Browsing by Author "Barbachan Mansur, Nacime Salomao"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Coverage maps demonstrate 3D Chopart joint subluxation in weightbearing CT of progressive collapsing foot deformity.(Scientific reports, 2022-11) Behrens, Andrew; Dibbern, Kevin; Dibbern, Kevin; Lalevée, Matthieu; Alencar Mendes de Carvalho, Kepler; Lintz, Francois; Barbachan Mansur, Nacime Salomao; de Cesar Netto, CesarA key element of the peritalar subluxation (PTS) seen in progressive collapsing foot deformity (PCFD) occurs through the transverse tarsal joint complex. However, the normal and pathological relations of these joints are not well understood. The objective of this study to compare Chopart articular coverages between PCFD patients and controls using weight-bearing computed tomography (WBCT). In this retrospective case control study, 20 patients with PCFD and 20 matched controls were evaluated. Distance and coverage mapping techniques were used to evaluate the talonavicular and calcaneocuboid interfaces. Principal axes were used to divide the talar head into 6 regions (medial/central/lateral and plantar/dorsal) and the calcaneocuboid interface into 4 regions. Repeated selections were performed to evaluate reliability of joint interface identification. Surface selections had high reliability with an ICC > 0.99. Talar head coverage decreases in plantarmedial and dorsalmedial (- 79%, p = 0.003 and - 77%, p = 0.00004) regions were seen with corresponding increases in plantarlateral and dorsolateral regions (30%, p = 0.0003 and 21%, p = 0.002) in PCFD. Calcaneocuboid coverage decreased in plantar and medial regions (- 12%, p = 0.006 and - 9%, p = 0.037) and increased in the lateral region (13%, p = 0.002). Significant subluxation occurs across the medial regions of the talar head and the plantar medial regions of the calcaneocuboid joint. Coverage and distance mapping provide a baseline for understanding Chopart joint changes in PCFD under full weightbearing conditions.Item Open Access The Use of Advanced Semiautomated Bone Segmentation in Hallux Rigidus.(Foot & ankle orthopaedics, 2022-10) de Carvalho, Kepler Alencar Mendes; Mallavarapu, Vineel; Ehret, Amanda; Dibbern, Kevin; Lee, Hee Young; Barbachan Mansur, Nacime Salomao; Laleveé, Matthieu; de Cesar Netto, CesarBackground
Weightbearing computed tomography (WBCT) measurements allow evaluation of several anatomical points for a correct clinical-radiographic diagnosis of pathologies, such as hallux rigidus (HR). In addition, a new semiautomatic segmentation software obtains automated 3D measurements from WBCT scan data sets, minimizing errors in reading angular measurements. The study's objective was (1) to evaluate the reliability of WBCT semiautomatic imaging measures in HR, (2) to evaluate correlation and agreement between manual and semiautomatic measures in the setting of HR, and (3) to compare semiautomatic measurements between pathologic (HR) and standard control groups.Methods
A retrospective study of HR patients was performed including 20 feet with HR. WBCT manual and semiautomatic 3D measurements were performed using the following parameters: (1) first metatarsal-proximal phalanx angle (1stMPP), (2) hallux valgus angle (HVA), (3) first to second intermetatarsal angle (IMA), (4) hallux interphalangeal angle (IPA), (5) first metatarsal length (1stML), (6) second metatarsal length (2ndML), (7) first metatarsal declination angle (1stMD), (8) second metatarsal declination angles (2ndMD), and (9) metatarsus primus elevatus (MPE). The differences between pathologic and control cases were assessed with a Wilcoxon test.Results
Interobserver and intraobserver agreement for manual vs semiautomatic WBCT measurements demonstrated excellent reliability. According to the Pearson coefficient, there was a strong positive linear correlation between both methods for the following parameters evaluated: HVA (ρ = 0.96), IMA (ρ = 0.86), IPA (ρ = 0.89), 1stML (ρ = 0.96), 2ndML (ρ = 0.91), 1stMD (ρ = 0.86), 2ndMD (ρ = 0.95), and MPE (ρ = 0.87). Comparison between the pathologic group with HR and the control (standard) group allowed for the differentiating of the pathologic (HR) from the non-pathologic conditions for MPE (p < 0.05).Conclusion
Semiautomatic measurements are reproducible and comparable to measurements performed manually, showing excellent interobserver and intraobserver agreement. The software used differentiated pathologic from nonpathologic conditions when submitted to semiautomatic MPE measurements.Level of evidence
Level III, retrospective comparative study.