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AN ENERGY STABLE C0 FINITE ELEMENT SCHEME FOR A
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Abstract. A thermodynamically consistent phase-field model is introduced for simulating mo-
tion and shape transformation of vesicles under flow conditions. In particular, a general slip boundary
condition is used to describe the interaction between vesicles and the wall of the fluid domain in the
absence of cell-wall adhesion introduced by ligand-receptor binding. A second-order accurate in both
space and time C0 finite element method is proposed to solve the model governing equations. Various
numerical tests confirm the convergence, energy stability, and conservation of mass and surface area
of cells of the proposed scheme. Vesicles with different mechanical properties are also used to explain
the pathological risk for patients with sickle cell disease.
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1. Introduction. Studying dynamic motion and shape transformation of bio-
logical cells is always a point of interest in cell biology because the shapes of the cells
usually relate to their function. For example, many blood-related diseases are known
to be associated with alterations in the geometry and membrane properties of red
blood cells [56]. Red blood cells in diabetes or sepsis patients exhibit impaired cell
deformability [17, 42]. During blood clot formation, an indicator of platelet activation
is its shape change by forming filopodia and lamellipodia. Notably, platelets’ shape
changes facilitate their adhesion to the site of vascular injury and cohesion with other
platelets or erythrocytes [54, 2].

In simulation study, it is vitally important to establish a proper model of cell
membranes for analyzing the dynamical shape transformation of cells in addition to
modeling intracellular and extracellular fluids. Various mathematical models were in-
troduced for predicting cell morphology and function. Dissipative particle dynamics
[33] models of red blood cell were developed in [41, 33, 40] and were used to study ef-
fects of red blood cells on platelet aggregation [41]. Models based on interface tracking
or capturing such as level set method [60, 61, 50] were also developed [6, 29, 25, 24]
to take into consideration the fluid-cell-structure interaction. In numerical treatment,

∗Submitted to the journal’s Computational Methods in Science and Engineering section April 30,
2021; accepted for publication (in revised form) September 21, 2021; published electronically January
18, 2022.

https://doi.org/10.1137/21M1416631
Funding: This work was supported by NSFC through grants 12071190, 11771040, 11861131004,

and 91430106, by NSF through grants CDS&E-MSS 1854779 and NSF-1821242, by NSERC, and by
China Scholarship Council.

†Department of Mathematics University of Dundee, Dundee DD1 4HN, UK (l.shen@dundee.ac.uk,
P.Lin@dundee.ac.uk).

‡Department of Applied and Computational Mathematics and Statistics, University of Notre
Dame, 102G Crowley Hall, Notre Dame, IN 46556 USA (zxu2@nd.edu).

§Research Centre for Mathematics, Advanced Institute of Natural Sciences, Beijing Normal
University (Zhuhai), China; BNU- HKBU United International College, Zhuhai, China (hhuang@
uic.edu.cn).

¶Corresponding author. Duke Kunshan University, 8 Kunshan Street, Kunshan, Jiangsu, China
(shixin.xu@dukekunshan.edu.cn).

B122

D
ow

nl
oa

de
d 

01
/2

0/
22

 to
 1

52
.3

.1
02

.2
54

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://doi.org/10.1137/21M1416631
mailto:l.shen@dundee.ac.uk
mailto:P.Lin@dundee.ac.uk
mailto:zxu2@nd.edu
mailto:hhuang@uic.edu.cn
mailto:hhuang@uic.edu.cn
mailto:shixin.xu@dukekunshan.edu.cn


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PHASE-FIELD MODEL OF VESICLE MOTION B123

various methods such as the immersed boundary method [30, 52, 39, 57, 59], immersed
interface method [26, 31], spectral method [34], and fictitious domain method [24]
using finite difference or finite element formulation have been introduced to solve
governing equations of these models.

The phase-field method considers the material interface as a diffuse layer instead
of a sharp discontinuity. This regularization can be rigorously formulated through a
variational process. The main advantages of the phase-field method are twofold. The
phase-field order parameter identifying the diffuse interface is treated as an additional
primary unknown of the problem to be solved on the whole domain. Consequently,
interface transformations are predicted without the necessity of a remeshing algorithm
to treat the evolution of the interface. The physics mediating the interface dynamics
can be easily incorporated into the phase-field models.

Lots of phase-field–type vesicle models have been introduced lately [27, 65, 35,
11]. Mechanical properties of the vesicle membrane such as bending stiffness and
inextensibility can be incorporated rigorously by the phase-field theory [11, 13, 14, 12]
to establish a realistic mechanistic model. For instance, the bending energy of bending
resistance of the lipid bilayer membrane in the isotropic case (neglecting the proteins
and channels on the membrane) given in the form of the Helfrich bending energy can
be approximated by a modified elastic energy defined on the whole domain in the
phase-field formulation [8, 10, 13, 14]. Constraints conserving cell mass and ensuring
global inextensibility of cell membrane are frequently introduced into vesicle models
to keep the mass and surface area of the vesicle constant [12, 1].

The focus of this paper is to model flowing vesicles interacting with the domain
boundaries which mimics scenarios such as red blood cells passing through a narrowed
blood vessel in the absence of the cell-wall adhesion introduced by ligand-receptor
binding or when the impact of this cell-wall adhesion can be neglected. This involves
considering a moving contact line problem since three different phases meet to form
a triple point [44]. The first goal of this paper thus is to derive a thermodynamically
consistent phase-field model for vesicles’ motion and shape transformation in a closed
spatial domain by using an energy variational method [53, 21]. All the physics taken
into consideration are introduced through definitions of energy functionals and dissi-
pation functionals, together with the kinematic assumptions of laws of conservation.
Besides the energy and dissipation terms defined on bulk region of the domain, terms
accounting for boundary effects are also added to the functionals. Then performing
variation of these functionals yields an Allen–Cahn–Navier–Stokes system [58] with
Allen–Cahn general Navier boundary conditions (GNBCs) [45]. This is in contrast to
most previous works [13, 14, 7] in which a dynamic boundary condition was rarely
derived during the course of model derivation. Dirichlet- or Neumann-type condi-
tions were simply added to these models at the end to close the governing equations
[1, 12, 10]. Moreover, in our model derivation, the incompressibility of the fluid, the
local and global inextensibility of the vesicle membrane, and the conservation of vesicle
mass are taken into account by introducing two Lagrangian multipliers, hydrostatic
pressure and surface pressure [39] and penalty terms, respectively.

The second goal of this paper is to propose an efficient and accurate numeri-
cal scheme for solving the obtained fourth-order nonlinear coupled partial differential
equation system. Over the past decades, a lot of schemes have been developed for
Allen–Cahn– or Cahn–Hilliard–Navier–Stokes systems. As for systems such as vesicle
models introduced in the current and other works which are more sophisticated than
the Allen–Cahn– or Cahn–Hilliard–Navier–Stokes systems, the backward Euler time
discretization method is frequently used [1, 13, 19, 18] leading to a first-order accurate
scheme. Later on, decoupled energy stable schemes were proposed by Chen et al. [7]

D
ow

nl
oa

de
d 

01
/2

0/
22

 to
 1

52
.3

.1
02

.2
54

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

B124 L. SHEN, Z. XU, P. LIN, H. HUANG, AND S. XU

and Guillén-González and Tierra [20] by introducing explicit, convective velocities.
Liu, Song, and Xu [34] introduce a variational framework for an inextensible mem-
brane with immersed boundary formula and propose a spectral method for solving
the obtained problem. In the current work, an efficient, energy-law preserving (thus
energy stable) and second-order accurate C0 finite element scheme is proposed to
solve the obtained vesicle system using ideas introduced in [22]. The key idea of this
scheme is to utilize the midpoint method in time discretization to ensure the accuracy
in time and that the form of the discrete energy dissipation law is the same as that of
the continuous model. In order to properly treat the term related to inextensibility of
the membrane, a relaxation term of local inextensibility as in [1] is introduced. The
numerical study of convergence confirms the proposed scheme is second-order conver-
gent in both time and space. Furthermore, vesicle deformation simulations illustrate
that it is energy stable and numerically conserves mass and surface area of vesicles.

