Browsing by Subject "Gold"
Results Per Page
Sort Options
Item Open Access A Plasmonic Gold Nanostar Theranostic Probe for In Vivo Tumor Imaging and Photothermal Therapy.(Theranostics, 2015) Liu, Yang; Ashton, Jeffrey R; Moding, Everett J; Yuan, Hsiangkuo; Register, Janna K; Fales, Andrew M; Choi, Jaeyeon; Whitley, Melodi J; Zhao, Xiaoguang; Qi, Yi; Ma, Yan; Vaidyanathan, Ganesan; Zalutsky, Michael R; Kirsch, David G; Badea, Cristian T; Vo-Dinh, TuanNanomedicine has attracted increasing attention in recent years, because it offers great promise to provide personalized diagnostics and therapy with improved treatment efficacy and specificity. In this study, we developed a gold nanostar (GNS) probe for multi-modality theranostics including surface-enhanced Raman scattering (SERS) detection, x-ray computed tomography (CT), two-photon luminescence (TPL) imaging, and photothermal therapy (PTT). We performed radiolabeling, as well as CT and optical imaging, to investigate the GNS probe's biodistribution and intratumoral uptake at both macroscopic and microscopic scales. We also characterized the performance of the GNS nanoprobe for in vitro photothermal heating and in vivo photothermal ablation of primary sarcomas in mice. The results showed that 30-nm GNS have higher tumor uptake, as well as deeper penetration into tumor interstitial space compared to 60-nm GNS. In addition, we found that a higher injection dose of GNS can increase the percentage of tumor uptake. We also demonstrated the GNS probe's superior photothermal conversion efficiency with a highly concentrated heating effect due to a tip-enhanced plasmonic effect. In vivo photothermal therapy with a near-infrared (NIR) laser under the maximum permissible exposure (MPE) led to ablation of aggressive tumors containing GNS, but had no effect in the absence of GNS. This multifunctional GNS probe has the potential to be used for in vivo biosensing, preoperative CT imaging, intraoperative detection with optical methods (SERS and TPL), as well as image-guided photothermal therapy.Item Open Access Assessing cardiac injury in mice with dual energy-microCT, 4D-microCT, and microSPECT imaging after partial heart irradiation.(Int J Radiat Oncol Biol Phys, 2014-03-01) Lee, Chang-Lung; Min, Hooney; Befera, Nicholas; Clark, Darin; Qi, Yi; Das, Shiva; Johnson, G Allan; Badea, Cristian T; Kirsch, David GPURPOSE: To develop a mouse model of cardiac injury after partial heart irradiation (PHI) and to test whether dual energy (DE)-microCT and 4-dimensional (4D)-microCT can be used to assess cardiac injury after PHI to complement myocardial perfusion imaging using micro-single photon emission computed tomography (SPECT). METHODS AND MATERIALS: To study cardiac injury from tangent field irradiation in mice, we used a small-field biological irradiator to deliver a single dose of 12 Gy x-rays to approximately one-third of the left ventricle (LV) of Tie2Cre; p53(FL/+) and Tie2Cre; p53(FL/-) mice, where 1 or both alleles of p53 are deleted in endothelial cells. Four and 8 weeks after irradiation, mice were injected with gold and iodinated nanoparticle-based contrast agents, and imaged with DE-microCT and 4D-microCT to evaluate myocardial vascular permeability and cardiac function, respectively. Additionally, the same mice were imaged with microSPECT to assess myocardial perfusion. RESULTS: After PHI with tangent fields, DE-microCT scans showed a time-dependent increase in accumulation of gold nanoparticles (AuNp) in the myocardium of Tie2Cre; p53(FL/-) mice. In Tie2Cre; p53(FL/-) mice, extravasation of AuNp was observed within the irradiated LV, whereas in the myocardium of Tie2Cre; p53(FL/+) mice, AuNp were restricted to blood vessels. In addition, data from DE-microCT and microSPECT showed a linear correlation (R(2) = 0.97) between the fraction of the LV that accumulated AuNp and the fraction of LV with a perfusion defect. Furthermore, 4D-microCT scans demonstrated that PHI caused a markedly decreased ejection fraction, and higher end-diastolic and end-systolic volumes, to develop in Tie2Cre; p53(FL/-) mice, which were associated with compensatory cardiac hypertrophy of the heart that was not irradiated. CONCLUSIONS: Our results show that DE-microCT and 4D-microCT with nanoparticle-based contrast agents are novel imaging approaches complementary to microSPECT for noninvasive assessment of the change in myocardial vascular permeability and cardiac function of mice in whom myocardial injury develops after PHI.Item Open Access Connecting the nanodots: programmable nanofabrication of fused metal shapes on DNA templates.