Browsing by Subject "macaque"
Results Per Page
Sort Options
Item Open Access A Probabilistic Approach to Receptive Field Mapping in the Frontal Eye Fields.(Frontiers in systems neuroscience, 2016-01) Mayo, J Patrick; Morrison, Robert M; Smith, Matthew AStudies of the neuronal mechanisms of perisaccadic vision often lack the resolution needed to determine important changes in receptive field (RF) structure. Such limited analytical power can lead to inaccurate descriptions of visuomotor processing. To address this issue, we developed a precise, probabilistic technique that uses a generalized linear model (GLM) for mapping the visual RFs of frontal eye field (FEF) neurons during stable fixation (Mayo et al., 2015). We previously found that full-field RF maps could be obtained using 1-8 dot stimuli presented at frame rates of 10-150 ms. FEF responses were generally robust to changes in the number of stimuli presented or the rate of presentation, which allowed us to visualize RFs over a range of spatial and temporal resolutions. Here, we compare the quality of RFs obtained over different stimulus and GLM parameters to facilitate future work on the detailed mapping of FEF RFs. We first evaluate the interactions between the number of stimuli presented per trial, the total number of trials, and the quality of RF mapping. Next, we vary the spatial resolution of our approach to illustrate the tradeoff between visualizing RF sub-structure and sampling at high resolutions. We then evaluate local smoothing as a possible correction for situations where under-sampling occurs. Finally, we provide a preliminary demonstration of the usefulness of a probabilistic approach for visualizing full-field perisaccadic RF shifts. Our results present a powerful, and perhaps necessary, framework for studying perisaccadic vision that is applicable to FEF and possibly other visuomotor regions of the brain.Item Open Access Dynamics of visual receptive fields in the macaque frontal eye field.(J Neurophysiol, 2015-12) Mayo, J Patrick; DiTomasso, Amie R; Sommer, Marc A; Smith, Matthew ANeuronal receptive fields (RFs) provide the foundation for understanding systems-level sensory processing. In early visual areas, investigators have mapped RFs in detail using stochastic stimuli and sophisticated analytical approaches. Much less is known about RFs in prefrontal cortex. Visual stimuli used for mapping RFs in prefrontal cortex tend to cover a small range of spatial and temporal parameters, making it difficult to understand their role in visual processing. To address these shortcomings, we implemented a generalized linear model to measure the RFs of neurons in the macaque frontal eye field (FEF) in response to sparse, full-field stimuli. Our high-resolution, probabilistic approach tracked the evolution of RFs during passive fixation, and we validated our results against conventional measures. We found that FEF neurons exhibited a surprising level of sensitivity to stimuli presented as briefly as 10 ms or to multiple dots presented simultaneously, suggesting that FEF visual responses are more precise than previously appreciated. FEF RF spatial structures were largely maintained over time and between stimulus conditions. Our results demonstrate that the application of probabilistic RF mapping to FEF and similar association areas is an important tool for clarifying the neuronal mechanisms of cognition.Item Open Access The Neurophysiology of Social Decision Making(2010) Klein, Jeffrey ThomasThe ultimate goal of the nervous systems of all animals is conceptually simple: Manipulate the external environment to maximize one's own survival and reproduction. The myriad means animals employ in pursuit of this goal are astoundingly complex, but constrained by common factors. For example, to ensure survival, all animals must acquire the necessary nutrients to sustain metabolism. Similarly, social interaction of some form is necessary for mating and reproduction. For some animals, the required social interaction goes far beyond that necessary for mating. Humans and many other primates exist in complex social environments, the navigation of which are essential for adaptive behavior. This dissertation is concerned with processes of transforming sensory stimuli regarding both nutritive and social information into motor commands pursuant to the goals of survival and reproduction. Specifically, this dissertation deals with these processes in the rhesus macaque. Using a task in which monkeys make decisions simultaneously weighing outcomes of fruit juices and images of familiar conspecifics, I have examined the neurophysiology of social and nutritive factors as they contribute to choice behavior; with the ultimate goal of understanding how these disparate factors are weighed against each other and combined to produce coherent motor commands that result in adaptive social interactions and the successful procurement of resources. I began my investigation in the lateral intraparietal cortex, a well-studied area of the primate brain implicated in visual attention, oculomotor planning and control, and reward processing. My findings indicate the lateral intraparietal cortex represents social and nutritive reward information in a common neural currency. That is, the summed value of social and nutritive outcomes is proportional to the firing rates of parietal neurons. I continued my investigation in the striatum, a large and functionally diverse subcortical nuclei implicated in motor processing, reward processing and learning. Here I find a different pattern of results. Striatal neurons generally encoded information about either social outcome or juice rewards, but not both, with a medial or lateral bias in the location of social or juice information encoding neurons, respectively. In further contrast to the lateral intraparietal cortex, the firing rates of striatal neurons coding social and nutritive outcome information is heterogeneous and not directly related to the value of the outcome. This dissertation represents a few incremental steps toward understanding how social information and the drive toward social interaction are incorporated with other motivators to influence behavior. Understanding this process is a necessary step for elucidating, treating, and preventing pathologies
Item Embargo Visual Cues Modulate Auditory Responses in the Macaque Inferior Colliculus(2024) Schmehl, Meredith NicoleHow the brain uses multisensory cues to process complex sensory environments remains a key question in neuroscience. Of particular interest is whether relatively early sensory areas, which are commonly considered to be unisensory in function, might take in information from other sensory modalities to inform the representation of the primary modality of interest. We explored how visual cues might inform the representation of sounds in the macaque inferior colliculus, a subcortical auditory region that receives visual input and has visual and eye movement-related responses. Using in vivo single-unit extracellular recordings, we observed neuronal responses in the inferior colliculus while two monkeys performed a localization task involving both auditory and visual stimuli. We found that pairing a visual cue with a sound can change a neuron’s response to that sound, even if the neuron is unresponsive to visual input alone. Visual cues also enhance localization behavior in both spatial precision and temporal latency. Finally, when two simultaneous sounds are present and one sound is accompanied by a visual cue, neurons’ responses to the two stimuli on individual trials may correlate with each monkey’s behavior during the task. Together, these results suggest that the inferior colliculus uses visual cues to alter its sound responsiveness and inform perceptual behavior, providing insight into how the brain combines multisensory information into a single perceptual object at a relatively early stage of the auditory pathway.