Browsing by Subject "X-ray diffraction"
Results Per Page
Sort Options
Item Open Access Optimization of a Coded Aperture Coherent Scatter Spectral Imaging System for Classification of Breast Cancer(2017) Carter, Joshua EdwardCoherent scatter spectral imaging has been demonstrated as an effective way to classify healthy and malignant breast tissues. Previously in our group, data acquired using sectioned, lumpectomy specimens obtained from surgical pathology have been used to demonstrate the efficacy of this imaging method. Although effective in its current state, the system has not been optimized for use with these types of specimens (i.e. tissue types and thicknesses). Specimens obtained from lumpectomies often vary in thickness (up to 3 mm). The current X-ray tube operating parameters have been considered excessive for these tissues based on heating of the tube’s anode and the unnecessary, high quality of resulting spectra. The purpose of this work was to optimize our spectral imaging system to maintain accurate and consistent results of sectioned lumpectomy specimens while simultaneously maximizing system throughput by reducing the power requirements of the imaging system.
Teflon, adipose breast tissue, and malignant breast tissue were scanned using different combinations of X-ray source parameters (70-125 kVp, 25-500 mAs) to obtain a coherent-scatter diffraction spectrum for each measurement. Cross correlation was performed on the measured spectra to compare their quality against known, ground truth spectra from literature. In addition, a classification algorithm was developed to classify our measured spectra as one of four tissue types (adipose, normal, fibroglandular, and cancer). The locations of the spectral peaks were used to distinguish cancer from adipose and normal (50/50 fibroglandular/adipose) tissue, followed by a weighted cross correlation method used to distinguish cancer from fibroglandular tissue. Classification performance was assessed across all acquisition protocols to evaluate accuracy.
The optimal setting was identified as the minimal power supplied to the X-ray tube that resulted in the highest correlation to the ground truth spectra. The optimal setting was identified at 115 kVp, 100 mAs when using the raw spectra and 95 kVp, 50 mAs after processing the spectra. These settings result in an increase in system efficiency of at least 400% (at 115kVp, 100 mAs) compared to our current system operating protocol. Finally, the optimized system was tested using a new, unknown tumor specimen obtained from a preserved lumpectomy section.
This study successfully demonstrates the optimization of a new coherent scatter spectral imaging system based on classification using cross correlation and a weighted cross correlation method. The efficiency improvement obtained through the work allows for higher system throughput, thereby allowing enhanced data collection with shorter scans or scanning the specimens at higher resolutions.
Item Open Access Redoximorphic Bt horizons of the Calhoun CZO soils exhibit depth-dependent iron-oxide crystallinity(Journal of Soils and Sediments, 2019-02-12) Chen, C; Barcellos, D; Richter, DD; Schroeder, PA; Thompson, A© 2018, Springer-Verlag GmbH Germany, part of Springer Nature. Purpose: Iron (Fe) oxyhydroxides and their degree of ordering or crystallinity strongly impact the role that Fe plays in ecosystem function. Lower crystallinity phases are generally found to be more reactive than higher crystallinity phases as sorbents for organic matter and chemical compounds, as electron acceptors for organic matter mineralization or as electron donors for dysoxic respiration. We investigated Fe solid phase speciation as a function of soil depth in a redoximorphic upland soil profile. Materials and methods: We examined a redoximorphic upland soil profile, which displayed alternating Fe-enriched and Fe-depleted zones of the Bt horizons with platy structure from 56 to 183 cm depth at the Calhoun Critical Zone Observatory in South Carolina, USA. Redoximorphic Fe depletion and enrichment zones were sampled to enable a detailed investigation of Fe mineralogy during redox transformations. All samples were characterized by total elemental analysis, X-ray diffraction, and 57 Fe Mössbauer spectroscopy. Results and discussion: Total Fe in the Fe-enriched and Fe-depleted zones was 26.3 – 61.2 and 15.0 – 22.7 mg kg −1 soil, respectively, suggesting periodic redox cycling drives Fe redistribution within the upland soil profile. The Mössbauer data clearly indicated goethite (56 – 74% of total Fe) and hematite (7 – 31% of total Fe) in the Fe-enriched zones, with the proportion of hematite increasing with depth at the expense of goethite. In addition, the overall crystallinity of Fe phases increased with depth in the Fe-enriched zones. In contrast to Fe-enriched zones, Fe-depleted zones contained no hematite and substantially less goethite (and of a lower crystallinity) but more aluminosilicates-Fe(III) (e.g., hydroxy-interlayered vermiculite, biotite, kaolinite) with XRD and Mössbauer data suggesting a shift from oxidized biotite-Fe(III) at depth to hydroxy-interlayered vermiculite plus low-crystallinity goethite in the Fe-depleted zones in the upper Bt. Conclusions: Our data suggest the varied crystalline states of hematite and goethite may be important for Fe reduction over long-term time scales. The persistence of low-crystallinity Fe phases in Fe depletion zones suggests that both dissolution and re-precipitation events occur in the Fe-depleted layers. These variations in Fe phase abundance and crystallinity within similar redoximorphic features suggest that Fe likely shifts ecosystem roles as a function of soil depth and likely has more rapid Fe cycling in the upper Bt horizons in upland soils, while serving as a weathering engine at depth.Item Open Access Synthesis and Properties of GaAs1-xBix Prepared by Molecular Beam Epitaxy(2016) Li, JinchengGaAs1-xBix is a III-V semiconductor alloy which has generated much fundamental scientific interest. In addition, the alloy possesses numerous device-relevant beneficial characteristics. However, the synthesis of this material is very challenging and its properties are not well understood. The focus of this dissertation is to advance the understanding of its synthesis using molecular beam epitaxy (MBE) and, as a result, improve its key as-grown properties that are of great importance to device applications, such as increasing Bi concentration in the alloy and enhancing its optical emission efficiency.
