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Tunable quantum phase transitions in a resonant level coupled to two dissipative baths
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We study tunneling through a resonant level connected to two dissipative bosonic baths: one is the resistive
environment of the source and drain leads, while the second comes from coupling to potential fluctuations
on a resistive gate. We show that several quantum phase transitions (QPT) occur in such a model, transitions
which emulate those found in interacting systems such as Luttinger liquids or Kondo systems. We first use
bosonization to map this dissipative resonant level model to a resonant level in a Luttinger liquid, one with,
curiously, two interaction parameters. Drawing on methods for analyzing Luttinger liquids at both weak and
strong coupling, we obtain the phase diagram. For strong dissipation, a Berezinsky-Kosterlitz-Thouless QPT
separates strong-coupling and weak-coupling (charge localized) phases. In the source-drain symmetric case, all
relevant backscattering processes disappear at strong coupling, leading to perfect transmission at zero temperature.
In fact, a QPT occurs as a function of the coupling asymmetry or energy of the resonant level: the two phases
are (i) the system is cut into two disconnected pieces (zero transmission), or (ii) the system is a single connected
piece with perfect transmission, except for a disconnected fractional degree of freedom. The latter arises from

the competition between the two fermionic leads (source and drain), as in the two-channel Kondo effect.

DOI: 10.1103/PhysRevB.89.085116
I. INTRODUCTION

In a resonant level system, quantum tunneling combined
with dissipation gives rise to quantum phase transitions (QPT).
The effect of dissipation caused by the environment on
quantum tunneling is, of course, a classic topic in the foun-
dations of quantum mechanics [1,2]. In the case of quantum
tunneling, the dissipative bosonic modes of the environment
generally suppress the tunneling rate, with the degree of
suppression depending on the bosonic density of states and
the coupling strength [3]. Experimentally, tunneling with
dissipation can be readily realized in a tunnel barrier contacted
by resistive leads [4,5]. The electromagnetic excitations in the
leads provide a bosonic bath with a linear density of states
(ohmic environment); the coupling strength r = e*R,/h is
determined by the lead (i.e., environmental) resistance R,.
The key experimental observable is the electrical conductance
through the barrier [6—15], which as a function of temperature
T exhibits a power law suppression G o< T* . In contrast, in
the resonant level system that we study, the conductance is not
always suppressed by the environment; the transition between
the strong tunneling and suppressed tunneling regimes was
shown to be a QPT [15,16].

Quantum phase transitions have been extensively investi-
gated in a variety of contexts [17-20]. In nanoscale systems,
it is appropriate to consider boundary QPT, which denotes a
QPT due to the boundary degrees of freedom (such as, for
instance, a spin or single fermionic state) [20]. In recent years,
there have been three experiments in quantum dot systems
that show clear evidence of a QPT [15,21,22]. Quantum
dots connected to leads are a natural place to look for
boundary QPT because of their tunability and flexibility.
Indeed, theoretically, many realizations of boundary QPT have
been proposed using quantum dots [20,23-35]: in multidot and
multilevel systems, competition between different interactions
involving the boundary degree of freedom (dot-lead Kondo
interaction, dot-dot or level-level exchange interaction, or
Coulomb electrostatic interaction, for instance) produces QPT.
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Boundary QPT also occur in pseudogap Kondo or Anderson
models [20], which could be realized using a quantum dot and
a nanoscale Aharonov-Bohm interferometer [33]. Finally, for
our purposes it is important to note that boundary QPT can be
caused by dissipation: coupling a boundary degree of freedom
to an environment causes a qualitative change in behavior
for sufficiently strong coupling. Transitions of this type were
among the first QPT to be studied in detail [3,36], in the form
of the “spin-boson model” in which there is a transition from
a phase in which the spin flips to one in which it is frozen.

Tunneling with dissipation is closely related to tunnel-
ing in a Luttinger liquid (a one-dimensional system with
electron-electron interactions [37]). This appears natural since
dissipation connected to the environmental resistance is caused
by the electron charge coupling to electromagnetic modes of
the environment, thus making a link to the plasmon modes
of the Luttinger liquid. For tunneling through a single barrier,
a mapping between the two problems makes the connection
explicit [38]. Such a mapping can also be made for our problem
of tunneling through a resonant level, as we have shown
previously [15,16]. This allows us to draw on the extensive
literature on resonant tunneling in a Luttinger liquid [39-54],
in which, in particular, QPT are known to occur.

Here we study tunneling through a resonant level which is
coupled to two dissipative baths: one produced by the resistive
source and drain leads, and a second connected to a gate
potential that shifts the energy of the resonant level (see Fig. 1).
While coupling a resonant level to one or the other type of bath
has been considered previously [4,28,30,32,55-63], this is, as
far as we know, the first study in which both types of bath are
treated on equal footing.

Two types of QPT are shown to exist in this system: One
involves freezing of the charge fluctuations on the level—it
is analogous to the localization transition in the spin-boson
model mentioned above [3,36]—and is well known to be of
the Berezinsky-Kosterlitz-Thouless type. A second transition
is associated with a special point: for symmetric coupling and
on resonance, one obtains perfect conductance through the
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FIG. 1. (Color online) Schematic of a spinless quantum dot
coupled to two conducting leads and a gate. The source and
drain junctions are characterized by tunneling amplitudes Vg and
Vp, as well as capacitances Cg and Cp. The dot-leads system is
symmetrically biased by a voltage V through the lead resistances
Rg and Rp. The gate is capacitively coupled to the dot (capacitance
Cg) through a resistance Rg. We consider the simplified situation in
which Cs = Cp = C and Ry = Rp = R/2.

level in contrast to the zero conductance state in all other cases.
Our analysis draws on and is analogous to that for tunneling
through a resonant level in a Luttinger liquid. However, the
mapping presented below shows that the presence of two
dissipative baths produces notable differences, differences that
we emphasize. These results deepen the close link established
in earlier work [15,16,38,39,41,59,62,64—-67] between effects
produced by dissipation and those caused by electron-electron
interactions. Indeed, coupling to dissipation can be used to
emulate what happens in a strongly interacting electron system
[15,16,67]. Since the type of system we study is very flexible
and can be extended, for instance, to several quantum dots
connected in a variety of ways to leads and gates, this suggests
the possibility of using dissipative systems as a quantum
simulator of strongly correlated electronic phenomena.