The introduction of the GNBC in this work makes it possible to study a broad
class of complicated fluid-structure interaction problems. In this paper, the developed
model is applied to studying vesicles passing through narrow channels. The results
confirm that the more rounded the vesicles (smaller surface-volume ratio) are, the
more likely the vesicles form a blockage when they pass through narrow channels. It
is also worth noting that it is critical to include the local inextensibility of the vesi-
cle membrane in the model when studying this type of problem. Without the local
inextensibility, the vesicle membrane can be falsely stretched or compressed. Lastly,
although membrane structures of vesicles and blood cells are quite different, a blood
cell in many studies can be treated as an elastic capsule with bending rigidity, in
which the membrane is impenetrable to both interior and exterior fluids. Therefore,
our model developed for vesicles can be readily applied for studying a vast body of
blood cell–related problems [37].

The rest of paper is organized as follows. Section 2 of the paper begins with
introducing basic dynamical assumptions that have been used in many papers [12, 44]
and is devoted to model derivation. Dimensionless model governing equations and
the energy decaying law of the model are presented in section 3. In section 4, the
numerical scheme solving the proposed model is developed, and its energy law is
given. Numerical simulation results are described in section 5 to confirm the energy
law of the numerical scheme and the feasibility of our model. A case study of a vesicle
passing through a narrow channel is shown, which is to simulate the motion of red
blood cells in a small blood vessel. Conclusions are drawn in section 6.

2. Model derivation. Derivation of the model for simulating a flowing vesicle
deforming in a channel filled with extracellular fluid is presented in this section. The
phase-field label function ϕ is introduced to track the motion of the vesicle, where
ϕ(x) = ±1 denotes the intracellular and extracellular space and ϕ = 0 is the vesicle
membrane or interface.

The model is derived using an energy variational method [53]. It begins with
defining two functionals for the total energy and dissipation of the system and intro-
ducing the kinematic equations based on physical laws of conservation. The specific
forms of the flux and stress functions in the kinematic equations are obtained by tak-
ing the time derivative of the total energy functional and comparing with the defined
dissipation functional. More details of this method can be found in [53].

In what follows, we detail steps of using this method to derive the model. We
first make the following assumptions about mass and momentum conservation of the
mixture of extracellular fluid and vesicle and interface inextensibility, and we assume
that the dynamics of the phase-field function ϕ is an L2 gradient flow:
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PHASE-FIELD MODEL OF VESICLE MOTION B125

∂ϕ

∂t
+∇ · (uϕ) = qϕ ,

ρ

(
∂u

∂t
+ (u · ∇)u

)
= ∇ · ση + Fϕ ,

∇ · u = 0 ,

δγ(P : ∇u) + ξγ2∇ · (ϕ2∇λ) = 0

(2.1)

with specific forms of flux qϕ, stress ση, and body force density Fϕ functions to be
determined. ρ and u are the density and velocity of the mixture, respectively. In
this paper, we assume that the density is a constant. The first equation is the Allen–
Cahn-type equation to track the interface. The second equation is the conservation
of momentum. The third equation accounts for the fluid incompressibility (or mass
conservation).

The last equation is related to the local inextensibility of the vesicle membrane.
This local inextensibility prevents stretching on any point of the vesicle membrane
surface [5]. In the sharp interface model, the local inextensibility (or mass conservation
on the interface) is represented by ∇Γ ·u = 0 defined on the interface Γ [35, 37]. This
equation is equivalent to P : ∇u = 0, where the projection operator P is defined to
be (I − nm ⊗ nm) and nm = ∇ϕ

|∇ϕ| is the unit outward normal vector of the interface

when it is defined as an implicit surface by the level function. In the phase-field
formulation, the interface is modeled as a diffuse layer. This is different from the
sharp interface concept. For computational convenience using phase-field formulation,
this local inextensibility constraint on the interface Γ is extended to the domain Ω by
multiplying with a scalar function

δγ =
1

2
γ2|∇ϕ|2 ,(2.2)

where ∇ϕ is nonzero only in the diffuse interface layer and γ is the thickness of the
diffuse interface layer. Here a relaxation term ξγ2∇ · (ϕ2∇λ) for the local inextensi-
bility near the membrane is introduced as shown in [1]. ξ is a parameter independent
of γ, and λ is the a function that measures the interface “pressure” induced by the
inextensibility of the membrane.

On the wall boundary ∂Ωw of the domain, the following boundary conditions are
assumed: 

u · n = 0 ,

uτ · τi = fτi ,

ϕ̇ =
∂ϕ

∂t
+ u · ∇Γϕ = JΓ ,

f = 0 ,

∂nλ = 0 ,

(2.3)

where an Allen–Cahn-type boundary condition is employed for ϕ, uτ = u− (u ·n)n is
the fluid slip velocity with respect to the wall, τi, i = 1, 2 are the tangential directions
of the wall surface (2D), and ∇Γ = ∇ − n(n · ∇) is the surface gradient operator
on the boundary ∂Ωw. fτi is the slip velocity of the fluid on the wall along the τi
direction. And JΓ represents the Allen–Cahn type of relaxation on the wall by using
the phase-field method. Here we abuse the notation when there is no confusion, and
the subscript Γ refers to ∂Ωw, and n is its unit outward normal. The meaning of
equation f = 0 will be made explicit after definition of the interface curvature (see
(2.8)).
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The remainder of this section is devoted to deriving the exact forms of qϕ, ση, Fϕ,
fτi , and JΓ using the energy variational method. By following the works in [58, 11],
the total energy functional Etotal of a cell- (or vesicle-) fluid system is defined to be
the sum of the kinetic energy Ekin, the cell membrane energy Ecell, and the specific
wall energy Ew due to the cell-wall interaction

Etotal = Ekin︸︷︷︸
Macroscale

+Ecell + Ew︸ ︷︷ ︸
Microscale

.(2.4)

The kinetic energy accounts for the transport of the cell-fluid mixture and is
defined as

Ekin =

∫
Ω

(
1

2
ρ|u|2

)
dx ,(2.5)

where ρ is the macroscale density of the mixture and is assumed to be equal to a
constant ρ0 in this work (matched density case).

The cell energy Ecell is defined to be the sum of the bending energy Ebend and
two penalty terms in order to preserve the total volume and surface area of the cell:

Ecell = Ebend +
Mv

2

(V (ϕ)− V (ϕ0))
2

V (ϕ0)
+
Ms

2

(S(ϕ)− S (ϕ0))
2

S (ϕ0)
,(2.6)

where V (ϕ) =
∫
Ω
ϕdx is the volume difference of the cell-fluid system and the value

of S(ϕ) =
∫
Ω

G(ϕ)
γ dx is used to measure the surface area of the cell with G(ϕ) =∫

Ω
γ2|∇ϕ|2

2 + (1−ϕ2)2

4 dx. Mv and Ms are cell volume and surface area constraint
coefficients, respectively.

If the cell membrane is assumed to be isotropic and only composed of a lipid
bilayer, the bending energy of the bending resistance of the cell membrane can be
modeled by an approximation of the Helfrich bending energy [11] as follows:

Ebend =

∫
Ω

κ̂B
2γ

∣∣∣∣f(ϕ)γ
∣∣∣∣2 dx ,(2.7)

where κ̂B is the bending modulus and

f(ϕ) :=
δG

δϕ
= −γ2∆ϕ+ (ϕ2 − 1)ϕ .(2.8)

In order to take into account the interaction at the interface between vesicle, fluid,
and vessel wall on ∂Ωw, the wall free energy Ew is introduced:

Ew =

∫
∂Ωw

fw(ϕ)ds ,(2.9)

where fw is the vesicle-wall interaction energy density.

Remark 2.1. Here we borrow the idea introduced in moving contact line models
[43, 44]:

fw(ϕ) = −σ
2
sin

(
ϕπ

2

)
cos(θs)(2.10)

with a static contact angle θs [48, 47] when the cell-wall adhesion is absent or neg-
ligible. This is justified by the fact that a triple point is formed at which wall, cell,
and extracellular fluid meet, and its dynamics can be modeled through a contact
line model. We also note that the choice of contact angle can be subtle and affects
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PHASE-FIELD MODEL OF VESICLE MOTION B127

simulation outcome. Low contact angle values show a tendency of the cell to spread
and “adhere” to the surface (hydrophilic) due to the existence of a wetting force,
whereas high contact angle values represent the surface’s tendency to repel the cell
or an absence of the wetting force (hydrophobic). (See Figure 4 in section 5.2 later.)
In fact, the wall energy fw can be made more sophisticated in order to faithfully rep-
resent the complicated vesicle-wall interaction in the case that the cell-wall adhesion
by ligand-receptor binding is involved, for example, by introducing a new phase to
represent the wall [18].

