
Figure 4.12: Plot of reconstruction PSNR from noisy CASSI measurements: (a)
and (b) show reconstruction PSNRs produced with conventional CASSI measure-
ments corrupted by additive white Gaussian noise and Poisson noise, respectively.

Figure 4.13: Plot of reconstruction PSNR from noisy lenslet array CASSI mea-
surements: (a) and (b) show reconstruction PSNRs produced with measurements
from a lenslet array CASSI corrupted by additive white Gaussian noise and Poisson
noise, respectively.

sensing matrix is well-conditioned. For example, when there are 32 spectral slices,

the largest possible singular value is
√

32 and the smallest possible singular value is
√

0, although the 0 singular values would rarely occur when Nλ is large enough. The

rows corresponding to the 0 singular values can be easily ignored or removed without
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losing information. Upon removing these rows, the effective minimum singular value

is
√

1 = 1, which produces a condition number
√

Nλ. Thus the stability of the

performance of the conventional CASSI in the presence of noise can be attributed to

the low condition number of Φ.

Second, the error bars are small in both the AWGN and Poisson noise cases.

Interestingly, the Poisson noise error bars are smaller than the Gaussian noise error

bars. Also, it is interesting that in low SNR levels, the CASSI measurements are

more robust to the Poisson noise than the AWGN.

Note that the ‘DU’ datacube is less affected by noise because only a small set of

pixels are significantly large such that they are affected by noise (especially by Pois-

son noise). Hence, for low SNR, the ‘DU’ datacube produces better reconstruction

PSNRs compared to the other two datacubes.

The reconstruction results for the lenslet array based CASSI in figure 4.13 suggest

that this system is not as robust to AWGN and Poisson noise as the conventional

CASSI according to the slow convergence of the reconstruction PSNR. This can be

attributed to the fact that the power distribution at the border of the detector mea-

surement is much lower than at the center. This is because there is lower multiplexing

of the different projections of the scene at the borders than at the center. A lower

power distribution means a lower number of counts at each detector pixel and a cor-

responding increase in sensitivity to noise. Such non-uniform power distribution can

be interpreted as leading to a condition number of Φnew that is higher than that of

Φ. The degradation in the condition number results in the alternative system being

less robust to noise.

4.6 Implications for CASSI using a dual disperser architecture

It is important to note that many of the conclusions that were made in the previous

sections for a CASSI using a single disperser are also valid for a CASSI system using
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a dual disperser architecture [3]. The sensing matrix, ΦDD for a dual disperser maps

an Nf = Nx ×Ny ×Nλ voxel datacube onto M = Nx ×Ny detector pixels. Just like

the single disperser CASSI, the sensing matrix for the dual disperser CASSI has the

form, ΦDD = [Φ1Φ2 · · ·ΦNλ
] ∈ RM×Nf as shown in figure 4.14(a). Φ1 ∈ RM×(Nx×Ny)

is a diagonal matrix that is constructed by vectorizing elements of the coded aperture

column-wise. Φi ∈ RM×(Nx×Ny) is obtained by cycling the elements of the diagonal

in Φ1 a total of (i− 1)×Ny rows. Compared to the single disperser CASSI sensing

matrix shown in 4.14(b), ΦDD is wider, which implies that the dual disperser maps

a certain sized datacube to fewer pixels than the single disperser CASSI. Each pixel

on the dual disperser detector is essentially programmed to apply a certain spectral

filter on its corresponding pixel in the scene.

All of the algorithms described to process CASSI measurements in chapters 2 and

3 may be used for datacube recovery from dual disperser CASSI measurements. The

algorithm described in [3] takes advantage of the fact that the detector measurement

resembles the scene and utilizes spatio-spectral correlations in the scene to improve

reconstruction quality.

Without coding introduced by the coded aperture and the dispersive elements,

the detector on the dual disperser simply integrates the datacube along the wave-

length axis and makes it impossible to recover the spatial content in different spectral

channels. Given that the structure of the columns of ΦDD is similar to that of Φ, the

dual disperser is also expected to produce scene dependent datacube reconstructions.

Just like the single disperser CASSI, the performance may become less scene depen-

dent with the replacement of the front objective lens with a lenslet array, as discussed

in section 4.4. Finally, since the rows of ΦDD after removing all 0 rows are all or-

thogonal, ΦDD will have a low condition number and will have stable performance

in the presence of noise.
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Figure 4.14: Comparison of CASSI sensing matrices for systems with a dual dis-
perser and a single disperser architecture. (a) sensing matrix for a dual disperser
CASSI, ΦDD, that maps an 8×8×4 = 256 voxel datacube to 64 detector pixels. (b)
sensing matrix for a single disperser CASSI, Φ, that maps an 8× 8× 4 = 256 voxel
datacube to 88 detector pixels - identical to figure 3.12(a).

4.7 Conclusions

In this chapter, Matlab simulations were used to study the performance of the CASSI

design presented in chapters 2 and 3 from the perspective of compressive sampling

theory. Although optical distortions were ignored, the study provided key insights

into properties of the CASSI sensing matrix, Φ and the system as a whole.

In particular, coding introduced by the coded aperture and the dispersive ele-

ment was noted to be absolutely essential for any hope of datacube recovery from

the significantly under-determined CASSI measurements. Furthermore, no optimal
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aperture code was found; the open and closed features on the aperture code should

simply be distributed as uniformly as possible in a random manner. Reconstructing

3 datacubes representing different scenes but having approximately the same number

of sparse basis coefficients revealed the scene-dependent performance of CASSI. This

was attributed to the presence of several identical columns, columns of zeros, and

the lack of mutual orthogonality of the columns of Φ, making it the most significant

insight provided by the Matlab simulations.

The sensing matrix, Φnew for an alternative design that involved replacing the

front objective lens of CASSI with a lenslet array was noted to have multiple 1’s

in each column, allowing the angles between the columns to be larger than those of

Φ and allowing scene-independent reconstructions of datacubes. However, this also

meant that, unlike the rows of Φ, the rows of Φnew were not orthogonal and the

condition number of Φnew would likely be larger than that of Φ. Thus, while the

alternative design did not exhibit scene-dependent performance in noiseless Matlab

simulations, the performance was more sensitive in the presence of noise.