The structure of the rest of the paper is as follows. In
Sec. II, we introduce a resonant level model that incorporates
two types of dissipative baths: one couples to the tunneling
process while the other couples to the voltage fluctuations of
the dot. Section III shows how the model can be rewritten
using bosonization in order to incorporate the environmental
contribution into the bosonic fields describing the leads;
the corresponding transformations of the current operator
are explicitly discussed in Sec. IV. In Sec. V, a mapping
is established from our dissipative resonant level model to
a model with a resonant level coupled to two Luttinger
liquid leads. The phase diagram is obtained in Sec. VI
through a weak-coupling renormalization group analysis in a
Coulomb-gas representation combined with a strong-coupling
analysis. In Sec. VII, we analyze the sequential tunneling
regime. Finally, Sec. VIII contains a summary and concluding
discussion.

II. MODEL: A DISSIPATIVE RESONANT LEVEL

We study a dissipative resonant level model appropriate
for describing a spin-polarized quantum dot coupled to two
conducting leads in the presence of an ohmic dissipative en-
vironment, as shown in Fig. 1. Charge fluctuations associated
with the dot are coupled to the electromagnetic environment
modeled by the three resistors; note that we include dissipation
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coming from both the gate and the transport leads. At
sufficiently low temperature, these charge fluctuations must
be treated quantum mechanically. The barriers from the dot
to the source and drain are characterized by capacitances
as well as tunneling amplitudes. For simplicity we take the
capacitance of the source barrier to be the same as that of the
drain, both denoted C; the resistances connected to the source
and drain are likewise equal with value R/2 each. (This case
is appropriate to describe the experiments in Refs. [15,16].)
The capacitance and resistance associated with the gate, Cg
and Rg, can be different.
The Hamiltonian can be divided into four terms,

H = Hyo + Hieads + Hr + Hepy, (1)

corresponding, respectively, to the dot, the leads, the tunneling
between them, and the environmental modes. The terms to
describe the dot and the leads are straightforward: we keep a
single state in the dot (electron creation operator d") whose
energy level ¢, is shifted by the average voltage on the gate,

Hgo = €4d'd. )

The source (S) and drain (D) leads consist of noninteracting
electrons described by

Hieags = Z Zekcj;kcak- (3)

a=S8,D k

Hr describes the tunneling between the dot and the leads;
since electrons are charged, this involves not only conversion
of a d electron into a quasiparticle but also transfer of a charge.
The quantum electrical properties of each capacitor connected
to the quantum dot are treated by introducing an operator for
the charge fluctuations on each capacitor, denoted Qg, QOp,
and Qg, as well as their conjugate phase variables ¢y, ¢p, and
©g, respectively [4,55,56]. The latter correspond physically to
the time-integrated voltage fluctuations across the capacitor.
These quantities obey the commutation relations

[(pon Qa’] =ie (Sa,a’ for O[,Ol/ =45,D,G. (4)

The tunneling part of the Hamiltonian is, then,

Hy = Vs ) (ched +Hc)
k
+Vp Y (chre™?d + H.e), 5)
k

where Vs and V), are the tunnel couplings to, respectively, the
source and drain leads. In describing the effect of the dissipa-
tive environment by using a single phase factor per junction
in the tunneling Hamiltonian, we are neglecting transitions
between different momentum states within the same lead, and
thus neglecting electron relaxation and decoherence [55]. This
approach appears to be adequate if the electromagnetic field
propagates much faster than the electrons [55], which is the
case for the samples we have in mind [15,16]. A similar model
has been used, for instance, in previous work on a resonant
level [57], for a quantum dot in the Kondo regime connected
to resistive leads [62], and for a dissipative dot coupled to a
Luttinger liquid [59].
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To incorporate the effects of the environment, it is con-
venient, first, to rotate the charge and phase variables to the
following set:

01=0s+ 0p+ 0Og, (6)

_ S €
o1 = (<ﬂ8+<ﬂD+ C <PG> cy @)

1
0 = E(QS - 0Obp), (®)
¥ = @5 — ¥p, )]
(2,2 €\

03 = < > + > Co QG) cy (10)
©3 = @s + ¢p — 2¢g, (1)

where Cx = 2C + C; is the total capacitance of the dot. The
rotation preserves the canonical commutation relations

[¢i,Qir] =ieé;; for

These variables have a natural physical interpretation. First, Q|
is clearly the total charge on the dot, and therefore the operator
e'¥' changes this total charge by e [4]. Second, %> moves
a charge from the source capacitor to the drain capacitor. It
thus moves charge around the lower loop in our circuit Fig. 1.
The remaining variable must be orthogonal to the first two. It
corresponds to moving charge 2e from the source and drain
capacitors to the gate, that is, moving charge vertically in our
circuit Fig. 1.

In terms of these rotated coordinates, the tunneling Hamil-
tonian takes the form

. 1 1C
Hy = Vs Zé’;k exp [—l (901 Tt EC_Z¢3):| d
k

. 1 1Cq
+ VDZCbk exp [_i <§01 —5¢2+ ——</)3>i| d
P 2 2Cy

+H.c. 13)

ii' =1,2,3. (12)

It is the coupling of the charge fluctuations to the ohmic
environment represented by the resistors which leads to dissi-
pation. A phase variable connected to charge flow through a
certain resistance is coupled to the environment represented by
that resistance. Thus variable ¢, is coupled to an environment
characterized by the resistance

R, = Rs+ Rp = R, (14)
and g3 is coupled to an environment with dissipation given by
R; =R+ 4Rg. (15)

Note that the fact that ¢3 moves two charges through the gate
circuit causes a factor of 4 in the corresponding resistance—
dissipation is proportional to the square of the current. Finally,
notice that the total charge mode, (Q1,¢;), does not couple to
the environment [4,55]. The reason for this lack of coupling
is that the charge involved in fluctuations of Q; is balanced
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among the three capacitors: they do not require flow in the
external circuit and so do not cause dissipation.