The chemical potential µ is obtained by taking the variation of Ebulk = Ekin+Ecell

with respect to ϕ:

µ =
δEbulk

δϕ
=
κ̂B
γ3
g(ϕ) +Mv

V (ϕ)− V (ϕ0)

V (ϕ0)
+
Ms

γ

S(ϕ)− S (ϕ0)

S (ϕ0)
f(ϕ) ,(2.11)

where g(ϕ) = −γ2∆f + (3ϕ2 − 1)f .
It is assumed in the present work that dissipation of the system energy is due

to fluid viscosity, friction on the wall, and interfacial mixing due to diffuse interface
representation. Accordingly, the total dissipation functional ∆ is defined as follows:

∆ =

∫
Ω

2η|Dη|2dx+

∫
Ω

1

M ϕ
|qϕ|2dx+

∫
Ω

ξ|γϕ∇λ|2dx+

∫
∂Ωw

βs|uτ |2ds

+

∫
∂Ωw

κΓ|JΓ|2ds .(2.12)

Here the first term is the macroscopic dissipation induced by the fluid viscosity with
Dη = 1

2 [∇u + (∇u)T ], the second term is the microscopic dissipation induced by
the diffuse interface, the third term is the dissipation induced by the diffuse interface
method for imposing local inextensibility of the interface, the fourth term is the
boundary friction dissipation, where βs is related to the roughness of the vessel wall,
and the last term is the dissipation induced by the diffuse interface contacting the
wall.

By taking the time derivative of the total energy functional (2.4), it is obtained
that (detailed derivation is given in the appendix of this paper)

dEtotal

dt
=

d

dt
Ekin +

d

dt
Ecell +

d

dt
Ew

(2.13)

= −
∫
Ω

((ση + pI) : ∇u)dx+

∫
Ω

(Fϕ − µ∇ϕ−∇ · (λδγP)) · udx+

∫
Ω

µqϕdx

+

∫
Ω

ξ(γϕ∇λ)2dx+

∫
∂Ωw

((ση + λδγP) · n) · uτds+

∫
∂Ωs

L̂(ϕ)
∂ϕ

∂t
ds

= −
∫
Ω

((ση + pI) : ∇u)dx+

∫
Ω

(Fϕ − µ∇ϕ−∇ · (λδγP)) · udx+

∫
Ω

µqϕdx

+

∫
Ω

ξ(γϕ∇λ)2dx+

∫
∂Ωw

((ση + λδγP) · n) · uτds+

∫
∂Ωs

L̂(ϕ)(−u · ∇Γϕ+ JΓ)ds

= −
∫
Ω

((ση + pI) : ∇u)dx+

∫
Ω

(Fϕ − µ∇ϕ−∇ · (λδγP)) · udx+

∫
Ω

µqϕdx

+

∫
Ω

ξ(γϕ∇λ)2dx+

∫
∂Ωw

((ση + λδγP) · n− L̂(ϕ)∇Γϕ) · uτds+

∫
∂Ωw

L̂(ϕ)JΓds,

where p and λ are introduced as Lagrange multipliers accounting for fluid incom-
pressibility and local inextensibility of the cell membrane, respectively. δγ is defined

in (2.2), and L̂(ϕ) = κ̂B

γ ∂nf +Ms
S(ϕ)−S(ϕ0)

S(ϕ0)
γ∂nϕ+ ∂fw

∂ϕ .
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Using the energy dissipation law dEtotal

dt = −∆ [62, 15] and the definition of the
dissipation functional (2.12), it is obtained that

ση = 2ηDη − pI in Ω ,

qϕ = −Mϕµ in Ω ,

Fϕ = µ∇ϕ+∇ · (λδγP) in Ω ,

JΓ = −κ−1
Γ L̂(ϕ) on ∂Ωw ,

uτi = β−1
s (−(n · (ση + λδγP) · τi) + L̂(ϕ)∂τiϕ) , i = 1, 2, on ∂Ωw .

(2.14)

Here constant Mϕ is called the mobility (a phenomenological parameter), κγ is the
boundary mobility (a phenomenological parameter), and βs is the wall friction coef-
ficient.

To this end, the proposed phase-field model is composed of the following
equations: 

∂ϕ

∂t
+∇ · (uϕ) = −Mϕµ ,

µ =
κ̂B

γ3
g(ϕ) +Mv

V (ϕ)− V (ϕ0)

V (ϕ0)
+

Ms

γ

S(ϕ)− S (ϕ0)

S (ϕ0)
f(ϕ) ,

g(ϕ) = −γ2∆f + (3ϕ2 − 1)f(ϕ),

f(ϕ) = −γ2∆ϕ+ (ϕ2 − 1)ϕ ,

ρ

(
∂u

∂t
+ (u · ∇)u

)
+∇p = ∇ · (2ηDη) + µ∇ϕ+∇ · (λδγP) ,

∇ · u = 0 ,

δγ(P : ∇u) + ξγ2∇ · (ϕ2∇λ) = 0

(2.15)

with the boundary conditions

u · n = 0 ,

−βsuτi = (n · (ση + λδγP) · τi)− L̂(ϕ)∂τiϕ , i = 1, 2,
f = 0 ,

κΓ

(
∂ϕ

∂t
+ u · ∇Γϕ

)
= −L̂(ϕ) ,

L̂(ϕ) =
κ̂B

γ
∂nf +Ms

S(ϕ)− S (ϕ0)

S (ϕ0)
γ∂nϕ+

∂fw
∂ϕ

,

∂nλ = 0 .

(2.16)

3. Dimensionless model governing equations and energy dissipation
law. If the viscosity, length, velocity, time, bulk, and boundary chemical potentials
in (2.15)–(2.16) are scaled by their corresponding characteristic values η0, L, U , L

U
η0U
L and η0U , respectively, and if we let ε = γ

L be the nondimensionalized thickness
of the interface (2.15)–(2.16) can be rewritten as

Re

(
∂u

∂t
+ (u · ∇)u

)
+∇P = ∇ · (2ηD) + µ∇ϕ+∇ · (λδϵP) in Ω ,

∇ · u = 0 in Ω ,

∂ϕ

∂t
+ u · ∇ϕ = −Mµ in Ω ,

µ = κBg(ϕ) +Mv
(V (ϕ)− V (ϕ0))

V (ϕ0)
+Ms

(S(ϕ)− S (ϕ0))

S (ϕ0)
f(ϕ) in Ω ,

f(ϕ) = −ϵ∆ϕ+
(ϕ2 − 1)

ϵ
ϕ, g(ϕ) = −∆f +

1

ϵ2
(3ϕ2 − 1)f(ϕ) in Ω ,

δϵ(P : ∇u) + ξε2∇ · (ϕ2∇λ) = 0 in Ω

(3.1)

D
ow

nl
oa

de
d 

01
/2

0/
22

 to
 1

52
.3

.1
02

.2
54

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PHASE-FIELD MODEL OF VESICLE MOTION B129

with the boundary conditions

κϕ̇+ L(ϕ) = 0 on ∂Ωw ,

L(ϕ) = κB∂nf + ϵMs
S(ϕ)− S (ϕ0)

S (ϕ0)
∂nϕ+ αw

dfw
dϕ

on ∂Ωw ,

−l−1
s uτi = τi · (2ηDη + λδϵP) · n− L(ϕ)∂τiϕ , i = 1, 2, on ∂Ωw ,

f = 0 on ∂Ωw ,
∂nλ = 0 on ∂Ωw ,

(3.2)

where V (ϕ) =
∫
Ω
ϕdx, S(ϕ) =

∫
Ω

ϵ
2 |∇ϕ|

2 + 1
4ϵ (ϕ

2 − 1)2dx, and δϵ = 1
2ϵ

2|∇ϕ|2. The

dimensionless constants in (3.1)–(3.2) are given by ϵ = γ
L , Re = ρ0UL

η0
, M = Mϕη0,

κB = κ̂B

L2η0U
, k = κ̂B

η0L
, ls =

η0

βsL
, αw = σ

η0U
, Ms =

Ms

η0U
, and Mv = MvL

η0U
.

