Browsing by Subject "Cdc42"
Results Per Page
Sort Options
Item Open Access A Role for Gic1 and Gic2 in Promoting Cdc42 Polarization(2018) Daniels, Christine NicoleThe Rho GTPase Cdc42 is a master regulator of cell polarity that orchestrates reorganization of the cytoskeleton. During polarity establishment, active GTP-Cdc42 accumulates at a part of the cell cortex that becomes the front of the cell. Localized GTP-Cdc42 orients the cytoskeleton through a set of “effector” proteins that bind specifically to GTP-Cdc42 and not GDP-Cdc42. A family of Cdc42 effectors, called GICs in yeast and BORGs in mammals, have been implicated in regulation of both the actin cytoskeleton and the septin cytoskeleton. Yeast cells lacking both Gic1 and Gic2 are able to polarize and grow at low temperatures, but many mutant cells fail to polarize the cytoskeleton at high temperature. This led to the conclusion that GICs communicate between Cdc42 and different cytoskeletal elements.
To better characterize the role of GIC proteins in yeast, we utilized time-lapse fluorescent microscopy to examine morphogenetic events in living single cells. Surprisingly, we found that not only the cytoskeleton but also Cdc42 itself failed to polarize in many gic1 gic2 mutant cells at high temperature. This observation indicates that GICs may act upstream of polarization rather than downstream.
Polarization of Cdc42 is triggered by cell-cycle progression, and in particular by G1 Cyclin-dependent kinase (CDK) activity. Using a live-cell reporter for G1 CDK activation, we found that cells lacking GICs were not defective in CDK activation, but showed a specific defect in polarization downstream of the CDK. Previous work had implicated the scaffold protein Bem1 in a positive feedback loop important for polarization. Cells lacking GICs failed to polarize Bem1 as well as Cdc42 at high temperature. Future work will be directed at understanding how GICs contribute to polarity establishment. Because many of the mechanisms and proteins involved in polarization are highly conserved, we anticipate our findings will help inform how this process regulated in higher eukaryotes.
Item Open Access Chemotropism and Cell-Cell Fusion in Fungi.(Microbiology and molecular biology reviews : MMBR, 2022-02-09) Clark-Cotton, Manuella R; Jacobs, Katherine C; Lew, Daniel JFungi exhibit an enormous variety of morphologies, including yeast colonies, hyphal mycelia, and elaborate fruiting bodies. This diversity arises through a combination of polar growth, cell division, and cell fusion. Because fungal cells are nonmotile and surrounded by a protective cell wall that is essential for cell integrity, potential fusion partners must grow toward each other until they touch and then degrade the intervening cell walls without impacting cell integrity. Here, we review recent progress on understanding how fungi overcome these challenges. Extracellular chemoattractants, including small peptide pheromones, mediate communication between potential fusion partners, promoting the local activation of core cell polarity regulators to orient polar growth and cell wall degradation. However, in crowded environments, pheromone gradients can be complex and potentially confusing, raising the question of how cells can effectively find their partners. Recent findings suggest that the cell polarity circuit exhibits searching behavior that can respond to pheromone cues through a remarkably flexible and effective strategy called exploratory polarization.Item Open Access How Diffusion Impacts Cortical Protein Distribution in Yeasts.(Cells, 2020-04-30) Moran, Kyle D; Lew, Daniel JProteins associated with the yeast plasma membrane often accumulate asymmetrically within the plane of the membrane. Asymmetric accumulation is thought to underlie diverse processes, including polarized growth, stress sensing, and aging. Here, we review our evolving understanding of how cells achieve asymmetric distributions of membrane proteins despite the anticipated dissipative effects of diffusion, and highlight recent findings suggesting that differential diffusion is exploited to create, rather than dissipate, asymmetry. We also highlight open questions about diffusion in yeast plasma membranes that remain unsolved.Item Open Access Identification of a Novel Formin-GAP Complex and Its Role in Macrophage Migration and Phagocytosis(2011) Mason, Frank MarshallEssential and diverse biological processes such as cell division, morphogenesis and migration are regulated by a family of molecular switches called Rho GTPases. These proteins cycle between active, GTP-bound states and inactive, GDP-bound state and this cycle is regulated by families of proteins called Rho GEFs and GAPs. GAPs are proteins that stimulate the intrinsic GTPase activity of Rho-family proteins, potentiating the active to inactive transition. GAPs target specific spatiotemporal pools of GTPases by responding to cellular cues and utilizing protein-protein interactions. By dissecting these interactions and pathways, we can infer and then decipher the biological functions of these GAPs.
