Statistics for A Generalized Lyapunov Construction for Proving Stabilization by Noise

Total visits

views
A Generalized Lyapunov Construction for Proving Stabilization by Noise 502

Total visits per month

views
September 2024 0
October 2024 0
November 2024 0
December 2024 2
January 2025 0
February 2025 0
March 2025 0

File Visits

views
Kolba_duke_0066D_11285.pdf 586

Top country views

views
United States 94
China 67
Germany 41
United Kingdom 41
France 27
Canada 13
Russia 10
Netherlands 5
South Korea 4
Portugal 4
Singapore 3
A2 2
Austria 2
Australia 2
Belarus 2
India 2
Iran 2
Romania 2
Ukraine 2
Switzerland 1
Czechia 1
Algeria 1
Spain 1
European Union 1
Hong Kong SAR China 1
Italy 1
Sri Lanka 1
Mexico 1
New Zealand 1
Philippines 1
Poland 1
Slovakia 1
Trinidad & Tobago 1
Taiwan 1
Vietnam 1
South Africa 1

Top city views

views
Beijing 26
Alexandria 25
Durham 12
Göttingen 10
Omemee 10
East Elmhurst 8
Elmhurst 8
Kiez 7
Tianjin 5
Lisbon 4
Seoul 4
Woodbridge 4
Changchun 3
Changi 3
San Jose 3
Utica 3
Baltimore 2
Canberra 2
Iasi 2
Jinan 2
Lake Forest 2
Minsk 2
Moscow 2
North Scituate 2
Pirooz 2
Providence 2
Sainte-thérèse 2
Shenzhen 2
Yulee 2
Algiers 1
Anderson 1
Ann Arbor 1
Badajoz 1
Barstow 1
Bedford 1
Bel Air 1
Blackwood 1
Bratislava 1
Brooklyn 1
Carson City 1
Cary 1
Chaoyang 1
Chicago 1
Chongqing 1
Cincinnati 1
Claremont 1
Cupertino 1
Dunedin 1
Givry 1
Greytown 1
Guadalajara 1
Hackensack 1
Halethorpe 1
Hanoi 1
Haverford 1
Houston 1
Hösting 1
Kiev 1
Klagenfurt 1
Klosterneuburg 1
London 1
Loveland 1
Luft 1
Montreal 1
Mountain View 1
Munich 1
Neuchâtel 1
New Delhi 1
New Orleans 1
North Point 1
Oberasbach 1
Overland Park 1
Oxford 1
Poznan 1
Quezon 1
Salt Lake City 1
Sandwich 1
Scranton 1
Shanghai 1
State College 1
Stuttgart 1
Suzhou 1
Taipei 1
Taiyüan 1
Tokyo 1
Valparaiso 1
Winchester 1
Winston Salem 1