(Nano letters, 2011-08) Pilo-Pais, M; Goldberg, S; Samano, E; Labean, TH; Finkelstein, GWe present a novel method for producing complex metallic nanostructures of programmable design. DNA origami templates, modified to have DNA binding sites with a uniquely coded sequence, were adsorbed onto silicon dioxide substrates. Gold nanoparticles functionalized with the cDNA sequence were then attached. These seed nanoparticles were later enlarged, and even fused, by electroless deposition of silver. Using this method, we constructed a variety of metallic structures, including rings, pairs of bars, and H shapes.Item Open Access Dual-energy micro-CT functional imaging of primary lung cancer in mice using gold and iodine nanoparticle contrast agents: a validation study.(PLoS One, 2014) Ashton, Jeffrey R; Clark, Darin P; Moding, Everett J; Ghaghada, Ketan; Kirsch, David G; West, Jennifer L; Badea, Cristian TPURPOSE: To provide additional functional information for tumor characterization, we investigated the use of dual-energy computed tomography for imaging murine lung tumors. Tumor blood volume and vascular permeability were quantified using gold and iodine nanoparticles. This approach was compared with a single contrast agent/single-energy CT method. Ex vivo validation studies were performed to demonstrate the accuracy of in vivo contrast agent quantification by CT. METHODS: Primary lung tumors were generated in LSL-Kras(G12D); p53(FL/FL) mice. Gold nanoparticles were injected, followed by iodine nanoparticles two days later. The gold accumulated in tumors, while the iodine provided intravascular contrast. Three dual-energy CT scans were performed-two for the single contrast agent method and one for the dual contrast agent method. Gold and iodine concentrations in each scan were calculated using a dual-energy decomposition. For each method, the tumor fractional blood volume was calculated based on iodine concentration, and tumor vascular permeability was estimated based on accumulated gold concentration. For validation, the CT-derived measurements were compared with histology and inductively-coupled plasma optical emission spectroscopy measurements of gold concentrations in tissues. RESULTS: Dual-energy CT enabled in vivo separation of gold and iodine contrast agents and showed uptake of gold nanoparticles in the spleen, liver, and tumors. The tumor fractional blood volume measurements determined from the two imaging methods were in agreement, and a high correlation (R(2) = 0.81) was found between measured fractional blood volume and histology-derived microvascular density. Vascular permeability measurements obtained from the two imaging methods agreed well with ex vivo measurements. CONCLUSIONS: Dual-energy CT using two types of nanoparticles is equivalent to the single nanoparticle method, but allows for measurement of fractional blood volume and permeability with a single scan. As confirmed by ex vivo methods, CT-derived nanoparticle concentrations are accurate. This method could play an important role in lung tumor characterization by CT.Item Restricted Gold mining in the Peruvian Amazon: global prices, deforestation, and mercury imports.(PLoS One, 2011-04-19) Swenson, Jennifer J; Carter, Catherine E; Domec, Jean-Christophe; Delgado, Cesar IMany factors such as poverty, ineffective institutions and environmental regulations may prevent developing countries from managing how natural resources are extracted to meet a strong market demand. Extraction for some resources has reached such proportions that evidence is measurable from space. We present recent evidence of the global demand for a single commodity and the ecosystem destruction resulting from commodity extraction, recorded by satellites for one of the most biodiverse areas of the world. We find that since 2003, recent mining deforestation in Madre de Dios, Peru is increasing nonlinearly alongside a constant annual rate of increase in international gold price (∼18%/yr). We detect that the new pattern of mining deforestation (1915 ha/year, 2006-2009) is outpacing that of nearby settlement deforestation. We show that gold price is linked with exponential increases in Peruvian national mercury imports over time (R(2) = 0.93, p = 0.04, 2003-2009). Given the past rates of increase we predict that mercury imports may more than double for 2011 (∼500 t/year). Virtually all of Peru's mercury imports are used in artisanal gold mining. Much of the mining increase is unregulated/artisanal in nature, lacking environmental impact analysis or miner education. As a result, large quantities of mercury are being released into the atmosphere, sediments and waterways. Other developing countries endowed with gold deposits are likely experiencing similar environmental destruction in response to recent record high gold prices. The increasing availability of satellite imagery ought to evoke further studies linking economic variables with land use and cover changes on the ground.Item Open Access Gold nanoparticles on polarizable surfaces as Raman scattering antennas.