This work focuses on the characterization of a novel Rho-family GAP called srGAP2. In this study, we identify that srGAP2 is a Rac-specific GAP that binds a Formin-family member, Formin-like 1 (FMNL1). FMNL1 is activated by Rac and polymerizes, bundles and severs actin filaments. srGAP2 specifically inhibits the actin severing of active FMNL1, and the assembly of an srGAP2-FMNL1 complex is regulated by Rac. Work on FMNL1 shows that it plays important roles in regulating phagocytosis and adhesion in macrophages. To learn more about srGAP2 and its role in regulating FMNL1, we studied macrophages isolated from an srGAP2 KO mouse we have recently generated. This has proven quite fruitful: loss of srGAP2 decreases the ability for macrophages to invade through extracellular matrix but increases phagocytosis. These results suggest that these two processes might be coordinated in vivo by srGAP2 and that srGAP2 might be a critical regulator of the innate immune system.
Item Open Access Imaging Polarization in Budding Yeast.(Methods Mol Biol, 2016) McClure, Allison W; Wu, Chi-Fang; Johnson, Sam A; Lew, Daniel JWe describe methods for live-cell imaging of yeast cells that we have exploited to image yeast polarity establishment. As a rare event occurring on a fast time-scale, imaging polarization involves a trade-off between spatiotemporal resolution and long-term imaging without excessive phototoxicity. By synchronizing cells in a way that increases resistance to photodamage, we discovered unexpected aspects of polarization including transient intermediates with more than one polarity cluster, oscillatory clustering of polarity factors, and mobile "wandering" polarity sites.Item Unknown Mechanisms for Controlling Cell Polarity in Yeast(2022) Moran, Kyle DonovanCell polarity is critical for essential functions in many types of cells. Rho-family GTPases are master regulators of cell polarity. Thus, mechanisms for controlling the activity of Rho GTPases are of both academic interest and practical concern. While much has been discovered about regulation of Rho GTPase activity by partners like GEFs, GAPs, and GDIs, there are still many things which remain unclear about how their behavior is enforced in cells of various kinds.
The budding yeast, Saccharomyces cerevisiae, has long been a model for studying cell polarity. Its Rho GTPase Cdc42 is responsible for defining a single polarity site for the purpose of either mating with a single partner or making a single bud. Other types of yeasts, however, can generate multiple polarity sites utilizing the same core polarity machinery. What are the rules which allow for such differences in behavior while using a similar set of proteins? We highlight key design principles established in mathematical models for Rho GTPase polarity machineries and show that they apply in budding yeast cells: strains featuring specific genetic perturbations which increase the total amount of polarity proteins can go from making one bud, to making multiple buds.
Bud emergence in yeast is enabled by cell cycle activity in G1. It is known that bud emergence also requires cytoskeletal changes which are orchestrated by Cdc42 and its effectors. How are these changes coordinated with cell cycle progression? It seems likely that G1 CDK activity regulates many aspects of Cdc42 polarization. We use live-cell fluorescence microscopy to reveal one such avenue whereby input from the cell cycle is required for many Cdc42 effector proteins to localize to sites with active Cdc42, thus restricting bud formation until the time is right.
Item Unknown Mechanisms of Cdc42 Polarization in Yeast(2016) Woods, Benjamin LeePolarization is important for the function and morphology of many different cell types. The keys regulators of polarity in eukaryotes are the Rho-family GTPases. In the budding yeast Saccharomyces cerevisiae, which must polarize in order to bud and to mate, the master regulator is the highly conserved Rho GTPase, Cdc42. During polarity establishment, active Cdc42 accumulates at a site on the plasma membrane characterizing the “front” of the cell where the bud will emerge. The orientation of polarization is guided by upstream cues that dictate the site of Cdc42 clustering. However, in the absence of upstream cues, yeast can still polarize in a random direction during symmetry breaking. Symmetry breaking suggests cells possess an autocatalytic polarization mechanism that can amplify stochastic fluctuations of polarity proteins through a positive feedback mechanism.