The results of this chapter have revealed that snapshot spectral imaging is a

strong constraint for datacube reconstruction from a small number of conventional

CASSI measurements. Nevertheless, it is important to note that there may be appli-

cations where the conventional CASSI might be useful due to the simplicity of the

optical setup, particularly if the scene is sparse. A dual disperser CASSI system,

which has a very similar sensing matrix to Φ, has been used for snapshot spectral

imaging and identification of spatially uniform, but spectrally broadband, fluorescent

microspheres that are often used in fluorescence microscopy [45, 46].
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5

Imaging through turbulence using compressive
coherence sensing

The Earth’s atmosphere degrades the resolution of ground-based imaging systems

attempting to image objects in space. The major contribution described in this

chapter is an approach to image objects through turbulence by compressively sam-

pling the mutual intensity, a coherence function of the optical field. The chapter

begins with an introduction to the problem of imaging through turbulence in section

5.1. Section 5.2 reviews diverse methods for imaging through turbulence. The use

of spectral imaging with CASSI is analyzed as a potential method to image through

turbulence in section 5.3. Measurement of the mutual intensity, a 4D function, as

a means of imaging and imaging through turbulence is introduced in section 5.4.

A previous application of compressive sampling of the mutual intensity for imaging

sparse astronomical objects is described in section 5.5. As the main focus of this

chapter, an approach to image through turbulence using compressive sampling of

the mutual intensity is presented in sections 5.6 and 5.7. The mutual intensity is

sampled using a Rotational Shear Interferometer (RSI). Unlike a CASSI-based ap-
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proach that would rely on the measurement of the power spectral density of the

optical field, the RSI may be used to image through turbulence by measuring a sub-

set of the mutual intensity of the field, assuming that the scene is spatially sparse.

An experiment to test the ability of the RSI and the numerical estimation method

to image remote point sources through isoplanatic turbulence is presented in section

5.8. Finally, a simulation testing the approach to image extended objects through

turbulence is presented in section 5.9.

5.1 Introduction to imaging through turbulence

In the absence of atmospheric turbulence, an incoherent telescopic image of a space

object can be modeled as a linear, shift-invariant process and represented as

g(x′, y′) =
∫∫

φ(x− x′, y − y′)f(x, y) dx dy, (5.1)

where f(x, y) is the object intensity distribution, φ(x, y) is the PSF of the imaging

system and g(x′, y′) is the image intensity distribution to be sampled by a detector

array. For an incoherent imaging system, the PSF is given by

φ(x, y) =
∣∣∣∣
∫∫

P (u, v)e−i 2π
λz

(ux+vy) du dv

∣∣∣∣
2

, (5.2)

where P (u, v) is a binary function defining the pupil of the imaging system, λ is the

wavelength of light, z is the distance from the pupil to the image plane, and a scale

factor is neglected. The resolution of an imaging system is limited by the finite size

of the aperture, i.e. a P (u, v) with a finite extent, which causes diffraction.

In part (a) of figure 5.1 (adapted from [47]), a diffraction limited image of a

star obtained from a ground based imaging system in the absence of turbulence is

simulated and displayed on a log scale to show the diffraction-induced Airy rings

caused by the finite size of the telescope aperture. The figure is the convolution of

the perfect image of the star with the PSF in equation (5.2).
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(a) (b) (c)

Figure 5.1: Simulated images of a star: (a) diffraction-limited image in the ab-
sence of turbulence; (b) short exposure image in turbulence; (c) long exposure image
in turbulence. To produce these results, the authors simulated a telescope with a
diameter of 1 m, average atmospheric turbulence conditions, and a mean wavelength
of λ = 550 nm.

The resolution of a ground-based imaging system is further limited by phase aber-

rations induced by atmospheric turbulence. Turbulence arises due to temperature

variations of the atmosphere over the course of the day, which leads to variations

in the refractive index. The net effect is that the atmosphere acts as a collection

of lenses of different refractive indices so that wavefronts from incoherent sources

of light radiating in space undergo phase distortions [48]. These phase distortions

are distributed across the pupil of the imaging system. Discussion of this problem

throughout this chapter is limited to isoplanatic imaging, where the aberrations in-

troduced by the turbulence are assumed to be uniform across the field of view of the

imaging system.

Given an instantaneous turbulence-induced, non-zero optical path delay (OPD),

d(u, v), across the pupil, the expression for the PSF of an incoherent imaging system

is equation (5.2) is modified to

φ(x, y) =
∣∣∣∣
∫∫

P (u, v)ej d(u,v)e−i 2π
λz

(ux+vy) du dv

∣∣∣∣
2

. (5.3)

Figure 5.1(b) above illustrates a short exposure image of the star in the presence of
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turbulence. Here, short exposure means that the image exposure time is sufficiently

short to freeze the atmosphere during the exposure. A short exposure typically has

an integration time of less than 10 ms [49]. This image is a convolution of the perfect

image of the star with a short-exposure PSF of the form shown in equation (5.3). As

the figure shows, the effect of the turbulence is to broaden the system PSF compared

to the diffraction limited PSF and to be highly speckled in its appearance.

Figure 5.1(c) above illustrates a long exposure image of the star in the presence

of turbulence. In such an image, the exposure time is long enough to integrate

over multiple realizations of the turbulence-induced aberrations. Thus, the long

exposure PSF is broader than the diffraction limited PSF and smoother than the

short exposure PSF shown in figure 5.1(b). A long exposure typically has an exposure

time of greater than 0.1 s [49].

The effect of turbulence can be quantified in terms of the loss of angular resolution

of the telescope. The angular resolution of a diffraction limited telescope of diameter

D operating at a wavelength λ is

θ ∝ λ

D
. (5.4)

In the presence of turbulence,

θ ∝ λ

r0

, (5.5)

where r0 is the Fried parameter. This parameter is given by

r0 =

[
0.42

(
2π

λ

)2

sec(ζ)
∫

C2
N(h)dh

]− 3
5

, (5.6)

where ζ is the zenith angle and C2
N(h) is the refractive index structure constant

as a function of height which provides a measure of the vertical turbulence profile

[48]. The smaller r0 is, the more severe the turbulence and the poorer the angular
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resolution. Thus, r0 may be thought of as the effective telescope diameter imposed

by the atmosphere.

Removing the effect of atmospheric turbulence requires a method for characteri-

zation of the wavefront distortions as well as a method for the subsequent correction

to recover an undistorted image of the scene. In the next section, some techniques

designed to eventually recover undistorted images of objects through atmospheric

turbulence are reviewed.

5.2 Approaches to imaging through turbulence

Speckle imaging

Speckle imaging is regarded as one of the earliest approaches to partially overcome

atmospheric turbulence in astronomical imaging [50]. It relies on the fact that each

speckle in a short exposure image is the size of the diffraction limited PSF and there-

fore contains high frequency information of the object [51]. Several short exposure

images of the objects and a nearby reference star are captured and postprocessed

to estimate the Fourier transform of the object, which is later inverted to recover

an undistorted image of the object [50]. This technique has previously been used to

image binary stars, where the speckle patterns are simple.

