Browsing by Subject "Calcaneus"
Results Per Page
Sort Options
Item Open Access A new fully automated approach for aligning and comparing shapes.(Anatomical record (Hoboken, N.J. : 2007), 2015-01) Boyer, Doug M; Puente, Jesus; Gladman, Justin T; Glynn, Chris; Mukherjee, Sayan; Yapuncich, Gabriel S; Daubechies, IngridThree-dimensional geometric morphometric (3DGM) methods for placing landmarks on digitized bones have become increasingly sophisticated in the last 20 years, including greater degrees of automation. One aspect shared by all 3DGM methods is that the researcher must designate initial landmarks. Thus, researcher interpretations of homology and correspondence are required for and influence representations of shape. We present an algorithm allowing fully automatic placement of correspondence points on samples of 3D digital models representing bones of different individuals/species, which can then be input into standard 3DGM software and analyzed with dimension reduction techniques. We test this algorithm against several samples, primarily a dataset of 106 primate calcanei represented by 1,024 correspondence points per bone. Results of our automated analysis of these samples are compared to a published study using a traditional 3DGM approach with 27 landmarks on each bone. Data were analyzed with morphologika(2.5) and PAST. Our analyses returned strong correlations between principal component scores, similar variance partitioning among components, and similarities between the shape spaces generated by the automatic and traditional methods. While cluster analyses of both automatically generated and traditional datasets produced broadly similar patterns, there were also differences. Overall these results suggest to us that automatic quantifications can lead to shape spaces that are as meaningful as those based on observer landmarks, thereby presenting potential to save time in data collection, increase completeness of morphological quantification, eliminate observer error, and allow comparisons of shape diversity between different types of bones. We provide an R package for implementing this analysis.Item Open Access Biomechanical comparison of plantar-to-dorsal and dorsal-to-plantar screw fixation strength for subtalar arthrodesis.(Einstein (Sao Paulo, Brazil), 2020-01) Chaudhari, Nileshkumar; Godoy-Santos, Alexandre Leme; Netto, Cesar de Cesar; Rodriguez, Ramon; Dun, Shouchen; He, Jun Kit; McKissack, Haley; Fleisig, Glenn S; Pires, Eduardo Araujo; Shah, AshishOBJECTIVE:To compare screw fixation strength for subtalar arthrodesis. METHODS:Eight matched pairs of cadaver feet underwent subtalar joint arthrodesis with two 7.3mm cannulated screws. Randomization was used to assign screw orientation, such that one foot in each pair was assigned dorsal to plantar screw orientation (DP Group), and the other foot, plantar to dorsal orientation (PD Group). Standard surgical technique with fluoroscopy was used for each approach. Following fixation, each specimen was loaded to failure with a Bionix ® 858 MTS device, applying a downward axial force at a distance to create torque. Torque to failure was compared between DP and PD Groups using Student's t test, with p=0.05 used to determine statistical significance. RESULTS:Statistical analysis demonstrated that the mean torque to failure slightly favored the DP Group (37.3Nm) to the PD Group (32.2Nm). However, the difference between the two groups was not statistically significant (p=0.55). CONCLUSION:In subtalar arthrodesis, there is no significant difference in construct strength between dorsal-to-plantar and plantar-to-dorsal screw orientation. The approach chosen by the surgeon should be based on factors other than the biomechanical strength of the screw orientation.Item Open Access Body Mass Prediction from Dental and Postcranial Measurements in Primates and Their Nearest Relatives(2017) Yapuncich, Gabriel StephenTo evaluate alternative hypotheses for the role of mass and muscle-induced forces in joint construction, the allometric scaling relationships of the articular facets of the talus were estimated with phylogenetic regressions. Many articular surfaces scale with significant positive allometry, suggesting that mass-induced forces are an important influence for the bony architecture of synovial joints.
Using a large sample of primates and their nearest living relatives, body mass prediction equations were generated from the articular facet areas of the talus and calcaneus. Those facets that scaled with positive allometry were both accurate and precise. Compared to previously published prediction equations, the novel equations developed for this study were substantially more reliable.
