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Abstract

The innovation and diffusion of new technologies is one of the central concerns of

economics. New inventions or technological combinations do not spring fully formed

into the world; as firms encounter and learn about new technologies they experi-

ment, refine, and learn about them, improving productivity (and sometimes earning

economic rents). Understanding the processes by which firms learn, and how these

processes interact with regulations, is fundamental to understanding the emergence

of new technologies, their contribution to growth, and the interaction of innovation

and regulation.

This dissertation addresses how firms learn and respond to regulations in the con-

text of emerging technologies. Within this framework, I address several questions.

When production inputs are socially controversial, do firms respond to disclosure

laws by voluntarily constraining their inputs? Do these public disclosure laws facil-

itate knowledge transmission across firms, and if so, what are the implications for

public welfare—for instance, do the gains from trade outweigh any effects of reduced

incentives for innovation? I study these questions in the context of hydraulic fractur-

ing, though the results offer insight for more general settings. Panning out to a much

broader view, I also explore how energy-related technologies—in both generation and

consumption—diffuse across national boundaries over time, and whether innovation

and diffusion of energy-efficient technologies has led to more or less energy-efficient

economic growth.
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In my first paper, I contribute to improved understanding of the conditions in

which information-based regulations, which are increasingly common in multiple pol-

icy domains, decrease externalities such as environmental pollution. Specifically, I

test whether information disclosure regulations applied to hydraulic fracturing chem-

icals caused firms to decrease their use of toxic inputs. Prior to these mandatory

disclosure laws, some operators voluntarily disclosed fluid components for some or

all of their wells. I compare the chemical mixtures used prior to the mandatory dis-

closure laws to those used after the laws took effect, using a difference-in-differences

method motivated by the difference in timing of state-level disclosure laws. I use

voluntary disclosures to measure the toxicity of fluids prior to mandated disclosure,

and thus observe a composite effect of both full reporting and disclosure pressure.

These effects likely have opposite signs; I employ several methods to tease them apart

so that I can separately identify the effect of disclosure pressure. My analysis, which

covers over 70,000 wells in seven states, suggests that state disclosure regulations

resulted in a large and persistent decrease in the use of toxic and regulated chemicals

in fracturing fluids. This is not the first paper to find that disclosure regulations

can change firms’ behavior, but it demonstrates such an effect in a setting in which

consumer or market pressure is minimal or nonexistent: firms that produce undif-

ferentiated products for an intermediate market, and disclosure policies that do not

generate readily accessible or interpretable information.

The second paper tests whether disclosure laws facilitated the transmission of

useful knowledge across companies. It is well established that economic agents learn

about new technologies in part from other adopters, though even sophisticated firms

may not take full advantage of social learning. With my co-authors, I examine

whether firms took advantage of environmentally-focused disclosure laws to learn

from competitors and improve productivity. We find evidence that they did: fol-

lowing mandatory disclosure we observe convergence in productivity per well, in
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production inputs, and strong evidence of a link between the two. To our knowledge

this is the first study to examine this pathway for social learning in an emerging tech-

nology. This could also be interpreted as a form of technology diffusion facilitated

by environmental regulation.

In my third paper, I address a broader scale of technology change, looking for

evidence that improved technologies for energy generation and consumption have

allowed less energy-intensive or pollution-intensive growth in developing countries. I

analyze panel data on Gross Domestic Product (GDP) and national energy consump-

tion to look for evidence of technology “leapfrogging” (i.e., decreased intensity of en-

ergy consumption for a given level of economic growth). I combine 1960-2014 data on

energy consumption from the International Energy Agency with historical data that

extends back to 1861 for several countries on energy consumption and fuel source, as

well as GDP. I compare countries at the same income level and test whether energy

consumption and energy intensity are different for today’s less-developed countries

compared to today’s industrialized countries when they had similar income levels.

Compared to prior analysis, my much longer time series allows me to test for leapfrog-

ging over a scale appropriate to the pace of widespread technological change.
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1

Introduction

The innovation and diffusion of new technologies is one of the central concerns of

economics. New inventions or technological combinations do not spring fully formed

into the world; as firms encounter and learn about new technologies they experi-

ment, refine, and learn about them, improving productivity (and sometimes earning

economic rents). Understanding the processes by which firms learn, and how these

processes interact with regulations, is fundamental to understanding the emergence

of new technologies, their contribution to growth, and the interaction of innovation

and regulation.

This dissertation addresses how firms learn and respond to regulations in the con-

text of emerging technologies. Within this framework, I address several questions.

When production inputs are socially controversial, do firms respond to disclosure

laws by voluntarily constraining their inputs? Do these public disclosure laws facil-

itate knowledge transmission across firms, and if so, what are the implications for

public welfare—for instance, do the gains from trade outweigh any effects of reduced

incentives for innovation? I study these questions in the context of hydraulic fractur-

ing, though the results offer insight for more general settings. Panning out to a much

1



broader view, I also explore how energy-related technologies—in both generation and

consumption—diffuse across national boundaries over time, and whether innovation

and diffusion of energy-efficient technologies has led to more or less energy-efficient

economic growth.

1.1 Summary of papers

In Chapter 2, “Fracking, Toxics, and Disclosure,” I test whether firms engaged in

hydraulic fracturing for oil and gas responded to information disclosure regulations

in part by reducing their use of toxic and regulated chemical additives. The chemical

additives used in hydraulic fracturing have inspired substantial public concern, as well

as some regulatory concern, especially because in the early years of the emerging tech-

nology companies withheld information about chemical formulas from regulators and

the public—as well as from one another. I exploit differences in state-level regulatory

timing to estimate a causal effect of disclosure regulations, inferring pre-regulation

chemical use from voluntary reports that companies made prior to mandatory dis-

closure. I find that firms did reduce their use of toxic chemicals in response to the

mandatory disclosure regulations; although the effect takes time to manifest, about

nine months to a year, it is both persistent and large in magnitude. I also observe a

simultaneous increase in the quantity of chemicals that companies declare as “pro-

prietary,” although this appears to be a secular trend and not necessarily caused by

the mandatory disclosure regulation. This paper adds to our understanding of how

firms respond to information disclosure laws in non-consumer-facing settings, which

has rarely been studied using methods that can accurately assess causal effects.

In Chapter 3, “Learning by Viewing? Social Learning, Regulatory Disclosure,

and Firm Productivity in Shale Gas,” I examine whether shale gas operators took

advantage of these same information disclosure laws to learn from their competitors

and improve productivity—that is, the extent to which disclosure facilitated knowl-

2



edge transfer across companies. With my coauthors, I exploit an unusual episode

in Pennsylvania in which the regulatory body collected chemical input data for a

14-month period (the data were technically public, but quite difficult to access). Us-

ing data collected from requests under the state Right-To-Know Laws, as well as

additional data from public disclosures later, we study how the change in disclosure

regime affected operators chemical use and well productivity. Our results suggest

the operators who were least productive prior to the public disclosure period did

take advantage of the social learning opportunity: they improved productivity faster

than the firms that were initially more productive, and their production inputs grew

more similar to the firms that were more productive ex ante. This finding suggests

information disclosure regulations created a pathway for social learning—a form of

technology diffusion facilitated by regulation. It also suggests firms may have been

accurate in claiming that mandatory information disclosure could threaten the com-

petitive advantage of technology leaders.

In my final chapter, “Energy Transitions and Technology Change: ‘Leapfrogging’

Reconsidered,” I address a broader scale of technology change, and test whether im-

proved technologies for energy generation and consumption have allowed less energy-

intensive and less pollution-intensive growth in developing countries. This paper

builds on a recent analysis of “energy leapfrogging” by Arthur van Benthem, analyz-

ing a data series on national GDP and energy consumption extending back to 1861

for some countries (improving on the 47-year series from the earlier paper, and also

using about 50 more countries). My extended time series allows me to test for effi-

ciency improvements over a scale that is more appropriate to the pace of widespread

technological change, and in my analysis I find evidence of “leapfrogging” where van

Benthem does not. This suggests that over the long run, efficiency improvements

dominate rebound effects and industrial outsourcing; this, in turn, has implications

for long-run energy demand forecasting.
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1.2 Common themes

Taken together, these papers address important gaps in our understanding of how

firms learn, innovate, and adapt to regulatory pressure in a dynamic energy indus-

try. Chapters 2 and 3 share an empirical context (hydraulic fracturing for shale

gas), and there is a fairly direct line between them (e.g., both address the effects of

information-based regulations on firms’ decisions). Though it seems quite different

in some ways, Chapter 4 also has some shared topical themes—technological change

and innovation, particularly in the domain of energy technologies—but addresses,

obviously, a very different scale both chronologically and in terms of the number of

agents involved. Methodologically, all three chapters have offered learning opportu-

nities for me, allowing me to build an analytical toolbox of quantitative tools useful

for insightful characterization of problems that are of interest to both researchers

and policy makers.

Within the context of the emerging technology of hydraulic fracturing, both

Chapters 2 and 3 address the impacts of disclosure regulations. Although often

motivated primarily by the public “right to know” about risks that arise from the

storage, use, and disposal of toxic chemicals—or, for that matter, risks such as ex-

plosion hazards, possible safety hazards from consumer products, or other risks that

may not be immediately apparent—disclosure laws have been found to affect firms’

behavior in other aspects of their decision-making. Prior literature in economics and

policy has focused primarily on voluntary self-regulation by firms, and has focused

primarily on firms that have a direct line to consumers. My setting is unusual in

that these oil and gas firms do not sell differentiated products to consumers, and

thus generally do not experience pressure from a consumer channel. Furthermore,

the nature of the specific information disclosure laws I study does little to facilitate

access or comprehension by a non-technical audience. This sets the stage for both
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of the papers on hydraulic fracturing: the first paper analyzes how firms in non-

consumer-facing industries respond in terms of reducing public bads, supplementing

our knowledge of how disclosure laws alter firm behavior. The second paper opens an

entirely new line of inquiry, regarding the potential for these laws to create pathways

for knowledge transmission that were previously inaccessible or overly costly.

1.3 Policy implications

Chapter 2 may have the most direct policy implications. Though it is set in the

context of one particular new technology, information-based regulations are com-

mon in many domains—and can be especially valuable for emerging technologies in

which command-and-control regulation may hinder innovation, market-based regu-

lations are impractical, and the risks of adverse consequences may be uncertain or

poorly characterized. Some popular media have called out hydraulic fracturing as a

highly risky technology, and have often suggested that the brew of toxic chemicals

in fracturing fluid is among the riskiest elements. In my reading of the chain of

events, this concern may have been more applicable in the earlier days of hydraulic

fracturing, when exploration and production firms themselves were sometimes in the

dark regarding the chemical mixtures that were used in their wells. In the context

of prior secrecy, the mandatory disclosure regulations that states passed starting in

2010 represented a substantial change for operators, regulators, and the public. This

is especially true given widespread public fear about unknown chemicals leaking into

surface water and groundwater, and the industry’s traditional opposition to public

disclosure in general.

I have discussed my findings in Chapter 2 with a number of stakeholders, including

regulators, operators, contractors, and third parties seeking to set private standards

for responsible operation. The regulators and operators say that my findings cor-

roborate their intuition and experience. One operator provided a quite informative
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summary of their policy regarding the use of toxic chemicals, documenting a tiered

approval system that requires increasingly higher levels of management permission

for the use of substances based on their potential to have adverse effects on the en-

vironment or human health. In conversations with this operator, it became clear

that mandatory disclosure regulations were a critical motivation for this operational

policy—in combination with a feeling that it was “the right thing to do,” to be sure,

but the regulation gave managers both an extra impetus to implement the policy

and a tool by which to force their suppliers and contractors to provide substitute

chemicals that serve the same purposes but carry less environmental or occupational

risk.1

Thus, the paper in Chapter 2 has direct implications for regulators in the specific

setting of hydraulic fracturing: mandatory information disclosure works to change

operators’ behavior. Having worked in close proximity to the oil and gas industry

for several years prior to my doctoral program, I find this a surprising result.2 The

oil and gas industry is among the world’s technically, politically, and legally most

sophisticated industries, and the disclosure regulations I study are not particularly

conducive to behavioral change. The latter observation is based in part on the

characteristics that Fung et al. (2007) suggest are most likely to promote behavior

change: policies that, among other things, encourage disclosure of information that

is readily accessible and can be integrated into consumers’ decision-making. For the

regulations I study in Chapter 2, consumers had to download reports individually, so

information was difficult to assemble into a database or compare over space or time.

In addition, the overwhelming diversity of substances (approximately 2,000 distinct

chemicals) would present challenges for interpretation, even for a relatively well-

1 Thus, in the three-mechanism framework of Bennear and Olmstead (2008), this operator’s be-
havior change seems to be motivated most substantively by the managerial channel.

2 Indeed, I was initially reluctant to pursue this research topic because I believed I would spend
many hours cleaning data only to find no response to the regulation.
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educated audience. Furthermore, given their strong political power and longstanding

relationships with regulators, oil and gas firms may reasonably have expected little

future regulation to arise after providing the information demanded by these policies.

In light of all this, the finding that the disclosure regulations caused a large and

persistent drop in toxics use is potentially quite valuable for policymakers. It also

addresses a research gap pertaining to the conditions under which “disclosure works.”

The paper on “Learning by Viewing” carries a different set of implications for

policy. In general, our findings suggest that policy makers may face a tradeoff be-

tween satisfying the public’s right to know and firms’ right to secrecy, which may be

an important element of the regime by which firms appropriate returns from their

investments in innovation. At the same time, it may be that the gains from trade

(regarding knowledge of effective chemical formulas) outweigh the losses from failure

to innovate. In ongoing developments, my co-authors and I are investigating these

questions so as to sharpen policy recommendations.

The paper on energy transitions, as it stands, carries some important information

for energy demand forecasters, especially in low-income and developing countries.

The paper on which mine builds (van Benthem, 2015) suggests there are impor-

tant technology rebound effects that may drive today’s developing countries to use

more energy per unit of economic growth than did developing countries of the past,

which bodes ill for forecasters who are assuming some level of energy savings or

“leapfrogging” due to the availability of more efficient technologies. My paper offers

additional insight and notes that while this technology rebound effect may be of

concern for some countries, on average it is not, when considering a broader range of

developed countries, a longer timeline for analysis, and a more complete set of energy

technologies—especially on the generation and distribution side. That is, the fore-

casting agencies may be correct after all in assuming some level of energy efficiency

available to today’s developing countries that did not exist in previous decades. That
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said, the more valuable policy implications may be those that come from ongoing

development of this paper, including exploration of heterogeneous effects and inter-

actions with historical and current institutions.
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2

Fracking, Toxics, and Disclosure

2.1 Introduction

Information-based regulations are increasingly common in regulatory policy. In con-

trast to command-and-control regulation that prescribes or proscribes particular

technologies or practices, and market-based regulations that directly modify agents’

incentives via price effects, these policies require certain entities to disclose elements

of their production process, by-products, or other information that may affect the

welfare of stakeholders but would be unobservable to them in the absence of manda-

tory disclosure. Such policies are often motivated by the notion that the public has

an inherent right to know elements of government and private decision making when

those elements could conceivably affect public welfare. Perhaps surprisingly, disclo-

sure regulations may also influence regulated entities to change their behavior, even

absent other policies.

In explaining the increased use of information-based regulation, scholars have

identified several factors. One of these is that technological advances (e.g., cheaper

computing power and data storage) makes information easier to collect, store, pro-
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cess, and provide to the public. Another is political in nature: in a contentious

political environment, elected officials may face lower political costs if they adopt

regulations that merely require disclosure, compared to more intrusive or costly re-

quirements. Furthermore, prescriptive regulation (such as bans on specific substances

or processes) can suppress valuable innovation, especially in the context of emerging

technologies, or when the magnitude of potential external harms is uncertain. Dis-

closure regulations, on the other hand, offer an opportunity to “wait and see” while

also allowing the public and regulators to gather more information about issues of

concern.

These factors have led to the use of information-based regulations in a wide

range of industries, from financial regulation to food safety, in the US and many

other countries (Dasgupta et al., 2007). They are most commonly used in consumer-

facing industries and the financial industry (Fung et al., 2007), consistent with the

underlying motivation of protecting the public’s inherent right to know certain op-

erational details. Most research on the effects of disclosure laws, too, has focused on

consumer-facing industries. In general, empirical evaluation on the effects of disclo-

sure regulations on regulated entities’ behavior suggests that even profit-maximizing

firms, under certain conditions, change their behavior in ways that seem to enhance

public welfare, such as reduced environmental pollution or improved labor practices.

This basic story leaves some questions unanswered, however. Most empirical

studies have been set in consumer-facing industries, and firms that provide outputs

in commoditized intermediate product markets may not respond to (or experience)

external pressure in the same way. Also, most prior empirical studies document

the effects of policies that make information relatively accessible to outside parties,

and in many cases also policies that result in one big disclosure event, such as an

annual inventory of toxic chemical releases representing a large number of firms at

once. These program features and others, such as how easily outsiders can interpret
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any information disclosed, affect how firms respond to disclosure laws (Fung et al.,

2007). In this context, analyzing the effectiveness of disclosure regulations in a

new context contributes to understanding the conditions in which they can influence

firms’ behavior, and how.

In this paper I examine the effects of mandatory disclosure regulations on the

chemicals that firms use in hydraulic fracturing for producing oil and gas from shale

formations. This technology, which is currently conducted primarily in the United

States (but is rapidly diffusing to many other countries), combines a suite of techno-

logical innovations that allows firms to produce oil and gas from geologic formations

that have previously been considered unproductive or uneconomical. Although some

of the technologies have been in use for decades, recent innovations since the late

1990s and early 2000s have led to a rapid and widespread expansion of the tech-

nology, which in turn has led to the development of oil and gas wells in areas that

have not experienced such development in many years or, in some cases, ever. The

technology involves high-pressure injection of millions of gallons of fluid down a well-

bore, including 50,000 to 100,000 gallons of chemicals, some of which are or could be

toxic to humans and ecosystems (Stringfellow et al., 2014). Although major spills

are infrequent, regulators and the public have expressed concern about the potential

toxicity of the chemicals used.

Since 2010 twenty-eight US states have passed laws requiring oil and gas operators

to disclose the chemical components of their fluids. These laws are nearly identical

across states, with many using virtually identical text. Prior to these laws, some

operators also voluntarily disclosed chemicals used in some or all of their fractured

wells, predominantly through a web-based tool created by an industry council. The

voluntary disclosures contain essentially the same information as the legally required

reports. This includes some firms’ choice to declare chemical identities as proprietary

trade secrets—thus not revealing the chemical identity. All state laws permit this
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“proprietary” declaration, and some firms also used the proprietary declaration in

their voluntary reporting as well.

I compare the chemical mixtures used prior to the mandatory disclosure laws

to those used after the laws took effect, using a difference-in-differences method

motivated by the differences in state-level regulatory timing. Many operators work

in multiple geologic plays and multiple states; based on conversations with operators,

I assume that firms implement any toxics-reduction policies at the level of geologic

play, implying some leakage outside of the state boundary (i.e., for geologic plays

that cross state borders). I control for this leakage by incorporating fixed effects for

the interaction of time and geologic play.

I use the voluntarily reported data to measure chemical use prior to the regu-

lation. However, the voluntary reports do not represent all wells fractured prior to

mandatory disclosure. Thus, with the passage of mandatory disclosure regulations,

I observe a composite effect of full reporting (i.e., because all firms are required to

disclose chemicals for all wells) and disclosure pressure (the effect, if any, of the

mandatory disclosure regulation on firms’ choice of chemicals). The full reporting

effect is likely positive, if voluntary reports are cleaner on average, whereas the dis-

closure pressure effect would be negative, if firms reduce reducing their use of toxics

in response to regulations.

I use two methods to distinguish the full reporting effect from the disclosure

pressure effect. First, I run a separate analysis on that is limited to wells operated

by “frequent voluntary reporter” firms—that is, those firms that voluntarily reported

a large proportion of their wells before disclosure was mandatory. By construction the

full reporting effect is lower for these firms, so the composite effect is more strongly

weighted toward the disclosure pressure effect. Second, in one state, I exploit an

unusual period in which all firms were required to report full information to the state

regulator—but not in a way that was readily available to the public at the time—
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even as some firms voluntarily reported information to a public website. The average

voluntary public report in that period shows concentrations of toxic and regulated

chemicals that are significantly lower than the average of the regulator-only reports,

suggesting the full reporting effect is positive and large.

The analysis suggests that firms reduced their use of toxic chemicals in response to

the mandatory disclosure regulations. Though the effect does not occur immediately

after the regulation, it does persist over time, for at least three years after the

regulations come into effect. My analysis also suggests that firms’ use of proprietary

chemicals increased over the same time period, although this trend does not appear

to be causally related to the mandatory disclosure regulations.

This paper is among the first empirical analyses of the effects of mandatory dis-

closure regulations in a non-consumer-facing industry that uses methods that can

accurately assess causal effects of those regulations. As such, it provides useful in-

sight for both scholars and practitioners regarding how firms respond to mandatory

disclosure regulations when consumers have little or no direct influence on firms’

profit-maximizing abilities. The analysis also demonstrates a method, perhaps use-

ful in other contexts, to discern the effects of mandatory disclosure regulations when

data are available from a pre-existing voluntary reporting scheme. By showing that

disclosure regulations can influence firms’ behavior even when firms sell into inter-

mediate markets, the timing of disclosures is diffuse, and reports are difficult for

outsiders to access or interpret, this paper helps to elucidate the mechanisms by

which information-based regulations operate. Furthermore, these findings may help

policymakers to choose among alternative regulatory instruments or specific policy

design elements.

The remainder of the paper proceeds as follows: Section 2.2 provides background

on the empirical setting and discusses related literature. In Section 2.3 I document

the data I use, and in Section 2.4 I describe the empirical method. In Section 2.5 I
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summarize results and document robustness checks. Section 2.6 concludes.

2.2 Background

2.2.1 Hydraulic fracturing

The shale gas and oil boom in the US has dramatically altered global energy markets

and has brought jobs, royalties, and tax revenues to nearby communities (Hausman

and Kellogg, 2015). At the same time, environmental groups have raised concerns

about aspects of the production process. Among these concerns is the contents of the

fracturing fluid, which usually consists of water, sand or another granular material,

and a cocktail of chemical additives. The process of hydraulic fracturing involves

the injection of this fluid into rock formations hundreds to thousands of meters

below the surface of the earth. The chemicals serve a number of purposes that

enhance the productivity of water and sand. These include reducing the viscosity

of water to allow faster pumping and induce higher pressures, enhancing natural

fractures in the substrate, carrying the proppant farther into these fractures, helping

to build up a solid barrier on the formation face, and minimizing the growth of

bacteria that might interfere with metal casing or cause other problems. An additive

that enhances performance of one objective may degrade performance of another:

e.g., a more viscous fluid can carry proppant farther into fractures, but may require

additional additives to break the viscosity later in the fracturing operation. Engineers

have invested considerable research into optimal design characteristics of a fracture

operation, with environmental toxicity of the fluid as one consideration (Montgomery,

2013; Gulbis and Hodge, 2000). Industry practitioners indicate that the choice of

specific individual components is rarely if ever driven by cost, because the cost of

the chemicals themselves is small in comparison to the overall cost of the fracturing

and stimulation operation.1

1 Personal communication with Mark Boling, Southwestern Energy, 2013.
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Many of the chemicals used can be toxic to human or ecological health. One

of the earliest concerns to arise about fracturing technology was the identity and

toxicity of the chemicals in fracturing fluid and the possibility they might migrate or

be accidentally released into ground water or surface water. While these chemicals

represent a small proportion of fracturing fluid (usually on the order of two percent

of total volume), this fraction represents 60,000 to 100,000 gallons for a typical oper-

ation that uses three to five million gallons of fluid. Public and regulatory concerns

about risks associated with fracturing seem to have arisen due to the proximity of

wells to non-industrial land uses, the large number of wells developed in a short

period of time, and a few high-profile incidents of water pollution that some me-

dia reports attributed to spills or methane intrusion. Media coverage of fracturing

chemicals highlighted both the toxicity of some chemicals and the industry’s desire

to keep chemicals secret (e.g. Elgin et al., 2012; Haas et al., 2012).