A time sequence of short exposures images of a common scene can also be post-

processed by using multiframe blind deconvolution, a technique where the undis-

torted image of the scene is estimated from turbulence degraded images and the

time-varying PSFs are unknown [52]. This approach has the benefit of not requiring

additional imaging of a reference star.

Lucky imaging

A significantly simpler technique for processing the short exposure images to recover

a high resolution image of the object through turbulence is called lucky imaging [53].
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Several thousand short exposure images of the object of interest are captured, but

only 1 − 5% of these images with the highest Strehl ratio of a reference star in the

field are selected to be registered and added. This subset of images corresponds

to exposures that are least affected by the time-varying effects of turbulence. The

technique is limited by the large number of images that must be collected and the

need for expensive, low noise, electron multiplying CCD detectors for faint object

detection.

Adaptive optics

Possibly the most well known turbulence correction systems that are capable of real

time turbulence correction are those based on adaptive optics technologies routinely

in use on large telescopes like the Keck II telescope in Hawaii [54]. In these sys-

tems a deformable mirror placed in the optical path is controlled so that the path

length errors in the light reflected from the mirror cancel out the errors induced

by the turbulence. The actuators of the deformable mirror are controlled based on

inputs received from wavefront sensing systems used to characterize the wavefront

distortions.

Wavefront sensing

A commonly used wavefront sensor (WFS) is the Hartmann-Shack sensor [55]. This

sensor consists of a 2D lenslet array located in a plane conjugate to the pupil plane of

the telescope which produces a 2D array of spots on a detector array at the back focal

plane of the lenslets. The positions of these spots are compared with the positions of

reference spots and the displacements between the two are proportional to the local

slope of the wavefront [56]. Since the light from science targets under observation

is typically faint, a natural or laser-generated artificial guide star [57] is used for

measuring the wavefront distortions.
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The wavefront estimated from a Hartmann-Shack WFS may also be used to

calculate the instantaneous PSF which can be used to post-process the instantaneous

short exposure image of the object. Over time, different spatial frequencies of the

object can be recovered from different short exposure images because of the random

time variation of the turbulence [50]. This technique offers a compromise between an

adaptive optics system, which relies on the mechanical correction of the wavefront,

and speckle interferometry, which requires a larger number of short exposure images

for correcting turbulence effects [56].

Another approach to wavefront sensing that can provide feedback to an adaptive

optics system relies on phase diversity [58]. Two images of the object are simulta-

neously captured with different (known) phase aberrations optically added to each

image. The known aberration is typically defocus [59]. Recovery of the wavefront

from the recorded images is achieved through nonlinear optimization of some metric

that measures the difference between the recorded data and a model of the data ob-

tained with a given estimate of the wavefront [60]. The phase diversity sensor does

not require a reference guide star, making it independent of the scene content.

Imaging through turbulence at non-optical wavelengths using radio interferometry

The universe is full of sources of electromagnetic radiation that are not observable

by telescopes operating at optical frequencies. Imaging incoherent sources of radio

waves like stars, galaxies and pulsars that may not be visible in optical frequencies

requires a radio interferometric telescope. This section briefly introduces the van

Cittert-Zernike (VCZ) theorem, which is used to image such sources using radio

telescopes. The use of the VCZ theorem for imaging will be revisited in greater

detail in sections 5.5 and 5.6.

From equation (5.4), it is easy to see that as the emission wavelength of the source

increases from optical to radio wavelengths, the diameter of a telescope needed to
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image the source with high angular resolution has to be considerably larger - too

large to build as a continuous aperture. A radio telescope, like the Very Large Array

in New Mexico, USA, consists of widely separated small radio telescopes that are

connected using interferometry.

In the absence of turbulence, these small telescopes can be combined to synthesize

a telescope whose effective aperture diameter is the size of the two telescopes furthest

apart in the array - a technique known as aperture synthesis. The signal from each

pair of telescopes is interfered to allow estimation of the amplitude and phase of the

complex mutual intensity, a coherence function of the optical field. To recover an

image of the object with an angular resolution dependent on the effective aperture

diameter, the van Cittert-Zernike (VCZ) theorem [61] is employed, which states that

the measured samples of the mutual intensity are in fact samples of the 2D Fourier

transform of the spatial distribution of the incoherent radio wave source in space. By

changing the locations and separations (baselines) of the small telescopes, different

Fourier components can be measured [62]. To overcome the limitation of atmospheric

turbulence on the effective telescope aperture, a technique known as phase closure

may be used to eliminate the errors in the phases of the measured Fourier components

[63, 64].

5.3 Spectral imaging to image through turbulence

In contrast to multiframe blind deconvolution, where an undistorted image of an

object is estimated from a time sequence of frames degraded by turbulence, multi-

channel blind deconvolution (MCBD) is a technique where images of an object are

collected through two or more imaging channels with known inter-channel differences.

The technique does not require the collection of a time sequence of frames.

Defocus-based phase diversity has previously been used as a MCBD scheme for

simultaneous estimation of the object as well as the wavefront aberrations [60, 65].
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Noting the requirement for multiple detector arrays, which can be a considerable

expense for a phase diversity based MCBD system, it is interesting to consider al-

ternative schemes to introduce inter-channel diversity.

Wavelength diversity has previously been considered as a MCBD scheme [66],

although not specifically for the astronomical imaging case. To this end, spectral

imaging with CASSI, as described in the previous 3 chapters, was investigated as

a means of imaging through turbulence in a snapshot by exploiting any chromatic

dispersion of the atmosphere for wavelength diversity of the PSF.

Expected wavelength diversity introduced by the atmosphere

Given that light incident on a spectral imager is divided into multiple spectral chan-

nels, the integration time would have to be considerably longer than 10 − 100 ms,

i.e. the typical integration time for a short exposure image. As mentioned earlier,

a longer integration time results in a smoother and less structured PSF than for a

short exposure. The full width half maximum (FWHM) of a long exposure image in

the presence of atmospheric turbulence is called seeing [67], which is quantified as

seeing = 0.98
λ

r0

. (5.7)

Referring to equation (5.6), r0 ∝ λ
6
5 , so that

seeing ≈ λ

r0

∝ λ
−1
5 . (5.8)

Thus, seeing has a very weak dependence on wavelength. Considering that the spec-

tral range of CASSI is only between 450 and 650 nm, the FWHM of the atmosphere-

induced long exposure PSF at 650 nm only shrinks to 93% of its value at 450 nm -

certainly not a very big change.
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Experimental examination of turbulence-induced wavelength diversity

The analysis above suggested that the atmosphere alone would not provide significant

wavelength diversity. To experimentally examine the change in the structure and

size of the turbulence-induced PSF as a function of wavelength in the lab, 3 points

generated using lasers at 473, 532 and 632.8 nm were observed one at a time by an

imaging system. Adjustable neutral density filters were placed in front of each laser

to ensure that the intensity of the three laser spots were the same.

