Browsing by Subject "Mannans"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Open Access Bronchoalveolar lavage Aspergillus Galactomannan lateral flow assay versus Aspergillus-specific lateral flow device test for diagnosis of invasive pulmonary Aspergillosis in patients with hematological malignancies.(The Journal of infection, 2019-03) Jenks, Jeffrey D; Mehta, Sanjay R; Taplitz, Randy; Law, Nancy; Reed, Sharon L; Hoenigl, MartinItem Open Access Improving the rates of Aspergillus detection: an update on current diagnostic strategies.(Expert review of anti-infective therapy, 2019-01) Jenks, Jeffrey D; Salzer, Helmut JF; Hoenigl, MartinIntroduction
The spectrum of disease caused by Aspergillus spp. is dependent on the immune system of the host, and ranges from invasive aspergillosis (IA) to chronic pulmonary aspergillosis (CPA). Early and reliable diagnosis of Aspergillus disease is important to decrease associated morbidity and mortality. Areas covered: The following review will give an update on current diagnostic strategies for the diagnosis of IA and CPA. Expert commentary: Several new diagnostics for IA (including point-of-care tests) are now available to complement galactomannan testing. In particular, immunoPET/MRI imaging may be a promising approach for diagnosing IA in the near future. Notably, nearly all new biomarkers and tests for IA have been evaluated in the hematology setting only. Validation of biomarkers and tests is therefore needed for the increasing proportion of patients who develop IA outside the hematology setting. As an important first step, reliable definitions of IA are needed for non-hematology settings as clinical presentation and radiologic findings differ in these settings. CPA diagnosis is based on a combination of radiological findings in chest CT, mycological evidence (e.g. by the Aspergillus-specific IgG assay), exclusion of alternative diagnosis and chronicity. ([18F]FDG) PET/CT and immuno PET/MRI imaging are promising new imaging approaches.Item Open Access Invasive aspergillosis in critically ill patients: Review of definitions and diagnostic approaches.(Mycoses, 2021-09) Jenks, Jeffrey D; Nam, Hannah H; Hoenigl, MartinInvasive aspergillosis (IA) is an increasingly recognised phenomenon in critically ill patients in the intensive care unit, including in patients with severe influenza and severe coronavirus disease 2019 (COVID-19) infection. To date, there are no consensus criteria on how to define IA in the ICU population, although several criteria are used, including the AspICU criteria and new consensus criteria to categorise COVID-19-associated pulmonary aspergillosis (CAPA). In this review, we describe the epidemiology of IA in critically ill patients, most common definitions used to define IA in this population, and most common clinical specimens obtained for establishing a mycological diagnosis of IA in the critically ill. We also review the most common diagnostic tests used to diagnose IA in this population, and lastly discuss the most common clinical presentation and imaging findings of IA in the critically ill and discuss areas of further needed investigation.Item Open Access Performance of the Bronchoalveolar Lavage Fluid Aspergillus Galactomannan Lateral Flow Assay With Cube Reader for Diagnosis of Invasive Pulmonary Aspergillosis: A Multicenter Cohort Study.(Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 2021-10) Jenks, Jeffrey D; Prattes, Juergen; Frank, Johanna; Spiess, Birgit; Mehta, Sanjay R; Boch, Tobias; Buchheidt, Dieter; Hoenigl, MartinBackground
The Aspergillus Galactomannan Lateral Flow Assay (LFA) is a rapid test for the diagnosis of invasive aspergillosis (IA) that has been almost exclusively evaluated in patients with hematologic malignancies. An automated digital cube reader that allows for quantification of results has recently been added to the test kits.Methods
We performed a retrospective multicenter study on bronchoalveolar lavage fluid (BALF) samples obtained from 296 patients with various underlying diseases (65% without underlying hematological malignancy) who had BALF galactomannan (GM) ordered between 2013 and 2019 at the University of California, San Diego, the Medical University of Graz, Austria, and the Mannheim University Hospital, Germany.Results
Cases were classified as proven (n = 2), probable (n = 56), putative (n = 30), possible (n = 45), and no IA (n = 162). The LFA showed an area under the curve (AUC) of 0.865 (95% confidence interval [CI] .815-.916) for differentiating proven/probable or putative IA versus no IA, with a sensitivity of 74% and a specificity of 83% at an optical density index cutoff of 1.5. After exclusion of GM as mycological criterion for case classification, diagnostic performance of the LFA was highly similar to GM testing (AUC 0.892 vs 0.893, respectively). LFA performance was consistent across different patient cohorts and centers.Conclusions