2.2.2 Regulatory setting

The 2005 Energy Policy Act exempted hydraulic fracturing from the Underground

Injection Control (UIC) provision of the Safe Drinking Water Act (SDWA), which

would otherwise have regulated operators’ choice of chemicals injected underground

in the chemical slurry.2 As a result, except for fractures that used diesel fuel, oper-

ators did not need to disclose to regulators or the public the compounds they used

in high-pressure slurries. Companies were initially reluctant to disclose the contents

of chemical fluids, citing proprietary concerns and also claiming that the compounds

involved are not harmful when properly handled. However, a Congressional inves-

tigation initiated in 2010 and published in 2011 identified many instances in which

companies did not know the chemical makeup of compounds they were using (Wax-

2 Some observers referred to this provision as the “Halliburton Loophole,” although others argue
it was merely a clarification of whether SDWA applied.
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man et al., 2011). In the wake of this report and other developments, and perhaps

due to industry concern that the practice could face more severe regulation or a

moratorium, individual states began to pass legislation that required companies to

disclose the chemical additives used in their formulas.

No federal or state policies regulate chemicals used in fracturing, other than the

information disclosure laws analyzed here and generic regulations such as the Emer-

gency Planning and Community Right-to-Know Act (EPCRA) and the Occupational

Safety and Health Act (OSHA). There were no changes in EPCRA or OSHA that

would affect fracturing fluid contents over the period of this study. As noted above,

the only provision of the UIC laws that applies to fracturing fluids is that operators

wishing to use diesel fuels as part of the fracturing fluid must obtain a permit in

advance. The definition of “diesel fuel” for this purpose remained largely constant

over the period I study: EPA issued draft guidance for UIC permit writers on this

definition in May 2012 to clarify the definition, but noted that permit writers should

continue to use existing regulations until final guidance was issued, which was in

February 2014 (USEPA, 2012a, 2014).

Thus, during the time period of this study, other than the definition of diesel fuel

there was no change in federal regulations that affected firms’ choices of fracturing

chemicals (though there were some proposed changes, as documented in Section

2.4.2). The only significant regulatory changes at the state level was the passage of

the laws I study. The policies are quite similar across states.

Table 2.1 provides basic information about state laws requiring disclosure of

chemical additives in hydraulic fracturing fluid. Of the 18 states with significant

fracturing activity and disclosure laws, six require operators to report information

to the FracFocus registry, a web-based database created by the Groundwater Pro-

tection Council and the Interstate Oil and Gas Conservation Commission (GWPC

and IOGCC, 2015). Five states, including several of the states that passed the ear-
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liest disclosure rules, require operators to report information to a state regulatory

agency or commission. The seven remaining states allow operators to choose their

reporting location (i.e., to FracFocus or the state), although one (Oklahoma) notes

that the state regulator will upload to FracFocus any information it receives. Despite

these differences in reporting registry, state laws generally require similar information

about chemical additives, especially among states that require or allow reporting to

FracFocus. The required information generally includes ingredient name, chemical

abstract service (CAS) number, concentration in fracturing fluid (typically the max-

imum concentration used in any fracturing stage), supplier name, and trade name

if applicable. When operators upload information to FracFocus they are also asked

to provide data on well location and characteristics including vertical depth, water

volume used, latitude and longitude, and well name.

All states allow exemptions for the disclosure of additives considered to be con-

fidential business information that firms believe gives them competitive advantage.

Approaches to accommodating trade secrets are broadly similar across states, in

part because of the Uniform Trade Secrets Act (promulgated by the Uniform Law

Commission in 1979 and passed by 46 states), which aims to harmonize standards

for trade secret protection. Operators must declare an exemption for individual

chemical ingredients for which they claim trade secret status, and reports uploaded

to FracFocus typically include the concentration of the chemical used but not its

name or chemical identification number. Some states also require operators to re-

port the chemical family to which the proprietary substance belongs. Thus, reports

typically show the total quantity of proprietary chemicals used, but little additional

information about the nature of these chemicals.

2.2.3 Related literature

Bennear and Olmstead (2008) identify three mechanisms through which disclosure
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Table 2.1: State disclosure laws

Basis for
State Effective date effective date Reporting location

Wyoming 5-Sep-10 Frac job State agency
Arkansas 15-Jan-11 Drilling permit State agency
Michigan 22-Jun-11 Frac job State agency
Montana 27-Aug-11 Frac job FracFocus or state agency
West Virginia 29-Aug-11 Frac job State agency
Louisiana 20-Oct-11 Drilling permit FracFocus or state agency
Texas 1-Feb-12 Drilling permit FracFocus
New Mexico 15-Feb-12 Frac job State agency
Colorado 1-Apr-12 Frac job FracFocus
North Dakota 1-Apr-12 Frac job FracFocus
Pennsylvania 16-Apr-12 Frac job State (2/5/11);

FracFocus (4/16/12)
Ohio 11-Jun-12 Frac job FracFocus or state agency
Utah 1-Nov-12 Frac job FracFocus
Oklahoma 1-Jan-13 Frac job FracFocus or state agency
Mississippi 4-Mar-13 Frac job FracFocus or state agency
Alabama 9-Sep-13 Frac job FracFocus
Kansas 2-Dec-13 Frac job FracFocus or state agency
California 1-Jan-14 Frac job FracFocus or state (1/1/14);

State (1/1/16)

Excludes some states with little or no fracturing activity.
1. Pennsylvania required reporting to the state in February 2011, but
changed the reporting location to FracFocus in April 2012.
2. Oklahoma’s regulations note the state regulator will report to FracFocus
any information it receives.
3. In California, reporting to the state (rather than FracFocus) became
mandatory on January 1, 2016.

might result in abatement. The first is through the market: For instance, if con-

sumers have information about firms’ environmental performance and prefer greener

goods, then they can exert market pressure in hopes of inducing firms to improve.

Market mechanisms could also operate through other channels, such as by higher

financial or legal liabilities for firms engaged in dirtier production practices. The

second mechanism is political: information may increase the ability of a concerned

public to lobby for stronger regulation. Finally, disclosure may affect an organiza-
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tion’s internal decision making, as individuals within the firm change their behavior

as a result of measuring and reporting data.

As noted, some empirical analyses have been conducted on the effectiveness of

disclosure policies using methods that can accurately identify causal effects. Most of

this evidence is from industries where the information disclosed is of relatively high

visibility to consumers, including electricity (Delmas et al., 2010; Kim and Lyon,

2011), drinking water (Bennear and Olmstead, 2008), and restaurant hygiene (Jin

and Leslie, 2003). Analyses within industries that are less consumer-facing, such as

manufacturing facilities that report to the Toxics Release Inventory (TRI), find that

releases of reportable toxic chemicals have declined over the course of the program

by as much as 50 percent (Bennear and Coglianese, 2005). However, because no

data were available on toxic releases prior to the start of the program, this decrease

cannot be definitively attributed to the public disclosure requirement (Bennear and

Olmstead, 2008).

There has been no comprehensive empirical investigation of which mechanisms

are most powerful or effective. Bennear and Olmstead (2008) note that in their set-

ting, the market mechanism is likely not relevant since water suppliers are essentially

monopolists, and the internal mechanism is unlikely to play a large role because of

pre-existing monitoring requirements. Thus, they conclude the political mechanism

drives the results in their study. Doshi et al. (2013) investigate the internal mech-

anism in depth by identifying what characteristics of firms influence or moderate

their response to disclosure regulations, but they do not rule out the possibility

that consumer or political pressure are also acting simultaneously to influence firms’

decisions.

Indeed, cleanly isolating the operation of one particular mechanism is likely not

possible without a case study of a particular (small) set of firms. For analysis on

a larger group, the relative importance or effectiveness of different mechanisms is
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best teased out by analyzing the effects of disclosure regulations that operate in dif-

ferent settings, and noting which mechanisms are most likely to be relevant within

those settings. This will help public decision makers to identify the potential for

information-based regulations to have desirable results, and conceivably to design

effective public policy. This should be especially important as disclosure regulations

become more prevalent in non-consumer-facing industries, where the market mech-

anism is less influential. It may also be more important in contentious or fractured

political environments in which political channels are less effective because the threat

of regulation is less credible.

2.3 Data

I create a novel data set with information about well completions, including chem-

ical constituents of fracturing fluids, for 73,211 wells in seven states; all wells were

hydraulically fractured between 2011 and 2015. I combine three types of data: chem-

icals used in each fracture; state-level censuses of well completions; and information

about individual chemical characteristics, including toxicity and other aspects of

interest. The following sections describe each of these three data types.

2.3.1 Chemical additives

I assemble data on chemical additives from the FracFocus database (GWPC and

IOGCC, 2015) and one state regulatory agency (California) that has comparable and

accessible data. FracFocus is the legally required reporting registry for operators to

report chemicals in five states in my analysis (Colorado, North Dakota, Pennsylvania,

Texas, and Utah).3 I also include FracFocus reports from Oklahoma, because while

operators can choose whether to report to FracFocus or the state, that state’s disclo-

3 FracFocus is also the reporting registry for wells fractured in Alabama, but there were very few
wells in that state during the analysis period (126) and even fewer wells that meet the criteria for
usable observations. Thus, I exclude Alabama from the analysis.
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sure law indicates that the regulatory agency will upload to FracFocus all information

it receives. I also collect information on chemical additives from the California Di-

vision of Oil, Gas and Geothermal Resources (DOGGR). California used FracFocus

as an alternative reporting site prior to January 1, 2016, and allowed operators to

report to either its registry or FracFocus. Thus, operators would report chemicals for

any well fractured in California to either FracFocus or the California state registry,

and both registries provide comparable data—the location of the wellhead, depth,

water volume, operator, and fracture date. For each chemical, in FracFocus (for all

states) as well as the California registry, I observe the chemical name, identification

number, supplier, purpose, and maximum additive concentration in the fracturing

fluid.

I attempted to compile chemical reports from other state regulators. However, the

data available and the accessibility of those data vary widely. Some regulators allow

inspection of chemical disclosure reports only in person at state offices. Although

some disclosure reports are posted online for some states, the reporting format is

highly variable, sometimes even within the same state, and chemical information is

frequently provided along with other aspects of well completion in documents that

can number close to a hundred pages per well. In addition, the data items available

on these disclosure reports generally differ from the data available on FracFocus.

Thus, this analysis focuses on states that use FracFocus or have comparable state

registries (i.e., California). This increases the internal validity of the results reported

here, but at the cost of some external validity: the effects I observe may not hold in

states where chemical disclosures are less accessible.4

4 Indeed, with respect to the three mechanisms by which disclosure may alter firms behavior—
market, political, or internal managerial channels—testing whether firms reduce toxics use in states
where reports are less accessible to the public would help to discern the relative importance of
the political channel in relation to the internal managerial channel. For instance, in these states
the internal managerial channel might be the primary mechanism by which disclosure would have
an effect, since limiting public accessibility may limit the influence of the political channel. Future
work could address this issue by considering effects of disclosure within states that require reporting
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When FracFocus was launched, GWPC and IOGCC provided fracturing fluid

chemical reports only as individual PDF files that were easy to download individually

but challenging to compile en masse. At the time, GWPC and IOGCC specifically

stated their intent to provide a forum where the public could view individual reports

but not look at many reports at once. At least two entities successfully scraped the

entire FracFocus database in late 2012 or early 2013; one of these, the environmental

NGO Skytruth, provided the resulting data online for public download (Skytruth,

2013). In summer 2015, FracFocus provided a dataset for public download; however,

that data release excluded many of the earliest reports (wells fractured prior to

April 2013). My dataset combines information from both sources, including all wells

available on FracFocus with completion dates between February 2011 and June 2015.

The resulting dataset includes 80,190 unique observations of wells with chemical

information disclosed either voluntarily or in compliance with state regulations. I

drop 3,244 of these wells for one of three reasons: (i) there is not sufficient infor-

mation to classify them as voluntary or mandatory reports, (ii) there is no informa-

tion on basic well parameters that I use as covariates (water volume, depth, oil/gas

classification), or (iii) the calculated sum of fracturing fluid concentrations exceeds

200 percent. Nearly 40 percent of the observations have a calculated sum over 100

percent, partly due to rounding error and partly because disclosure laws require op-

erators to report maximum concentrations across all fracturing stages rather than

actual average concentrations. However, the calculated sum drops off quickly after

101 percent; for instance, just 4.5 percent of wells have a calculated sum over 103%.

Visual inspection of FracFocus reports for wells with a calculated sum over 200%

suggest most arise from either operator error in completing forms, or errors gener-

ated by the scraping procedure (e.g., errors that resulted in transposing two data

columns). I ran the analysis using alternative thresholds for this cutoff ranging from

to locations other than FracFocus.
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101% to 200%, and the results are essentially identical to those reported here.

Finally, I remove 3,735 observations of wells fractured before or after the time

cutoff values shown in equation (2.3), the time-varying difference-in-differences econo-

metric specification (i.e., more than 6 quarters prior to the regulation, or more than

12 quarters after). These observations would drop out of the estimation of equation

(2.3) in any case, and excluding them from the estimation of (2.1) and (2.2) makes

results from these specifications more comparable. I have also run the analyses in-

cluding these observations, and the results are essentially identical to those reported

in this paper.

2.3.2 Chemical characteristics

Companies use nearly 2,000 distinct additives in fracturing fluid, with the fracturing

fluid for each well containing usually 10 to 40 different compounds. I calculate four

well-level measures of fluid toxicity, including two that directly address toxicity or

regulated status.

The first measure, which I label “priority toxic and regulated chemicals” (PTRCs),

is the total concentration of chemicals that fall into any of four groups. Three of

these groups correspond to regulatory classification: (i) regulated as primary contam-

inants by the Safe Drinking Water Act; (ii) regulated as Priority Toxic Pollutants for

ecological toxicity under the Clean Water Act; or (iii) classified as diesel fuel under

EPA guidance on fracturing operations (USEPA, 2012a, 2014). The fourth group

includes chemicals listed in the USEPA Risk-Screening Environmental Indicators

(RSEI) database (USEPA, 2012b) as having a relatively high risk value for chronic

human health effects. The RSEI database provides peer-reviewed relative risk values

for nearly 500 chemicals covered by the Toxics Release Inventory, with chemical-

specific measures based on detailed toxicity evaluations from both oral and inhala-

tion exposure pathways. Among chemicals used in fracturing fluid, RSEI scores range
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from 0.5 (oral exposure to formic acid) to 3,000,000 (oral exposure to hydrazine and

quinolone); these are unitless scores that are intended to provide order-of-magnitude

comparisons. My measure of PTRCs includes chemicals that have an RSEI score of

at least 200.

The second measure is the weighted sum of concentrations of individual chemi-

cals in fracturing fluid, with weights corresponding to chronic human health scores

from the RSEI database. Unlike the first measure, which is simply a sum of con-

centrations, this provides a toxicity-adjusted measurement of chemicals of potential

concern within the fluid. Still, it is limited to chemicals that have been analyzed

for toxicity with sufficient rigor and peer-review that they can be included in the

RSEI database. Some chemicals of potential concern that are used in fracturing

fluid may not be included in RSEI or covered by water quality regulations, an issue

that Stringfellow et al. (2014) discuss in some detail.

The third measure addresses the use of chemicals that are frequently cited in

media reports in association with potential dangers of fracturing, regardless of reg-

ulatory status or scientific evidence of toxicity. I use this measure to test for the

possibility that companies respond more to public concern or media attention than

to toxicity or regulatory status. I identify “high media profile” chemicals by searching

for media reports that mention particular chemical names in conjunction with frac-

turing and words indicating danger or hazard, and designate chemicals as high-profile

if they were mentioned in at least 100 unique media stories over a five-and-half-year

period.5 Like the first metric, this measure is the sum of reported concentrations of

these “high media profile” chemicals.

Finally, I calculate a fourth measure that is the sum of concentrations of chem-

5 These stories typically describe the rapid spread of fracturing, the proximity of non-industrial
land uses, offer a few specific environmental concerns, and list one or more chemicals in use in
fracturing fluid. The substance mentioned most often is diesel (1,816 stories), followed by benzene
(1,230) and toluene (491 stories).
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icals designated as proprietary or confidential business information. This measure

allows me to test whether disclosure laws resulted in an increase in companies’ use

or declaration of proprietary chemicals. This could arise, for instance, if operators

were concerned that disclosure laws would imperil confidential business information

in a way that voluntary reporting did not. Another possibility is that some oper-

ators could continue using regulated, toxic, or publicly controversial chemicals, but

“hide” those substances by declaring them as part of proprietary additives. However,

caution is warranted in interpreting results for proprietary declarations. While all

state disclosure regulations contain specific provisions for the reporting of proprietary

chemicals, in a voluntary reporting regime some operators may have chosen not to

list proprietary chemicals at all in a voluntarily submitted disclosure form. That

is, we might expect to observe an increase in chemicals declared proprietary after

disclosure laws, simply because the disclosure laws formalized the necessity to report

proprietary chemicals as part of a fracturing fluid. Indeed, my conversations with

operators suggest there is heterogeneity in how operators approached the question

of proprietary chemical disclosures when reporting was voluntary.

Overall, I consider 790 distinct chemicals as “of potential concern,” and I ob-

serve 64 of these in fracturing fluid. This includes 46 PTRCs, 13 high-media-profile

chemicals, and 58 chemicals with positive RSEI scores.

2.3.3 State permitting databases

I supplement FracFocus data with information from state permitting databases

(drawn primarily from DrillingInfo) for two reasons. First, in Texas, the disclo-

sure law applies based on the issue date of the initial drilling permit, rather than the

date of fracturing. The FracFocus data do not include initial drilling permit date, so

I obtain these dates from the state regulatory database.

Second, I use state permitting information to develop a census of wells that are
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“completed,” representing the universe of wells that are either ready to fracture, in

process of fracturing, or where fracturing has been performed, such that the well

is ready to produce gas and/or oil. Developing this universe of wells allows me to

estimate the amount of voluntary reporting that occurred prior to the mandatory dis-

closure period. I calculate an operator-level measure of voluntary reporting and use

this measure to distinguish “voluntary reporter” firms—those that reported chemical

use for a high percentage of their wells before disclosure became mandatory. This in

turn helps me tease out the effect of interest (i.e., the effect of disclosure regulations)

from the “full reporting” effect. The latter effect is minimized for voluntary reporter

firms, since these operators already reported chemical use for a large proportion of

their wells in the period before disclosure was mandatory.

I classify operators as voluntary reporters if they provided chemical reports for at

least 75% of their horizontal wells in the 12 months prior to the regulation effective

date in the relevant state. For instance, Range Resources completed 171 horizontal

wells in Pennsylvania, Texas and Oklahoma in the 12 months leading up to the

respective disclosure laws in those states, and filed chemical disclosure reports for

153 (89%).6 Thus, Range Resources would be considered a voluntary reporter (at

the 75% threshold) for the purposes of this analysis. I have also run the analysis at

other thresholds lower and higher than 75%, and the qualitative results are robust.

2.3.4 Descriptive statistics

Table 2.2 provides a summary of locations and other information for the wells used in

this analysis. For about one-quarter of the wells chemical information is voluntarily

reported, while information is reported by law for the remaining three-quarters. The

6 The focus on horizontal wells means that operators who drilled no horizontal wells in the twelve
months prior to the regulation cannot be classified as to voluntary reporter status. I exclude
these operators from the set of voluntary reporters. Because these are generally small firms, often
operating in only one state, and focused on vertical wells, this should not have a significant impact
on the results.
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proportion of wells that are voluntarily reported is relatively stable across states,

although somewhat lower in North Dakota (14%) and higher in California (54%)

than other states, which range from 23% to 39%. Over half the wells are in Texas;

Colorado contributes the next largest share of wells for an individual state, at 12%.

Over half the operators work at least partially in Texas.

Texas also passed the earliest mandatory disclosure law requiring reporting to

FracFocus. Unlike other states, however, Texas used the date of issue for the drilling

permit, rather than the date of the fracturing job, to determine legal reporting

requirements. Thus, many of the 9,341 voluntarily reported wells (nearly half of

those in my dataset) were fractured after February 1, 2012, when the Texas law

came into effect. Because the operators of these wells obtained drilling permits prior

to February 1, any chemical fluid reports I observe were voluntarily submitted.

Table 2.3 shows similar information but focuses on the subset of operators that

I classify as “voluntary reporters at the 75% level” (VR75), based on the criterion

of voluntarily reporting chemicals for at least 75% of their horizontal wells in the

twelve months leading up to mandatory regulation in the relevant state. About

half the wells in my sample are fractured by these “VR75” operators, though the

percentage of these wells varies by state and ranges from just 1% in California to

77% in Pennsylvania. Relatively few operators, just 8%, fall into the VR75 category;

again, this percentage varies by state, from 7% in Oklahoma and 9% in Texas to 49%

in Pennsylvania. Comparing the percentage of VR75 operators to wells fractured by

these operators also suggests that these operators are also more likely to include the

largest operators (because they represent just 8% of operators but fracture 47% of

wells). This is also true in each state except California, where it is apparent that the

largest operators do not fall into the VR75 category.
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The relationship between operator size and voluntary reporting is worth investi-

gating because my technique to distinguish the full reporting effect from the disclo-

sure pressure effect relies on running the difference-in-differences analysis separately

for the VR75 operators. If these are also the largest operators, I may not be able

to distinguish a finding of a significant effect of disclosure regulations for VR75 op-

erators from the effect on large operators. Table 2.4 provides some insight into the

correlation of size and VR75 status, showing that of the 25 largest operators in the

dataset (defined by number of wells), only half (12) fall into the VR75 category, and of

the top 10 only 6 (albeit, including the top 5) are classified as VR75. Thus, some but

not all of the largest operators are classified as VR75. Table 2.4 also shows which of

the largest operators meet another VR-related classification, VR90, identifying firms

that met a 90% (rather than 75%) threshold for voluntary reporting.7

Table 2.5 provides descriptive statistics for the explanatory and dependent vari-

ables I use in my analysis. The average well in my sample is about 8,500 feet deep

and uses slightly over 3 million gallons of water. About 61% of the wells in the sam-

ple are oil wells (or combined oil and gas wells), and 39% are gas wells only. Of the

71,989 wells for which the well direction is known, 69% are horizontal or directional

wells while 31% are vertical wells. The well direction is not reported for 1,222 wells.

The dependent variables, concentrations of various chemicals of interest, exhibit

substantial right skew. To reduce the skewness I take logs (adding 0.01 so the log of

zero values is defined), but even then there are some outliers which may have an un-

due influence on OLS coefficients. I therefore take the additional step of winsorizing

these outliers, defined as observations in excess of 1.5 times the interquartile range

lower than the 25th percentile or higher than the 75th percentile. Table 2.5 shows

7 Since only one of the ten largest operators is a VR90 firm, analyzing the subset of VR90 firms
allows me to better distinguish whether the toxicity-reducing effect of disclosure laws applies only
to the largest operators. When I analyze the wells of VR90 operators—using an approach identical
to that for VR75 operators—I find results qualitatively identical to those reported in section 2.5.
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Table 2.4: Voluntary reporter status of 25 largest operators

Operator %
Operator Wells of wells VR75 VR90

Anadarko 5,027 6.9% yes yes
Chesapeake Operating, Inc. 3,952 5.4% yes
EOG Resources, Inc. 3,405 4.7% yes
Pioneer Natural Resources 2,837 3.9% yes
Apache Corporation 2,416 3.3% yes
XTO Energy (ExxonMobil) 2,318 3.2%
Devon Energy Production Co., LP 2,044 2.8%
Sandridge Energy 2,029 2.8%
Occidental Oil And Gas 1,959 2.7%
Noble Energy Inc. 1,633 2.2% yes
Encana Oil & Gas (USA) Inc. 1,527 2.1% yes yes
Aera Energy LLC 1,472 2.0%
WPX Energy 1,467 2.0% yes yes
ConocoPhillips 1,417 1.9% yes yes
Marathon Oil 1,348 1.8% yes yes
Newfield Exploration 1,304 1.8%
Chevron USA Inc. 1,139 1.6%
Energen Resources Corporation 1,123 1.5%
Continental Resources, Inc. 1,074 1.5%
Whiting Oil And Gas Corporation 1,051 1.4%
BHP Billiton Petroleum 918 1.3%
Hess Corporation 855 1.2% yes yes
Range Resources Corporation 750 1.0% yes
Laredo Petroleum, Inc. 710 1.0%
COG Operating LLC 673 0.9%
Total (top 25) 44,448 60.7% yes (12) yes (6)

summary statistics for these winsorized variables as logs; to facilitate interpretation,

the table also shows summary statistics for the corresponding levels, though I focus

on the logs for the analysis.