The imaging system consisted of a grayscale CCD array with a camera lens in

front of it, along with a phase screen placed immediately in front of the lens aperture

to simulate the effect of the atmosphere. Different static phase screens were tested

including the end of a petri dish, the end of a glass bottle, and a warped acrylic

plate. A dynamically changing phase screen using the vapors from a propane flame

was also tested.

None of the phase screens tested in the lab produced any significant variation in

the PSFs as a function of wavelength. As equation (5.8) suggests, relying on the

atmosphere to provide wavelength diversity requires a drastic change in wavelength.

As it turns out, researchers in the wavefront sensing community have previously

noted that a Hartmann-Shack WFS works well with polychromatic radiation [56],

so that sensing the wavefront and aligning an adaptive optics system at an optical

wavelength between 400− 700 nm is enough to adequately align the system even at

IR wavelengths.

The quantitative analysis and experimental evidence described above suggested

that the atmosphere does not introduce significant chromatic aberrations over the

optical wavelengths. Without sufficient inter-channel diversity in the spectral image

of the object degraded by turbulence, it would not be possible to use a MCBD scheme

to recover an undistorted image of the object. For this reason, CASSI was not given
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any further consideration as a means to image through turbulence.

5.4 Coherence imaging to image through turbulence

Besides radio interferometry, all of the approaches to image through turbulence de-

scribed in section 5.2 and 5.3 treat the formed image as incoherent and do not

attempt to infer coherence properties of the source from the image. Partial coher-

ence is a seldom exploited, yet rich source of information that could be used not only

for imaging, but also for imaging through turbulence.

As light radiates from incoherent sources in the far field, it propagates through

free space or through a turbulent atmosphere and as it does so, it gains coherence.

The mutual intensity is a measure of optical coherence. In addition to its use in

imaging of incoherent sources by radio interferometry, the mutual intensity may also

be used to image the turbulence-induced wavefront aberrations.

In a 2D aperture, the mutual intensity is a 4D function, J(r1, r2), capturing

the correlations between every pair of points r1 = (x1, y1) and r2 = (x2, y2) in the

aperture. The most direct way to measure J is to measure the interference of the light

incident on two pinholes that are spatially scanned across all pairs of coordinates in

the aperture. This approach is tedious and time consuming.

An alternative approach is to use an astigmatic coherence sensor shown in figure

5.2 (adapted from [68]), that essentially captures 2D planes of correlations at once.

The ACS consists of a CCD array that is scanned axially and three cylindrical lenses

which are rotated to adjust the horizontal and vertical focal lengths of this imaging

system. Over time, a 4D array of intensity measurements can be captured which

have a 4D Fourier transform relationship with J . Thus the ACS may be viewed as

a generalized phase diversity sensor. The ACS has previously been used to image

remote incoherent sources through an isoplanatic, refractive distortion in its pupil by

using a technique known as the coherent mode decomposition [69]. This technique
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Figure 5.2: The astigmatic coherence sensor can sample the 4D mutual intensity
function, J , in its aperture. It consists of a CCD array that is scanned axially and
three cylindrical lenses which are rotated to adjust the horizontal and vertical focal
lengths of this imaging system. Over time, a 4D array of intensity measurements
can be captured which have a 4D Fourier transform relationship with J .

utilizes the idea that a common distortion occurs to the coherent modes from each

source of light in the scene and this idea is used to separate the distortion from

the intensity distribution of sources behind it. Unfortunately, the use of the ACS for

imaging through turbulence is impractical and slow for undistorted image formation,

as it requires the complete sampling of the 4D J , which can take several hours.

5.5 Imaging by compressively sampling the mutual intensity

Compressive sampling can be used to remove the need for exhaustive sampling of

J given the prior information that the object being imaged is sparse. In radio

interferometry, imaging of sparse objects can be cast into an inverse problem based

on the VCZ theorem. According to the theorem, in a 2D aperture located in the far

field of an incoherent source (a space object), the mutual intensity of the optical field

is J(r1, r2) = J(r1 − r2) = J(∆r) and is related by a 2D Fourier transform to the

source intensity distribution of the object [50]. Image reconstruction of the sparse

objects must be performed using noisy Fourier measurements (samples of the mutual
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intensity, J) that are captured by interfering signals from pairs of radio telescopes.

These measurements represent an incomplete sampling of the effective aperture of

the radio telescope because they are captured at a finite number of locations and

separations within the aperture.

Incomplete Fourier measurements of scenes that are spatially sparse (e.g. star

fields) are particularly attractive in the CS sense because the incoherence between the

Fourier basis as the measurement basis, and real space as the basis where the scene

is sparse, is maximum. Upon discretization of the inverse problem, this is equivalent

to stating that the mutual coherence, as defined in equation (4.3), between Φ, the

discrete Fourier transform matrix, and Ψ, the identity matrix that discretizes real

space, is µ = 1. Assuming that the ratio of the number of incomplete (random)

Fourier measurements to the number of sparse objects in the discretized scene is

between 3 − 5 [70], the system matrix H = ΦΨ satisfies the RIP in equation (4.1)

and thus assures the accuracy of the signal recovered by solving the problem in

equation (4.7).

Simulations have shown the feasibility of this idea for radio interferometric imag-

ing of sparse astrophysical objects, as well as cosmic strings in the temperature field

of the cosmic microwave background radiation [71], which may be considered sparse

in the TV sense. The focus of the remainder of this chapter is the extension of

compressively sampling of J to not only image sparse objects, but to image them

through isoplanatic turbulence.

5.6 Imaging through turbulence by compressively sampling the mu-
tual intensity

In this section, a rotational shear interferometer (RSI) is described as a means for

imaging through turbulence by measuring a limited subset of samples of J . As

mentioned earlier, the mutual intensity is a 4D function describing the coherence of
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the optical field and can be represented as

J
(
r̄− ∆r

2
, r̄ +

∆r

2

)
=

〈
E

(
r̄− ∆r

2

)∗
E

(
r̄ +

∆r

2

)〉
, (5.9)

where E(r) is a quasimonochromatic, stochastic electromagnetic field of wavenumber

k = ω
c

and r̄ is the mean position of a pair of coordinates separated by ∆r. Thus,

r̄ = r1+r2
2

and ∆r = r2 − r1. Here the quasimonochromatic assumption ensures

that the bandwidth of the optical field is finite, but small enough that the temporal

coherence effects can be ignored.