The ratio of the resistance to the quantum of resistance,
R = h/é?%,is the key physical quantity, as we will see below.
For the various resistances here, this ratio is denoted by r =
R/RQ, rg = Rg/RQ, rh = Rz/RQ, and r3 = R3/RQ.

Because the two fluctuating modes (Q»,¢,) and (Q3,¢3) are
orthogonal, we can take their environments to be independent.
Each of the phase operators ¢, and ¢3 is coupled to the
environment in the usual way [68]: the resistance is modeled
by an infinite collection of LC oscillators which act as a bath;
the impedance of the bath viewed from the quantum dot is
chosen to match the resistance in the circuit. The phase of
each oscillator is bilinearly coupled to the appropriate ¢;. Upon
integrating out the harmonic bath degrees of freedom, the key
property is that the decay of the correlation of ¢; at long times
is [4]

. . A
(el(p[(l)e_l(ﬂ[(o)) N with

-, i=2or3, (16)
(L()Ri[)zr‘

where wg, = 1/(R;C) serves as a high energy cutoff and A is
a constant. In this way, one arrives at the natural result that
the resistance associated with a given charge fluctuation mode
controls its relaxation. In the absence of an environment, r; =0,
the fluctuations are not damped.

While previously the effect on resonant tunneling of either
transport charge fluctuations or gate charge fluctuations has
been independently studied [4,28,30,32,55-63], here both
charge fluctuation modes have been included on the same
footing. As both modes are, of course, present in experiment
[15,16], their mutual effects may be important for determining
the phases and behavior of the system.

III. COMBINING ENVIRONMENT AND LEADS

In this section, we treat the two leads using bosonic
fields so that they may be combined with the phase factors
describing the coupling to the environment, following closely
the previous literature for tunneling through a single barrier
[38] or quantum dots [59,62]. Because the dot couples to
each lead at a single point, the two metallic leads may be
reduced to two semi-infinite one-dimensional free fermionic
baths [69-71]. By unfolding the two semi-infinite fermionic
fields, one obtains two chiral free fermionic fields; for each of
these, we take the point of coupling to the dot to be x = 0.
These chiral fields can be bosonized [37,72], yielding

cs,p(x) = Fs pexpligs, p(x)]. )

1
W 2ma
Here, ¢5 p are the bosonic fields, Fy p are the Klein factors
needed to preserve the fermionic anticommutation relations,

and a is the short time cutoff. The commutation relations for
these chiral bosonic fields are

[0:¢)(x),47(x)] = i8;;m 8(x — x'), i,j=8.D. (18)
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We now rotate the lead basis by introducing the flavor field
¢ and charge field 7,

¢s — ép ¢s +ép
V2 V2
in terms of which the lead Hamiltonian is simply Hieags =
Z—; f_oooo d)c[(8x¢>2)2 + (8X¢?)2] since it is noninteracting. The
tunneling Hamiltonian Eq. (13) becomes

¢ = and ¢0 = (19)

HT — VS e—%[¢3+¢?](X=0)e—i(<p1+2<ﬂz+2 Cy W%)d
2ma
I N
2ma
+H.c. (20)

Note that (]50 (x = 0)and ¢0(x = 0) enter in a way very similar
to that of ¢, and ¢3. Indeed, since both the correlation functions
of ¢, and ¢3 [Eq. (16)] and those of the free chiral fields [37]
describing the leads have a power law decay in time, we shall
be able to combine ¢, with the flavor field ¢(}(x =0) and
likewise combine @3 with the charge field °(x = 0). At this
point we drop ¢; from our expressions since it is not coupled
to the environment and so plays no role.

To combine the phase factors in the desired way, an analytic
continuation is needed: the environment phase factor ¢, is
defined only on the time axis, whereas the field ¢ depends
on both space and time. We take ¢,(f) — ¢»(#,x) and extend
the correlation function to the full space with the commutation
relation

[0:i (x),@;(x)] = i2r;8;;w8(x — x'),

Note that this continuation dose not influence the physics
because the tunneling involves the phase only at x = 0. Now,
¢, can be absorbed by q)(} by redefining the fields as

i,j=23. (1)

1
b5 = «/5(‘??« + sz),

(22)
(P} = «/_<\/_¢f \/—¢2>
where
1
8 =1, <1 (23)

In a similar way, the phase operator ¢3 can be absorbed by the
charge field ¢ through the transformation

¢ = (¢°+ ! Co )
c 8c \/_C - ¢3
24
/ (CGf 80— — )
. = c\ =139, — )
2 8 Cx 3 m%
where
1
ge=——— < 1. (25)

Cg 2
1+ (cz) r
The prefactors in these transformations are uniquely deter-
mined by the requirement that the new fields obey canonical
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commutation relations:

[ax(pi(x)v(pj(x,)] =i 8’] 8()6 — )C,), l,] = C,f,
[3x(0£(x),<p}(x/)] =im (S,‘j 8(x — x/), (26)
[pi(x),¢,;(x")] = 0.

In terms of these fields, the Hamiltonian becomes

H= Hdm+ — f dx[(3:pc)* + (8¢ )] + Heny

F L e )
—i—VS[ 2S e Vet @d+ch|
Ta
F l.¢f(). =0) (r())
+vD[ 2” ¢ VA TR d+Hc] @7
Ta

the new phase fluctuations (p} and ¢, decouple from the dot
and tunneling term, and so we omit them.

