Pyramid Multi-resolution Scanning for Two-sample Comparison

Loading...
Thumbnail Image

Date

2016

Advisors

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

553
views
602
downloads

Abstract

Testing for two-sample differences is challenging when the differences are local and only involve a small portion of the data. To solve this problem, we apply a multi- resolution scanning framework that performs dependent local tests on subsets of the sample space. We use a nested dyadic partition of the sample space to get a collection of windows and test for sample differences within each window. We put a joint prior on the states of local hypotheses that allows both vertical and horizontal message passing among the partition tree to reflect the spatial dependency features among windows. This information passing framework is critical to detect local sample differences. We use both the loopy belief propagation algorithm and MCMC to get the posterior null probability on each window. These probabilities are then used to report sample differences based on decision procedures. Simulation studies are conducted to illustrate the performance. Multiple testing adjustment and convergence of the algorithms are also discussed.

Description

Provenance

Subjects

Citation

Citation

Mao, Jialiang (2016). Pyramid Multi-resolution Scanning for Two-sample Comparison. Master's thesis, Duke University. Retrieved from https://hdl.handle.net/10161/12315.

Collections


Except where otherwise noted, student scholarship that was shared on DukeSpace after 2009 is made available to the public under a Creative Commons Attribution / Non-commercial / No derivatives (CC-BY-NC-ND) license. All rights in student work shared on DukeSpace before 2009 remain with the author and/or their designee, whose permission may be required for reuse.