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Executive Summary 
 
The Research Triangle Institute International (RTI) seeks to minimize its economic and 

environmental footprint by automating the process of detecting water and energy over- 

and under- consumption events associated with HVAC systems.  The Central Utility Plant, 

which serves roughly 25 percent of the gross built area on RTI’s main campus, has 

contributed to past overconsumption events due to mechanical failure of cooling tower 

water makeup float valves.  RTI’s Facilities Engineering team is looking for a statistical 

model for real time prediction of cooling tower water makeup consumption in addition to a 

clear process for updating the statistical model as system parameters change over time. 

 

This project entails development and implementation of a data cleaning tool based in 

Microsoft Excel and development of a multiple linear regression model using ordinary least 

squares methodology.  The Excel tool includes a set of macros that allow RTI facilities and 

operations teams to periodically clean new data and update the predictive model in 

response to changing system parameters that are external to the model, including building 

uses, HVAC set points and expansions.  Analysis of the relationship between historical 

weather data and cooling tower water makeup consumption entails data cleaning and 

aggregation and outlier detection.  Several linear models explore the relationship between 

atmospheric temperature, humidity and cooling tower water makeup consumption. 

 

Facilities Engineering would like to implement the equation that yields the most accurate 

prediction of cooling tower water makeup consumption with RTI’s Building Automation 

System for event detection.  An analysis of model problems and out of sample prediction 

finds that temperature and humidity linear regression models are useful for approximating 

daily water makeup consumption, but the substantial model residuals indicate that 

frequent false alarms are probable and that a more rigorous method of analysis is 

necessary.  Additionally, hourly interval models suffer from a low coefficient of 

determination (R2), even after accounting for the delayed effect of atmospheric 

temperature change on demand for chilled water.  Confounding variables may cloud the 
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relationship between hourly changes in atmospheric conditions and cooling tower water 

makeup consumption. 

 

Based on the imprecise results obtained from linear models, Facilities Engineering may opt 

to investigate alternative methods for predicting cooling tower water makeup 

consumption.  RTI may also consider system upgrades that would accommodate site 

collection of atmospheric data for future analyses. 

 

The Excel tool developed for this project allows the Facilities Engineering to clean 

historical atmospheric data, import consumption data and merge sets to analyze 

environmental and economic performance of mechanical systems.  The Excel tool should be 

useful for examining relationship between weather and cooling tower water makeup (or 

energy) consumption for other HVAC systems on the main campus.  This project includes a 

user’s guide that explains the functions of the tool as well as methods of troubleshooting 

and manipulating data. 

  



 
 

 
iii 

Acknowledgements 
 
This project was made possible by the support and advice of the following individuals: 
 
Dr. Timothy L. Johnson, Associate Professor of the Practice in Energy and the Environment, 
Nicholas School of the Environment, Duke University 
 
John Maravich, Master of Environmental Management, Energy and the Environment, 
Nicholas School of the Environment, Duke University 
 
Jim Miller, Facilities Engineering Manager, RTI International 
 
Gary Bunce, Facilities Engineering, RTI International 
 
Robert D. Helton, Instrumentation Technician, RTI International 
 
Brad Washabaugh, Senior Director, Facility Operations and Planning, RTI International 
 
Dr. Kyle Bradbury, Managing Director, Energy Data Analytics Lab,  
Duke University Energy Initiative 
 
Dr. Jesse Daystar, Assistant Director of Corporate Sustainability Programs, Duke Center for 
Sustainability & Commerce, Duke University 
 
Dr. Steve Sexton, Assistant Professor in the Sanford School of Public Policy, Assistant 
Professor in the Department of Economics, Duke University 
 
Natalie Olivo, Editorial Consultant, Greater New York City Metropolitan Area 

Contact 
 
For more information, please contact: nick.garafola@gmail.com



 
 

 
1 

Contents 
Executive Summary............................................................................................................................................... i 

Acknowledgements ............................................................................................................................................. iii 

Contact ..................................................................................................................................................................... iii 

Introduction ............................................................................................................................................................ 3 

RTI’s Central Utility Plant.............................................................................................................................. 4 

Previous Study ................................................................................................................................................... 5 

Data............................................................................................................................................................................. 7 

RTI Data Overview ........................................................................................................................................... 8 

NOAA Data ....................................................................................................................................................... 10 

Past Models ...................................................................................................................................................... 11 

Methods ................................................................................................................................................................. 13 

General Coding Practices ............................................................................................................................ 13 

Debugging Macro Code ............................................................................................................................... 15 

Assembling and Cleaning Data ................................................................................................................. 15 

Aligning Data ................................................................................................................................................... 18 

Process for Using the Excel Tool ............................................................................................................. 18 

Models .................................................................................................................................................................... 19 

Initial Base Models ........................................................................................................................................ 21 

Nested Models ................................................................................................................................................ 24 

Analysis .................................................................................................................................................................. 27 

Out of Sample Prediction ............................................................................................................................ 27 

Interactive Variable Models ...................................................................................................................... 28 

Dew Point and Wet Bulb Temperature Models ................................................................................. 30 

Natural Log Transformation Model ....................................................................................................... 33 

Lagged Models ................................................................................................................................................ 35 

Multicollinearity ............................................................................................................................................ 36 

Conclusions and Recommendations ........................................................................................................... 37 

References ............................................................................................................................................................ 38 

Appendix ............................................................................................................................................................... 39 

A1 Overview of CUP loop buildings (Cooling Components Only) .............................................. 39 

A2 Specifications of CUP Buildings ......................................................................................................... 40 

A3 Algorithm Decision Tree ...................................................................................................................... 40 



 
 

 
2 

A4 User Guide ................................................................................................................................................. 41 

Overview ...................................................................................................................................................... 41 

Routine procedures ................................................................................................................................. 41 

Assembling Data ....................................................................................................................................... 41 

A5 Alignment Verification.......................................................................................................................... 44 

A6 Notes ............................................................................................................................................................ 44 

A6a Dealing with Daylight Saving Time (DST) .............................................................................. 44 

A6b Time Value Comparison................................................................................................................ 46 

A6c Notes: Investigating the Split Data ............................................................................................ 48 

A6d Computing Lagged Variables ...................................................................................................... 49 

A6e Computing Lagged Variables Part II......................................................................................... 50 

 
 

  



 
 

 
3 

Introduction 
 
Research Triangle Institute International (RTI) is an independent nonprofit research 

institute headquartered in Research Triangle Park (RTP), North Carolina.  The RTP campus 

consists of roughly two-dozen buildings that house offices, laboratories and industrial 

equipment.  Seven laboratory buildings representing roughly 25 percent of the total gross 

built area on campus obtain chilled water and steam from a central utility plant (CUP). 

 

RTI is interested in minimizing the resource consumption and operating costs associated 

with campus systems.  A recent renovation of the CUP and the implementation of a 

condensate recovery and return system represent RTI’s commitment to improving 

performance and efficiency with capital investments.  Every mechanical system requires 

routine maintenance and ideally periodic assessment.  RTI personnel are challenged with 

limited time and budget resources and cannot monitor all mechanical components often 

enough to avoid component issues.  The purpose of this project is to build a predictive 

model that, once implemented, will notify RTI facilities and operations staff via electronic 

means when a component failure has occurred, based on the computed difference of 

predicted and observed cooling tower water makeup consumption. 

 

In the spring of 2014, a float valve on one of the CUP’s cooling towers failed in the open 

position, resulting in a continuous stream of water release from the makeup water line.  

The failure was addressed when RTI’s security staff noticed a deluge of water flooding the 

road adjacent to the CUP and a facilities manager manually inspected the cooling tower.  

RTI’s facilities managers would like to automate the monitoring of cooling tower water 

consumption by integrating a predictive water use model into the building management 

system.    

 

Precedent for automated monitoring of campus systems based on meter data exists in RTI’s 

systems.  In response to false high readings over hours (or days) from RTI’s two sewer 

meters, facilities employees set up alert thresholds for high flow events in the building 

management system.  If sewer flow rate exceeds a certain volume over a specified interval, 
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the building management system sends an e-mail alert to facilities managers, who are then 

able to verify the flow through (or presence of a blockage in) each meter.  The success of 

the sewer outflow billing project indicates that the given threshold usage data, RTI’s 

building management system is capable of issuing automated e-mail alerts.   

 
 

RTI’s Central Utility Plant  
 
RTI’s central utility plant serves seven laboratory buildings that lack significant occupancy 

flux and programmed HVAC setbacks.  For purposes of forecasting utility bills and 

assessing system performance, Facilities Engineering models weekly cooling tower 

makeup water consumption at the CUP with cooling degree days (CDD).  Cooling degree 

days reflect the difference between the exterior temperature and the balance point, which 

is the temperature at which facilities require neither heating nor cooling.  If the average 

temperature on a given day is greater than the balance point, the difference between 

average daily temperature and the balance point represents the number of cooling degree 

days on the given day.  By contrast, if the temperature on a given day is less than the 

balance point, the difference between the balance point and average daily temperature 

represents the number of heating degree days on the given day.  The facilities served by the 

CUP are cooling-dominated, which is why Facilities Engineering uses a balance point 

temperature of 50 degrees Fahrenheit to assess cooling and heating degree days.  By 

contrast, the balance point temperature for residential settings is generally 65 degrees 

Fahrenheit.   

 

Because some facilities and equipment require cooling at outdoor temperatures less than 

or equal to 50 degrees Fahrenheit, the building automation system (“BAS”) deactivates the 

water-cooled system and activates the air-cooled chillers (300 tons combined).  Based on a 

visual analysis of historical data of cooling tower water makeup consumption from years 

2010 to 2014, cooling tower water makeup consumption is generally zero when the 

temperature is below 50 degrees Fahrenheit.  This relationship is expected due to the very 

nature of the balance point temperature reflecting the minimum temperature at which 
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facilities are cooling-dominant.  The operation sequence for the chillers validates the lack of 

positive makeup water consumption values on intervals where outdoor temperature is 50 

degrees Fahrenheit or below. 