(ACS Nano, 2010-11-23) Chen, Shiuan-Yeh; Mock, Jack J; Hill, Ryan T; Chilkoti, Ashutosh; Smith, David R; Lazarides, Anne ASurface plasmons supported by metal nanoparticles are perturbed by coupling to a surface that is polarizable. Coupling results in enhancement of near fields and may increase the scattering efficiency of radiative modes. In this study, we investigate the Rayleigh and Raman scattering properties of gold nanoparticles functionalized with cyanine deposited on silicon and quartz wafers and on gold thin films. Dark-field scattering images display red shifting of the gold nanoparticle plasmon resonance and doughnut-shaped scattering patterns when particles are deposited on silicon or on a gold film. The imaged radiation patterns and individual particle spectra reveal that the polarizable substrates control both the orientation and brightness of the radiative modes. Comparison with simulation indicates that, in a particle-surface system with a fixed junction width, plasmon band shifts are controlled quantitatively by the permittivity of the wafer or the film. Surface-enhanced resonance Raman scattering (SERRS) spectra and images are collected from cyanine on particles on gold films. SERRS images of the particles on gold films are doughnut-shaped as are their Rayleigh images, indicating that the SERRS is controlled by the polarization of plasmons in the antenna nanostructures. Near-field enhancement and radiative efficiency of the antenna are sufficient to enable Raman scattering cyanines to function as gap field probes. Through collective interpretation of individual particle Rayleigh spectra and spectral simulations, the geometric basis for small observed variations in the wavelength and intensity of plasmon resonant scattering from individual antenna on the three surfaces is explained.Item Open Access Gold Nanostars Obviate Limitations to Laser Interstitial Thermal Therapy (LITT) for the Treatment of Intracranial Tumors.(Clinical cancer research : an official journal of the American Association for Cancer Research, 2023-08) Srinivasan, Ethan S; Liu, Yang; Odion, Ren A; Chongsathidkiet, Pakawat; Wachsmuth, Lucas P; Haskell-Mendoza, Aden P; Edwards, Ryan M; Canning, Aidan J; Willoughby, Gavin; Hinton, Joseph; Norton, Stephen J; Lascola, Christopher D; Maccarini, Paolo F; Mariani, Christopher L; Vo-Dinh, Tuan; Fecci, Peter EPurpose
Laser interstitial thermal therapy (LITT) is an effective minimally invasive treatment option for intracranial tumors. Our group produced plasmonics-active gold nanostars (GNS) designed to preferentially accumulate within intracranial tumors and amplify the ablative capacity of LITT.Experimental design
The impact of GNS on LITT coverage capacity was tested in ex vivo models using clinical LITT equipment and agarose gel-based phantoms of control and GNS-infused central "tumors." In vivo accumulation of GNS and amplification of ablation were tested in murine intracranial and extracranial tumor models followed by intravenous GNS injection, PET/CT, two-photon photoluminescence, inductively coupled plasma mass spectrometry (ICP-MS), histopathology, and laser ablation.Results
Monte Carlo simulations demonstrated the potential of GNS to accelerate and specify thermal distributions. In ex vivo cuboid tumor phantoms, the GNS-infused phantom heated 5.5× faster than the control. In a split-cylinder tumor phantom, the GNS-infused border heated 2× faster and the surrounding area was exposed to 30% lower temperatures, with margin conformation observed in a model of irregular GNS distribution. In vivo, GNS preferentially accumulated within intracranial tumors on PET/CT, two-photon photoluminescence, and ICP-MS at 24 and 72 hours and significantly expedited and increased the maximal temperature achieved in laser ablation compared with control.Conclusions