If we define the Sobolev spaces as [22, 53]

W 1,3 = (W 1,3)2 ,(3.3)

W 1,3(Ω) =
{
u = (ux, uy)

T ∈ W 1,3|u · n = 0, on ∂Ωw

}
,(3.4)

Wb =W 1,3(Ω)×W 1,3(Ω)×W 1,3(Ω)×W 1,3/2(Ω)×W 1,3/2(Ω)×W 1,3(Ω)(3.5)

and let ∥ · ∥ = (
∫
Ω
| · |2dx) 1

2 and ∥ · ∥w = (
∫
∂Ωw

| · |2ds) 1
2 denote the L2 norm defined

in the domain and on the domain boundary, respectively, then the system (3.1)–(3.2)
satisfies the following energy law.

Theorem 3.1. If (ϕ, f, µ, λ, P, u) ∈ Wb are smooth solutions of the above
system (3.1)–(3.2), then the following energy law is satisfied:

d

dt
Etotal =

d

dt
(Ekin + Ecell + Ew)

=
1

Re

(
−2∥η1/2Dη∥2 −M∥µ∥2 − ξ∥ϵϕ∇λ∥2 − κ∥ϕ̇∥2w − ∥l−1/2

s uτ∥2w
)
,(3.6)

where Etotal = Ekin + Ecell + Ew, Ekin = 1
2

∫
Ω
|u|2dx, Ecell = κB

2Reϵ

∫
Ω
|f |2dx +

Mv
(V (ϕ)−V (ϕ0))

2

2ReV (ϕ0)
+Ms

(S(ϕ)−S(ϕ0))
2

2ReS(ϕ0)
, and Ew = αw

Re

∫
∂Ωw

fwds.

Proof. Multiplying the first equation in (3.1) with u and integration by parts
yield

d

dt
Ekin =

1

Re

{
−
∫
Ω

2η|Dη|2dx+

∫
∂Ωw

(ση · n) · uτds+

∫
Ω

µ∇ϕ · udx

−
∫
Ω

λδϵP : ∇udx+

∫
∂Ωw

(λδϵP · n) · uτds

}
=

1

Re

{
−
∫
Ω

2η|Dη|2dx−
∫
Ω

λδϵP : ∇udx− l−1
s

∫
∂Ωw

|uτ |2ds

+

∫
∂Ωw

L(ϕ)∂τϕ · uτds+

∫
Ω

µ∇ϕ · udx
}
,(3.7)

where the slip boundary condition in (3.2) is applied.
Taking the inner product of the third equation in (3.1) with µ

Re results in

1

Re

∫
Ω

∂ϕ

∂t
µdx+

1

Re

∫
Ω

u · ∇ϕµdx = − 1

Re
M

∫
Ω

|µ|2dx .(3.8)
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Multiplying the fourth equation in (3.1) with 1
Re

∂ϕ
∂t and integration by parts give rise

to

1

Re

∫
Ω

µ
∂ϕ

∂t
dx =

1

Re

{
κB

∫
Ω

g
∂ϕ

∂t
dx+

d

dt

(
Mv

(V (ϕ)− V (ϕ0))
2

2V (ϕ0)

)(3.9)

+Ms
S(ϕ)− S (ϕ0)

S (ϕ0)

∫
Ω

f
∂ϕ

∂t
dx

}
=

κB

Re

∫
Ω

f
∂

∂t

(
−∆ϕ+

1

ϵ2
(ϕ3 − ϕ)

)
dx− κB

Re

∫
∂Ωw

∂nf
∂ϕ

∂t
ds

+
d

dt

(
Mv

(V (ϕ)− V (ϕ0))
2

ReV (ϕ0)

)
+Ms

d

dt

(
(S(ϕ)− S (ϕ0))

2

2ReS (ϕ0)

)
−Ms

(
S(ϕ)− S (ϕ0)

ReS (ϕ0)

)∫
∂Ωw

ϵ∂nϕ
∂ϕ

∂t
ds

=
d

dt

(
κB

∫
Ω

|f |2

2Reϵ
dx

)
+

d

dt

(
Mv

(V (ϕ)− V (ϕ0))
2

2ReV (ϕ0)

)
+Ms

d

dt

(
(S(ϕ)− S (ϕ0))

2

2ReS (ϕ0)

)
−

∫
∂Ωw

L(ϕ)

Re

∂ϕ

∂t
ds+

αw

Re

d

dt

∫
∂Ωw

fwds

=
d

dt
(Ecell + Ew)−

∫
∂Ωw

L(ϕ)

Re

∂ϕ

∂t
ds ,

where the definitions of f(ϕ), g(ϕ) and the boundary conditions of ϕ and f are utilized.
Multiplying the last equations with λ

Re and integration by parts lead to

1

Re

∫
Ω

(λδϵP) : ∇udx− 1

Re

∫
Ω

ξε2ϕ2(∇λ)2 = 0 .(3.10)

Finally, the energy dissipation law (3.6) is obtained by combining (3.7), (3.8),
(3.9), and (3.10).

4. Numerical scheme and discrete energy law.

4.1. Time-discrete primitive method. The numerical scheme for solving
(3.1)–(3.2) uses the midpoint method for temporal discretization. Let ∆t denote
the time step size, and let ()n+1 and ()n denote the value of the variables at times
(n + 1)∆t and n∆t, respectively. The semidiscrete in time equations are as follows:
in Ω,



un+1 − un

∆t
+

(
un+ 1

2 · ∇
)
un+ 1

2 +
1

Re
∇Pn+ 1

2 =
1

Re
∇ ·

(
ηn

(
∇un+ 1

2 + (∇un+ 1
2 )T

))
+

1

Re
µn+ 1

2∇ϕn+ 1
2 +

1

Re
∇ ·

(
λn+ 1

2Pnδϵ
)

,

∇ · un+ 1
2 = 0 ,

ϕn+1 − ϕn

∆t
+

(
un+ 1

2 · ∇
)
ϕn+ 1

2 = −Mµn+ 1
2 ,

µn+ 1
2 = κBg

(
ϕn+1, ϕn)+Mv

(
V
(
ϕn+ 1

2

)
− V (ϕ0)

)
V (ϕ0)

+Ms

(
S
(
ϕn+ 1

2

)
− S (ϕ0)

)
S(G0)

f
(
ϕn+1, ϕn) ,

fn+ 1
2 = −ϵ∆ϕn+ 1

2 +
1

ϵ

((
ϕn+ 1

2

)2

− 1

)
ϕn+ 1

2 ,

ξϵ2∇ ·
(
(ϕn)2∇λn+ 1

2

)
+ δϵPn : ∇un+ 1

2 = 0 .

(4.1)
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The numerical boundary conditions can be written as



κϕ̇n+
1
2 = −Ln+ 1

2 on ∂Ωw,

Ln+ 1
2 = κB∂nf

n+ 1
2 +Msϵ

S
(
ϕn+

1
2

)
− S0

S0
∂nϕ

n+ 1
2 + αw

fn+1
w − fnw
ϕn+1 − ϕn

on ∂Ωw,

−l−1
s u

n+ 1
2

τi = τi ·
(
ηn

(
∇un+ 1

2 +
(
∇un+ 1

2

)T
)
+ λn+

1
2 δϵPn

)
· n

− Ln+ 1
2 ∂τiϕ

n+ 1
2 , i = 1, 2, on ∂Ωw,

fn+
1
2 = 0 on ∂Ωw,

∂nλ
n+ 1

2 = 0 on ∂Ωw,

(4.2)

where

f
(
ϕn+1, ϕn

)
= −ϵ∆ϕn+ 1

2 +
1

4ϵ

((
ϕn+1

)2
+ (ϕn)2 − 2

) (
ϕn+1 + ϕn

)
,(4.3)

g
(
ϕn+1, ϕn

)
=

(
−∆fn+

1
2 +

1

ϵ2

((
ϕn+1

)2
+ (ϕn)2 + ϕn+1ϕn − 1

)
fn+

1
2

)
,(4.4)

(·)n+ 1
2 = (·)n+(·)n+1

2 , and Pn = I − nn
m ⊗ nn

m with nn
m = ∇ϕn

|∇ϕn| .

The above scheme obeys the following theorem of energy stability.

Theorem 4.1. If (ϕn,un, Pn) are smooth solutions of the above system (4.1)–
(4.2), then the following energy law is satisfied:

En+1
total − En

total =
(
En+1
kin + En+1

cell + En+1
w

)
− (En

kin + En
cell + En

w)

=
△t
Re

(
−2∥(ηn)1/2Dn+ 1

2
η ∥2 −M∥µn+ 1

2 ∥2 − ξ∥ ϵϕn∇λn+ 1
2 ∥2

− 1

κ
∥L(ϕn+ 1

2 )∥2w − ∥l−1/2
s u

n+ 1
2

τ ∥2w
)
,(4.5)

where En
total = En

kin+En
cell+En

w with En
kin = 1

2∥u
n∥2, En

cell =
κB∥fn∥2

2Reϵ +Mv
(V (ϕn)−V (ϕ0))

2

2ReV (ϕ0)

+Ms
(S(ϕn)−S(ϕ0))

2

2ReS(ϕ0)
, and En

w=
αw

Re

∫
∂Ωw

fnwds.