 

The CUP has three chillers of near-equal capacity: two are 1,300 tons and the third is 1,100 

tons.  The three cooling towers reject heat from the three chillers.  Each cooling tower 

works by leveraging the energy consumed in the phase change of liquid water.  The cooling 

towers contain spray nozzles and fans which circulate air and water over the closed loop 

from the chillers.  As water makes contact with the hot coils and evaporates, heat is 

rejected from the closed loop system.  When the dry bulb temperature exceeds the wet 

bulb temperature, the cooling towers are able to reject more heat using evaporative cooling 

than if they were to rely on air alone. 

 

When a makeup water float valve failure occurs, the float control detaches from the valve 

assembly and leaves the valve in the open position.  As a result, thousands of gallons of 

water flow freely until the event is manually detected.   

 

Refer to the diagram of the CUP system in the Appendix 1. 

 

Previous Study 
 
Linear regression is a common method for examining related data across a variety of 

disciplines.  Because evaporative cooling is an energy service, a simple linear regression 

model is a logical first step to examining the drivers of cooling tower water makeup 

consumption.  Although this study relies on linear regression to examine the relationship 

between temperature, humidity and cooling tower water makeup consumption, a review of 

past studies indicates that a variety of options of greater complexity are common 

approaches to modeling the relationship between atmospheric conditions and building 

energy consumption. 
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A previous assessment of modeling for chiller energy consumption provides insight on how 

the model might evolve to account for factors such as wind speed and dehumidification.  

Lam and others (2009) group days based on prevailing whether conditions and assign the 

groups to “day type” categories (Lam, Wan, and Cheung 2009).  The explanatory variables 

included dry-bulb temperature, wet-bulb temperature, global solar radiation, clearness 

index, and wind speed. The methods and results by Lam et al. 2009 are not immediately 

transferable to the water usage model, in part because the study by Lam et al. considers 

long-term weather data and utilizes principal component analysis (PCA).  The motivation 

for using PCA instead of ordinary least squares regression is to gain an understanding of 

the dependencies that exist among explanatory variables.  This suggests that correlation 

among two or more explanatory variables may be a challenge for the water usage 

regression model.   

 

Although the method of analysis by Lam et al. varies, the high explanatory power of their 

final model indicates that the explanatory variables (including solar radiation and wind 

speed) might offer explanatory power in the water usage model.  As for the method of 

analysis, simpler models exist.  McMenamin (2008) lists two general approaches for HVAC 

energy forecasting: rank and average and average by date.  The rank by average methods 

entails assembling a predictive data set based on historical data prior to establishing a 

function via regression analysis. The first step of the rank by average method entails 

sorting each year’s daily temperature from hottest to coldest.  McMenamin provides an 

example in which the average, minimum and maximum values for each year are ranked 

independently from each other.  The first example ranks data within each historical month 

and then computes the average daily temperature across each month.  Average monthly 

values are then computed over a number of years.  The result is a relatively smooth, 

downward-sloping set of minimum, average and maximum curves on a plot of temperature 

over percentile ranking.   

 

The nature of data collection and analysis in this study more closely resembles methods for 

establishing a weather-normalized baseline in the context of measuring and verifying 

discrete energy efficiency improvements.  The two-stage method entails collecting and 
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analyzing historical data on consumption, and then evaluating consumption data that occur 

after an energy efficiency upgrade or system change (Agnew & Goldberg,, 2013).  This 

analysis aims to establish the historical consumption baseline once in the form of a linear 

equation.  The primary difference is that this project focuses on an equation that will be 

evaluated regularly for each established interval of operation, resulting in a predicted value 

that the BAS can compare to the interval consumption value.  The same method, linear 

regression, can be used to interpret consumption trends for whole-building retrofits or for 

event detection.  The unique approach to this project is the repeated and regular use of the 

linear model to predict values. 

 

Data 
 
This analysis relies on data from two distinct sources: historical weather data from a third 

party and cooling tower water makeup consumption data from RTI’s building automation 

system (BAS).  Although RTI collects temperature data at 15-minute intervals on-site, 

insufficient data were available at the time of this analysis.   

 

Prior analyses exploring the relationship between atmospheric conditions and cooling 

tower water makeup consumption relied on daily interval data.  Because this analysis must 

account for much more precise intervals (hourly or intra-hourly), data collected must be as 

granular as is economically feasible.  An evaluation of data from the National Oceanic and 

Atmospheric Administration (“NOAA”) for this study found that the hourly interval data is 

the most precise interval data available at no cost to the user (The National Oceanic and 

Atmospheric Administration (NOAA), 2015). 

 

The weather data of choice is quality-controlled local climatological data from the NOAA.  

The data is available on an hourly interval basis from NOAA’s National Climatic Data Center 

(The National Oceanic and Atmospheric Administration (NOAA), 2015).  NOAA data are 

collected at the Raleigh/Durham International Airport Station, which offers daily and 

hourly data for each month.  The monthly data sets are available in HTML and ASCII (files 
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bearing the extension “.CSV”) formats.  Although ASCII format is native to Microsoft Excel, 

the Excel tool has been built with the assumption that the user will view each month’s data 

in HTML format and paste it into the corresponding month’s sheet in the Excel tool.  This is 

not only the client’s preference based on the formatting of the HTML data but facilitates 

user review of the data prior to analysis. 

 

RTI Data Overview 
 
This analysis is based upon cooling tower water makeup consumption data export in six-

month sets for the 2013 and 2014 calendar years.  The Excel tool is built to handle data sets 

that include hourly observations for multiple variables, including cooling tower blowdown, 

makeup water consumption, condensate recovery and sewer meter 3, which is the sewer 

outflow that captures cooling tower water overflow. 

 

Systems data are collected by mechanical meters connected to RTI’s building automation 

system, which communicates with meters, adjusts HVAC system controls, stores data on a 

server and makes the data accessible to Facilities Engineering. 

 

The backbone of RTI’s BAS is the R2 platform, which interfaces Ax, a successor.  Ax is what 

allows RTI’s data visualization platform, Periscope by Activelogix, to communicate with the 

R2-based system.  System sequences and settings are still imported into a back-end Java 

interface in R2, whereas visualization of data occur within Periscope’s web-based graphical 

user interface (GUI). 

 

The sequence of communication between the systems may be responsible for occasional 

extreme outliers and other types of invalid values in the BAS data. Cooling tower water 

makeup consumption readings reflect the total volume of water (gallons) consumed over 

each interval, so negative values are considered erroneous.  Positive extreme outliers also 

exist.  Data for modeling expected values of cooling tower water makeup consumption 

must exclude negative values and extreme outliers for reasons explored below. 
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The historical data include a range of values deemed “normal” by Facilities Engineering and 

extreme positive outliers, which represent a combination of actual high consumption 

events and erroneous readings.  Figure 1 shows data that have been cleaned manually by 

Facilities Engineering to exclude negative values but not outliers.   

 
Figure 1: Historical (Cleaned) Consumption Data Provided by RTI Facilities Engineering 

 
 
High readings that occur in April, July and August 2014 reflect measurements of water 

consumption during float valve failure events.  The data for this analysis will have to 

exclude outlier values in an effort to establish a relatively narrow linear trend that predicts 

expected water consumption and provides a robust model for detecting outlier-range 

consumption. 

 

Of concern is the apparent difference in magnitude between the 2013 and 2014 water 

consumption data. The 2013 data appear to be an order of magnitude lower than the 2014 

data.  The greater overall magnitude of the 2014 data is due in part the float valve failure 

events previously described, but the high magnitude of the non-event readings in 2014 

relative to those from 2013 indicate a major system change between cooling seasons or a 

metering error. 
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Metering errors may occur due to mechanical malfunction (i.e. jamming) or electronic 

errors, such as a pulse multiplier problem.  A pulse multiplier problem occurs when a 

meter’s pulse multiplier, which provides the relationship between the volume measured by 

the meter and a numeric reading to the BAS, is mistakenly set too low or high.  The 

resulting data are highly correlated with the true consumption data but vary by a 

consistent percentage.  Regardless of the type of metering error, the 2014 data suggest that 

the cooling tower water makeup meter was adjusted prior the start of the cooling season. 

 

NOAA Data 
 
This study relies on hourly interval time series data obtained in monthly sets from the 

National Oceanic and Atmospheric Administration (NOAA) Quality Controlled Local 

Climatological portal (The National Oceanic and Atmospheric Administration (NOAA), 

2015).  The quality-controlled NOAA data is vertical time-series data, meaning that the 

column headers represent the names of the variables observed, including temperature, 

humidity, and dew point.  Each row of data has unique day and time values in the first two 

columns. Subsequent columns reflect the value of observations occurring at each time 

interval.  Despite quality control measures, monthly data are subject to both missing and 

extra intervals.  The remainder of this section details some of the barriers associated with 

using NOAA data.  

 

NOAA’s quality-controlled data is accepted by RTI’s facilities management team with the 

caveat that the data must be cleaned prior to use in analyses.  The amount of time 

associated with cleaning the data constitute a portion of the motivation for this study, as 

the facilities management team seeks to find way to obtain clean weather data routinely 

and efficiently.   

