(301):13–30, 1963.

[57] J. Horel, M. Splitt, L. Dunn, J. Pechmann, B. White, C. Ciliberti, S. Lazarus,
J. Slemmer, D. Zaff, and J. Burks. Mesowest: Cooperative mesonets in
the western united states. Bulletin of the American Meteorological Society,
83(2):211–225, 2002.

[58] V. Hristidis and Y. Papakonstantinou. Algorithms and applications for an-
swering ranked queries using ranked views. The VLDB Journal, 13(1):49–70,
2004.

[59] M. Hua, J. Pei, and X. Lin. Ranking queries on uncertain data. The VLDB
Journal, 20(1):129–153, 2011.

[60] M. Hua, J. Pei, W. Zhang, and X. Lin. Efficiently answering probabilistic
threshold top-k queries on uncertain data. In 2008 IEEE 24th International
Conference on Data Engineering, pages 1403–1405. IEEE, 2008.

[61] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query processing
techniques in relational database systems. ACM Computing Surveys (CSUR),
40(4):11, 2008.

[62] R. Jampani, F. Xu, M. Wu, L. L. Perez, C. Jermaine, and P. J. Haas. Mcdb:
a monte carlo approach to managing uncertain data. In Proceedings of the
2008 ACM SIGMOD international conference on Management of data, pages
687–700, 2008.

163

[63] J. Jestes, J. M. Phillips, F. Li, and M. Tang. Ranking large temporal data.
Proceedings of the VLDB Endowment, 5(11):1412–1423, 2012.

[64] B. Jiang and J. Pei. Online interval skyline queries on time series. In 2009
IEEE 25th International Conference on Data Engineering, pages 1036–1047.
IEEE, 2009.

[65] X. Jiang, C. Li, P. Luo, M. Wang, and Y. Yu. Prominent streak discovery
in sequence data. In Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 1280–1288. ACM,
2011.

[66] C. Jin, K. Yi, L. Chen, J. X. Yu, and X. Lin. Sliding-window top-k queries on
uncertain streams. Proceedings of the VLDB Endowment, 1(1):301–312, 2008.

[67] M. I. Jordan. Serial order: A parallel distributed processing approach. In
Advances in psychology, volume 121, pages 471–495. Elsevier, 1997.

[68] H. Kahn and T. E. Harris. Estimation of particle transmission by random
sampling. National Bureau of Standards applied mathematics series, 12:27–30,
1951.

[69] J. G. Kemeny and J. L. Snell. Markov chains. Springer-Verlag, New York,
1976.

[70] B. Kimelfeld and Y. Sagiv. Maximally joining probabilistic data. In Pro-
ceedings of the twenty-sixth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pages 303–312, 2007.

[71] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik. Quantitative
system performance: computer system analysis using queueing network models.
Prentice-Hall, Inc., 1984.

[72] P. L’Ecuyer, V. Demers, and B. Tuffin. Splitting for rare-event simulation. In
Proceedings of the 2006 winter simulation conference, pages 137–148. IEEE,
2006.

[73] M. L. Lee, W. Hsu, L. Li, and W. H. Tok. Consistent top-k queries over time.
In International Conference on Database Systems for Advanced Applications,
pages 51–65. Springer, 2009.

[74] U. Leong Hou, N. Mamoulis, K. Berberich, and S. Bedathur. Durable top-
k search in document archives. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data, 2010.

164

[75] F. Li, B. Wu, K. Yi, and Z. Zhao. Wander join: Online aggregation via random
walks. In Proceedings of the 2016 International Conference on Management of
Data, pages 615–629, 2016.

[76] F. Li, K. Yi, and W. Le. Top-k queries on temporal data. The VLDB Jour-
nal—The International Journal on Very Large Data Bases, 19(5):715–733,
2010.

[77] M. Mahdian and Q. Yan. Online bipartite matching with random arrivals: an
approach based on strongly factor-revealing lps. In Proceedings of the forty-
third annual ACM symposium on Theory of computing, pages 597–606. ACM,
2011.

[78] N. Mamoulis, K. Berberich, S. Bedathur, et al. Durable top-k search in docu-
ment archives. In Proceedings of the 2010 ACM SIGMOD International Con-
ference on Management of data, pages 555–566. ACM, 2010.

[79] N. G. Marchant and B. I. Rubinstein. In search of an entity resolution oasis:
optimal asymptotic sequential importance sampling. PVLDB, 10(11):1322–
1333, 2017.

[80] J. Matousek. Reporting points in halfspaces. Computational Geometry,
2(3):169–186, 1992.

[81] A. Mehta, A. Saberi, U. Vazirani, and V. Vazirani. Adwords and generalized on-
line matching. In 46th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’05), pages 264–273. IEEE, 2005.

[82] K. Mouratidis, S. Bakiras, and D. Papadias. Continuous monitoring of top-
k queries over sliding windows. In Proceedings of the 2006 ACM SIGMOD
international conference on Management of data, pages 635–646. ACM, 2006.