Because of the coefficients in the exponentials for the
tunneling Hamiltonian, the transformed fields are effectively
interacting: the dissipative environment (the phase factors
@2 and @3) is incorporated in the new flavor and charge fields ¢
and ¢, at the expense of introducing interaction parameters g s
and g.. A similar mapping was obtained for a quantum dot in
the Kondo regime in Ref. [62] and for a dissipative dot coupled
to a single chiral Luttinger liquid in Ref. [59]. The Hamiltonian
Eq. (27) is indeed a Luttinger liquid model, but a somewhat
unusual one in which the dot couples to two Luttinger liquids
with different interaction parameters. Notice that in the limit
Cg < C relevant for the experiment of Refs. [15,16], one
has g. = 1. In presenting below the properties implied by
this Hamiltonian, we shall in particular emphasize features
connected to the fact that the two interaction parameters are
different from each other.

IV. CURRENT OPERATOR

The representation in Eq. (27) is convenient for obtaining
the partition function and so thermodynamic quantities (see
Sec. VI); however, transport properties, such as the current
through the resonant level, may be affected by unitary
transformations. We therefore check how the current operator
transforms in the operations used to arrive at Eq. (27).

In the first step, two metallic leads were reduced to two
chiral free fermionic fields cg p(x), with the resonant level
coupling to cs p(0). Due to the linear dispersion of the chiral
fermions, the current operator can be written as the difference
between the densities of the incoming and outgoing electrons
in either the S or D channel [50,73]:

Isp = EUF[C;DCS’D(X — 00) — c;DcS,D(x — —00)].

(28)

One can rewrite the density operators in terms of the bosonic
fields, c;D(x)cS,D(x) = 0, ¢s.p(x)/2m, yielding

Isp= %[axqss,D(oo) — psp(—00)l.  (29)
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Since the currentobeys I = alg — (1 — a)Ip forany 0 < o <
1, the current operator in the ¢g s basis [Eq. (19] is
evfr
I = 3, $p(00) —
o
The charge field does not contribute to the current.
The current operator is potentially affected by the transfor-
mation Eq. (22) used to absorb the environment phase factor
¢>. The current operator in the new basis is

V&0 (00) — . (—00)]

3,9 (—00)]. (30)

evr

2f
f \/_x/_[aawf(OO) 3 @(=00)l. (31

Since the phase fluctuation field ¢’ '+ decouples from the other
parts of the system, its contribution to the current vanishes:
8x¢}(oo) - Bxgo}(—oo) = 0. Thus the current operator in the
final transformed basis depends only on the ¢ field,

I =

— 0y (—09)]; (32)
2 \/— f

we recognize the current operator [50,73] for a chiral Luttinger
liquid (up to a factor of +/2).

V. MAPPING TO PHYSICAL LUTTINGER LIQUID MODEL

The Hamiltonian Eq. (27) does not, unfortunately, directly
describe an electron hopping between the quantum dot and
real physical leads, in particular because of the presence of
a three body interaction term in Hy. Thus it is interesting to
develop an alternative physical model.

To obtain a physical model, we wish to eliminate the
three-body interaction in the Hamiltonian Eq. (27). In order
to combine the two fields ¢. and ¢, in the exponents of the
tunneling term, their coefficients must be the same. We can
change the coefficient of the ¢, term so that this is true by
applying the unitary transformation [50,74]

1 1

U=exp|i d'd—1/2 Co} 33

p[(d@? sz)( /2)¢O) |, (33)
at the cost of introducing a density-density interaction term
between the leads and the dot. As for any unitary transfor-
mation of the form exp[ioz(d*d —1/2)¢.(0)], U commutes
with the current operator [50,74] and so does not affect the
current. After applying this transformation and redefining new
“source” and “drain” channels by

gs _ ¢c\'/f‘§¢f and 50 _ ¢c\;§¢f’

the Hamiltonian becomes

(34)

~ n FS _j 95620
H:U'HU=H0+V5[ e \/ﬁd+H.C.i|

2ma
F _i$n(-¥:0)
+VD[ L . Wd+H.c}
2ma
+UF< ! )(d'd 1/2)
4\Ve &y

X [3,Ps(x = 0) 4 d,hp(x = 0)], (35)
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where the last term is the density-density interaction produced
by the unitary transformation. One finds that the current is
given by the usual expression for an interacting chiral field
[50,73],1 = 5E . /gs[0x qbg p(00) — 0, ¢s p(—00)], in terms of
these effectlve source and drain channels.

Since a level coupling to a chiral Luttinger liquid is
equivalent to a level coupling to the end of a nonchiral
Luttinger liquid [37], the original model is thus mapped to
a very natural physical system: a resonant level embedded
in a Luttinger liquid having a single interaction parameter
gr =1/(1+r) with an additional electrostatic interaction
between the dot and the ends of the two leads [last term
in (35)]. If the values of the resistances and capacitances
are carefully chosen so that g. = g, this extra electrostatic
interaction vanishes. The model is then exactly equivalent to a
double barrier in a spinless Luttinger liquid, a situation which
has been intensively studied [39-54].

Another useful representation is obtained by applying
a slightly different unitary transformation [50,74], U’ =
expli(d'd — 1/2)¢.(0)/+/2gc], to eliminate the ¢, field from
the tunneling process entirely. As in the previous transforma-
tion, an electrostatic density-density interaction between the
leads and the dot is generated,

H. — Ur 1
mnt — 2 ,—2gL

yfd—umm@@=om (36)

From this representation, the relation with the two-channel
Kondo model, which shows exotic non-Fermi-liquid behavior
[75-77], can be made clear [50,74], a situation we studied
recently [16]. For g, = 1/2 (i.e., r = 1), a refermionization
procedure is possible, ¥ = €%/ /+/2a. If in addition the
density-density interaction term is discarded (even though
typically large), one arrives at a noninteracting Majorana
resonant level model, which is exactly the same as that
reached by using a bosonization procedure [74,78] in the
two-channel Kondo model. The connection between resonant
tunneling in a Luttinger liquid and the two-channel Kondo has
been extensively investigated [40,44,45,50,79]. In contrast,
the connection in the context of the dissipative resonant
tunneling problem has received limited attention. In Ref. [16]
the connection was made explicit and, furthermore, studied
experimentally.

