Browsing by Subject "Thiophenes"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Early clopidogrel versus prasugrel use among contemporary STEMI and NSTEMI patients in the US: insights from the National Cardiovascular Data Registry.(J Am Heart Assoc, 2014-04-14) Sherwood, Matthew W; Wiviott, Stephen D; Peng, S Andrew; Roe, Matthew T; Delemos, James; Peterson, Eric D; Wang, Tracy YBACKGROUND: P2Y12 antagonist therapy improves outcomes in acute myocardial infarction (MI) patients. Novel agents in this class are now available in the US. We studied the introduction of prasugrel into contemporary MI practice to understand the appropriateness of its use and assess for changes in antiplatelet management practices. METHODS AND RESULTS: Using ACTION Registry-GWTG (Get-with-the-Guidelines), we evaluated patterns of P2Y12 antagonist use within 24 hours of admission in 100 228 ST elevation myocardial infarction (STEMI) and 158 492 Non-ST elevation myocardial infarction (NSTEMI) patients at 548 hospitals between October 2009 and September 2012. Rates of early P2Y12 antagonist use were approximately 90% among STEMI and 57% among NSTEMI patients. From 2009 to 2012, prasugrel use increased significantly from 3% to 18% (5% to 30% in STEMI; 2% to 10% in NSTEMI; P for trend <0.001 for all). During the same period, we observed a decrease in use of early but not discharge P2Y12 antagonist among NSTEMI patients. Although contraindicated, 3.0% of patients with prior stroke received prasugrel. Prasugrel was used in 1.9% of patients ≥75 years and 4.5% of patients with weight <60 kg. In both STEMI and NSTEMI, prasugrel was most frequently used in patients at the lowest predicted risk for bleeding and mortality. Despite lack of supporting evidence, prasugrel was initiated before cardiac catheterization in 18% of NSTEMI patients. CONCLUSIONS: With prasugrel as an antiplatelet treatment option, contemporary practice shows low uptake of prasugrel and delays in P2Y12 antagonist initiation among NSTEMI patients. We also note concerning evidence of inappropriate use of prasugrel, and inadequate targeting of this more potent therapy to maximize the benefit/risk ratio.Item Open Access Structure-Guided Synthesis of FK506 and FK520 Analogs with Increased Selectivity Exhibit In Vivo Therapeutic Efficacy against Cryptococcus.(mBio, 2022-06) Hoy, Michael J; Park, Eunchong; Lee, Hyunji; Lim, Won Young; Cole, D Christopher; DeBouver, Nicholas D; Bobay, Benjamin G; Pierce, Phillip G; Fox, David; Ciofani, Maria; Juvvadi, Praveen R; Steinbach, William; Hong, Jiyong; Heitman, JosephCalcineurin is an essential virulence factor that is conserved across human fungal pathogens, including Cryptococcus neoformans, Aspergillus fumigatus, and Candida albicans. Although an excellent target for antifungal drug development, the serine-threonine phosphatase activity of calcineurin is conserved in mammals, and inhibition of this activity results in immunosuppression. FK506 (tacrolimus) is a naturally produced macrocyclic compound that inhibits calcineurin by binding to the immunophilin FKBP12. Previously, our fungal calcineurin-FK506-FKBP12 structure-based approaches identified a nonconserved region of FKBP12 that can be exploited for fungus-specific targeting. These studies led to the design of an FK506 analog, APX879, modified at the C-22 position, which was less immunosuppressive yet maintained antifungal activity. We now report high-resolution protein crystal structures of fungal FKBP12 and a human truncated calcineurin-FKBP12 bound to a natural FK506 analog, FK520 (ascomycin). Based on information from these structures and the success of APX879, we synthesized and screened a novel panel of C-22-modified compounds derived from both FK506 and FK520. One compound, JH-FK-05, demonstrates broad-spectrum antifungal activity in vitro and is nonimmunosuppressive in vivo. In murine models of pulmonary and disseminated C. neoformans infection, JH-FK-05 treatment significantly reduced fungal burden and extended animal survival alone and in combination with fluconazole. Furthermore, molecular dynamic simulations performed with JH-FK-05 binding to fungal and human FKBP12 identified additional residues outside the C-22 and C-21 positions that could be modified to generate novel FK506 analogs with improved antifungal activity. IMPORTANCE Due to rising rates of antifungal drug resistance and a limited armamentarium of antifungal treatments, there is a paramount need for novel antifungal drugs to treat systemic fungal infections. Calcineurin has been established as an essential and conserved virulence factor in several fungi, making it an attractive antifungal target. However, due to the immunosuppressive action of calcineurin inhibitors, they have not been successfully utilized clinically for antifungal treatment in humans. Recent availability of crystal structures of fungal calcineurin-bound inhibitor complexes has enabled the structure-guided design of FK506 analogs and led to a breakthrough in the development of a compound with increased fungal specificity. The development of a calcineurin inhibitor with reduced immunosuppressive activity and maintained therapeutic antifungal activity would add a significant tool to the treatment options for these invasive fungal infections with exceedingly high rates of mortality.Item Open Access Synergistic antitumor effects of 9.2.27-PE38KDEL and ABT-737 in primary and metastatic brain tumors.(PloS one, 2019-01-09) Yu, Xin; Dobrikov, Mikhail; Keir, Stephen T; Gromeier, Matthias; Pastan, Ira H; Reisfeld, Ralph; Bigner, Darell D; Chandramohan, VidyalakshmiStandard treatment, unfortunately, yields a poor prognosis for patients with primary or metastatic cancers in the central nervous system, indicating a necessity for novel therapeutic agents. Immunotoxins (ITs) are a class of promising therapeutic candidates produced by fusing antibody fragments with toxin moieties. In this study, we investigated if inherent resistance to IT cytotoxicity can be overcome by rational combination with pro-apoptotic enhancers. Therefore, we combined ITs (9.2.27-PE38KDEL or Mel-14-PE38KDEL) targeting chondroitin sulfate proteoglycan 4 (CSPG4) with a panel of Bcl-2 family inhibitors (ABT-737, ABT-263, ABT-199 [Venetoclax], A-1155463, and S63845) against patient-derived glioblastoma, melanoma, and breast cancer cells/cell lines. In vitro cytotoxicity assays demonstrated that the addition of the ABT compounds, specifically ABT-737, sensitized the different tumors to IT treatment, and improved the IC50 values of 9.2.27-PE38KDEL up to >1,000-fold. Mechanistic studies using 9.2.27-PE38KDEL and ABT-737 revealed that increased levels of intracellular IT, processed (active) exotoxin, and PARP cleavage correlated with the enhanced sensitivity to the combination treatment. Furthermore, we confirmed the synergistic effect of 9.2.27-PE38KDEL and ABT-737 combination therapy in orthotopic GBM xenograft and cerebral melanoma metastasis models in nude mice. Our study defines strategies for overcoming IT resistance and enhancing specific antitumor cytotoxicity in primary and metastatic brain tumors.