Table 2.6 shows the mean and standard deviation for wells reported under each

regime type (voluntary or mandatory), and differences between the means for each

regime type. Voluntarily reported wells tend to be less deep, use less water, are
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Table 2.5: Descriptive statistics

Variable N Mean SD Minimum Maximum

Well depth (ft) 73,211 8,507 2,925 100 25,000
Fluid volume (106 gal) 73,211 3,130 3,108 1 15,000
Oil well 73,211 0.61 0.49 0 1
Vertical wellbore 71,989 0.31 0.46 0 1
Log relative toxicity score 73,211 -0.4 2.89 -4.61 8.25
Log ppm PTRCs 73,211 -0.65 3.59 -4.61 12.43
Log ppm high-media- 73,211 2.7 3.74 -4.61 11.36

profile chemicals
Log ppm proprietary 73,211 3.42 4.88 -4.61 14.24

chemicals
Relative toxicity score 73,211 52 387 0 4,667
PTRC chemicals (ppm) 73,211 484 9,305 0 211,263
High-media-profile 73,211 558 5,435 0 98,863

chemicals (ppm)
Proprietary chemicals 73,211 3,028 43,412 0 4,750,000

(ppm)

Depth is winsorized at a lower bound of 100 feet and upper bound of 25,000
feet. Water volume is winsorized at a lower bound of 1,000 gallons and upper
bound of 15,000,000 gallons.
Oil wells include wells that produce oil and gas together.
Log relative toxicity score, log ppm PTRCs, and log ppm high-media-profile
chemicals are winsorized at the 75th percentile plus 1.5 times the IQR (for
490, 490, and 190 values, respectively). To accommodate zero values of the
underlying levels, 0.01 (ppm) is added to the underlying level for all val-
ues. Varying the magnitude of this adjustment does not qualitatively change
results.

more likely to be gas wells, and are slightly more likely to be vertical wells. They

also tend to have lower log concentrations of PTRCs, high-media-profile chemicals,

proprietary chemicals, and lower log relative toxicity scores. All of these differences

are statistically significant, but not all are necessarily meaningful; the difference in

mean depth, for instance, represents about a 2% shallower well, which is not likely

meaningful.
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However, to the extent that public and regulatory concern over fracturing in-

puts has focused on water and chemical use, the lower reported use of water and

chemicals for voluntarily reported wells is consistent with the notion that companies

tend to voluntarily disclose operations that may be seen as less controversial. Other

explanations exist: other researchers have found companies using greater amounts

of water per well as fracturing technology advances (Covert, 2015); thus, the lower

water use may be simply due to the fact that voluntary reports tend to occur earlier

in time. The greater observed use of chemicals of interest may be attributable to the

full-reporting effect discussed previously.

Among the wells that are fractured by VR75 operators, voluntarily reported wells

again tend to be less deep, use less water, are more likely gas wells, and are more likely

vertical wells. They also tend to have a weakly lower log relative toxicity score and use

lower concentrations of proprietary chemicals. However, these voluntarily reported

wells have slightly higher concentrations of PTRCs and high-media-profile chemicals.

This suggests that restricting the sample to VR75 operators indeed provides a method

to distinguish the full-reporting effect from the disclosure-pressure effect.

2.4 Econometric approach

Ideally I would randomly assign mandatory disclosure to some wells and observe the

use of toxic chemicals for all wells before and after assignment. Since I cannot ma-

nipulate policy, I motivate the empirical model as a natural experiment where states

require disclosure at different times. I use a difference in differences specification

that exploits variations in the effective dates of state regulations. In this section I

document my econometric approach and address empirical models and identifying

assumptions.
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2.4.1 Empirical models

The basic model for the difference-in-differences approach is

Yipjst “ αs ` λt ` δDst ` γWi ` θj ` ψp `
P

ÿ

p“1

ψp ˆ λt ` εijpst (2.1)

where Yipjst is the variable of interest (e.g., percent of toxic additives). Subscripts

i, j, p, s, and t denote, respectively, well, operator, geologic play, state, and time.

Thus αs, λt, θj, and ψp represent fixed effects for state, time, operator, and geologic

play, while Wit is a vector of well characteristics. The interaction of geologic play

and time period controls for time-varying factors within each geologic play, including

whether operators face a mandatory reporting regulation within each play. That is,

this interaction term controls for the assumption that operators implement toxics-

reduction policies at the level of geologic play (not just within a state jurisdiction),

which is consistent with the organizational structures of operators who work over

broad geographic areas. The variable for treatment, Dst, takes the value one if

disclosure was mandatory in state s in period t. Thus, δ represents the average

difference-in-differences in toxic chemical use between the treatment and control

groups, and if δ ă 0 then the use of toxics (or another measure of interest) declined

as a result of the mandatory disclosure law.

This specification assumes a limited set of differences between the periods “before

mandatory disclosure” and “after mandatory disclosure.” These differences include

the change in disclosure regulations, of course, as well as different operator decisions

over the well parameters in Wit, the distribution of wells across geologic plays, and

the involvement of individual operators. Still, operators could have experienced

changes in managerial structure, or revised company policies in ways that altered the

approach to fluid formulation, during the study period, for reasons independent of the
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change in disclosure laws. There could be also unobserved changes in state regulatory

environments over time in ways that cause different responses of firms to existing

regulations: for instance, changes in staffing levels, attention or focus of individual

agencies or personnel, or updated reporting forms. In order to measure more precisely

the effect of the disclosure law conditional on these time-varying, operator-level and

state-level characteristics, I incorporate operator-year dummy variables and state-

time trends. (Unfortunately using dummy variables at the state-time level would be

collinear with the treatment, so instead I interact state dummy variables with an

annual time trend.) The econometric specification is then:

Yipjst “ αs`λt`
7

ÿ

s“1

αsˆt`
J

ÿ

j“1

θjˆφt`δDst`γWi`θj`ψp`
P

ÿ

p“1

ψpˆλt`εijpst (2.2)

This specification provides an improved focus on the effect of the regulation con-

ditional on potentially confounding variables. However, it does not allow me to

measure any differences in the effect of the regulation over time. To address this,

I replace the single difference-in-differences variable Dst with one that is allowed to

vary over time, and measure the effect of the regulation 6 quarters prior and 12

quarters after the date the regulation becomes effective. Thus, this specification is

Yipjst “ αs`λt`
7

ÿ

s“1

αsˆt`
J

ÿ

j“1

θjˆφt`
12
ÿ

τ“´6

δτDst`γWi`θj`ψp`
P

ÿ

p“1

ψpˆλt`εijpst

(2.3)

Equation (2.3) is identical to (2.2) except that Dst is an indicator equal to one

if disclosure was mandatory in state s at time t ´ τ . The δτ coefficients are the

differences in differences corresponding to each time period. By plotting these δτ

coefficients for each quarter, I can test for differences in the effect of the mandatory

36



disclosure “treatment” over 18 months prior and 36 months following the treatment.

I can also verify empirically whether the parallel trend assumption holds: that is,

whether the pre-treatment differences between treatment and control are approxi-

mately zero.

To calculate standard errors and confidence intervals, I cluster standard errors at

the state level, reflecting standard guidance for difference-in-differences (and other)

analyses since the model residuals are likely not independent within groups (Angrist

and Pischke, 2008; Bertrand et al., 2004). However, the usual procedure for estimat-

ing cluster-robust standard errors in OLS (White, 2000) relies on three assumptions

for consistent estimates (Mackinnon and Webb, 2016), and two of those assumptions

(large number of clusters, and “balanced” clusters with roughly equal numbers of ob-

servations) are likely violated in this setting, since I have just seven clusters and one

includes about half of my observations. Furthermore, estimated standard errors are

almost always too low when these assumptions are violated, leading to over-rejection

of the null hypothesis. A number of alternative procedures have been suggested for

consistent estimation of standard errors (Cameron et al., 2008; Cameron and Miller,

2015; Mackinnon and Webb, 2016). I implement two of these methods. The main

results reported in Section 2.5 use the G ´ 1 degrees of freedom correction, which

amounts to a t-test with degrees of freedom equal to the number of clusters G minus

one. Cameron and Miller (2015) advise this as an easily implemented approach that

offers substantial improvements in consistency of estimates. As a robustness check,

I also calculate p-values using a wild cluster bootstrap, following the procedures in

Cameron and Miller (2015) with one critical improvement (Webb, 2014; Mackinnon

and Webb, 2016).8

8 The “regular” bootstrap involves resampling observations from the original sample, with replace-
ment; in a cluster setting, this is applied as a block bootstrap method where the blocks are clusters.
However, in Monte Carlo tests, Cameron et al. (2008) find this does not eliminate over-rejection in
settings with few clusters. The wild cluster bootstrap performs better with few clusters. Instead of
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2.4.2 Identifying assumptions for causal interpretation

The difference-in-differences model is a natural choice suggested by state-level dif-

ferences in regulatory timing. To interpret δ as the causal effect of the regulation, I

must make three identifying assumptions. Two of these are common to difference-in-

differences approaches: exogenous timing of the treatment and parallel trends prior

to the treatment. The third is peculiar to my setting: the appropriateness of using

voluntarily reported data to serve as the pre-treatment measure of behavior.

Exogenous timing of treatment

First, I assume the timing of treatment is exogenous. Given the historically close re-

lationship between the U.S. oil and gas industry and its regulators, it is possible that

regulators issued the mandatory disclosure requirement only after operators signaled

their readiness, which presumably would occur only when they had minimized its

toxic or controversial components. If this were true, it would imply the treatment is

not random with respect to the variable of interest, and my estimate of the treatment

effect would be biased. However, if there is some endogeneity in the timing of the

regulations, meaning that states did not receive the regulatory “treatment” until the

industry had reduced the toxicity of their formulas, the impact would be to diminish

the effect of interest—that is, a negative bias on the coefficient δ in equations (2.1)

sampling observations using pairs of right-hand-side and left-hand-side variables x, y, we calculate
a new y˚ equal to a predicted value of y plus a weighted residual, where the weights follow a specific
random distribution. In the wild cluster, every observation in the original dataset is used exactly
once in each bootstrap replication (Webb, 2014). Thus, the randomness that underlies the power
of the bootstrap arises from the randomly weighted residual that is added to ŷ. This is unlike the
“regular” bootstrap (better denoted a “pairs cluster,” as Cameron et al. (2008) point out), in which
the randomness arises from the fact that each observation in the original dataset may be drawn
one or more times, or not at all. In a setting with very few clusters—as here—Cameron et al.
(2008) and Cameron and Miller (2015) advise weighting the residual by a value chosen from the
Rademacher distribution, which takes the values ´1 and `1 with equal probability. Unfortunately
the Rademacher weighting scheme produces at most 2G different values, which implies that hypoth-
esis testing using the wild cluster bootstrap can be problematic when G ă 10 or so. Webb (2014)
and Mackinnon and Webb (2016) demonstrate why a particular six-point distribution offers better
results for small G. I use this “Webb” distribution in implementing the wild cluster bootstrap.
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and (2.2) and the coefficients δτ (for τ ě 0) in (2.3).

Media reports from the relevant period, and my interviews with industry person-

nel, provide mixed evidence with respect to industry perspectives regarding chem-

ical disclosure. On balance it seems that early industry opposition to disclosure

gave way to nonchalance or acceptance of state laws for disclosure, at least in pub-

lic statements, but industry has opposed federal disclosure requirements throughout

this period. The 2005 Energy Policy Act exempted hydraulic fracturing from EPA

regulation under the Underground Injection Control provisions of the Safe Drinking

Water Act; there is controversy over whether this represented a clarification or a

new loophole, but in any case the industry supported the exemption, which among

other things removed any obligation to disclose chemicals. The industry also op-

posed the Fracturing Responsibility and Awareness of Chemicals Act (FRAC Act),

first proposed in the 111th Congress (2009-2010), which would have reversed the

SDWA exemption and also required disclosure of fracturing fluid chemicals.

A Congressional investigation, begun in February 2010, provided the first pub-

lic information on chemical use. The investigators found that many operators did

not know what chemicals were used in their operations, nor did their contractors;

rather, third-party manufacturers held the information as trade secrets. Waxman

et al. (2011) concluded that “... it appears that the companies are injecting fluids

containing unknown chemicals about which they may have limited understanding of

the potential risks posed to human health and the environment.” Also during 2010,

New York became the first state to issue a moratorium on permits for hydraulic frac-

turing, in part due to concerns about chemical use. Perhaps realizing that regulation

would come in some form, and evidently preferring state to federal regulation, when

the first state regulations were passed in late 2010 operators and industry groups

generally expressed nonchalance about the new state laws, and voiced confidence
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that they could meet disclosure provisions (Sider, 2010).9

This expressed acceptance of state disclosure laws continued as more states pro-

posed and passed disclosure regulations. In April 2011 the GWPC and IOGCC

opened the FracFocus registry, with support of industry actors, to facilitate disclo-

sure of individual reports (though the registry did not facilitate comparative analysis,

as noted in Section 2.3.1). However, industry actors continued to oppose federal reg-

ulations that would have required disclosure, including the reintroduction of the

FRAC Act in the 112th, 113th, and 114th (2015-16) Congress. Industry representa-

tives also opposed disclosure provisions in two proposed federal regulations. These

include a 2014 EPA proposal to require recordkeeping and reporting of fracturing

chemicals under the Toxic Substances and Control Act and a BLM rule issued in

2015 (and struck down in 2016) that set standards for fracturing on federal lands.

One theoretical framework that explains the industry behavior with respect to

disclosure regulations is that of Lyon and Maxwell (2004), who suggest that corpo-

rate environmental strategy is underlain by a dynamic political economy game, in

which firms respond to or encourage some forms of regulation in order to forestall

other forms that are expected to be more costly or onerous, or less strategically ad-

vantageous. In this case, industry may have acceded to state regulation requiring

chemical disclosure because they believed it could help to assuage public and reg-

ulatory concern. This in turn may help forestall more stringent federal regulation

and/or more restrictive local, state or federal regulations, such as bans, moratoria, or

large setbacks from incompatible land uses. In this context, the timing of the state

regulations does appear to be exogenous, since the industry opposed early attempts

to require disclosure, and expressed nonchalance about (state) disclosure regulations

9 Two industry members I spoke with also indicated that some operators may have welcomed
the disclosure requirements because it would force vendors to disclose additional information to
operators about chemical use, thus reducing asymmetric information that hinders operators’ bar-
gaining with vendors and suppliers. However, this does not explain why operators opposed federal
regulation, which would presumably have given them even more power.
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only after the Congressional investigation that began in early 2010.

Parallel trends

The second identifying assumption is that events that affect fluid composition in the

treatment states also affect the others. For instance, a state law banning the use

of certain chemical additives or a price change that affects states differently could

violate this assumption. Neither possibility seems plausible here. Chemical-specific

bans have not been applied to fracturing fluid in any state I analyze during the

period of study. Conditional on time, prices for chemical inputs are likely to be

similar since chemicals travel through broad and efficient transportation networks,

so the law of one price should hold. I use time fixed effects in all specifications, and

I also specifically check whether the parallel trend assumption holds empirically by

analyzing the difference in treatment versus control states for six quarters prior to

the regulation (see equation (2.3)).

Use of voluntary reports

Since I observe only the fracture fluid data that operators voluntarily disclosed, I

must consider if there are selection effects that make the voluntarily disclosed data

a nonrandom sample of the full pretreatment population. Theories of corporate

environmental strategy generally suggest that when companies have a choice about

what kinds of activities to reveal publicly, they will choose to report those that appear

more socially or environmentally responsive. That is, the direction of any selection

effect is likely toward less toxicity: fractures reported voluntarily are probably those

in which operators use fewer toxic chemicals, in expectation, compared to the full

(unobserved) population. If voluntarily reported fractures are indeed cleaner than

the general population, any bias in the estimate of δ due to this effect is positive.

Thus if, for instance, from equation (2.1) we estimate δ̂ “ ´0.5, then the true value
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is δ ă ´0.5: that is, the bias due to the voluntary selection effect is positive, and a

finding of a significant negative effect of the regulation is conservative.

Nonetheless, it is useful to verify empirically if voluntarily reported fractures

are cleaner than those not reported. To test this, I exploit data from an unusual

14-month period in Pennsylvania in which some companies voluntarily reported frac-

turing fluid contents to a relatively accessible public website (FracFocus.org) while

others reported fluid contents to the state regulatory agency in a format that was

technically public, but quite difficult to access. Pennsylvania’s first disclosure law,

effective in February 2011, required companies to report fracturing fluid contents

to the state Department of Environmental Protection (DEP). The resulting reports

were available for public inspection at regional DEP offices, where individuals inter-

ested in accessing them had to identify the permit number of a specific well, contact

the appropriate regional DEP office, file a request, schedule an appointment to visit

in person (typically three to four weeks in advance), and review a limited number

of hard copy documents onsite.10 Thus, while the Pennsylvania law technically con-

stituted public disclosure, it was primarily geared toward individuals interested in

a specific well or small group of wells, and in general operators would not have ex-

pected widespread public inspection of their fluid contents. Moreover, mainstream

media coverage of the new regulation was minimal: to my knowledge only one main-

stream news article, published nearly twelve months after the regulation effective

date, mentions the 2011 law (Maykuth, 2012).

At the same time, many operators chose to report chemical additives to the na-

tional web-based registry FracFocus, where any individual with access to the internet

10 Individuals could also schedule an appointment at one of two Pennsylvania locations to use the
Integrated Records and Information System (IRIS), in which some chemical disclosure forms were
available as scanned PDF documents. The IRIS system is also available on a subscription basis for
a substantial fee. However, there was a long wait time for reports to be scanned and uploaded to
this system, especially in the height of the fracturing boom in that state. Having used IRIS over
an extensive period, I found the wait time was highly variable but could be on the order of 18 to
24 months for some reports.
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could quickly download the same information provided they had the well location

(e.g., state and county) or identification number. Operators made this decision on a

well-by-well basis. Although an industry coalition encouraged its members to report

to FracFocus starting in January 2012, reporting to FracFocus was entirely voluntary

in Pennsylvania until April 2012. On April 14 of that year a new Pennsylvania law

took effect, requiring operators to disclose chemical information directly to FracFocus

and replacing the requirement to report to the state.

Using the inspection procedures described above, I obtained information on chem-

icals used in fracturing fluid for 344 unconventional wells in Pennsylvania for which

operators revealed chemical additives only to regulators under the 2011 law. At the

same time, operators published information on chemical additives to FracFocus for

1,527 wells fractured between the effective date of the first law (February 5, 2011)

and the second law that required disclosure to FracFocus (April 14, 2012). Ta-

ble 2.7 compares the log concentration of PTRCs and high-media-profile chemicals

between the two sets of reports. The public reports disclosed to FracFocus have

significantly lower concentrations of PTRCs, and this difference is statistically sig-

nificant (pă0.01). However, there is no difference between the log concentrations of

high-media-profile chemicals.

This supports the idea that the full-reporting effect is large and positive. This

is consistent with standard theories of corporate environmental strategy: voluntarily

reported fractures are indeed cleaner, on average, than those in the general popu-

lation. Thus, the use of voluntarily reported data as the pre-treatment measure of

toxic chemical use in fracturing fluid is likely to result in a lower-bound estimate of

the effects of the disclosure regulations.
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Table 2.7: Comparison of chemical use in FracFocus and PADEP reports during
“semi-public” disclosure period

FracFocus PADEP
Mean Mean Difference in means

Measure (SE) (SE) (SE)

Log ppm PTRCs -1.65 -1.09 -0.55***
(0.07) (0.19) (0.20)

Log ppm high-media- 1.02 1.01 -0.01
profile chemicals (0.07) (0.22) (0.23)

Includes reports for 1,527 wells disclosed to FracFocus and 344
wells disclosed to PADEP.
Significance test allows for unequal variances by group. * pă0.10,
** pă0.05, *** pă0.01.

2.5 Results

I report regression results separately for each of the dependent variables. In each set

of results, I distinguish between the full set of fractures and fractures conducted by

VR75 operators. By construction, the magnitude of the full-reporting effect is smaller

for VR75 operators; thus, the results of analyses limited to the VR75 operators

identify more clearly the disclosure-pressure effect.

2.5.1 Relative toxicity

Table 2.8 reports results from the estimation of models in which the dependent

variable is the log of relative toxicity. Column 1 shows the results of estimating

equation (2.1), regressing log relative toxicity on available well characteristics with

fixed effects for state, year, geologic play, and operator. In this model the effect

of disclosure laws is positive, though not significant. However, the observed effect

is a composite of the full reporting effect (which we expect is positive and large, as

suggested by the analysis in Section 2.4.2) and the disclosure pressure effect. Column

4 shows the result for VR75 operators. The effect of mandatory disclosure for this

subset of operators is still positive, but barely. This is consistent with the expectation
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that the full reporting effect is smaller in magnitude for operators who voluntarily

report a large proportion of wells.

Table 2.8: Regression results for log relative toxicity score

All operators VR75 operators

(1) (2) (3) (4) (5) (6)
Depth (104 ft) 0.09 0.10 0.10 -0.14 -0.03 -0.04

(0.25) (0.21) (0.21) (0.34) (0.46) (0.45)
Fluid volume -0.06˚˚ -0.06˚˚˚ -0.06˚˚˚ -0.11˚˚ -0.11˚˚˚ -0.11˚˚˚

(106 gal) (0.02) (0.01) (0.01) (0.04) (0.02) (0.02)
Oil well 0.29˚ 0.19˚ 0.21˚˚ 0.61 0.32˚˚ 0.33˚˚

(0.14) (0.09) (0.08) (0.33) (0.11) (0.11)
Vertical -0.09 -0.02 -0.02 -0.16 0.06 0.06

(0.14) (0.06) (0.06) (0.14) (0.09) (0.09)
Mandatory 0.09 0.16 0.02 0.08

disclosure (0.16) (0.09) (0.11) (0.10)
6 qtrs before reg. 0.01 -0.10

(0.51) (0.66)
5 qtrs before reg. 0.37 0.20

(0.20) (0.15)
4 qtrs before reg. 0.16 0.04

(0.14) (0.06)
3 qtrs before reg. 0.26 0.10

(0.18) (0.14)
2 qtrs before reg. 0.03 -0.20˚˚

(0.05) (0.07)
0 qtrs after reg. 0.11 -0.05

(0.08) (0.06)
1 qtr after reg. 0.18 0.22

(0.15) (0.22)
2 qtrs after reg. 0.26˚ 0.15

(0.11) (0.11)
3 qtrs after reg. 0.10 -0.47˚

(0.25) (0.23)
4 qtrs after reg. -0.04 -0.81˚

(0.22) (0.33)
5 qtrs after reg. -0.11 -0.69˚˚

(0.21) (0.27)
6 qtrs after reg. -0.05 -0.87˚˚

(0.31) (0.28)
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All operators VR75 operators

(1) (2) (3) (4) (5) (6)
7 qtrs after reg. 0.13 -0.73˚˚

(0.49) (0.26)
8 qtrs after reg. 0.02 -0.84˚˚

(0.51) (0.29)
9 qtrs after reg. 0.16 -0.78˚

(0.48) (0.32)
10 qtrs after reg. 0.16 -0.89˚˚

(0.45) (0.31)
11 qtrs after reg. 0.34 -0.81˚

(0.54) (0.34)
12 qtrs after reg. 0.79 -0.64

(0.48) (0.62)
FEs: Oper., state, X X X X X X

year, play
FEs: Play ˆ year X X X X X X
FEs: Oper. ˆ year X X X X
State-year trends X X X X
R2 0.31 0.41 0.41 0.35 0.44 0.44
N 71,989 71,989 71,989 33,914 33,914 33,914
Standard errors are clustered by state, and adjusted for “few clusters” by using
T pG´ 1q critical values (Cameron and Miller, 2015).
* pă0.10, ** pă0.05, *** pă0.01.