 

The foremost task required for structuring an analysis based on NOAA quality-controlled 

data is assembly of data from individual months.  NOAA’s website 

(http://cdo.ncdc.noaa.gov/qclcd/QCLCD?prior=N) directs the user to select a location, 

http://cdo.ncdc.noaa.gov/qclcd/QCLCD?prior=N
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month and interval for viewing.  This results in a one-month data set without year and 

month information included in the variables.  The first two columns of NOAA data include 

variables for day (integer values ranging from 1 – 31) and time. 

 

Time intervals in NOAA data are expressed differently from the timestamp format in RTI’s 

BAS system and the format recognized by Microsoft Excel.  The regular observations occur 

on the 51st minute of every hour in the format #:51, so the minute counts must be 

converted into hours.  When missing observations do occur, the variables assume non-

numeric values for the unobserved interval (e.g. “M” for missing).   Equally problematic are 

extra observations, or those that occur in between each 51st interval.  These observations 

sometimes occur as duplicates (i.e. two observations with the same time stamp), but they 

also occur at other time intervals.   

 

The Building Automation System data have very different characteristics and therefore 

require very different cleaning procedures than those used for processing the NOAA data.  

For the purposes of this analysis, the BAS data are .CSV exports from the Periscope 

Graphical User Interface and consist of hourly volume observations of cooling tower 

makeup consumption,  

 

In addition to outlier readings, the Periscope exports are subject to transcription errors 

due in part to translation between the underlying software platform (R2 and AX) and the 

Periscope interface.   

 

Past Models 
 
RTI’s Facilities Engineering team used daily interval cooling degree days (CDD) from 

Weather Underground to examine the relationship between demand for cooling services 

(based on outdoor temperature) and cooling tower water makeup consumption.  Facilities 

Engineering hypothesized that the relationship between weekly cooling degree days and 

cooling tower water makeup consumption changed in April 2014,  
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Figure 2: Overview of Historical Makeup Water Consumption Data and Temperature 

 

 
 
 
Figure 3: Overview of Historical Makeup Water Consumption Data and Relative Humidity 
 

 
 
around the time facilities and operations teams were incorporating a condensate recovery 

system that was expected to reduce the amount of cooling tower water makeup 

consumption across all temperature values.  Separate linear models examine the 

relationship before and after the major spike in water consumption (early April 2014).  The 

analysis finds two similar, but unique trends resulting in substantial differences in annual 
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consumption (R2 > .90).  The results are likely due to equipment malfunctions and not the 

addition of the condensate recovery system. 

Methods 
 
The data cleaning, alignment and variable computation processes are done with macros in 

Excel that automate the process for each calendar year of data.  This section describes the 

processes undertaken by a series of macros and the subsequent manual steps (aggregating 

hour intervals to daily intervals). 

 

General Coding Practices 
 
Code for this project has been developed largely by manually performing data cleaning and 

analysis in Excel prior to developing subroutines.  A subroutine or “macro” in this context is 

a set of procedures written in Microsoft Visual Basic for Applications (“VBA”) to handle the 

automation of repeatable tasks in Excel 2013. 

 

Coding occurs with the assumption that the client will use the Excel tool to clean and 

analyze future data sets with the same general layout and variables.  The user inputs on the 

CONTROL sheet and variable row and column references allow users to alter the tool such 

that they may explore the relationship between weather data and alternative dependent 

variables (e.g. energy consumption).  However, the weather data cleaning macros are 

unique to data problems within NOAA (particularly time interval transformation) and will 

not work with weather data from other sources. 

 

An objective of the project is to deliver an Excel tool that can grow with RTI’s needs and be 

serviceable by future interns who have some familiarity with VBA.  The following best 

practices have been applied throughout the VBA macros that constitute the backbone of the 

Excel tool: 
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¶ Annotation .  Annotations explain the purpose and function of each block of code, in 

addition to explanations above each formula and loop.  Annotations are added to 

define the objectives of subroutines and often individual lines of code. 

¶ Indentation and Spacing .  In addition to the section headers and brief 

explanations, indentations and blank lines allow the editor to easily identify 

individual blocks of code. 

¶ Minimal loops .  Most macros in the Excel tool use filters or assign formulas to 

ranges to avoid massive loops.  This allows the Excel tool to quickly evaluate criteria 

based on built-in Excel functions.  Looping through every single data increases run 

time and contributes to stability issues.  Large loops have been minimized to ensure 

that the Excel tool is effective and efficient. 

¶ Paste values.  The Excel tool subroutines use formulas across ranges to calculate 

values.  Once the formula has been applied to the entire range, the calculated values 

are pasted over the formulas to maintain a relatively small file size. 

¶ Automatically assess variable ranges .  Count rows and columns instead of coding 

static assumptions or prompting the user for each subroutine. 

¶ Testing .  Run macros with variable data sets to ensure that reference variables and 

assumptions have been accurately coded to ensure that macros can handle 

subsequent data. 

¶ Error checking.   If the required data are not present in a macro, the macro will 

yield error messages which are often vague.  In order to help the user understand 

errors, each macro contains small tests to see if the requisite data are present prior 

to computing values.  If the necessary data are not present in the Excel tool, the 

macro warns the user with a specific warning that has been hard-coded into each 

macro.  An example is: 
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Error messages can be tested by running each macro (aside from the first) without running 

the macro listed prior. 

 

Debugging Macro Code 
 
Debugging VBA macros  in Excel entails stepping through each line of code and the 

spreadsheet as well as the values each variable assumes to determine the functionality of 

the macro and correct or enhance the code.  In the example below, the macro is attempting 

to add a filter to a table in the range of A1:L8763 in order to exclude negative cooling 

values for hourly cooing tower water makeup consumption.  When Visual Basic is in Break 

Mode, the code below shows a selection class error on line 2 and highlights the number 10.    

This indicates that the value 10 is not a valid input.   The debugging shows that variables 

FilterRow and LastRow are correctly reflecting 1 and 8763, respectively.  Upon closer 

inspection, the “A” highlighted in Line 1 should not be equal to A but to L, which is the 

unique last column of the table based on the size of this data set.  Upon changing the 

highlighted A to the variable representing the letter of the last column, the code functions 

properly. 

 

Line 1         

Set RFilter = Range("A" & FilterRow & ":" & "A"  & LastRow)  

Line 2          

Set rr = Range(MakeupColLet & FirstRow & ":" & MakeupColLet & 

_LastRow)  

Line 3          

RFilter.AutoFilter Field:=10 , Crit eria1:="<0", 

Operator:=xlFilterValues  

 
 

Assembling and Cleaning Data 
 
Because NOAA data are captured as individual months and lack year and month variables, 

the first macro, named “StackData,” creates new columns, computes month and year values, 

and stacks months to form a year’s data set.  The order of the data cleaning and merging 

macros has changed several times throughout the coding.  Assembly of weather data and 

BAS data occur prior to cleaning because a component of cleaning is ensuring that hourly 
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intervals are consecutive.  Likewise, the Excel tool has been developed in such a way that 

each data set is cleaned prior to prior to merging.  Merging cleaned data sets is quicker than 

merging data sets with invalid time intervals because the data sets are shorter once they 

are clean. 

 

The first macro called from the user control panel is StackData, which looks at data from 

each of twelve month tabs and copies the data to a sheet called “Master.”  The macro begins 

by testing to see if sheet ‘Master’ exists.  If the sheet doesn’t exist, StackData creates it.  

StackData then adds two columns to each month’s sheet: column A becomes the year value 

in the format “yyyy”, while column B becomes the name of the month.  The values for year 

and month name are applied to every row of the individual month sheets as well as the 

combined data set.  The existing variable columns are pushed to the right, extending the 

width of the tables.  Built-in logical tests check to ensure that month and year columns 

cannot be recreated if the user accidentally runs StackData more than once, as having 

multiple sets year and month columns would further shift the subsequent variable columns 

and skew cell references for subsequent macros. 

 

After combining the NOAA data into one large set, StackData converts time values from the 

“##51” format integer values 0 – 23 to maintain consistency with the 24-hour time format 

used in the BAS data from Periscope.  The general formula used in the macro is: 

 

Hour = (Original Value ɀ 51) / 100  

 

For extra intervals that occur in between regular measurements (i.e. timestamps that do 

not end in “51”), the formula yields a decimal value.  Intervals with decimal time values are 

deleted by the data cleaning macro (described in the next section) because the extra 

intervals do not align with the BAS observations, which occur hourly. 

 

StackData calls a macro named “DealWithTime” to add a series of time variables that are 

used by the final macro to merge the NOAA and BAS data sets.  DealWithTime creates five 

additional columns to the left of the year and month column previously inserted by 
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StackData.  The five time variables result in a daylight-saving-adjusted time value a 

subsequent macro uses to align the NOAA and BAS data sets.  The multiple variables also 

provide the user options for comparing the data with other sets. 

 

DealWithTime adds the following time variables: 

¶ Full Date.  This variable extracts month, day and year from the first three variables 

of the data to yield the date in the format “MM/DD/YYYY.” 

¶ Time in “#:##” format. 

¶ Serial Time. 

¶ Serial Date. 

¶ Serial Date : Serial Time. (this is the variable that unifies the two data sets) 

 

Once the NOAA data have been stacked, the user is able to press the “Transform” button on 

the control panel, which calls the macro “Transform.”  Transform deletes duplicate 

observations as well as those that do not occur on hourly intervals, formats relative 

humidity as percentile values (“0%”), and calls the macro that calculates cooling and 

heating degree hours as well as the macro that eliminate intervals with invalid cooling and 

heating degree hour values (due to missing or non-numeric dry bulb temperature data).  

Based on logic adapted from calculating cooling and heating degree days (Deliso, 2013), 

cooling degree hours and heating degree hours are computed with the following logical 

statements: 

 

¶ If the average hourly temperature is below 50 degrees Fahrenheit, compute Heating 

Degree Hours = 50 – (average hourly temp).  Otherwise, Heating Degree Days = 0.    