Our results provide evidence for use of GNS to improve the efficiency and potentially safety of LITT. The in vivo data support selective accumulation within intracranial tumors and amplification of laser ablation, and the GNS-infused phantom experiments demonstrate increased rates of heating, heat contouring to tumor borders, and decreased heating of surrounding regions representing normal structures.Item Open Access Investigation of Gold a-Oxo Carbene/Carbenoid Complexes as Key Intermediates in Gold(I) Catalysis(2022) Stow, Caroline P.Cationic gold(I) complexes have recently contributed to significant developments in homogenous catalysis. Such complexes have been praised as highly effective catalysts for the functionalization of C-C multiple bonds, leading to research on cationic gold-catalysts developing at an aggressive pace. Despite the progress being made surrounding gold(I)-catalysis, there are still many gaps in our fundamental understanding of the key intermediate complexes and their reactivity in these transformations, exemplified by the often evoked gold alpha-oxo carbene species. While there are existing computational studies suggesting the instability of gold alpha-oxo carbene species, there lacks any experimental evidence to support the stability and reactivity of alternate key intermediate species, such as gold alpha-oxo carbenoid species and gold N-alkenoxypyridinium/sulfonium complexes. Herein, we address the issues surrounding the formation of gold alpha-oxo carbene species in reported literature. We report the synthesis and reactivity of gold pyridinium alpha-oxo carbenoid complexes, gold sulfonium alpha-oxo carbenoid complexes, and gold alpha,alpha-dioxo carbenoid complexes. We then report the direct observation of a gold N-alkenoxysulfonium complex in a gold-catalyzed alkynyl sulfoxide rearrangement reaction and the synthesis of a series of gold-oxide compounds. Together, this research addresses the gaps in knowledge surrounding key intermediate species in gold(I)-catalyzed transformations.
Item Open Access Leveraging nanoscale plasmonic modes to achieve reproducible enhancement of light.(Nano Lett, 2010-10-13) Hill, Ryan T; Mock, Jack J; Urzhumov, Yaroslav; Sebba, David S; Oldenburg, Steven J; Chen, Shiuan-Yeh; Lazarides, Anne A; Chilkoti, Ashutosh; Smith, David RThe strongly enhanced and localized optical fields that occur within the gaps between metallic nanostructures can be leveraged for a wide range of functionality in nanophotonic and optical metamaterial applications. Here, we introduce a means of precise control over these nanoscale gaps through the application of a molecular spacer layer that is self-assembled onto a gold film, upon which gold nanoparticles (NPs) are deposited electrostatically. Simulations using a three-dimensional finite element model and measurements from single NPs confirm that the gaps formed by this process, between the NP and the gold film, are highly reproducible transducers of surface-enhanced resonant Raman scattering. With a spacer layer of roughly 1.6 nm, all NPs exhibit a strong Raman signal that decays rapidly as the spacer layer is increased.Item Open Access Mechanistic Analysis of Gold(I) Catalysis through Generation and Direct Observation of Reactive Intermediate Analogues(2019) Kim, NanaCationic gold carbene complexes have attracted significant attention, being postulated as intermediates in a range of gold-catalyzed transformations. Regardless of the remarkable progress in the gold (I) catalysis, our fundamental understanding on the key intermediate species and the subsequent reactivity, and mechanistic insight is deficient. This is mainly due to the lack of proper model system with sufficient reactivity, as the majority of known gold carbene complexes are heteroatom stabilized or sterically hindered, and because of a dearth of direct intermediate observations in catalytic systems. Lewis acid mediated leaving group abstraction from a neutral gold precursor provides a convenient method for the generation of rare examples of reactive gold carbene species in high yield and purity, addressing the issue with isolation of such transient species as well as allowing in situ spectroscopic analysis. Subsequent trapping experiment with nucleophiles provides kinetic information about relevant catalytic transformations, and the -ionization strategy is further extended toward generation of transient -cationic propyl gold species for studying gold to alkene carbene transfer reaction.