The van Cittert-Zernike (VCZ) theorem states that J in a 2D aperture in the far

field of a spatially incoherent source with planar irradiance S(r) depends only on ∆r

as

J(∆r) =
∫ S(r)

z2 e
−2πi

λz
(∆r·r)d2r. (5.10)

Thus, J is the 2D Fourier transform of the far field source distribution. As mentioned

in the previous section, this relationship forms the basis for radio interferometric

imaging. To image a remote incoherent object using the same relationship at optical

frequencies, J may be sampled as a function of ∆r about a central point using an

interferometer with a 2D detector array and then inverse Fourier transformed.

If isoplanatic turbulence with an optical path delay, d(r′), is present between the

scene and the aperture,

J
(
r̄− ∆r

2
, r̄ + ∆r

2

)
=

[∫ S(r)
z2 e

−2πi
λz

[(∆r)·r]d2r
]
· e

2πi
λ [d(r̄−∆r

2 )−d(r̄+∆r
2 )]. (5.11)

Note that J is now a function of both r̄ and ∆r. Thus, when turbulence is present,

directly applying the VCZ theorem described in equation (5.10) for inversion pro-

duces a distorted image of S(r). Accurate recovery of S(r) would normally require

knowledge of the complete 4D distribution of J , which may be measured using an

instrument like the ACS. However, an RSI is uniquely suited to measure J as a
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product of the Fourier transform of the source distribution and a phase screen that

depends on the OPD. The use of an RSI to estimate both the source distribution and

the phase screen from just a 2D subset of the 4D J is experimentally demonstrated

in section 5.8.

An RSI [61], as shown in figure 5.3, consists of two right-angle fold mirrors, a

beam splitter and a CCD array. The field incident on the input aperture is first

split into two copies by the beam splitter and directed towards the two fold mirrors.

Light reflected from each fold mirror is recombined by the beam splitter to form an

interferogram on the CCD array. One of the two fold mirrors is placed on a piezo

translation stage that must be translated to allow isolation of the complex J from

the intensity measurements made on the CCD.

CCD array

Input aperture

Fold mirror
Beam splitter

Piezo
translation

stage

Fold mirror

Figure 5.3: The rotational shear interferometer can sample the mutual intensity
in its aperture. The field incident on the aperture is split into two copies by the
beam splitter and directed towards the two fold mirrors. Light reflected from each
fold mirror is recombined by the beam splitter to form an interferogram on the CCD
array. One of the two fold mirrors is placed on a piezo translation stage. By capturing
intensity measurements on the CCD at multiple translations, a 2D subset of samples
of the complex 4D J can be isolated.

Each fold mirror consists of two mirrored surfaces joined at right angles. Unlike

an ordinary mirror, a fold mirror with its fold axis positioned vertically flips the

image horizontally. Thus, any text visible in the reflection from a fold mirror will
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still be readable from left to right. Another interesting property is that a reflection

from a fold mirror when its fold axis is oriented at an angle θ (the shear angle) will

undergo a rotation of 2θ. Figure 5.4(b) (reproduced from [72]) displays the image of

the scene in figure 5.4(a) as recorded by the RSI detector. The effect of rotation on

the reflections from each mirror is easily observed.

(a) (b)

Figure 5.4: (a) An example of a scene to be imaged through the RSI. (b) Image
of the scene recorded on the RSI detector array. One of the copies of the image is
rotated due to the rotation of one of the two fold mirrors.

The continuous intensity distribution sampled at the RSI detector plane is a

function of the mutual intensity between points in the two rotated copies of the

input aperture that are being superimposed by the beam splitter after reflection

from each fold mirror. Denoting the points in each copy as r1 and r2 respectively,

the intensity measured at the detector is

I =
〈∣∣∣E(r1) + e−2πi l

λ E(r2)
∣∣∣
2
〉

=
〈(

E(r1) + e−2πi l
λ E(r2)

) (
E(r1) + e−2πi l

λ E(r2)
)∗〉

=
〈(

E(r1) + e−2πi l
λ E(r2)

) (
E(r1)

∗ + e2πi l
λ E(r2)

∗)〉

= I(r1) + I(r2) + 2R
{
J(r1, r2) e−2πi l

λ

}
, (5.12)
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where l is the path length difference between the two optical paths in the RSI.

Isolation of the complex J from the intensity measurements on the CCD requires

the capture of four interferograms captured while translating one of the fold mirrors

using the piezo stage to modify the path length difference between the two arms, a

technique known as phase shifting. By capturing interferograms I1, I2, I3 and I4 at

instances where 2π l
λ

= 0, 2π l
λ

= π
2
, 2π l

λ
= π and 2π l

λ
= 3π

2
respectively, the complex

J can be isolated by computing

J(r1, r2) =
1

4

(
I1e

0i + I2e
π
2
i + I3e

πi + I4e
3π
2

i
)

=
1

4
[(I1 − I3) + i (I2 − I4)] . (5.13)

Now consider the specific case where the fold axes of the two fold mirrors are

rotated by −θ and θ respectively and let the transverse coordinates at the detector

plane of the RSI be (x, y). The fields being superimposed at (x, y) are

1. the field that would appear at r1 = (−x cos 2θ + y sin 2θ , x sin 2θ + y cos 2θ)

if the fold mirror rotated by −θ is replaced by a plane mirror, and

2. the field that would appear at r2 = (−x cos 2θ − y sin 2θ , −x sin 2θ + y cos 2θ)

if the fold mirror rotated by θ is replaced by a plane mirror [72].

Thus r̄ = r2+r1
2

= (−x cos 2θ, y cos 2θ) and ∆r = r2 − r1 = (−2y sin 2θ,−2x sin 2θ).

Substituting these expressions into equation (5.11) and defining the coordinates in

the plane of the far field, incoherent source as r = (x′, y′), the continuous distribution

of the complex mutual intensity sampled by the detector array is given by

JRSI(x, y) =

[∫∫ S(x′, y′)
z2

e
4πi
λz

(yx′+xy′) sin(2θ)dx′dy′
]
· eiγ(x,y), (5.14)

where γ(x, y) = 2π
λ

[
d

(
r̄− ∆r

2

)
− d

(
r̄ + ∆r

2

)]
. This measurement represents a ro-

tated and scaled version of the 2D J in equation (5.10) that is modulated by a 2D
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turbulence-induced phase screen, γ(x, y), in the RSI aperture. In the absence of

turbulence, the measured samples have Hermitian symmetry, that is JRSI(x, y) =

JRSI(−x,−y)∗, since they represent a Fourier transformation of a real function, the

irradiance of the scene, S(x′, y′). Unless the shear angle θ = π
4
, the samples do not

have Hermitian symmetry in the presence of turbulence. Because of this disparity,

the turbulence phase can be distinguished from the phase due to the scene itself.