¶ If the average hourly temperature is above 50 degrees Fahrenheit, compute Cooling 

Degree Hours = (average hourly temp – 50).  Otherwise, Cooling Degree Days = 0. 

 
The weather data cleaning tool allows the user to export clean weather data independently 

of running a regression analysis for cooling tower water makeup consumption.   
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Aligning Data 
 
The Excel tool aligns the BAS and NOAA data into one cohesive set based on the “Serial Date 

: Serial Time” value established by DealWithTime and CleanBAS (the macro that cleans the 

BAS data).  The final macro, AlignSets, ensures that the only the NOAA data intervals 

corresponding with each BAS interval are inserted into the merged set.  AlignSets starts 

with the clean BAS data and applies VLOOKUP formulas for each of the NOAA variables, 

using the “Serial Date : Serial Time” value as the lookup value in each formula.  Although 

this process corrects for misalignment due to differences in Daylight Saving Time between 

the data sets, it initially yields error values for intervals in which BAS data are present and 

NOAA data are missing.   

 

The solution in AlignSets is similar to a process used in the NOAA and BAS cleaning macros: 

filter and delete unacceptable values.  In previous macros, the filters applied to non-

numeric, negative and outlier values.  In AlignSets, the filter reveals all rows marked 

“#N/A” as a result of missing NOAA intervals.  The macro then deletes the error values and 

removes the filter from the spreadsheet.  As is the case with the earlier macros, much of the 

code in AlignSets addresses the variable numbers of rows and columns in the data, in 

addition to formatting and filtering. 

 

Process for Using the Excel Tool 
 
The concept of the models for predictive analysis of cooling tower water consumption at 

RTI is as follows: 

 

1. User pastes individual monthly NOAA data into the corresponding month sheets within 

the Excel tool. 

2. User presses “Stack Data” button.  NOAA data are stacked (individual months feed into 

year-long data set). 
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3. User presses “Transform” button.  NOAA data are cleaned (non-consecutive, duplicate 

and non-numeric intervals are removed); time, date and lagged temperature variables 

are computed. 

4. User presses “Import” button and imports BAS data by selecting .CSV files previously 

exported from Periscope. 

5. User presses “Stack BAS” button.  BAS data are stacked (individual files feed into one 

data set). 

6. User presses “Clean BAS” button.  BAS data are cleaned (sample mean and standard 

deviation are computed and outliers existing outside the user-defined threshold are 

removed).  Time and date variable columns are created and computed.   

7. User presses “Align Data” button. NOAA weather data and BAS data feed into a merged 

data set based on the time and date serial number from each NOAA observation that 

matches the time and date serial number from each BAS observation (this process 

controls for changes in DST). 

8. User presses the “Export Set” button to export the merged data set. 

 

Linear regression models use clean versions of the final combined data set from the Excel 

tool.  The amount of time required to operate the Excel tool to prepare clean data is a small 

fraction of the time required for assembling, cleaning and merging the data sets manually. 

 

Models 
 
Cooling tower water makeup consumption is driven by temperature and humidity both 

directly and indirectly.  Demand for chilled water from the CUP is a function of outdoor 

temperature and humidity, which in turn contributes to cooling tower water makeup 

needs.  Cooling tower water evaporation and the makeup consumption that replaces 

evaporative loss is also a function of the ambient temperature and humidity conditions 

surrounding the cooling towers.  The combined data sets produced by the Excel tool offer 

multiple measures for temperature and humidity, including: 
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¶ Dry Bulb Temperature 

¶ Wet Bulb Temperature 

¶ Relative Humidity 

¶ Dew Point Temperature 

¶ Cooling Degree Hours 

 

The challenge with linear regression models is that for a model to yield accurate 

predictions, several assumptions must hold true.  The first is the assumption that the model 

residuals, or the distances between each data point and the prediction offered by the linear 

model, are uncorrelated with explanatory variables.  Residuals should be normally 

distributed around zero (meaning that residuals further from zero are less likely to occur).  

Also, the explanatory variables need to be uncorrelated with each other in order to obtain 

the clearest relationship between each predictor and the dependent variable (Boslaugh, 

2012). 

 

The initial regression models follow certain criteria in part due to weather patterns, system 

changes (or errors) and uncertainty.  The first criterion is year.  Because the 2013 cooling 

tower water consumption data appear to be an order of magnitude lower than the 2014 

data, initial models assess the relationship between data from each year independently.  

The downside associated with using fewer observations in any statistical analysis is a 

shorter amount of intervals over which the trend is computed.  The result is greater 

uncertainty over the difference between the predicted values from the model and the true 

values.  For the purposes of comparison, subsequent models use the combined data from 

2013 and 2014. 

 

The second criterion for the initial linear regression models is cooling season status.  

During the winter months, the majority of observed intervals have outdoor dry bulb 

temperatures equal to 50 degrees Fahrenheit or less (described here as “low outdoor 

temperature(s)”).  Low outdoor temperatures, per Facilities Engineering, signals the C.U.P. 

to meet demand for chilled water with air-cooled chillers.  At temperatures below 50 
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degrees Fahrenheit, cooling towers are not in operation.  The lack of operation of the 

cooling towers during the majority of intervals in December, January and February results 

in makeup water consumption values equal to zero.  The presence of zeroes in the model 

does not describe the system behavior during the cooling season.  Initial models are based 

on data that exclude observations where makeup water consumption values equal zero in 

order to better assess the relationships that exist between positive cooling degree hour (or 

day) values and positive cooling tower water makeup consumption. 

 

The third and final criterion for the initial models is the interval, or granularity.  Previous 

analyses conducted by Facilities Engineering used weekly interval data.  The data from 

NOAA and therefore the data from the Excel tool occur at hourly intervals, permitting a 

more granular analysis.   

 

Initial Base Models 
 
In order to best understand the drivers of cooling tower water makeup consumption, this 

analysis uses multiple models with overlapping characteristics and compares their results.  

In particular, the initial base models examine two time intervals, hourly and daily.  Models 

1-2 examine daily intervals (the top half of Table 1) due in part to low R2 values from 

hourly models (the bottom half of Table 1) and to provide Facilities Engineering with the 

option to implement a daily model in the BAS instead of the hourly model.  The first set of 

models (Tables 1 - 3) uses cooling degree hours (CDH) calculated from dry bulb 

temperature and relative humidity (percent) as explanatory variables.  The general 

equation representing each of the initial models is: 

 

 Makeup Consumption = Beta naught + Beta1*CDD 50 + Beta2*relative humidity 
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Table 1: Initial Regression Models 1-4 
 

 
 Dependent Variable : Cooling Tower Water Makeup Consumption (Gal) 

  Models use observations where the dependent variable > 0  

  2013 2014  

  Intercept RelHum CDD, CDH Intercept RelHum CDD, CDH  

Interval: Daily               

Model 1: Full Year  -462.186 3.494 61.072 -1758.401 5.842 374.781  

Std Error  94.388 1.422 1.762 614.604 9.291 11.654  

Alpha Level    0.01 0.05   0.25 0.01  

t stat  -4.897 2.456 34.670 -2.861 0.629 32.160  

n  219 288  

R-Square  88% 80%  

Correlation Residuals : D.V.    0.00% 0.00%   0.00% 0.00%  

                
Model 2: April 1 - October 
31  -879.972 7.463 66.850 -3566.793 18.267 418.009  

Std Error  111.505 1.598 2.000 924.716 12.918 18.574  

Alpha Level    0.01 0.01   0.10 0.01  

t stat  -7.892 4.671 33.424 -3.857 1.414 22.505  

n  174 210  

R-Square  89% 72%  

Correlation Residuals : D.V.    0.00% 31.33%   0.00% 0.00%  

                

Interval: Hourly               

Model 3: Full Year  -17.399 0.259 2.181 -33.015 0.811 13.432  

Std Error  2.854 0.029 0.061 16.798 0.185 0.372  

Alpha Level    0.01 0.01   0.01 0.01  

t stat  -6.096 9.066 35.747 -1.965 4.396 36.148  

n  4166 4466  

R-Square  24% 23%  

Correlation Residuals : D.V.    0.00% 0.00%   0.00% 0.00%  

                
Model 4:  April 1 - October 
31  -37.156 0.417 2.540 13.579 0.423 12.898  

Std Error  2.672 0.025 0.054 23.772 0.231 0.484  

Alpha Level    0.01 0.01   0.05 0.01  

t stat  -13.904 16.419 47.364 0.571 1.827 26.663  

n  3735 4012  

R-Square  38% 17%  

Correlation Residuals : D.V.    0.00% 0.00%   0.00% 0.00%  
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Because relative humidity reflects the amount of moisture in the air in relation to the 

maximum level of humidity the air can hold at a given temperature, the observations for 

relative humidity should not be correlated with dry bulb temperature and therefore 

cooling degree hours.  The initial models offer several encouraging observations.  First, the 

estimated coefficients for temperature and humidity have near-consistent statistical 

significance across Models 1-4.  The notable exception is Model 1, in which the alpha level 

for relative humidity is 25 percent.  The alpha level is important because it reflects the 

probability of committing a Type I error, or the chance or finding a relationship between 

variables when a relationship does not really exist (Boslaugh, 2012). 

 

One reason for lower than desired statistical significance (reflected in an alpha level equal 

to 0.25) for the estimated coefficient of relative humidity in Model 1 (2014) is that the 

relationship between cooling tower water makeup consumption and relative humidity is 

non-linear.  The decidedly non-linear relationship between the variables (Figure 4a-b) 

results in higher model residuals, a lower model R2 and ultimately imprecise predictions.   