Two different positive feedback mechanisms have been proposed to polarize Cdc42 in budding yeast. One model posits that Cdc42 activation must be localized to a site at the plasma membrane. Another model posits that Cdc42 delivery must be localized to a particular site at the plasma membrane. Although both mechanisms could work in parallel to polarize Cdc42, it is unclear which mechanism is critical to polarity establishment. We directly tested the predictions of the two positive feedback models using genetics and live microscopy. We found that localized Cdc42 activation is necessary for polarity establishment.
While this explains how active Cdc42 localizes to a particular site at the plasma membrane, it does not address how Cdc42 concentrates at that site. Several different mechanisms have been proposed to concentrate Cdc42. The GDI can extract Cdc42 from membranes and selective mobilize GDP-Cdc42 in the cytoplasm. It was proposed that selectively mobilizing GDP-Cdc42 in combination with local activation could locally concentrate total Cdc42 at the polarity site. Although the GDI is important for rapid Cdc42 accumulation at the polarity site, it is not essential to Cdc42 concentration. It was proposed that delivery of Cdc42 by actin-mediated vesicle can act as a backup pathway to concentrate Cdc42. However, we found no evidence for an actin-dependent concentrating pathway. Live microscopy experiments reveal that prenylated proteins are not restricted to membranes, and can enter the cytoplasm. We found that the GDI-independent concentrating pathway still requires Cdc42 to exchange between the plasma membrane and the cytoplasm, which is supported by computational modeling. In the absence of the GDI, we found that Cdc42 GAP became essential for polarization. We propose that the GAP limits GTP-Cdc42 leak into the cytoplasm, which would be prohibitive to Cdc42 polarization.
Item Unknown Negative Feedback and Competition in the Yeast Polarity Establishment Circuit(2013) Wu, ChiFangMany cells spontaneously establish a polarity axis even in the absence of directional cues, a process called symmetry breaking. A central question concerns how cells polarize towards one, and only one, randomly oriented "front". The conserved Rhotype GTPase Cdc42p is an essential factor for both directed and spontaneous polarization in various organisms, whose local activation is thought to define the cell's front. We previously proposed that in yeast cells, a small stochastic cluster of GTP-Cdc42p at a random site on the cortex can grow into a large, dominating cluster via a positive feedback loop involving the scaffold protein Bem1p. As stochastic Cdc42p clusters could presumably arise at many sites, why does only one site become the dominating "front"? We speculated that competition between growing clusters for limiting factors would lead to growth of a single winning "front" at the expense of the others. Utilizing time-lapse imaging with high spatiotemporal resolution, we now document initiation of multiple polarized clusters that competed rapidly to resolve a winning cluster. Such multicluster intermediates are observed in wild-type yeast cells with functional directional cues, but the locations where they are initiated are biased by the spatial cues. In addition, we detected an unexpected oscillatory polarization in a majority of the cells breaking symmetry, in which polarity factors initially concentrated very brightly and then dimmed in an oscillatory manner, dampening down to a final intermediate level after 2-3 peaks. Dampened oscillation suggests that the polarity circuit contains an in-built negative feedback loop. Mathematical modeling predicts that negative feedback would confer robustness to the polarity circuit and make the kinetics of competition between polarity factor clusters relatively insensitive to polarity factor concentration.
We are trying to understand how competition between clusters occurs. We find that the yeast guanine-nucleotide dissociation inhibitor (GDI), Rdi1p, is needed for rapid competition between clusters. In the absence of Rdi1p the initial clustering of polarity
factors is slowed, and competition is also much slower: in some cases cells still have two clusters at the time of bud emergence and they form two buds. We suggest that in the absence of Rdi1p, the clusters compete for a limiting pool of Cdc42p, and that slow
exchange of Cdc42p on and off the membrane in the absence of Rdi1p leads to slow competition.