Column 2 shows the results of estimating equation (2.2), which includes all of

the variables from equation (2.1) but adds a state time trend and fixed effects for

operator-by-year. The effect of mandatory disclosure in this model is still positive,

and is larger in magnitude. Column 5 shows the same model for the subset of

voluntary reporters; once again the effect of mandatory disclosure appears positive

though not significant.

Column 3 of Table 2.8 shows the results of estimating equation (2.3), which is

identical to equation (2.2) but demonstrates the effect of the disclosure regulation

over time both before and after the effective date. This result is also shown visually

in Figure 2.1. The corresponding results for VR75 operators are shown in column

6 of Table 2.8, and Figure 2.2. For both sets of operators, no distinct pre-trend
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Figure 2.1: Difference in differences for log relative toxicity score, all operators

N=71,989 wells. Error bars show 95% confidence interval. Standard errors, clustered by state, use
T pG´ 1q critical values (Cameron and Miller, 2015).

appears for the difference between control and treatment, validating the assumption

of parallel trends. Figure 2.1 does not suggest the disclosure rule had any effect,

based on the composite effect of full reporting and disclosure pressure. However,

Figure 2.2 and column 6 of Table 2.8, isolating more clearly the disclosure-pressure

effect, do suggest the regulation had a negative effect on the relative toxicity of

fracturing fluids. Furthermore, the effect is statistically significant (pă0.05) starting

about three quarters after the regulation.

2.5.2 Priority toxic and regulated chemicals

Table 2.9 shows the results for priority toxic and regulated chemicals, organized

identically to those in the prior table. The results for all operators in columns (1) and
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Figure 2.2: Difference in differences for log relative toxicity score, VR75 operators

N=33,914 wells. Error bars show 95% confidence interval. Standard errors, clustered by state, use
T pG´ 1q critical values (Cameron and Miller, 2015).

(2) suggest that the combination of the full reporting effect and disclosure pressure

effect is slightly negative, though not significantly different from zero. The results

for VR75 operators in columns (4) and (5) are also negative, with the point estimate

implying the disclosure regulation caused a reduction in the concentration of priority

toxic and regulated chemicals of about 15-22%; however, this result is not statistically

different from zero. Figures 2.3 and 2.4 show the results of the regulations over time.

Both figures support the validity of the parallel pre-trend assumption. The results for

all operators (Figure 2.3) show little change over time; the point estimate for the effect

of the regulation is negative for most of the period after regulation, but generally not

statistically significant. Focusing on VR75 operators, which more cleanly isolates the

disclosure-pressure effect, the regulation appears to have had a consistently negative
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impact on the use of toxics over time, with the largest effect starting about one year

after the regulation. The magnitude of the coefficient estimate is on the order of -1.5

for the period starting about three quarters after the regulation (Table 2.9, column

6), implying a decrease in regulated states of average concentrations of priority toxic

and regulated chemicals by about 78% (e´1.5 ´ 1).

Table 2.9: Regression results for log ppm of PTRCs

All operators VR75 operators

(1) (2) (3) (4) (5) (6)

Depth (104 ft) 0.70˚˚˚ 0.77˚˚˚ 0.78˚˚˚ 0.14 0.27 0.27

(0.14) (0.16) (0.16) (0.37) (0.59) (0.57)

Fluid volume -0.03˚˚˚ -0.04˚˚ -0.04˚˚ -0.08˚˚ -0.09˚˚˚ -0.09˚˚˚

(106 gal) (0.01) (0.01) (0.01) (0.03) (0.02) (0.02)

Oil well 0.01 -0.09 -0.07 0.15 -0.11 -0.08

(0.15) (0.06) (0.05) (0.41) (0.17) (0.19)

Vertical -0.00 0.04 0.04 -0.09 0.15 0.15

(0.16) (0.06) (0.06) (0.16) (0.13) (0.13)

Mandatory -0.19 -0.07 -0.26 -0.16

disclosure (0.22) (0.11) (0.20) (0.12)

6 qtrs before reg. -0.04 -0.30

(0.92) (1.50)

5 qtrs before reg. 0.10 0.01

(0.24) (0.22)

4 qtrs before reg. 0.18˚˚ 0.07

(0.07) (0.11)

3 qtrs before reg. 0.21 0.10

(0.17) (0.12)

2 qtrs before reg. 0.02 -0.25˚˚

(0.05) (0.08)

0 qtrs after reg. -0.06 -0.14

(0.11) (0.14)

1 qtr after reg. -0.05 -0.02

(0.19) (0.25)

2 qtrs after reg. -0.06 -0.31˚˚

(0.14) (0.12)

3 qtrs after reg. -0.21 -1.15˚

(0.28) (0.55)
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All operators VR75 operators

(1) (2) (3) (4) (5) (6)

4 qtrs after reg. -0.48 -1.72˚˚

(0.27) (0.64)

5 qtrs after reg. -0.52˚ -1.53˚˚

(0.22) (0.57)

6 qtrs after reg. -0.45 -1.85˚˚

(0.31) (0.52)

7 qtrs after reg. -0.19 -1.38˚

(0.35) (0.59)

8 qtrs after reg. -0.26 -1.58˚

(0.40) (0.65)

9 qtrs after reg. -0.10 -1.41˚

(0.38) (0.66)

10 qtrs after reg. -0.08 -1.50˚

(0.35) (0.67)

11 qtrs after reg. 0.24 -1.15

(0.37) (0.70)

12 qtrs after reg. 0.44 -1.38

(0.28) (1.02)

FEs: Oper., state, X X X X X X
year, play

FEs: Play ˆ year X X X X X X
FEs: Oper. ˆ year X X X X
State-year trends X X X X
R2 0.30 0.38 0.38 0.29 0.36 0.37

N 71,989 71,989 71,989 33,914 33,914 33,914
Standard errors are clustered by state, and adjusted for “few clusters” by using
T pG´ 1q critical values (Cameron and Miller, 2015).
* pă0.10, ** pă0.05, *** pă0.01.
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Figure 2.3: Difference in differences for log concentration PTRCs, all operators

N=71,989 wells. Error bars show 95% confidence interval. Standard errors, clustered by state, use
T pG´ 1q critical values (Cameron and Miller, 2015).

2.5.3 High-media-profile chemicals

Results for high-media-profile chemicals are shown in Table 2.10. As with the pre-

vious sets of results, columns (1) and (2) show the effect for all operators, and

suggest that the combined disclosure pressure effect and full reporting effect resulted

in greater use of these chemicals. Furthermore, the results for the VR75 subset in

columns (4) and (5) suggest the counterintuitive result that the disclosure pressure

effect was positive; that is, the disclosure regulations increased operators’ use of

chemicals identified by media reports as potentially dangerous. Further, the increase

is of relatively high magnitude, at least in the point estimate: about 63-86% for the

VR75 subset, and about 43-58% for all operators.
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Figure 2.4: Difference in differences for log concentration PTRCs, VR75 operators

N=33,914 wells. Error bars show 95% confidence interval. Standard errors, clustered by state, use
T pG´ 1q critical values (Cameron and Miller, 2015).

Figures 2.5 and 2.6 show the effects of the disclosure laws over time. Considering

the pre-law trends first, it appears that the use of high-media-profile chemicals was

decreasing for treatment states (compared to control states) from about 18 to 12

months prior to the effective date of the disclosure laws, but was about the same

for the year preceding the effective date. This could reflect an attempt to deflect

disclosure regulations (or other, more costly, regulations) by reducing the use of high-

media-profile chemicals during a time of increased regulatory attention, although

without further quantitative or qualitative evidence this is uncertain. Turning to the

trends after the laws came into effect, firms’ immediate response, even in Figure 2.6

where the disclosure-pressure effect should dominate, appears to be to increase the

use of high-profile chemicals. This increase is persistent for at least two years after
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the effective date.

Table 2.10: Regression results for log ppm high-media-profile chemicals

All operators VR75 operators

(1) (2) (3) (4) (5) (6)
Depth (104 ft) -0.50 -0.50˚ -0.50˚ -0.07 0.03 -0.01

(0.27) (0.25) (0.25) (0.63) (0.42) (0.44)
Fluid volume -0.07˚˚˚ -0.07˚˚˚ -0.06˚˚˚ -0.09˚˚ -0.09˚˚ -0.08˚˚

(106 gal) (0.02) (0.01) (0.01) (0.03) (0.03) (0.03)
Oil well 0.29˚˚ 0.19 0.17 0.46˚˚ 0.26 0.23

(0.12) (0.17) (0.17) (0.14) (0.22) (0.20)
Vertical -0.00 0.07 0.07 -0.32˚˚˚ -0.15 -0.13

(0.12) (0.07) (0.07) (0.06) (0.12) (0.13)
Mandatory 0.36 0.47 0.50 0.62

disclosure (0.37) (0.43) (0.47) (0.49)
6 qtrs before reg. 0.53 0.62

(0.27) (0.32)
5 qtrs before reg. 0.33˚˚ 0.45˚˚

(0.10) (0.15)
4 qtrs before reg. 0.14 0.29

(0.12) (0.25)
3 qtrs before reg. 0.11 0.32˚˚

(0.07) (0.12)
2 qtrs before reg. -0.11 -0.02

(0.13) (0.11)
0 qtrs after reg. 0.46 0.60

(0.44) (0.44)
1 qtr after reg. 0.48 0.54

(0.39) (0.47)
2 qtrs after reg. 0.39 0.77

(0.50) (0.68)
3 qtrs after reg. 0.49 0.55

(0.44) (0.51)
4 qtrs after reg. 0.26 0.04

(0.37) (0.38)
5 qtrs after reg. 0.21 0.08

(0.38) (0.42)
6 qtrs after reg. 0.26 0.07

(0.44) (0.54)
7 qtrs after reg. 0.19 0.06

(0.42) (0.53)
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All operators VR75 operators

(1) (2) (3) (4) (5) (6)
8 qtrs after reg. -0.13 -0.59

(0.20) (0.33)
9 qtrs after reg. -0.13 -0.77˚

(0.14) (0.33)
10 qtrs after reg. -0.42˚˚ -1.44˚˚˚

(0.14) (0.34)
11 qtrs after reg. -0.19 -1.27˚˚˚

(0.15) (0.27)
12 qtrs after reg. 0.03 -1.32

(0.25) (0.70)
FEs: Oper., state, X X X X X X

year, play
FEs: Play ˆ year X X X X X X
FEs: Oper. ˆ year X X X X
State-year trends X X X X
R2 0.36 0.44 0.44 0.33 0.38 0.39
N 71,989 71,989 71,989 33,914 33,914 33,914
Standard errors are clustered by state, and adjusted for “few clusters” by using
T pG´ 1q critical values (Cameron and Miller, 2015).
* pă0.10, ** pă0.05, *** pă0.01.

These apparently counterintuitive results are consistent with the idea that oper-

ators respond to disclosure laws by reducing the use of toxic chemicals regardless of

their perceived danger, at least to the degree that perception is measured by media

reports. While some companies may have responded to disclosure laws by focusing

on reducing the use of chemicals mentioned frequently in media reports, others (in-

cluding one company who shared with me a summary of their new policy) focus on

reducing the use of toxics, regardless of media coverage. To the extent that media

focus on more recognizable chemicals regardless of their actual toxicity, the apparent

use of greater quantities of high-media-profile chemicals, if they substitute for more

toxic but lower-media-profile chemicals, may be desirable from a public health and

environmental standpoint. In addition, the observation that reductions in PTRCs

occurred sooner, were more consistent over time, and were generally larger in mag-
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Figure 2.5: Difference in differences for log concentration high-media-profile chem-
icals, all operators

N=71,989 wells. Error bars show 95% confidence interval. Standard errors, clustered by state, use
T pG´ 1q critical values (Cameron and Miller, 2015).

nitude also assuages a concern that might otherwise arise, that firms took advantage

of disclosure policies that rely on self-reported data and misrepresented their use

of toxic chemicals. If misreporting were widespread, we would expect reductions in

observed use of high-profile chemicals that were at least as large, if not larger, than

that of PTRCs.
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Figure 2.6: Difference in differences for log concentration high-media-profile chem-
icals, VR75 operators

N=33,914 wells. Error bars show 95% confidence interval. Standard errors, clustered by state, use
T pG´ 1q critical values (Cameron and Miller, 2015).

2.5.4 Proprietary chemicals

Table 2.11 and Figures 2.7 and 2.8 show the impact of the disclosure regulations on

concentration of chemicals declared as proprietary information. The pre-regulation

trend evident in the two figures suggests the parallel trends assumption does not

hold: that is, operators used higher concentrations of proprietary chemicals in treat-

ment states, compared to control states, leading up to the passage of the mandatory

disclosure regulation. Thus, while the concentration of proprietary chemicals in-

creased in treatment states relative to control states after the mandatory disclosure

regulations, it is not clear that this increase is caused by the regulations; it appears

that the increase would have happened regardless.
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Figure 2.7: Difference in differences for log concentration proprietary chemicals,
all operators

N=71,989 wells. Error bars show 95% confidence interval. Standard errors, clustered by state, use
T pG´ 1q critical values (Cameron and Miller, 2015).

Table 2.11: Regression results for log ppm proprietary chemicals

All operators VR75 operators

(1) (2) (3) (4) (5) (6)

Depth (104 ft) -0.12 -0.05 -0.07 -0.18 0.08 0.07

(0.53) (0.56) (0.56) (0.58) (0.62) (0.62)

Fluid volume (106 gal) -0.03 -0.02 -0.02 -0.09 -0.08 -0.08

(0.04) (0.03) (0.03) (0.05) (0.04) (0.04)

Oil well 0.00 0.20 0.16 0.21 0.48˚ 0.46

(0.17) (0.12) (0.12) (0.49) (0.24) (0.24)

Vertical -0.01 -0.13 -0.12 0.07 -0.08 -0.03

(0.19) (0.26) (0.25) (0.36) (0.38) (0.36)

Mandatory disclosure 0.69 0.65 1.04 1.05

(0.60) (0.69) (0.81) (0.87)
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All operators VR75 operators

(1) (2) (3) (4) (5) (6)

6 qtrs before reg. -1.76˚ -2.10˚˚˚

(0.79) (0.47)

5 qtrs before reg. -0.51 -1.11˚

(0.40) (0.50)

4 qtrs before reg. -0.16 -0.67

(0.30) (0.54)

3 qtrs before reg. -0.05 -0.38

(0.24) (0.37)

2 qtrs before reg. -0.08 -0.21

(0.26) (0.35)

0 qtrs after reg. 0.46 0.73

(0.71) (0.85)

1 qtr after reg. 0.79 1.26

(0.72) (0.96)

2 qtrs after reg. 0.88 1.35

(0.72) (0.94)

3 qtrs after reg. 0.95 1.28

(0.69) (0.89)

4 qtrs after reg. 1.34 1.75

(0.78) (1.01)

5 qtrs after reg. 1.38 1.91

(0.77) (1.08)

6 qtrs after reg. 1.28 1.68

(0.82) (1.20)

7 qtrs after reg. 1.03 1.48

(0.80) (1.15)

8 qtrs after reg. 0.84 1.11

(0.72) (0.99)

9 qtrs after reg. 0.67 0.90

(0.70) (0.98)

10 qtrs after reg. 0.57 0.72

(0.74) (1.02)

11 qtrs after reg. 0.79 1.09

(0.94) (1.58)

12 qtrs after reg. 1.55 1.35

(0.93) (1.71)
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All operators VR75 operators

(1) (2) (3) (4) (5) (6)

FEs: Oper., state, year, play X X X X X X
FEs: Play ˆ year X X X X X X
FEs: Operator ˆ year X X X X
State-year trends X X X X
R2 0.36 0.46 0.46 0.30 0.40 0.40

N 71,989 71,989 71,989 33,914 33,914 33,914
Standard errors are clustered by state, and adjusted for “few clusters” by using
T pG´ 1q critical values (Cameron and Miller, 2015).
* pă0.10, ** pă0.05, *** pă0.01.

Nevertheless, it is worth considering whether aspects of mandatory disclosure reg-

ulations would have inspired operators to increase their declaration of proprietary

chemicals. When reporting is voluntary, some operators may choose not to list or

not to quantify proprietary chemicals, instead listing only those chemicals whose

identity is declared. Thus, the observed increase in the quantity of chemicals de-

clared proprietary after disclosure laws may result from the fact that the disclosure

laws formalized the necessity to report proprietary chemicals when they are used in

fracturing fluid.

Other explanations may also be at work. One possibility is that operators were

concerned about revealing trade secrets in the process of complying with disclosure

laws, and used the proprietary declaration to avoid revealing strategically valuable

information. Another possibility, considering the results from this section together

with Sections 2.5.1 and 2.5.2, is that operators sought to avert public or stakeholder

pressure by using the proprietary declaration to cover the ongoing use of toxic or

regulated chemicals.

2.5.5 Robustness checks

One critical identifying assumption of the difference-in-differences approach is that

in the absence of the regulatory treatment, the ex post trends in chemical use would
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Figure 2.8: Difference in differences for log concentration proprietary chemicals,
VR75 operators

N=33,914 wells. Error bars show 95% confidence interval. Standard errors, clustered by state, use
T pG´ 1q critical values (Cameron and Miller, 2015).

have been parallel for states with and without the mandatory disclosure regulation.

One way to verify the validity of this assumption is to implement a “placebo” reg-

ulation that occurs prior to the actual regulation, then run the same regressions as

in the main specification and look for significant effects of the placebo regulation. If

there are, then the main estimates could reflect some other process (e.g., a secular

time trend) rather than a causal effect of the regulation.

To implement this check, I drop all treated observations (i.e., wells that were

subject to mandatory disclosure) and then create a placebo policy variable that

turns on one year before disclosure becomes mandatory in the corresponding state.

I run a difference-in-differences analysis for each dependent variable, using the same
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specifications described above, to see if the analysis of the placebo policy suggests a

significant change due to this (placebo) treatment. In each specification (including

the time-varying approach as in (2.3)), the coefficient on the placebo treatment

indicator is not statistically significant. This result increases my confidence in the

validity of the main conclusion.

As a second robustness check, I consider the possibility that operators decreased

the use of all chemical additives after the mandatory disclosure regulations. If this

were the case, then this would provide an alternative explanation for the observed

decrease in total concentration of toxic and regulated chemicals in fracturing fluid. To

test this alternative explanation I run two additional specifications. First, I employ

an alternative dependent variable equal to the total concentration of all chemicals

(other than water and sand). Second, I choose a random subset of 45 chemicals (i.e.,

about the same number of elements as the subset of priority toxic and regulated

chemicals) and calculate a dependent variable equal to the log of total concentration

of that random set. In both cases, the analysis does not indicate the mandatory

disclosure regulations had a significant effect.

Finally, I recalculate t-statistics for the main regressions using a wild cluster

bootstrap. As noted in Section 2.4, hypothesis tests based on White (2000) cluster-

robust standard errors tend to over-reject the null hypothesis. Several alternatives

exist to correct for this (Cameron et al., 2008; Cameron and Miller, 2015; Mackinnon

and Webb, 2016; Webb, 2014). The results reported above reflect the correction that

is most straightforward to implement, which is to use G ´ 1 degrees of freedom

for t-tests. I also run an analysis using a wild cluster bootstrap with the six-point

Webb distribution (Mackinnon and Webb, 2016; Webb, 2014) to recalculate p-values.

The bootstrapped standard errors are somewhat greater than the errors using the

T pG ´ 1q distribution, but coefficients are still statistically significant in general;

for instance, for the results corresponding to column 6 of Table 2.9 (that is, log
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PTRCs for voluntary reporters) the resulting p-values over the range from four to

ten quarters after the regulation range from 0.068 to 0.086. This reinforces the

validity of the main conclusion.

2.6 Conclusion and policy implications

Taken together, the difference-in-difference analysis and robustness checks suggest

that the requirement for oil and gas operators to disclose the chemical additives

used in their hydraulic fracturing operations caused a decrease in both the overall

concentration of toxic and regulated chemicals, and the relative toxicity of chemicals

used in fracturing fluid. The resulting decrease is not immediate, and its magnitude

is difficult to quantify precisely, because the observed effect of switching from a

voluntary to a mandatory reporting regime combines a “full reporting effect” and a

“disclosure pressure effect.” I show that the full reporting effect is large and positive,

and that the disclosure pressure effect is large and negative—to the best of my ability

to estimate, it is on the order of 78% for average concentrations of priority toxic and

regulated chemicals, for the period starting about one year after the regulation. This

effect persists for several years after the regulation (and may be permanent).

These results offer encouraging evidence for the hypothesis that mandatory in-

formation disclosure regulations can influence companies to change their behavior in

ways that decrease potential threats to external stakeholders—in this case, potential

harms to human health and the environment that may arise from the use of toxic

chemicals. Furthermore, this analysis demonstrates that even companies in non-

consumer-facing settings may change their behavior in this way. This supplements

analyses in other, more consumer-facing domains such as restaurant hygiene (Jin and

Leslie, 2003), drinking water provision (Bennear and Olmstead, 2008), and electric-

ity generation (Delmas et al., 2010). Thus, my analysis provides useful insight for

researchers and practitioners regarding how firms respond to mandatory disclosure
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regulations in settings where consumers have little or no direct influence on firms’ ac-

tivities. In addition, the conclusions of this paper are relevant for policymakers who

must choose between alternative regulatory instruments, or specific design elements

of instruments, for promoting public welfare.

63



3

Learning by Viewing? Social Learning, Regulatory
Disclosure, and Firm Productivity in Shale Gas

(with A. Steck, C. Timmins, and D. Wrenn)

3.1 Introduction

Disclosure laws are used by regulators to disseminate information about potentially

damaging activities by firms, with the hope of providing firms with incentives to

reduce those activities. While disclosure policies may lead to an environmental ben-

efit, they can also have a cost if the lack of secrecy limits firms’ ability to realize the

benefits of innovation. The existence of this tradeoff depends on the answers to two

questions. First, does the disclosed information have value to firms? Second, does

disclosure effectively enable social learning, and thereby limit firms’ ability to capi-

talize on innovation? We study both questions in the context of hydraulic fracturing

chemicals, and find affirmative evidence for each. Thus, while the use of toxic sub-

stances in hydraulic fracturing fluids makes a case for a public benefit from disclosure,

policy makers should weigh that benefit against disclosure’s costs on industry.

Hydraulic fracturing is a growing technology that has transformed the nature of
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energy production in the U.S. and the world, and contributed to substantial economic

growth in many areas (Hausman and Kellogg, 2015). It has also raised a number of

concerns regarding local economic impacts and averting behavior (e.g. Muehlenbachs

et al. (2015); Wrenn et al. (2016)) and local environmental impacts, including the use

of toxic chemical additives in the fracturing process (Elgin et al., 2012; Stringfellow

et al., 2014). Those concerns have led to policies since 2010 requiring public disclosure

of information about the chemicals used, now instituted in 18 states.