Several methodological debates for body mass prediction were also evaluated. Prediction equations had their highest correlations when species with greater than a 20% difference between sexes are represented by both males and females. Using dental measurements from cercopithecoids housed at the National Museum of Natural History, predictive accuracy was maximized when body mass was predicted using a mean value estimated from a robust sample. Even when only a single individual was represented, tests of predictive accuracy using primates with associated body masses from several localities (Hacienda La Pacifica, Costa Rica; Gombe Stream National Park, Tanzania; Amboseli Reserve, Kenya; and the Duke Lemur Center) demonstrated that prediction equations provide more accurate predictions of species mean values than individual-specific values.
The importance of longitudinal change in body mass was evaluated by comparing coefficients of variation for individual and mean body mass of the populations at La Pacifica, Gombe, and the Duke Lemur Center. Individual coefficients of variation were significantly greater than the population coefficients of variation, which suggests that mean body masses are more stable “targets” of prediction.
Finally, the novel prediction equations were applied to a sample of sympatric primates with associated dental and postcranial elements from the middle Eocene of Wyoming, including Notharctus tenebrosus, Smilodectes gracilis, Omomys carteri, and Hemiacodon gracilis. New body mass predictions suggest two pairs of similarly sized primates: N. tenebrosus and S. gracilis (~2500g), and O. carteri and H. gracilis (~400g). Thus, niche partitioning between closely related taxa was probably achieved through differences in diets, rather than differences in body mass.
Item Open Access Predicting euarchontan body mass: A comparison of tarsal and dental variables.(American journal of physical anthropology, 2015-07) Yapuncich, Gabriel S; Gladman, Justin T; Boyer, Doug MMultiple meaningful ecological characterizations of a species revolve around body mass. Because body mass cannot be directly measured in extinct taxa, reliable body mass predictors are needed. Many published body mass prediction equations rely on dental dimensions, but certain skeletal dimensions may have a more direct and consistent relationship with body mass. We seek to evaluate the reliability of prediction equations for inferring euarchontan body mass based on measurements of the articular facet areas of the astragalus and calcaneus.Surface areas of five astragalar facets (n = 217 specimens) and two calcaneal facets (n = 163) were measured. Separate ordinary least squares and multiple regression equations are presented for different levels of taxonomic inclusivity, and the reliability of each equation is evaluated with the coefficient of determination, standard error of the estimate, mean prediction error, and the prediction sum of squares statistic. We compare prediction errors to published prediction equations that utilize dental and/or tarsal measures. Finally, we examine the effects of taxonomically specific regressions and apply our equations to a diverse set of non-primates.Our results reveal that predictions based on facet areas are more reliable than most linear dental or tarsal predictors. Multivariate approaches are often better than univariate methods, but require more information (making them less useful for fragmentary fossils). While some taxonomically specific regressions improve predictive ability, this is not true for all primate groups.Among individual facets, the ectal and fibular facets of the astragalus and the calcaneal cuboid facet are the best body mass predictors. Since these facets have primarily concave curvature and scale with positive allometry relative to body mass, it appears that candidate skeletal proxies for body mass can be identified based on their curvature and scaling coefficients.Item Open Access ROLE OF BONE GRAFTS AND BONE GRAFT SUBSTITUTES IN ISOLATED SUBTALAR JOINT ARTHRODESIS.(Acta ortopedica brasileira, 2017-09) Shah, Ashish; Naranje, Sameer; Araoye, Ibukunoluwa; Elattar, Osama; Godoy-Santos, Alexandre Leme; Cesar, Cesar DEObjectives
The purpose of this study was to compare union rates for isolated subtalar arthrodesis with and without the use of bone grafts or bone graft substitutes.Methods
We retrospectively reviewed 135 subtalar fusions with a mean follow-up of 18 ± 14 months. The standard approach was used for all surgeries. Graft materials included b-tricalcium phosphate, demineralized bone matrix, iliac crest autograft and allograft, and allograft cancellous chips. Successful subtalar fusion was determined clinically and radiographically.Results
There was an 88% (37/42) union rate without graft use and an 83% (78/93) union rate with bone graft use. Odds ratio of union for graft versus no graft was 0.703 (95% CI, 0.237-2.08). The average time to union in the graft group was 3 ± 0.73 months and 3 ± 0.86 in the non-graft group, with no statistically significant difference detected (p = 0.56).Conclusion
Graft use did not improve union rates for subtalar arthrodesis. Level of Evidence IV, Case Series.