5.7 Numerical estimation method to image through turbulence

Let g represent a vector that lists discrete samples of JRSI(x, y) in equation (5.14),

the 2D subset of the 4D mutual intensity measured by the RSI. This measurement

can be represented as a matrix-vector product

g = PFx + n

= Φx + n, (5.15)

where n is noise in the measurement, x is a vector whose elements are a discrete

representation of the scaled and rotated unaberrated image of the scene consisting of

incoherent sources radiating in the far field, F is the 2D discrete Fourier transform

(DFT) matrix, P is a discrete representation of the turbulence-induced phase screen

that is denoted by eiγ(x,y) in equation (5.14), and Φ is the sensing matrix for a given

instance of the phase screen.

At this point, it is important to distinguish the RSI measurement from a con-

ventional CS measurement like the one implemented by CASSI. A 2D CASSI mea-

surement is digitally processed to recover a 3D datacube given the under-determined

sensing matrix that models the mapping from the 3D datacube to the 2D measure-

ment. In contrast, the problem of recovering an undistorted image of the scene from

just a 2D subset of the 4D J measured using the RSI is complicated by the fact that

the phase screen P is unknown, which implies that the sensing matrix, Φ in equation
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(5.15) is unknown. If there is no turbulence present, then an RSI measurement of

the scene is not compressive because the 2D measurement is related to the image

of the scene by a 2D Fourier transform according to the VCZ theorem in equation

(5.10). However, in the presence of turbulence, an RSI measurement is compressive

in the sense that both the 2D scene and the 2D phase screen must be estimated from

a single 2D subset of J .

Recovering an undistorted image of the scene involves digitally processing the

vector of measurements from the RSI to jointly estimate x and P . Mathematically,

solving this problem can be posed as

[xe, Pe] = arg min
x,P

||g − PFx||22, (5.16)

where xe is a discrete estimate of the 2D scene S(x′, y′), Pe is a discrete estimate

of the turbulence-induced phase screen eiγ(x,y), g is the vector of the 2D subset of

samples of J measured on the RSI, and F is the discrete Fourier transform (DFT)

matrix. Since P and x are both unknown, this is a non-convex problem, which

implies that a globally optimal solution cannot be found efficiently.

Part of a potential solution to this joint recovery problem involves borrowing the

CS assumption of sparsity. Just as the datacube representing a scene was assumed

to be sparse when imaging with CASSI, a sparsity assumption may be placed on the

scene being imaged through turbulence using the RSI. Consider the case where the

scene to be imaged through turbulence is sparse and consists of point sources, the

astronomical equivalent of a star field. Since the sensing matrix in equation (5.15)

is not known, an approach to solving the problem posed in equation (5.16) is an

iterative two-step alternating minimization (AM) technique [42]. In the first step,

the TwIST algorithm described in section 3.3, is used to estimate an undistorted

and sparse distribution of sources in the scene that fits the measurements of J as

closely as possible, given an estimate of the phase screen. In the other step, the
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phase screen estimate is refined using the measurements of J from the RSI and a

progressively undistorted version of J that is modeled using the current estimate of

the sparse scene. These two steps are repeated until there is minimal change in the

estimate of the sparse scene. Mathematically, the ith iteration of the AM technique

is represented as

xi
e = arg min

x

1

2
||g − Φx||22 + λ||x||1

= arg min
x

1

2
||g − P i−1

e Fx||22 + λ||x||1 (5.17a)

P i
e = sgn

[(
Fxi

e

)∗ · g
]
, (5.17b)

where xi
e and P i

e are the estimates of the scene and the phase screen at the ith

iteration to be recovered from g, a vector of samples of the measured J . Equation

(5.17b) is the least squares solution to g = Xp, where the matrix X is a diagonal

matrix listing the DFT coefficients of xi
e on the diagonal and p is a vector of the

elements of P i
e with the constraint that |P i

e | = 1.

5.8 Experimental demonstration of imaging a sparse scene through
turbulence by compressively sampling the mutual intensity

To experimentally verify the utility of this approach, a scene consisting of light

emitting diodes (LEDs) was arranged and was observed through an aberrating phase

distortion using the RSI, as detailed in figure 5.5.

The LEDs emitted light over 590± 30 nm (coherence length = 5.8 µm) and had

their plastic lenses sanded off to produce mutually incoherent radiation over 2π sr.

Note that the spectral bandwidth of the LEDs was wide enough to ensure that the

radiation was spectrally incoherent, but narrow enough so that interference fringes

could still be observed on the interferometer. These LEDs were collimated by a lens

to place their image at infinity as would occur for stellar imaging. An iris was used
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LEDs

CCD

RSI

Distortion

Iris

(spatial filter)

7”

7”

2.5”

14”

Mirror

Figure 5.5: Experimental setup to measure the mutual intensity at the RSI aper-
ture from LEDs radiating through a phase distortion. Light from the LEDs is colli-
mated and passes through a phase distortion plate placed behind the iris to produce
an instance of the phase distortion caused by turbulence. The distorted wavefronts
then propagate to the RSI aperture. One of the two fold mirrors in the RSI is trans-
lated using a piezo stage to adjust the path length difference between the two arms
of the RSI. 4 intensity measurements are captured on the CCD at set path length
differences. A 2D subset of the complex, 4D mutual intensity can be isolated from
these intensity measurements.

to eliminate vignetting effects from the collimation lens. A phase distortion plate

was placed behind the iris to produce an instance of the phase distortion caused by

turbulence. This plate was constructed by dripping polydimethylsiloxane (Sylgard

184) silicone onto a microscope slide and then heating it with a heat gun to cure

it before the surface became uniformly flat. A second lens relayed the partially

coherent aberrated field to the entrance of the RSI. The RSI was used to measure

interferograms as the delay between the two arms of the interferometer was varied.

The interferograms at four delays with phases separated by π/2 were used to find a
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2D subset of J according to equation (5.13).