Similar disclosure policies designed to disseminate information about pollution

releases (or the potential for such releases) have become increasingly popular in many

industries. See, for example, policies regulating electricity generation (Delmas et al.,

2010; Kim and Lyon, 2011), and drinking water provision (Bennear and Olmstead,

2008). By harnessing the collective power of stakeholders internal and external to the

disclosing entity, information-based policies may improve public welfare via market,

political, or managerial mechanisms (Fung et al., 2007; Bennear and Olmstead, 2008),

as well as provide stakeholders with information that supports their “right to know”

about potential environmental or health risks. For example, the regulations may

reduce the use of toxic chemicals and potential threats to environmental quality or

human health. Analyses within industries that are less consumer-facing, such as

manufacturing facilities that report to the Toxics Release Inventory (TRI), find that

reported releases of toxic chemicals have declined over the course of the program

by as much as 50 percent (Bennear and Coglianese, 2005). In non-environmental

contexts, information-based policies have been used to regulate financial disclosure,

nutritional labeling, restaurant hygiene, and other matters (Fung et al., 2007; Jin and

Leslie, 2003). Information-based policies seem to be especially popular in settings

where conventional regulatory approaches are ill-suited, such as when risks are not

well understood, but are not anticipated to be extraordinary. They often represent

a “pragmatic compromise” (Fung et al., 2007) that is a politically viable response to
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emerging risks.

In the case of hydraulic fracturing, operators are likely to have better information

than regulators regarding which chemicals are most effective for releasing trapped

hydrocarbons in a particular shale formation. A consequence of this asymmetric in-

formation is that direct regulations (i.e., command-and-control policies) are unlikely

to be efficient. In contrast, disclosure regulations, by opening firms to the threat of

public pressure or legal action, can incentivize responses that take into account the

tradeoffs between productivity impacts and potential sanctions. For instance, firms

may respond by using less toxic formulations, or take further actions to prevent leaks

and spills.

At the same time, mandatory information disclosure may impose unintended

costs on firms. In particular, these policies may limit operators’ ability to monetize

the value of innovations. Firms in the oil and gas industry, as in many industries,

rely on secrecy as a mechanism to capture value from their investments in innovation

and maintain their competitive advantage (Wang and Krupnick, 2013; Cohen et al.,

2000). Indeed, the industry has made the argument that fluid formulas represent

“trade secrets” in response to calls for mandatory disclosure regulations. In this

paper, we shed light on whether innovations in fracturing fluids do in fact constitute

a competitive advantage. In particular, we compare detailed, well-level information

on inputs and outputs to test whether the chemicals used become more similar with

public disclosure. We observe evidence that chemical mixes do converge for wells

across different firms. We then test whether using chemicals more similar to high-

performing wells appears to improve productivity for poorer-performing firms, and

find an affirmative answer. These findings suggest policy-makers need to weigh the

tradeoff between right-to-know disclosure rules and industry secrecy. A further ques-

tion is: to what extent does forced disclosure undermine the incentives for firms in

this industry to invest in research and development for future innovations? We leave
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this latter question to on-going work.

Our analysis is primarily empirical, and is set in Pennsylvania. This state provides

a unique data environment in which to analyze our questions of interest. Pennsylva-

nia was one of the earliest states to experience a dramatic increase in exploration and

production of unconventional shale gas, and continues to experience extensive uncon-

ventional development. Furthermore, Pennsylvania features an unusual regulatory

episode in which operators were required to disclose information about chemical ad-

ditives in fluid to the regulator, but not in a format that was easily accessible for the

general public (or to one another), for a 14-month period in the height of the boom.

We have recovered this information through a combination of “Right-to-Know” law

requests and other methods. Observing this information helps us to distinguish the

effect of the public disclosure law from other simultaneous phenomena, including a

general improvement in technology.

We perform a series of empirical analyses designed to test whether regulations

requiring the mandatory disclosure of chemicals created opportunities for social

learning—even when those regulations included provisions that permitted opera-

tors to declare some chemicals “proprietary.” As a first step, we look for evidence

that the unexplained variation in production declined over time; that is, if there is a

tighter distribution of residuals from a regression of output on observable well char-

acteristics. We then test for convergence in inputs, as well as test for convergence

in productivity across operators; in the latter test, we focus on evidence that low-

performing firms used information revealed by the disclosure law to catch up with

more successful firms. There could, naturally, be other reasons for this convergence.

We therefore focus on the specific mechanism of interest, and examine the role of

input similarity in the design of fracturing fluid. We find that convergence is indeed

explained specifically by weaker firms adopting the chemical mixtures used by more

successful wells in previously drilled wells, after the disclosure rules have gone into
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place.

This paper makes three primary contributions. First, we provide evidence that

secrecy is valuable to hydraulic fracturing firms. This fact raises the tradeoff be-

tween the public’s right to know about fracturing chemicals used and firms’ right to

secrecy. Second, we study the interplay between information disclosure regulations

and social learning. Third, we examine the role that chemicals play in the technology

of hydraulic fracturing.

Our first contribution is to the literature on the relationship between secrecy and

innovation. We provide some insight into the importance of the social tradeoffs pol-

icy makers face when considering disclosure laws. There may be a compelling social

benefit from disclosing specific information, such as when production processes in-

volve toxic chemicals in residential areas. This social benefit must be weighed against

the ability of firms to realize economic returns from their innovations. Theoretically,

patents solve the problem of imperfect appropriability, but in practice, evidence

in many industries suggests firms realize a competitive advantage from innovation

through a combination of secrecy, lead time, and investment in complementary ca-

pabilities (Cohen et al., 2000). We provide evidence that innovations in hydraulic

fracturing chemicals are valuable, suggesting that this tradeoff may be important in

this case.

Second, this paper expands the literature on the empirical effects of transparency

or disclosure regulations in a new direction. Our analysis is the first, to our knowl-

edge, to combine a study of the effects of information disclosure regulations with so-

cial learning. We find strong evidence that information disclosure regulations about

an emerging technology can enable social learning.1 Prior papers have documented

the effects of disclosure laws on environmental, health, or other outcomes (e.g., Jin

and Leslie, 2003; Fung et al., 2007; Bennear and Olmstead, 2008; Delmas et al.,

1 This could also be interpreted as a form of technology diffusion facilitated by regulation.
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2010). In addition, some work has analyzed the effect of environmental disclosures

on investor behavior (e.g. Hamilton, 1995). Separately, other authors have studied

the phenomenon of social learning (Conley and Udry, 2010; Covert, 2015), without

considering the role of disclosure regulations specifically.

Third, we study the role that chemical additives have played in the development

of hydraulic fracturing technology. A number of recent papers have studied the

rise of hydraulic fracturing, but none have addressed the role played by chemicals.

We take the role of chemicals seriously, and thereby contribute to the literature on

firm learning about hydraulic fracturing specifically, and emerging technologies more

generally.

The paper proceeds as follows. In Section 3.2, we provide context and background

for our study, including a review of the emergence of the technologies that have

made development of shale gas economically feasible, the environmental concerns

that led to the requirement for public disclosure, and the literature on the role

of alternative strategies—including secrecy—that firms use to preserve competitive

advantage. Section 3.3 describes our data. In Section 3.4 we present our analysis

of convergence and catch-up in operators’ output, as well as evidence on how the

disclosure rules affected chemical input choices. Section 3.5 offers a discussion and

concluding remarks.

3.2 Background

3.2.1 Engineering and geology of hydraulic fracturing

The rise of shale gas to prominence in the US energy landscape has been well-

documented.2 The ability to profitably recover hydrocarbons from shale has been

2 Shale gas grew from 5% of total US dry gas supply in 2004 to 56% in 2015
(http://www.eia.gov/conference/2015/pdf/presentations/staub.pdf). Spurred on by recent devel-
opments in hydraulic fracturing and horizontal drilling technologies, natural gas has largely replaced
coal in the production of electricity (http://www.cnbc.com/2015/07/14/natural-gas-tops-coal-as-
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largely based on advances in four key areas of technology: horizontal drilling, three-

dimensional seismic imaging, micro-seismic fracture mapping, and massive hydraulic

fracturing (Wang and Krupnick, 2013). Elements of these technologies have been

in development for several decades, spurred by both private and public investments

in research and development. Technological advances since the 1970s have ranged

from changes in the major compounds comprising fracturing fluid to greater control

over directional drilling of wellbores. Foam was replaced by gels in the formulation

of fracturing fluid, and order-of-magnitude changes were made in the quantity of

proppant used. In the 1990’s, there were important advances in the role of direc-

tional drilling; in combination with massive hydraulic fracturing, the ability to drill

horizontally through a shale formation made shale gas development economical. At

the same time, “slick water” fracturing fluid replaced gels. Most recently, fracturing

fluid has been refined in multiple dimensions for maximizing output and minimizing

costs.

A wide array of chemicals are used in hydraulic fracturing fluid to enhance the

productivity of the primary inputs—water and sand. In particular, firms use chemical

additives to help open fractures in the rock, transport the proppant along the length

of the fracture, lower viscosity in order to allow faster pumping and higher pressures,

minimize fluid loss into the face of the formation, reduce scaling on the formation,

reduce chemical corrosion or bacterial growth that might threaten the integrity of

metal casings, facilitate breakup of other chemicals post-fracture, and serve other

purposes (Stringfellow et al., 2014; Montgomery, 2013; Gulbis and Hodge, 2000).

In short, fracturing fluid is a complex mixture in which an additive that improves

performance in one dimension may reduce performance in another. Although the

top-source-of-electric-power-generation-in-us.html). The largest contribution from any one shale
play to the growth described above has come from the Marcellus Shale, located in Pennsylvania
and West Virginia. Due in part to the availability of pre-disclosure data, Pennsylvania will be our
area of study (see Section 3.3).
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cost of the chemicals themselves is usually small in comparison to the overall cost

of the well stimulation operation, the proper choice of chemicals may have dramatic

effects on the overall cost and productivity of a well.3

As of 2014, the total estimated recovery for shale oil wells was on the order of

5%, compared to 50% for conventional oil wells.4 As engineers seek to improve re-

covery from shale wells, innovation continues on several elements of the technology,

including the use of longer fractures, greater use (per foot) of water and proppant,

shorter stages and “micro-perforations”, and improved identification of naturally

existing fractures through higher-resolution micro-seismic mapping. Designing frac-

turing fluid for optimal performance is complementary to several of these elements,

and represents a significant area of focus for oil and gas engineers, for advancement

of shale production technology (Robart et al., 2013; Montgomery, 2013; Gulbis and

Hodge, 2000).

In some cases, the quest for superior fracturing fluids has led engineers to con-

sider the use of highly toxic chemicals (Stringfellow et al., 2014). Indeed, many of

the chemicals used in fracturing fluid are known to be toxic to human health, or

may cause damage to the ecosystem. These risks have raised concerns among envi-

ronmental groups (Elgin et al., 2012; Haas et al., 2012). Early concerns about shale

gas development were driven by the possibility that toxic fracturing fluid might mi-

grate to or be accidentally released into ground water or surface water. The industry

responded to these concerns by pointing to the small percentage of fracturing fluid

that is actually comprised of substances other than water and sand.5 Public con-

cerns about risks to water sources were accentuated by the often close proximity of

3 Mark Boling, Southwestern Energy, personal communication.

4 R. Kleinberg, Schlumberger, April 2014: “Shale Gas & Tight Oil Technology: Evolution &
Revolution”, presentation to US Association for Energy Economics.

5 The typical proportion of chemicals in slickwater fracturing fluid, other than water and sand, is
2 to 3%. Nonetheless, for a typical operation that uses on the order of five million gallons of fluid,
even 1% of the fracturing fluid would represent 50,000 gallons.
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well-pads to residential and other non-industrial land uses, and by a few high-profile

incidents of water pollution.6 Media coverage of fracturing chemicals has highlighted

the toxicity of some chemicals along with the industrys desire to maintain secrecy

over the specific chemicals involved (Elgin et al., 2012; Haas et al., 2012).

3.2.2 Policy tradeoffs of information disclosure

With respect to potential external impacts associated with the use of toxic chemi-

cals, economic theory suggests a number of alternative approaches that public policy-

makers might use to regulate such externalities. Command-and-control regulations

require firms to undertake particular technologies or practices. When regulators

have less information about production processes than do firms, this “one size fits all

approach may be suboptimal. Market-based regulations (e.g., severance taxes and

impact fees) modify firms incentives via price effects, but may affect firms only on the

extensive margin, and may be difficult to implement if chemical releases are difficult

to monitor. In contrast, information-based regulations require regulated entities to

disclose elements of their production process that may have external impacts, but

which would be difficult for outside stakeholders to ascertain without the disclosure

requirement. Disclosure regulations are motivated both by the notion that the public

has a “right to know the details of firms (and governments) production decisions,

especially when those elements conceivably affect public welfare. In addition, disclo-

sure regulations may also motivate regulated entities to change their behavior, either

through pressure applied in the marketplace or the courts. The former means that

information-based regulations are most commonly used in consumer-facing industries

(Fung et al., 2007).

Scholars have posited alternative mechanisms to explain why mandatory disclo-

sure laws may positively influence regulated actors even without a consumer channel.

6 See, for example, http://www.vanityfair.com/news/2010/06/fracking-in-pennsylvania-201006.
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Bennear and Olmstead (2008) identify a political mechanism: information may in-

crease the ability of a concerned public to lobby for stronger regulation. These

authors also note that disclosure may affect an organizations internal decision mak-

ing, as individuals within the firm change their behavior as a result of measuring

and reporting data. Another interpretation focuses on the role of liability, which is

facilitated by information disclosure. Olmstead and Richardson (2014) list factors

that work in favor of liability as a regulatory approach, including asymmetric infor-

mation (i.e., regulated firms have better information about technologies) and limited

ability to avoid payment (e.g., by spinning off risky activities into operations with

little exposed assets.7 If it is unlikely that a suit is brought, either because litigation

or information costs are high, the disciplining force of liability will also be muted.

Because shale gas development is a highly technical process that often occurs in areas

with restricted public access, it may be difficult for the general public, and even reg-

ulators, to monitor operator activities. Providing information to nearby landowners

and other interested parties reduces this cost.

Konschnik (2014) summarizes other reasons why disclosure is valuable, many

of which are more direct. For instance, in the event of an accident, disclosure to

emergency medical personnel and medical staff may improve treatment and pro-

tect the staff members themselves. In addition, disclosure provides information to

nearby landowners and local government authorities so that they can test their water

supplies, increasing their ability to bargain with operators. Disclosure can also help

establish liability for contamination, making liability a more effective regulatory tool.

If the information made available extends over a period of time, then disclosure can

facilitate the monitoring of environmental releases, exposures, or health impacts over

time. Finally, disclosure satisfies the public’s “right-to-know” about possible release

7 Insurance and bonding requirements in Pennsylvania are small (either $2,500 per well or $25,000
for all wells in the state).
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of, or exposure to, hazardous materials, in the spirit of the Emergency Planning and

Community Right-to-Know Act (EPCRA) of 1986 (although the shale gas industry

is currently exempt from some provisions of this Act).

At the same time, to the extent that industry actors rely on secrecy to maintain

competitive advantage from investments in research and development, disclosure po-

tentially undermines incentives to invest in innovation. It is well understood that to

the extent that new knowledge generated by investments in research and develop-

ment can be copied or imitated by other firms that do not pay the full cost of the

investment, the social returns to investments in R&D may exceed private returns. In

theory, patents solve the problem of imperfect appropriability by granting inventors

the right of exclusive use for a period of time (Cohen, 2010). In practice, however, the

protection afforded by patents varies substantially across industries, and would-be

innovators in many industries rely on secrecy, lead time, and investments in comple-

mentary assets in order to maximize the returns to innovative activity (Cohen et al.,

2000; Cohen, 2010; Teece, 1986). A survey administered in 1994 to R&D laborato-

ries in the US manufacturing sector indicated that on average, lab managers in the

petroleum and chemicals industries considered secrecy more effective than any other

mechanism, including patents, for protecting both product and process innovations

(Cohen et al., 2000).8 Thus, in this context, regulations that require companies to

disclose information about their use of specific inputs may result in decreased private

returns to innovation.9

8 This does not necessarily imply patents are unimportant, as their use may be complementary in
an overall strategy to maintain competitive advantage.

9 Note that much of the technological development that facilitated the “shale revolution” was
based on R&D that was directly sponsored by the government, or by government-subsidized R&D
in the form of tax credits for development of unconventional shale and tight gas. In response
to persistent supply shortages in the 1970s, the US government began to directly and indirectly
fund R&D investment in the natural gas industry. The Natural Gas Policy Act of 1978 removed
wellhead price controls and provided tax incentives for developing new natural gas resources. The
Crude Oil Windfall Profit Tax Act of 1980 provided tax credits for developing unconventional fuels,
which increased their financial return and reduced their risk. The Department of Energy (DOE)
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3.2.3 Disclosure rules

There are currently eighteen states with significant hydraulic fracturing activity and

chemical disclosure laws. There is general uniformity across these states in terms

of the required information that operators must disclose, including ingredient name,

chemical abstract service (CAS) number, concentration in the fracturing fluid (typ-

ically the maximum concentration used in any fracturing stage), the name of the

supplier, and the trade name if applicable.

There is less uniformity in terms of where the information must be registered. Five

of the eighteen states, including several of the states that passed the earliest disclosure

rules, require operators to report to a state regulatory agency or commission. Six

require that operators report to FracFocus, an online database created by a multi-

state commission in partnership with a non-profit organization (GWPC and IOGCC,

2015). When uploading information to FracFocus, operators are also asked to provide

information about well location and characteristics including vertical depth, volume

of water used, latitude and longitude, and well name. The seven remaining states

allow operators to choose their reporting location (i.e., to FracFocus or the state).10

States have adopted similar approaches to accommodating the need for trade

secrets, partly due to the Uniform Trade Secrets Act.11 In particular, all states

allow exemptions for the disclosure of additives considered to be confidential busi-

ness information that firms believe gives them a competitive advantage. Operators

initiated a number of Unconventional Natural Gas Research Programs, including the Eastern Gas
Shales Program, the Western Gas Sands Program, the Methane Recovery from Coalbeds Program,
the Seismic Technology Program, and the Drilling, Completion and Stimulation Program. While
these programs did not have a role in the development of horizontal drilling or 3D seismic imaging
technologies, they did play an important role in high-volume fracturing and micro-seismic fracture
mapping (Shellenberger et al., 2012; Wang and Krupnick, 2013).

10 Although Oklahoma notes that the state regulator will upload to FracFocus any information it
receives.

11 The Uniform Trade Secrets Act, which seeks to harmonize standards for trade secret protection,
was promulgated by the Uniform Law Commission in 1979 and passed by 46 states.
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must declare an exemption for individual chemical ingredients for which they claim

trade secret status. This is accommodated by FracFocus, which allows for uploaded

information to include the concentration of the chemical used but not its name or

chemical identification number. Some states also require operators to report the

chemical family to which the proprietary substance belongs.

3.3 Data

We obtained production data for oil and gas wells in Pennsylvania from DrillingInfo,

a national provider of information on the oil and gas industry. We limit our analysis

to wells in unconventional reservoirs, as identified by the Pennsylvania Department

of Environmental Protection (PADEP). This is consistent with our focus on innova-

tion within unconventional shale development: according to industry engineers and

geologists we consulted, the areas of current, active technological innovation that

is relevant to fracturing operations are largely distinct between unconventional and

conventional production. In other words, learning about production in conventional

reservoirs does not transfer readily to provide insights into production in unconven-

tional reservoirs. These experts did advise us that learning about fracturing vertical

wells is transferable to fracturing in horizontal wells (and vice versa). Thus, we

include both vertical and horizontal wells.

We identified 7,028 unconventional wells in Pennsylvania that reported initial pro-

duction between January 2007 and December 2015. We collect data on inputs and

operating parameters from two sources: Well Completion Reports and Stimulation

Fluid Additive reports from PADEP, and the FracFocus database. Well Completion

Reports, which operators must submit within 30 calendar days following comple-

tion, contain firm identifying information, well location, and information about the

perforation and stimulation process. The requirement to submit Well Completion
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Reports dates back to 1989.12 Effective in February 2011, operators were also re-

quired to submit information on chemicals used in the stimulation process, including

the name and concentration of each chemical additive in the fracturing fluid. Oper-

ators were instructed to submit information about chemicals either along with the

Well Completion Report or on a separate DEP form, the Stimulation Fluid Additive

report.

Some Pennsylvania operators elected to submit chemical additive information to

the national FracFocus registry. Operators from other states (not just Pennsylva-

nia) were uploading chemical additive information to FracFocus at the same time,

typically on a voluntary basis.13 FracFocus permitted operators to upload data in

a standardized format, and the template contained the same information that oper-

ators had to report under Pennsylvania’s 2011 disclosure law. Thus the operators

who uploaded chemical additive information to FracFocus were in compliance with

the reporting law.14 In April 2012, Pennsylvania amended its reporting regulation

to require operators to upload chemical additive information to FracFocus, in place

of the requirement to submit information to the DEP on Well Completion Reports.

Thus, we obtained chemical additive information from both Well Completion

Reports and associated Stimulation Fluid Additive reports, or from the FracFocus

database. Notably, information that operators submitted to FracFocus was more

readily observable by competitors and the public.15 By contrast, Well Completion

12 http://www.pacode.com/secure/data/025/chapter78/s78.122.html

13 Operators in Wyoming and Arkansas were required to disclose chemical additive information as of
September 2010 and January 2011, respectively; however, both states provided their own reporting
websites for this purpose. Later in 2011 and 2012 several other states passed laws requiring chemical
disclosure. Some of those laws required operators to upload reports to FracFocus, and others offered
operators the option to use FracFocus or a state registry.

14 There may have been confusion on this point at the time; some operators, evidently uncertain
how DEP would enforce the requirement, provided printouts of their FracFocus disclosure forms
along with their Well Completion Reports. Other operators submitted disclosures to FracFocus but
not in the Well Completion Reports.

15 When FracFocus was launched, GWPC and IOGCC provided fracturing fluid chemical reports
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Reports and Stimulation Fluid Additive reports submitted to the DEP were available

for review by a subscription service or by in-person review at regional DEP offices.

Subscribers could view Well Completion Reports through the Exploration and De-

velopment Well Information Network (EDWIN), in which some chemical disclosure

forms were available as scanned PDF documents.16 However, there was a long wait

time for reports to be scanned and uploaded to this system, especially in the height

of the fracturing boom.17 Members of the public could also review reports in per-

son, but would have had to identify the permit number of a specific well, contact

the appropriate regional DEP office, file a request, schedule an appointment to visit

in person (typically three to four weeks in advance), and would then be allowed to

review a limited number of hard copy documents onsite (on the order of 25 per day).

Therefore we do not believe operators would have expected others to observe their

fluid contents, prior to the April 2012 rule that required public disclosure of chemical

information on FracFocus.

To capture productivity, we use the standard industry metric of initial gas output

per foot of wellbore. Total output is highly correlated with initial output, and

dividing by the length of the perforated interval normalizes output by well size to

facilitate comparison across wells. In the process of creating this metric, we find

that operators failed to provide the length of the perforated interval for 1,158 wells,

as individual PDF files that were easy to download individually but challenging to compile en
masse. At the time, GWPC and IOGCC specifically stated their intent to provide a forum where
the public could view individual reports but not look at many reports at once. At least two
entities had successfully scraped the entire FracFocus database by late 2012. One was a for-profit
consulting firm motivated by commercial interest in the database; the other was an environmental
NGO that claimed, on right-to-know grounds, that the public should be able to review and compare
information across wells (Skytruth, 2013).

16 Until 2015, EDWIN was known as the Integrated Records and Information System (IRIS).

17 One of the authors accessed the system several times in 2012-13 and found that the wait time
for stimulation fluid additive information to be available in the system was highly variable, and the
delay for its addition could be up to 18 months or more after well completion.
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so we cannot use these in the analysis.18 We drop an additional 94 wells that have

nonsensical completion dates (the recorded completion date is after the date of initial

production). Finally, we drop 21 wells with zero recorded gas production. This leaves

us with a sample of 5,755 wells.19

For each of these wells we observe identifying information (operator, location, and

completion date) and output. We collected data on inputs, including volume of wa-

ter, quantity of proppant, and chemical additives to the stimulation fluid, from DEP

reports and FracFocus. The DEP reports proved unamenable to optical character

recognition scraping: they featured to a wide variety of formats (over ten different

formats with different page headers), the use of numbers that were sometimes hand-

written or crossed out and overwritten, overlaid date stamps, and raster images.

