Browsing by Subject "Pyridones"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access A Transcriptional Signature Identifies LKB1 Functional Status as a Novel Determinant of MEK Sensitivity in Lung Adenocarcinoma.(Cancer research, 2017-01) Kaufman, Jacob M; Yamada, Tadaaki; Park, Kyungho; Timmers, Cynthia D; Amann, Joseph M; Carbone, David PLKB1 is a commonly mutated tumor suppressor in non-small cell lung cancer that exerts complex effects on signal transduction and transcriptional regulation. To better understand the downstream impact of loss of functional LKB1, we developed a transcriptional fingerprint assay representing this phenotype. This assay was predictive of LKB1 functional loss in cell lines and clinical specimens, even those without detected sequence alterations in the gene. In silico screening of drug sensitivity data identified putative LKB1-selective drug candidates, revealing novel associations not apparent from analysis of LKB1 mutations alone. Among the candidates, MEK inhibitors showed robust association with signature expression in both training and testing datasets independent of RAS/RAF mutations. This susceptibility phenotype is directly altered by RNA interference-mediated LKB1 knockdown or by LKB1 re-expression into mutant cell lines and is readily observed in vivo using a xenograft model. MEK sensitivity is dependent on LKB1-induced changes in AKT and FOXO3 activation, consistent with genomic and proteomic analyses of LKB1-deficient lung adenocarcinomas. Our findings implicate the MEK pathway as a potential therapeutic target for LKB1-deficient cancers and define a practical NanoString biomarker to identify functional LKB1 loss. Cancer Res; 77(1); 153-63. ©2016 AACR.Item Open Access Effect of apixaban compared with warfarin on coagulation markers in atrial fibrillation.(Heart (British Cardiac Society), 2019-02) Christersson, Christina; Wallentin, Lars; Andersson, Ulrika; Alexander, John H; Alings, Marco; De Caterina, Raffaele; Gersh, Bernard J; Granger, Christopher B; Halvorsen, Sigrun; Hanna, Michael; Huber, Kurt; Hylek, Elaine M; Lopes, Renato D; Oh, Byung-Hee; Siegbahn, AgnetaObjectives
Compare the effect of apixaban and warfarin on coagulation and primary haemostasis biomarkers in atrial fibrillation (AF).Methods
The biomarker substudy from the Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation trial included 4850 patients with AF randomised to treatment with apixaban or warfarin. Sixty per cent of patients used vitamin K antagonist (VKA) within 7 days before randomisation. Prothrombin fragment 1+2 (F1+2), D-dimer, soluble CD40 ligand (sCD40L) and von Willebrand factor (vWF) antigen were analysed at randomisation and after 2 months of study treatment.Results
In patients not on VKA treatment at randomisation, F1+2 and D-dimer levels were decreased by 25% and 23%, respectively, with apixaban, and by 59% and 38%, respectively, with warfarin (p<0.0001 for treatment differences for both). In patients on VKA at randomisation, F1+2 and D-dimer levels increased by 41% and 10%, respectively, with apixaban and decreased by 37% and 11%, respectively, with warfarin (p<0.0001 for treatment differences for both). sCD40L levels were slightly increased at 2 months, regardless of VKA or randomised treatment. Apixaban and warfarin also both reduced vWF antigen regardless of VKA treatment. The efficacy (stroke) and safety (bleeding) of apixaban compared with warfarin was similar irrespectively of biomarker levels at 2 months.Conclusions
Treatment with apixaban compared with warfarin for stroke prevention in patients with AF was associated with less reduction in thrombin generation and fibrin turnover. This effect of apixaban could contribute to the clinical results where apixaban was superior to warfarin both in stroke prevention and in reducing bleeding risk.Trial registration number
NCT00412984.Item Open Access Screening of Multiple Biomarkers Associated With Ischemic Stroke in Atrial Fibrillation.(Journal of the American Heart Association, 2020-12-09) Hijazi, Ziad; Wallentin, Lars; Lindbäck, Johan; Alexander, John H; Connolly, Stuart J; Eikelboom, John W; Ezekowitz, Michael D; Granger, Christopher B; Lopes, Renato D; Pol, Tymon; Yusuf, Salim; Oldgren, Jonas; Siegbahn, AgnetaBackground To explore the pathophysiological features of ischemic stroke in patients with atrial fibrillation (AF), we evaluated the association between 268 plasma proteins and subsequent ischemic stroke in 2 large AF cohorts receiving oral anticoagulation. Methods and Results A case-cohort sample of patients with AF from the ARISTOTLE (Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation) trial, including 282 cases with ischemic stroke or systemic embolism and a random sample of 4124 without these events, during 1.9 years of follow-up was used for identification. Validation was provided by a similar case-cohort sample of patients with AF from the RE-LY (Randomized Evaluation of Long-Term Anticoagulation Therapy) trial, including 149 cases with ischemic stroke/systemic embolism and a random sample of 1062 without these events. In plasma obtained before randomization, 268 unique biomarkers were measured with OLINK proximity extension assay panels (CVD II, CVD III, and Inflammation) and conventional immunoassays. The association between biomarkers and outcomes was evaluated by random survival forest and adjusted Cox regression. According to random survival forest or Cox regression analyses, the biomarkers most strongly and consistently associated with ischemic stroke/systemic embolism were matrix metalloproteinase-9, NT-proBNP (N-terminal pro-B-type natriuretic peptide), osteopontin, sortilin, soluble suppression of tumorigenesis 2, and trefoil factor-3. The corresponding hazard ratios (95% CIs) for an interquartile difference were as follows: 1.18 (1.00-1.38), 1.55 (1.28-1.88), 1.28 (1.07-1.53), 1.19 (1.02-1.39), 1.23 (1.05-1.45), and 1.19 (0.97-1.45), respectively. Conclusions In patients with AF, of 268 unique biomarkers, the 6 biomarkers most strongly associated with subsequent ischemic stroke/systemic embolism represent fibrosis/remodeling (matrix metalloproteinase-9 and soluble suppression of tumorigenesis 2), cardiac dysfunction (NT-proBNP), vascular calcification (osteopontin), metabolism (sortilin), and mucosal integrity/ischemia (trefoil factor-3). Registration URL: https://www.clinicaltrials.gov. Unique Identifiers: NCT00412984 and NCT00262600.