Browsing by Subject "Monitoring, Intraoperative"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Closed-loop systems in anesthesia: reality or fantasy?(Anesth Analg, 2013-11) Miller, Timothy E; Gan, Tong JItem Open Access Intraoperative electrophysiological monitoring in spine surgery.(Spine, 2010-12) Malhotra, Neil R; Shaffrey, Christopher IStudy design
Review of the literature with analysis of pooled data.Objective
To assess common intraoperative neuromonitoring (IOM) changes that occur during the course of spinal surgery, potential causes of change, and determine appropriate responses. Further, there will be discussion of appropriate application of IOM, and medical legal aspects. The structured literature review will answer the following questions: What are the various IOM methods currently available for spinal surgery? What are the sensitivities and specificities of each modality for neural element injury? How are the changes in each modality best interpreted? What is the appropriate response to indicated changes? Recommendations will be made as to the interpretation and appropriate response to IOM changes.Summary of background data
Total number of abstracts identified and reviewed was 187. Full review was performed on 18 articles.Methods
The MEDLINE database was queried using the search terms IOM, spinal surgery, SSEP, wake-up test, MEP, spontaneous and triggered electromyography alone and in various combinations. Abstracts were identified and reviewed. Individual case reports were excluded. Detailed information and data from appropriate articles were assessed and compiled.Results
Ability to achieve IOM baseline data varied from 70% to 98% for somatosensory-evoked potentials (SSEP) and 66% to 100% for motor-evoked potentials (MEP) in absence of neural axis abnormality. Multimodality intraoperative neuromonitoring (MIOM) provided false negatives in 0% to 0.79% of cases, whereas isolated SSEP monitoring alone provided false negative in 0.063% to 2.7% of cases. MIOM provided false positive warning in 0.6% to 1.38% of cases.Conclusion
As spine surgery, and patient comorbidity, becomes increasingly complex, IOM permits more aggressive deformity correction and tumor resection. Combination of SSEP and MEP monitoring provides assessment of entire spinal cord functionality in real time. Spontaneous and triggered electromyography add assessment of nerve roots. The wake-up test can continue to serve as a supplement when needed. MIOM may prove useful in preservation of neurologic function where an alteration of approach is possible. IOM is a valuable tool for optimization of outcome in complex spinal surgery.Item Open Access Monitoring needs and goal-directed fluid therapy within an enhanced recovery program.(Anesthesiol Clin, 2015-03) Minto, Gary; Scott, Michael J; Miller, Timothy EPatients having major abdominal surgery need perioperative fluid supplementation; however, enhanced recovery principles mitigate against many of the factors that traditionally led to relative hypovolemia in the perioperative period. An estimate of fluid requirements for abdominal surgery can be made but individualization of fluid prescription requires consideration of clinical signs and hemodynamic variables. The literature supports goal-directed fluid therapy. Application of this evidence to justify stroke volume optimization in the setting of major surgery within an enhanced recovery program is controversial. This article places the evidence in context, reviews controversies, and suggests implications for current practice and future research.Item Open Access The incidence of unacceptable movement with motor evoked potentials during craniotomy for aneurysm clipping.(World Neurosurg, 2014-01) Hemmer, Laura B; Zeeni, Carine; Bebawy, John F; Bendok, Bernard R; Cotton, Mathew A; Shah, Neil B; Gupta, Dhanesh K; Koht, AntounOBJECTIVE: To review the experience at a single institution with motor evoked potential (MEP) monitoring during intracranial aneurysm surgery to determine the incidence of unacceptable movement. METHODS: Neurophysiology event logs and anesthetic records from 220 craniotomies for aneurysm clipping were reviewed for unacceptable patient movement or reason for cessation of MEPs. Muscle relaxants were not given after intubation. Transcranial MEPs were recorded from bilateral abductor hallucis and abductor pollicis muscles. MEP stimulus intensity was increased up to 500 V until evoked potential responses were detectable. RESULTS: Out of 220 patients, 7 (3.2%) exhibited unacceptable movement with MEP stimulation-2 had nociception-induced movement and 5 had excessive field movement. In all but one case, MEP monitoring could be resumed, yielding a 99.5% monitoring rate. CONCLUSIONS: With the anesthetic and monitoring regimen, the authors were able to record MEPs of the upper and lower extremities in all patients and found only 3.2% demonstrated unacceptable movement. With a suitable anesthetic technique, MEP monitoring in the upper and lower extremities appears to be feasible in most patients and should not be withheld because of concern for movement during neurovascular surgery.