Thus the relevant information was digitized manually, by a team of data entry con-

tractors. This effort took about 1,800 person-hours over 4 months, and involved the

entry of about 200 data items per report. We verified the quality of data entry by

using standard procedures including systematic checks for consistency and reason-

ableness, spot checks comparing hand entries to the original reports, and comparison

of duplicate entries by different contractors.

Despite our careful collection and entry of input data, not all variables are avail-

able for each well. Fluid volume is available for 4,353 wells (76%); proppant volume

is available for 4,316 wells (75%); and both fluid and proppant quantity are avail-

able for 3,184 wells (55%). We have detailed chemical information for 4,290 wells,

including 3,982 wells with chemical information disclosed to FracFocus and 308 wells

(from the period February 2011 - April 2012) with chemical information disclosed

only to PADEP.20 Of the 1,465 wells with no information on chemicals, 1,250 were

18 This omission of perforated interval appears to be out of line with basic reporting requirements.

19 To ensure the analysis is not driven by outliers, we winsorize per-foot initial gas production at
the 99th percentile.

20 Mandatory disclosure started in Pennsylvania in 2011, but prior to this date some operators
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not subject to disclosure; 215 wells appear to be out of compliance, as they were

fractured after February 2011 but chemical additive information was not released to

PADEP nor FracFocus.21 We were able to obtain other information on other well

parameters for a larger set of wells; we have information on the number of stages,

for instance, for 4,699 wells (82%).

Table 3.1 provides a summary of information about the wells for which we observe

chemical input information. Although we have other information for wells beginning

in 2007, chemicals data are available only for wells starting in 2010. The table shows

that the median and mean number of chemicals per well has increased slightly over

time, fluid volume has increased somewhat more substantially, and gas production

per foot has generally increased.

Table 3.1: Summary information for wells in sample with chemicals data

Fluid Volume # Chemicals / Well First 6 Month Gas per foot
Year Median Mean Median Mean Mean Median

2010 3.8 4.1 11.5 10.7 160.2 141.2
2011 4.4 4.5 9 10 154.7 122.8
2012 4.2 4.4 11 12.5 186.5 131.5
2013 5.6 5.9 13 15.4 198.1 153.9
2014 7.8 8.3 13 15.6 200.6 159.9
2015 8.9 9.1 13 14.3 151.3 128.1

Data sources are described in Section 3.3.
Chemicals are listed, non-proprietary chemicals with legitimate CAS numbers.
Fluid volumes are expressed in millions of gallons.
Gas volumes are expressed in thousands of cubic feet (MCF).

Table 3.2 provides additional information for wells in the sample for which we

voluntarily submitted chemical information for some wells.

21 Another possibility is that operators provided chemical information for these wells but the
reports had not been digitized and uploaded to EDWIN or its predecessor system by January
2017 when we searched the database for Well Completion Reports and Stimulation Fluid Additive
reports. Assuming the reports were provided to DEP within 30 days of well completion, this would
imply a delay of 4 to 5 years from when DEP received the reports to entry of the report into the
system. While such a delay may seem unlikely, we did note that approximately 800 Well Completion
Reports, some pertaining to wells completed in 2011 or early 2012, were uploaded into the system
between December 2015 and January 2017.
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observe chemical use. This table demonstrates that operators continued to innovate

by introducing new chemicals each year, with the largest innovation (in terms of

number of new chemicals) occurring in 2011-2012—right around the time that the

state was issuing laws requiring mandatory disclosure. Companies also retired some

chemicals from use (at least within our sample’s timespan).

Table 3.2: Additional information for wells in sample with chemicals data

Chemicals
Year # Wells # Operators # New # Retiring # Total

2010 38 8 51 3 51
2011 881 24 87 17 132
2012 1055 27 92 20 199
2013 961 31 62 66 249
2014 897 27 43 121 223
2015 148 17 4 – 112

Data sources are described in Section 3.3.
Chemicals are listed, non-proprietary chemicals with legitimate CAS numbers.
New chemicals refers to the count of unique chemicals appearing in our dataset
for the first time in a given year.
Retiring chemicals refers to the count of unique chemicals appearing in our
dataset for the last time in a given year.
Total chemicals refers to the count of unique chemicals used in a given year.

3.4 Analysis

In this section, we perform a series of empirical analyses designed to answer two

questions. First, did mandatory disclosure of chemicals, even with provisions allowing

for some chemicals to be declared proprietary, enable social learning. Second, did

the learning enabled by disclosures have value, helping less productive operators to

“catch up” to more productive operators. In future work, we plan to also analyze

the extent to which this may have reduced operators’ incentives to innovate.

For all of our analysis, we define two periods: pre- and post-disclosure. Thanks

to Pennsylvania’s regulatory history, the pre-disclosure period covers the 14 months

from February 2011 to April 2012. During this period, we as econometricians are
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able to observe the chemicals used, but it is implausible that operators had access to

this information (see Section 3.3). The post-disclosure period covers all of the wells

from April 2012 through the end of our sample.

If the answer to both questions is affirmative, we would expect to see convergence

in productivity across operators, with less able firms using information revealed by

the disclosure laws to catch up with more successful firms. After confirming that this

is the case, we examine each of the two questions more closely to rule out alternative

explanations. To answer the first question, we examine how the design of fracturing

fluids changed after disclosure. After finding a convergence in the chemicals used

consistent with copying from disclosure, we turn to the second question. To answer

it, we construct a two-stage estimator that combines information on chemical for-

mulas and well productivity. We find evidence that convergence is indeed explained

specifically by weaker firms adopting the chemical mixtures used by more successful

firms in previously drilled wells. This finding is consistent with firms learning through

chemical disclosure. Finally, we conduct several robustness and placebo tests to rule

out alternative explanations.

3.4.1 Change in well productivity

As a starting point in our analysis, we consider the hypothesis that disclosure led to

convergence in well productivity. To investigate this, we run a simple regression at

the well-level:

gw “ β0 ` β1sw ` β2fw ` εw, (3.1)

where the w subscript indicates a well, g denotes per-foot first-six-month gas pro-

duction, and s and f are fracturing proppant and fluid volumes. We then take the

estimated residuals ε̂w and calculate a Gaussian kernel-weighted standard deviation

over time. The results are shown in Figure 3.1. The curves plot the estimated stan-

dard deviation, for various bandwidth choices; the vertical black line marks April
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2012, the date that disclosure came into effect. All three bandwidths show a marked

fall in the standard deviation of the estimated residuals after disclosure. This fact

motivates the rest of our analysis that follows.

Figure 3.1: Kernel-weighted standard deviation of productivity residuals over time

The curves indicate the kernel-weighted estimated residual standard deviation over time, with
different bandwidths. The vertical line indicates the date that public disclosure came into effect.

3.4.2 Well-to-well similarity measures

It is possible that the drop in residual standard deviation described in Figure 3.1

is simply the result of the shale gas industry maturing, with individual operators

all converging towards a production frontier. One way to test the learning hypoth-

esis would be to look for evidence that poor performers improve their productivity

specifically when they copy the chemical mixtures of more successful firms.

We first consider the effect of Pennsylvania’s disclosure rules on operators’ chemi-

cal choices. If chemical disclosure compelled the release of valuable (formerly private)

information, we might expect to find that operators’ chemical recipes exhibit more

similarity after disclosure than beforehand. Our detailed chemical input data (dis-

cussed in Section 3.3) allows us to explore this hypothesis by constructing measures

of similarity for each well-to-well pair we observe.
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We begin by introducing some notation, defining our similarity metric of choice,

and providing a summary of the metric in our data.

Define sij P r0, 1s as the pairwise similarity between wells i and j.22 A value sij “

1 implies that the hydraulic fracturing fluids used in wells i and j are indistinguishable

according to the chosen metric; i “ j ñ sij “ 1.

We now introduce some notation to define the similarity metrics. Let C denote

the set of all possible chemicals, and let xic P r0, 1s be the concentration of chemical

c P C in well i. So the sum of all such contributions
ř

C xic “ 1. We also define the

binary variable yic “ 1txic ą 0u. Then we can define the following quantities for a

given pi, jq pair:

• aij “
ř

C yic is the number of chemicals found in well i

• bij “
ř

C yjc is the number of chemicals found in well j

• cij “
ř

C yicyjc is the number of chemicals found in both wells i and j

In principle we can calculate “abundance” or “correlation” similarity metrics

that take into account the more detailed information in xic. Two features of our

setting argue against taking this approach in practice. First, chemical quantities

are reported as maxima rather than actual concentrations; second, FracFocus and

the PADEP reports differ in terms of recording concentrations in terms of mass and

volume. Due to these limitations, we focus on “binary” metrics that consider only

the absence or presence yic of chemical c from well i. We proceed with the Sorensen

binary metric, but find similar results with the alternative Jaccard binary metric.23,24

22 Most metrics, including those we use, feature the property sij P r0, 1s, although other measures
like correlation, with support sij P r´1, 1s, are possible.

23 See chapter 12 of Krebs (2014).

24 The Jaccard binary metric is defined as: sij ” cij{paij ` bij ´ cijq.
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The Sorensen binary metric is defined as:

sij ”
2cij

aij ` bij
.

3.4.3 Disclosure and similarities

We calculate the similarity metric for each i, j well-pair in our data. Our chemical

data on 4,015 wells gives us 8 million such pairs. Figure 3.2 shows the distribution of

these measures for two sub-samples of pairs: those where both wells are drilled by the

same operator, and those where the wells are drilled by different operators. The figure

also plots the medians of the two distributions. A few observations are noteworthy:

the different-operator distribution has a mass point at sij “ 0, with most of the mass

roughly centered around sij “ 0.25. While the same-operator distribution also has

most of its mass below sij “ 0.5, it is noticeably more uniform and has a mass point

at sij “ 1. This confirms what we might have expected: intra-operator well-pairs

tend to use more similar chemical mixes than inter-operator well-pairs.

Figure 3.2: Sorensen similarities by same / different operator status

The curves plot estimated densities for well-pair similarities sij , conditional on whether the wells in
the pair had the same or different operators. The vertical lines indicate the distribution medians.
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We next consider how well-pair similarities have changed with the advent of

disclosure. We do this by running a series of regressions of the following form:

sij “ β0 ` β1operij ` β2postij ` β3dist25ij`

β4operij ˚ postij ` β5dist25ij ˚ postij ` αi ` αj ` εij, (3.2)

where sij is the Sorensen similarity metric defined above, operij is a binary variable

equal to 1 if wells i and j were drilled by different operators, postij is a binary

variable equal to 1 if either well i or j was fractured in the post-disclosure period,

and dist25ij is a binary variable indicating whether the wells are located more than

25km apart. Operator fixed effects are included with αi and αj. The results of

regressions featuring subsets of these variables are shown in Table 3.3.

A few things are worth noting from Table 3.3. First, all columns show a signif-

icantly negative estimate of the coefficient on operij: this indicates that well-pairs

with different operators tend to use less-similar chemical mixes, confirming the graph

in Figure 3.2. Second, the coefficient of postij is also always estimated to be signifi-

cantly negative, indicating that well-pairs use less-similar chemical mixes on average

if at least one of the wells is drilled in the post-disclosure period. Third, the coef-

ficient on dist25ij is estimated to be negative, indicating that more geographically

distant well-pairs use less-similar chemical mixes on average.25

25 Similar results hold for other cut-off distances, or for letting distance enter the regression directly.
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The interaction terms are more interesting. The interaction between dist25ij and

postij is estimated to be positive and significant, indicating that after disclosure,

distant wells use more similar chemical mixes than before disclosure. Similarly, the

interaction between operij and postij is estimated to be positive and statistically sig-

nificant. This indicates that different-operator well-pairs use more similar chemical

mixes post-disclosure than pre-disclosure. This is consistent with disclosure facili-

tating the transfer of knowledge about chemical mixes, and motivates our further

analysis in the next section.

3.4.4 Convergence in output

First stage regressions

To evaluate the effect of changes in chemicals and other inputs on productivity, we

set up a two-stage regression framework. In the first stage, we regress gas produc-

tion on a set of observables and fixed effects. The fixed effects include operator by

period fixed effects, which represent the relative productivity of each operator in

each period, conditional on observables. The difference between the first-period and

second-period fixed effects, in turn, represents an operator-level measure of change

in average productivity from the first to the second period. In the second stage, we

calculate the difference between first- and second-period fixed effects and regress this

difference on the first-period fixed effect, along with a “quality-similarity measure

that is explained in section 3.4.4 below. The second-stage regression is similar in

spirit to simple tests of convergence in the economic growth literature (e.g., Bernard

and Durlauf (1996)). As we shall see, our results suggest there is convergence among

operators from the first to the second period, but this convergence is driven strongly

by the fact that after disclosure, ex-ante lower-performing operators use chemical

formulas that are more similar to those used by ex-ante higher-performing wells.

In our first stage regression, we regress per-foot initial gas production on a set of
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observables and fixed effects, using the form

y “ F ˆ gpXq

where F is an operator fixed effect and gpXq is a function of variables X that affect

the well in question. Suppose gpXq “ eX
1β. Taking logs on both sides, this implies

that

log y “ logF `X 1β

In our preferred specification, the function gpXq includes a township fixed effect,

a year fixed effect, the density of unconventional wells previously completed in the

township (as a quadratic), and the current output price.26 The year fixed effect

should absorb secular technological change, and the township fixed effect helps to

control for spatial differences in resource quality.27 We explored several alternative

specifications, including specifications without price, without prior well density, with

alternative measures of prior well density, and with well density (or alternative mea-

sures) in linear form rather than quadratic; all of these alternatives produced results

similar to those reported here.

We estimate the first stage regression using the log of first 18 month gas output

per foot for the dependent variable, and then exponentiate the fixed effects (to trans-

form them from lnF back into F ). We interpret these exponentiated effects as the

26 For output prices, we use prices for the Henry Hub exchange for the month in which well i was
completed. City gate prices for Marcellus production have often been lower than Henry Hub prices
(http://www.eia.gov/todayinenergy/detail.php?id=24712), but we have not been able to obtain a
continuous price series for Dominion South or other exchanges that may be more appropriate to the
Marcellus. In any case the Henry Hub price is likely highly correlated with these other exchanges;
thus, to the extent that the main point of our first stage analysis is to recover operator-period fixed
effects, our use of the Henry Hub prices likely does not introduce significant error.

27 Alternatively, we could perform a semiparametric regression that conditions flexibly over space.
However, Covert (2015) implemented such a procedure in a related setting—shale oil production in
North Dakota—and found the results were not substantially different from those using fixed effects
for administrative jurisdictions.
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contribution of the firm—a scale parameter, or multiplicative effect—that is positive

by construction.

Table 3.4 shows the results of the first stage regression, with initial gas per foot as

the dependent variable. Gas price appears to be positively correlated with initial pro-

ductivity, consistent with other research showing a positive elasticity of production

with respect to price (Newell et al., 2016).

Table 3.4: Results of first stage regression

Log First 18 Months Gas Production

Gas Price 0.078˚˚˚

p0.017q
Prior Well Density 0.000

p0.001q
Prior Well Density (squared) ´0.000

p0.000q
Township FE X
Year FE X
Operator-period FE X
Observations 5,755
R2 0.988

˚˚˚Significant at the 1 percent level.
˚˚Significant at the 5 percent level.
˚Significant at the 10 percent level.
This regression omits the constant in order to calculate a fixed effect for each
operator-period; therefore, the R2 value should not be given the usual interpre-
tation.

Quality-Similarity metric

To investigate the relationship between changes in productivity and the convergence

in chemical mixes across different-operator well-pairs shown in Table 3.3, we define a

quality-similarity index, QSf for each firm f . It is designed to capture the quality of

an operator’s chemical matching, where quality is defined by estimated pre-disclosure

90



fixed effects. It is constructed as follows:

QSf ”
1

|Mf |

ÿ

mPMf

smpθ
PRE
m ` ε̂mq

Mf ” ti, j | i is f POST well, j is non-f POST well, j fractured before iu

sm ” similarity index for well-pair m

θPREm “ estimated PRE period fixed effect for well j’s firm.

ε̂m “ (exponentiated) first-stage residual for well j.

QSf is thus a quality-weighted measure of the post-period similarity between f ’s

wells and other firms’ wells. We require that well j was stimulated before well i

to ensure the possibility that firm f would have had the opportunity to view the

chemicals used in well j and adjust its mix for well i if it chose.

Quality-Similarity difference-in-differences test

With calculated values of QS, we proceed to the second stage regression:

θPOSTf ´ θPREf “ β0 ` β1θ
PRE
f ` β2QSf ` β3QSfθ

PRE
f ` εf . (3.3)

Because the “data” for this regression features estimation error from the first stage,

we calculate standard errors via a bootstrap. We use a modified bootstrap to ensure

that we do not lose power in the second stage, which takes place at the operator-

period level. To get our bootstrap sample, we first calculate the number of wells

fractured within each operator-period. Then we draw, with replacement, that num-

ber of observations from that operator-period. This method, which is in the spirit of

a block or panel bootstrap (Cameron and Trivedi, 2005), ensures that we do not lose

any second stage observations due to the random draws inherent in the bootstrap

routine. Unless noted otherwise, all second-stage results presented below use this

bootstrap routine with 200 bootstrap replications.
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The results can be seen in Table 3.5. The first column shows the regression when

only θPREf is included; the coefficient is found to be significantly negative, which

suggests those with lower values of θf in the first period experience greater growth

in their θf with the advent of disclosure – i.e., there is convergence in the values

of θf over time. The second column shows estimates from Equation (3.3), with the

addition of QSf and the interaction term. With these additions, the point estimate

of β1 has flipped to be positive, suggesting divergence in θf over time. The point

estimate of β2 is also positive and statistically insignificant, suggesting that a higher

QSf is associated with higher growth in θf . Finally, β3 is estimated to be significantly

negative. This suggests that when well similarities are accounted for, the convergence

of θf over time is due not to θPREf , but rather to the interaction term.

Table 3.5: Second stage results

θPOST ´ θPRE

(1) (2)

θPRE ´0.289 2.582˚˚

p0.243q p1.018q
QS 2.335

p2.597q
θPRE x QS ´4.501˚˚

p2.177q
Constant 0.881˚˚˚ ´1.473

p0.237q p1.431q
Observations 28 24
R2 0.002 0.346

˚˚˚Significant at the 1 percent level.
˚˚Significant at the 5 percent level.
˚Significant at the 10 percent level.
Standard errors are calculated using 200 boot-
strapped samples, collected with binning at the
operator-period level. See text for details.
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Selection and exiting firms

The results reported above support the notion that convergence occurred over the

period we study, but that convergence is driven primarily by the interaction of θPREf

with QSf . However, a substantial number of operators exited Pennsylvania in the

POST period (i.e., did not drill any new wellbores). We must therefore consider the

extent to which selection affects the results. Would we find a different relationship

if these firms had continued to operate in the Pennsylvania shale fields?

To address this concern, we assign values of θPOSTf and QSf to the exiting firms,

re-run the second-stage regression in Equation (3.3), and check for stability of results.

We use several alternative assumptions in an effort to test for robustness under a

range of plausible but conservative scenarios.28

We consider the following four alternative scenarios:

1. Assume exiting firms would have performed at the 25th percentile of the firms

that did continue to operate.

2. Assume exiting firms would have performed at the median of the firms that

did continue to operate.

3. Assume exiting firms in the bottom quartile of the distribution in the pre

period would have performed at the bottom of the distribution in the post

period; assume firms in the top three quartiles in the PRE period would have

performed at the top of the distribution in the POST period.

4. Assume exiting firms in the bottom half of the distribution in the PRE period

would have performed at the bottom of the distribution in the POST period;

28 At first glance, it might appear that an assumption that all exiting firms would have performed
at the top of the distribution in the POST period would provide a conservative test. However, this
turns out not to be the case. Instead, such an assumption implies that a number of poor performers
(in the PRE period) all improved their performance in the POST period, which would lend support
to the convergence hypothesis.
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assume firms in the top half of the distribution in the PRE period would have

performed at the mean of the distribution in the POST period.

We must also assign values for QSf for the firms that exited. We make three

alternative assumptions:

1. Assume exiting firms would have had a QSf at the 25th percentile of the firms

that remained.

2. Assume exiting firms would have had a QSf at the median of the firms that

remained.

3. Assume exiting firms would have had a QSf at the 75th percentile of the firms

that remained.

It is not clear a priori whether a relatively high or low assignment of QSf should

make for a conservative test of its role in achieving convergence, so using a range

of alternative assumptions allows us to test across various alternative states of the

world. We run distinct regressions that match each of the four assumptions for θPOSTf

against each of the three assumptions for QSf (plus an additional set of regressions

that considers a simple convergence without QSf ). Table 3.6 provides a summary of

the results for these tests. Note that the table contains the results of 16 regressions;

each column and set of rows (between the horizontal lines) represents a distinct

regression.

The table shows that this analysis is consistent with the main analysis, implying

that selection on surviving firms is not driving our results. This supports our earlier

finding that convergence is driven primarily through the interaction of the QSf term

and the θPRE term, which is consistent with disclosure-enabled “catching up”.
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Table 3.6: Results of QS-DD tests with alternative assumptions for exiting firms

No QS 25th 75th
Assumption for (simple Percentile Median Percentile

θPOST convergence) QS QS QS

25th θPRE ´0.254˚˚ 1.522 3.397˚˚˚ 4.351˚˚˚

Percentile p0.119q p1.231q p1.135q p0.812q
QS 2.955 5.23˚˚ 6.014˚˚˚

p2.188q p2.014q p1.460q
QS ˆ θPRE ´3.160 ´6.462˚˚˚ ´7.944˚˚˚

p2.243q p2.023q p1.402q

Median θPRE ´0.287˚˚ 1.409 3.177˚˚˚ 4.136˚˚˚

p0.112q p1.119q p1.022q p0.727q
QS 1.961 4.584˚˚ 6.082˚˚˚

p1.989q p1.814q p1.306q
QS ˆ θPRE ´3.014 ´6.124˚˚˚ ´7.610˚˚˚

p2.040q p1.822q p1.255q

Bottom θPRE ´0.178 2.950 0.591 ´1.613
Or Top p0.340q p3.367q p3.609q p3.213q

QS ´2.959 ´3.700 ´2.654
p5.982q p6.407q p5.771q

QS ˆ θPRE ´4.966 ´0.621 3.310
p6.135q p6.436q p5.546q

Bottom θPRE ´0.069 2.014˚ 3.006˚˚˚ 3.188˚˚˚

Or Mean p0.110q p1.062q p1.027q p0.844q
QS 4.151˚˚ 5.087˚˚˚ 4.562˚˚˚

p1.887q p1.823q p1.516q
QS ˆ θPRE ´3.704˚ ´5.407˚˚˚ ´5.577˚˚˚

p1.935q p1.831q p1.456q

N 44 44 44 44
N (exit) 20 20 20 20
˚˚˚ pă 0.01, ˚˚ pă 0.05, ˚ pă 0.10.
All QS is standard Sorensen. All regressions include a constant term. Growth rate is θPOST ´

θPRE . Significance tests and standard errors do not reflect the bootstrap procedure.

95



3.4.5 Placebo tests

In addition to our attempt to combat potential sample selection in the prior sec-

tion, we recreate this analysis with two alternative definitions of QSf to check the

robustness of our findings. In the first alternative, QSf is generated using all post

well-pairs with firm f ’s wells, regardless of the chronological order of the stimulation.

In the second alternative, we create a version that includes a geographic limitation

in order to rule out spatial spillovers.

In the first alternative, the estimated coefficient on the interaction of θPRE and

QSf is not significant, which is in contrast to our finding with the proper definition

of QSf . This contrast supports the hypothesis that disclosure in fact aided learn-

ing. The alternative with a geographic restriction has similar results to the original,

suggesting that convergence is not due to spatial proximity.