  
 
Figure 4a-b: Scatterplots of Water Makeup Consumption and Relative Humidity 
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Nested Models 
 
The poor functional relationship between relative humidity and cooling tower water 

makeup consumption necessitates a comparison of models with and without relative 

humidity as an independent variable.  Models 5-8 (Table 2) use single linear regression to 

examine the relationship between temperature (CDH/CDD) and cooling tower water 

makeup consumption, intentionally omitting relative humidity.  The comparison of the full 

to nested models (Table 1 and Table 2) indicates whether including relative humidity as an 

explanatory variable results in a less precise model.  The estimated coefficients for 

temperature should have consistent signs between the full models (1-4) and the respective 

nested counterparts (5-8).  If including relative humidity as an explanatory variable 

detracts from the model, the R2 value should increase and residuals should decrease.   

 

A visual comparison reveals that regression Models 5-8 do not differ significantly from 

Models 1-4.  The signs and magnitudes of the estimated coefficients for temperature are 

consistent and the measures remain statistically significant.  In some cases, the R2 value is 

slightly lower, but only by one or two percentage points, with the exception of Model 8, 

which is five full points lower than the R2 of Model 4.  Additionally, the hourly models (3, 7, 

4, 8) all have R2 values that are much lower than expected (values greater than 50 percent 

are common for time series data).  The analysis section explores potential causes and 

remedies for the lack of determination by the hourly models. 
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Table 2: Initial Models, Omitting Relative Humidity 
 

  D.V. : Cooling Tower Water Makeup Consumption (Gal)  

  Models use observations where the dependent variable > 0  

  2013 2014  

  Intercept CDD, CDH Intercept CDD, CDH  

Interval: Daily           

Model 5: Full Year  -243.926 62.855 -1396.797 376.659  

Std Error  32.195 1.623 216.735 11.253  

Alpha Level    0.01   0.01  

t stat  -7.577 38.718 -6.445 33.472  

n  219 288  

R-Square  87% 80%  

Correlation Residuals : D.V.    0.00%   0.00%  

           

Model 6: April 1 - October 31  -396.283 69.777 -2393.980 422.067  

Std Error  43.770 2.011 409.955 18.395  

Alpha Level    0.01   0.01  

t stat  -9.054 34.698 -5.840 22.945  

n  174 210  

R-Square  87% 72%  

Correlation Residuals : D.V.    0.00%   0.00%  

           

Interval: Hourly           

Model 7: Full Year  5.473 1.995 30.045 13.046  

Std Error  1.348 0.058 8.759 0.362  

Alpha Level    0.01   0.01  

t stat  4.062 34.385 3.430 36.059  

n  4166 4466  

R-Square  22% 23%  

Correlation Residuals : D.V.    0.00%   0.00%  

           

Model 8:  April 1 - October 31  2.485 2.139 52.219 12.493  

Std Error  1.186 0.049 10.859 0.430  

Alpha Level    0.01   0.01  

t stat  2.096 43.271 4.809 29.045  

n  3735 4012  

R-Square  33% 17%  

Correlation Residuals : D.V.    0.00%   0.00%  
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The motivation for combining 2013 and 2014 daily data is to increase the number of 

observations (n).  Although the 2013 and 2014 data are subject to system changes, 

including the removal of a building and the addition of a condensate recovery system, the 

greater number of observations n may illustrate a clearer relationship relative to a model 

based off one year of data alone.  The results in Table 3 do not yield much higher R2 values 

than the previous models, although both estimated coefficients are statistically significant 

at the one percent level in Model 10.   Increasing the number of observations does not 

greatly improve the initial models. 

 
Table 3: 2013 – 2014 Combined Models 
 

  D.V. : Cooling Tower Water Makeup Consumption (Gal)  

  Models use observations where the dependent variable > 0  

  2013 - 2014 Combined  

  Intercept RelHum CDD, CDH  

Interval: Daily         

Model 9: Full Year  -2067.856 10.392 372.439  

Std Error  427.334 6.436 8.141  

Alpha Level    0.10 0.05  

t stat  -4.839 1.615 45.751  

n  507  

R-Square  83%  

Correlation Residuals : D.V.    0.00% 0.00%  

        

Model 10: April 1 - October 31  -4079.531 26.149 413.086  

Std Error  596.262 8.377 11.562  

Alpha Level    0.01 0.01  

t stat  -6.842 3.121 35.727  

n  384  

R-Square  79%  

Correlation Residuals : D.V.    0.00% 0.00%  
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Analysis 
 
The ideal criteria for each linear model include statistical significance at or below the 5 

percent level, residuals that are normally distributed and uncorrelated with explanatory 

variables, and an R2 value of 90 percent or greater.  The statistical significance of relative 

humidity in several of the initial models is above the 5% level, which may be due to the lack 

of correlation between cooling tower water makeup consumption and relative humidity 

shown in Figure 4a-b in the previous section.  This section describes the results of a test in 

which the initial model is used to predict cooling tower water makeup consumption values.  

This section subsequently explores alternative models. 

 

Out of Sample Prediction 
 
This sub-section uses Model 1 (fitted to data from 2013) to predict values for the 2014 data 

in an effort to understand how well the model would function if implemented in RTI’s 

building automation system.  The results confirm that further analysis is needed. 

 

The challenge associated with examining 2013 and 2014 data with one model is the 

apparent magnitude of the change between the 2013 and 2014 cooling seasons.  In an 

effort to optimize the predictions, estimated values are multiplied by the scalar that 

minimizes the overall variance between the 2014 estimates and observed values.  Through 

the Simplex linear programming algorithm, Excel’s Solver plugin identified the scalar that 

minimizes the average absolute value of percent error between the estimated and observed 

values (4.001813013).  Using the scalar, the percent difference for the out of sample 

prediction is 60.44 percent.  Despite the automation of data cleaning to address erroneous 

negative, outlier and non-explanatory zero values, data problems persist in the initial 

models.   

 

Based on the results of the out of sample prediction in Table 1-4, Models 1-4 can be 

improved by transforming variables and considering alternative explanatory variables.  

The comparison of the full models (Table 1) to the nested models (Table 2) does not 
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indicate that removing relatively humidity significantly improves the fit of each model, but 

there is reason to believe that humidity affects demand for chilled water as well as the rate 

evaporation (and therefore efficacy) of the cooling towers.  The primary concern is to find a 

measure of humidity that has some linear (or near-linear) relationship with the dependent 

variable.  The secondary concern is understanding and addressing the issues with the 

hourly models.   

 

The R2 value is important to assessing model fit, but it is only one of a number of criteria 

that need to be evaluated.  Known as the coefficient of determination, R2 reflects the extent 

to which the variation in the independent variables explains the change in the dependent 

variable (Boslaugh, 2012).  A high R2 value is desirable in linear regression models when 

theoretical justification for the inclusion of explanatory variables exists.  R2 increases in 

response to correlation between the independent and dependent variables and therefore 

tends to increase with inclusion of additional independent variables, even if the variables 

have no theoretical justification for explaining change in the dependent variable (cooling 

tower water makeup consumption).  Relying on models with a high R2 is important, but R2 

is only a summary statistic.  Other measures, including the count of observations (n), 

statistical significance and correlation between residuals and independent variables (in 

addition to the correlation between each unique combination of independent variables in 

models where both exist) are equally important to assessing the usefulness of the linear 

model. 

 

Subsequent models attempt to improve upon initial models by altering combinations and 

timing of explanatory variables as well as functional form of the dependent variable.   

 

Interactive Variable Models 
 

Temperature and humidity are both essential to predicting the volume of cooling tower 

water makeup consumption because both are elements of enthalpy that affect the demand 

for and performance of cooling systems.  Although the relationship between humidity and 
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cooling tower water makeup consumption is not linear, the variation of the combined effect 

of temperature and humidity may account for the variation in cooling tower water 

consumption.  The interactive variable serves as a proxy for enthalpy, as true enthalpy 

figures are not present in the data. 

 

A common method of transforming independent variables when the variables have an 

interactive effect is multiplying the two original variables and interpreting the estimate for 

the interactive term.  Interacting temperature and humidity may better explain the 

combined effect of temperature and humidity on the demand for chilled water and efficacy 

of evaporative cooling. 

 

Figure 5: Scatter plot of 2014 Water Makeup Consumption and Relative Humidity * CDD 
 

 
 
 
The estimated equations, y = 490.6x - 709.49, indicates a fairly strong linear relationship 

between the interaction of temperature and humidity and cooling tower water makeup 

consumption. The R2 value (77.75 percent) is comparable to the values from the initial 

model.  Most importantly, the correlation (and therefore the estimated coefficient of the 

variable x) is positive, which follows the intuition that cooling tower water consumption 

increases as temperature and/or humidity increase.  The trouble is that increased humidity 

at a constant temperature may cause water consumption to decrease, since the ability of 
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liquid water to evaporate depends partially on the saturation of the air surrounding it.  

Interacting the variables may be useful to consider for the final model, especially if the 

interaction is based on an alternate measure for humidity that has a clear functional 

relationship with the dependent variable. 

 

Dew Point and Wet Bulb Temperature Models 
 
Model problems in linear regression can occur due to the distribution, magnitude, or 

relationships among explanatory variables.  Using linear regression to model the 

relationships between atmospheric conditions and mechanical systems is a challenge due 

to the nature of the physical relationships that exist among temperature and humidity.  

Both temperature and humidity are reflected in multiple variables within the NOAA data 

set.  The Excel tool calculates cooling degree days from dry bulb temperature, which 

reflects only the dry temperature (sensible heat) of the air.  Initial models use relative 

humidity because relative humidity reflects the current absolute humidity relative to the 

maximum humidity at given temperature and pressure conditions.  Relative humidity is 

therefore independent of temperature and is not high correlated with temperature.  Other 

measures reflect both sensible and latent heat and might be better explanatory variables in 

the linear model but also might be subject to high correlation if multiple variables are used.  