VI. SCALING AND QUANTUM PHASE TRANSITIONS

Having transformed our problem to a Luttinger liquid form,
we can now bring to bear the many techniques developed for
problems involving impurities in a Luttinger liquid [37-54].
We proceed from the version of our model in Sec. III,
Eq. (27). First, we develop a “Coulomb-gas™ representation,
then use it to generate a weak-coupling renormalization group
(RG) treatment, and finally turn to characterizing the strong-
coupling fixed point. Since much of the technical development
is well known, we only sketch it briefly here; rather, we
concentrate on the results and the differences induced by

8c £ &f-
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A. Coulomb gas representation

The Coulomb-gas representation is a convenient way to
derive RG equations [80] and has been used for similar
problems in, e.g., Refs. [39] and [81]. We start by expanding
the corresponding partition function in powers of the tunneling,
Vs and Vp. Since the tunneling acts only at x =0, it
is convenient to perform a partial trace in the partition
function and integrate out fluctuations in ¢, s(x) for all x # 0
[39,41,80]. If in addition one integrates out the environmental
modes (they are harmonic), the effective action absent the
tunneling is

1
St = 3 > lonl (el + ¢ (@)

B
+ / drd(d, — eg)d, (37)
0

where w,=2nn/B are the Matsubara frequencies and the
bosonic fields all refer to their x = 0 value. The Lagrangian
for the tunneling term follows directly from Eq. (27),
Fy —i— (1) —i A= (1)
LT=—VS<—e P e VBT d 4occ.
V2ma

F il o i—L %,
v, ( p_, T e )e ng7¢/(f)d + c.C.) , (3%)
2ma

in terms of which the tunneling action is St = foﬁ Ly(t)dr.

One  expands  the  partition  function, Z =
f[D(pL.][D(pf][Dd]e‘Sgﬁe‘ST, in terms of St and evaluates
the resulting correlators using ngf. The result is a classical
one-dimensional (1D) statistical mechanics problem with the
partition function

7 = Z Z Z VSZ:,-(IJrq,'Pi)/Zv[?fﬂ*‘]il’i)ﬂ

o=t n (=)

/3 Ton T
X f drz,,/ dtr,_y / dT exp{ZVij}
0 0 0

i<j
B 3 (39)
X ex - iTi | (>
P €d ) o A PiT
1<i<2n
1
Vij = E[C]z’%’ + Kipip; + Ka(piq; + pjgi)l
T

Here, 7, is a short-time cutoff, ¢; and p; are two types of
charges that take values £1, and K; and K, characterize the
strength of the logarithmic interactions between the various
pairs of charges. Physically, the g; charge represents the way
tunneling events contribute to the transport current: +1 denotes
an event from source to dot or from dot to drain, while —1 is
for the reverse processes. The ¢;g; terms are obtained from
correlators of ¢ ¢, which therefore produce g;q;/2g. On the
other hand, the p; charge represents the way tunneling events
contribute to the total charge on the dot: +1 for tunneling
onto the dot from either lead, and —1 for tunneling off. The
pip;j terms are obtained from correlators of ¢., which give
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DiPj/28c. As there are no cross correlations between ¢ s and
¢.,the g and p charges do not interact initially. Thus the initial,
or “bare,” values of K| and K, are

\2
g_f_1+(g—;’) r3

K = 2L =
8¢ L+r

, KM =0. (41)

Note that the initial value for K; here differs from that
for resonant tunneling in a Luttinger liquid [39] for which
Ky =1.

A number of constraints should be respected in constructing
the charge configurations appearing in the partition function
[37,39,80]. First, the total system is charge neutral, Zi qi =
> pi = 0. Second, the sign of the p; charge must alternate
in time since the dot has only two states, empty or full. This
leads to a renormalization of the interaction, K, between the
p: charges. Finally, for the ¢; charge, there is no ordering
restriction, and so the interaction between the g; charges, 1/g,
does not get renormalized.

The Coulomb gas model that emerges here is the same as
that for resonant tunneling in a Luttinger liquid [39], except
that the initial value for the interaction between p; charges is
tunable here by changing the dissipative resistances r or r;3.
In the limit C¢ < C in which dissipation from the gate is not
present, K = 1/(1 + r). In the opposite limit Cg > C in
which gate dissipation dominates, K = 1 + 4r¢ /(1 +r).

The Coulomb gas representation provides a convenient
route to the weak-coupling RG equations [37,39,80], by
integrating out the degrees of freedom between 7, and 7, + dr.
We consider the on-resonance case, €; = 0, so that the last term
in Eq. (40) is equal to 1. The resulting RG equations are the
same as for resonant tunneling in a Luttinger liquid [39],

dK
i IT = 422 [K (V2 + V2) + K2 (VE = V3)],

dK,
o = 22[Ka(VE o VR) + (v - V)

av. 147 “2)

S — _——_—

dVD _ 1+V
Tinr = Vp [1 — U+ K- 2K2)] .

Because of the correspondence with resonant tunneling in a
Luttinger liquid, we can immediately deduce a great deal about
the properties of this system.

B. Symmetric barriers and on resonance: A special point

Consider first the special case of symmetric coupling Vs =
Vp = V (and still €, =0). In this case, K, is not generated in
the RG process, since the RG equation for K, simplifies to
dK,/d Int, = —472K,V?2. A schematic RG flow diagram is
shown in Fig. 2 [39]. There are three regimes as fiollows.