[83] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approxima-
tions for maximizing submodular set functions—i. Mathematical Programming,
14(1):265–294, 1978.

[84] C. Newell. Applications of queueing theory, volume 4. Springer Science &
Business Media, 2013.

[85] M. O’Kelly, A. Sinha, H. Namkoong, R. Tedrake, and J. C. Duchi. Scalable
end-to-end autonomous vehicle testing via rare-event simulation. In Advances
in Neural Information Processing Systems, pages 9827–9838, 2018.

[86] J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic skylines on uncertain data.
In Proceedings of the 33rd international conference on Very large data bases,
pages 15–26. Citeseer, 2007.

165

[87] L. L. Perez, S. Arumugam, and C. M. Jermaine. Evaluation of probabilistic
threshold queries in mcdb. In Proceedings of the 2010 ACM SIGMOD Inter-
national Conference on Management of data, pages 687–698, 2010.

[88] S. Rahman, M. Aliakbarpour, H. K. Kong, E. Blais, K. Karahalios,
A. Parameswaran, and R. Rubinfield. I’ve seen “enough”: Incrementally im-
proving visualizations to support rapid decision making. Proc. VLDB Endow.,
10(11):1262–1273, Aug. 2017.

[89] C. Re, N. Dalvi, and D. Suciu. Efficient top-k query evaluation on probabilistic
data. In 2007 IEEE 23rd International Conference on Data Engineering, pages
886–895. IEEE, 2007.

[90] S. Redner. A guide to first-passage processes. Cambridge University Press,
2001.

[91] R. Y. Rubinstein. Optimization of computer simulation models with rare
events. European Journal of Operational Research, 99(1):89–112, 1997.

[92] R. Y. Rubinstein and D. P. Kroese. Simulation and the Monte Carlo method,
volume 10. John Wiley & Sons, 2016.

[93] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal repre-
sentations by error propagation. Technical report, California Univ San Diego
La Jolla Inst for Cognitive Science, 1985.

[94] B. Salzberg and V. Tsotras. A comparision of access methods for temporal data.
Technical report, Technical Report TR-18, Time Center: Aalborg University–
Denmark and . . . , 1997.

[95] A. Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24.
Springer Science & Business Media, 2003.

[96] K. Semertzidis and E. Pitoura. Durable graph pattern queries on historical
graphs. In 2016 IEEE 32nd International Conference on Data Engineering
(ICDE), pages 541–552. IEEE, 2016.

[97] K. Semertzidis and E. Pitoura. Top-k durable graph pattern queries on tempo-
ral graphs. IEEE Transactions on Knowledge and Data Engineering, 31(1):181–
194, 2018.

[98] A. N. Shiryaev. Essentials of stochastic finance: facts, models, theory, vol-
ume 3. World scientific, 1999.

[99] R. H. Shumway and D. S. Stoffer. Time series analysis and its applications:
with R examples. Springer, 2017.

166

[100] J. F. Sibeyn. External selection. J. Algorithms, 58(2):104–117, 2006.

[101] M. A. Soliman, I. F. Ilyas, and K. C.-C. Chang. Top-k query processing in
uncertain databases. In 2007 IEEE 23rd International Conference on Data
Engineering, pages 896–905. IEEE, 2007.

[102] M. Sviridenko. A note on maximizing a submodular set function subject to a
knapsack constraint. Operations Research Letters, 32(1):41–43, 2004.

[103] A. U. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass.
Temporal databases: theory, design, and implementation. Benjamin-Cummings
Publishing Co., Inc., 1993.

[104] Y. Tao, R. Cheng, X. Xiao, W. K. Ngai, B. Kao, and S. Prabhakar. Indexing
multi-dimensional uncertain data with arbitrary probability density functions.
In VLDB, volume 5, pages 922–933. Citeseer, 2005.

[105] Y. Tao, X. Xiao, and R. Cheng. Range search on multidimensional uncertain
data. ACM Transactions on Database Systems (TODS), 32(3):15–es, 2007.

[106] R. S. Tsay. Analysis of financial time series, volume 543. John Wiley & Sons,
2005.

[107] H. Wang, Y. Cai, Y. Yang, S. Zhang, and N. Mamoulis. Durable queries over
historical time series. IEEE Transactions on Knowledge and Data Engineering,
26(3):595–607, 2013.

[108] H. Wang, Y. Cai, Y. Yang, S. Zhang, and N. Mamoulis. Durable queries over
historical time series. IEEE Transactions on Knowledge and Data Engineering,
26(3):595–607, 2014.

[109] J. Wang, S. Krishnan, M. J. Franklin, K. Goldberg, T. Kraska, and T. Milo.
A sample-and-clean framework for fast and accurate query processing on dirty
data. In Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’14, page 469–480, New York, NY, USA, 2014.
Association for Computing Machinery.