This section explores dew point and wet bulb temperature as alternative measures to 

relative humidity.   

 
Figure 6: Scatter Plot of 2014 Water Makeup Consumption and Dew Point Temperature 
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The relationship shown is not linear, but is similar to the relationship between cooling 

tower water makeup consumption and relative humidity depicted in Figure 4a-4b. 

However, in the full year model (Model 12), the estimated coefficient for dew point 

temperature is not statistically significant. 

 

In particular, dew point temperature and dry bulb temperature have a high correlation 

coefficient (0.76).  Dew point temperature reflects the outdoor air temperature at which 

the rates of evaporation and condensation are in equilibrium.  Assuming all other factors 

are constant, the dew point temperature should increase with relative humidity, reflecting 

the ease in which water condenses from air.  But a given value of relative humidity, for 

example 50 percent, describes much less absolute humidity at an atmospheric dry bulb 

temperature of 30 degrees Fahrenheit than at 80 degrees Fahrenheit, because colder air 

holds less water in absolute terms.  Due to the fact that dew point temperature is a function 

of outdoor ambient temperature, it is likely to be highly correlated with temperature and 

potentially, relative humidity (which can be excluded from the model if dew point 

temperature is used as an explanatory variable). 
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Table 4: Results using Dew Point as an Explanatory Measure  

 

  D.V. : Cooling Tower Water Makeup Consumption (Gal)   

  Models use observations where the dependent variable > 0  

  2014 Dew Point Temp  

  Intercept DEW Point Temp CDD  

Interval: Daily        

Model 11: Full Year  -797.048 -7.948 367.210  

Std Error  447.258 13.830 15.516  

Alpha Level    >0.25 0.01  

t stat  -1.782 -0.575 23.666  

n  311  

R-Square  80%  

Correlation Residuals : D.V.    0.00% 0.00%  

        

Model 12: April 1 - October 31  -3426.576 30.652 401.803  

Std Error  854.568 22.272 23.531  

Alpha Level    0.10 0.01  

t stat  -4.01 1.38 17.08  

n  210  

R-Square  72%  

Correlation Residuals : D.V.    0.00% 0.00%  

        

         

      

      

 
 
 
 
A second alternative to relative humidity is wet bulb temperature, which is the lowest 

temperature that can be reached by evaporative cooling.  Wet bulb temperature yields the 

same information in the model as dew point temperature and does not yield a better 

functional relationship than previous models, as is evident by the wet bulb temperature 

scatter plots (Figure 7) that roughly resemble the dew point scatter plots (Figure 6).   

 

The curvature presented in Figure 7b suggests that the relationship between wet bulb 

temperature and cooling tower water makeup consumption is curvilinear.  When non-
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linear trends are present, non-linear models are worth considering.  In Figure 7, the slope 

of the trend line is increasing at an increasing rate, suggesting that an exponential model 

might better represent the relationship between the variables than a linear model.  As 

Figure 7b illustrates, the exponential models is worth considering, although the trend 

shown in Figure 7b does not appear to be a significant improvement over previous models. 

 
 
Figure 7a-b: Scatter Plot of Makeup Water Consumption and Wet Bulb Temperature 
 

 
 

Natural Log Transformation Model 
 
Linear regression models most accurately assess data that vary across observations, but 

vary within a consistent order of magnitude.  The cleaned historical data are already void 

of extreme outliers and negative values, however observations of cooling tower water 

consumption vary between zero and several thousand gallons.  One set of options for 

improving the fit of the model is using a functional transformation to reduce the magnitude 

of the dependent variable. 

 
Model 13 uses the natural log of cooling tower water consumption as the dependent 

variable with dew point temperature and cooling degree days as explanatory variables.  
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However, the lack of functional relationship between humidity and water makeup 

consumption is more likely a result of a lack of clear functional relationship than a 

magnitude issue.   Model 13 (Table 5) yields relatively consistent results across full-year 

and cooling season versions, with statistically significant estimated coefficients for 

explanatory variables.  However, the R2 values for these models demonstrate that they do 

not determine variations in cooling tower water makeup consumption significantly better 

than Models 10 and 11, which also use dew point temperature as the explanatory variable 

for humidity.  

 
Table 5: Results using the Natural Log of Makeup Consumption as the dependent variable 
      

  D.V. : Ln(Cooling Tower Water Makeup Consumption (Gal))   

  Models use observations where the dependent variable > 0  

  2014 Dew Point Temp  

  Intercept DEW Point Temp CDD  

Interval: Daily        

Model 13: Full Year  4.004 0.029 0.138  

Std Error  0.214 0.007 0.007  

Alpha Level    0.01 0.01  

t stat  18.747 4.420 18.640  

n  311  

R-Square  79%  

Correlation Residuals : D.V.   0.00% 0.00%  

        

Model 14: April 1 - October 31  5.439 0.021 0.097  

Std Error  0.215 0.006 0.006  

Alpha Level    0.01 0.01  

t stat  25.26 3.70 16.34  

n  210  

R-Square  74%  

Correlation Residuals : D.V.   0.00% 0.00%  
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Lagged Models 
 
Low R2 values from the hourly models imply that the change is hourly water makeup 

consumption is not well determined by the hourly changes in explanatory variables.  The 

purpose of building lagged variable models is to examine the possibility that cooling tower 

water makeup consumption in one period is based on the outdoor ambient temperature in 

previous periods.  The rationale behind lagging the variables is that buildings take some 

time to absorb changes in atmospheric temperature, resulting in a delay for demand in 

cooling.  The following model includes cooling degree hours as an explanatory variable 

lagged zero, one, two and three hours. 

 
Table 6: Lagged Variable Model Using 2014 Daily Interval Data 
  D.V. : Cooling Tower Water Makeup Consumption (Gal)  

  Models use observations where the dependent variable > 0 

  2014 Lagged Temperature  

  Intercept CDH CDHt-1 CDHt-2 CDHt-3  

Interval: Hourly             

Model 15: Full Year  16.314 8.338 -0.590 2.324 4.017  

Std Error  8.733 0.644 0.515 0.510 0.463  

Alpha Level    0.01 0.10 0.01 0.01  

t stat  1.868 12.949 -1.146 4.555 8.678  

n  4467  

R-Square  25%  

Correlation Residuals : D.V.    0.00% 0.00% 0.00% 0.00%  

             

        

        

 
 

The statistically significant results from the periods lagged zero, two and three hours 

suggest that some combination of lagged periods contributes to change in cooling tower 

water makeup consumption.  Because the determination (R2) for this initial model is well 

below the target 90 percent value, the analysis does not proceed with nested versions. 
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Multicollinearity 
 
The initial models suffer from a lack of correlation between humidity and cooling tower 

water makeup consumption.  Two similar alternative measures of humidity, including dew 

point and wet bulb temperature, offer comparable alternatives. 

 

However, both dew point and wet bulb temperature cause multicollinearity in linear 

models, as demonstrated by correlation tests between independent variables in Table 7. 

The optimal condition for reducing multicollinearity is including only Dew Point or Wet 

Bulb Temperature as explanatory variables or reverting to relative humidity and cooling 

degree days based on dry bulb temperature. 

 
Table 7: Correlation Coefficients among Key Independent Variables 

Correlation Coefficients of Independent Variables (2014 Daily Data) 

Variable CDD 
Relative 
Humidity 

Dew Point 
Temp 

Wet Bulb 
Temp 

CDD 1.00 0.30 0.76 0.95 
Relative 
Humidity 0.30 1.00 0.83 0.53 
Dew Point 
Temp 0.76 0.83 1.00 0.91 

Wet Bulb Temp 0.95 0.53 0.91 1.00 

     

 
 
Persistent model limitations include the lack of correlation between atmospheric humidity 

and cooling tower water makeup consumption, as well as multicollinearity associated with 

including measures of temperature and humidity.  The correlations among explanatory 

variables shown in Table 7 show that multicollinearity biases multiple regression models 

that include measures of humidity (aside from relative humidity) as explanatory variables.  

For this reason, linear regression models cannot include most combinations of the dew 

point temperature, wet bulb temperature and cooling degree days (or dry bulb 

temperature). 
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Conclusions and Recommendations 
 
The greatest challenge is the lack of a linear relationship between measures of humidity 

and cooling tower water makeup consumption.  Unfortunately, functional transformations 

do not address the limitation for daily models.  Future models could investigate the 

relationship between site enthalpy and cooling tower water makeup consumption.  Hourly 

changes in cooling tower water makeup consumption are partially determined by a 

weighted combination of temperature changes in previous periods in addition to some 

measure of humidity.  Future studies may investigate the impact of weighting the values of 

at least several lagged explanatory temperature variables. 

 

Despite robust data acquisition, cleaning and adjustment, major obstacles lie between the 

available data and a reliable model for real time analysis in RTI’s building automation 

system.  Some of the data challenges are related to data quality; others are inherent due to 

the nature of correlated explanatory variables.  Approximate daily assessment is possible 

using the models explored in this project, but the predicted values will not be reliable for 

the purposes of comparison.  Based on the out of sample prediction, an algorithm built on a 

linear model with cooling degree days and relative humidity as explanatory variables 

would have to account for at least 20 percent error associated with the predicted value 

itself, in addition to the percent error between the predicted value (range) and measured 

cooling tower water makeup consumption. 

 

As RTI plans system upgrades and capital investments to the building management system 

hardware and software, the following provisions are worth consideration: 

 

¶ Collect temperature, humidity and enthalpy data on site. 