Item Open Access Mechanistic Investigations of Gold(I) Catalyzed Hydrofunctionalizations of C-C Multiple Bonds(2015) Harris, Robert JosephCationic gold(I) complexes containing phosphine and N-heterocyclic carbene based ligands are a powerful catalysts for the hydrofunctionalization of C-C multiple bonds with carbon and heteroatom based nucleophiles as well as the cycloisomerization of enynes and related π-systems. Mechanisms involving outer sphere, nucleophilic attack an activated gold π-complex are typically invoked for both hydrofunctionalizations and cycloisomerizations, however, direct experimental evidence for these mechanisms remain limited.
Gold(I) catalyzed allene racemization is an important background reaction in the hydrofunctionalization of 1,3 disubstituted allenes. It can compromise chirality transfer or be exploited to realized stereoconvergent synthesis of allylic alcohols and amines. The kinetics of the racemization of aromatic 1,3-disubstituted allenes catalyzed by gold(I) phosphine complexes has been investigated. The rate of racemization displayed first order dependence on allene and gold concentration. Kinetic analysis gold(I) catalyzed racemization of allenes as a function of allene and phosphine donor ability established a depletion of electron density on the terminal allene carbons and an accumulation of electron density on the phosphine ligand in the rate-limiting transition state.
Investigation of the mechanism of gold(I) catalyzed hydrofunctionalization of allenes with alcohols, carbamates, and anilines established a variable catalyst resting state depending on the equilibrium binding affinities of the nucleophile and the relative concentrations of allene and nucleophile that are employed. Reversible C-X bond formation may explain the difference in regioselectivity observed for hydroalkoxylation and hydroamination with carbamates. Additionally, in situ analysis of the hydrofunctionalization of enatiopure 1,3-disubstituted allenes for enatiopurity of the allene and product ruled out trapping of an achiral η1-intermediate and established concomitant allene racemization as the cause of loss of enatiopurity.
Finally we report the two gold(I) carbene complexes not stabilized by π-conjugated heteroatoms. First, we report the hydride abstraction from a neutral gold cycloheptatrienyl complex that was isolated and characterized in solution and by single crystal X-ray diffraction. This complex represents the first example of a gold carbenoid complex that lacks conjugated heteroatom stabilization. Second we report the synthesis of the first gold(I) vinylidene via hydride abstraction from a gold (disilyl)ethylacetylide complex to form a cationic β,β-disilacyclopentyl vinylidene complex. The C1 and C2 carbon atoms of the vinylidene complex underwent facile interconversion presumably through the gold π-disilacyclohexyne.
Item Open Access Model Studies of Proposed Intermediates in Homogeneous Gold(I) Catalysis(2012) Brown, Timothy JustinThe ability of gold(I) complexes to function as catalysts for myriad organic transformations has led to a dramatic increase in their utilization. Among the homogeneous reactions catalyzed by gold(I), carbon-carbon and carbon-heteroatom bond forming processes are of particular interest for the fields of organic synthesis and pharmaceutical development. Discussed herein are gold(I)-catalyzed methods for the intra- and intermolecular functionalization of alkenes, alkynes, and allenes with nitrogen- and oxygen-based nucleophiles leading to new C‒X bonds (X = N, O).
Approximately 26 cationic gold π-alkene complexes, containing either IPr [IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene] or P(t-Bu)2o-biphenyl ancillary ligands, were isolated or generated and six complexes were analyzed by X-ray crystallography. Spectroscopy, X-ray crystallography, and alkene binding studies are in accord with a gold−(π-alkene) interaction dominated by σ-donation from the alkene to gold. Kinetic analyses of degenerate isobutylene exchange in both the IPr and phosphine systems are consistent with associative pathways for isobutylene exchange involving cationic bis(alkene) intermediates.
Reaction of a 1:1 mixture of (L)AuCl [L = P(t-Bu)2o-biphenyl or IPr] and AgSbF6 with internal alkynes led to isolation of the corresponding cationic, two-coordinate gold π-alkyne complexes in ≥90% yield. Equilibrium binding studies show that the binding affinities of alkynes to gold(I) are strongly affected by the electron density of the alkyne and to a lesser extent on the steric bulk of the alkyne. Treatment of a suspension of (IPr)AuCl and AgSbF6 with terminal arylacetylenes led to the formation of thermally unstable gold π-alkyne complexes of the form [(IPr)Au(eta2-HC≡CAr)] SbF6 in ≥86 ± 5% yield, which were characterized by spectroscopy without isolation. Warming these complexes to 0 °C led to C(sp)-H bond cleavage and formation of dinuclear gold(I) σ,π-acetylide complexes of the form {[(IPr)Au]2(eta1,eta2-C≡CAr)} SbF6, three of which were isolated in 99% yield and one of which was characterized by X-ray crystallography.