(1) The tunneling V grows under the RG flow and goes
to the strong-coupling limit when (1 + K)(1 +r)/4 < 1 [or
equivalently, K| < 4/(1 +r) — 1]. When this is satisfied by
K7™, that is from the beginning of the flow, the physical
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Strong Coupling
A

V

0 4 1
1+r

FIG. 2. (Color online) Schematic representation of the RG flow
for the symmetric case (Vs = Vp = V) on resonance. For re < 2,
one has K™ < 4/(1 +r) — 1, and the system flows to the strong-
coupling fixed point at which there is a uniform system and perfect
transmission. For rey > 2, as the bare coupling V decreases, for
instance along the red dashed line, there is a BKT type quantum
phase transition at V = V*. For smaller V, resonant tunneling is
destroyed, and the flow is toward the decoupled, zero transmission
state (blue line of fixed points on the horizontal axis). For » > 3 (not
shown), the flow is always toward the decoupled state, indicating that
resonant tunneling is not possible in this regime.

parameters satisfy

2 2
Feit = [1 + (%) :|r+4<%> rg <2 (43)
x z

For the case Cs <« Cs,Cp, the criterion for V to grow
becomes r < 2. For the case of only gate coupling (r =0
and Cy = Cg), V grows ifrg < 1/2.

(ii) There is the possibility of flow to weak coupling
(V =0) when re > 2 and in addition r < 3. In this case,
although large tunneling V flows to strong coupling, as the
bare tunneling V decreases a separatrix is crossed, denoted
V*, below which V flows to zero. The resonant tunneling is
completely destroyed at zero temperature for V- < V*; indeed,
this flow diagram indicates a Berezinsky-Kosterlitz-Thouless
(BKT) type quantum phase transition by tuning the bare
tunneling. Note that as K scales to 0, only r appears in the
RG equations, suggesting that the gate dissipation becomes
unimportant in the very low temperature limit.

(iii) Finally, the flow of V is always to weak coupling
when r > 3. In this regime, resonant tunneling simply does
not occur.

The ground state at weak coupling [regimes (ii) and
(iii)]—for this case of symmetric barriers and exactly on
resonance—consists of disconnected source and drain leads
plus an uncoupled resonant level [40]. The conductance is
clearly zero. Because the resonant level can be either filled or
empty, the ground state is twofold degenerate.

As the system flows to strong coupling [regimes (i) and (ii)],
the weak-coupling RG is no longer valid, and so we turn to
treating a small barrier in order to access the strong-coupling
fixed point. It turns out that in this limit as well, our system is
equivalent to resonant tunneling in a Luttinger liquid, allowing
us to draw on previous results. To show that, it is convenient
to use the effective model Eq. (35) from Sec. V consisting
of a double barrier in an effective Luttinger liquid plus
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an extra density-density interaction, (d'd — 1 /2)[8x$5(x =
0) + 9,¢p(x = 0)]. In the strong-coupling limit, the system
becomes uniform [40], and this operator becomes a density-
density interaction in that uniform system, which then has
scaling dimension 2. Therefore, when the weak-coupling RG
flows to strong coupling in regimes (i) and (ii) above, this
operator is irrelevant and so can be neglected.

In the absence of the density-density interaction terms,
the effective model Eq. (35) is exactly the same as that for
two barriers in a Luttinger liquid with interaction parameter
gr» and so we can immediately use the extensive previous
literature [39-54]. Note in particular that the parameter g,
and fluctuations involving the gate have disappeared from the
problem. The strong-coupling fixed point corresponds to a
single, connected, uniform system plus a decoupled fractional
degree of freedom [40,82,83]. The transmission is unity for
this system. In the special case r =1, the decoupled degree
of freedom is a Majorana fermion, and the ground state
degeneracy is /2, a value familiar from the two-channel
Kondo effect with which there is a close tie (see Sec. V above).

C. Detuning: Second quantum phase transition

For the case of asymmetric coupling, Vs # Vp, we start
with the case re < 2 [Eq. (43)], namely regime (i) above.
For the on-resonance case, the schematic RG flow is shown in
Fig. 3 [39-41]. First, we consider the weak-coupling RG. As
we saw above, along the symmetric line Vg = Vp, the flow is
to the strong-coupling fixed point, denoted (1, 1), at which one
has perfect transmission. For Vg < Vp, Vp flows to strong
coupling, but Vs flows to zero—point (1,0) in Fig. 3. This
implies complete incorporation of the level into the D lead,
but the system is cut in two by the S barrier. For Vg > Vp
the two behaviors are interchanged. Thus in the asymmetric
coupling case, the zero temperature behavior is to have two

0,1) (1,1)
Vs
5 \
> (1,0)
(0,0) Vp

FIG. 3. Schematic representation of the RG flow of the two
tunneling amplitudes, Vs and Vp, in regime (i): the level is on
resonance and the dissipation is not too strong, res < 2. The diagonal
is the symmetric barrier case: it flows into the strong-coupling
quantum critical point at (1,1) which corresponds to a uniform
system and so perfect transmission. At point (1,0), the level is fully
incorporated into the D lead (V, = 1) while completely disconnected
from the S lead (Vg = 0); the roles of source and drain are reversed at
(0,1). Single barrier scaling is expected along the straight lines from
(1,1) to either (1,0) or (0,1).
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disconnected semi-infinite Luttinger liquids, a situation for
which the transmission is clearly zero.

Low temperature properties are determined by the approach
to the weakly coupled fixed point (1,0) given by the per-
turbative RG equations (42). Near this point, the equation
for Vg reduces to d InVs/d Int. = —r. Thus we see that
G x VS2 o T~ near the weak-coupling fixed point. Note
that the gate resistance does not enter this scaling relation;
physically, since the level is incorporated into the D lead,
charge can flow freely out of the level, and so the gate potential
fluctuations have no effect.

In the vicinity of the strong-coupling fixed point, we note
that the double barrier problem can be mapped onto an effective
single barrier problem with effective potential [39]

Veir cos[7 (€4 + 1/2)] cos(24/76),

where 6 is the plasmonlike displacement field which is dual to
(¢ps + ¢p)/2. The operator here corresponds to 2k backscat-
tering; we neglect 4k backscattering (which is irrelevant for
g7 > 1/4) and other higher order processes.