The measurements were then processed using a slightly modified version of the

AM algorithm described in equation (5.17) to accommodate an experimental non-

ideality. Since the LEDs are not perfect point sources, the interference fringes are

filtered by a Gaussian-shaped window, as shown in figure 5.6(a), that essentially

places more weight on the lower spatial frequencies. This non-ideality can be ac-

counted for by modifying the problem to be solved in equation (5.16) to

[xe, Pe] = arg min
x,P

||g − APFx||22, (5.18)

where A is a diagonal matrix whose elements vectorize a 2D Gaussian. The iterative,

two-step AM algorithm is modified from equation (5.17) to

xi
e = arg min

x

1

2
||g − Φx||22 + λ||x||1

= arg min
x

1

2
||g − AP i−1

e Fx||22 + λ||x||1 (5.19a)

P i
e = sgn

[(
AFxi

e

)∗ · g
]
. (5.19b)

Figure 5.6(a) shows the absolute value of the 2D subset of samples of J measured us-

ing the RSI. Figure 5.6(b) shows a distorted image of the scene recovered through an

inverse Fourier transformation based on the VCZ theorem in equation (5.10), which

does not account for turbulence. Figures 5.6(c) and (d) show discrete estimates of

the undistorted scene, xe, and the phase screen, arg{Pe}, recovered using the algo-

rithm in equation (5.19). The recovered image of the 3 LEDs is a clear improvement

over the aberrated image in figure 5.6(b).

Figure 5.7 shows the results of a control experiment where the phase distortion

between the LEDs and the RSI was removed. Figure 5.7(a) shows the absolute value

of the 2D subset of samples of J measured using the RSI. Figure 5.7(b) shows an

image of the scene recovered using the VCZ theorem. Figures 5.7(c) and (d) show
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Figure 5.6: Results of using the two step AM algorithm described in equation
(5.19) to image three LEDs aberrated by turbulence. (a) shows the absolute value of
the 2D subset of samples of J measured using the RSI. (b) shows a distorted image
of the scene recovered through direct application of the VCZ theorem, which does
not account for turbulence. (c) and (d) show discrete estimates of the undistorted
scene, xe, and the phase screen, arg{Pe}, recovered using the AM algorithm.

discrete estimates of the scene, xe, and the phase screen, arg{Pe}, recovered using

the algorithm in equation (5.19). With the sparsity constraint on the scene, the

algorithm sharpens the images of the 3 LEDs in the scene. As expected, the phase

screen distribution is uniform due to the lack of turbulence. The control experiment

suggests that the algorithm in equation (5.19) does not merely deconvolve the image,
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but actually estimates the phase screen and applies it to the sampled J to produce

an improved image.
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(a) Measured 2D subset of

samples of the mutual intensity

(b) Image of the scene

using the VCZ theorem

(c) Estimate of the image

of the scene, x
e

(d) Estimate of phase screen

due to turbulence, arg{P
e
}

Figure 5.7: Results of a control experiment for RSI imaging of three LEDs not
aberrated by turbulence. (a) shows the absolute value of the 2D subset of samples
of J measured using the RSI. (b) shown an image of the scene recovered using the
VCZ theorem. (c) and (d) show discrete estimates of the undistorted scene, xe, and
the phase screen arg{Pe} recovered using the AM algorithm.

Comparing figures 5.6(c) and 5.7(c) illustrates that the absolute positions of the

LEDs is not recovered. This is because the algorithm is unable to recover the tilt

component of the phase screen that leads to a relative shift in the position of the

objects with respect to their true positions.
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5.9 Imaging extended objects through turbulence by compressively
sampling the mutual intensity

In the previous section, experimental verification was provided for the RSI’s ability

to image point sources through turbulence with the assumption of spatial sparsity of

the scene. Subsequently, a noiseless Matlab simulation was performed to investigate

the potential to image an extended object through turbulence with an assumption

of sparsity in the spatial gradient of the scene. For this case, the iterative, two-step

AM algorithm is modified from equation (5.17) to

xi
e = arg min

x

1

2
||g − Φx||22 + λ||x||TV

= arg min
x

1

2
||g − AP i−1

e Fx||22 + λ||x||TV (5.20a)

P i
e = sgn

[(
AFxi

e

)∗ · g
]
. (5.20b)

In the simulation, the object shown in figure 5.8(a) was imaged by the RSI

through the phase screen shown in 5.8(b). The object consists of a face with a

small box located in the top right corner with a different intensity. The phase screen

was generated based on McGlamery’s algorithm [73], which defines the phase screen

statistically by means of the Kolmogorov spectrum [50].

Figure 5.9(a) shows the absolute value of the 2D subset of samples of J mea-

sured using the RSI (scaled for contrast). Figure 5.9(b) shows a distorted image of

the scene recovered through an inverse Fourier transformation based on the VCZ

theorem in equation (5.10), which does not account for turbulence. While the smile

and eyes on the object are somewhat visible, the small box in the top right corner

of the object is completely buried in the turbulence. Figures 5.9(c) and (d) show

discrete estimates of the scene, xe, and the phase screen, arg{Pe}, recovered using

the algorithm in equation (5.20). The recovered image of the face and the small box
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(a) (b)

Figure 5.8: (a) An extended object to be imaged by the RSI in simulation. (b)
Distribution of the simulated phase screen across the RSI aperture. The phase screen
was generated based on McGlamery’s algorithm, which defines the phase screen
statistically by means of the Kolmogorov spectrum.

is a clear improvement over the aberrated image in figure 5.9(b).

Figure 5.10(a) shows the true phase screen, while figure 5.10(b) shows the phase

screen estimated using the algorithm described in equation (5.20). Figure 5.10(c)

shows the difference between the true and estimated phase screens. The difference

map demonstrates that the algorithm is able to recover the true phase screen up to

a tilt component from the bottom left to the top right. The lack of tilt correction is

compensated by a shift in the position of the reconstructed extended object up and

to the right from its true position shown in figure 5.8(a). The estimated object in

figure 5.9(c) and the estimated phase screen in figure 5.10(b) are a valid solution, as

they combine to produce almost the same measurements as the combination of the

true object and phase screen shown in figures 5.8(a) and 5.8(b).

This simulation suggests that the RSI may be able to image extended objects

through turbulence. However, the SNR of the RSI is known to degrade as a function

of the number of independent sources in the scene. This is because, unlike in a focal

imaging design, every source contributes light to every pixel on the detector and
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Figure 5.9: Noiseless simulation to demonstrate the imaging of an extended object
through turbulence using the RSI and the AM algorithm described by equation
(5.20). (a) shows the absolute value of the 2D subset of samples of J measured using
the RSI. (b) shown an image of the scene recovered using the VCZ theorem. The
face is barely recognizable and the small box in the top right corner can no longer
be discerned. (c) and (d) show discrete estimates of the undistorted scene, xe, and
the phase screen arg{Pe} recovered using the AM algorithm.

the actual signal is a weak modulation of the intensity on a high background [74].

This may make imaging of extended sources by measuring samples of J on the RSI

practically challenging.