[110] G. Whitmore. First-passage-time models for duration data: regression struc-
tures and competing risks. Journal of the Royal Statistical Society: Series D
(The Statistician), 35(2):207–219, 1986.

[111] Y. Wu, J. Gao, P. K. Agarwal, and J. Yang. Finding diverse, high-value
representatives on a surface of answers. Proceedings of the VLDB Endowment,
10(7):793–804, 2017.

[112] Y. Xu. First exit times of compound poisson processes with parallel boundaries.
Sequential Analysis, 31(2):135–144, 2012.

167

[113] J. Yang. Temporal data warehousing. 2001.

[114] J. Yang and J. Widom. Incremental computation and maintenance of temporal
aggregates. In Proceedings 17th International Conference on Data Engineering,
pages 51–60. IEEE, 2001.

[115] K. Yi, F. Li, G. Kollios, and D. Srivastava. Efficient processing of top-k queries
in uncertain databases. In 2008 IEEE 24th International Conference on Data
Engineering, pages 1406–1408. IEEE, 2008.

[116] K. Yi, H. Yu, J. Yang, G. Xia, and Y. Chen. Efficient maintenance of ma-
terialized top-k views. In Proceedings 19th International Conference on Data
Engineering (Cat. No. 03CH37405), pages 189–200. IEEE, 2003.

[117] D. Zhang, A. Markowetz, V. Tsotras, D. Gunopulos, and B. Seeger. Efficient
computation of temporal aggregates with range predicates. In Proceedings of
the twentieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, pages 237–245, 2001.

[118] G. Zhang, X. Jiang, P. Luo, M. Wang, and C. Li. Discovering general prominent
streaks in sequence data. ACM Transactions on Knowledge Discovery from
Data (TKDD), 8(2):9, 2014.

168

Biography

Junyang Gao was born in 1993, China.

He earned a Bachelor’s degree of Engineering in Computer Science & Technology

in 2015 from the Department of Computer Science at Tsinghua University, and a

Master’s of Science from the Department of Computer Science at Duke University

in 2018. He completed the Doctor of Philosophy in Computer Science, advised

by Professor Jun Yang, also from the Department of Compuater Science at Duke

University in September, 2020.

Junyang Gao will join Google Inc. in the New York City office after graduation.

169

	Abstract
	List of Tables
	List of Figures
	Acknowledgements
	1 Introduction
	2 Related Work
	3 Durable Top-k Queries on Sequence-based Temporal Data
	3.1 Introduction
	3.2 Related work
	3.3 Durable Top-k Queries with Fixed k
	3.3.1 Baseline Methods
	3.3.2 Reduction to 3d Halfspace Reporting

	3.4 Durable Top-k Queries with Variable k
	3.4.1 Sampling-Based Method
	3.4.2 Index-Based Approach

	3.5 Coping with New Data
	3.6 Experiments
	3.6.1 Fixed-k Setting
	3.6.2 Variable-k setting

	3.7 Conclusion

	4 Durable Top-k Queries on Instant-Stamped Temporal Data
	4.1 Introduction
	4.2 Problem Statement and Preliminaries
	4.3 Time-Prioritized Approach
	4.3.1 Time-Baseline Algorithm
	4.3.2 Time-Hop Algorithm
	4.3.3 Complexity Analysis of T-Hop

	4.4 Score-Prioritized Approach
	4.4.1 Score-Baseline Algorithm
	4.4.2 Score-Band Algorithm (Monotone f- .4 Only)
	4.4.3 Score-Hop Algorithm
	4.4.4 Complexity Analysis of S-Hop

	4.5 Expected Complexity
	4.5.1 Expected Answer Size
	4.5.2 Expected size of durable k-skyband

	4.6 Experiments
	4.6.1 Experiment Setup
	4.6.2 Algorithm Evaluations
	4.6.3 DBMS-Based Implementations
	4.6.4 Summary of Experiments

	4.7 Related Work
	4.8 Conclusion

	5 Durability Queries on Probabilistic Temporal Data
	5.1 Introduction
	5.2 Problem Formulation and Background
	5.2.1 Problem Formulation
	5.2.2 Background

	5.3 Multi-Level Splitting Sampling
	5.3.1 Multi-Level Partitioning
	5.3.2 Sampler and Estimator
	5.3.3 Relationship between SRS and MLSS.

	5.4 Extensions and Variants
	5.4.1 MLSS in General Form
	5.4.2 Variants of MLSS

	5.5 Optimizations
	5.5.1 Partition Plan Evaluation
	5.5.2 An Adaptive Greedy Partition Strategy

	5.6 Experiments
	5.6.1 Experiment Setup
	5.6.2 MLSS vs. SRS
	5.6.3 MLSS Optimization
	5.6.4 Summary of Experiments

	5.7 Related Work
	5.8 Conclusion

	6 Conclusion
	A Appendix
	A.1 Full Proofs for Chapter 4

	Bibliography
	Biography