In this multicenter study the LFA assay from BALF demonstrated good diagnostic performance for IA that was consistent across patient cohorts and locations. The LFA may serve a role as a rapid test that may replace conventional GM testing in settings where GM results are not rapidly available.Item Open Access Performance of the Euroimmun Aspergillus Antigen ELISA for the Diagnosis of Invasive Pulmonary Aspergillosis in Bronchoalveolar Lavage Fluid.(Journal of clinical microbiology, 2022-04) Egger, Matthias; Penziner, Samuel; Dichtl, Karl; Gornicec, Max; Kriegl, Lisa; Krause, Robert; Khong, Ethan; Mehta, Sanjay; Vargas, Milenka; Gianella, Sara; Porrachia, Magali; Jenks, Jeffrey D; Venkataraman, Iswariya; Hoenigl, MartinInvasive pulmonary aspergillosis (IPA) is a life-threatening disease that affects mainly immunocompromised hosts. Galactomannan testing from serum and bronchoalveolar lavage fluid (BALF) represents a cornerstone in diagnosing the disease. Here, we evaluated the diagnostic performance of the novel Aspergillus-specific galactomannoprotein (GP) enzyme-linked immunosorbent assay (ELISA; Euroimmun Medizinische Labordiagnostika) compared with the established Platelia Aspergillus GM ELISA (GM; Bio-Rad Laboratories) for the detection of Aspergillus antigen in BALF. Using the GP ELISA, we retrospectively tested 115 BALF samples from 115 patients with clinical suspicion of IPA and GM analysis ordered in clinical routine. Spearman's correlation statistics and receiver operating characteristics (ROC) curve analysis were performed. Optimal cutoff values were determined using Youden's index. Of 115 patients, 1 patient fulfilled criteria for proven IPA, 42 for probable IPA, 15 for putative IPA, 10 for possible IPA, and 47 did not meet criteria for IPA. Sensitivities and specificities for differentiating proven/probable/putative versus no IPA (possible excluded) were 74% and 96% for BALF GP and 90% and 96% for BALF GM at the manufacturer-recommended cutoffs. Using the calculated optimal cutoff value of 12 pg/mL, sensitivity and specificity of the BALF GP were 90% and 96%, respectively. ROC curve analysis showed an area under the curve (AUC) of 0.959 (95% confidence interval [CI] of 0.923 to 0.995) for the GP ELISA and an AUC of 0.960 (95% CI of 0.921 to 0.999) for the GM ELISA for differentiating proven/probable/putative IPA versus no IPA. Spearman's correlation analysis showed a strong correlation between the ELISAs (rho = 0.809, P < 0.0001). The GP ELISA demonstrated strong correlation and test performance similar to that of the GM ELISA and could serve as an alternative test for BALF from patients at risk for IPA.Item Open Access Point-of-care diagnosis of invasive aspergillosis in non-neutropenic patients: Aspergillus Galactomannan Lateral Flow Assay versus Aspergillus-specific Lateral Flow Device test in bronchoalveolar lavage.(Mycoses, 2019-03) Jenks, Jeffrey D; Mehta, Sanjay R; Taplitz, Randy; Aslam, Saima; Reed, Sharon L; Hoenigl, MartinBackground
We compared new Aspergillus Galactomannan Lateral Flow Assay with the newly formatted Aspergillus-specific Lateral Flow device tests for the diagnosis of invasive pulmonary aspergillosis (IPA) in non-neutropenic patients.Methods
We performed both tests in 82 bronchoalveolar lavage fluid samples from 82 patients at risk for IPA but without underlying haematologic malignancy. Samples were collected between September 2016 and September 2018 at the University of California San Diego, United States. IPA was classified following two published consensus criteria.Results
Classification of cases varied widely between the two consensus criteria. When using criteria established for the intensive care unit, 26/82 patients (32%) met criteria for proven or putative IPA. Both point-of-care assays showed sensitivities ranging between 58% and 69%, with specificities between 68% and 75%. Sensitivity increased up to 81% when both tests were combined.Conclusion
The study outlines the need for updated, unified and more broadly applicable consensus definitions for classifying IPA in non-neutropenic patients, a work that is currently in progress. Both point-of-care tests showed comparable performance, with sensitivities and specificities in the 60%-70% range when used alone and increasing to 80% when used in combination. The new point-of-care tests may serve a role at the bedside in those with clinical suspicion of IPA.Item Open Access Randomized, double-blind trial of fluconazole versus voriconazole for prevention of invasive fungal infection after allogeneic hematopoietic cell transplantation.(Blood, 2010-12) Wingard, John R; Carter, Shelly L; Walsh, Thomas J; Kurtzberg, Joanne; Small, Trudy N; Baden, Lindsey R; Gersten, Iris D; Mendizabal, Adam M; Leather, Helen L; Confer, Dennis L; Maziarz, Richard T; Stadtmauer, Edward A; Bolaños-Meade, Javier; Brown, Janice; Dipersio, John F; Boeckh, Michael; Marr, Kieren A; Blood and Marrow Transplant Clinical Trials NetworkInvasive fungal infection (IFI) is a serious threat after allogeneic hematopoietic cell transplant (HCT). This multicenter, randomized, double-blind trial compared fluconazole (N = 295) versus voriconazole (N = 305) for the prevention of IFI in the context of a structured fungal screening program. Patients undergoing myeloablative allogeneic HCT were randomized before HCT to receive study drugs for 100 days, or for 180 days