In chapter 3, the discovery of a trade-off between the structural and optical characteristics of GaAs1-xBix , controlled by the degree to which the growth is kinetically-limited, is described. Chapter 4 discusses the exploitation of a growth method that utilizes the spatial distribution of MBE fluxes to facilitate numerous studies of the critical dependence of GaAs1-xBix characteristics on the V/III flux ratio. Chapter 5 describes the results of experiments utilizing vicinal substrates to modify both Bi incorporation and optical emission efficiency of synthesized GaAs1-xBix and enable new understanding of the Bi incorporation mechanism. Specifically, incorporation primarily at A steps, defined as the steps generated by misorienting the GaAs (001) substrate toward the (111)A surfaces, enhances Bi incorporation but reduces optical emission efficiency. Chapter 6 describes the identification of two new signatures in the Raman spectra of GaAs1-xBix that can be used to determine the Bi content and the hole concentration of nominally undoped GaAs1-xBix. Finally, in Chapter 7 the GaAs1-xBix growth using pulsed Ga fluxes is described. The use of pulsed-growth significantly modifies the incorporation of Bi and suggests it is a promising method for widening the GaAs1-xBix MBE growth window enabling improved synthesis control and materials properties.
Item Open Access X-Ray Diffraction Imaging for Breast Tissue Characterization(2020) Xiao, JefferyAlthough mammography is the gold standard for early screening for breast cancer, there is a need in improving its specificity. X-ray diffraction (XRD) has shown the ability to detect cancer based on its molecular properties; however, most commercial XRD systems focus on very thin targets using very low x-ray energies. To improve the imaging capabilities for thicker targets, we have developed XRD imaging systems capable of running at diagnostic X-ray energies. In this work, we evaluate the performance of our XRD system at two source configurations: 20 keV (mammography) and 60 keV (radiography), to understand and quantify the trade-off of between higher Rayleigh scatter cross section versus reduced penetration depth.
An XRD system was built using a Bremsstrahlung X-ray source, an energy discriminating X-ray detector, and customizable geometry. XRD scans were performed using adipose, fibroglandular, and carcinoma surrogate targets at two mean energies – 20 keV and 60 keV. The 20 keV configuration used a molybdenum filter and 2-mm collimated beam, whereas the 60 keV configuration used a tungsten filter with 1-mm diameter X-ray beam. Each target was scanned 5-10 times to evaluate measurement uncertainty. XRD spectra, normalized to mAs, were extracted from the detected signal and compared against known diffraction data for each material. System performance was evaluated using signal-to-noise ratio (SNR), average-percent-difference (APD) and uncertainty in each measurement.
An analytical calculation was done to test the effects of attenuation on the 20 keV and 60 keV configurations using elastic scatter coefficients and total attenuation coefficients excluding elastic scatter for each energy for breast tissue. Using the mean-free-path and the calculated exponential attenuation, an estimate of the surviving fraction of x-rays that undergo Rayleigh scatter was calculated.
The 20 keV configuration showed 8.25 SNR, 95.96% accuracy, and 1.46% uncertainty. The 60 keV configuration showed 7.05 SNR, 94.72% accuracy, and 0.96% uncertainty. Overall, the 20 keV configuration showed 13.21% improvement in SNR compared to the 60 keV configuration. The analytical estimation of the surviving fraction of x-rays having undergone Rayleigh scatter showed that at the average compressed breast thickness of 4.4 cm – 4.8 cm, the 20 keV system performed on par with the 60 keV system while the surviving fraction of Compton scatter, which is detrimental for XRD analysis, has decreased with energy. Calculating the ratio of the surviving fraction of Rayleigh scattered x-rays to Compton scattered x-rays to estimate the SNR with depth, 20 keV x-rays showed a consistent advantage. Through this, we demonstrated the viability of low-energy XRD imaging for characterizing breast tissues. The 20 keV configuration presents a viable method to characterize breast tissues at energies relevant to mammography, representing a potential method to improve specificity in mammography.