The 2kr reflection vanishes on resonance, €; = 0, for a
symmetric double barrier, leading, as mentioned above, to
perfect transmission with G = e?/h. (The approach to this
value is controlled by operators we have neglected here, as
discussed in Refs. [40,84].) A small detuning of ¢; from
resonance through an applied gate voltage, AV,, causes a
backscattering amplitude that is linear in A'V,. Another way to
tune away from the unitary resonance is by inducing a slight
asymmetry, Vs # Vp.In this case, the 2k backscattering term
is proportional to the bare value of Vs — Vp. Thus the fixed
point at Vg = Vp and AV = 0 is unstable in both directions,
as observed in the experiment in Refs. [15,16].

Finally, in the off-resonant (¢; # 0) weak-coupling case,
an extension of the RG equations applies [79]. These show
that for asymmetric barriers the behavior off resonance is the
same as on resonance, namely flow to a state in which there
are two disconnected Luttinger liquid leads. However, in the
symmetric barrier case (Vs = Vp but €; # 0), though the flow
is naturally toward weak coupling, the weak-coupling ground
state is not the same as in the on-resonant case discussed
in Sec. VIB [79,83]. Here the resonant level is either filled
or occupied in the ground state—the ground state is not
degenerate. The leading process connecting the two leads
is cotunneling via the level; this process is irrelevant, as
for tunneling through a single barrier. Thus the system is
ultimately cut in two—the source lead and drain lead are
disconnected from each other—and the conductance is zero
[79,83]. The final state in the off-resonant symmetric case is
therefore the same as that in both the resonant and off-resonant
asymmetric cases.

As a function of either asymmetry Vs-Vp or energy
detuning AVg, then, there is a quantum phase transition
from the fully connected uniform ground state at (1,1) to
two disconnected leads. In the experiment of Refs. [15,16],
this transition and the quantum critical point at Vg = Vp and
€4 = 0 are observed by tuning the couplings and energy level.
Note that at both strong and weak coupling, the effect of barrier
asymmetry is similar to that of detuning the resonant level. At
strong coupling, both produce backscattering of the same form
as scattering from a single (small) barrier. At weak coupling,

(44)
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(a) Regime (ii) (b) Regime (iii)
(0,1) 1,1 0,1) (1,1)
V Vet e
Localized !
————— Localk ed\\‘ :"
0,0 ! (1.0) 0,0 v (10
0.0) v, 0,0) v, (.0

FIG. 4. (Color online) Schematic representation of the RG flow
of the two tunneling amplitudes, Vs and Vp, when the level is on
resonance and the dissipation is strong. (a) Regime (ii), re > 2
but r < 3. (b) Regime (iii), » > 3. The dotted line marks the BKT
transition between a localized state in which the level is disconnected
from the leads, (0,0), and an extended state in which the level joins
seamlessly with either one [(0,1) or (1,0)] or both leads [(1,1)].

both cause flow to the case of a single barrier cutting the
system. Thus the scaling is expected to be the same along
both directions, a feature seen in the experimental data as well
[15,16]. Furthermore, the scaling along the entire vertical line
from (1,1) to (1,0) is thought to be given by single barrier
scaling [39,40,84,85].

Turning now to the case of strong dissipation and parame-
ters for which there is not flow to strong coupling—namely, in
regime (iii) defined above or regime (ii) with V < V*—we see
that the asymmetry of the system does not cause a major effect.
In the symmetric case, as discussed above in Sec. VI B, there
is a BKT transition between the (0,0) disconnected level and
the (1,1) uniform system phases. Likewise, in the presence of
asymmetry there is a BKT transition between the disconnected
level and the (0,1) split system phases. This latter transition
has been studied in detail in the context of tunneling to a single
lead in the presence of gate dissipation [30,32,47,58,59,63,81].
It corresponds to the classic localized-delocalized transition in
the spin boson model [3,36]. Thus in the Vs-Vp plane there is a
line along which a BKT transition occurs between a localized
and an extended phase: Fig. 4 shows schematic RG flows when
the level is on resonance for regimes (ii) and (iii). With regard
to the flow along the lines (0,0) <> (0,1) and (0,0) < (1,0),
since it is known that for a single lead the delocalized phase
appears for any strength of dissipation for sufficiently large
Vp [i.e., there is no analog of regime (iii) of the symmetric
coupling case] [47], then the runaway flow from (1,1) to (1,0)
always occurs.

VII. SEQUENTIAL TUNNELING

We have seen that resonant tunneling is destroyed by dissi-
pation in our system except under very special conditions—the
system must have symmetric coupling to the leads and be tuned
on resonance. If these conditions are not met, the properties of
the system are described by tunneling through a single effective
barrier (at low temperature). However, even under the special
resonant conditions, resonant tunneling may be destroyed if
the dissipation is sufficiently strong—regimes (ii) and (iii) of
Sec. VIB. In this case, the low temperature properties of the
system are given by sequential tunneling through the localized
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state. In the case of a level embedded in Luttinger liquid, this
regime has been analyzed in detail [46]. Here, we check that
our model of Sec. II describes the sequential tunneling regime
as well.

The sequential tunneling regime is treated using rate
equations in which the key ingredient is the tunneling rate
from the level to each of the leads [4,46], in our case 'y and
I'p for the source and drain leads. These tunneling rates are
modified by the coupling to the electromagnetic environment,
an effect known as the dynamical Coulomb blockade. We focus
on I'g as an illustration and proceed via two paths, showing
that they give the same result: (1) direct calculation from
the Hamiltonian Eq. (13) and (2) use of standard dynamical
Coulomb blockade theory based on the impedance seen from
the tunnel junction.