The following two lemmas are needed for proving Theorem 4.1. Proofs of these
two lemmas can be found in the appendix.

Lemma 4.2. Let

f
(
ϕn+1, ϕn

)
= −ϵ∆ϕn+ 1

2 +
1

4ϵ

((
ϕn+1

)2
+ (ϕn)2 − 2

) (
ϕn+1 + ϕn

)
.(4.6)

Then f(ϕn+1, ϕn) satisfies

∫
Ω

f
(
ϕn+1, ϕn

) (
ϕn+1 − ϕn

)
dx = Sn+1 − Sn −

∫
∂Ωw

ϵ∂nϕ
n+ 1

2

(
ϕn+1 − ϕn

)
ds,

(4.7)

where Sn+1 =
∫
Ω
G(ϕn+1)dx, Sn =

∫
Ω
G(ϕn)dx.

Lemma 4.3. Let g(ϕn+1, ϕn) = −∆fn+
1
2 + 1

ϵ2 ((ϕ
n+1)2+(ϕn)2+ϕn+1ϕn−1)fn+

1
2 .

Then g(ϕn+1, ϕn) satisfies
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Ω

g
(
ϕn+1, ϕn

)
(ϕn+1 − ϕn)dx

=

∫
Ω

1

2ϵ
((fn+1)2 − (fn)2)dx−

∫
∂Ωw

∂nf
n+ 1

2 (ϕn+1 − ϕn)ds ,(4.8)

where fn+1 = −ϵ∆ϕn+1 + 1
ϵ ((ϕ

n+1)2 − 1)ϕn+1, fn = −ϵ∆ϕn + 1
ϵ ((ϕ

n)2 − 1)ϕn.

Proof of Theorem 4.1. Multiplying the first equation in system (4.1) by ∆tun+ 1
2

gives

∫
Ω

1

2
((un+1)2 − (un)2)dx+

∫
Ω

∆tun+ 1
2 ·

((
un+ 1

2∇
)
· un+ 1

2

)
dx

(4.9)

− ∆t

Re

∫
Ω

Pn+ 1
2∇ · un+ 1

2 dx

= −∆t

Re

∫
Ω

∇un+ 1
2 : ηn

(
∇un+ 1

2 +
(
∇un+ 1

2

)T
)
dx+

∆t

Re

∫
Ω

un+ 1
2 · ∇ϕn+1µn+1dx

− ∆t

Re

∫
Ω

λδϵPn : ∇un+ 1
2 dx+

∆t

Re

∫
∂Ωw

λn+ 1
2 (δϵPn · n) · un+ 1

2
τ ds

+
∆t

Re

∫
∂Ωw

un+ 1
2 · ηn

((
∇un+ 1

2 + (∇un+ 1
2 )T

)
· n

)
ds.

Multiplying the fourth equation in system (4.1) by ϕn+1−ϕn

Re and integration by
parts lead to

1

Re

∫
Ω

µn+1/2 (ϕn+1 − ϕn) dx =
κB

Re

∫
Ω

1

2ϵ
((fn+1)2 − (fn)2)dx

(4.10)

+
Mv

Re

(V
(
ϕn+1

)
− V0)

2 − (V (ϕn)− V0)
2

2V0
+

Ms

Re

(S
(
ϕn+1

)
− S0)

2 − (S(ϕn)− S0)
2

2S0

− κB

Re

∫
∂Ωw

∂nf
n+ 1

2
(
ϕn+1 − ϕn) ds− Ms

Re

∫
∂Ωw

S
(
ϕn+ 1

2

)
− S0

S0
ϵ∂nϕ

n+ 1
2
(
ϕn+1 − ϕn) ds.

Multiplying the third equation in system (4.1) by µn+1∆t
Re and integration by parts

yield

1

Re

∫
Ω

µn+1
(
ϕn+1 − ϕn

)
dx+

∆t

Re

∫
Ω

µn+1(un+1/2 · ∇)ϕn+1dx

= −M∆t

Re

∫
Ω

(µn+1)2dx.(4.11)

Multiplying the last equation in system (4.1) by λn+1
2 ∆t

Re and integration by parts give

−∆t

Re

∫
Ω

ξϵ2(ϕn)2
∣∣∣∇λn+ 1

2

∣∣∣2 dx+
∆t

Re

∫
Ω

(λn+
1
2 δϵPn) : ∇un+ 1

2 dx = 0.(4.12)

The discretized energy dissipation law (4.5) is obtained by combining (4.9)–(4.12) and
organizing the terms according to the boundary conditions L(ϕ) as shown in (4.2).

Remark 4.4. The system (4.1) is second-order accurate in time except for the
last equation. It can be changed to be second-order accurate as well by using ϕn+1/2

and Pn+1/2. However, this change makes the Newton iteration discussed in the next
section very complicated. For simplicity of computer implementation, a first-order
accurate treatment for the last equation is adopted here.
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4.2. Fully discrete C0 finite element scheme. The spatial discretization
using C0 finite element is straightforward. Let Ω be the domain of interest with
a Lipschitz-continuous boundary ∂Ω. Let Wb

h ⊂ Wb be a finite element space
with respect to the triangulation of the domain Ω. The fully discrete scheme of the
system is to find (ϕh

n+1, µh
n+1, fh

n+1, λh
n+1, ph

n+1,uh
n+1) ∈ Wb

h, such that for
any (ψh, χh, ζh,Θh, qh,vh) ∈ Wh

b ,



∫
Ω

(
un+1
h − un

h

∆t
+
(
u
n+ 1

2

h · ∇
)
u
n+ 1

2

h +
1

Re
∇Pn+ 1

2

h

)
· vhdx

= −
∫
Ω

1

Re

(
ηnh

(
∇u

n+ 1
2

h +
(
∇u

n+ 1
2

h

)T
))

: ∇vhdx

+

∫
Ω

1

Re
µ
n+ 1

2

h ∇ϕn+
1
2

h · vhdx−
∫
Ω

1

Re
λ
n+ 1

2

h Pn
h δϵ : vhdx

+

∫
∂Ωw

1

Re
n ·

(
ηnh

(
∇u

n+ 1
2

h +
(
∇u

n+ 1
2

h

)T
)
+ λ

n+ 1
2

h Pn
h δϵ

)
· vhdx ,∫

Ω

(
∇ · un+ 1

2

h

)
qhdx = 0 ,∫

Ω

(
ϕn+1
h − ϕnh

∆t
+
(
u
n+ 1

2

h · ∇
)
ϕ
n+ 1

2

h

)
ψhdx = −

∫
Ω

Mµ
n+ 1

2

h ψhdx ,∫
Ω

µ
n+ 1

2

h χhdx =

∫
Ω

(
κB

1

ϵ2

((
ϕn+1
h

)2
+ (ϕnh)

2
+ ϕn+1

h ϕnh − 1
)
f
n+ 1

2

h

+Mv

(
V
(
ϕ
n+ 1

2

h

)
− V (ϕ0)

)
V (ϕ0)

+Ms

(
S

(
ϕ
n+1

2
h

)
−S(ϕ0)

)
S(G0)

(
1
4ϵ

((
ϕn+1
h

)2
+ (ϕnh)

2 − 2
) (
ϕn+1
h + ϕnh

))χhdx

+

∫
Ω

κB∇fn+ 1
2

h +Msϵ

(
S
(
ϕ
n+ 1

2

h

)
− S (ϕ0)

)
S(G0)

∇ϕn+
1
2

h

 · ∇χhdx

−
∫
∂Ωw

κB∂nfn+ 1
2

h +Msϵ

(
S
(
ϕ
n+ 1

2

h

)
− S (ϕ0)

)
S(G0)

∂nϕ
n+ 1

2

h

χhdx ,∫
Ω

f
n+ 1

2

h ζh =

∫
Ω

ϵ∇ϕn+
1
2

h · ∇ζh +

∫
Ω

1

ϵ

((
ϕ
n+ 1

2

h

)2

− 1

)
ϕ
n+ 1

2

h ζhdx

−
∫
∂Ωw

ε∂nϕ
n+ 1

2

h ζhdx ,∫
Ω

ξϵ2
(
(ϕnh)

2 ∇λn+
1
2

h

)
· ∇Θhdx =

∫
Ω

δϵPn
h : ∇u

n+ 1
2

h Θhdx

+

∫
∂Ωw

ξϵ2
(
(ϕnh)

2
∂nλ

n+ 1
2

h

)
Θhdx .

