Browsing by Subject "DIVERSITY"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access A novel approach to assess livestock management effects on biodiversity of drylands(Ecological Indicators, 2015-01-01) Chillo, V; Ojeda, RA; Anand, M; Reynolds, JFIn drylands livestock grazing is the main production activity, but overgrazing due to mismanagement is a major cause of biodiversity loss. Continuous grazing around water sources generates a radial gradient of grazing intensity called the piosphere. The ecological sustainability of this system is questionable and alternative management needs to be evaluated. We apply simple indicators of species response to grazing gradients, and we propose a novel methodological approach to compare community response to grazing gradients (double reciprocal analysis). We assessed degradation gradients of biodiversity under different management strategies in semiarid rangelands of the Monte desert (Argentina) by analyzing changes in vegetation, ants and small mammal richness and diversity, and variation due to seasonality. At the species level, we determined the trend in abundance of each species along the gradient, and the potential cross-taxa surrogacy. At the community level, the new methodological consists of assessing the magnitude of biodiversity degradation along different piospheres by comparing the slopes of linear functions obtained by the double reciprocal analysis. We found that most species showed a decreasing trend along the gradient under continuous grazing; while under rotational grazing fewer species showed a decreasing trend, and a neutral trend (no change in the abundance along the gradient of grazing intensity) was the most common. We found that vegetation cannot be used as a surrogacy taxon of animal response. Moreover, weak cross-taxa surrogacy was found only for animal assemblages during the wet season. The double reciprocal analysis allowed for comparison of multi-taxa response under different seasons and management types. By its application, we found that constrains in precipitation interacted with disturbance by increasing the negative effect of grazing on vegetation, but not on animal assemblages. Continuous grazing causes biodiversity loss in all situations. Rotational grazing prevents the occurrence of vegetation degradation and maintains higher levels of animal diversity, acting as an opportunity for biodiversity conservation under current scenarios of land use extensification. Our approach highlights the importance of considering multi-taxa and intrinsic variability in the analysis, and should be of value to managers concerned with biodiversity conservation.Item Open Access Associations Between Nutrition, Gut Microbiome, and Health in A Novel Nonhuman Primate Model.(Scientific reports, 2018-07-24) Clayton, Jonathan B; Al-Ghalith, Gabriel A; Long, Ha Thang; Tuan, Bui Van; Cabana, Francis; Huang, Hu; Vangay, Pajau; Ward, Tonya; Minh, Vo Van; Tam, Nguyen Ai; Dat, Nguyen Tat; Travis, Dominic A; Murtaugh, Michael P; Covert, Herbert; Glander, Kenneth E; Nadler, Tilo; Toddes, Barbara; Sha, John CM; Singer, Randy; Knights, Dan; Johnson, Timothy JRed-shanked doucs (Pygathrix nemaeus) are endangered, foregut-fermenting colobine primates which are difficult to maintain in captivity. There are critical gaps in our understanding of their natural lifestyle, including dietary habits such as consumption of leaves, unripe fruit, flowers, seeds, and other plant parts. There is also a lack of understanding of enteric adaptations, including their unique microflora. To address these knowledge gaps, we used the douc as a model to study relationships between gastrointestinal microbial community structure and lifestyle. We analyzed published fecal samples as well as detailed dietary history from doucs with four distinct lifestyles (wild, semi-wild, semi-captive, and captive) and determined gastrointestinal bacterial microbiome composition using 16S rRNA sequencing. A clear gradient of microbiome composition was revealed along an axis of natural lifestyle disruption, including significant associations with diet, biodiversity, and microbial function. We also identified potential microbial biomarkers of douc dysbiosis, including Bacteroides and Prevotella, which may be related to health. Our results suggest a gradient-like shift in captivity causes an attendant shift to severe gut dysbiosis, thereby resulting in gastrointestinal issues.Item Open Access Changes in evapotranspiration