Browsing by Subject "glycogen"
Results Per Page
Sort Options
Item Open Access Metabolic Targeting of Cancer Cells: Two Molecular Mechanisms Involving Glucose Metabolism(2009) Quinones, Quintin JoseSelective therapeutic targeting of tumors requires identification of differences between the homeostatic requirements of cancer and host cells. One such difference is the manner in which cancer cells acquire energy. Cancer cells often grow in an environment of local hypoxia; under these conditions tumor cells depend on glycolysis for energy, but are unable to perform oxidative phosphorylation. Many tumor cells, despite normoxic conditions, continue to perform glycolysis without oxidative phosphorylation. The net result of glycolysis without oxidative phosphorylation is twofold: the need to consume a greater amount of glucose than a non-cancerous host cell, and the burden of increased intracellular lactic acid. The proteins responsible for the transport of lactic acid in and out of cells are known as the monocarboxylate transporters (MCTs). Monocarboxylate Transporter 1 (MCT1) and Monocarboxylate Transporter 4 (MCT4) are the MCTs that play a major role in the transport of lactic acid. Tumor cells depend on MCT1 and MCT4 activity to excrete excess intracellular lactic acid to maintain neutral intracellular pH and homeostasis. Using human neuroblastoma and prostate cancer cell lines this work demonstrates that tumor cells can be selectively targeted tumor under conditions of hypoxia or acidosis in vitro with the drug lonidamine, with a small molecule inhibitor selective for MCT1, or with RNA interference of MCT1. Inhibition of MCT1 activity in neuroblastoma cells under acidic extracellular conditions results in intracellular acidification and cell death. MCT1 mRNA is expressed in human neuroblastoma and positively correlated with clinical risk profile. Inhibition of MCT1 activity in hypoxic prostate cancer cells results in a reduction of lactate excretion, decreased intracellular pH, inhibition of ATP production, and subsequent cell death. MCT1 expression in sections of human prostate tumors has been demonstrated to validate MCT1 as a target in prostate cancer.
Through the Pasteur and Warburg effects, tumors have an increased demand for glucose. Some cancers store glycogen, but the reasons for this are largely unknown. It is hypothesized that tumor glycogen is used to promote tumor survival during transient hypoxia or low glucose, and that the mechanisms by which glycogen is stored is a potential therapeutic target in cancer. Tumors from human cell lines (WiDr, PC3, FaDu) have been grown in nude mice, sectioned and stained to measure glycogen storage. Using consecutive frozen sections, levels of hypoxia, glucose, lactate, ATP, and CD31, an endothelial cell marker, have been determined. These sections have been employed to elucidate the "architecture" of tumor metabolism in terms of vessel distance. Additionally, PAS-stained EF5 labeled human tumor samples were used to obtain calibrated hypoxia measurements to correlate with PAS. These studies demonstrate a correlation between hypoxia and the formation of glycogen deposits in human tumors and nude mouse xenografts. In cell culture, formation of glycogen deposits after exposure to hypoxia has been demonstrated, in addition to expression of glycogen synthase in human cancer cell lines.
The development of novel selective cancer chemotherapeutics will require the identification of differences between cancerous cells and normal host cells to exploit as targets. Several differences in metabolism, including the need to excrete excess lactic acid and store glycogen under hypoxic conditions, are such targets. Novel therapeutics exploiting these targets should be effective against cancer cells and minimally toxic to host cells.
Item Open Access Starch Binding Domain-containing Protein 1 Plays a Dominant Role in Glycogen Transport to Lysosomes in Liver.(J Biol Chem, 2016-08-05) Sun, Tao; Yi, Haiqing; Yang, Chunyu; Kishnani, Priya S; Sun, BaodongA small portion of cellular glycogen is transported to and degraded in lysosomes by acid α-glucosidase (GAA) in mammals, but it is unclear why and how glycogen is transported to the lysosomes. Stbd1 has recently been proposed to participate in glycogen trafficking to lysosomes. However, our previous study demonstrated that knockdown of Stbd1 in GAA knock-out mice did not alter lysosomal glycogen storage in skeletal muscles. To further determine whether Stbd1 participates in glycogen transport to lysosomes, we generated GAA/Stbd1 double knock-out mice. In fasted double knock-out mice, glycogen accumulation in skeletal and cardiac muscles was not affected, but glycogen content in liver was reduced by nearly 73% at 3 months of age and by 60% at 13 months as compared with GAA knock-out mice, indicating that the transport of glycogen to lysosomes was suppressed in liver by the loss of Stbd1. Exogenous expression of human Stbd1 in double knock-out mice restored the liver lysosomal glycogen content to the level of GAA knock-out mice, as did a mutant lacking the Atg8 family interacting motif (AIM) and another mutant that contains only the N-terminal 24 hydrophobic segment and the C-terminal starch binding domain (CBM20) interlinked by an HA tag. Our results demonstrate that Stbd1 plays a dominant role in glycogen transport to lysosomes in liver and that the N-terminal transmembrane region and the C-terminal CBM20 domain are critical for this function.Item Open Access Systems for Genetic Analysis in the Obligate Intracellular Pathogen Chlamydia trachomatis(2011) Nguyen, BidongChlamydia trachomatis, a pathogen responsible for major diseases of significant clinical and public health importance, remains poorly characterized because of its intractability to molecular genetic manipulation. The development of a system(s) for genetic analysis would significantly accelerate our ability to identify genes that enable Chlamydia to establish infection, survive within its host, and cause disease. This thesis describes two methods used to assess gene function in Chlamydia and to provide insights into its biology and pathogenesis. The first method described is based on specific inhibitors and is used to probe the role of lipooligosaccharide (LOS), a main lipid components of bacterial outer membranes. Using this approach, we show that small molecule inhibitors of LpxC [UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc deacetylase], the enzyme that catalyzes the first committed step in the biosynthesis of lipid A, blocks the synthesis of LOS in C. trachomatis. In the absence of LOS, Chlamydia remains viable and establishes a pathogenic vacuole ("inclusion") that supports robust bacterial replication. However, bacteria grown under these conditions were no longer infectious. In the presence of LpxC inhibitors, replicative reticulate bodies accumulated in enlarged inclusions but failed to express selected late-stage proteins and transition to elementary bodies, a Chlamydia developmental form that is required for invasion of mammalian cells. These findings suggest the presence of an outer membrane quality control system that regulates Chlamydia developmental transition to infectious elementary bodies and highlights the potential application of LpxC inhibitors as unique class of anti-chlamydial agents.
The second part of this thesis describes the development of a system with which to perform forward genetics in C. trachomatis. Forward genetics approaches set out to identify the gene or set of genes that contributes to a specific biological process and usually entails generating random mutations in a large number of organisms, isolating mutants with an aberrant phenotype, and identifying the alleles associated with the mutant phenotype. In this approach, chemical mutagenesis is coupled with whole genome sequencing (WGS) and a system for DNA exchange within infected cells to generate Chlamydia mutants with distinct phenotypes, map the underlying genetic lesions, and generate isogenic strains. We identified mutants with altered glycogen metabolism, including an attenuated strain defective for Type II secretion. The coupling of chemically induced gene variations and WGS to establish genotype-phenotype associations should be broadly applicable to the growing list of microorganisms intractable to traditional genetic mutational analysis.