A family of 7 cationic gold(I) π-allene complexes were isolated and fully characterized in solution, and in three cases by X-ray crystallography. Degenerate intermolecular allene exchange kinetic studies for three of the allene complexes are in accord with a two-term rate law of the form rate = k1[complex] + k2[complex][allene] with with Gibb's free energy barriers of 17.4 - 18.8 kcal mol-1 (1) and 15.2 - 17.6 kcal mol-1 (2). Variable temperature NMR analysis of these complexes established facile intramolecular -face exchange through 1-allene intermediates or transition states with barriers of 8.9 - 10.9 kcal mol-1 for phosphine and 9.5 - 12.2 kcal mol-1 for IPr complexes.
Mechanistic investigation of gold(I)-catalyzed intramolecular allene hydroalkoxylation established a mechanism involving rapid and reversible C-O bond formation followed by turnover-limiting protodeauration from a mono(gold) vinyl complex. This on-cycle pathway competes with catalyst aggregation and formation of an off-cycle bis(gold) vinyl complex.
Item Open Access Probing the ultimate limits of plasmonic enhancement.(Science, 2012-08-31) Ciracì, C; Hill, RT; Mock, JJ; Urzhumov, Y; Fernández-Domínguez, AI; Maier, SA; Pendry, JB; Chilkoti, A; Smith, DRMetals support surface plasmons at optical wavelengths and have the ability to localize light to subwavelength regions. The field enhancements that occur in these regions set the ultimate limitations on a wide range of nonlinear and quantum optical phenomena. We found that the dominant limiting factor is not the resistive loss of the metal, but rather the intrinsic nonlocality of its dielectric response. A semiclassical model of the electronic response of a metal places strict bounds on the ultimate field enhancement. To demonstrate the accuracy of this model, we studied optical scattering from gold nanoparticles spaced a few angstroms from a gold film. The bounds derived from the models and experiments impose limitations on all nanophotonic systems.Item Open Access Sensitive detection of H2S using gold nanoparticle decorated single-walled carbon nanotubes.(Anal Chem, 2010-01-01) Mubeen, Syed; Zhang, Ting; Chartuprayoon, Nicha; Rheem, Youngwoo; Mulchandani, Ashok; Myung, Nosang V; Deshusses, Marc AHerein, we demonstrate that highly sensitive conductometric gas nanosensors for H(2)S can be synthesized by electrodepositing gold nanoparticles on single-walled carbon nanotube (SWNT) networks. Adjusting the electrodeposition conditions allowed for tuning of the size and number of gold nanoparticles deposited. The best H(2)S sensing performance was obtained with discrete gold nanodeposits rather than continuous nanowires. The gas nanosensors could sense H(2)S in air at room temperature with a 3 ppb limit of detection. The sensors were reversible, and increasing the bias voltage reduced the sensor recovery time, probably by local Joule heating. The sensing mechanism is believed to be based on the modulation of the conduction path across the nanotubes emanating from the modulation of electron exchange between the gold and carbon nanotube defect sites when exposed to H(2)S.Item Open Access Simultaneous Detection of Multiple Tumor-targeted Gold Nanoparticles in HER2-Positive Breast Tumors Using Optoacoustic Imaging.(Radiology. Imaging cancer, 2023-05) Samykutty, Abhilash; Thomas, Karl N; McNally, Molly; Hagood, Jordan; Chiba, Akiko; Thomas, Alexandra; McWilliams, Libby; Behkam, Bahareh; Zhan, Ying; Council-Troche, McAlister; Claros-Sorto, Juan C; Henson, Christina; Garwe, Tabitha; Sarwar, Zoona; Grizzle, William E; McNally, Lacey RPurpose To develop optoacoustic, spectrally distinct, actively targeted gold nanoparticle-based near-infrared probes (trastuzumab [TRA], TRA-Aurelia-1, and TRA-Aurelia-2) that can be individually identifiable at multispectral optoacoustic tomography (MSOT) of human epidermal growth factor receptor 2 (HER2)-positive breast tumors. Materials and Methods Gold nanoparticle-based near-infrared probes (Aurelia-1 and 2) that are optoacoustically active and