and phenology as consequences of shrub removal in dry forests of central Argentina(Ecohydrology, 2015-10-01) Marchesini, VA; Fernández, RJ; Reynolds, JF; Sobrino, JA; Di Bella, CMMore than half of the dry woodlands (forests and shrublands) of the world are in South America, mainly in Brazil and Argentina, where in the last years intense land use changes have occurred. This study evaluated how the transition from woody-dominated to grass-dominated system affected key ecohydrological variables and biophysical processes over 20000ha of dry forest in central Argentina. We used a simplified surface energy balance model together with moderate-resolution imaging spectroradiometer-normalized difference vegetation index data to analyse changes in above primary productivity, phenology, actual evapotranspiration, albedo and land surface temperature for four complete growing seasons (2004-2009). The removal of woody vegetation decreased aboveground primary productivity by 15-21%, with an effect that lasted at least 4years, shortened the growing season between 1 and 3months and reduced evapotranspiration by as much as 30%. Albedo and land surface temperature increased significantly after the woody to grassland conversion. Our findings highlight the role of woody vegetation in regulating water dynamics and ecosystem phenology and show how changes in vegetative cover can influence regional climatic change. © 2015 John WileyItem Open Access Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics(Global Ecology and Biogeography, 2013-12) Slik, JWF; Paoli, G; Mcguire, K; Amaral, I; Barroso, J; Bastian, M; Blanc, L; Bongers, F; Boundja, P; Clark, C; Collins, M; Dauby, G; Ding, Y; Doucet, J-L; Eler, E; Ferreira, L; Forshed, O; Fredriksson, G; Gillet, J-F; Harris, D; Leal, M; Laumonier, Y; Malhi, Y; Mansor, A; Martin, E; Miyamoto, K; Araujo-Murakami, A; Nagamasu, H; Nilus, R; Nurtjahya, E; Oliveira, A; Onrizal, O; Parada-Gutierrez, A; Permana, A; Poorter, L; Poulsen, J; Ramirez-Angulo, H; Reitsma, J; Rovero, F; Rozak, A; Sheil, D; Silva-Espejo, J; Silveira, M; Spironelo, W; ter Steege, H; Stevart, T; Navarro-Aguilar, GE; Sunderland, T; Suzuki, E; Tang, J; Theilade, I; van der Heijden, G; van Valkenburg, J; Van Do, T; Vilanova, E; Vos, V; Wich, S; Wöll, H; Yoneda, T; Zang, R; Zhang, M-G; Zweifel, NAim: Large trees (d.b.h.≥70cm) store large amounts of biomass. Several studies suggest that large trees may be vulnerable to changing climate, potentially leading to declining forest biomass storage. Here we determine the importance of large trees for tropical forest biomass storage and explore which intrinsic (species trait) and extrinsic (environment) variables are associated with the density of large trees and forest biomass at continental and pan-tropical scales. Location: Pan-tropical. Methods: Aboveground biomass (AGB) was calculated for 120 intact lowland moist forest locations. Linear regression was used to calculate variation in AGB explained by the density of large trees. Akaike information criterion weights (AICc-wi) were used to calculate averaged correlation coefficients for all possible multiple regression models between AGB/density of large trees and environmental and species trait variables correcting for spatial autocorrelation. Results: Density of large trees explained c. 70% of the variation in pan-tropical AGB and was also responsible for significantly lower AGB in Neotropical [287.8 (mean)±105.0 (SD) Mg ha-1] versus Palaeotropical forests (Africa 418.3±91.8 Mg ha-1; Asia 393.3±109.3 Mg ha-1). Pan-tropical variation in density of large trees and AGB was associated with soil coarseness (negative), soil fertility (positive), community wood density (positive) and dominance of wind dispersed species (positive), temperature in the coldest month (negative), temperature in the warmest month (negative) and rainfall in the wettest month (positive), but results were not always consistent among continents. Main conclusions: Density of large trees and AGB were significantly associated with climatic variables, indicating that climate change will affect tropical forest biomass storage. Species trait composition will interact with these future biomass changes as they are also affected by a warmer climate. Given the importance of large trees for variation in AGB across the tropics, and their sensitivity to climate change, we emphasize the need for in-depth analyses of the community dynamics of large trees. © 2013 John Wiley & Sons Ltd.