(4.13)

Theorem 4.5. If (ϕh
n+1, µh

n+1, fh
n+1, λh

n+1, ph
n+1,uh

n+1) ∈ Wb
h are solu-

tions of the above system, then the following energy law is satisfied:

En+1
total,h − En

total,h =
△t
Re

(
−2∥(ηnh)1/2D

n+ 1
2

η ∥2 −M∥µn+ 1
2

h ∥2 − ξ∥ ϵϕnh∇λ
n+ 1

2

h ∥2

− 1

κ
∥L(ϕn+

1
2

h )∥2w − ∥l−1/2
s u

n+ 1
2

τ,h ∥2w
)
.(4.14)
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It is easy to prove this theorem by letting vh =∆tun+1
h , qh =

∆tpn+1
h

Re , ψh =
cn+1
h −cnh

Re ,

χh =
∆tµn

h+1
Re ,Θh =

∆tλn+1
h

Re and following the process of proving Theorem 4.1. Details
of the proof are presented in the appendix.

4.3. Linearization and unique solvability. Note that the energy stable
scheme (4.13) is a coupled nonlinear system. Newton’s method [22] is used to solve
the scheme equations. First, the scheme (4.13) can be written into the form

Fn+1
h = C

by relocating all of the constant terms to the right-hand side and the terms containing
unknown variables to the left-hand side.

For the sake of simplification, we let Un+1,k
h = (ϕh

n+1,k, µh
n+1,k, fh

n+1,k, λh
n+1,k,

uh
n+1,k, ph

n+1,k) be the solution at time (n + 1)∆t in the kth iteration of Newton’s
method, and we let the variation between iterations be

(δU)n+1,k
h =

(
(δϕh)

n+1,k+1, (δµh)
n+1,k+1, (δfh)

n+1,k+1, (δλh)
n+1,k+1,

(δuh)
n+1,k+1, (δph)

n+1,k+1
)
.

Here (δ·) stands for the amount of change of the value, (δ·)n+1,k = (·)n+1,k+1−(·)n+1,k.
Newton’s method can be formally written as

Fn+1
h (Un+1,k

h ) +∇Un+1,k
h

Fn+1
h (Un+1,k

h ) · (δU)n+1,k
h = C(Un

h) .

The solution is updated by Un+1,k+1
h = Un+1,k

h + δUn+1,k
h , where Un+1,0

h = Un
h.

Then we have the following theorem for the solvability.

Theorem 4.6. If the time step ∆t is small enough, then the equations of the
scheme (4.13) are uniquely solvable.

Proof. From the last three equations we find µn+1
h = µ(ϕn+1

h ), fn+1
h = f(ϕn+1

h ),

λn+1
h = λ(un+1

h ). With the first and the second equations, Pn+1
h can be expressed

as Pn+1
h = P (un+1

h , ϕn+1
h ). Then the first and the third equations can be solved

separately. Applying Newton’s method to the first three equations, we have their
linearized form:

Fn+1
h

(
un+1,k
h , ϕn+1,k

h

)(4.15)

+∇
u
n+1,k
h

,ϕ
n+1,k
h

Fn+1
h

(
un+1,k
h , ϕn+1,k

h

)
·
(
un+1,k+1
h − un+1,k

h , ϕn+1,k+1
h − ϕn+1,k

h

)T

= C.

Note that un+1,k+1
h = (un+1,k

h , vn+1,k+1
h ). Multiplying ∆t to (4.15) yieldsI −∆tA11 ∆tA12 ∆tA13

∆tA21 I −∆tA22 ∆tA23

∆tA31 ∆tA32 I −∆tA33

un+1,k+1
h

vn+1,k+1
h

ϕn+1,k+1
h

 = C′,(4.16)

where
A11 = 1

4 (u
n+1,k
h ∂x,h+∂x,hu

n+1,k
h +unh∂x,h+∂x,hu

n
h+∂y,hv

n+1,k
h )− 1

2Re (2∂x,h(η
n
h∂x,h)+

∂y,h(η
n
h∂y,h))+

1
2Re

∂h(∂x,hP
n+1,k
h )

∂hu
n+1,k
h

− 1
4Re

∂h(∂x,h(λ
n+1,k
h (∂x,hϕ

n
h)

2))+∂y,h(λ
n+1,k
h ∂x,hϕ

n
h∂y,hϕ

n
h)

∂un+1,k
h

,

A12 = 1
4u

n+1,k
h ∂y,h − 1

2Reη
n
h∂x,h∂y,h + 1

2Re

∂h(∂x,hP
n+1,k
h )

∂hv
n+1,k
h
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− 1
4Re

∂h(∂x,h(λ
n+1,k
h (∂x,hϕ

n
h)

2))+∂y,h(λ
n+1,k
h ∂x,hϕ

n
h∂y,hϕ

n
h)

∂vn+1,k
h

,

A13 = − 1
4Re (µ

n+1,k
h ∂x,h +

∂µn+1,k
h

∂ϕn+1,k
h

∂x,hϕ
n+1,k
h + µn

h∂x,h +
∂µn+1,k

h

∂ϕn+1,k
h

∂x,hϕ
n
h) ,

A21 = 1
4v

n+1,k
h ∂x,h − 1

2Reη
n
h∂x,h∂y,h + 1

2Re

∂h(∂y,hP
n+1,k
h )

∂hu
n+1,k
h

− 1
4Re

∂h(∂y,h(λ
n+1,k
h (∂y,hϕ

n
h)

2))+∂x,h(λ
n+1,k
h ∂x,hϕ

n
h∂y,hϕ

n
h)

∂un+1,k
h

,

A22 = 1
4 (v

n+1,k
h ∂y,h+∂y,hv

n+1,k
h + vnh∂y,h+∂y,hv

n
h +∂x,hu

n+1,k
h )− 1

2Re (∂x,h(η
n
h∂x,h)+

2∂y,h(η
n
h∂y,h))+

1
2Re

∂h(∂y,hP
n+1,k
h )

∂hv
n+1,k
h

− 1
4Re

∂h(∂y,h(λ
n+1,k
h (∂y,hϕ

n
h)

2))+∂x,h(λ
n+1,k
h ∂x,hϕ

n
h∂y,hϕ

n
h)

∂vn+1,k
h

,

A23 = − 1
4Re (µ

n+1,k
h ∂y,h +

∂µn+1,k
h

∂ϕn+1,k
h

∂y,hϕ
n+1,k
h + µn

h∂y,h +
∂µn+1,k

h

∂ϕn+1,k
h

∂y,hϕ
n
h) ,

A31 = 1
4∂x(ϕ

n+1,k
h + ϕnh) ,

A32 = 1
4∂y(ϕ

n+1,k
h + ϕnh) ,

A33 = 1
4 ((u

n+1,k
h + unh)∂x,h + (vn+1,k

h + vnh)∂y,h) +M∂µn+1,k
h

∂ϕn+1,k
h

.

Using Gaussian elimination, the left side of the above matrix system can be
transformed as follows:

I − ∆tA11 ∆tA12 ∆tA13

0 I − ∆tA22 − (∆t)2(I − ∆tA11)
−1A21A12 ∆tA23 − (∆t)2(I − ∆tA11)

−1A21A13

0 0 A′
33

 ,

(4.17)

where A′
33 = I −∆tA33 − (∆t)2(I −∆tA22 − (∆t)2(I −∆tA11)

−1A21A12)
−1A32A23.

C,C ′ are constant matrices. When ∆t is small enough, I − ∆tAii(i = 1, 2, 3) is
invertible. Thus the given matrix is invertible; we can obtain the unique solution
of (un+1,k+1

h , ϕn+1,k+1
h ) with given the boundary condition, which means (4.13) is

uniquely solvable.

5. Simulation results. Numerical simulations using the model introduced in
the paper are presented in this section. The first example is used to illustrate the
convergence and energy stability of the proposed numerical scheme. Then feasibility
of the proposed model and the model simulation scheme for studying vesicle motion
and shape transformation are assessed by cell tank treading and tumbling tests. The
last simulation is devoted to studying effects of mechanical and geometric properties
of a vesicle on its deformability when it passes through a narrow channel.