spectrally distinct for simultaneous MSOT imaging were synthesized and conjugated to TRA to produce TRA-Aurelia-1 and 2. Freshly resected human HER2-positive (n = 6) and HER2-negative (n = 6) triple-negative breast cancer tumors were treated with TRA-Aurelia-1 and TRA-Aurelia-2 for 2 hours and imaged with MSOT. HER2-expressing DY36T2Q cells and HER2-negative MDA-MB-231 cells were implanted orthotopically into mice (n = 5). MSOT imaging was performed 6 hours following the injection, and the Friedman test was used for analysis. Results TRA-Aurelia-1 (absorption peak, 780 nm) and TRA-Aurelia-2 (absorption peak, 720 nm) were spectrally distinct. HER2-positive human breast tumors exhibited a significant increase in optoacoustic signal following TRA-Aurelia-1 (28.8-fold) or 2 (29.5-fold) (P = .002) treatment relative to HER2-negative tumors. Treatment with TRA-Aurelia-1 and 2 increased optoacoustic signals in DY36T2Q tumors relative to those in MDA-MB-231 controls (14.8-fold, P < .001; 20.8-fold, P < .001, respectively). Conclusion The study demonstrates that TRA-Aurelia 1 and 2 nanoparticles operate as a spectrally distinct HER2 breast tumor-targeted in vivo optoacoustic agent. Keywords: Molecular Imaging, Nanoparticles, Photoacoustic Imaging, Breast Cancer Supplemental material is available for this article. © RSNA, 2023.Item Open Access Spectral diffusion: an algorithm for robust material decomposition of spectral CT data.(Phys Med Biol, 2014-11-07) Clark, Darin P; Badea, Cristian TClinical successes with dual energy CT, aggressive development of energy discriminating x-ray detectors, and novel, target-specific, nanoparticle contrast agents promise to establish spectral CT as a powerful functional imaging modality. Common to all of these applications is the need for a material decomposition algorithm which is robust in the presence of noise. Here, we develop such an algorithm which uses spectrally joint, piecewise constant kernel regression and the split Bregman method to iteratively solve for a material decomposition which is gradient sparse, quantitatively accurate, and minimally biased. We call this algorithm spectral diffusion because it integrates structural information from multiple spectral channels and their corresponding material decompositions within the framework of diffusion-like denoising algorithms (e.g. anisotropic diffusion, total variation, bilateral filtration). Using a 3D, digital bar phantom and a material sensitivity matrix calibrated for use with a polychromatic x-ray source, we quantify the limits of detectability (CNR = 5) afforded by spectral diffusion in the triple-energy material decomposition of iodine (3.1 mg mL(-1)), gold (0.9 mg mL(-1)), and gadolinium (2.9 mg mL(-1)) concentrations. We then apply spectral diffusion to the in vivo separation of these three materials in the mouse kidneys, liver, and spleen.Item Open Access Surface-enhanced Raman scattering plasmonic enhancement using DNA origami-based complex metallic nanostructures.(Nano letters, 2014-01) Pilo-Pais, M; Watson, A; Demers, S; LaBean, TH; Finkelstein, GDNA origami is a novel self-assembly technique allowing one to form various two-dimensional shapes and position matter with nanometer accuracy. We use DNA origami templates to engineer surface-enhanced Raman scattering substrates. Specifically, gold nanoparticles were selectively placed on the corners of rectangular origami and subsequently enlarged via solution-based metal deposition. The resulting assemblies exhibit "hot spots" of enhanced electromagnetic field between the nanoparticles. We observed a significant Raman signal enhancement from molecules covalently attached to the assemblies, as compared to control nanoparticle samples that lack interparticle hot spots. Furthermore, Raman molecules are used to map out the hot spots' distribution, as they are burned when experiencing a threshold electric field. Our method opens up the prospects of using DNA origami to rationally engineer and assemble plasmonic structures for molecular spectroscopy.