in higher-risk patients. Serum galactomannan was assayed twice weekly for 60 days, then at least weekly until day 100. Positive galactomannan or suggestive signs triggered mandatory evaluation for IFI. The primary endpoint was freedom from IFI or death (fungal-free survival; FFS) at 180 days. Despite trends to fewer IFIs (7.3% vs 11.2%; P = .12), Aspergillus infections (9 vs 17; P = .09), and less frequent empiric antifungal therapy (24.1% vs 30.2%, P = .11) with voriconazole, FFS rates (75% vs 78%; P = .49) at 180 days were similar with fluconazole and voriconazole, respectively. Relapse-free and overall survival and the incidence of severe adverse events were also similar. This study demonstrates that in the context of intensive monitoring and structured empiric antifungal therapy, 6-month FFS and overall survival did not differ in allogeneic HCT recipients given prophylactic fluconazole or voriconazole. This trial was registered at www.clinicaltrials.gov as NCT00075803.Item Open Access Serum Lateral Flow assay with digital reader for the diagnosis of invasive pulmonary aspergillosis: A two-centre mixed cohort study.(Mycoses, 2021-10) Hoenigl, Martin; Egger, Matthias; Boyer, Johannes; Schulz, Eduard; Prattes, Juergen; Jenks, Jeffrey DBackground
Detection of galactomannan (GM) from bronchoalveolar lavage fluid (BALF) or serum is broadly used for diagnosis of invasive aspergillosis (IA), although the sensitivity of GM from serum is lower in non-neutropenic patients. We evaluated the Aspergillus galactomannan Lateral Flow assay (LFA) with digital readout from serum in a mixed cohort of patients.Methods
We performed a retrospective two-centre study evaluating the LFA from serum of patients with clinical suspicion of IA obtained between 2015 and 2021 at the University of California San Diego and the Medical University of Graz. The sensitivity and specificity was calculated for proven/probable aspergillosis versus no aspergillosis. Correlation with same-sample GM was calculated using Spearman correlation analysis and kappa statistics.Results
In total, 122 serum samples from 122 patients were analysed, including proven IA (n = 1), probable IA or coronavirus-associated pulmonary aspergillosis (CAPA) (n = 27), and no IA/CAPA/non-classifiable (n = 94). At a 0.5 ODI cut-off, the sensitivity and specificity of the LFA was 78.6% and 80.5%. Spearman correlation analysis showed a strong correlation between serum LFA ODI and serum GM ODI (ρ 0.459, p < .0001). Kappa was 0.611 when both LFA and GM were used with a 0.5 ODI cut-off, showing substantial agreement (p < .001).Discussion
The LFA with digital read out from serum showed good performance for the diagnosis of probable/proven aspergillosis, with substantial agreement to GM from serum. Like the LFA from BALF, the LFA from serum may serve as a more rapid test compared to conventional GM, particularly in settings where GM is not readily available.Item Open Access Using Interleukin 6 and 8 in Blood and Bronchoalveolar Lavage Fluid to Predict Survival in Hematological Malignancy Patients With Suspected Pulmonary Mold Infection.(Frontiers in immunology, 2019-01) Rawlings, Stephen A; Heldt, Sven; Prattes, Juergen; Eigl, Susanne; Jenks, Jeffrey D; Flick, Holger; Rabensteiner, Jasmin; Prüller, Florian; Wölfler, Albert; Neumeister, Peter; Strohmaier, Heimo; Krause, Robert; Hoenigl, MartinBackground: Molds and other pathogens induce elevated levels of several cytokines, including interleukin (IL)-6 and IL-8. The objective of this study was to investigate the prognostic value of IL-6 and IL-8 as well as fungal biomarkers in blood and bronchoalveolar lavage fluid (BAL) for overall survival in patients with underlying hematological malignancies and suspected mold infection. Methods: This cohort study included 106 prospectively enrolled adult cases undergoing bronchoscopy. Blood samples were collected within 24 h of BAL sampling and, in a subset of 62 patients, serial blood samples were collected up until 4 days after bronchoscopy. IL-6, IL-8, and other cytokines as well as galactomannan (GM) and β-D-glucan (BDG) were assayed in blood and BAL fluid and associations with overall mortality were assessed at the end of the study using receiver operating characteristic (ROC) curve analysis. Results: Both blood IL-8 (AUC 0.731) and blood IL-6 (AUC 0.699) as well as BAL IL-6 (AUC 0.763) and BAL IL-8 (AUC 0.700) levels at the time of bronchoscopy were predictors of 30-day all-cause mortality. Increasing blood IL-6 levels between bronchoscopy and day four after bronchoscopy were significantly associated with higher 90-day mortality, with similar findings for increasing IL-8 levels. In ROC analysis the difference of blood IL-8 levels between 4 days after bronchoscopy and the day of bronchoscopy had an AUC of 0.829 (95%CI 0.71-0.95; p < 0.001) for predicting 90-day mortality. Conclusions: Elevated levels of IL-6 and IL-8 in blood or BAL fluid at the time of bronchoscopy, and rising levels in blood 4 days following bronchoscopy were predictive of mortality in these patients with underlying hematological malignancy who underwent bronchoscopy for suspected mold infection.