However, the proposed approach can be a practical means of imaging remote

astronomical objects that are close together through turbulence if the complex 2D

subset of 4D J can be sampled in a snapshot. This can potentially be achieved
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Figure 5.10: Comparison of the estimated phase screen with the true phase screen.
The difference map demonstrates that the algorithm is able to recover the true phase
screen up to a tilt component. The lack of tilt correction is compensated by a shift
in the absolute position of the reconstructed extended object.

using the quadrature phase interferometer [75], which measures four phase-shifted

interferograms in quadrature across the entire pupil in a single exposure, rather than

over four separate exposures.

5.10 Conclusions

In this chapter, CASSI was briefly considered as a means of imaging through turbu-

lence by exploiting the chromatic dispersion of the turbulent atmosphere to produce

wavelength diversity of the PSF. Unfortunately, the atmosphere induces negligible

wavelength diversity of the PSF.
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Thus, an approach to image objects through turbulence by measurement of the

power spectral density of the optical field was no longer considered. Instead, a

rotational shear interferometer was used to image a sparse scene through turbulence

by measuring a 2D subset of the complex, 4D mutual intensity of the optical field.

This measurement was processed using an alternating minimization algorithm to

jointly estimate the sparse scene as well the turbulence-induced phase screen. The

sparsity of the scene was enforced with sparsity constraints similar to those discussed

in the previous chapters.

Experimental results demonstrated the feasibility of the algorithm for imaging a

sparse set of point sources through an isoplanatic phase distortion. Noiseless simu-

lations also demonstrated the feasibility of the algorithm to image extended objects

sparse on some basis through turbulence.
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6

Summary and open questions

In this dissertation, the coded aperture snapshot spectral imager (CASSI) and the

rotational shear interferometer (RSI) were demonstrated as physical examples of

systems that perform generalized sampling of the optical field. Both sensors were

used to recover particular signals of interest through an integrated approach to optical

and algorithm design.

In a snapshot, CASSI measured a linear, 2D coded projection of the power spec-

tral density of the optical field, a 3D datacube. The coding was physically imple-

mented in optical hardware. In particular, a coded aperture was used to introduce

spatial coding and a prism was used to introduce spectral coding. The measure-

ments were digitally processed to recover the datacube. In general, inversion of the

snapshot projection for recovery of the datacube is an ill-posed problem because the

number of measurements made is significantly smaller than the number of voxels in

the datacube. Thus, any numerical estimation algorithm used for datacube recovery

had to exploit properties or structures in the datacube known a priori that helped

to constrain the estimated datacube to a certain solution space.
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CASSI’s potential for datacube recovery in a snapshot was experimentally demon-

strated in chapters 2 and 3. The first CASSI prototype, presented in chapter 2, was

built using off-the-shelf components. The second prototype was custom-designed in

Zemax ray tracing software to achieve significantly better imaging quality. Three

different iterative numerical estimation algorithms were investigated for datacube

recovery. The GPSR and TwIST methods solved the linear inversion problem by

reformulating it into a non-linear convex unconstrained optimization problem with

a regularizing penalty term in the objective function that encouraged sparsity of the

datacube in a sparsifying basis. In contrast to these methods, the NeAREst did not

require the specification of a regularization parameter and used the Richardson-Lucy

algorithm to ensure that the estimated solution would be non-negative. NeAREst

iterations were also computationally cheaper than GPSR and TwIST iterations.

In chapter 4, CASSI was examined from the perspective of compressive sampling

theory. Noiseless Matlab simulations illustrated that even with a constraint on the

number of sparse basis coefficients in the scene to be imaged, the performance of

CASSI was scene dependent, an undesirable property for CASSI’s application for

mainstream spectral imaging. The scene dependence was attributed to lack of or-

thogonality of the columns of the CASSI sensing matrix. An alternative design was

proposed with better column properties that was less scene dependent but was more

sensitive to noise in the measurements.

As expected from any new body of research, there are some open questions and

immediate extensions to the work on CASSI. CASSI was an example of a system that

attempted to physically implement a compressively sampled measurement of a signal

in a snapshot. In terms of sensing hardware, the discussion about properties of the

columns of the CASSI sensing matrix presented in chapter 4 may stimulate various

new designs of physical compressive measurement systems. In terms of numerical

estimation methods used to process CASSI data, it would be interesting to study
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the scene dependence of CASSI when the NeAREst algorithm is used. Alternative

methods should consider the non-negativity of the datacube to be reconstructed as

well as the fact that incoherent imaging is often impacted by Poisson noise. Recent

work on sparse Poisson intensity reconstruction algorithms [76] may find application

here.

CASSI was briefly considered as a means of imaging through turbulence by ex-

ploiting the chromatic dispersion of the aberrating medium to produce wavelength

diversity of the PSF. However, a medium like the Earth’s atmosphere produces neg-

ligible wavelength diversity in the PSF. Furthermore, a datacube of an object to

be imaged through turbulence and illuminated with broadband light would not be

sparse. Thus, CASSI was no longer considered as a means of imaging through tur-

bulence. However, a related idea that is worthy of further investigation involves

imaging through turbulence by using an RGB camera (a 3-channel spectral imager)

with a chromatic lens to increase the wavelength diversity of the PSF.

As an alternative means of imaging through turbulence, compressive measure-

ment of the 4D mutual intensity, a coherence function, was performed using an RSI,

as described in chapter 5. This was not a conventional compressive measurement in

the sense that it could not be analyzed from the perspective of compressive sampling

theory. The effective sensing matrix was unknown in the presence of turbulence,

making recovery of an undistorted image of the scene along with the distribution of

the phase screen a non-convex problem.

Prior to its use in the work described in this dissertation, the RSI had been used

for extended depth of field microscopic imaging [77] as well as tomographic imaging

[78] of incoherent sources by using the van Cittert Zernike theorem on samples of the

mutual intensity as measured by the RSI. In the presence of a turbulence-induced

phase screen between the incoherent sources and the RSI, direct application of the

van Cittert Zernike theorem to the RSI measurements would produce a distorted
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image of the sources. However, with the constraint that the incoherent sources in the

scene are sparse in some basis, an alternating minimization method was presented in

chapter 5 to successfully recover an undistorted image of a sparse scene as well as the

distribution of the turbulence-induced phase screen. In principle, this approach does

not require capture of several images and post-processing of the measured data in

batch mode. Thus, this approach may find utility in real-time astronomical imaging

of distant stars through the turbulence of Earth’s atmosphere.

Just like CASSI, there are several open questions that may be asked as exten-

sions to the RSI approach for imaging through turbulence. An immediate extension

of the experimental results described in chapter 5 would be an attempt to image

astronomical point sources through turbulence. A non-negativity constraint should

be placed on the scene. The potential of the alternating minimization approach for

imaging extended sources from RSI measurements in the presence of noise should be

investigated.
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