“Time-Fluid QS”

For the first alternative, we define a new quality-similarity index QSTFf :

QSTFf ”
1

|MTF
f |

ÿ

mPMTF
f

smθ
PRE
m

MTF
f ” ti, j | i is f POST well, j is non-f POST wellu

Note that sm and θPREm are defined as before, so the only change is the set of well-

pairs used, MTF
f . In the original definition, we imposed the requirement that f ’s

well was completed after the other operator’s well, to allow for the possibility that f

was able to view the chemical disclosures of the non-f well. In this alternative, we

do away with this limitation and construct QSTFf as though we had no information

on the relative timing of the wells. If the learning through disclosure mechanism is

operative, we expect that the analysis with the new measure QSTFf will result in less

significantly negative estimate of β3.
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The results of the new second stage regression are shown in column 3 of Table

3.7. While the estimates are significantly different from zero, the coefficient on the

interaction term is positive, suggesting that the QSTF is contributing to divergence.

This result supports the conclusion that convergence is driven by learning through

disclosure: including matches with wells drilled after f ’s wells in MTF
f weakens the

explanatory power of the regression.

Table 3.7: Second stage results with alternative QS definitions

θPOST ´ θPRE

No QS QS Time-Fluid QS Distance QS

(1) (2) (3) (4)

θPRE ´0.289 2.582˚˚ ´11.137˚˚˚ 2.775˚˚˚

p0.243q p1.018q p1.013q p0.934q
QS 2.335 ´34.060˚˚˚ 2.495

p2.597q p2.483q p2.381q
θPRE x QS ´4.501˚˚ 23.032˚˚˚ ´4.974˚˚

p2.177q p2.280q p2.100q
Constant 0.881˚˚˚ ´1.473 16.505˚˚˚ ´1.505

p0.237q p1.431q p1.333q p1.405q
Observations 28 24 28 24
R2 0.002 0.346 0.318 0.461

˚˚˚Significant at the 1 percent level.
˚˚Significant at the 5 percent level.
˚Significant at the 10 percent level.
Standard errors are calculated using 200 bootstrapped samples, collected with binning at the
operator-period level. See text for details.

Distance buffer

The second alternative is designed to rule out an alternative hypothesis: that well-

pairs are becoming more similar due to learning spillovers that are limited to, or

primarily driven by, spatial proximity (Conley and Udry, 2010). To test this possi-
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bility, we construct a final quality-similarity index QSDISTf :

QSDISTf ”
1

|MDIST
f |

ÿ

mPMDIST
f

smθ
PRE
m

MDIST
f ” ti, j | i is f POST well, j is non-f POST well, i and j ě 25km apartu

In this alternative, MDIST
f is defined to include only more distant well-pairs. The

second stage results are in the final column of Table 3.7. The point estimates are

almost identical to those with the original QSf measure, and the interaction term is

still significantly negative. The similarity of the estimates using QSDISTf and QSf

rules out spatial spillovers as the source of learning, and thereby lends support to

learning through disclosures.

3.4.6 Mechanism: Learning through contractors

One possible channel for the transfer of information about chemical mixtures is the

contractors who are hired to hydraulically fracture the wells. Contractors perform

a variety of roles; operators hire them to assist with jobs that may include drilling,

cementing, well logging operations, and other tasks, as well as designing and conduct-

ing the fracturing job. The PADEP requires operators to provide information about

contractors on Well Completion Reports. According to these reports, operators hired

8 contractors on the median well in our sample to assist in various roles; for some

wells, operators hired up to 40 contractors. However, the roles these contractors

play are not always specified. We were able to identify the fracturing contractor for

3,153 wells. This includes 2,558 wells for which the contractor job was specified as

involving stimulation or fracturing (distinct from related tasks such as perforation),

and 595 wells in which an operator hired a contractor that exclusively performs such

services.

To test whether contractors facilitate the transfer of information about chemical

mixtures, and whether that role was changed by the institution of disclosure rules,
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we perform a series of regressions of well-pair similarity indices on dummies for: (i)

if the two wells share the same contractor and (ii) if at least one of the wells is in

the post-disclosure period. We consider only inter-operator well-pairs.

sij “ β0 ` β1contractorij ` β2postij ` β3contractorij ˚ postij ` εij (3.4)

For all of these regressions, we restrict ourselves to the sample of well-pairs with

data on the fracturing contractor for both wells(see above). The results of these

regressions are shown in Table 3.8.

When it is the only non-constant regressor, the dummy for sharing a contractor

is associated with an increase in the similarity index of 0.272. In the second col-

umn, the dummy for post-disclosure is included: this dummy leaves the contractor

coefficient statistically unchanged, enters negatively and significantly, but is smaller

in magnitude. The third column adds an interaction between these two dummies.

The coefficient for same contractor increases, the coefficient on POST becomes even

smaller, and the interaction term is estimated to be negative and significant. The

role of the contractor in facilitating a similar chemical mix is reduced by about a

third in the post-disclosure period, suggesting that operators are not as reliant on

contractors as a source of information when that information is being published.

These results suggest that the contractor channel is associated with more similar

wells, but that this channel is less effective in the post-disclosure period.

3.5 Conclusions

Although often motivated primarily by a feeling that the public has the “right to

know” about risks that arise from the storage, use, and disposal of toxic chemicals,

disclosure laws have been found to affect firms’ behavior in other ways. However,

prior literature in economics and policy has focused on issues such as how disclo-

sure laws induce voluntary self-regulation, evidently motivated by effects on external
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Table 3.8: Determinants of well-pair similarities

Similarity Index

(1) (2) (3)

Same Contractor 0.272˚˚˚ 0.271˚˚˚ 0.394˚˚˚

p0.005q p0.005q p0.020q

Post ´0.077˚˚˚ ´0.057˚˚˚

p0.007q p0.006q

Contractor x Post ´0.126˚˚˚

p0.020q

Constant 0.289˚˚˚ 0.366˚˚˚ 0.345˚˚˚

p0.002q p0.007q p0.006q

Observations 3,544,453 3,544,453 3,544,453
R2 0.216 0.219 0.220

˚˚˚Significant at the 1 percent level.
˚˚Significant at the 5 percent level.
˚Significant at the 10 percent level.
Results are from the regression described in (3.4); similarities are
from the subsample where the fracturing contractor can be identified
with confidence. See Section 3.4.6 for details.
Standard errors are clustered at the well-index level, i and j of sij.

stakeholders such as product consumers, employees, or the general public. We con-

sider a different question—whether these laws can also create pathways for knowl-

edge transmission that were previously inaccessible or overly costly—and assemble

detailed data on both the inputs and outputs of shale gas firms to investigate this

phenomenon.

We find evidence for convergence in outputs, convergence in inputs, and a link

between the two—in sum, suggesting that disclosure laws affecting oil and gas pro-

duction firms in Pennsylvania created opportunities for social learning that “follower”

companies took advantage of, in ways that allowed them to catch up with “leader”

companies. This also supports the notion that companies concerned about erosion
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of competitive advantage due to public disclosure laws may have a valid argument.

Nonetheless, whether such disclosure laws reduce public welfare remains an open

question. If disclosure undermines secrecy in a way that reduces innovative activity,

this could harm welfare, but firms may also experience gains from trade that may

outweigh such costs if they exist. In ongoing research, we hope to better elucidate

the tradeoffs with respect to overall productivity and investment in innovation.
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4

Energy Transitions and Technology Change:
“Leapfrogging” Revisited

4.1 Introduction

The recent rapid growth in many emerging economies comes with opportunities for

better living conditions, increased investments in human capital, self-sustaining eco-

nomic growth, and greater global prosperity. Energy consumption is foundational

to this economic growth, yet over a billion people still lack access to electricity, and

many more are served by underpowered or unreliable energy systems. Over the com-

ing decades, energy systems for both generation and consumption will be built to

accommodate the needs of these populations, even as they continue to grow. In-

deed, Wolfram et al. (2012) forecast that nearly all of the growth in energy demand

in coming decades will arise from the developing world. Meanwhile, technological

innovation creates opportunities for “leapfrogging” in energy systems—that is, the

use of modern technologies in emerging economies that were not available to today’s

industrialized countries at the comparable time of their development. Leapfrog-

ging opportunities may exist in interrelated areas that affect the efficiency of energy
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transformation, the carbon intensity of energy generation, and the energy intensity

of economic growth (van Benthem, 2015).

Researchers have pointed out actual or potential technology leapfrogging in var-

ious domains (e.g. Goldemberg, 1998; Smil, 2010; Amankwah-Amoah, 2014), with

the most notable example being cellular telephone networks that allow developing

countries to skip over fixed-line technology. In the energy domain, researchers have

documented leapfrogging in the adoption of solar electricity generation technolo-

gies in rural areas, ethanol production in Brazil, and biomass cookstoves in China

(Goldemberg, 1998), adoption of energy-efficient appliances and fuel-efficient vehicles

(van Benthem, 2015), and elsewhere.

At the same time, institutions may hinder the ability of countries to take advan-

tage of these opportunities. Large entrenched industries, often with strong political

and economic ties to central governments, may take strategic actions to block or slow

the growth of potential competitors (Pearson, 2014). Government planners who wish

to utilize the best modern technology may withdraw their support for incremental

steps. Unreliable energy grids may create incentives for private firms or capital-rich

house-holds to build redundant energy generation systems that, in turn, operate less

efficiently due to lower economies of scale. Studies of technological change, including

numerous examples from the energy sector, suggest widespread change often takes

many decades (Rosenberg, 1972; David, 1990; Grübler et al., 1999; Hall, 2004; Smil,

2010).

This paper contributes to the understanding of technological evolution in the en-

ergy sector by exploring the extent to which the energy intensity of economic growth

has changed across countries over many decades. I test for evidence of “leapfrogging”

in the overall amount of energy used and the intensity of energy used to generate a

given change in economic output. This first step builds on recent research by van

Benthem (2015); I expand on that analysis by incorporating a longer time series of
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energy consumption for industrialized countries and by including energy used in en-

ergy conversion and distribution, rather than just consumption by end users. Next,

I test for evidence of leapfrogging in the carbon intensity of economic output and

growth. Finally, I explore the heterogeneity in relationships between economic out-

put, energy use, and pollution, identifying institutional, financial and environmental

factors that correlate with different countries’ experiences with energy leapfrogging.

4.2 Energy consumption, economic growth, and technology

Research on economic and energy history shows that energy intensity of economic

growth varies with the income level (van Benthem, 2015). At the lowest levels of eco-

nomic development, the energy intensity of economic growth is relatively low, while

in the “takeoff” or middle-income period energy intensity increases. In later phases

of development, especially as economies transition to more service-based sectors, the

energy intensity of economic growth tends to decline once again.

4.2.1 Empirical analysis: Energy and development

A large literature in economics explores cross-sectional differences in energy use and

energy intensity of economic growth.1 Several authors have used panel econometric

methods to study these phenomena (e.g., Medlock and Soligo, 2001; Judson et al.,

1999; Galli, 1998; van Benthem and Romani, 2009). In general these studies find

strong evidence of non-linearity in the relationship between income and energy de-

mand, reflecting the effects of structural economic changes and adoption of new

technologies during the course of development. For instance, Galli (1998), studying

ten Asian developing countries, finds evidence of declining energy intensity as na-

tions become wealthier. Judson et al. (1999) analyze the relation of growth to energy

1 Interest is hardly confined to economics; many historians, for instance, have reflected on decadal
energy transitions in regions or individual countries.
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consumption in different sectors for a panel of 123 countries, and find different pat-

terns for household use (increasing over most of the income range), transportation

(increasing over all of the income range), and industrial sectors (an inverted U shape

over the income range).

A recent panel analysis (van Benthem, 2015) tests for energy leapfrogging in both

levels of energy use for a given level of income, and intensity of economic growth.

This analysis takes advantage of a proprietary dataset with information on energy

consumption and GDP distinguished into eight sectors, spanning 76 countries with

up to 46 years for some countries (1960-2006). The author finds no evidence that

today’s developing countries experience economic growth with lower energy use or

energy intensity than did developing countries in the past. He does, however, find

evidence of household-level adoption of energy-efficient appliances and vehicles. He

reconciles these observations by noting the combination of industrial outsourcing to

less-developed countries, and more energy-intensive consumption by households and

public institutions at an earlier stage of development—along the lines of a technol-

ogy rebound effect. However, the detailed data are available only for a relatively

small set of industrialized countries (twelve). This is because IEA data on energy

consumption start in 1960, and by this time many industrialized countries had per

capita income greater than $10,000, which is too high to be relevant for the tests

used (i.e., because the tests compare today’s industrialized countries at a time when

they had per capita income less than that amount). Thus, one drawback to this

analysis is that the conclusions may be due partly to peculiar characteristics of the

small set of industrialized countries available for comparison.

4.2.2 Institutions, policy, and technological change

Widespread technological change, especially when it involves large capital invest-

ments, can be a slow and gradual process, particularly due to (1) the co-evolution
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of long-lived technological systems or clusters; (2) dynamic competition between

technologies rather than a smooth progression from identifiably “old” to identifiably

“new” technologies; and (3) nonlinear patterns of technology adoption with respect

to income. These factors suggest reason to be cautious in interpreting the results of

panel studies depending on the timeline used for the analysis.

National energy consumption arises from the net effect of countless individual

and institutional actors representing households, firms, and governments. Some of

the energy-using technologies in which these actors invest have relatively short use-

ful lives, on the order of a few years, while other technologies are useful for several

decades. For instance, household appliances may last as little as three to five years;

motor vehicles on the order of ten to fifteen years. Industrial capital assets frequently

produce value for thirty years or more.2 Grübler et al. (1999) document diffusion

processes for about 25 energy-using or energy generation technologies and note a

range of diffusion rates, depending on the relative advantage of the new technology,

the degree of interdependence with other technologies, and the degree to which the

new technology is complementary within existing technology ecosystems or requires

the development of new infrastructure. David (1990) echoes the theme of the slow

evolution of technological and economic ecosystems in documenting the slow dif-

fusion of electric dynamo technology. Given that energy infrastructure frequently

requires large capital investments, has a long useful life, and is integrally embedded

within technological ecosystems, longer-duration studies of the relationship of energy

consumption and economic growth may reveal insights not otherwise available.

Furthermore, when technological change involves the displacement of one technol-

ogy by another, that displacement need not occur quickly or in a uniform direction.

For instance, writing about the transition from sail-powered ships to steamships,

2 Institutions and policies may have much longer-lasting consequences, such as urban development
that is oriented around mass transit versus private vehicles.
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which involved the use of auxiliary sails on steamships and auxiliary engines on

sailing ships, Rosenberg (1972) cautions against the interpretation of technological

change as “historical foreshortening” and notes that a careful analysis would de-

scribe invention and technological change as “a gradual process of accretion” and “a

cumulation of minor improvements.” This is especially true when users and manu-

facturers of older technologies are able to improve the efficiency of the old technology

in the face of competition from substitutes—the so-called “last gasp” phenomenon—

but can also arise from setbacks in the development of newer technologies, or from

political-economic interactions in which bureaucracies or other institutions grow up

around certain industries and then act, strategically or otherwise, to slow the inno-

vation or adoption of new technologies (e.g., see Pearson, 2014).

The nonlinear relationship between household income and adoption of energy

technologies, well documented in Wolfram et al. (2012) and Gertler et al. (2016), also

suggests advantages to longer-run analysis, since relationships based on medium-run

trends may not hold at longer time scales. Taken together, these three aspects of

technological change imply that long-run analyses of technological change may reveal

insights that medium-run analysis may not.

4.3 Data

I assemble a panel dataset of energy consumption, energy-related carbon emissions,

population, GDP, and an index of real oil prices for 124 countries, with coverage

for as long as 153 years for some countries. The next two subsections describe the

sources for this dataset, and Section 4.3.3 provides a summary of the coverage of this

panel.
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4.3.1 Energy consumption and emissions

I use two measures of energy consumption. The first is total final consumption

(sometimes abbreviated TFC), which represents energy consumption by end users,

including households and industries. The second is TFC plus energy used in transfor-

mation from primary to secondary sources (e.g., the transformation of coal or natural

gas into electricity), energy used by energy-producing industries (e.g., to produce coal

from source rock), and losses during energy transmission and distribution. I call this

total energy use (TEU).3 In 2013, the components of TEU outside of TFC—energy

used to extract, convert, and distribute energy—accounted for one-third of global

consumption (IEA, 2015a).

My data on energy consumption come from several sources. The bulk of the

data are from the International Energy Agency (IEA), which draws on national

statistical organizations, international agencies, and other sources to compile energy

consumption (and other) statistics. The IEA Extended Energy Balances series (IEA,

2015a) provides information for countries on the supply and consumption of energy,

tabulated over about 60 generation sources (“products” in the IEA jargon) and 90

use categories (“flows”).

The earliest energy consumption data from IEA (2015a) are available for countries

in the Organization for Economic Cooperation and Development (OECD) from as

early as 1960, and non-OECD countries from as early as 1971. However, as of

1960 many industrialized countries had per capita income greater than 10,000 USD.

Thus, a data series using only IEA data may not provide an adequate number of

points of comparison. To address this concern, I incorporate data from Unger and

Thistle (2013) for Canada, and Kander et al. (2014) for eight European countries

3 My TEU measure differs from the International Energy Agency’s “Total Primary Energy Supply”
in that I exclude non-energy uses of fossil fuels, such as the production of petrochemicals, lubricants
or tar.
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(France, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, and the United

Kingdom). The start years for these countries vary, but in all cases annual energy

consumption is available by 1861. In addition, I incorporate data on historical energy

consumption in the USA starting in 1900 (Schurr et al., 1960; EIA, 2016). Appendix

A provides additional details about combining the energy consumption data series.

Table 4.1 provides summary statistics for average energy use over time for differ-

ent groups of countries. As expected, both energy consumption and carbon emissions

are higher for countries with higher levels of income.4 However, Table 4.1 also pro-

vides suggestive evidence that other factors besides income affect energy consumption

and emissions. For example, comparing both 2013 TEU per capita, and 2013 TFC

per capita, between OECD and non-OECD countries at income levels in the $20,000-

$30,000 and over $30,000 ranges shows that non-OECD countries have substantially

greater total energy use within the same income range. This suggests institutions

may moderate the relationship between economic activity and energy use, perhaps by

influencing the abilities of governments, firms or households to adopt energy-efficient

technologies. A similar relationship holds for carbon emissions between these com-

parison groups. For lower levels of income (e.g., $10,000-$20,000), OECD countries

use greater amounts of energy and emit more carbon from energy uses.

Studies of economic growth and energy use show that predominantly agricultural

societies use relatively low levels of energy. With industrialization and increased

urban settlement, energy demand increases, then levels off as the economic base be-

comes more organized around services, manufacturing is often outsourced to other

countries, and more efficient energy technologies are deployed, either due to tech-

nological advance or economies of scale (Smil, 2010). Figure 4.1 shows, for a few

countries, the resulting S-shaped relationship between energy consumption and eco-

4 The relatively high figure for TEU per capita in 1960 for “OECD countries with income between
$10,000 and $20,000” is attributable to the fact that data are available for only two countries in
this category in 1960 (Poland and Turkey), so the average is more sensitive to outliers.
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Table 4.1: Summary statistics for energy use and carbon emissions

non- non- non- non-
Measure OECD OECD OECD OECD OECD OECD OECD
(per capita) Year 10-20k 20-30k ą30k ă10k 10-20k 20-30k ą30k

TFC 1960 33.3 24.9 88.8
(GJ) 1971 41 63.9 133.7 14.4 26.4 25.8 76.3

2013 65.2 84.9 158.7 21.8 51.7 142.1 196.2

TEU 1960 45.7 29.5 116.8
(GJ) 1971 54 84.8 165.9 17.1 35.4 46.6 152.5

2013 98.8 119.9 218.5 29.3 69.7 157.2 335.5

CO2 1960 3.5 1.9 9.7
(metric 1971 3.9 5.8 11.6 0.4 1.9 2.9 8.3
tons) 2013 6.3 6.6 9.4 1.4 3.9 10.1 19.3

Dataset includes 34 OECD and 90 non-OECD countries.
Income levels are per capita in 2013, measured in 2005 USD at purchasing power
parity. Data are available for most OECD countries from 1960, and for most
non-OECD countries from 1971.
Source: IEA (2015a, 2015b).

nomic growth. If technology leapfrogging does result in lower energy consumption

for a given quantity of economic growth, the S-shaped curves shown in Figure 4.1

should be flatter for countries that develop later in time.5

To the extent that energy from low-carbon sources supplies a relatively small

part of most countries’ energy needs, the relationship between carbon emissions and

economic growth follows a similar pattern. This observation runs counter to earlier

theoretical predictions and some empirical findings that economic growth eventually

leads to lower levels of emissions (e.g., the “Environmental Kuznets Curve” litera-

ture). With increased development of renewable energy along with other non-fossil

sources such as nuclear fission, some countries may eventually be able to achieve eco-

nomic growth without increased carbon emissions. Similar to the comment above, to

the extent that countries can take advantage of technology leapfrogging opportunities

5 The relationship between TEU and economic growth, though not shown, looks substantially
similar for this subset of countries.
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Figure 4.1: Energy transitions for select countries, 1960-2013

in energy efficiency or in low-carbon generation, curves illustrating this relationship

would be flatter for countries that develop in later periods.

4.3.2 Prices, GDP, and emissions

Data on energy-related carbon dioxide (CO2) emissions come from IEA (2015b),

which provides that information for the same years as the energy consumption met-

rics.6 Data on population and Gross Domestic Product (GDP) are from the World

Bank’s World Development Indicators, supplemented by data from the International

Monetary Fund’s International Financial Statistics and from Maddison (2010). The

latter source provides all of the GDP and population data prior to 1960, which is

the start year for data from the World Development Indicators. I use the purchasing

power parity (PPP) measure of GDP, which facilitates cross-country comparisons by

6 In a future draft, I plan to calculate carbon emissions for the pre-1960 energy consumption series
using the same methodologies as in IEA (2015b).
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accounting for differences in relative price levels.

Following van Benthem (2015), I construct a real oil price index using oil price

data from the BP Statistical Review of World Energy, converted into country-specific

indexes using inflation and exchange rate data from the World Development Indi-

cators (from 1960 onward) and Bordo (2015) (1861-1959 for countries with energy

consumption data over that period). The oil price index provides a country-specific

measure of price variability over time, compared to the world oil price from the BP

Statistical Review.7

4.3.3 Summary of panel data

The full panel consists of energy consumption, population, GDP, and real price data

for 124 countries, starting as far back as 1861 and extending to 2013. This includes

43 countries classified by the World Bank as high-income (per capita income greater

than 12,745 USD in 2013), 36 as upper-middle income (income between 4,126 and

12,745 USD), 31 as lower-middle income (income from 1,046 to 4,125 USD), and 14

as low-income (income below 1,046 USD). The panel begins in 1861 for Canada and

eight European countries, in 1900 for the USA, in 1960 for most remaining OECD

countries, and in 1971 for most of the non-OECD countries. For a few countries,

coverage begins in a different year; the main exceptions are former Soviet republics

and certain Eastern European countries, for which coverage begins in 1990.

For the initial exercise of comparing my results to those of van Benthem (2015), I

use that paper’s definition of developing and industrialized countries. In this frame-

work, “developing” countries are those with per capita income of 10,000 USD or

below in 2013 (in 2005 USD PPP), and “industrialized” countries are those with

per capita income of 15,000 USD or greater. These classifications are also in rough

7 I am grateful to Arthur van Benthem for sharing detailed calculations for his construction of a
real price index, as well as data on historical exchange rates and consumer price indices.
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accordance with the World Bank income groups. Under this classification system,

my panel includes 53 developed countries, 52 developing countries, and 19 countries

in an intermediate range.

4.4 Empirical methods and results

In documenting the empirical analysis, I begin with an exploration of the relationship

between energy consumption and income level for developed and developing coun-

tries, comparing the ratio of energy demand to GDP per capita between those two

groups. I then analyze the energy intensity and carbon intensity of GDP growth,

and look for evidence of technology leapfrogging. I also explore the heterogeneity

in energy intensity and carbon intensity of income growth across countries and over

time, with an eye toward discerning what characteristics or institutions explain the

most variation in the energy intensity of growth in different countries.