5.1. Convergence study. The initial condition of the convergence test is set to
be a 2D tear-shaped vesicle in a closed cube with intercellular and extracellular fluid
velocity being 0. The initial conditions are

ϕ0(x) =

{
− tanh[(15(y − 0.185)(y − 0.065)− x+ 0.125)/

√
2ε], x < 0.125

− tanh[(
√
(x− 0.125)2 + (y − 0.125)2 − 0.06)/

√
2ε], x >= 0.125,

u0 = (0, 0).

(5.1)

Thanks to the bending force of the cell membrane, the shape of the vesicle grad-
ually transforms into a perfect circle to minimize the total energy (see Figure 1).
The parameter values used for this simulation are chosen as follows: Re = 2× 10−4,
M = 5 × 10−5, κB = 8 × 10−1, ϵ = 2.5 × 10−2, Mv = 20, Ms = 2, ξ = 1.6 × 105,
κ = 8× 10−10, ls = 5× 10−3.

In the simulations, the numerical solution computed with a mesh size h = 1/240
is treated as the reference solution or “the true solution.” As shown in Table 1, our
scheme is second-order accurate in space.
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Fig. 1. Relaxation of a tear-shaped vesicle.

Table 1
L2 norm of the error and convergence rate for velocity u = (ux, uy), phase-field function ϕ, at

time t = 0.02 with both intercellular and extracellular fluid viscosity being 1.

Spatial mesh
size h

P2 element

Err(ux)
Convergence
rate(ux)

Err(uy)
Convergence
rate(uy)

Err(ϕ)
Convergence

rate(ϕ)
1/47 1.3e-1 1.5e-1 1.4e-2
1/71 8.3e-2 1.15 7.6e-2 1.71 6.1e-3 1.97
1/107 3.8e-2 1.94 3.7e-2 1.83 2.3e-3 2.45
1/160 1.5e-2 2.35 1.3e-2 2.59 5.7e-4 3.42

Table 2
L2 norm of the error and convergence rate for velocity u = (ux, uy), phase-field function ϕ, at

time t = 0.05 with both intercellular and extracellular fluid viscosities being 1.

Time step ∆t P2 element

Err(ux)
Convergence
rate(ux)

Err(uy)
Convergence
rate(uy)

Err(ϕ)
Convergence

rate(ϕ)
0.025 - - -
0.0125 8.12e-6 8.13e-6 9.92e-6
0.00625 2.90e-6 1.49 2.97e-6 1.45 2.42e-6 2.04
0.003125 1.03e-6 1.48 1.07e-6 1.48 5.98e-7 2.01
0.0015625 2.53e-7 2.03 2.60e-7 2.03 1.49e-7 2.01

The time convergence rate of the scheme is obtained by comparing the numerical
errors calculated using each pair of successively reduced time step sizes. The purpose
of doing so is to eliminate the influence from the error of the reference solution which
is also a numerical result. Larger Reynolds number Re and interface thickness ϵ and a
smoother initial profile of the interface are applied to ensure that the convergence rate
is not affected by any sharp changes in the phase-field label function ϕ(x). Results in
Table 2 confirm that our scheme is also second-order accurate in time.

Remark 5.1. During the convergence test, we mainly focus on the convergence
rates of the velocity and the phase-field function. The local inextensibility is neglected,
and only the global area and volume constraints are taken into consideration.

Finally, the energy law (Theorem 4.1) and conservation of mass and surface area of
vesicles are tested by simulating the relaxation of a bent vesicle. The vesicle gradually
evolves back to its equilibrium biconcave shape. Figure 2 shows the snapshots of the
vesicle profile at different times t = 0, 0.25, 0.5, and 1.25. The parameter values used
here are as follows:

D
ow

nl
oa

de
d 

01
/2

0/
22

 to
 1

52
.3

.1
02

.2
54

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PHASE-FIELD MODEL OF VESICLE MOTION B137

Fig. 2. Relaxation of a bent vesicle. The fluid viscosities are 1 and 50 for intercellular and
extracellular fluids, respectively.

0 0.5 1 1.5 2 2.5 3
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Fig. 3. The test case of relaxation of a bent vesicle. Left: Change of mass and surface area vs.
time. Right: Change of discrete energy vs. time.

Re = 2 × 10−4, M = 2.5 × 10−3, κB = 2, ϵ = 7.5 × 10−3, Mv = 20, Ms = 2,
ξ = 7.1× 104, κ = 2× 10−10, ls = 0.5.

The initial conditions are

ϕ0(x) =

{
−tanh[(5(y − 0.7)(y − 0.3)− x+ 0.5)/

√
2ε], x < 0.5

−tanh[(400(y − 0.7)(y − 0.3)(y − 0.5)2 + x− 0.5)/
√
2ε], x >= 0.5,

u0 = (0, 0).

(5.2)

The changes of vesicle mass and surface area and the change of total discrete
energy of this test case computed by the scheme (3.1)–(3.2) are shown in Figure 3. It
is evident that the vesicle mass and surface area are almost perfectly preserved, and
the total energy decays over the course of time as expected.

5.2. Vesicle-wall interaction. This example is used to investigate the effect of
the contact line model used for describing vesicle-wall interaction. As shown in Figure
4, a vesicle is initially placed at a location with a pointwise vesicle-wall contact, and
a shear flow from left to right is introduced to the system. The parameter values of
this simulation are listed as follows:

Re = 2×10−4,M = 1.5×10−3, κB = 0.1, ε = 0.03,Mv = 200,Ms = 2×105, ξ =
104, κ = 1 × 10−10, αw = 80, ls = 0.5. θs is set to be 85◦ (or 180◦) for different
interactions between the vesicle and the vessel wall.

Remark 5.2. As can be seen in Figure 4, when the contact angle is 180◦ high, the
cell is carried away by the flow due to an absence of “attraction” between the cell

D
ow

nl
oa

de
d 

01
/2

0/
22

 to
 1

52
.3

.1
02

.2
54

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

B138 L. SHEN, Z. XU, P. LIN, H. HUANG, AND S. XU

Fig. 4. The top three pictures show the result of no wetting force modeled using a contact angle
180◦. The bottom three pictures show the result of an existing cell-wall wetting condition modeled
using a contact angle 85◦.

and the wall by a wetting force which is introduced by the contact line model. When
the contact angle is significantly lower, say 85◦, the vesicle membrane is torn apart
at the vesicle-wall contact location due to the existence of a wetting force. We point
out that the simulation using an 85◦ contact angle is not biologically relevant. This
shows the limitation of our current model based only on hydrophobicity in considering
interaction. The idea of modeling cell-wall adhesion by forming ligand-receptor bonds
from [18] could be a good way to model the adhesion force by introducing a wall phase
and its interacting potential with the vesicle phase. We will thus use a significantly
higher contact angle, i.e., θs = 180◦, in the rest of the simulations presented in the
paper.

5.3. Tank treading and tumbling. The vesicle motion in a Couette flow
changes with respect to the ratio of the viscosities ηin and ηout of intracellular and
extracellular fluids [32, 4, 16, 24]. When this viscosity ratio is small, the vesicle is
prone to move in the tank treading mode, while the tumbling mode is preferred when
the viscosity ratio is large. The parameter values utilized for this vesicle motion
simulation are set as follows:

Re = 2×10−4, δϵ = |∇ϕn|2, M = 10−3, κB = 5×10−3, ϵ = 7.5×10−3, Mv = 20,
Ms = 200, ξ = 1.78× 107, κ = 2× 10−12, ls = 0.2.

The upper and bottom walls of the domain are set to move in opposite directions
horizontally with velocities −20 and 20, respectively. The simulation domain is 2× 1,
and the initial shape of the vesicle is chosen to be an ellipse with eccentricity

√
3.

The ratios of viscosities of the intracellular and extracellular fluids are set to be 1 : 1
and 1 : 500, respectively. Figure 5 shows the interfaces of tank treading vesicle (low
viscosity ratio case) and tumbling vesicle (high viscosity ratio case) and corresponding
fluid velocity fields at different times, respectively. A point on the interface (black
solid) is tracked to illustrate these two different types of motion. For the tank treading
motion, the angle between the long axis of the vesicle and the horizontal axis is fixed
when the vesicle is at equilibrium, but the tracer point rotates in a counterclockwise
direction along the membrane. For the tumbling motion, the vesicle keeps rotating,
and the tracer point does not move with respect to the membrane shape.