First, coupling to the resistive environment produces a
power law suppression in the tunneling rate as a function
of temperature; I's = I‘gTz’i' defines the exponent rg. By
Fourier transformation, a power law decay in time of the
phase correlations as in Eq. (16), i.e., t72r2, produces a
corresponding dependence on temperature, namely 722, Thus,
from the Hamiltonian Eq. (13) and the correlations of the
phase operators ¢, and @3 given in Eqs. (14)—(16), we find
immediately

re =r/4+(Cg/Cs)rs/4

1 CG 2 CG 2 Feff
=-11 — — = —. 4
4|: +<C2)i|r+<c>:> 0Ty )

In the second approach, according to dynamical Coulomb
blockade theory [4], the temperature dependence of the
tunneling rate is controlled by the real part of the low frequency
impedance seen between the two sides of the tunneling barrier.
The effective circuit is thus shown in Fig. 5 [86]. Indeed,
calculating the impedance of this circuit in the low frequency
limit yields Z =~ i /wCyx + r¢Rp, where rg is given by the
expression above. A simple way to understand the circuit result
can be constructed as follows: when an electron tunnels across
the source barrier, it causes current in all three branches of the
circuit (source, drain, and gate) because of the image charge
produced on the three capacitors. The capacitance determines
the fraction of the current in each resistor: C /Cx flows through
the drain circuit, C;/Cyx through the gate, and C/Cyx stays
on the source capacitor so that 1 — C/Cyx flows through the

C Ry
— ==

— |
R
c—= G °
|
=
R/2

FIG. 5. (Color online) Effective impedance seen by an electron
tunneling across the S barrier in the sequential tunneling regime.
The real part of this impedance is r;Rp, which controls the low
temperature scaling of the tunneling rate.
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source circuit. Since dissipation is given by the square of the
current, we have

c\’r (Cg\* C\’r
A (i B (i - =)L ws
s <C2)2+(Cz>rc+< C2>2 o)

which simplifies to the expression in Eq. (45). To summarize
this section, we see that the approach using the fluctuating
modes introduced in Sec. II reassuringly reproduces the
result of dynamical Coulomb blockade theory. Results for the
conductance in the sequential tunneling regime may then be
obtained by using rate equations [4,46].

VIII. CONCLUSION

In this paper, we investigate the problem of resonant tunnel-
ing through a quantum dot in the presence of two dissipative
baths, one coming from the resistive source and drain leads
and the other from a resistive gate coupled to the energy of
the resonant level. We treat a spinless (spin polarized) level
relevant for experiment [15,16,67] and consider an electrically
source-drain symmetric case, Cs = Cp and Ry = Rp, though
the quantum mechanical tunnel coupling is not necessarily
symmetric. The first step is to identify the independent
electromagnetic modes which couple to the environment;
in our case there are two since the total charge in the dot
does not couple. Then, by using bosonization and unitary
transformations, we map our problem to several resonant-level
Luttinger-liquid-type models. Because of having two distinct
dissipative baths, the Luttinger liquid model that results is
not of the simplest form (i.e., a resonant level embedded in
a homogeneous Luttinger liquid) and, in particular, involves
two interaction parameters [Egs. (23) and (25)]. Nevertheless,
the standard Luttinger liquid tools such as RG based on the
Coulomb-gas representation can be used to analyze the new
models. We elucidate in what ways our model is similar to the
standard Luttinger liquid case and in what ways it differs.

Two QPT occur in our system, and its different ground
states are associated with three RG fixed points that we label
(A)—(C). The first QPT occurs for strong dissipation and is of
the BKT type. When the resonant level is exactly on resonance
with the source and drain leads and is symmetrically coupled
to them, this QPT separates (A) a twofold degenerate state
at weak coupling in which the system is cut in two and
the level can be either filled or empty [(0,0)] from (B) a
state in which there is a uniform source-drain system plus
a disconnected fractional degree of freedom [(1,1)], which for
the case r = 1 is a Majorana mode thus having a degeneracy
of +/2. State (B) incorporates effects similar to those of the
two-channel Kondo model, with the two fermionic leads (S
and D) acting as different channels. When the resonant level
is not exactly symmetrically coupled to the leads (but still
on resonance), this BKT transition still occurs for sufficiently
strong dissipation. It separates state (A) from (C), a state in
which the system is simply cut in two with the resonant level
incorporated into either the source or drain lead [(1,0) or (0, 1)].
The existence and nature of this QPT is the same as in the
simple resonant level in a Luttinger liquid model. However,
crossing or observing this QPT requires strong dissipation.
The presence of two dissipative baths in our system eases the
criterion needed to observe the BKT transition; the way in
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which the two baths combine to produce effectively stronger
dissipation is given by r.¢ in Eq. (43). In addition, the two baths
provide a flexibility in parameters that relaxes the constraint
gr = & of the simple Luttinger liquid.

The second QPT occurs as one tunes away from the special
point of symmetric coupling with the level on resonance. Either
an asymmetry in the coupling or a detuning of the energy of
the resonant level causes the system to flow away from the
unusual critical state (B) above to the state (C). The system is
cut in two with the resonant level either incorporated into the
source or drain lead (asymmetry) or becoming empty or full
(level detuning)—these various possibilities are all equivalent.
State (C) is not degenerate and is a stable fixed point of the
system. We noted that upon approaching both fixed points (B)
and (C), the gate dissipation becomes ineffective: the flow is
controlled simply by the source-drain dissipation, a situation
equivalent to the simple resonant level in a Luttinger liquid
model. However, in the full crossover from (B) to (C), the gate
dissipation can be expected to play a significant role.

The mapping from the dissipative models that we consider
to various Luttinger liquid models shows that quantum open
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systems can be used to emulate 1D interaction effects. This
connection has been made explicit in a number of recent works
[15,16,67]. Clearly, this connection can be further developed,
leading to ways in which quantum dissipative systems can be
used to emulate other more complicated interacting systems.
Several extensions of our work come readily to mind: going
beyond the electrically symmetric case that we have considered
(Cs = Cp and Rg = Rp), exploring the role of the spin degree
of freedom (which has been suppressed here), and studying the
scaling near strong coupling in the case of two baths (what role
does the dissipative gate play?). We leave these for future work.
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