¶ Develop the ability to retroactively insert historical data into the repository server 

to address erroneous data that corresponded to hardware or communication 

malfunctions. 

¶ Develop advanced machine learning algorithms that utilize methods other than (or 

in addition to) regression analysis (e.g. principal component analysis). 
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Appendix 

A1 Overview of CUP loop buildings (Cooling Components Only) 
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A2 Specifications of CUP Buildings 
 

Building/Space Year of Occupancy  GSF  
% of 
Total 

Campus 

% of 
Total 
RTI 
USA 

 Age  
 End of 

Life'  

Number of 
Employees 

* 

Building 3 September 1963 10,182 1.12% 0.87% 49 2013 28 

Building 6 February 1967 10,172 1.12% 0.87% 45 2017 11 

ARF June 1971 26,712 2.94% 2.29% 41 2021 11 

Hermann June 1971 35,961 3.95% 3.09% 41 2021 59 

Herbert March 1984 68,094 7.48% 5.84% 28 2034 113 

Little July 1993 72,216 7.94% 6.20% 19 2043 71 

Central Utility Plant September 2006 12,115 1.33% 1.04% 6 2051 0 

TOTAL - RTI CAMPUS     235,452 25.87% 20.21%     293 

 
 

A3 Algorithm Decision Tree  
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A4 User Guide 

Overview 
This guide accompanies the macro-enabled Excel workbook completed by Nicholas 
Garafola, in partial fulfillment of the requirements Master of Environmental Management in 
Energy and Environment degree in The Nicholas School of the Environment of Duke 
University 

Routine procedures 

¶ Check for errors and missing data 
¶ Clear out existing processed data 
¶ Generate necessary sheets in the workbook if they are not present 
¶ Import BMS (Periscope) from CSV files and NOAA data from user paste 
¶ Handle up to eight consecutive Periscope exports and multiple years of NOAA data 
¶ Assemble BMS and NOAA data into time-series sets (i.e. stack consecutive data 

intervals) 
¶ Compute region-adjusted timestamps, cooling degree hours, heating degree hours 

and lagged variables 
¶ Merge BMS and NOAA data sets to form one cohesive data set 
¶ Remove observations that consist of negative or non-numeric temperature and 

volume data 
¶ Assess outliers based on user discretion and create outlier-removed data set 

 

Assembling Data 

Task One: Check Input Assumptions 
Review and alter input assumptions on sheet “CONTROL” based on how the weather data 
appear in Excel prior to subsequent steps (the macros in Task Three will add additional 
columns to the left-hand side of each month). 
This step should be performed concurrently with Task Two.  Most of the inputs do not need 
to be changed, but check year, row and column references.  Below is an example of a valid 
set of assumptions: 
 

Step 1: Check Assumptions (columns shift in part 
3)  

Start Year (first year of data you want to clean) 2013 

Data starts in row # (default is row 6) 6 

Time column # (default is 2 for Col B) 2 

Last Column # (usually 23 for W, but sometimes X) 23 

Clear first row of each month's data (Type "Yes") Yes 

Month from which to pull master data headers January 

Dry Bulb Temp (F) Column Number (default is 7 
for G) 7 

CDD/CDH Base (Degrees F, default is 50) 50 

HDD/HDH Base (Degrees F, default is 50) 50 
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¢ŀǎƪ ¢ǿƻΥ tŀǎǘŜ 9ŀŎƘ aƻƴǘƘΩǎ 5ŀǘŀ ŦǊƻƳ bh!! ǘƻ 9ȄŎŜƭ 
Step One: Open NOAA Data Portal (http://www.ncdc.noaa.gov/data-access/land-based-
station-data/land-based-datasets/quality-controlled-local-climatological-data-qclcd) 
 
Step Two: Select “Quality Controlled Local Climatological Data (QCLCD)” from the list of 
options. 
 
Step Three: Select “North Carolina” from the list of states. 
 
Step Four: Select “***RALEIGH/DURHAM: RALEIGH-DURHAM INTERNATIONAL AP 
(13722/RDU)” from the list of desired stations.  Press “Continue” (underneath the list). 
 
Step Five: Select the first desired year/month from the list and press “Continue” 
(underneath the list).   
 
Step Six:  Click the radio button under “HTML Form” and next to “Hourly 10A.”  The “E” for 
“entire month” should be selected by default.  Press “Submit.” 
 
Step Seven: Using the mouse, highlight the entire table (including the headers), starting 
with “Date” on the top left and ending with the last value in the right-hand column.  Press 
CTRL and C keys simultaneously to copy the data table.  In the Excel file, select the sheet 
(tab) corresponding to the full name of the month and click on cell A1.  On the Excel 
Ribbon, navigate to the down arrow under “Paste” on the HOME tab.   Select the clipboard 
symbol for “Match Destination Formatting (M).” 
For best results, start with January and paste one full year of data into Excel. 
 

Task Three: Stack Data 
Once the monthly data sets have been pasted into their respective sheets, press the button 
labeled “Stack Data” on the left-hand side of the CONTROL sheet.  The individual month 
sheets should disappear while a sheet called “Master” should appear and include the entire 
year’s data.  The data set on “Master” include time intervals in the format of the BAS (0:00 – 
23:00) but extra intervals will show up as decimal hour values (e.g. 0.98:00). 
 

Task Four: Transform (Calculate Cooling Degree Hours and Clean Data) 
Press “Transform” to remove the decimal hour values and compute cooling and heating 
degree hours.  The balance point temperatures (degrees Fahrenheit) can be changed in 
Task One. 
 

Task Five (Optional): Export Clean NOAA Data 
Perform this task to obtain clean NOAA weather data without performing further analysis.   
Step One: Press the “Exp CDH” after completing Task Three.  A “Save As” Dialog box will 
appear and will prompt you to select a file path and name.   
Step Two: Select the desired location for the weather data output and enter a unique file 
name in the field adjacent to “File name.”  Press the button labeled “Save.”  A dialog box will 
appear to confirm the location of the new file.  The file itself will open upon save. 

http://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/quality-controlled-local-climatological-data-qclcd
http://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/quality-controlled-local-climatological-data-qclcd
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Task Seven: Import Building Automation System Data  
Step One: Prepare hourly-interval .CSV exports of Building Automation System Data, 
preferably with the following parameters: 

Column A: Timestamp 
Column B: CUP Cooling Water Blowdown (Gal) 
Column C: CUP Cooling Tower Water Makeup (Gal) 
Column D: CUP Cooling Condensate Total (Gal) 
Column E: Sewer Meter 3 (Gal) 
 

Step Two:  Press “Import.” Using the prompt, navigate to the folder that contains the .CSV 
exports.  Select the first file and press “Open.”  The values in the table adjacent to the 
Import button will automatically update to reflect the import (shown below).  The text 
under “Renamed To” in each row reflects the name of the sheet in the Excel file. 

Periscope Files Imported 

File # Original File Name & Path Renamed To 

File 1: 

C:\Users\Nick Garafola\Dropbox\_Masters Project Working 
Documents\2-Models and Procedures\CUP water and sewer 
Reports\2014\report Jan 1 2014 - July 1 2014.csv BASOrig1 

File 2: 

C:\Users\Nick Garafola\Dropbox\_Masters Project Working 
Documents\2-Models and Procedures\CUP water and sewer 
Reports\2014\report July 1 2014 - Dec 31 2014.csv BASOrig2 

File 3:     

File 4:     

 
Step Three:  If you would like to import another .CSV, select “Yes” when prompted and 
repeat Step Two. 
 

Task Eight: Stack BAS Data 
Press the button labeled “Stack BAS.” This will close the individual BASOrig sheets and 
create a new sheet called “StackBAS.” 
 

Task Nine: Clean Periscope BMS Data 
Press the button labeled “Clean Data” to remove outliers and negative values from the BAS 
data.  This will create a new sheet called “BASClean.” 
 

Task Ten: Align Periscope and NOAA Data 
Press the button labeled “Align Data” to merge the data sets based on Excel time and date 
serial numbers.  This macro pulls the values from the weather data that correspond to the 
BAS data based on exact matches for time and date, controlling for changes in DST.  
Duplicate time intervals are deleted. 
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A5 Alignment Verification 
 

SOURCE 
Source Row 

# Date Hour Makeup (Gal) CDH 

BAS Sheet 1 745 1/31/2014 23:00 23 0  

NOAA 747 1/31/2014 23  0 

MERGE 743 1/31/2014 23:00 23 0 0 

      

BAS Sheet 1 2004 3/25/2014 11:00 11 20  

NOAA 2007 3/25/2014 11  0 

MERGE 2002 3/25/2014 11:00 11 20 0 

      

BAS Sheet 1 3048 5/7/2014 23:00 23 200  

NOAA 3051 5/7/2014 23  12 

MERGE 3045 5/7/2014 23:00 23 200  

      

BAS Sheet 2 3350 
11/17/2014 

11:00 11 300  

NOAA 7691 11/17/2014 11  11 

MERGE 7684 
11/17/2014 

11:00 11 300 11 

      

A6 Notes 

A6a Dealing with Daylight Saving Time (DST) 
 
The initial version of the Excel Tool (named “Model 6”) was used extensively by the client 
to prepare weather data in support of the 2014 fiscal year sustainability report.  Model 6 
does not include linear regression functionality but focuses on combining individual 
months of NOAA data as well as recoding and creating variables. 
 
Model 6 did not successfully account for Daylight Saving Time.  A summary of the client 
feedback follows: 
¶ Gaps in cleaned data can result from missing source data.  It might be useful to log a 

count of missing intervals.  John Maravich emphasized a judgment call to address: 
for duplicate intervals, which interval is the right interval? 

¶ Does the model delete an interval or offset the intervals to account for DST 
adjustments? 

