Browsing by Author "Takacs, Istvan"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Open Access Evidence of transcranial direct current stimulation-generated electric fields at subthalamic level in human brain in vivo.(Brain stimulation, 2018-07) Chhatbar, Pratik Y; Kautz, Steven A; Takacs, Istvan; Rowland, Nathan C; Revuelta, Gonzalo J; George, Mark S; Bikson, Marom; Feng, WuweiBACKGROUND:Transcranial direct current stimulation (tDCS) is a promising brain modulation technique for several disease conditions. With this technique, some portion of the current penetrates through the scalp to the cortex and modulates cortical excitability, but a recent human cadaver study questions the amount. This insufficient intracerebral penetration of currents may partially explain the inconsistent and mixed results in tDCS studies to date. Experimental validation of a transcranial alternating current stimulation-generated electric field (EF) in vivo has been performed on the cortical (using electrocorticography, ECoG, electrodes), subcortical (using stereo electroencephalography, SEEG, electrodes) and deeper thalamic/subthalamic levels (using DBS electrodes). However, tDCS-generated EF measurements have never been attempted. OBJECTIVE:We aimed to demonstrate that tDCS generates biologically relevant EF as deep as the subthalamic level in vivo. METHODS:Patients with movement disorders who have implanted deep brain stimulation (DBS) electrodes serve as a natural experimental model for thalamic/subthalamic recordings of tDCS-generated EF. We measured voltage changes from DBS electrodes and body resistance from tDCS electrodes in three subjects while applying direct current to the scalp at 2 mA and 4 mA over two tDCS montages. RESULTS:Voltage changes at the level of deep nuclei changed proportionally with the level of applied current and varied with different tDCS montages. CONCLUSIONS:Our findings suggest that scalp-applied tDCS generates biologically relevant EF. Incorporation of these experimental results may improve finite element analysis (FEA)-based models.