Item Unknown Parallel Actin-Independent Recycling Pathways Polarize Cdc42 in Budding Yeast.(Curr Biol, 2016-08-22) Woods, Benjamin; Lai, Helen; Wu, Chi-Fang; Zyla, Trevin R; Savage, Natasha S; Lew, Daniel JThe highly conserved Rho-family GTPase Cdc42 is an essential regulator of polarity in many different cell types. During polarity establishment, Cdc42 becomes concentrated at a cortical site, where it interacts with downstream effectors to orient the cytoskeleton along the front-back axis. To concentrate Cdc42, loss of Cdc42 by diffusion must be balanced by recycling to the front. In Saccharomyces cerevisiae, the guanine nucleotide dissociation inhibitor (GDI) Rdi1 recycles Cdc42 through the cytoplasm. Loss of Rdi1 slowed but did not eliminate Cdc42 accumulation at the front, suggesting the existence of other recycling pathways. One proposed pathway involves actin-directed trafficking of vesicles carrying Cdc42 to the front. However, we found no role for F-actin in Cdc42 concentration, even in rdi1Δ cells. Instead, Cdc42 was still able to exchange between the membrane and cytoplasm in rdi1Δ cells, albeit at a reduced rate. Membrane-cytoplasm exchange of GDP-Cdc42 was faster than that of GTP-Cdc42, and computational modeling indicated that such exchange would suffice to promote polarization. We also uncovered a novel role for the Cdc42-directed GTPase-activating protein (GAP) Bem2 in Cdc42 polarization. Bem2 was known to act in series with Rdi1 to promote recycling of Cdc42, but we found that rdi1Δ bem2Δ mutants were synthetically lethal, suggesting that they also act in parallel. We suggest that GAP activity cooperates with the GDI to counteract the dissipative effect of a previously unappreciated pathway whereby GTP-Cdc42 escapes from the polarity site through the cytoplasm.Item Unknown Ras1-mediated Morphogenesis in the Human Fungal Pathogen Cryptococcus Neoformans(2012) Ballou, Elizabeth RipleyCryptococcus neoformans pathogenesis results from the proliferation of yeast-phase fungal cells within the human host. The Ras1 signal transduction cascade is a major regulator of C. neoformans yeast and hyphal-phase morphogenesis, thermotolerance, and pathogenesis. Previous work identified the conserved Rho-GTPases Cdc42 and Rac1 as potential downstream targets of Ras1. In this work, we identify the duplicate Cdc42 and Rac paralogs, Cdc42 and Cdc420, and Rac1 and Rac2, as major effectors of Ras1-mediated thermotolerance and polarized growth, respectively. Using genetic and molecular biology techniques, including mutant analyses and over-expression studies, we determine the separate and overlapping roles of the four Rho-GTPases in Ras1-mediated morphogenesis. The Cdc42 paralogs are non-essential but are required for thermotolerance and pathogenesis. Ras1 acts through the Cdc42 paralogs to regulate cytokinesis via the organization of septin proteins. The major paralog, Cdc42, and the minor paralog, Cdc420, exhibit functional differences that are primarily dictated by transcriptional regulation. Additionally, CDC42 transcription is induced by exposure to temperature stress conditions. In contrast, Ras1 acts through the equivalently transcribed RAC paralogs to regulate polarized growth during both yeast and hyphal-phase morphogenesis. Rac1 and Rac2 are individually dispensable and appear to be functionally redundant but are synthetically required for yeast phase growth and spore development. The sub-cellular localization of the Rac paralogs is dependent on both Ras1 and post-translational modification by prenyl transferases. The identification and characterization of the conserved elements of the Ras1 signal transduction cascade presented here constitute an important contribution towards the design of anti-fungal agents that are based on existing Ras-pathway inhibitors.
Item Unknown Regulation of cell polarity by the cell cycle in Saccharomyces cerevisiae(2019-05-22) Araujo, Ana V.Cell polarity in Saccharomyces cerevisiae is essential for bud formation, which is regulated by the cell cycle. How this regulation occurs is poorly understood. The master regulator of polarity is a Rho-GTPase called Cdc42, which accumulates at a region on the plasma membrane and recruits its downstream effectors and the cell’s cytoskeleton, leading to bud emergence. Previous work suggested that at a time in G1 called Start, the G1 CDK kinase promotes Cdc42 polarization. Recent findings have shown the opposite: Cdc42 is able to polarize prior to Start in daughter cells. Nevertheless, bud growth does not begin until after Start, which lead to the question: what exactly is this kinase regulating? One possibility is that G1 CDK regulates effectors of Cdc42. A partial survey of effectors showed that some were only able to polarize after the kinase activity increased. The aim of this study was to continue surveying effectors of Cdc42, focusing on Gic1 and Gic2. Confocal microscopy was used to obtain movies of yeast cells, which were analyzed using a customized MATLAB program. Gic1 polarization did not occur prior to Start, but Gic2 could polarize pre-Start in daughter cells. Future investigation into the structural difference between Gic1 and Gic2 in combination with that of other effectors may suggest potential ways that G1 CDK regulates effector localization.