 
Identifying and communicating missing and duplicate intervals, as with a variety of data 
cleaning tasks, can be achieved by looping through intervals and/or relying on logical 
statements.   
 
A summary of drafted code that considers a cell in the context of the cell in context of the 
previous and successive values follows: 
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(Define FirstRow as first row of data observatio ns)  

(Define LastRow as last of used range)  

 

Dim Firstval , Secondval  as Long  

Dim i, j, k  as Integer  

Define i  

óStart at second row because analysis is looking at previous and 

post intervals  

For j = FirstRow + 1 to LastRow + 1  

 Firstval = Sheets(ñSheetname).cells((j - 1), i).Value  

Secondval = Sheets(ñSheetname).cells(j, i).Value 

 

If Firstval = Secondval Then  

 óTake average value of the two intervals FOR ALL 

ACTIVE COL 

 Sheets(ñSheetnameò).cells((j - 1), i).Value  = _  

 (Firstval + Secondval) / 2  

 Secondval = Sheets (ñSheetname).cells(j, i).Value = ñò 

 ó(Make the second duplicate value blank for subsequent 

deletion.  

  

Next j  

 

Alternatively, the solution may be modeled after the client’s workaround: 
 
Maravich uses a nested logical statement with the structure: IF(logical_test, [value_if_true], 
[value_if_false]) 
 
The first portion of the logical statement compares the value in D7 to the value of D6+1, 
which we desire to equal the value in D7.  If the comparison passes the first portion of the 
logical test, the formula returns a value of zero.  If the comparison fails the initial test, the 
formula evaluates the false portion of the logical statement, which itself is a (multicriteria) 
conditional statement.  The second statement checks to see if values that are not successive 
are equal to the minimum and maximum hour values, which appear as successive values 
every 24 intervals.  Maravich’s method results in identification and counting of duplicate 
values.  The loop drafted above can accomplish the same task by storing the number of 
time each conditional statement is met in one or more variable(s). 
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External review for DST handling is needed. 
Transition to dealing with merging data. 
 

A6b Time Value Comparison 
 
The biggest obstacle in the time use profile analysis is splitting the data based on time and 
day values.  We expect that use patterns are different during times of occupancy and non-
occupancy per system setbacks on night and weekend hours.  Based on the time stamps, we 
can incorporate indicator variables into the analysis or split the data to model separate 
trends for business and non-business hours.   
 
The initial objective is to split data based on weekday and hour variables derived from each 
time stamp.  The Excel worksheet formula “text” provides an easy way to obtain the day of 
week.  To build data sets for business hours and non-business hours, I create columns for 
each variable that contain conditional statements.  The conditional statement for the 
business hour profile test whether the time interval is Mon-Fri and the time is between 
6:00 am and 5:00 pm.  In the final model, the beginning and ending values should be user-
defined so that the model can adapt to system changes.  For the night and weekend (“Non-
Business Hour”) profile, the conditional statement evaluates whether the interval occurs on 
a Saturday or Sunday or (even for weekdays), the time is before 6:00 am or after 5:00 pm.   
 
The challenge with creating both formulas is the comparison of numerical time values to 
the data in the Excel spreadsheet.  The initial method was to use the worksheet formula 
“right” to attempt to extract the hour value from the time stamp column.  This method 
yielded Excel’s time and date serial number, which cannot easily be compared to hourly 
interval counts.  The second attempt was to paste the time stamp as a value in a new 
column with the intent to later automate that step.  As with the first attempt, the second 
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method yielded the time and date serial number, again resulting in an invalid comparison 
and a blank result from the formula. 
 
The third attempt is a comparison based the Excel “HOUR” formula.  The hour formula 
extracts the numeric hour value (0 – 23) from each time/date stamp.  The formulas for the 
two profiles occur as follows: 
 
Business Hour data point: 
=IF((AND(OR($B5="Monday",$B5="Tuesday",$B5="Wednesday",$B5="Thursday",$B5="Fr
iday"),($H5>=6),($H5<=17))),C5,"") 
 
Non-Business Hour data point: 
=IF(OR($B5="Saturday",$B5="Sunday",($H5<=6),($H5>=17)),C5,"") 
 
The result of the formulas is values that overlap in both business-hour and non-business 
hour data sets.  For each interval where the hour is equal to 6:00 or 17:00, the formula 
includes the value in both data sets.  The formulas need to be more restrictive.  The 
conditional statements for both profiles cannot include greater-than-or-equal-to 
statements. 
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The remedy was a modification to the Non-business hour profile formula.  I removed the 
equal-to statements to reflect the following formula:  
 
=IF(OR($B5="Saturday",$B5="Sunday",($H5<6),($H5>17)),C5,"") 
 
The data set has successfully been split into business hour and non-business hour profiles.  
In the image below, each specific time interval belongs to one profile. 
 
 

 
 
 

A6c Notes: Investigating the Split Data 
 
The final output from the Excel tool utilizes a format similar John Maravich’s breakdown of 
time periods from the post-condensate analysis (late 2014).  Maravich’s output is more 
granular than the initial makeup water consumption regression breakdown (section X) 
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because the data are split into four profiles instead of two.  Maravich splits the data into 
four categories because he expects that the relationship between the independent and 
dependent variables in each category is distinct based on elements not related to 
temperature or humidity.  For example, occupancy and HVAC setbacks in offices spaces 
vary across the split profiles. 
 
2014 Full Data Set (January – December) 
 
2014 Cooling Season, no Lag 
 
2014 Cooling Season, Lag 
 
2013 Cooling Season, no Lag 
 
  
The initial models are based on data split between business and non-business hours, which 
encompass nights and weekends.  The condensate recovery system serves buildings with 
multiple purposes, while the CUP chillers themselves serve predominately lab spaces.  
Because lab spaces do not encounter the same occupancy flux or utilize system setbacks, 
four data profiles are not likely to yield more robust results than two.  The downside of 
four data profiles is that the number of observations N is smaller for each profile, which 
offers less confidence in the expected value obtained from each model.  With a larger 
number of observations (N>200), we can safely assume that the distribution of the data are 
normal. 
 
 

A6d Computing Lagged Variables 
Another potential data problem is the delayed effect of weather data on cooling.  Gary 
Bunce’s model assessed cooling water makeup and cooling degree days at weekly intervals.  
For the weekly interval analysis, the delay in impact of temperature and humidity changes 
on cooling water makeup consumption is likely to be negligible compared the delay 
associated with an hourly interval analysis.  Upcoming models attempt to investigate 
potential impact of a delay by lagging explanatory variables.   
 
Consider a simplified data set consisting of three observations of time, Y and X (figure 1).  
The initial regressions associated each Y-value with the X-value that occurs simultaneously 
(across rows).   
 
Figure 1 

 
 
 
 

 

Time0 Y0 X0 
Time1 Y1 X1 
Time2 Y2 X2 
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However, we suspect that X may have a delayed effect on Y, so we wish to associate our X-
value with the Y-value in the subsequent period.  We therefore create a new variable equal 
to X variable lagged by one period.  Each value of the new X-variable is computed as 
follows: 
 
Figure 2 

 
 
 
 

 
The result is the following data: 
 
Figure 3 

 
 
 
 

 

A6e Computing Lagged Variables Part II 
Numerous values for the lagged values of cooling degree hours initially showed up as 
errors in Excel, despite having valid reference values (i.e. whole numbers) from the CDH lag 
0 variable.  Troubleshooting the problem, as with most others, required manually stepping 
through each line of code and following the computation.   
 
In this case, the macro assigns formulas to each of the lagged variable columns that 
reference the corresponding previous CDH cell.   
 
Upon initially stepping through the macro using year 2014 weather data, the formulas 
function correctly and populate the lagged CDH variable columns with whole numbers.  No 
errors or missing values are present.  A later portion of the Transform macro, which calls 
CalculateCDHs macro, could be responsible for the errors.  But I re-ran the StackData 
macro, the errors did not appear.  The very act of stepping through certain subroutines 
without following the entire sequence of macros as intended for the user may be the root 
cause of multiple errors and missing values. 
 
As is common with troubleshooting, the attempt to resolve one error reveals another:  the 
initial formulas that compute lagged variables output zeroes when referencing missing 
observations.  
 
The downside of assigning formulas to ranges instead of using loops is that logical tests ae 
limited to Excel worksheet formulas (i.e. any formula the user can type in an Excel 
worksheet).  Multiple logical statements within spreadsheet formulas become quite long 
and complex and therefore difficult to evaluate and maintain.  By contrast, the syntax of 
logical tests in loops in flexible and generally easy to understand, since the worksheet 

Time0 Y0 X0 X0-1 = (blank) 
Time1 Y1 X1 X1-1 = X0 
Time2 Y2 X2 X2-1 = X1 

Time0 Y0  
Time1 Y1 X0 
Time2 Y2 X1 
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values can be stored in named variables and named with concise descriptors, such as 
“DDBase” for the degree day base value.  When multiple logical constraints must be 
satisfied and computation is not straightforward, calculations within loops in VBA are 
preferable to assigning formulas to ranges. 
 
I found that when I manually typed formulas into the ranges and referenced the blank cells, 
the formulas resulted in blank cells.  The act of dragging the same formula using relative 
references down a column range resulted in the zero error.  The solution is to copy and 
paste the range of initial values to the corresponding period of lag instead of using 
formulas.  For example, cooling degree hours lagged by one period use the same exact 
column as the original cooling degree hours variable, except that the entire column is 
pasted starting in the second row of data.  Using the copy paste function is not only simpler 
than  
 
The only downside is that extra values will be pasted below the last row.  The macro is set 
to only copy as many values as will fit in the table, based on a final row number equal to the 
original last row minus the number of periods lagged. 
 