4.4.1 Levels

As an initial exploration of the relationship between energy consumption and income,

I compare energy consumption per capita with GDP per capita between industrial-

ized countries at the time of their development, and developing countries in 2013.

Figure 4.2 provides a graphical overview of this relationship for countries in the

range of 2,000 to 10,000 USD GDP per capita. Hollow squares in the figure show

less-developed countries as of 2013, and solid squares show the developed nations of

2013 at an earlier stage in their development. This includes the earliest year with

IEA data on total energy consumption for which today’s developed nations had in-

come per capita below 10,000 USD (1960 for most OECD countries, 1971 for most

non-OECD countries, and between 1991 and 1993 for five countries in the former So-

viet Union or Yugoslavia). It also includes six additional countries that had income

per capita above 10,000 USD by the start of the IEA data series, but for which the
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other sources noted above provide pre-1960 data on energy consumption. For these

countries (Canada, Germany, Netherlands, Sweden, USA, and United Kingdom),

Figure 4.2 shows energy use and GDP in 1925.

Figure 4.2: Total energy use per capita versus GDP for developed countries his-
torically and developing countries in 2013

Figure 4.2 provides suggestive evidence that less-developed countries today may

be achieving higher income at a lower level of energy use than industrialized countries

did at a comparable time of their development. Many of the solid squares (developed

countries) exhibit relatively high levels of energy use for their level of economic

development, higher than many of the hollow squares (developing countries). While

suggestive, this figure uses only a portion of the data available, since each country is

represented only once, and for an arbitrary year.

For a more rigorous analysis, I estimate the quantitative relationship between

114



per capita energy consumption (and, separately, emissions) and GDP, plus a dummy

variable for today’s less-developed countries. For each dependent variable I use four

alternative specifications of the relationship: two in levels and two in logs, and with

a linear and a quadratic specification on the income term. Thus, for instance, the

specification for energy consumption in logs with a quadratic income term is

lnECit “ α0 ` α1 lnGDPit ` α2plnGDPitq
2
` 1pLDCiq ` εit, (4.1)

where ECit is energy consumption in country i in year t; GDPit is gross domestic

product per capita; and 1pLDCiq is an indicator equal to one if country i is a less-

developed country in 2013. I estimate this equation for country-years in which GDP

per capita is between 2,000 and 12,000 USD, corresponding to the World Bank

definitions of middle-income countries.

In terms of the energy-income relationships illustrated in Figure 4.1, the speci-

fication (in logs) forces the paths of less developed countries to be parallel to those

of industrialized nations but, through the use of a dummy variable for less devel-

oped countries, permits a different intercept. A negative coefficient for the dummy

variable would imply that the developing nations of today are experiencing higher

income at a lower level of energy consumption compared to previous cohorts of devel-

oping countries—that is, to today’s industrialized countries during the time of their

development.
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Table 4.2 presents the results of this analysis. For both total energy use and

energy-related carbon emissions, the coefficient on the LDC dummy is negative in

all specifications, supporting the notion that some form of technology leapfrogging

is occurring in energy efficiency and perhaps also in the carbon intensity of energy

generation. At similar income levels, today’s developing countries consume about

49 percent less energy (about 21 GJ less) than did today’s industrialized countries

during their economic development. Also, at similar income levels, today’s develop-

ing countries produce about 35 percent less carbon than did today’s industrialized

countries when they were developing.

With the longer data series, the finding on energy use is opposite to that of

van Benthem (2015); in a similar analysis, but with a smaller set of countries and

a shorter time period, that study found developing countries using 19-20 percent

more energy than developed countries when they had similar income levels. One

explanation is that the longer time series allows more time for technological change to

take effect, and also allows the use of a larger set of comparison countries—especially

industrialized countries.

4.4.2 Intensity of economic growth

The analysis of levels of energy demand for a given income level indicates some sup-

port for the occurrence of technology leapfrogging, but a more meaningful analysis

would identify the relationship between growth rates of economic activity and energy

consumption (or carbon emissions). The time-invariant features of individual coun-

tries such as climate or hydroelectric potential affect overall levels of energy demand

or carbon emissions, but a key question regarding technology change is whether the

next increment of economic growth requires the same proportional increase in energy

consumption for today’s developing countries as it did for developing countries in the

past.
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What follows in this section, including the buildup of estimating equations and

justification for the approach, hews closely to the analysis of van Benthem (2015).

As noted previously, that paper is the most recent and thorough analysis of the

possibility of technology leapfrogging in energy systems, and I intentionally set out

to replicate the approach with a more expansive dataset and considering a larger

range of dependent variables, before analyzing the sources of heterogeneity.

Prior literature (van Benthem, 2015; van Benthem and Romani, 2009; Medlock

and Soligo, 2001) considers the relationship between economic growth, energy con-

sumption, and prices using the following specification:

lnECit “ α0 ` α1 lnGDPit ` α2plnGDPitq
2
` α3 ln pit ` θi ` λt ` εit, (4.2)

in which ECit and GDPit are defined as in equation (1), pit represents energy prices

(the real oil price index discussed in Section 3), and θ and λ represent country and

year fixed effects. Country-specific fixed effects allow for time-invariant differences in

country-level energy use, such as due to climatic differences. Time fixed effects allow

for trends in technological capability or macroeconomic shocks that affect energy

consumption over and above the effect of GDP and energy prices.

Equation (4.2) implicitly assumes that energy consumption responds immediately

to the effect of prices and income growth, regaining a long-term equilibrium with no

lag in response. In reality, when households, firms and governments make decisions

about capital stock, those decisions are responsive to prices and income growth over

longer periods of time. Incorporating a lagged term of energy consumption in the

right-hand side allows the short-run response to differ from that in the long run:

lnECit “ α0`α1 lnGDPit`α2plnGDPitq
2
`α3 ln pit`γ lnECi,t´1`θi`λt`εit (4.3)
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In equation (4.3), γ represents the speed of adjustment. The short-run response

of energy consumption to prices is still measured by α3, and response to income

growth is still calculated as α1 ` 2α2 lnGDP . The long-run responses are measured

as the short-run responses divided by p1´ γq.

Equation (4.3) still has limitations, however. Among the most important is that

it restricts the fitted relationship to be quadratic, whereas the true relationship may

be more complex. Again following van Benthem (2015), I code a series of dummy

variables that split the sample into several income bands based on GDP per capita.

I choose these bands to match the 2015 study: per capita income under 3,500 USD;

from 3,500 to 10,000 USD; from 10,000 to 20,000 USD, 20,000 to 30,000 USD, and

over 30,000 USD (note that in both the 2015 paper and this paper, income is mea-

sured in 2005 USD at purchasing power parity). These are in rough accordance with

the World Bank classifications of low, middle, and high income countries, although

with additional break points within the high income countries. I also code dummy

variables that correspond to the classification of countries as being developed or less-

developed as of 2013 (i.e., today’s developing countries and developing countries of

the past).

By interacting these dummy variables with each other and with the explanatory

variables, I can distinguish the long-run responsiveness of energy consumption (or

carbon emissions) to income growth for the developing countries of today and of the

past. In the equation that follows, 1pBnq is an indicator variable with value one

if GDPit is within the income band, and zero otherwise. Similarly, 1pLDCiq is an

indicator variable with value one if country i is a less-developed country in 2013 (and

zero otherwise), and 1pICiq is defined similarly but for industrialized countries. The

equation I estimate is as follows:
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lnECit “ β0

` 1pLDCiqrΣnβ1n,LDC lnpGDPitq1pBnq ` β2n,LDC lnpPitq1pBnq

` Σnγn,LDC lnpECi,t´1q1pBnqs

` 1pICiqrΣnβ1n,IC lnpGDPitq1pBnq ` β2n,IC lnpPitq1pBnq

` Σnγn,IC lnpECi,t´1q1pBnqs

` θi ` λt ` εit

(4.4)

If technology leapfrogging has occurred, in a way that reduces the energy intensity

of growth for today’s developing countries, this would correspond to a finding that the

long-run responsiveness differs between the LDC parameters and the IC parameters

over the same income range. I focus particularly on the income band from 3,500 to

10,000 USD, which encompasses the “takeoff” period of economic development, the

period of rising energy intensity according to historical studies, and approximately

matches the World Bank classification for middle-income countries. Thus, I test

whether
β1,LDC

p1´ γLDCq
is equal to

β1,IC
p1´ γICq

. If the former term is lower, this would

suggest that today’s developing countries are developing with lower energy intensity.

Table 4.3 presents the results of estimating equation (4.4) and calculating long-

run responses. As expected, the long-run response of energy consumption to real

energy price is generally negative (or zero). It may seem curious at first that the

long-run response of consumption to real energy price is positive and significant for

industrialized countries at the highest income level; however, this may be caused by

the fact that some industrialized countries are also net energy exporters, so when the

real energy price increases their energy consumption also increases because house-

holds and other users can afford to use energy less efficiently. Perhaps surprisingly, in

most specifications the energy intensity of GDP growth does not decline with higher

levels of income (e.g., in column 1, within industrialized countries the magnitudes
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of the coefficients on lnGDP are about the same for higher income levels as they

are for lower income levels). This runs counter to the historical observation that en-

ergy intensity declines for higher income levels, and may be due to the relatively low

threshold for the highest category of income; however, this puzzle warrants further

investigation.

The main question of interest is whether the long-run response of energy con-

sumption to economic growth is lower for today’s less-developed countries (second

row of coefficients in Table 4.3) than for today’s industrialized countries when they

were at similar levels of income (third row of coefficients). The last row in the table

provides the results of this test, which suggests that there is some form of techno-

logical advance that has allowed less-developed nations to grow with lower energy

intensity than in the past. The result is weakly statistically significant but stable

across specifications.

This finding is counter to that of van Benthem (2015), who found no significant

change using the same empirical test (but a smaller set of countries and years). As

with other differences in findings, the difference may arise from several sources. In

Table 4.3 the measure of energy use (total final consumption by end users) is the

same as in van Benthem (2015), so that is not the source of the different result. One

likely cause is that I use a longer time series and a broader set of countries, which may

better capture the time scale necessary for widespread technological change. How-

ever, where that paper had data on energy consumption and GDP at the country-

sector-year level, I have data only at the country-year level. Thus, there may be

sectoral shifts in economic activity that I do not capture. In this sense, the 2015

paper suggests an absence of energy leapfrogging within sectors (e.g., leapfrogging is

not resulting in more energy-efficient manufacturing or transportation in developing

countries), while this paper suggests leapfrogging is occurring within countries (per-

haps as a combination of sectoral shifts and leapfrogging over a longer time period).
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Table 4.3: Long-run response of total final consumption to income and price, by
income group and development status

Variable Income Country (1) (2) (3) (4) (5)
band group

(USD $k)
lnpGDP q 0-3.5 LDC 0.49˚˚˚ 0.52˚˚˚ 0.52˚˚˚ 0.25˚˚˚ 0.25˚˚˚

(0.07) (0.08) (0.09) (0.09) (0.09)
3.5-10 LDC 0.50˚˚˚ 0.52˚˚˚ 0.52˚˚˚ 0.88˚˚˚ 0.94˚˚˚

(0.06) (0.08) (0.08) (0.12) (0.12)
3.5-10 IC 0.60˚˚˚ 0.64˚˚˚ 0.61˚˚˚ 1.06˚˚˚ 0.94˚˚˚

(0.08) (0.10) (0.11) (0.22) (0.30)
10-20 IC 0.64˚˚˚ 0.67˚˚˚ 0.64˚˚˚ 0.68˚˚˚ 0.71˚˚˚

(0.09) (0.12) (0.13) (0.17) (0.17)
20-30 IC 0.62˚˚˚ 0.63˚˚˚ 0.69˚˚˚ 0.23 0.25

(0.09) (0.12) (0.13) (0.32) (0.32)
ą 30 IC 0.49˚˚˚ 0.52˚˚˚ 0.50˚˚˚ 0.83˚˚˚ 0.83˚˚˚

(0.06) (0.09) (0.09) (0.27) (0.27)
ln (p) 0-3.5 LDC -0.01 0.06 0.03 0.03 -0.02

(0.05) (0.06) (0.06) (0.08) (0.10)
3.5-10 LDC -0.12˚˚˚ -0.07˚˚ -0.06˚˚ -0.07˚˚˚ -0.08˚˚˚

(0.04) (0.03) (0.03) (0.02) (0.02)
3.5-10 IC -0.12˚˚ -0.04 -0.01 -0.02 -0.02

(0.05) (0.04) (0.04) (0.03) (0.03)
10-20 IC -0.10˚ 0.02 0.06 -0.08 -0.08

(0.05) (0.07) (0.08) (0.22) (0.23)
20-30 IC 0.10˚˚˚ 0.13˚˚˚ 0.12˚˚˚ 0.08˚˚ 0.09˚˚

(0.03) (0.02) (0.02) (0.04) (0.04
ą 30 IC -0.01 0.06 0.03 0.03 -0.02

(0.05) (0.06) (0.06) (0.08) (0.10)

no λt λtˆ λtˆ λtˆ
Time fixed effects pLDC, 1pBnq pLDC,

ICq ICq
ˆ1pBnq

Income coefficient (LDC-IC) -0.09˚ -0.12˚ -0.09 -0.19 0
within 3.5-10k USD income band (0.06) (0.06) (0.07) (0.17) (0.32)

Results of estimating Equation 4.4 with dependent variable log of total final con-
sumption per capita.
Standard errors, clustered at the country level, in parentheses.
Includes country fixed effects. N=3,969 country-year observations.
˚˚˚p ă .01,˚˚ p ă .05,˚ p ă 0.10.
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In the absence of sector-level data, I cannot distinguish how much of the difference

arises from sectoral shifts and how much from the longer time horizon. However,

if agents can take advantage of more free trade or other institutions that facilitate

sectoral shifts even as they allow income growth, then this may be sufficiently infor-

mative for policymakers and others interested in recognizing and facilitating leapfrog

opportunities.

I run the same test for total energy use and for energy-related carbon emissions.

Table 4.4 presents the results of this test for total energy use, presenting results

only for comparisons of developing and industrialized countries in the 3,500-10,000

USD income band (however, the estimation strategy is the same as that shown in

equation (4.4) and Table 4.3). The results suggest weak evidence of leapfrogging

in total energy use: perhaps surprisingly, weaker than in total final consumption.

Since the difference between the two series amounts to energy industry own use

and energy losses in transformation and distribution, this suggests that there has

been more leapfrogging in end-user consumption than in these segments. Indeed, an

analysis of own use and transformation losses separately might suggest the energy

intensity of these losses has increased for today’s developing countries, which is a

surprising result given advances in technology for the production of energy. One

possible explanation is that energy sources are becoming harder to access (e.g., oil

exploration in more remote areas, coal seams deeper underground).

Table 4.5 provides results of the same test, using per-capita energy-related carbon

emissions as the dependent variable. There is weak evidence for “carbon leapfrog-

ging,” with the magnitudes of coefficients for developing countries slightly smaller

than for developed countries (but not significantly so). The responses shown in Ta-

ble 4.5 are a composite of the energy intensity of income and the carbon intensity of

energy consumption; thus, they partly reflect the same trends as in Table 4.4. The

responses are also consistent with the observation that, with a few notable exceptions
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Table 4.4: Long-run response of total energy use to income

Variable Income Country (1) (2) (3) (4) (5)
band group

(USD $k)

ln (GDP) 3.5-10 LDC 0.59˚˚˚ 0.54˚˚˚ 0.56˚˚˚ 0.83˚˚˚ 0.80˚˚˚

(0.07) (0.08) (0.08) (0.11) (0.11)
3.5-10 IC 0.62˚˚˚ 0.62˚˚˚ 0.61˚˚˚ 0.87˚˚˚ 0.90˚˚˚

(0.06) (0.07) (0.08) (0.11) (0.17)

no λt λtˆ λtˆ λtˆ
Time fixed effects pLDC, 1pBnq pLDC,

ICq ICq
ˆ1pBnq

Income coefficient (LDC-IC) -0.03 -0.08˚ -0.05 -0.04 -0.1
within 3.5-10k USD income band (0.04) (0.04) (0.04) (0.08) (0.20)

Results of estimating Equation 4.4 with dependent variable log of total energy
use per capita. (A subset of parameter estimates are shown here.)
Standard errors, clustered at the country level, in parentheses.
Includes country fixed effects. N=4,586 country-year observations.
˚˚˚p ă .01,˚˚ p ă .05,˚ p ă 0.10.

(like China), most developing countries have invested relatively little in low-carbon

generation sources.

4.4.3 Heterogeneity and robustness

Understanding the heterogeneity across countries (and perhaps time periods of de-

velopment) would contribute to understanding the effects of technology policies and

environmental regulations in developing and developed nations. For instance, Popp

(2011) finds that policies in developed countries tend to drive innovation in emissions-

reducing technologies, and energy-efficient innovations diffuse to low-income coun-

tries regardless of domestic environmental policies, but adoption of other technologies

(that do not increase firms’ profits) does not increase in the absence of environmen-

tal policy. Identifying the net effect of current policies in the aggregate furthers our

understanding of how policy in low-income and industrialized countries has affected
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Table 4.5: Long-run response of CO2 emissions to income

Income
band Country

Variable (USD $k) group (1) (2) (3) (4) (5)

ln (GDP) 3.5-10 LDC 1.11˚˚˚ 1.05˚˚˚ 0.87˚˚˚ 1.07˚˚˚ 0.98˚˚˚

(0.18) (0.19) (0.18) (0.22) (0.24)
3.5-10 IC 1.06˚˚˚ 1.08˚˚˚ 1.09˚˚˚ 1.21˚˚˚ 1.40˚˚˚

(0.14) (0.17) (0.20) (0.23) (0.32)

no λt λtˆ λtˆ λtˆ
Time fixed effects pLDC, 1pBnq pLDC,

ICq ICq
ˆ1pBnq

Income coefficient (LDC-IC) 0.05 -0.04 -0.22 -0.15 -0.42
within 3.5-10k USD income band (0.20) (0.20) (0.22) (0.22) (0.40)

Results of estimating Equation 4.4 with dependent variable log of carbon emis-
sions per capita. (A subset of parameter estimates are shown here.)
Standard errors, clustered at the country level, in parentheses.
Includes country fixed effects. N=3,969 country-year observations.
˚˚˚p ă .01,˚˚ p ă .05,˚ p ă 0.10.

energy technology innovation and transfer.

A promising research angle would be to pursue further the question of heteroge-

neous responses, for instance using quantile regression techniques that also account

for the panel data structure (Kato et al., 2012; Lamarche, 2010) to analyze energy

intensity and carbon intensity of economic growth. In addition to illustrating the

heterogeneity across countries, such an approach may also help identify the causes

of that heterogeneity. For instance, other researchers have identified various factors

that seem to contribute to different responses: the maturity of commercial banking

and thus availability of financing for renewable energy technologies (Brunnschweiler,

2010), openness to trade (Lovely and Popp, 2011), natural environmental factors

that necessitate more energy use for space conditioning (Smil, 2010), and others.

Each of these would suggest a different policy response to maximize potential for

technology transfer to reduce the energy intensity of economic growth.
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It may also be useful to explore the relationships described in equation (4.4)

through the addition of panel-heterogeneous time trends (Bai, 2009), in addition to

the time-invariant country fixed effects and uniform-country time fixed effects. It is

reasonable to believe that macroeconomic shocks or technological advance may affect

different countries differently, and using heterogeneous time trends provides one way

to investigate this heterogeneity. This may also provide some insight on countries’

heterogeneous relationships between energy consumption and growth.

Additional insight might be gained by separating out OPEC countries and post-

Soviet transition economies. For different reasons, these nations may be outliers

in terms of having relatively high energy intensity of economic growth. However,

they are generally split between industrialized and developing countries, so special

treatment of these observations may not affect the core findings as they relate to

leapfrogging.

Finally, it seems useful to explore the effects of using different thresholds to

distinguish developed and industrialized nations. The present analysis uses 2013

income levels and follows van Benthem (2015) to facilitate comparability with that

study, but it may be more instructive to distinguish developed countries based on

the era in which their “takeoff” development phase took place. This would further

help to characterize the heterogeneity of nations’ experiences, and may clarify the

relationship of my findings to those of van Benthem (2015), since that study did

not find evidence of leapfrogging for countries that developed earlier (roughly in

1970-2000).

4.5 Conclusions

With demand for energy services growing rapidly, and especially across the devel-

oping world, planners and policy makers rely on accurate quantitative forecasts of

energy demand to balance the need to build out energy infrastructure relative to
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other pressing needs for public investment. A previous paper (van Benthem, 2015)

suggests there are important technology rebound effects that may drive today’s devel-

oping countries to use more energy per unit of economic growth than did developing

countries of the past, which bodes ill for forecasters who are assuming some level of

energy savings or “leapfrogging” due to the availability of more efficient technologies.

Using a much longer time series and a broader set of countries in the analysis, I

offer additional insight and demonstrate that while technology rebound effect may

be of concern for some countries, on average it is not, when considering a broader

range of developed countries, a longer timeline for analysis, and a more complete set

of energy technologies—especially on the generation and distribution side. That is,

the forecasting agencies may be correct after all in assuming some level of energy

efficiency available to today’s developing countries that did not exist in previous

decades. That said, the more valuable policy implications may be those that come

after continued exploration, including exploration of heterogeneous effects and inter-

actions with historical or current institutions.
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Appendix A

Energy Consumption Data

I use four sources for energy consumption data prior to 1960. The principal source

is Kander et al. (2014), which provides data for eight European countries from 1861-

2008. I also obtain data for Canada from 1861-2002 from Unger and Thistle (2013).

All of these authors worked together to recover and tabulate historical energy con-

sumption data from each respective country using common methods, including con-

ducting an extensive review to verify comparability across countries. For the USA

I use two additional sources, compiled by authors working independently from the

European and Canadian group (Schurr et al., 1960; EIA, 2016).

In addition to working to verify internal consistency, the authors of Kander et al.

(2014) also attempted to make their data series consistent with the IEA Extended En-

ergy Balances series, especially through 1970 (personal communication with Astrid

Kander). For most countries, the overlap is reasonably good. Figure A.1, for in-

stance, shows both the series from both IEA (2015a) and Kander et al. (2014) for

the Netherlands. The data series match almost identically from 1960 through 1971,

then diverge, with the IEA series initially slightly higher and then slightly lower than
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the series from Kander et al. (2014). Nevertheless, the same trends are apparent in

both (albeit with somewhat more scatter in the series from Kander et al. (2014)).

The comparability of the data series, especially during the period 1960 to 1971, sug-

gests it is reasonable to use the series from Kander et al. (2014) to extend the IEA

series backwards.

Figure A.1: Total Energy Use in the Netherlands: Comparison of IEA (2015a) and
Kander et al. (2014)

The series for Germany (Figure A.2) suggests more reason to be cautious in

melding the two series. Here, the series match reasonably well from 1970 through

2008, but from 1960 through 1969 the IEA series indicate substantially lower energy

consumption, in a way that is discontinuous with both the preceding observations

from Kander et al. (2014) and the subsequent observations from IEA (2015a). In

Sweden, on the other hand, the series match reasonably well until the late 1970s, at
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which point the IEA series indicate substantially higher energy consumption, on the

order of 30% (Figure A.3).

Figure A.2: Total Energy Use in Germany: Comparison of IEA (2015a) and Kander
et al. (2014)

One reason for the divergence of the two series may be different assumptions re-

garding the efficiency of conversion for primary electricity sources, including geother-

mal and nuclear sources (personal communication with Sofia Henriques). In any case,

in the regression analyses I include dummy variables to allow for these structural

trend breaks (as well as other breaks within the IEA series, such as methodological

changes or switches from the use of one national statistical series to another).
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Figure A.3: Total Energy Use in Sweden: Comparison of IEA (2015a) and Kander
et al. (2014)
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