Remark 5.3. Tracking of the marker point (the black solid dot) is done by the
following steps:

1. Determine a marker point P that is located on the interface with coordinate
(x, y).

2. Compute the velocity u(P ) = (ux(P ), uy(P )) of the marker point by inter-
polation.
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PHASE-FIELD MODEL OF VESICLE MOTION B139

Fig. 5. Top: Tank treading with viscosity ratio 1 : 1. The orientation of the vesicle and the
velocity field are kept stable when the system comes to equilibrium. Bottom: Tumbling with viscosity
ratio 1 : 500. The vesicle keeps rotating in the flow. Position of the tracer point (in black) is fixed
with respect to the vesicle membrane.

Fig. 6. Comparison between theoretical and simulation results of the flipping ellipse. The blue
line is the angle between the long axis of the ellipse and the horizontal axis predicted by the Jeffery
orbit theory, and the red circles are the angle from the simulation.

3. Update the marker point position at the next time point by (x+ux(P )∆t, y+
uy(P )∆t).

4. Go to step 2.
This tracking gives the trajectory of the marker point.

Next, the simulation result of tumbling motion of a rigid ellipse is compared with
the theoretical solution obtained using Jeffery’s orbit theory [28]. Specifically, the
angle between the long axis of the ellipse and the horizontal axis is compared. As
shown in Figure 6, our simulation result is in close agreement with the analytical
Jeffery orbit.

Remark 5.4. The long axis of the rigid ellipse during the tumbling motion is
determined as follows:

1. Determine the interface location of the ellipse by ϕ = 0.
2. Find the point on the interface that is farthest away from the center of the

vesicle in the upper domain.
3. Match these two points, and the line is considered as the long axis of the

ellipse.

Since the ellipse is located at the center of the domain at the initial time point,
and the motion of the fluid is centrosymmetric according to the specified boundary
condition, it is expected that the center of the ellipse is kept at the center of the
domain Ω. Therefore the determination of the long axis of the ellipse based on its
geometry character is acceptable.
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5.4. Vesicle passing through a narrow fluid channel. Finally, the cali-
brated model is used to study the effects of mechanical properties of the membrane
of the vesicle on its circulating through constricting micro channels [23]. The vesicle
shape is described by an ellipse with eccentricity

√
3, and the width of the squeezing

section of the narrow channel is 0.3 by default. A pressure drop boundary condition
is applied at the inlet (left) and outlet (right) of the domain by setting the pressure
on the inlet and outlet to be P = 50 and P = −50, respectively. The fluid viscosity
ratio is set to be 1 : 10 for extracellular and intracellular fluids, respectively. The
other parameters are as follows:

Re = 2× 10−4, δϵ = 10× |∇ϕn|2, M = 5× 10−4, κB = 4× 10−2, ϵ = 7.5× 10−3,
Mv = 20, Ms = 100, ξ = 7.1× 104, κ = 4× 10−11, ls = 5× 10−3.

The effect of the local inextensibility of the vesicle membrane is assessed by com-
paring vesicle simulations with and without using the local inextensibility constraint
P : ∇u = 0 in the model. Snapshots of these simulations at different times are shown
in Figure 7. They illustrate that a vesicle modeled without using the local inextensi-
bility can pass through the channel by introducing large extension and deformation
of its body with a relatively small value of global inextensibility coefficient Ms, while
a vesicle modeled with the local inextensibility hardly exhibits large extension and
deformation of its body and blocks the channel. This is also confirmed by Figure 8. It
shows that under otherwise identical conditions, the total arc length of the membrane
of the vesicle modeled without the local inextensibility increases significantly when it
passes through the channel, and the vesicle with the local inextensibility preserves its
membrane arc length well during the course of the simulation.

Although the total arc length of a vesicle without the local inextensibility and with
a very large Ms value could remain almost unchanged as shown in Figures 7(c) and
8, the morphological changes of vesicles with and without the local inextensibility are
drastically different. For the vesicles modeled without the local inextensibility, Figure
9(b) and (c) illustrates that the vesicle membranes are stretched (red) or compressed
(blue) everywhere, even though the total arc length of the vesicle modeled using a large
modulusMs value could be preserved, and the vesicle forms a blockage. For the vesicle
modeled with the local inextensibility, Figure 9(c) confirms that there is almost no
local extension or compression of the membrane, which is consistent with experimental
observations. All simulations described below use the local inextensibility.

(a) (b) (c)

Fig. 7. Snapshots of vesicles passing through a narrowed channel with different surface area
constraints at times t = 0.08, 2, and 4, respectively. (a) Ms = 100 with the local inextensibility; (b)
Ms = 100 without the local inextensibility; (c) Ms = 20000 without the local inextensibility. The
curves on the top and bottom ceiling are the wall boundary of the narrowed channel.
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Fig. 8. Total arc length of vesicle membrane with the local inextensibility (blue line) and the
total arc lengths of vesicle membranes with low (100) (red dashed line) and high (20000) (black
point) Ms and no local inextensibility, respectively, during vesicles passing through the constriction
of the micro channel with otherwise identical parameter values and settings.

(a) (b) (c)

Fig. 9. Effects of the local inextensibility P : ∇u = 0. Snapshots of membrane forces of vesicles:
(a) Ms = 100 with the local inextensibility, (b) Ms = 100 without the local inextensibility, and (c)
Ms = 20000 without the local inextensibility.

Fig. 10. Side view of a vesicle with surface-volume ratio 1.5 : 1 at different times.

Both experiments and clinical reports have shown that the cell bending modu-
lus and surface-volume ratio play important roles in determining the deformability
of vesicles, especially when they pass through narrow channels [55, 38, 49]. The lat-
est results reveal that a moderate decrease in the surface-volume ratio has a more
significant effect than varying the cell bending stiffness. This surface-volume ratio
effect is tested by increasing the ratio value slightly from 1.5 : 1 to 2 : 1. Results in
Figures 10 and 11 confirm that the more rounded vesicles are much harder to pass
through the narrow channel and can easily form a blockage. This is consistent with
the experimental observations.
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Fig. 11. Side view of a vesicle with surface-volume ratio 2 : 1 at different times.

Fig. 12. Side view of a vesicle with large bending modulus κB = 4× 10−1 and surface-volume
ratio 2 : 1 at different times.

The effect of the bending modulus is assessed by increasing its value 10 times.
The surface-volume ratio of the vesicle is 2 : 1 in this test. Figure 12 illustrates that
this more rigid vesicle can also pass through the same size channel but exhibits very
different shape transformation.

6. Conclusion. In this paper, an energy variational method is used to derive
a thermodynamically consistent phase-field model for simulating vesicle motion and
deformation under flow conditions. Corresponding Allen–Cahn GNBCs accounting
for the vesicle-wall (or fluid-structure) interaction are also proposed by introducing
the proper boundary dissipation and vesicle-wall interaction energy.

Then an efficient scheme using C0 finite element spatial discretization and the
midpoint temporal discretization is proposed to solve the obtained model equations.
Thanks to the midpoint temporal discretization, the obtained numerical scheme is
unconditionally energy stable. The numerical experiments confirm that this scheme is
second-order accurate in both space and time. Simulations of the vesicle tank treading
and tumbling motions reproduce experimental observations. And the flipping ellipse
simulation agrees with the analytical solution well. Finally, the model is used to
investigate how vesicles’ mechanical properties affect the vesicles’ capability to pass
through narrow channels. It is shown that whether a vesicle can pass through a
narrow channel is largely determined by the surface-volume ratio of the vesicle, which
is consistent with in vitro experiments.
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Our model can be used to study the impaired dynamics of red blood cells due
to altered mechanical properties of red blood cell membranes in sickle cell disease [3]
and in diabetes [36]. Combining with the restricted diffusion model [46], our model
can be generalized to model the mass transfer through a semipermeable membrane,
for example, oxygen delivering [57].

There are limitations in our model if we need to consider an adhesion based on the
ligand-receptor binding. When the static contact angle is lower than 180◦, the vesicle
is torn apart due to the wetting effect. In [18], the authors proposed an adhesion
model by introducing a new phase label for vascular wall and an adhesion energy
functional using labels of wall phase and cell. In the future, we will combine the
adhesion model with the contact line model and more realistic submodels for cell-wall
and cell-cell interactions to model the cell aggregation [63, 64], cell crawling, and
invasion problems [51, 9].
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